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Abstract

Rehabilitation therapies are evolving oriented to improve their performances in

terms of functional recovery. To achieve such recovery, the patients’ involvement

is an important factor that correlates with the plastic properties of the brain. By

evaluating electroencephalographic signals, it is possible to modify, in real time,

the parameters of the rehabilitation according to the patients’ cognitive state.

In this paper, an online brain-machine interface to measure the attention level

during gait is presented. The system is based on the measurement of selective

attention mechanisms manifested as power synchronization and desynchroniza-

tion in the gamma band. A Linear Discriminant Analysis classifier is used to

provide an attention index between 0 and 1 in real time. Robust techniques for

artifact rejection and signal standardization are used in order to deal with the

problems associated to the measurement of cortical signals during walking. The

final interface is validated with 4 incomplete Spinal Cord Injury patients and 4

healthy participants. The system shows an average success rate of 68.1% in the

classification of 3 attention levels and a stable behavior of these results during

time.
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1. Introduction

According to the World Health Organization (WHO), between 250 and 500

thousand people suffer a Spinal Cord Injury (SCI) every year [1]. These injuries

refer to damages in the spinal cord resulting from trauma like traffic crashes,

falls and violence. For that reason, young people, between 15 and 30 years, are5

more prone to suffer them. From a physical and cortical point of view, these

people are more likely to recover mobility after rehabilitation [2]. In this sense,

rehabilitation therapies have become a broad and current interest in science

emerging from the social concern for the increasing number of people suffering

this condition [3, 4, 5].10

According to the concept of neuroplasticity, a wide range of experiences pro-

mote changes of the brain structure at a physical level both in humans [6] and

animals [7]. It has been hypothesized that neuroplasticity could help rehabil-

itation performance following SCI by restoring and creating neural paths that

compensate the lost functionalities [8, 9]. In fact, several studies proved an in-15

crease in plastic changes associated with higher levels of patients involvement

during therapies [10, 11, 12].

To enhance this brain plasticity, the use of Brain-Machine Interfaces (BMI)

has been proposed in several studies [13, 14]. In [15], the success rate in the

detection of walking intention through cortical signals shows a strong correla-20

tion with motivation of stroke patients. Cortical information regarding cogni-

tive mechanisms can be extracted from electroencephalographic (EEG) signals

[16, 17, 18]. The proper understanding of these cortical processes is helpful to

define a cognitive model of the brain which may be used to modify the parame-

ters of physical therapies. By applying this method, patients will perceive how25

rehabilitation strategies change according to their cognitive state, increasing

their level of involvement and, as a consequence, enhancing the plastic proper-
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ties of the brain during therapies. According to literature, this process should

boost the regeneration of neural paths, which, ultimately, will improve rehabil-

itation results both in terms of motor function recovery and therapy duration.30

Walking for SCI patients is cognitively challenging. The attentional demand of

gait seems to be an important factor related to motor recovery [19, 20]. Decod-

ing this parameter during gait rehabilitation is helpful to measure functional

recovery. The current work is focused on this topic with the final goal of us-

ing the attention during gait to modify the assistance provided to SCI patients35

during lower limb rehabilitation.

It was found that the attention paid on gait is associated to selective at-

tention mechanisms manifested as synchronization and desynchronization of

gamma band power in EEG signals [21, 22, 23]. Other works analyze atten-

tion mechanisms by analyzing visual or auditive evoked potential while walking40

feedback is provided [24, 25]. As these potentials depend on how much attention

is paid to them, they will change according the attention paid to gain instead

of the stimulus. In [26], easy and hard mathematical operations are presented

to subjects while walking. But, as in the other works, it is only indicated that

significant differences are found, and not success rates are provided. In this45

regard, an offline analysis was previously performed in [27] to evaluate how

attentional demands affect cortical potentials during gait. Offline results for

healthy participants and SCI patients provided an average of 67% of success

rate for 4 attentional tasks during walking.

The purpose of this work is the development of an online system based on50

the offline research performed in [27]. The final system provides an attention

index between 0 (lowest) and 1 (highest). The development of this system faces

three critical points. The first one is the adaptation of the offline algorithms

to fit specific time processing restrictions associated to real time systems. To

enhance brain plasticity, patients have to experience a direct relationship be-55

tween the rehabilitation therapy and their cognitive state [28]. In this work, real

time is defined as those processing and classification time conditions needed to

analyze an incoming epoch before the following epoch is acquired. The second
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point is related to the reliability of the measured EEG signals. The volume

conduction of the scalp induces the appearance of undesired signals from non-60

cortical sources coupled to EEG channels [29]. These artifacts come from dif-

ferent sources (physiological, environmental, etc. [30, 31, 32]) and it has been

proved that their influence on EEG signals increases under heavy movement

conditions [33]. Moreover, in a previous work [34], it was shown that, during

walking, EEG signals are significantly affected by conductivity changes produced65

in the electrodes. These changes were related to displacements in the circuit

formed by the electrodes, the conductive gel and the scalp. The specific head

movements performed during ambulation were directly associated to the scalp

areas affected by these noises. To avoid misleading results related to artifact

appearance it is necessary to design an artifact detection algorithm to identify70

and reject polluted trials. The final aspect evaluated in this work is the amount

of data needed during the creation of the classification model and the stability

of its performance during time. Modeling techniques have been widely studied

for EEG analysis in order to increase BCIs performance [35, 36, 37]. The time

variability of EEG signals is a recurrent issue in modeling. It implies a decrease75

in the performance of classification associated to the time that has passed from

the moment the model was created [38]. In this work, EEG signals are standard-

ized prior to model creation to increase the similarities of the signals acquired in

different dates. Moreover, the performance of the model regarding classification

is tested with EEG data registered on different days. The final system has been80

validated with healthy participants and incomplete SCI patients.

