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Abstract    
 

Time is crucial for our understanding of our environment and our behaviour. We require to 
process time to execute motor actions, predict future events from the past ones and anticipate 
events. Despite many efforts, the neural basis of temporal processing remains elusive. It is an 
open question to understand how the brain perceives time, given the absence of any “time 
receptor”, as it is the case for vision, audition or any other perception. In this thesis I focused on 
the study of time representation in the seconds range during sensory stimulation by means of 
cortical spike oscillations. 

First, I show a novel framework to analyse spike oscillatory activity, specifically considering 
preserving its nonlinear and nonstationary properties. To do so, I showed that a combination of 
NA-MEMD + Hilbert Transform overcomes traditional Time-Frequency techniques to analyse 
neuronal recordings. I demonstrated it by comparing the obtained spectral properties obtained 
with our framework with previously published results using vibrissal nerve recording during 
tactile stimulation. As a second example, I used spike oscillations from neuronal populations of 
deep layers of visual cortex of anesthetised rats during visual stimulation. 

Once a proper framework to analyse spike oscillations was found, I studied how time interval at 
the seconds range during sensory stimulation in anesthetised rats was represented in deep 
layers of visual cortex. I demonstrated that when longer intervals than one second are used, the 
firing rate of deep layers of visual cortex in response to a moving grating is increased and the 
response becomes more stable. These results were more evident when three or five seconds 
interval were used and decreased when seven seconds intervals were used. In order to better 
understand the coding of interval at seconds scale in visual cortex, I studied the Time-Frequency 
dynamics of the evoked response with different intervals. Multiple differences at different times 
and frequencies were found when one second interval was compared both with three and five 
seconds intervals. Some of these differences were still present when seven seconds interval was 
used, suggesting an optimal interval window around three to five seconds. There were 
differences during the whole stimulation in the 6 Hz and the 10 Hz bands, as well as transient 
differences in higher frequencies. Considering these results, I proposed a phase space were 
interval time could be discriminated by means of the evoked trajectories during stimulation. 
Altogether, these results suggest a multiplexed processing of time interval using spike 
oscillations of neuronal populations from deep layers of visual cortex. They also suggest an 
optimal interval length of three to five seconds were the evoked response is maximal. 

At last, I suggest a new framework to study the oscillatory dynamics of single trials in 
neuroscience. I demonstrated that a combination of NA-MEMD to extract Time-Frequency 
features combined with Machine Learning classification, both supervised and unsupervised, 
outperforms classical tools in the characterization of single-trial dynamics. Given the ongoing 
interest of the field in the study of the brain activity and behaviour in single trials, this new 
framework promises to become a useful new tool in our quest to understand how the brain 
works.  
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Resumen 
 

El tiempo es crucial para entender nuestro entorno y nuestro comportamiento. Necesitamos 
procesar el tiempo para ejecutar acciones motoras, predecir eventos futuros a partir de los 
pasados, y anticipar nuevos eventos. Pese a todos los esfuerzos realizados, seguimos son 
conoces el sustrato neuronal para el procesamiento temporal. Cómo el cerebro percibe el 
tiempo es todavía una pregunta abierta, teniendo en cuenta que no existe ningún “receptor del 
tiempo”, como sí es el caso de la visión, el oído o cualquier otra percepción. En esta tesis he 
estudiado la representación del tiempo en el rango de segundos durante la estimulación 
sensorial por medio de oscilaciones de potenciales de acción corticales. 

En primer lugar, he mostrado un nuevo enfoque para el análisis de oscilaciones de potenciales 
de acción, teniendo especialmente en cuenta preservar sus propiedades no-lineales y no-
estacionares. Para ello, he mostrado como una combinación de NA-MEMD junto con la 
Transformada de Hilbert supera a las técnicas tradicionales de Tiempo-Frecuencia para el 
análisis de registros neuronales. Para demostrarlo, he comparado las propiedades espectrales 
obtenidas mediante estos algoritmos con resultados publicados previamente usando registro 
en el nervio vibrisal durante una tarea de estimulación táctil. Como un segundo ejemplo, he 
utilizado oscilaciones de potenciales de acción de poblaciones neuronales de capas profundas 
de la corteza visual de ratas anestesiadas durante una tarea de estimulación visual. 

Una vez encontrados una serie de algoritmos adecuados para el análisis de oscilaciones de 
potencial de acción, estudié como se representaba el intervalo temporal en la escala de 
segundos durante una tarea de estimulación visual en las capas profundas de la corteza visual 
de ratas anestesiadas. Demostré que cuando se usaban intervalos de mayor duración que un 
segundo, aumentaba la tasa de disparo de las capas profundas de la corteza visual en respuesta 
a la estimulación con un enrejado en movimiento, así como la respuesta se volvía más estable. 
Estos resultados eran más claros cuando se usaron intervalos de tres o cinco segundos y 
disminuyeron cuando se usó un intervalo de siete segundos. Con el objetivo de entender mejor 
la codificación del intervalo en la escala de segundos en corteza visual, estudié la dinámica 
Tiempo-Frecuencia de la respuesta evocada usando diferentes intervalos. Encontré múltiples 
diferencias a diferentes tiempos y en diferentes frecuencias cuando comparé la respuesta con 
un intervalo de un segundo con intervalos de tres y cinco segundos. Algunas de estas diferencias 
seguían existiendo cuando usé intervalos de siete segundos, sugiriendo una ventana óptima de 
duración del intervalo de entre tres y cinco segundos. Encontré diferencias a lo largo de toda la 
ventana de estimulación en las bandas de 6 y 10 Hz, así como diferencias transitorias en 
frecuencias más altas. Estos resultados sugieren un procesamiento multiplexado del intervalo 
temporal mediante oscilaciones de potenciales de acción de poblaciones neuronales en capas 
profundas de la corteza visual. También sugieren una ventana óptima de duración del intervalo, 
de entre tres y cinco segundo, en la que la respuesta evocada es máxima. 

Por último, propuse un nuevo enfoque para el estudio de oscilaciones neuronales para pruebas 
experimentales individuales en neurociencia. Demostré que una combinación de NA-MEMD 



17 
 

para extraer características en Tiempo-Frecuencia, combinado con herramientas de aprendizaje 
automático, tanto supervisado como no supervisado, para su clasificación, superaba a las 
herramientas usadas tradicionales para el estudio de la dinámica de pruebas experimentales 
individuales. Considerando el creciente interés del campo en el estudio de la actividad cerebral 
y el comportamiento en pruebas experimentales individuales, este nuevo enfoque promete ser 
una herramienta de gran utilidad en nuestra lucha por entender cómo funciona el cerebro. 
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1.1 Cortical oscillations  
 

Our brain is the combination of billions of neurons, each of them receiving and up to 60.000 
connections from other neurons [1]. This extremely complex network produces collective 
patterns of activity; including oscillatory behaviours. Brain oscillations are known since 1929 
[2],when Berger described the alpha rhythm (8-12 Hz) in the EEG of human patients. Four 
years later, Bishop suggested that these oscillations might been related by changes in the 
excitability of the neurons [3] Since then, neuroscientists have incessantly studied how the 
brain creates and uses this, and others, oscillations [4,5] [Random reviews]. By means of 
these studies, they aim to put some light into how neuronal populations, both in small 
networks of few tens of neurons or at whole-brain scale, do work cooperatively in a time 
organized manner to produce behaviour. 

 

1.1.1 Spontaneous oscillations 
 

Perhaps the most studied brain oscillation is the Slow Wave Oscillation (SWO) [6,7]. This 
oscillation is a collective phenomenon of +/-1 Hz frequency that is originated in the cortex 
during sleep [8,9],anaesthesia or rest, and then propagates to all the brain (Fig.1).

 

Figure 1. Slow wave oscillation. Example of SWO oscillation recorded in V1. Notice how the 
spikes of the neurons are phase aligned to the Up states recorded in the Local Field Potential 
in blue. Neurons are represented in rows and spikes for each neuron as black spots in its 
corresponding row, creating a raster plot. 

It can be described as a bi-stable state with two possible configurations, “Down” states 
where the network is mostly hyperpolarized and silent and “Up” states, where neurons are 
activated co-ordinately and the waves propagates to the surrounding neurons, creating a 
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travelling wave. This wave is not only detectable as a network phenomenon but at the level 
of individual neurons in the cortex [9,10] and subcortical nuclei [11–13]. 

The cortical origin of this oscillation was first demonstrated “ex vivo” [8], demonstrating 
that global oscillatory event emerged in brain slices and had a cortical origin and was later 
confirmed by Timofeev [14], who isolated cortical regions in a living animal and showed that 
oscillations were still present in the isolated region. Moreover, other studies [11,15]have 
demonstrated that subcortical regions such as the thalamus have a key role on the 
modulation of the SWO. 

In addition, recent studies have demonstrated that this spontaneous SWO is not restricted 
to anaesthesia or sleep regimens, but can sometimes be recorded in awake animals during 
period of rest and inactivity [16,17]. 

In summary, we can affirm that the brain presents oscillatory phenomena during 
resting/sleep that are whole-brain coordinated and modulated, suggesting that oscillations 
are a key resource that neuronal populations use for information transfer and decoding. 

 

1.1.2 Role in information transfer    
 

Our brain show multiple oscillators at different frequencies ranging from 0.05 to 500 Hz [5], 
that are typically associated with different brain states and functions. Once we focus on 
information transfer across neuronal populations, recent theories have highlighted the 
relevance of the temporal pattern of the spike trains, suggesting that complex dynamics, 
still time ordered, are created during cortical activity as structured packets of activity [18] 
are sent back and forth among different populations. This phenomenon, on which multiple 
oscillations at different frequencies are present in the activity of neuronal populations is 
called Multiplexed theory [19] and was described for the first time in the visual cortex. 

Despite Multiplexed theory is still a novel explanation that has to be studied, something that 
was not possible until the appearance of novel techniques that allow us to record from 
multiple neurons at different spatial locations simultaneously [20–23], the role of 
oscillations in information processing has been widely studied during the last decades.  

Gamma oscillation 

One of the widest studied oscillations during perception is the Gamma oscillation (30-100 
Hz) [24], which is putatively used by the brain to synchronize different brain regions that are 
going to be involved in a given task. The first studies were done 3 decades ago by Singer and 
others [25–27] as a component present in visual response and has been later found in 
multiple sensory [28–30] and non-sensory [31,32] regions of the brain. The main hypothesis 
is that Gamma oscillation acts as a coincidence detector, so that if a given neuron receives 
simultaneous information from different presynaptic neurons during the positive phase of 



23 
 

the gamma oscillation it will lead to stronger or earlier responses. Therefore gamma 
oscillation opens a possibility to produce a code that relies not in the firing rate but in the 
precise spike timing of the presynaptic populations[33]. Furthermore, despite it has been 
mostly studied during stimulus perception, it is known to play a role in higher cognitive 
phenomena such as attention [34]. 

Alpha oscillation 

A different brain oscillation that has received an enormous scientific interest is the alpha 
oscillation (7-13 Hz), the first oscillation ever recorded [2] almost one century ago. This 
oscillation has been traditionally studied in the visual system since Berger’s discovery 
relative to the alpha power modulation in the visual system depending on whether the 
subject had its eyes open or closed. In this scenario, alpha oscillation is supposed to be an 
active inhibitory mechanism that modulates stimulus relevance by adjusting gamma 
oscillation amplitude during the response to visual stimulation. 

Delta-Theta oscillation 

At last, slower oscillation in the delta-theta regime (2-8 Hz) are suggested to control time 
prediction during sensory stimulation in order to prepare the brain to process a given 
stimulus. When a given stimulus is delivered in a predictive manner, delta-theta activity can 
be recorder before the stimulation occurs, suggesting a mechanisms to predict “when” a 
given stimulus is expected [35]. Therefore, when combined with other oscillations, it 
provides a mechanism to balance the behavioural relevance of a stimulus (attention) and 
the probability of a previously known stimulus to happen (expectation) [4].   