2. Material and Methods

2.1. Data Acquisition

EEG data were recorded using 31 active electrodes located on the scalp with

the following distribution: Fz, FC5, FC1, FC3, FCz, FC2, FC4, FC6, C5, C3,85

C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, P1, Pz, P2,

P4, PO7, PO3, PO4 and PO8 according to the international system 10/10. The
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ground was located in AFz position and all channels were referred to an elec-

trode firmly located on the right earlobe through a grip. Electrical signals were

sent through a small wifi transmitter to a commercial amplifier (actiCHamp,90

BrainProducts, GmbH, Germany) where they were digitalized using a sampling

frequency of 500 Hz. In addition, a hardware band-pass filter between 0.5 and

100 Hz was applied to remove the spectral information beyond the bandwidth

of cortical signals and a 50-Hz Notch filter was used to remove the power line

interference.95

2.2. Processing

To design an online real time system, it was necessary to set certain time

restrictions during the signal processing. During gait rehabilitation, the atten-

tional demands experienced by users do not present quick variations in short

time periods. For that reason, it was decided to design a system that provides100

a value of the attention coefficient each 0.5 seconds. To obtain this result, the

system developed was capable of processing the incoming data and taking a

decision in less than 0.5 seconds. After that, it waited until the following 0.5

seconds of data were acquired to repeat the process.

Each 0.5 seconds, a new epoch went under the processing stage. In order to105

have enough time information, the epoch length was selected as 1 second. From

that length, the last 0.5 seconds corresponded to the newest acquired data and

the remaining 0.5 seconds were selected as an overlap of the previous processed

epoch (Fig 1A). On each iteration of the real time acquisition loop, the raw data

registered were presented as a 31 × 500 matrix (31 channels and 500 samples).110

The Common Average Reference (CAR) method was applied to each channel

by subtracting the average value of the remaining set of channels (Fig 1B) [39].

Then, prior to spectral computation, it was necessary to apply a standard-

ization algorithm capable of moving to the same amplitude range all the regis-

tered signals, from different users and days, in order to made them statistically115

comparable. However, it is important to reduce, to its minimum, the loss of

information associated to the standardization process. In the current work, sig-
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Figure 1: Signal processing and classification. Block diagram of the processes applied to

each new incoming epoch regarding processing, artifact removal and classification. As a final

result, the instantaneous attention index was obtained.

nals were standardized using their Maximum Visual Threshold (MV Threshold

in Fig 1C). This parameter was introduced in a previous work [27]. It uses

information from the N -previous data epochs. X matrix symbolize electrodes120
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as rows and time steps as columns, therefore, X[e, t] represents the potential

at electrode ’e’ and time point ’t’. The MV Threshold for the electrode e was

computed according to equation 1, where Xe
((i−1)×L+1):(i×L)) is the L-samples

epoch (L = 250, 0.5 seconds) number i for i = 1, 2, 3...N with N being the total

number of previous epochs evaluated.125

MV Thresholde =
1

N

N∑

i=1

max(Xe
((i−1)×L+1):(i×L))) (1)

In [27], the MV thresholds were computed during an offline analysis with runs

of 160 seconds, however it was proved that after 50 seconds the MV Threshold

already converged to its final value. As in the current work each incoming epoch

contained 0.5 seconds of new data, the information of 100 epochs (N = 100,

50 seconds) was used to compute the MV Threshold for each electrode. This130

value was computed for the 31 channels at each iteration of the acquisition loop.

Results of these computations were used to standardize the signals according

to the equation 2, where V (t)e is the raw EEG signal of the electrode e and

MV Thresholdj is the MV Threshold of the channel j, with j = 1, 2, 3, ...Ch,

being Ch the total number of channels.135

SV (t)e =
V (t)e

1
Ch ×∑Ch

j=1 ×MV Thresholdj
(2)

SV (t)e represents the Standarized V(t) for each electrode e. By averaging

the MV Thresholds of the 31 channels, the information provided by the power

difference between electrodes was not lost after the standardization. At the same

time, it made possible the comparison of signals acquired on different sessions

and different users in terms of amplitude.140

Standardized signals resulting from these methods were then subjected to an

autoregressive spectral analysis through the Maximum Entropy Method (MEM)

introduced by Burg in [40]. The AR-parameters were computed by minimizing

the sum of the square forward and backward prediction errors [41]. This method

highlights the spectral components associated with the highest entropies which145

are also related to those containing the most relevant information. The spectrum

7
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between 1 and 100 Hz was computed for each epoch with a spectral resolution

of 1 Hz (Fig 1D).

To evaluate the selective attention mechanisms associated to the gait pro-

cess it was necessary to extract features that contained information about the150

synchronizations and desynchronizations produced in the gamma band [21]. Fol-

lowing the results obtained in [27], a combination of γlow (30-45Hz) and γhigh

(55-90Hz) frequencies were summed to get a single feature per electrode. Fi-

nally, 31 features per epoch were used as an input for the classification (Fig

1E).155

2.3. Artifact Rejection

A common problem during EEG acquisition is the appearance of undesired

signals that cover the potentials under research. These artifacts are even more

critical on experiments performed during ambulation [33]. In addition, for on-

line artifact removal techniques, it is not possible to use neither future signal160

values (as they are not registered yet) nor huge amount of past data (as there are

processing time limitations related to the real time conditions). In the current

work, to avoid misleading results related to the appearance of artifacts, 3 param-

eters were evaluated during single epoch processing to detect noisy electrodes

(Fig 1F).165

Prior to standardization, the instant value of the Maximum Visual Threshold

was computed for every electrode of the epoch under analysis. These values

represent the maximum amplitude measured for each epoch. All electrodes

that exceed 150 µV were considered noisy (Fig 1F1). This decision was made

after evaluating the typical range of EEG amplitudes, which is between 0.5 and170

100 µV according to [42] and our previous work [34].

In addition, during this stage, the kurtosis of all electrodes was computed.

This parameter, related to signal variability, provides a measure associated with

the appearance of heavy tails in the signals [43]. For that reason, it has been

widely used to detect unexpected EEG signal variations mostly associated to175

blinks and similar low frequency potentials [44, 45, 46]. The threshold is based

8
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on standard deviation of EEG signals and it was selected to allow that signals

with artifacts can be rejected. The value was calculated by using previous offline

registers for procedure validation and previous works [34] in which artifacts

where visually checked and compare with the other parameters. In the current180

work, electrodes with kurtosis values higher than 15 were considered noisy (Fig

1F2).

Another critical point regarding the artifact appearance was the features

extraction. γ band power is associated to changes in the selective attention

mechanisms but it is also modulated by EMG signals (usually by those produced185

near the scalp area like jaw clenches or facial grimacing [47, 48]). However EMG

influence could be easily distinguished as it produces significant power changes

in γ band compared with EEG signals. After evaluating the influence of these

artifacts [34], it was decided to consider noisy those electrodes whose features

exceeded 14 µV2· Hz (Fig 1F3).190

2.4. Classification

Features vectors were classified using a Linear Discriminant Analysis (LDA)

algorithm which is a generalization of Fishers Linear Discriminant classifier [49].

The model used was defined as a 31 × 3T features matrix and a 1 × 3T label

vector with 31 being the number of features per trial and T the number of trials195

per task. Tasks were equally distributed in the model to avoid any tendency

in the classification output. The model also contained the initial values of the

MV Thresholds used during standardization. These values were updated during

online analysis.

Prior to classification, the artifacts detected during processing were evalu-200

ated (Fig 1F4). At this point, there were 2 different courses of action depending

on the number of noisy electrodes appearing on each incoming epoch. If 10 or

less electrodes were affected by artifacts (less than the 33% of the epoch informa-

tion), the rows of the 31×3T feature matrix associated with the noisy electrodes

were removed from the model and the classification was performed using only205

clean electrode features (Fig 1G). Otherwise, the epoch was completely rejected

9
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and the last valid classification value was used as classifiers output (Fig 1H).

Depending on the task identified, the classifier provided an output for low

attention (0), medium attention (0.5) or high attention (1). In order to reduce

the influence of false positives, the final attention index provided by the system210

was obtained after averaging the lasts 10 classification outputs (Fig 1I). The goal

of averaging the last 10 epochs was performed in order to obtain a continuous

index of the attention level across the time. If the predicted value every 0.5

seconds (0, 0.5 or 1 regarding attention level) is directly used to control a system,

even with a high success rate, it will change several times from one level to215

another due to false positives. Therefore, in order to avoid that, this average

allows obtaining a tendency value that show an smooth attention level. It was

analyzed several values and 10 epochs was experimentally selected as it was a

relatively stable value. With more epochs, the change between one level to other

was very slow, and with less epochs the variability was too high when users did220

not have high success rates.

Additionally, the confusion matrix for the three different levels of attention

was computed. This way it can be analyzed, not only the global % success rate,

but also which attention levels are detected during each task and how it can

affect to the performance of the system.225

2.4.1. Chance Level Computation

To validate the classifier performance, it was necessary to confirm the signifi-

cance between the success rate values obtained and the chance level. Mathemat-

ically, the chance level for a 3-task classification system with an infinite number

of observations is 33% assuming class equality (which is the case of the current230

work). However, for a real finite data analysis, the chance level is a range of

values around the mathematical value for infinite observations. The upper and

lower bounds of this range vary depending on the number of observations clas-

sified to obtain a single value of accuracy. The equations used to compute the

chance level for the current system were the same used in the previous offline235

study [27].