In conclusion, our brain does use multiple oscillatory mechanisms to modulate the flow of 
information that provide information about the properties and timing of stimulus as well as 
high cognitive activities. Thus, when studying a novel phenomenon in the brain, it is not 
surprising to address whether the neuronal activity of interest presents any kind of 
oscillatory modulation during the given task. 

 

1.1.3 Nonlinear properties of biological oscillations 
 

Neuronal oscillations are nonlinear [36–39]. This means that they cannot be characterized 
using a sinusoidal template, nor with any other approach that relies on a fixed shaped wave. 
Recorded waveforms in the brain display a variety of shapes [39], as different waves are the 
results of the combination of multiple neurons interacting among each others [40], complex 
Excitatory/Inhibitory balances and neurons firing at different timescales simultaneously 
[19,41]. This apparently innocuous statement turns to become critical given that the vast 
majority of the spectral analysis done in neuroscience has de underlying assumption that 
the studied oscillation are sinusoidal [39,42]. When neuronal oscillations are studied based 
on fixed templates the result is compromised and artefactual. Therefore, it becomes 
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controversial to extract biological meaning from a spectral analysis whose assumption have 
not been fulfilled by the data [43]. 

 In figure 2 we can see a representative example: The shape of the theta oscillation in the 
hippocampus changes as a function of recording depth, since the whole brain regions is 
oscillating synchronously, but different cell types are present at different depths (from [39]). 

 

 

Figure 2. Wave shape is not constant. Changes in the shape of theta oscillation as a result 
of depth in the hippocampus, from [39].  

A more technical visualization of the nonlinearities present in neuronal oscillations is 
presented in figure Figure 3. Different individual cycles of the wave have different 
Instantaneous Frequency; therefore, its shape is not sinusoidal, as it requires a unique 
frequency in the entire wave. In addition, different cycles have different distribution of IF 
along time; this means that there is not a unique waveform, but minor changes across 
cycles. Therefore, a correct decomposition of this wave requires a template-free approach 
that does not depend on any fixed shape to transform the signal into the frequency domain. 
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Figure 3. Nonlinear properties of spike oscillations. Instantaneous frequency of an example 
spike oscillations in visual cortex. There exist changes of instantaneous frequency within the 
same cycle, thus being a nonlinear oscillation. 

 

1.2 Visual Cortex 
 

We use our sight as our primary source of information of the world. To do so, we have 
complex eyes, big regions of the brain devoted to vision and multiple pathways across the 
CNS devoted to the extraction of different visual features from our environment. Given the 
importance of vision, neuroscientists have devoted countless efforts to understand how the 
visual cortex works. 
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Figure 4. Schematically representation of mouse visual system, from [44]. 

 

An scheme of the rodent visual system is present in Figure 4, extracted from [44]. In brief, 
the environment is at first perceived in the retina. Considering the main pathway of visual 
information, the retina projects its axon to the Thalamus, and more precisely the dorsal 
Lateral Geniculate Nucleus (dLGN) that will in turn project to the Visual Cortex. It is worth 
to note that minor parallel pathways exist during visual processing, as explained in Lennie’s 
review [45]. 

Our understanding of how the visual cortex works started with the work of the Nobel 
Laureates David Hubel and Torsten Wiesel [46–48]. They discovered the columnar 
organization of the visual cortex as a tool used by the brain to perform efficient 
computations. Cortical columns in mammal visual cortex work as feature extractors of the 
perceived image that are subsequently sent to higher visual areas. This regions will lately 
provide feedback information to V1 [49,50], consistent with a communication based on 
packets of information that are sent across multiple brain regions [18]. 
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1.2.1 Deep layers in visual cortex 
 

Mammal visual cortex is structured in a 6-layered structure [48]. While different columns 
are supposed to be feature extractors from the image perceived in the retina [51–54], 
layered structure is created by different microcircuits with different intrinsic properties and 
levels of connectivity within and outside the column. In this section, we will focus on the 
deep layers of the cortical column, which are Layer V, mostly, and Layer VI, which is by far 
the least understood layer of the cortex (Figure 5). 

 

Figure 5. Scheme of the inputs and outputs of cortical deep layers, modified from [55]. 
Each layer has a specific distribution of inputs, outputs and cell types that determine the 
computations on which it is involved. 

Layer V 

Layer V receives projections from Layers I to V of the cortex [55–57], both from the same 
column as well as other cortical areas, as well as projections from the thalamus, as it has 
been recently discovered [58]. Layer V is considered the most active layer of the cortex [59–
62], and it’s known to present oscillatory activity because of the strong recurrent activity of 
tufted Layer V pyramidal neurons [56]. As a representative example, layer 5b is known to be 
the origin of the previously explained SWO [8] (Figure 6).  
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Figure 6. Slow wave oscillation originates in layer V. Slow wave oscillation, the most 
representative oscillation during sleep/anaesthesia is originated in the deep layers of the 
cortex, from [8]. 

There are two main types of Excitatory neurons in Layer V, smaller intratelencephalic (IT)[63] 
and the giant tuft pyramidal neurons (PT)[56], which mostly projects to subcortical regions, 
as well as create a dense recurrent network among themselves. IT neurons receive inputs 
from other IT neurons in layers 2/3, the thalamus and other Layer V excitatory cells 
[55,64,65], and project to Layer 2/3 IT neurons and Layer V IT and PT neurons, both for the 
same column and other cortical regions, as well as to the striatum [55]. Talking about its 
electrophysiological properties, they are hyperpolarized and fire scarcely; nevertheless, 
Layer V IT neurons are the ones more active of this neuron type [61,66]. The other main 
type of excitatory neuron is the Tuft Pyramidal Neuron, which conforms the PT. These cells 
receive inputs from the whole column [55,56] and project to ITs in layers 2/3 (weakly) and 
V, other Tufted pyramidal neurons and to layer VI neurons, as well as to many subcortical 
regions (brainstem, tectum, spinal cord, thalamus, basal ganglia…) in what is named the 
Pyramidal Tract. These cells are depolarized and present bursting (oscillatory)  “dense” 
activity [55,59], thanks to its dense recurrent connectivity [56]. 

Given the presented connectivity, layer V results the main source of long-range inputs and 
outputs of the column, hence it has a major role on information transfer among cortical 
regions as well as to other brain nuclei. 
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Layer VI 

The deepest layer of the cortical column is still an unsolved enigma. Despite its particular 
connectivity and firing properties, its functional role remains elusive.  

Layer VI receives projections directly from the thalamus [58,67] as well as the rest of the 
cortical column, mostly the deep layers. As in layer V, it has both IT and ET excitatory 
neurons [64]. Layer VI ET neurons are also known as corticothalamic neurons (CT), they 
receive inputs from Layers IV and V, the thalamus and multiple long range connections from 
other cortical regions [68]; they  project to different regions of the thalamus, together with 
sparse projections to layers IV and V [68], present a sparse firing and are the only known 
type of ET that lacks of any kind of long range corcticocortical projections. There also exist 
a second type of ET neurons with similar electrical properties that conveys the only cortical 
projections to the Claustrum [69].Layer VI IT receive most of its inputs from deep layers of 
the cortex (Layer V and VI) [70]. They show scarce projections to L IV [71] as well as long and 
short range horizontal connections to other IT neurons in the same layer. 

 

1.2.2 Oscillations during visual response 
 

It is known since decades ago that mammal visual cortex response to visual stimulation has 
certain oscillatory properties [25,26,72].  

Spike oscillations during the response to visual stimulation were discovered by Gray and 
Singer in 1989 [25] (Figure 7); they demonstrated that neurons in cat V1 fired aligned to a 
40 Hz oscillation in a stimulus dependent manner, whereas the thalamus didn´t. By doing 
such discovery, they found that sensory cortex can phase align its activity during perception 
as a tool to perform the required computations, hence making evident that not only the 
amount of spikes but the time of such event was relevant for the neuronal coding, as it has 
been widely studied afterwards, both in the visual system [19,41] and as a general 
framework to understand brain computations [18]. 
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Figure 7. Stimulus specific oscillations during visual response. LFP and spiking response 
recorded in cat visual area 17 in response to an optimally oriented light bar. There exists an 
increase of power at 35-45 Hz. From [25] 

In a new paper published in the same year, Singer lab demonstrated that the phase 
alignment of the visual response in the visual cortex was used to synchronize the response 
of different columns that were responding selectively to a given stimulus, presumably 
integrating different features of the stimulus [26,72]. Therefore, it was demonstrated an 
active role of spike oscillations in visual processing. Once the ongoing mechanisms was 
suggested, posterior studies demonstrated that spike oscillations in the Gamma ranged 
were involved in stimulus selection [73], therefore not being just an epiphenomenon of 
visual cortex computation. In addition, this oscillation is used during visual coding not only 
to phase align neuronal population in different columns of visual cortex, but to synchronize 
different regions of the brain involved in higher processing of the visual stimulus [33] that 
will in turn provide feedback to primary visual cortex [49]. Therefore, gamma oscillation 
during visual response are used to synchronized multiple populations and brain regions, that 
communicate at different time scales, sending “packets” of information among each other 
[18,19]. 

Visual cortex neural oscillations have been also described in tasks beyond passive 
perception. Shuler lab demonstrated that reward timing modulated the activity of visual 
cortex [74]; they show how training induced changes in V1 activity that were correlated with 
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reward expectation and consisted on neuronal oscillations in the theta frequency band 
[75,76]. These works provided two interesting points for discussion: On the one hand, the 
role of neural oscillations in visual cortex was not limited to visual perception but was 
related to different higher order processing tasks. This supports the suggested role of neural 
oscillations to coordinate the activation of different cortical regions that are required to 
work together for a certain task [35]. On the other hand, they provided an insight of the 
capacity of visual cortex to modulate its activity in a time dependent manner at the seconds 
scale. 

In this thesis, we asked whether primary visual cortex encodes interstimulus interval in the 
range of seconds in the oscillatory dynamics of the evoked response. To address this 
question we first extended the use of NA-MEMD (see later) to study the oscillatory 
properties of spike trains Paper I. Then, we recorded neuronal populations from rat visual 
cortex during visual stimulation while modifying the interstimulus interval in the seconds 
range and studied the changes that it produced on the evoked population response. By 
means of this approach, we demonstrate in Paper II that visual cortex encodes interstimulus 
interval in the seconds scale using the oscillatory properties of the evoked response.  

 

1.3 Time-Frequency analysis 
 

In this chapter, I will discuss the standard methods for Frequency and Time-Frequency 
analysis that are most commonly used in neuroscience, as well as introduce the Empirical 
Mode Decomposition (EMD) and derived algorithms, which have provided the 
computational basis for the study of the oscillatory properties of neuronal populations 
presented in this thesis. I will discuss the limitations of each method and how they constrain 
the study of biological signals. In addition, I will provide the basis to support the work 
developed in this thesis of searching for new algorithms that made more feasible the Time-
Frequency analysis of neuronal signals, especially spike trains of multiple neurons. 

To do so, I will use a known oscillatory signal as ground truth, shown in Figure 8, consisting 
on a corrupted linear chirp; a sine wave that is uniformly accelerating and that has been 
corrupted adding White Noise (WN). I will compare the results of the decomposition of this 
known signal with the different techniques that are traditionally used in neuroscience to 
focus on its flaws and the need of introducing new Time-Frequency techniques in the field.  
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Figure 8. Ground truth signal.  Corrupted linear chirp used in all demonstrations. 