10
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2.5. Evaluation metrics

After each run, four parameters related to the performance of the experiment

were obtained:

• Attention index vector: contains the attention indexes provided for240

each epoch after the classification stage. Taking into account the segmen-

tation parameters (1-second epochs with 0.5 seconds of overlap) and the

length of a run (30 s · attentional task = 90s), the size of this vector was

1x180. After a session (8 runs), the results regarding this parameter were

represented as an 8x180 matrix.245

• Success rate: contains a single value with the percentage of the correctly

classified tasks. To compute this parameter, the attention index values

were not used, instead, the instantaneous values provided by the classifier

for each epoch (0, 0.5 or 1) were compared to the real task performed at

each time. After a session (8 runs), a 1x8 success rate vector was obtained.250

• Rejected data: contains a single value with the percentage of data re-

jected during a run. After a session (8 runs), a 1x8 vector is provided.

• Artifact spatial distribution: contains the number of noisy epochs as-

sociated to each acquisition channel (represented as a 1x31 vector). After

a session (8 runs), a 8x31 matrix was provided.255

2.6. Graphical Interface

A graphical interface was used to provide visual information about the de-

velopment of the experiment during the online processing. Fig 2 shows the

appearance of the interface. Section A shows the attention level measured. Sec-

tion B represents the average number of electrodes used along the experiment260

and consequently the data lost (in percentage). In section C, a red bar was

used to show the number of electrodes that were used for the classification on

each loop iteration. This value provided a measure of the attention index va-

lidity at each time instant. Section D shows the evolution of the Maximum

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Visual Thresholds of the 31 channels in order to detect unexpected changes in265

the scalp-electrode conductivity during the experiment [34]. In section E, the

scalp with the electrode distribution used during acquisition is represented. The

electrodes changed their color (from white to black) following a red shade gra-

dient representing the relationship between the epochs classified and the noisy

epochs detected. Finally, section F shows the average success rate obtained on270

the current run. All sections were updated every 0.5 seconds except for section

F (success rate) which was updated only at the end of each run. The parame-

ters shown by the interface during the experiment were saved with the acquired

EEG information to check the validity of the final results.

Figure 2: Graphical interface. Graphical interface used to provide information about the

experiment development. A: instantaneous attention level; B: average of electrodes used and

data lost; C: instantaneous electrodes used; D: instantaneous maximum visual threshold of

each electrode; E: instantaneous spatial distribution of artifacts detected; F: accuracy at the

end of a run.

2.7. Experimental Procedure275

Before starting the experiment, participants were instrumented with the

EEG acquisition devices. Conductive gel was located in each channel to reduce

12
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the impedance between the scalp and the electrode. The experiment was based

on a dual task paradigm where participants performed 2 different tasks at the

same time. In this case, participants were asked to walk on a treadmill at 2280

km/h while they performed other tasks that modify their amount of attention

to gait. A run of the experiment was composed of three 30-seconds trials (as

shown in Fig 3). On the first trial, participants were asked to mentally solve

mathematical operations during gait. The operations were presented through a

screen located in front of them. During this task, participants were focusing on285

a non-gait related task, for that reason it was labeled as low gait attention. For

the second trial, participants were asked to walk while looking to the front and

no distractions were presented. This task was labeled as medium gait attention.

Finally, during the third trial, participants were asked to walk following some

marks located in the treadmill with an unsteady gait pattern. Following such290

pattern made them increase the attention towards the gait process. For that

reason, this task was labeled as high gait attention. A session of the experiment

was composed of 8 runs.

Figure 3: Run description. The run was divided into three trials of 30 seconds each. On the

first trial the user was asked to perform mathematical operations during gait. On the second

one the user was asked to walk normally. And, on the third one, the user was requested to

follow several marks located on the treadmill with an unsteady gait pattern. The tasks were

labelled respectively as low, medium and high attention during gait, regarding how each one

influenced the user’s engagement throughout the recording.

13
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2.8. Studies Performed

Healthy participants and patients performed one session of the experiment to295

validate the performance of the online system. Moreover, healthy participants

performed an additional session (two days after the first one) which was used to

test the stability of the classification model through time. In Fig 4, a scheme of

both sessions is shown. Each session was composed of 8 runs. The experiment

ran online from the beginning of the session so it was necessary to define a default300

classification model for the first run and session. The model was composed of

random features, a vector of balanced labels and a set of 31 MV Thresholds

(all of them ones). In each subsequent run, a new model was created using the

features, labels and MV Thresholds from all the previous runs. This process

was repeated until the fifth run (where the model was created with data from305

the fourth first runs. Then, features and labels were not updated any more.

However, the MV thresholds were still being updated during real time processing

in order to correct long term amplitude changes in the EEG signals [50]. Last

four runs (from 5 to 8) were used to compute the final success rate values for

each participant. The second session of the experiment was only performed by310

healthy users. In this case the model used was the one already created on the

previous session. Again, the features and the labels remained constant during

the whole session and the MV Thresholds were updated on each iteration of the

acquisition loop. In this case, the success rate values obtained during the 8 runs

of the second session were used to test the stability of the model after applying315

the MV Thresholds standardization.