 

1.3.1 Fast Fourier Transform 
 

Fourier Series is a mathematical approach to decompose a given vector as the sum of sine 
waves, based on the following approximation: 

 

The objective of these series, published by Fourier in 1822 in his Mémoire sur la propagation 
de la chaleur dans les corps solides, is to decompose a given signal into an infinite sum of 
oscillatory functions, under certain assumptions. These assumptions are that the signal is 
composed by a finite number of sine waves and that it is stationary. 

The application of the ideas behind Fourier series became popular after the Discovery of the 
Fast Fourier Transform (FFT), which was introduced by Cooley and Tukey in 1965 [77] and 
became widely used once it was simplified by Winograd [78]. 

Once we focus on the assumptions of the FFT, there exist two main problems when we apply 
it to neuronal signals. One is that these signals are not always, or are oddly, sinusoidal. When 
FFT is computed in a non-sinusoidal oscillatory signal, the resolution on the frequency 
domain gets compromised [36]. The other problem is that FFT shifts the signal from the 
temporal to the frequency domains, thus it provides a representation of the existing 
frequencies in the signal, assuming that is stationary, which means that these frequencies 
are present all the time, something that does not always occur in biological signals. 

 

https://en.wikipedia.org/wiki/M%C3%A9moire_sur_la_propagation_de_la_chaleur_dans_les_corps_solides
https://en.wikipedia.org/wiki/M%C3%A9moire_sur_la_propagation_de_la_chaleur_dans_les_corps_solides
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Figure 9. Fourier power spectrum from the ground truth signal. 

When the FFT of the ground truth signal is computed, Figure 9, the fact that the frequency 
is linearly increasing and therefore there is not overlap of multiple frequencies is lost. The 
outcome of FFT thus allows understanding that multiple oscillators are present from 0 to ≈ 
15 Hz, but gives not temporal information, as expected. In addition, the resolution in the 
frequency domain is quite poor, as the ground truth signal finishes abruptly in 15 Hz but the 
FFT predicts a soft decay that covers several Hz in the frequency axis. 

 

1.3.2 Short-Term Fourier Transform 
 

Short-Time Fourier Transform (STFT) is an extension of the Fourier Transform that aims to 
preserve the temporal information existing in the signal [79]. In summary, it divides a longer 
signal in multiple fragments and computes the Fourier Transform of each of them.  

The critical point in the computation of the STFT is the size of the window that is going to be 
used to divide the original signal. This non-trivial decision while determine the definitive 
output, as big windows are better to obtain a correct description of the changes in time of 
slow frequencies to the price of a poorer temporal resolution in high frequencies. On the 
other hand small windows will favour the analysis of high frequencies at the cost of losing 
temporal and frequency resolution in slow frequencies. This trade-off between frequency 
and temporal resolution is known as Heisenberg Uncertainty Principle. In addition, the 
assumption that the signal is composed by an infinite series of sine waves is still presents, 
with its subsequent problems when used in nonlinear signals. 
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Figure 10. Spectrogram from ground truth signal. 

The computation of the STFT to the ground truth signal, using an spectrogram [79], Figure 
10, provides a time-frequency spectrum on which it is possible to appreciate that the signal 
is conveyed between 0 and 15 Hz, as well as an increase through time of the signal 
frequency. Nevertheless, the frequency resolution is very poor (≈ 5Hz resolution) and the 
temporal resolution is also bad; since big windows had to be used to obtain the best 
resolution possible at low frequencies. 

 

1.3.3 Wavelet analysis 
 

Wavelets analysis is an alternative Time-Frequency analysis that have been widely used in 
neuroscience during the last decades [79–81] [+refs]. The main advantage is that 
neuroscientists can use wavelets of any arbitrary shape to decompose the signal into a set 
of components, in a similar approach to the one of STFT but with a template that is, or tries 
to be, much similar to the neuronal signal that is being studied. In order to achieve this, 
many families of wavelets have evolved to mimic a variety of wave shapes, either biological 
or of any source [refs]. 

The other major improvement that was introduced into Time-Frequency analysis when 
Wavelets were invented is its approach against the Heisenberg Uncertainty Principle. The 
concept of Heisenberg Uncertainty Principle in Time-Frequency analysis refers to the 
compromise between the resolution in the temporal and frequency domains of the 
decomposition. In order to be able to depict a slow oscillation, the selected window has to 
have a time length enough as to cover a full cycle of such waves; hence, the temporal 
resolution of the higher frequencies inside this window will be very poor, as they are treated 
as stationary following FFT assumptions. The approach used by wavelet analysis is to divide 
the frequency axis in a subset of bands, then to start with a window of the same length of 
the signal. This window is used to compute the spectral properties of the band of the slowest 
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existing frequency. Afterwards, the signal is split in two halves and the coefficients of the 
second band are computed. This process is repeated along all the subset of bands in the 
frequency axis, so that the resolution between frequency and temporal resolution is optimal 
in every frequency band. 

 

Figure 11. Wavelet decomposition of the ground truth signal 

When we compute the continuous wavelet transform of the ground truth, Figure 11, signal 
we can easily see that the obtained T-F spectrum is improved in comparison to the STFT. 
Temporal and frequency resolution are greatly improved. Nevertheless, they are still 
blurred, especially for low frequencies; we see how the resolution in the frequency axis is 
still imperfect and the decomposition in the 0-5 Hz range is very noisy and lacks of temporal 
resolution. 

Thus, we conclude that the use of wavelets implied a major improvement in the T-F analysis 
of nonlinear signals, but that this technique is still not precise enough as to depict the 
subtleties of complex oscillators. Hence, new techniques, which for the first time didn’t 
depend on fixed templates, were developed. 

 

1.3.4 Empirical Mode Decomposition 
 

The Empirical Mode Decomposition (EMD) was created by Huang and presented for the first 
time in his seminal paper from 1998 [82] entitled “The empirical mode decomposition and 
the Hilbert spectrum for nonlinear and non-stationary time series analysis”. EMD supposed 
the first method that was specifically designed to analyse nonlinear and nonstationary signal 
with no regards to the cycle by cycle shape of the signal of interest.  

In brief, EMD consists on the interpolation via a cubic spline and posterior subtraction of the 
local maxima and minima present in the signal until a certain criteria is satisfied [83]. By 
means of this data-driven approach, a subset of function called Intrinsic Mode Functions 
(IMFs) is created. Once the original signal is decomposed in a subset of IMFs, which carry 
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the oscillatory components at different frequency bands, Hilbert transform (HT) is applied. 
The Hilbert transform is a point by point convolution that allows computing the 
instantaneous frequency (IT) and amplitude of the signal, hence retaining the original 
temporal resolution of the signal. 

Algorithm 1. The standard EMD algorithm[82]. 

1. Find the locations of all the extrema of x’(k).  

2. Interpolate (using cubic spline interpolation) between all the 
minima (respectively maxima) to obtain the lower signal envelope, 
emin(k) (respectively emax(k)). 

3. Compute the local mean m(k) =[emin(k) + emax(k)]/2. 

 4. Subtract the mean from the signal to obtain the ‘oscillatory 
mode’s(k) = x’(k)-m(k). 

5. If s(k) obeys the stopping criteria, then we define d(k) = s(k) 
as an IMF, otherwise set x’(k) =s(k) and repeat the process from step 
1. 

Thanks to this novel approach, the EMD implied several drastic improvements in the field if 
T-F analysis [43]: 

 First, it does not use any kind of predefined template to decompose the signal, unlike 
Fourier and wavelet approaches; therefore, it does not depend on any wave shape 
assumption that can compromise the reliability of the decomposition if not satisfied. 

 Second, the amplitude and IF of the IMFs is calculated in a point by point convolution which 
does not compromise the time resolution of the signal. This means that the use of EMD+HT 
does not suffer from the uncertainty principle that affects to Fourier or wavelets 
decomposition. This principle implies that if you increase the resolution in the frequency 
domain it will be to the prize of compromising the temporal resolution and vice versa. The 
temporal resolution of your signal is determined by the size of the window you use, and this 
compromises both the resolution of the obtained spectrum and the analysis of 
nonstationary signals. Thanks to the accurate data-driven band-passing of the signal that is 
produced when the EMD is computed, HT can be applied to each of them without the risk 
of high frequencies being overrepresented, thus maintaining the original resolution of the 
data. 

Third, the use of a data-driven band-passing of the signal allows the researcher to study the 
multiple oscillatory components of the signal of interest without introducing his/her own 
biases via the selection of specific frequency bands. By means of using EMD, the original 
signal is band-passed based on the existing oscillators of the signal. If we consider that 
neuronal signal oscillate at multiple time scales simultaneously [5,18,19,40,84], this 
improvement from previous T-F tools turns to be extremely important. 
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Figure 12. IMFs obtained from EMD decomposition of the ground truth signal. 

When we apply the EMD to the ground truth signal, Figure 12, it is seen that the obtained 
spectrum is remarkably different, due to the reasons explained above. The so called Huang-
Hilbert Spectrum (HHS) results from the representation of the frequency and amplitude of 
all the obtained IMFs. It preserves the temporal resolution of the signal and is able to 
capture the corruption of the signal that was produced by the addition of white noise. The 
fact that these properties are present in the HHS converts it into a major improvement when 
it is compared with previous T-F analysis tools. 

Nevertheless, there are some issues in the use of EMD that have to be addressed. The first 
and more obvious is that there is a loss of resolution in the boundaries of the signal; this 
issue is frequently solved by attaching white noise vectors to the borders of the signal of 
interest and then removing them after the computation of EMD. The second problem is 
called “mode mixing”[82,85,86], it consist on punctual overlaps in the frequency domain 
among different IMFs (see seconds 1.6 to 1.8 in Fig. X). When this occurs, the assumption 
that each IMFs carries the information at a certain frequency bandwidth is violated, and 
hence compromises the accurate decomposition of the signal. To solve this problem, there 
were suggested different types of algorithms (see Noise assisted EMDs). 

 

1.3.5 MEMD 
 

The data driven approach of the EMD provides an extreme flexibility to decompose an 
oscillatory signal despite the changes in the cycle-by-cycle shape and the intermittency of 
the different frequency bands. The prize it has to pay is the variable dimensionality of its 
output, due to the iterative processed used to compute the IMFs leads to a variable number 
of them. Therefore, it is hard to compare the spectra of multidimensional signals (e.g. EEG 
[87]) as each of them may be represented by a different number of IMFs. 
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This problem was solved by Rehman and Mandic in 2010, who developed the multivariate 
extension of the EMD, called Multivariate Empirical Mode Decomposition or MEMD [88]. 
The idea is to apply the EMD to all the dimensions of the signal simultaneously to ensure 
that the same number of IMFs will be produced from each channel. The difficulty to achieve 
this consisted on the fuzzy definition of local extrema in multidimensional signals. To do so, 
MEMD computes multiple uniformly distributed projections in the n- dimensional space are 
calculated using a V-point Hammersley sequence [89] ; these projections extrema are 
interpolated with a cubic spline and averaged to compute the local mean, as in the original 
EMD [82]. 

Algorithm 2. Multivariate extension of EMD[88]. 

1. Choose a suitable point set for sampling on an (n −1) sphere. 
2. Calculate a projection, denoted by 𝑝𝑝𝜃𝜃𝜃𝜃(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  , of the input 

signal {𝑣𝑣(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  along the direction vector 𝑥𝑥𝜃𝜃𝜃𝜃, for all k (the 
whole set of vectors), giving 𝑝𝑝𝜃𝜃𝜃𝜃(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  as the set of 
projections. 

3. Find the time instants {𝑡𝑡𝑖𝑖𝜃𝜃𝜃𝜃} corresponding to the maxima of the 
set of projected signals 𝑝𝑝𝜃𝜃𝜃𝜃(𝑡𝑡)}𝑡𝑡=1𝑇𝑇 . 

4. Interpolate [𝑡𝑡𝑖𝑖𝜃𝜃𝜃𝜃,𝑣𝑣(𝑡𝑡𝑖𝑖𝜃𝜃𝜃𝜃)] to obtain multivariate envelope curves 
𝑒𝑒𝜃𝜃𝜃𝜃(𝑡𝑡)}𝜃𝜃=1𝐾𝐾 . 

5. For a set of K direction vectors, the mean m(t) of the envelope 
curves is calculated as 𝑚𝑚(𝑡𝑡) = 1

𝐾𝐾
∑ 𝑒𝑒𝜃𝜃𝜃𝜃(𝑡𝑡)𝐾𝐾
𝜃𝜃=1 . 

6. Extract the ‘detail’ d(t) using d(t) = x(t) - m(t). If the 
‘detail’ d(t) fulfils the stoppage criterion for a multivariate 
IMF, apply the above procedure to x(t) – d(t), otherwise apply 
it to d(t).  

Thanks to the MEMD it became possible to analyse multidimensional signals using EMD 
algorithms. Then, the next step was to solve the mode mixing problem; to do so, novel 
algorithms were designed that profited from the statistical properties of white noise to 
assist the decomposition of the signal. 

 

1.3.6 Noise assisted EMDs 
 

Several works in the early 2000s [90,91] demonstrated that when applied to pure white 
noise, the EMD acted as an adaptive dyadic filter bank, as white noise is present in all 
frequencies at any time, it avoid the presence of intermittences in the signal, as it is 
projected on top of a uniform noise background. Therefore, the presence of a uniformly 
distributed signal across all frequencies, together with the decrease of intermittency of the 
signal lead to a major decrease of the mode mixing. This approaches were noise is used to 
enhance the analysis of a given signal are called Noise Assisted Data Analysis algorithms 
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(NADA). Two main NADA EMDs derived algorithms will be discussed here, EEMD[86] and 
NA-MEMD[92], being the later the algorithm used for T-F analysis in this work. 

The Ensemble Empirical Mode Decomposition (EEMD) is a noise assisted extension of the 
original EMD [86]. In brief, the idea is to add white noise to the signal before computing the 
EMD. Since the addition of white noise can substantially corrupt the original signal, this 
process is repeated many times and averaged. Therefore, only the original signal will remain 
after the calculation of the mean of all repetitions and the noise will be cancelled out. 
Despite the improvement of the EEMD when compared with EMD, in terms of an 
improvement in the mode mixing, it still has some crucial flaws, as it is restricted to 
univariate signal an extremely computationally expensive, given that the EMD has to be 
computed many times to produce the ensembles that will be averaged. 

The Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD) is as, as self-
explained in its name, a NADA version of the MEMD [92]. The idea is to add white noise in 
independent dimensions of the signal, so that they when decomposed via MEMD they will 
act as dyadic filter bank from where the channels that carry the real signal will benefit. It 
has two major improvements when compared with the EEMD: First, the noise is never mixed 
with the original signal hence contamination is not possible; second, as an extension of the 
MEMD, it can be used in multivariate signals. 

 

Figure 13. IMFs obtained from NA-MEMD decomposition of the ground truth signal. 

In order to compute the NA-MEMD of the ground-truth signal, Figure 13, we created a 3-
dimensional vector including 2 vectors composed of white noise; then, we computed the 
NA-MEMD of this matrix and obtained the IMFs resulting from the decomposition of the 
ground-truth signal, discarding those obtained from the decomposition of the WN once it 
had fulfilled its utility as filter bank.  We can see that there exists and improvement in 
performance when compared with the classical EMD decomposition: The resolution of the 
decomposition has improved, especially in the borders of the signal and mode mixing has 
been strongly reduced. 
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1.3.7 The use of EMDs in neuroscience 
 

Since its origin in 1998, EMD algorithm and its derivatives have been gradually introduced 
to the toolbox of neuroscience research. Nevertheless, the number of research groups that 
have moved to this type of analysis is still scarce due to the novelty and complexity of the 
analysis of IMFs.  

To the best of our knowledge, the use of EMD in neuroscience had been restricted to the 
study of the oscillatory activity of big cortical regions (EEG, LFP) until the publication of paper 
1 presented in this thesis [36]. It was originally introduced for the study of neural signals by 
Liang in 2005 [93] for the study of local field potentials from macaque V4. Later, other EMD 
derived algorithms were introduced into neuroscience to analyse LFPs, such as 
MEMD[94,95] as well as to EEG studies [96–98]. In all these works, it became obvious the 
advance of using nonlinear and nonstationary tools to study the T-F properties of neuronal 
oscillations, meaning a major improvement in comparison to previous tools. 

The great results presented in these papers promise an extremely exciting future where 
major advances in the study of the oscillatory properties of neural systems. 

At this point, we have presented and extensive demonstration of the different results 
obtained when using different T-F algorithms to study the oscillatory properties of a known 
signal which has the particular properties of being nonlinear and corrupted by noise, 
something we expect from neuronal signals. We have shown how EMDs implied a major 
improvement in T-F analysis in comparison to previous existing tools, which were dependent 
on templates and the uncertainty principle. In particular, we have shown how NA-MEMD is 
the most powerful existing tool when one plans to study the oscillatory properties of 
nonlinear nonstationary signals. Based on these evidences, NA-MEMD is the elected tool to 
study the oscillatory properties of neuronal populations of visual cortex in response to visual 
stimulation, Papers I & II.  

 

1.3 The use of machine learning in neuroscience 
 

We will finish this chapter with a brief introduction to the multiple uses of machine learning 
in neuroscience. ML is a subfield of statistics and computer science, which takes advantage 
of the power of computers to perform iterative computations to identify the existing 
patterns on the data to make future models and predictions. The increase in the use of such 
techniques during the last years is well-known, given the growing number of papers that 
rely upon machine learning tools (Figure 14). 
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Figure 14. Evolution of the number of papers using the terms Machine Learning and 
Neuroscience.  The use of Machine Learning tools in Neuroscience has grown exponentially 
during the last decade. 

The increasing volume and complexity of the generated data in neuroscience exceeds the 
capacity of classical analysis, and they are becoming more and more difficult to analyse. 
Therefore, the emergence of artificial computation and machine learning techniques is 
becoming crucial for the interpretation and analysis of these complex data. Some examples 
are the interaction between networks and behaviour [99], stimulus coding [100,101], 
population dynamics in neural networks [102],  classification of behavioural states 
[103,104], modelling of sensory responses [105,106] and spike sorting procedures [107–
109]. 

In this thesis, we present a novel approach to the use of machine learning tools for the 
analysis of T-F properties on neuronal signals. We demonstrate in Paper III how the 
combined use of EMDs family of algorithms plus machine learning, both supervised and 
unsupervised, algorithms is a promising framework for the study of biological oscillations 
that overcomes many of the previously existing problems in this field of research. The 
reason for the improvement in the classification was the use of NA-MEMD algorithm to 
transform the data into the T-F domain. By means of this approach, there was no 
information loss because of any required assumption of the algorithm and the classification 
in this new space was optimal both using supervised and unsupervised techniques. In the 
other hand, when classical linear techniques were used (Fourier, wavelets), the required 
information blurred the signals and the consequent loss of information impaired an 
effective classification.  

 

 

 



42 
 

1.4 Research lines  
 

This thesis will combine two main research lines: The first is the search of new 
computational tools for the study of neural oscillations in general and spike oscillations in 
particular, considering their nonlinear properties. The other main research line in this thesis 
is the study of interval time coding in the primary visual cortex. 

Regarding the former objective, the search of new tools to analysis neural, mainly spikes, 
oscillations, I studied the use of Noise-Assisted Multivariate Empirical Mode Decomposition 
for the analysis of the oscillation of neuronal populations. The main advantages of this 
algorithm compared to previously used techniques is the capacity to deal with the nonlinear 
and nonstationary properties of neural oscillations. To the best of our knowledge, this thesis 
was the first scientific study on which any EMD algorithm was used to study oscillatory 
spiking dynamics. The results of this research line are published in the paper “Time–
frequency analysis of neuronal populations with instantaneous resolution based on noise-
assisted multivariate empirical mode decomposition”. In a later stage of this thesis, we 
extended this research line, studying whether a combination of NA-MEMD plus machine 
learning classification could be an effective tool to cluster and study neural oscillations. The 
results of this second part of this research line are published in the paper “Toward an 
improvement of neural coding”. 

Regarding the later line of research, consisting on the study of interval time coding in the 
primary visual cortex, we studied if interstimulus interval in the seconds range was encoded 
in spiking oscillations of the deep layers of visual cortex. I studied if the response to a known 
grating visual stimulation was modulated by the temporal length of the interstimulus 
interval in the seconds range. In particular, this research line focused on the study of global 
oscillation in the population response to the visual stimulation that might be informative of 
the interval of stimulation. The results of this research line are published in the paper 
“Multiscale dynamics of interstimulus interval integration in visual cortex”.  
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2. Objectives 
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The aim of this Thesis is to find novel computational tools suitable for the analysis of neural 
oscillations specifically addressing their nonlinear and nonstationary properties and to use 
them to study how the deep layers of visual cortex encode interval time at seconds scale. 

 

Specifically, the main objectives are: 

1. Design a new framework for the study of neuronal oscillations, studying the most 
suitable algorithms for the analysis of neuronal oscillations in general, and spike 
oscillations in particular. 
 

2. Apply the novel analysis to the study of the evoked spiking oscillatory activity of 
deep layers of visual cortex to understand how interval length at seconds scale is 
represented during sensory stimulation. 
 

3. Propose a new perspective on the study of neuronal oscillations combining the use 
of algorithms suitable for the analysis of nonlinear and nonstationary signals and 
machine learning tools. 
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3. Material and methods 
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In this chapter, we will summarize the experimental procedures carried out during this 
Thesis. 

 

3.1 Rat visual cortex recordings 

 

3.1.1 Surgery 
 

Visual cortex multi-unit recordings were obtained from male Long Evans adult rats weighing 
450–500 g. Animals were pre-treated with dexamethasone (1 mg kg−1i.p) 24 h and 20 min 
prior to surgery in order to avoid brain oedema caused by the electrode insertion and 
analgesia was induced by buprenorphine (0.025 mg kg−1s.c), and surgical anaesthesia and 
sedation were induced by ketamine HCl (40 mg kg−1i.p). The anaesthesia was maintained 
with a mix of oxygen and 2% of isoflurane during the surgery and afterwards reduced to 
1.5% during the electrophysiological recordings. The blinking and toe pinch reflexes, body 
temperature, heart rate and 02 concentration were continuously checked along the 
experiment to guarantee a proper level of anaesthesia for the animal. A craniotomy was 
drilled on top of the visual cortex and the electrode array was inserted 2 mm lateral to the 
midline and from 0.5 mm anterior to lambda. Then, a Utah array was inserted in the deep 
layers of the visual cortex (>600  µm) with a Blackrock pneumatically-actuated inserter 
device specifically designed for implanting the Utah array through the duramatter with a 
minimal tissue offense (Blackrock Microsystems, Salt Lake City, USA). The customized 
microelectrode Utah array consisted of 6 × 6 tungsten microneedles, covering a brain 
surface of 2 mm × 2 mm millimetres (400 µm spacing). After the insertion, the ipsilateral 
eyelid to the craniotomy site was closed with cyanoacrylate and atropine sulphate 1% was 
used to dilate the pupil of the contralateral eye. 