2.9. Participants

Four healthy users performed the experiments, three males and one female

with ages between 26 and 30 (27±2) years old. Also four incomplete Spinal

Cord Injured (iSCI) patients participated at the experiment, three males and one320

female with ages between 23 and 66 (44.7±17.6) years old. Healthy participants

were graduate, PhD and Postdoc Students from Miguel Hernández University

of Elche (Spain) with no known diseases, and patients were recruited from the

14
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Figure 4: Experimental protocols. Block diagram of both sessions performed during this

work. On the first session the model was updated using the information of the first 4 runs.

After that, the data used to create the model remained constant and the MV Thresholds were

updated during real time analysis. This session was performed by healthy participants and

iSCI patients. The second session was performed two days after the first using the final model

previously obtained. Thresholds were still updated during real time analysis. Only healthy

participants performed the second session.

National Hospital for Spinal Cord Injury in Toledo (Spain) with motor lesions

between C7 and T10. The patients selected were able to walk by themselves or325

15
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using simple assistive tools like crutches or walkers. All users were previously

informed about the experimental procedure and they signed an informed consent

according to the Helsinki declaration. The experimental procedure was approved

by the ethics committee of the Miguel Hernández University of Elche (Spain).

3. Results330

3.1. Artifact rejection and spatial distribution

The information obtained during the first experiments regarding data re-

jection is represented on Table 1 for each user. On the two rows, the average

amount of rejected data and its standard deviation are shown. Also, the maxi-

mum and minimum numbers of noisy epochs rejected for each participant (rows335

3 and 5) with the names of the associated electrodes (rows 4 and 6) are provided.

In addition, in Fig 5 the spatial distribution of the noises identified during

the experiment are shown for patients and healthy participants. This spatial

distribution is represented in two different ways. On the left, the number of

noises detected are compared with the total number of epochs (noisy and not340

noisy) evaluated. This representation shows the influence of noise among all the

data acquired during the experiment. In this case it is clear the low amount

of electrodes found noisy during the experiments. On the right, the number

of noises detected on each electrode are compared with the number of noises

detected on the noisiest electrode. In this way, the areas of noise influence are345

emphasized, so it can be evaluated if the detected noise is related with some

specific electrode or if it is not associated to any specific scalp area as the image

suggest.

3.2. Classification results

In Fig 6, the average success rate of the system is represented for each350

participant. In this case, for healthy users it is shown separately session 1 from

session 2. For session 1, the success rates of the last 4 runs were averaged,

and for the session 2, all 8 runs success rates were averaged. For patients, the

16
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Table 1: Data lost results. “Loss (Avg)” and “Loss (Std)” rows show the average and

standard deviation (in %) of the data contaminated by artifacts for each subject. Rows “Min

Noises” and “Max Noises” show the minimum and maximum number of noisy epochs found

in an electrode for each volunteer. Moreover, the name of the electrodes presenting minimum

and maximum number of noisy epochs are respectively shown in rows “Elec (Min)” and “Elec

(Max)”.

Healthy Subjects iSCI Patients

Subjects H1 H2 H3 H4 P1 P2 P3 P4

Loss (Avg) 0.4% 0.2% 1.3% 0.4% 0.5% 9.1% 7.5% 1.4%

Loss (Std) 0.8% 0.3% 2.1% 0.7% 0.5% 4.9% 5.1% 2.8%

Min Noises 6 2 26 7 2 86 79 14

Elec (Min) PZ FC2 PZ C5 PO7 P2 P2 FC5

PO3 CZ CP3 C5 FC3

CP3 CP1 P1 CP3 C5

C1 C1

CPZ P2

Max Noises 13 17 76 24 13 140 109 31

Elec (Max) FCZ PO8 CP6 CP6 FC4 C6 CP1 C6

PO8

4 last runs of the first session were used to show the averaged success rates.

The standard deviation values are represented with black lines centered on each355

success rate bar.

First session of healthy users got an average success rate of 77.3±7.6 % while

the second session decrease to 69.0±14.4 %. Patients get an average value of

58.0±11.9 %.

The last bar of each group (both sessions of healthy and single session of360

patients) represents, in terms of average and standard deviation, the chance level

computed given our classification system (3 tasks) and the data populations

used to computed the final success rates (4 samples for first session of healthy

subjects and patients, and 8 samples for second session of healthy subjects). By
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Figure 5: Noise spatial resolution. Spatial distribution of noisy epochs detected for healthy

subjects and iSCI patients. The first column compare the noisy epochs detected on each

electrode to the total amount of epochs processed. The second column compare the noisy

epochs of each electrode with those detected in the noisiest electrode. It is represented in

percentage from 0% light to 100% dark.

following the procedure explained in [27] and taking into account that chance365

level for infinite number of observations is 33% for our 3 tasks, it was calculated

the chance level for finite number of samples (each sample includes 180 epochs).

This imply that for first sessions chance level is 33.4±3.4 and 33.4±2.4 for second

session of healthy subjects.

A statistical Wilcoxon Rank-Sum Test with a confidence interval of 95%370

was applied to evaluate the significance between the each participant and the
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associated chance level [51]. After applying a Bonferroni correction for multi-

ple comparisons [52], the success rate values that show significant results were

marked with an asterisk.

Figure 6: Classification results. Average success rate computed for each subject including

data from all the runs performed with the final model (4 runs of the first session and 8 of

the second for healthy subjects and 4 runs of the first session for iSCI patients. The gray bar

represent the chance level of the classification system used. The users whose averaged success

rate values show significance against the chance level are marked with an asterisk.

3.3. Model stability through time375

There were two important aspects regarding classification performance dur-

ing model creation. The first one was the amount of data needed to create the

model which was directly related to the training time. The second aspect was

the performance of the model classifying data acquired on distant time periods.

To test these aspects, the success rate values obtained for each run are shown380

in Fig 7. During runs from 1 to 4 of the first session (both for healthy and

patients), the model was updated with the data recorded from previous runs.

The success rate values from this session (8 runs) were used to show how the

classifier performance evolved when the data used to create the model increased.
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Moreover, two days after this session, healthy participants performed a second385

session of the experiment using the model created during session one. Success

rates values obtained from the second session are also shown on Fig 7 for healthy

participants. This information provides a measurement of the stability of our

classification algorithm through time.

Figure 7: Success rate evolution. Success rate individual values for each run of both

sessions. Each colored line joins the individual values of a single subject.

3.4. Confusion matrix390

Even the global success rate reported in previous sections is high, it should

be analyzed how the different requested attention levels are detected related

each other. Table 2 shows the confusion matrix for each user. In the case of

healthy users it is shown separately first and second session. Each matrix shows

the average of all the runs where the final model is used.395

On one hand, results show that high attention level is very well detected in

all users. Healthy subjects got and averaged success rate of 97% and 83% for

each session respectively, and patients got also a suitable value of 86%. On the

other hand, low attention level is also usually properly detected. For healthy

subjects a success rate of 84% and 80% respectively are obtained. For patients400
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results show worst performance getting an average 41%. Low level is confused

with medium and high attention levels. Finally, medium attention level is the

one that got lower accuracy as it is usually confused with low attention level.

In this case all users got success rates near 50%.

3.5. Attention index evolution405

Finally, fig 8 shows the average attention index for each participant. For

healthy users, the values were obtained averaging 12 runs (the last 4 runs from

the first session and 8 runs from the second session). On the other hand, for

patients, the values were obtained averaging the last 4 runs of the first and only

session. The attention index of each participant was represented with a colored410

dotted line. In addition, a black straight line represented the average value of

the index for the whole set of healthy users and patients, respectively. The

vertical black dotted lines delimited the X-axis according to the real attention

level. In an ideal performance of the system, the attention index should be 0,

0.5 and 1 for low, medium and high attention level, respectively.415

Figure 8: Attention index evolution. Average attention index computed for each subject

including data from all the runs performed with the final model (4 runs of the first session

and 8 of the second for healthy subjects and 4 runs of the first session for iSCI patients).
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Table 2: Confusion matrix. Averaged confusion matrix for each user is shown. For first

session of healthy (first column) and patients (last column), averaged confusion matrix for

runs 5 to 8 (when final model is set) for each user are shown. Moreover, average confusion

matrix of the 8 runs of session 2 of healthy subjects is shown in center column.

Real attention level performed

H1 session 1 H1 session 2 P1 session 1

L M H L M H L M H

P
re

d
ic

te
d

at
te

n
ti

on
le

ve
l

L 96.3 60.8 0.4 96.9 63.7 5.6 32.9 46.7 13.3

M 3.8 39.2 0.0 3.1 36.3 0.0 13.8 14.2 12.5

H 0.0 0.0 99.6 0.0 0.0 94.4 53.3 39.2 74.2

H2 session 1 H2 session 2 P2 session 1

L M H L M H L M H

L 75.8 15.0 0.0 88.1 65.2 59.6 57.1 23.8 1.7

M 24.2 85.0 0.0 11.9 34.6 0.2 12.1 39.2 0.4

H 0.0 0.0 100.0 0.0 0.2 40.2 30.8 37.1 97.9

H3 session 1 H3 session 2 P3 session 1

L M H L M H L M H

L 99.2 69.6 2.1 89.0 23.3 4.2 45.4 30.4 14.6

M 0.8 29.2 0.0 10.8 75.4 0.2 33.3 62.9 11.2

H 0.0 1.3 97.9 0.2 1.3 97.5 21.3 6.7 74.2

H4 session 1 H4 session 2 P4 session 1

L M H L M H L M H

L 66.3 49.2 0.4 45.0 26.9 0.0 26.7 26.2 0.0

M 33.8 49.6 10.0 32.7 40.2 0.0 72.1 73.8 2.9

H 0.0 1.3 89.6 22.3 32.9 100.0 1.3 0.0 97.1
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4. Discussion

Results show differences in the amount of data rejected depending on par-

ticipants conditions (see Table 1). Rejected data from patients (4.6±1.9%) is

significantly higher than data rejected from healthy participants (0.6±0.5%).

The spatial representation of artifacts in Fig 5 also supports these results. For420

healthy participants, it is not appreciable the level of contamination as it is

very low compared to the total amount of data evaluated. However, for pa-

tients, the electrodes present an appreciable level of contamination. This is also

an expected result as patients walking patterns are more susceptible to the ap-

pearance of motion artifacts. On the other hand, the artifacts appearance does425

not seem associated to any specific scalp area (Table 1). This can be seen more

clearly in the spatial representation of artifacts in Fig 5, where all the electrodes

present similar amounts of contamination.