 

3.1.2 Acquisition system  
 

In vivo neural activity from visual cortex was recorded simultaneously from 16 individual 
electrodes with the Utah array. The Utah array was connected to a MPA32I amplifier 
(Multichannel Systems, MCS) and the extracellular recordings were digitized with a MCS 
analog-to-digital board. The data were sampled at a frequency of 20 kHz and slow waves 
were digitally filtered out(100–3000 Hz, 2nd order Butterworth type IIR digital filter) from 
the raw data. Neural spike events were extracted with a free tool application for offline spike 
sorting analysis (Neural Sorter, http://sourceforge.net/projects/neuralsorter/) and the 
resulting multiunit information obtained from each electrode was stored for further 
analysis. 
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3.1.3 Visual stimulation 
 

Visual stimulation consisted on a vertical drifting square-wave grating (90◦, light and dark 
bars, 100% contrast, 6 Hz, 0.6cycles/degree) of 500 ms duration interspersed with a dark 
(uniform) stimulus of equal duration. The stimulus was displayed on a LCD monitor (refresh 
rate 60 Hz) and a luminance of ≈100 cd/m2 placed 25 cm in front of the right eye, 
approximately at 30◦ from the midline and covering a visual field spanning ≈10. The stimulus 
was generated using the vision egg library and a python script. The room was kept in 
darkness throughout the visual stimulation. 

 

3.2 Other recordings used in this thesis 
 

Recordings obtained from collaboration with other labs or members from our lab were used 
during this thesis. The methods used to obtain vibrissal nerve recordings are presented here 
[110], while methods used to obtain the neuronal culture recordings are presented here 
[111]. 

 

3.3 NA-MEMD 
 

We used an extension of the EMD algorithm to study the T-F properties of the neural 
response. The Multivariate Empirical Mode Decomposition (MEMD), which is a multivariate 
extension of EMD algorithm, where analysis of simultaneous dimensions is performed 
simultaneously to obtain a meaningful decomposition of the whole multidimensional signal 
in a subset of vectors called Intrinsic Mode Functions (IMFs). Furthermore, we added White 
Gaussian Noise (WGN) to the MEMD, which increases its performance via reducing mode 
mixing produced by signal intermittency. This procedure acts as a filter bank that enhances 
time-frequency resolution. 
 

3.4 Machine learning 
 
We used different machine learning algorithms to classify neural activity patterns from its 
Time-Frequency domain. Supervised classification was performed using MLPs, a fully 
connected multi-layered neuronal network. When unsupervised classification was 
performed, t-SNE + k-means or PCA + DBSCAN approaches were used.  
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3.5 Statistical analysis 
 
All experimental comparisons were tested using Wilcoxon rank-sum test. P values for 
multiple comparisons were corrected ad hoc using Storey method. 
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4. Results 
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The main goals of this thesis consist on the search of novel computational frameworks for 
the study of neuronal oscillations, as well as the use of such tools to study interval 
integration in neuronal populations of deep layers of visual cortex. 
  
We have demonstrated that NA-MEMD is an effective tool to analyse population recordings. 
This algorithm is capable of dealing with the nonlinear and nonstationary properties of 
neuronal signals, thus overcoming the limitations of classical T-F tools (Fourier, wavelets…) 
[Paper I in this thesis]. To do so we used two different types of neuronal recordings. First, 
we compared the efficiency to distinguish different textures in contact with a whisker by 
means of recording in the trigeminal nerve, this data was contributed by our collaborators 
from Felipe lab. We showed that a transformation of this data to the T-F domain using the 
NA-MEMD algorithm outperformed previous results on this dataset. We also demonstrated 
that nonlinearities were present on the data and they were adequately captured by the NA-
MEMD. In addition, we recorded neuronal populations from rat visual cortex during visual 
stimulation with a moving grating. We compared the projection into the T-F space of the 
evoked spiking activity using traditional techniques (spectrogram) and NA-MEMD and 
showed how the signal was again nonlinear and intermittent, compromising the accuracy of 
traditional linear techniques. Therefore, we demonstrated that NA-MEMD is a proper tool 
for the study of spiking oscillatory activity. 
 
Once we found an adequate tool for the study of spike oscillations, we used it to study 
whether interval time at seconds scale is represented in the deep layers of visual cortex by 
spiking oscillatory activity [Paper II in this thesis]. To do so, we recorded neuronal 
populations from the deep layers of visual cortex in anaesthetised rats while being visually 
stimulated with an unchanged moving grating and different intervals between repetitions 
of 1, 3, 5 or 7 seconds. As a first approach to study the effect of ISI at seconds range during 
visual stimulation, we showed that the firing rate was increased for 3 or 5 seconds intervals 
when compared with 1 second, as well that the C.V. was decreased for longer than 1 second 
intervals. Both results together suggest a more robust and reliable evoked response when 
longer intervals were used. 
 
In order to better describe the changes in the evoked spiking response, we studied its 
oscillatory properties using NA-MEMD as described in Paper I of this thesis. We computed 
the HHS of the mean population spiking activity in response to the same grating stimulus 
while stimulating with different intervals in seconds range and compared the obtained 
spectra. Major differences at multiple frequencies and times were seen when 1 second was 
compared with longer times, especially with 3 and 5 seconds. Two frequencies bands were 
significantly different during almost the whole stimulation window. The band centred 
around 6Hz, was interesting because it coincided with the grating frequency and was 
increased only when 3 or 5 seconds intervals, but not 7, were used. It was also worth to note 
the relevance of the frequency band around 10 Hz, which was significantly relevant when 
all longer ISIs were compared with 1 seconds. The effect of ISI time length in higher 
frequency oscillations of spikes (33 to 150 Hz bandwidth) was more intermittent. 
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Statistically significant different remained present with different temporal profiles, mostly 
for 3 and 5 seconds ISIs. A brief significant window occurred 200 ms after stimulus onset 
when all intervals longer than 1 second were used; in addition, a second discrimination 
window in the second half of the response was visible only when 3 or 5 seconds intervals 
were used. 
 
 
Considering these results, we proposed a phase space on which ISI could be discriminated, 
in which visual cortex neuronal populations would be able to discriminate among ISIs 
depending on the elicited dynamics, using three relevant parameters of the response: firing 
rate, low frequency (6 Hz) and high frequency (18 Hz) dynamics. In this space, population 
dynamics were confined to an attractor until stimulation, when different trajectories 
emerge depending on the used ISI during stimulation. When we computed the Euclidean 
distance to the centroid of this attractor we could demonstrate that 1 second ISI didn´t 
evoked a trajectory that left the attractor, 3 and 5 seconds ISI produced big trajectories that 
didn’t return to the original subspace until stimulation was finished, and 7s ISI produced a 
trajectory that left transitory the initial subspace and returned 200-300 afterwards.  These 
results support the idea of a multiscale response, in which neuronal populations encode ISI 
information using multiple frequencies and firing rates in their spiking dynamics. 
 
Following our interest on studying the strengths in the use of NA-MEMD as a tool to study 
neuronal oscillations, we decided to combine it with supervised ML classification to classify 
single-trial stimulation based on its oscillatory activity [Paper lll in this thesis]. We 
hypothesized that the use of NA-MEMD would prevent from any information loss in the 
transformation of the data to the T-F domain from where to extract the desired parameters 
to classify the neuronal activity. Therefore, as all the information would be available for the 
classification, it would not be required to rely on complex deep ML tools, but to use more 
straightforward, shallow algorithms. 
 
To address our hypothesis, we used NA-MEMD + ML tools to classify single trials of 
trigeminal nerve recordings during tactile stimulation with different textures. We 
demonstrated than once the T-F features were obtained by means of NA-MEMD plus Hilbert 
Transform, 100% correct classification could be obtained both with supervised (MLP) and 
unsupervised (t-SNE + k-means clustering) techniques. This result outperformed the existing 
bibliography on the classification of the same dataset, which used standard T-F tools and 
was limited to 70% correct classification.  
 
In a second experiment, we recorded populations from a neuronal culture seeded over a 
multielectrode array and classified the individual trials while stimulating on one from two 
possible electrodes. We demonstrated again that the use of NA-MEMD and Hilbert 
Transform together with either supervised (MLP) or unsupervised (PCA + DBSCAN 
clustering) outperformed traditional T-F tools that were not able to be used to classify the 
evoked neuronal patterns over chance level.  
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5. Discussion 
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In this chapter, we will discuss the results obtained in the present Thesis. 

 

5.1 NA-MEMD as a tool to study spike oscillations 
 

In Paper I I studied the computational strength of NA-MEMD algorithm to provide an 
accurate T-F decomposition of spike oscillations. The difficulty of this task is due to the 
nonlinear and nonstationary properties of spike dynamics [37,38,112]. These makes 
traditional T-F techniques unviable tool for a correct understanding of the oscillatory 
properties of spikes, since they require certain assumptions, like fixed wave-shape and 
stationarity, that are not fulfilled. To overcome this problem, EMD algorithms have been 
used in neuroscience during the last years, although its implementation in the field is still 
scarce and mostly focused on global oscillations as EEG or LFP [87,94–96], rather than 
discrete neurons or populations. We extended this study to the study of spikes oscillations, 
therefore providing the first demonstration of the viability of NA-MEMD as an efficient tool 
to directly study neuronal activity.  

I was able to demonstrate the necessity to use instantaneous frequency to correctly study 
the existing nonlinearities in spike oscillations. To do so, I made clear the presence of 
intrawave modulation within each cycle during spike trains and other neural recordings. It 
is obvious that any analysis based on fixed templates will not be able to catch these 
intrawave modulations and therefore will blur the obtained results. 

 This result also implies than a re-analysis of pre-existing recordings may provide novel 
insights about how the brain works without the need to design new experiments, as new 
knowledge can emerge once the linearity and stationarity assumptions that have historically 
dominated T-F analysis are overcame. Paper III in this thesis presents a clear example. The 
possible impact of re-analysing decades of neuronal recordings in neuroscience is unknown, 
but it may become a major step forward in our understanding of the nervous system.   

 

5.2 Interstimulus interval at seconds scale is 
encoded in spikes oscillation of Deep layers in V1 
 

One of the main objectives of this thesis was to study the changes in visual response of rats 
in response to changes in the ISI at seconds scale. This question is of great interest to 
understand how the brain works, as the understanding of time processing has been elusive 
despite the decades of research on this topic that have been devoted to answer this 
question since the first related experiment [113]. 



60 
 

 I have demonstrated that the ISI in the seconds range is encoded in the population response 
during a visual stimulation task. These changes were present at the level of firing rate and 
the oscillatory dynamics of the response. I did also demonstrate that changes in the ISI had 
an effect on multiple frequencies simultaneously; therefore we support a multiplexed 
mechanism for time encoding in visual cortex, on which multiple oscillators are involved 
[19]. It is also worth to notice that the oscillations present in the visual response were 
intermittent and nonlinear, supporting the use of NA-MEMD to analyse them. I did also 
show that these changes were restricted to a certain time window of 3-5 seconds and were 
reduced for longer intervals (7 seconds). Therefore, this work suggests that visual cortex can 
encode visual information through time up to several seconds.  

In an effort to better describe our results, I created a low dimensional phase space on which 
I could project the evoked trajectories produced by visual stimulation, using a subset of 
features that we had demonstrated to be relevant in ISI encoding. These selected features 
were the firing rate and the amplitude at 6Hz and 18Hz. In this phase space, the averaged 
population activity was confined into a small attractor during spontaneous activity until the 
stimulus started. Once the stimulus was triggered, the evoked response was represented as 
a given trajectory as the evolution of the selected features during time. These trajectories 
were remarkably different depending on the used ISI. The evoked trajectories were 
projected more distantly and during more time from the attractor when 3 or 5 seconds ISI 
were used, while there were almost no changes when 1s ISI was used. The trajectory 
corresponding to 7 seconds ISI was clearly leaving the attractor, but not as distantly as when 
3 or 5 seconds ISI were used, and returned to the original point earlier. Therefore, it turned 
clear that we could create a boundary in this phase space which would be useful to separate 
the ISIs with a bigger effect on the visual response (3 or 5 seconds) from the others (1 or 7 
seconds). The fact that multiple oscillators were relevant to generate this phase space once 
again reinforces the idea of multiplexed time processing in visual cortex. 

In conclusion, I have demonstrated that visual cortex can encode temporal information in 
seconds scale, a computational property that was not expected to be found in a primary 
sensory cortex. I have also studied the dynamics of ISI encoding in visual cortex, we showed 
that certain interval time windows (3-5 seconds) evoke a response in neuronal populations 
of visual cortex with an increased firing rate when compared to classical (1 second) intervals. 
Moreover, spiking activity was organized in multiplexed nonlinear oscillators depending on 
the ISI. A combination of firing rate and amplitude of oscillation at certain frequency created 
a phase space in which the visual response to the same grating stimulus could be separated 
unambiguously depending of the ISI used during stimulation.  

 

 



61 
 

5.3 NA-MEMD+ML for neural activity pattern 
analysis 
 

Despite the major advances in neuroscience that have been produced thanks to the 
introduction of ML tools into the neuroscientist toolbox [100–103,109,114,115], it is 
surprising that T-F analysis has not evolved proportionally. I hypothesized that problems in 
ML classification/modelling of neuronal activity in the T-F domain are caused, not because 
of a bad implementation or lack of power of the ML algorithms, but from the stationary and 
linear assumptions of the tools that are classically used to project the data into the T-F 
domain (Fourier series, wavelets…); these assumptions produce an information loss that 
blurs any posterior analysis. In this context, we suggested that a faithful transformation of 
the data to the T-F domain would produce major improvements in the 
classification/modelling of neuronal oscillatory events. 

In this thesis, I addressed such question, demonstrating that a combination of NA-MEMD + 
ML algorithms greatly outperforms to classical spectral tools. The improvement in the 
classification of the neuronal events is thanks to the increase in the faithfulness of the 
transformation to the T-F space thanks to the capacity of NA-MEMD to accurately describe 
the nonlinearities and nonstationarities present in the neuronal data.  

I suggest that this new approach to T-F classification/modelling of neuronal data may lead 
to a new step in our understanding of the brain and the use of neuronal signal for BMIs. I 
base this statement on our results, which have shown that NA-MEMD+ML classification not 
only outperformed classical analysis but also became more reliable in a single-trial analysis 
framework. 

 

5.4 The elephant in the room, why we didn´t apply 
ML to understand visual interstimulus timing. 
 

The problem I faced is known as the curse of dimensionality, the amount of data you require 
to model/classify a given problem grows exponentially with the number of dimensions in 
the data, and visual cortex dynamics are high-dimensional [Stringer papers 2018]. 

There were two main sources of variability, trial-by trial variability and neurons 
heterogeneous responses: 

The evoked response in visual cortex neurons to a given visual stimulus is highly variable 
from one trial to the following [116–118]. It is of special interest that the main source of this 
variability is not the perception of the environment by itself, but is self-generated in the 
cortex, given that trial-to-trial variability in V1 is much higher than in the lateral geniculate 
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nucleus of the thalamus [116]. This variability is correlated among the neurons of the 
populations [37], so it cannot be easily subtracted by averaging their evoked activity. The 
source of this shared trial-to-trial variability is not stochastic but due to different synaptic 
activation dynamics during cortical sensory activation [117,119]. This variability is supposed 
to be caused by parallel computations to perception that are carried on in the visual cortex 
together with vision; in example, recent works from Carandini and Harris’ lab [20] have 
demonstrated that activity in visual cortex is strongly driven by motor activity, both during 
darkness periods and stimulation. These hidden variables during the recordings increase the 
variability and thus the difficulty of studying the different intervals used by means of 
Machine Learning tools, extremely data avid. 

The other source of variability is the heterogeneity of responses in visual cortex. Rodent 
visual cortex has a salt-and-pepper distribution of neurons with highly specific receptive 
fields that create multiple sub-networks intermixed in space [44,120]. Therefore, when you 
record a population of random neurons in visual cortex, you find a great variability of RFs 
profiles that increase the variability and dimensionality of the recorded population. 

Taking together the heterogeneity of visual tuning and the major modulation of visual 
responses by the ongoing state of the cortex, it turns out that the number of dimensions 
that are required to accurately describe all the variability existent in visual cortex may range 
from 50 to 100 dimensions [20,121]. Given a general rule of thumb that states a minimum 
of 20 data points per dimension for a reliable classification, it might be required experiments 
with   ̴2000 trials when ML tools want to be used to study visual cortex population dynamics. 
Even if dimensionality can be reduced via feature extraction from the recorded population, 
these numbers give an idea of the enormous variability and therefore data that must be 
collected, both in terms of neurons and trials, to perform a robust trial-by-trial study of 
interval timing in visual cortex.  

Nevertheless, I am positive about the future. Recent improvements in massive neuronal 
recordings and behaviour tracking create a fascinating landscape on which we cannot but 
expect exciting result from the combination of such techniques with NA-MEMD and ML 
tools to understand the role of oscillations in visual cortex during timing tasks in particular, 
and behaviour in general. 

 

5.5 Future lines of research 
 

Once we have demonstrated that interstimulus intervals, at the level of seconds scale, 
modulates the activity of neuronal populations of deep layers of visual cortex, our next step 
is to study how this code is distributed through the population.  

Our aim is to study the specific weight of individual neurons in the representation of 
interstimulus interval, looking for answer to questions as if the changes at the population 
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level are caused by a minority of neurons persistently through all the trials or if it’s 
distributed through all the neurons. We do also want to address whether there exists a 
subpopulation of neurons which play a role in interval but not visual perception coding. To 
do so, we plan to perform new experiments on which not only the interval but also the 
physical properties of the grating are changed. These experiments will let us understand the 
specific weight of individual neurons on the coding of grating perception together with time 
interval.  

The research on time perception in sensory systems will benefit from the understanding of 
the intersection between sensory and time coding in visual cortex. Once we understand if 
the coding of time is distributed across the whole circuit or constrained to certain neurons 
that perform a particular subpopulation will be pivotal to design new interventional 
experiments to understand how does our brain perceive time. 
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6. Conclusions/Conclusiones 
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1. NA-MEMD is an effective tool for the analysis of spike oscillations. 
2. Neuronal populations of deep layers of visual cortex encode interstimulus interval 

in the seconds range. 
3. This coding of interstimulus interval involves oscillatory dynamics at the population 

level. 
4. An optimal interval window of 3-5 seconds exists on which visual evoked response 

has a higher firing rate and is less variable. 
5. NA-MEMD + supervised/unsupervised classification techniques outperform 

previously used techniques for the study of single-trial oscillatory neuronal 
dynamics. 
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1. La NA-MEMD es una herramienta efectiva para el análisis de oscilaciones de 
potenciales de acción. 

2. Poblaciones neuronales de las capas profundas de la corteza visual codifican el 
intervalo inter-estímulo en el rango de segundos. 

3. Este código para el intervalo inter-estímulo implica oscilaciones al nivel de la 
población neuronal. 

4. Existe una ventana óptima de 3-5 segundos de intervalo en la que la respuesta 
evocada por estimulación visual tiene una mayor tasa de disparo y es más estable. 

5. La combinación de NA-MEMD más técnicas de clasificación supervisada mejoras los 
resultados obtenidos previamente con otras técnicas para el estudio de la dinámica 
de oscilaciones neuronales en pruebas únicas. 
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ABSTRACT 

 

Background: Linear analysis has classically provided powerful tools for understanding 
the behavior of neural populations, but the neuron responses to real-world stimulation are 
nonlinear under some conditions, and many neuronal components demonstrate strong 
nonlinear behavior. In spite of this, temporal and frequency dynamics of neural 
populations to sensory stimulation have been usually analyzed with linear approaches. 

New method: In this paper, we propose the use of Noise-Assisted Multivariate Empirical 
Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the 
Hilbert Transform as a suitable tool for analyzing population oscillatory dynamics in a 
multi-dimensional space with instantaneous frequency (IF) resolution. 

Results: The proposed approach was able to extract oscillatory information of 
neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings 
that were not evidenced using linear approaches with fixed bases such as the Fourier 
analysis.  

Comparison with existing methods: Texture discrimination analysis performance was 
increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert Transform was 
implemented, compared to linear techniques. Cortical oscillatory population activity was 
analyzed with precise Time-Frequency resolution. Similarly, NA-MEMD provided 
increased Time-Frequency resolution of cortical oscillatory population activity. 

Conclusions: Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert 
Transform is an improved method to analyze neuronal population oscillatory dynamics 
overcoming linear and stationary assumptions of classical methods. 

 

Keywords: NA-MEMD, nonlinear analysis, non-stationary analysis, neuronal 
population. 
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1 INTRODUCTION 

Biological signal analysis has been historically limited due to nonlinearity and 
non-stationarity of the data. In particular, the nervous system detects and processes world 
information continuously through highly complex dynamics from peripheral nerves to the 
cortex [22,37,122] at very different time scales [101,123,124]. A common example is the 
production of action potentials by a neuron, where the output signal has no simple linear 
relationship to the input. However, the development of general methods for analyzing 
nonlinear systems and interpreting the results has been delayed due to the theoretical and 
computational complexities involved. 

 
In this paper we propose the use of Noise-Assisted Multivariate Empirical Mode 

Decomposition (NA-MEMD) [43] together with Hilbert Transform (Huang et al. 1998) 
as a tool for the study of neuronal population dynamics with high temporal resolution. 
Multivariate Empirical Mode Decomposition (MEMD) [88] was proposed as a n-
dimensional extension of empirical mode decomposition (EMD) (Huang et al. 1998). 
This is an empirical adaptive method which iteratively subtracts the mean vector obtained 
from binding the local maxima and minima with a cubic spline until a certain criterion is 
satisfied. The result of this algorithm is a variable number of Intrinsic Mode Functions 
(IMFs) that contains the existent data oscillations in decreasing frequency order. The 
extension to n-dimensions of this method described in Rehman and Mandic 2010, is based 
on real-valued projections along multiple directions on hyperspheres, in order to calculate 
the envelopes and the local mean of multivariate data. Furthermore, the addition of new 
dimensions containing white Gaussian noise (NA-MEMD) (Rehman and Mandic 2011) 
acts as a filter bank that helps to resolve the mode mixing and mode misalignment 
problem present in MEMD algorithms. In addition, the additional number of extrema 
provided by noise channels confers an increase in accuracy when intermittent signals are 
decomposed, which is crucial when leading with neuronal population dynamics. 

 
 EMD family of algorithms has recently been applied to discriminate between 

whole LFPs of macaque V4 while performing a visual illusion task without specifically 
considering neuronal dynamics via EMD [87,93] and MEMD [94,95]. In addition, EMDs 
have been used successfully to analyze EEG and EMG recordings [97,98,125] in the last 
years. Bearing this in mind, we aim to explore the potential usefulness of this 
methodology for describing and understanding local neuronal population recordings with 
precise instantaneous temporal resolution.  

 
In this paper we describe the implementation of the technique and then apply it on 

to real data. In particular, we show how neural activity oscillatory activity changes in two 
different experimental paradigms: evoked activity recorded from the deep vibrissal nerve 
of anesthetized rats and spike trains of simultaneously recorded neurons from deep layers 
of rat visual cortex. Our results suggest that NA-MEMD plus Hilbert transform analysis 
is a improved tool to study local neuronal activity with instantaneous time and frequency 
resolution, consistently with recent works (Hu and Liang 2014) where NA-MEMD 
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decomposition plus Wasserstein distance based analysis of LFP recordings increased 
whole recordings discrimination accuracy.  