Although the attention index for a specific task shows moderated deviations

between healthy subjects, the differences between low, medium and high atten-430

tion levels are easily distinguished within the attentional range associated to

a single participant (Fig 8A). Similar results are obtained for incomplete SCI

patients except that, low and medium attention levels do not present significant

differences (Fig 8B). These results are consistent with the confusion matrix ob-

tained (Table 2) where high and low attention level got higher success rates435

while medium attention level is more confuse with the other levels. The global

success rates obtained on Fig 6 support these results as patients show lower suc-

cess rate values (58.0±11.9%) than healthy subjects (77.3±7.6%). The success

rates of every user (except for patient P1) show significant differences compared

to the chance level computed for the current classification system. This behav-440

ior fits the findings in [27] where patients show less class separability due to the

inherent difficulties they experience when they try to reduce their attention on

gait during low attentional tasks.

Regarding classification performance, the success rate values obtained during

the first session of the experiment present a relevant increase during the first445
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three runs (Fig 7). On the first run, success rates are in the range of chance

level as the model at this point was created with default random data. After

the third run, success rates do not experience huge variability and their values

have significant differences compared to chance level. These are the expected

results as the model used during session one is updated during the first four450

runs. In fact, it seems that updating the model after the third run does not

improve the classification performance. Results for both healthy subjects and

patients present similar behaviors. Moreover, success rates obtained during

the second session performed by healthy subjects (Fig 7) show a decrease of

8.3% in the averaged performance (69.0% of averaged success rate). However,455

for all subjects (except H2), results are above chance level and they presented

small variability across the session. These results show that the use of the MV

Threshold as standardization parameter provides higher model stability during

data classification on different days. The biggest reason for the reduction of

the results in the experiments of the second session is because the model is460

kept. Even some users get suitable results, in order to improve results for all

users, future works will assess a new very short training in second session. The

model will be created using this new training and the data of the experiments

performed in the first session. This way, it is expected that with only a couple

of minutes of training, results can be similar to the obtained in the first session.465

These results suggest that it is possible to properly detect low attention level

from high attention level with high performance. In order to properly detect

other intermediate attention levels the continuous attention level index can be

used to analyze the tendency of user’s attention.

There are not similar works that offer success rates that help to compare470

the performance of our development. Only [26] performs an study where math-

ematical operations are performed while walking and it concludes that signifi-

cant differences are found, but not success rates are provided. In this regard,

a comparison with our previous work [27] where 4 attention levels are evalu-

ated during gait. In this work 12 healthy subjects obtain a 69% of success rate475

while patients got a 57%. In the current work, not only the results have been
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improved, but also attention level is evaluated in real time.

This paper validate the system in a more realistic condition for a rehabilita-

tion therapy where the attention level index need to be obtained in real time.

It has verified that both healthy and patients generate the continuous attention480

level index showing a high tendency to the requested level. During a rehabili-

tation therapy is desirable that patients be as more center as possible in their

gait. Therefore, if an exoskeleton is used for gait rehabilitation, the index can

be used to modify the level of assistance of the exoskeleton. If the user have

high attention, the pattern of the exoskeleton will help the patient. In the case485

the index decreases due a low attention level, the pattern will be adapted to al-

low obtaining again a high attention level. This will allow the patient to always

keep a good involvement during the therapy increasing its rehabilitation results.

This index can also be used to determine if the therapy applied should be mod-

ified in order to be less bored and more participative, always for improving the490

involvement of the user. Moreover, it can be a good resource for medical staff to

know how well therapies work. It is also important to remark that the designed

system adjust the model only until run 4. This implies a reduced training time

that allow starting with the therapy sooner. Moreover, the relevant results of

the second session will allow that a new training not be necessary. In this work,495

subjects continue performing task to reduce or increase the attention level in

order to evaluate the behavior of the system. But in a real experiment, after

the initial training, subjects will not need to continue performing these kind of

tasks. They will directly perform the therapies while their attention levels are

obtained in real time.500

5. Conclusion

In this work, an online system to measure the attention level during gait has

been developed from a prior offline study [27]. The final system provides an at-

tention index between “0” (lowest attention) and “1” (highest attention) every

0.5 seconds during human gait. The system has been validated with 4 healthy505
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subjects and 4 incomplete SCI patients providing an average success rate of

68.1% in the classification. The attention level classified shows more separa-

bility for healthy subjects (77.3%) than for patients (58.0%). The amount of

data contaminated by motion artifacts have been measured showing significant

differences between patients (4.6%) and healthy subjects (0.6%). Also, polluted510

electrodes are spatially distributed randomly for both patients and healthy par-

ticipants. Finally, the success rate values are stable during a single session and

present a decrease of 8.3% (success rate of 69.0%) when the classification is

performed 2 days after the model was created. In both cases, the results show

significance against chance level proving the benefits of the parameter used dur-515

ing standardization (MV Threshold).