 

2 METHODS 

2.1 Experimental methods 

2.1.1 Electrophysiological recordings 

Deep vibrissal nerve recordings were obtained from five male Wistar adult rats 
weighing 300–350 g. Surgical anesthesia was induced by urethane (1.5 g/kg) and 
temperature was maintained at 37° by a servo-controlled heating pad. Surgery and 
experimental protocol have been previously described in detail by Albarracín et al., 2006. 
The procedures are briefly described below. Vibrissa movements were induced by 
electrical stimulation of facial motor nerve (VII). Square-wave pulses (30 μs, 7 V 
supramaximal, 5 Hz) simulated vibrissal whisking at its natural frequency (Fig. 1A). 
Nerve activity was recorded and digitized at 20 kHz (sampling rate) during a 100 ms 
window following onset of each cycle of whisker movement with a Digidata 1322A 
(Axon Instruments). Fifty whisker movement cycles were obtained for each whisker-
surface contact, and an additional 50 cycles were recorded while whisker moved 
unobstructed in air (control).  

Four slip-resistance levels were presented for each surface by mounting the 
surface at different distances from the whisker base (Fig. 1A, Albarracín et al. 2006, for 
details). The swept surfaces tested in this paper were surfaces with different textures: 
wood, metal, acrylic and sandpaper P1000. Movements of the Gamma whisker were 
recorded simultaneously with nerve activity using a custom-made photoresistive sensor 
[126]. The frequency response of the sensor was maximal in the range 0–100 Hz, enabling 
direct identification of the protraction and retraction phases of the movement cycle. 

Visual cortex multi-unit recordings were obtained from 5 male Long Evans adult 
rats weighing 450-500 gr. Analgesia was induced by buprenorphine (0.025mg kg-1 s.c), 
and surgical anesthesia and sedation were induced by ketamine HCl (40 mg kg-1 i.p). The 
anesthesia was maintained with a mix of oxygen and 2% of isoflurane during the surgery 
and afterwards reduced to 1.5% during the electrophysiological recordings. The blinking 
and the toe pinch reflexes were continuously checked along the experiment to guarantee 
a proper level of anesthesia for the animal. The body temperature was maintained with a 
thermal pad and the heart rate and O2 concentration in blood were monitored throughout 
the experiment. Animals were pre-treated with dexamethasone (1 mg kg-1 i.p) 24 hours 
and 20 minutes prior to surgery in order to avoid brain edema caused by the electrode 
insertion. A craniotomy was drilled on top of the visual cortex and the electrode array 
was inserted 2 mm lateral to the midline and from 0.5 mm anterior to lambda. Then, a 
Utah array was inserted in the deep layers of the visual cortex (>600 µm) with a Blackrock 
pneumatically-actuated inserter device specifically designed for implanting the Utah 

http://www.sciencedirect.com/science/article/pii/S0165027014002131#200002920
http://www.sciencedirect.com/science/article/pii/S0165027014002131#200024312
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array through the duramatter with a minimal tissue offense (Blackrock Microsystems, 
Salt Lake City, USA). The customized microelectrode Utah array consisted of 6 x 6 
tungsten microneedles, covering a brain surface of 2 mm x 2 mm millimeters (400 μm 
spacing). After the insertion, the ipsilateral eyelid to the craniotomy site was closed with 
cyanoacrylate and atropine sulphate 1% was used to -dilate the pupil of the contraleral 
eye.  

In vivo neural activity from visual cortex was recorded simultaneously from 16 
individual electrodes with the Utah array (Fig 2A). The Utah array was connected to a 
MPA32I amplifier (Multichannel Systems, MCS) and the extracellular recordings were 
digitized with a MCS analog-to-digital board. The data were sampled at a frequency of 
20 kHz and slow waves were digitally filtered out (100-3000 Hz, 2nd order Butterworth 
type IIR digital filter) from the raw data (Fig 2B). Neural spike events were extracted 
with a free-tool application for offline spike sorting analysis (Neural Sorter, 
http://sourceforge.net/projects/neuralsorter/) and the resulting multiunit information 
obtained from each electrode was stored for further analysis. 

Visual stimulation consisted on a vertical drifting square-wave grating (90°, light 
and dark bars, 100% contrast, 6 Hz, 0.6 cycles/degree) of 500 ms duration interspersed 
with a dark (uniform) stimulus of equal duration. The stimulus was displayed on a LCD 
monitor (refresh rate 60 Hz) and a luminance of ≈100 cd/m2, placed 25 cm in front of the 
right eye, approximately at 30° from the midline and covering a visual field spanning 
≈100° (Fig. 2A). The stimulus was generated using the vision egg library and a python 
script. The room was kept in darkness throughout the visual stimulation.  
 
 
2.1.2 Ethical approval  
 

All the procedures carried out at the Institute for Biological Research 
(INSIBIO)/Instituto Superior de Investigaciones Biológicas, were in accordance with the 
recommendations of the Guide for the Care and Use of Laboratory Animals (National 
Research Council, NRC). 

All the experimental procedures carried out at the Miguel Hernandez University 
were conformed to the directive 2010/63/EU of the European Parliament and of the 
Council, and the RD 53/2013 Spanish regulation on the protection of animals use for 
scientific purposes and approved by the Miguel Hernandez University Committee for Animal 
use in Laboratory. 

 

2.2 Data analysis  
 

Neural activity analysis was performed in Matlab (MathWorks). In the case of the 
rat visual cortex multiunit recordings, single or multiunit spiking activity was isolated 
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from the background. We observed multiunit activity in the majority of the electrodes 
through the whole recording sessions, and only those electrodes with neural activity 
higher than 0.5 spikes/s were considered in the analysis. 

We constructed time-dependent population activity vectors from rat visual cortex 
multiunit recordings by temporally locking the activity of each electrode with 1 ms 
resolution from one second before to one second after each stimulus presentation. The 
deep vibrissal nerve recordings remained at recording resolution (20 kHz). 

 
2.2.1 NA-MEMD 

 
EMDs are data-driven algorithms suitable for nonlinear and non-stationary 

analysis [43]; therefore, they have become a promising tool in the analysis of neural data 
[87]. ‘Classical’ EMD analysis (Huang et al. 1998) decomposes a given signal in a set of 
oscillatory modes called IMFs. Each IMF contains the oscillations present in the original 
data at a certain temporal scale and therefore is independent of templates. Thus this 
procedure provides a much more elaborate means of applying nonlinear analysis to 
neuronal population recordings than standard procedures. 

The MEMD [88] is a multivariate extension of EMD algorithm, where analysis of 
simultaneous dimensions is performed simultaneously to obtain a meaningful 
decomposition of the whole multidimensional signal, This method overcomes the 
problems resulting from univariate EMD analysis application to each dimension 
independently: different number of IMFs and unscaled alignments. It obtains generalized 
oscillations, known as rotational modes, via estimation of the local n-dimensional mean. 
To this end, multiple uniformly distributed projections in the n-dimensional space are 
calculated using a V-point Hammersley sequence [89]; these projections extrema are 
interpolated with a cubic spline and averaged to compute the local mean. As in the 
original EMD algorithm (Huang et al. 1998), this mean vector is subtracted from the 
original n-dimensional data and the process is repeated iteratively to obtain the 
subsequent IMFs until a certain stopping criteria is achieved, such as symmetry of the 
upper and lower envelopes or that the number of extrema and the number of zero-
crossings differ at most by 1. The final IMF does not contain any oscillation other than 
the trend of the data.  

Whereas complete MEMD algorithm is described elsewhere [88], Algorithm 1, as 
given in this paper, briefly describes for those unfamiliar with the technique, the basis of 
the method:  

Algorithm 1. Multivariate extension of EMD. 

1. Choose a suitable pointset for sampling on an (n −1) sphere. 
2. Calculate a projection, denoted by 𝑝𝑝𝜃𝜃𝜃𝜃(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  , of the input signal {𝒗𝒗(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  along 

the direction vector 𝒙𝒙𝜃𝜃𝜃𝜃, for all k (the whole set of vectors), giving 𝑝𝑝𝜃𝜃𝜃𝜃(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  as 
the set of projections. 



91 
 

3. Find the time instants {𝑡𝑡𝑖𝑖𝜃𝜃𝜃𝜃} corresponding to the maxima of the set of projected 
signals 𝑝𝑝𝜃𝜃𝜃𝜃(𝑡𝑡)}𝑡𝑡=1𝑇𝑇  

4. Interpolate [𝑡𝑡𝑖𝑖𝜃𝜃𝜃𝜃, 𝒗𝒗(𝑡𝑡𝑖𝑖𝜃𝜃𝜃𝜃)] to obtain multivariate envelope curves 𝒆𝒆𝜃𝜃𝜃𝜃(𝑡𝑡)}𝜃𝜃=1𝐾𝐾  
5. For a set of K direction vectors, the mean m(t) of the envelope curves is calculated 

as 𝒎𝒎(𝑡𝑡) = 1
𝐾𝐾
∑ 𝑒𝑒𝜃𝜃𝜃𝜃(𝑡𝑡)𝐾𝐾
𝜃𝜃=1  

6. Extract the ‘detail’ d(t) using d(t) = x(t) - m(t). If the ‘detail’ d(t) fulfills the 
stoppage criterion for a multivariate IMF, apply the above procedure to x(t) – d(t), 
otherwise apply it to d(t).  

White Gaussian Noise (WGN) addition to EMD analysis (EEMD, NA-MEMD) 
increases its performance via reducing mode mixing produced by signal intermittency 
(Zhaohua and Huang 2009) acting as a quasi-dyadic filter bank that enhances time-
frequency resolution (Flandrin et al. 2004; Rehman and Mandic 2011). This increased 
performance is especially present in intermittent data, where aliasing among IMFs is more 
prone to happen; therefore the dyadic filter bank property of WGN decomposition helps 
to mitigate this effect. Given known the intermittency of neural signals, WGN is added 
in additional dimensions: 

𝑑𝑑 = 𝑛𝑛 + 𝑘𝑘, 

Where d is the final number of dimensions, n the dimensions of the original data 
(electrodes, trials…) and k the number of additional dimensions including WGN (Rehman 
and Mandic 2011). 

In order to apply NA-MEMD analysis to our data, we adapted MEMD Matlab 
package (http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm). We used the low-
discrepancy Hammersley sequence to generate a set of V = 300 direction vectors for 
computing signal projections and 3 WGN channels. Standard stopping criterion was 
described elsewhere [83].  

We applied NA-MEMD in different ways accordingly to each dataset. When 
applied to deep vibrissal nerve recordings, we extended the analysis to all repetitions (n 
= 50), obtaining d = 53. When studying visual cortex results, we aimed to depict features 
present in the whole recorded population; therefore, we averaged the activity of all 
electrodes and trials (n = 1) and added 3 additional dimensions with WGN, d = 4. We 
kept applying NA-MEMD over EEMD (Zhaohua and Huang 2009) on visual cortex 
recordings collapsed to a single dimension to avoid mixing the added noise with the real 
signal, as it may increase residual error and produce different number of IMFs in each 
ensemble, therefore compromising IMFs alignment and subsequent analysis (see Figs. 5 
& 8 in Mandic et al. 2013).  