This work sets the basis for using the attention paid on gait to modify lower

limb rehabilitation therapies. On future works, the online classification sys-

tem developed should be tested during exoskeleton-supported gait to evaluate

new possible sources of artifacts induced under this condition. After that, both520

systems should be tested with a higher population of patients to assure the confi-

dence provided by the system under those circumstances. Finally, the attention

levels will be used to modify the level of assistance provided by the exoskeleton.

A decrease in patient attention denotes a higher automation of the gait process.

To involve the patient in a cognitive way, the assistance should be gradually re-525

duced following the decrement of the attention until the patient does not need

assistance to walk. To prove this hypothesis, the integrated exoskeleton-BMI

system should be tested with a number of patients and the results in terms of

functional recovery should be compared with a control population formed by

patients using traditional rehabilitation.530

6. Acknowledgments

This research has been funded by the Commission of the European Union

under the BioMot project - Smart Wearable Robots with Bioinspired Sensory-

Motor Skills (Grant Agreement number IFP7-ICT- 2013-10-611695)

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

535

References

[1] W. H. O. (WHO), et al., World report on disability. (2013).

[2] G. Scivoletto, B. Morganti, P. Ditunno, J. Ditunno, M. Molinari, Effects on

age on spinal cord lesion patients’ rehabilitation, Spinal Cord 41 (8) (2003)

457–464.540

[3] D. J. Edwards, On the understanding and development of modern physical

neurorehabilitation methods: robotics and non-invasive brain stimulation,

Journal of neuroengineering and rehabilitation 6 (1) (2009) 1.

[4] R. Crevenna, Physical medicine and rehabilitationa relevant interdisci-

plinary speciality, Wiener Medizinische Wochenschrift (2016) 1–2.545

[5] M. Confalonieri, P. Tomasi, M. Depaul, G. Guandalini, M. Baldessari,

D. Oss, F. Prada, A. Mazzalai, M. Da Lio, M. De Cecco, Neuro-physical

rehabilitation by means of novel touch technologies, Stud Health Technol

Inform 189 (2013) 158–163.

[6] T. Elbert, C. Pantev, C. Wienbruch, B. Rockstroh, E. Taub, Increased cor-550

tical representation of the fingers of the left hand in string players, Science

270 (5234) (1995) 305.

[7] M. A. Lebedev, G. Mirabella, I. Erchova, M. E. Diamond, Experience-

dependent plasticity of rat barrel cortex: redistribution of activity across

barrel-columns, Cerebral Cortex 10 (1) (2000) 23–31.555

[8] A. S. Choe, V. Belegu, S. Yoshida, S. Joel, C. L. Sadowsky, S. A. Smith,

P. C. van Zijl, J. J. Pekar, J. W. McDonald, Extensive neurological recovery

from a complete spinal cord injury: a case report and hypothesis on the

role of cortical plasticity, Frontiers in human neuroscience 7 (2013) 290.

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[9] J. Beauparlant, R. van den Brand, Q. Barraud, L. Friedli, P. Musienko,560

V. Dietz, G. Courtine, Undirected compensatory plasticity contributes to

neuronal dysfunction after severe spinal cord injury, Brain 136 (11) (2013)

3347–3361.

[10] S. J. Harkema, Neural plasticity after human spinal cord injury: application

of locomotor training to the rehabilitation of walking, The Neuroscientist565

7 (5) (2001) 455–468.

[11] M. Bruehlmeier, V. Dietz, K. Leenders, U. Roelcke, J. Missimer, A. Curt,

How does the human brain deal with a spinal cord injury?, European Jour-

nal of Neuroscience 10 (12) (1998) 3918–3922.

[12] Z. Ying, R. R. Roy, V. R. Edgerton, F. Gómez-Pinilla, Exercise restores570
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J. M. Azoŕın, Decoding the attentional demands of gait through eeg gamma

band features, PloS one 11 (4) (2016) e0154136.

[28] R. J. Siegert, W. J. Taylor, Theoretical aspects of goal-setting and motiva-625

tion in rehabilitation, Disability and rehabilitation 26 (1) (2004) 1–8.

[29] J. Holsheimer, B. Feenstra, Volume conduction and eeg measurements

within the brain: a quantitative approach to the influence of electrical

spread on the linear relationship of activity measured at different loca-

tions, Electroencephalography and clinical neurophysiology 43 (1) (1977)630

52–58.

[30] S. Muthukumaraswamy, High-frequency brain activity and muscle artifacts

in meg/eeg: a review and recommendations, Frontiers in human neuro-

science 7 (2013) 138.

[31] T. C. Ferree, P. Luu, G. S. Russell, D. M. Tucker, Scalp electrode635

impedance, infection risk, and eeg data quality, Clinical Neurophysiology

112 (3) (2001) 536–544.

[32] A. J. Shackman, B. W. McMenamin, H. A. Slagter, J. S. Maxwell, L. L.

Greischar, R. J. Davidson, Electromyogenic artifacts and electroencephalo-

graphic inferences, Brain topography 22 (1) (2009) 7–12.640

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[33] J. E. Kline, H. J. Huang, K. L. Snyder, D. P. Ferris, Isolating gait-related

movement artifacts in electroencephalography during human walking, Jour-

nal of neural engineering 12 (4) (2015) 046022.
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