2.2.2 Hilbert Transform 

We measured present frequencies in our data as the instantaneous frequency (IF) 
using Hilbert Transform (Huang et al. 1998). For a given time series x(t), its Hilbert 
Transform H(x)(t) is defined as: 

http://www.commsp.ee.ic.ac.uk/%7Emandic/research/emd.htm
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𝐻𝐻(𝑥𝑥)(𝑡𝑡) =  1
𝜋𝜋
𝐶𝐶 ∫ 𝑥𝑥(𝑡𝑡′)

𝑡𝑡−𝑡𝑡′
𝑑𝑑𝑡𝑡′∞

−∞ , 

Where C indicates the Cauchy principal value. Hilbert Transform results in a 
complex sequence with a real part which is the original data and an imaginary part which 
is a version of the original data with a 90º phase shift; this analytic signal is useful to 
calculate instantaneous amplitude and frequency; instantaneous amplitude is the 
amplitude of H(x)(t), IF is the time rate of change of the instantaneous phase angle. 

2.2.3 Spectrogram via short-time Fourier transform (STFT) 

STFT analyzes the signal x(t) through a short-time window ω(t) = x(t) × ω(t − τ), 
and then a Fourier transform is performed on this product using complex exponential 
basis functions. The square modulus of STFT is referred to as the spectrogram (Zhan et 
al., 2006).  In order to observe overall changes in the power spectral density (PSD), we 
computed it using a parametric autoregressive (AR) modeling [110,127] in both raw and 
decomposed signals. 

2.2.4 Information measure with Bhattacharyya distance 

The Bhattacharyya distance (Bd) is a measure of divergence between two distributions  
(Bhattacharyya, 1946). We measured this value to discriminate between possible pairs of 
experiments. 

 

3 RESULTS 

3.1 Deep vibrissal nerve recordings 

The afferent discharge recorded is the average electrical activity of myelinated 
axons with different firing patterns (Albarracín et al., 2006; Farfán et al., 2013). This leads 
to a complex response to the stimulus where the individual response of each fiber is mixed 
in a summed response. Fig. 3A shows four afferent recordings (top) in different sweep 
situations and 6 IMFs obtained applying NA-MEMD analysis to each of the surfaces 
recordings individually. We decided to inspect all IMFs rather than statistically validate 
those carrying more information (Huang et al. 2013; Hu and Liang 2014) in order to 
understand the discrimination dynamics across time at all frequencies. 

In order to observe overall changes in the power spectral density (PSD), we 
computed it using a parametric AR modeling [110,127] in both raw and decomposed 
signals. The PSD of raw signals revealed differences of amplitude (power of PSDs) and 
in its maximum-energy frequency components (Fig. 3B, top panel). In this analysis, both 
the electrical stimuli as well as EMG artifacts were dropped of PSD estimations to avoid 
spurious components. The Fm (mean frequency) values [131] of 50 PSD of each 
experimental situation were represented with its mean values bounded by its 
corresponding standard deviations (Fig. 3C, left). Significant differences among sweep 
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situations on metal, acrylic and sandpaper were observed, although not between sweeps 
on wood vs. metal (Kruskal Wallis test, p value < 0.05). 

The PSD obtained from IMFs revealed spectral changes at different bandwidths 
(Fig. 3B). For instance, IMF 3 concentrated its energy content in the bandwidth of 1.25 
to 2.5 kHz (for all sweep situations), while IMF 4 into 0.5 to 1.25 kHz approximately. 
Thus, the power remained increasingly bound in specific bands. The Fm values from each 
IMF and simulated whisking situation are represented in Fig. 3C (middle).  

The spectral content of IMF 5 showed similarities with the spectral content of raw 
signals, regarding to the sweep situation on metal, acrylic and sandpaper, and a linear 
increase in Fm (Fig. 3C, right), however, results variance was notably reduced. For this 
IMF, the sweep on wood vs sweep on metal is significantly different (p<0.01, ANOVA 
test). The Fm values of IMF 6 showed a linear increase for sweep situations on wood, 
metal and acrylic. The sweep situation on sandpaper produces a spectral content 
characterized by Fm values of lower magnitude and dispersion compared to the PSD of 
the raw data (Fig. 3C, right).  

Time-Frequency (T-F) discrimination analysis, as proposed by Pizá et al., 2014, 
was implemented in order to compare the NA-MEMD plus Hilbert transform as a method 
to extract time-frequency features of afferent recordings. Fig. 4A shows the methodology 
used to obtain a discriminability measure based on spectrograms. Each whisking situation 
was represented as a time series average and its corresponding standard deviation (mean 
± std), in order to compare the temporal profile of different whisking situations. 

Alternatively, the NA-MEMD was applied to raw signals and then the IF of 
selected IMFs was computed via Hilbert Transform (see methods). Therefore, we 
obtained T-F profiles for each whisking condition and IMF (one example condition 
shown in Fig. 4B). We could observe how time-frequency features of NA-MEMD plus 
Hilbert Transform analysis had lower dispersion than those obtained from the 
spectrograms (Supplementary Fig. 1). 

Bd was used to compare T-F dynamics for three comparisons at three slip 
resistance levels, as we did not find substantial differences between slip resistances 2 & 
3. Results are shown in Fig. 4C. Bd values increased in a range from 0-0.3 for 
comparisons based on spectrograms to 0-1.5 Bd values from Hilbert Transform of IMFs 
5 & 6. Furthermore, the instantaneous T-F resolution of this procedure showed an 
enriched temporal dynamic of Bds. T-F analysis based on spectrogram reveals differences 
between wood and acrylic into the 16 to 24 ms time interval for all slip resistance levels 
(Fig 4C, top – left). In the same time interval, the Hilbert Transform of IMF 5 showed a 
peak of discrimination at 18 ms for slip resistance 4 , and at 22 ms for slip resistance 2 
(Fig. 4C, middle – left). This situation was even clearer when IMF 6 Hilbert Transform 
was analyzed. In addition, a different peak in the discrimination analysis (Bd> 0.5) arose 
at 30 ms, for slip resistance 1 (Fig. 4C, bottom – left). 
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When this comparative analysis was extended to the discriminations between 
wood and metal, maximum Bd was found in retraction phase (20 – 45 ms approx.), at slip 
resistance 1 (Fig. 4C, top – middle) in the Hilbert Transform of IMF 6 (200 to 500 Hz) 
(Fig. 4C, bottom – middle), something completely absent in the spectrogram derived T-
F profile. 

Finally, spectrogram method revealed that acrylic vs sandpaper comparison had 
its greatest discriminability value in the protraction phase (16 to 25 ms approx.) (Fig. 4C, 
top – right). Hilbert Transform of IMF 5 displayed peaks in the Bd in the same window, 
although the measured value was higher and the increased temporal resolution 
demonstrated that maximum Bd was displaced for different resistances (maximum Bd 
with resistance 4), something previously blurred by the linear approach limitations; On 
the other hand, Hilbert Transform of IMF 6 had a maximum at a different resistance 
(resistance 2) as well as a different temporal profile. 

These results clearly showed the advantages of NA-MEMD plus Hilbert 
Transform over T-F analysis based on spectrograms, as it was used to compute higher 
Bds in all situations with increased time resolution. Furthermore it was possible to 
differentiate the time of maximum Bd for different texture pairs.  

3.2 Visual cortex recordings  

Neurons of mammals neocortex oscillate spontaneously (Buzsáki and Draguhn 
2004; Petersen et al. 2003; Luczak et al. 2007), both in awake and anesthetized states 
[132,134] although alternate with some periods of desynchronized activity [135]. In this 
conceptual framework, we have to take into account that the visual cortex neuronal 
populations recorded during visual stimulation may have different coupling among 
neurons. Thus, whereas some neurons fire independently others fire simultaneously in 
population oscillations [21] resulting in a strong variability in the population responses 
[117].  

To analyze these data we averaged the spiking activity of the whole recorded 
population during visual stimulation and decomposed it with NA-MEMD. Fig. 5A shows 
the mean population response to a single trial (left) and two IMFs, one carrying 
information about the distribution of single spikes (IMF3, center) and the other about the 
low frequency oscillation (IMF7, right). IF (Fig. 5B) of the data shown in Fig. 5A is 
computed via Hilbert Transform and shows how IF vector of the original data (left) is 
artefactual, while center and right graphs show the IFs of the IMFs shown above and how 
they are restricted to a certain frequency range. It is especially notorious how NA-MEMD 
plus Hilbert Transform allowed to analyze intrawave oscillations (Figs. 5A& 5B, right), 
something which is not feasible by using linear techniques. Figs. 5C & 5D show the same 
scheme explained in the top part of Figs. 5A & 5B extended to the whole experiment 
averaged in a single vector. This was performed averaging the activity of all electrodes 
and trials. Note how IMF 3, containing high frequency components of the response is not 
stimulus-dependent, while IMF 7, containing low frequency oscillations (±10 Hz, see 
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right graph of Fig. 5D) is amplitude-modulated (AM) during the stimulation window 
(grey window). These results are consistent with the interpretation that the distribution of 
spikes is highly variable in response to each stimulation (IMF 3). This methodology also 
allows to discover oscillations in a different time-scale (IMF 7), which could be related 
to the stimulus [136]. 

In order to compare this analysis with traditional linear approach, we constructed 
averaged spiking activity power spectrums using spectrogram and NA-MEMD plus 
Hilbert Transform analysis independently (Fig. 6). Hilbert spectrum time resolution was 
increased, as it was obtained from a point-by-point convolution instead of windows 
superposition spectrogram analysis. Moreover, when Fig. 6C and Fig. 6D are compared, 
we can notice an increase in frequency resolution in Hilbert spectrum, whereas 
spectrogram frequency axis is blurred and lacks of the resolution achieved in Hilbert 
spectrum. When an accurate representation of nonlinear features is analyzed, we can 
observe how a power peak with a linear increase in frequency appears between 250 and 
350 ms after stimulation onset and 35 and 45 Hz in Fig. 6D, computed with NA-MEMD 
plus Hilbert Transform, but is absent in Fig. 6C spectrogram, which was unable to depict 
this frequency increase along time due to its template restrictions.   

In conclusion, NA-MEMD plus Hilbert Transform provided an enriched spectrum 
when compared with traditional techniques (spectrogram), with increased T-F resolution 
and a template-free representation of nonlinear response components, thanks to its 
template-free, local application. Thus, a T-F analysis of dynamical properties of 
multielectrode visual cortex recordings with IF resolution is feasible with NA-MEMD 
plus Hilbert transform. 

 

4 DISCUSSION 

The present results were obtained using NA-MEMD plus Hilbert Transform, an approach 
that enabled the study of population dynamics with instantaneous resolution. The absence 
of any fixed basis in the decomposition increased the accuracy of the analysis and avoided 
the T-F blurring of linear approaches. When linear or stationary assumptions are used, 
intrawave modulations result in spurious harmonics residing in higher frequencies that 
obscure the biological interpretation of the results. As neuronal dynamics are classically 
nonlinear (Laurent 1996; Shamir 2004; Averbeck et al. 2006), we suggest that nonlinear 
techniques are required for a more confident and meaningful analysis of neuronal data. 

 The EMD family of algorithms has been used in the recent years in neuroscience to 
overcome these difficulties (Liang et al. 2005b; Hu and Liang 2011, 2012, 2014, Naik et 
al. 2015). In the present study we have demonstrated that NA-MEMD, a noise-assisted 
data-driven Time-Frequency analysis algorithm, is a suitable tool to study local neuronal 
populations.  Our results show that this approach may be useful to dramatically increase 
the time resolution of Time-Frequency analysis of neuronal population recordings. 
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Instantaneous frequency resolution is essential for a meaningful interpretation of 
nonlinear and non-stationary processes (Durstewitz and Deco 2008). Thus, by using the 
procedure described in the present study we have been able to show how afferent 
population activity presents intrawave frequency modulations (see Supplementary Fig. 
2). Previous attempts were unavailable to achieve such temporal resolution in T-F 
analysis (Albarracín et al., 2006; Farfán et al., 2013), and blurred the information 
obtained. Thus, linear Fm analysis of the deep vibrissal nerve recordings used in those 
studies were not able to accurately explain the nerve responses to vibrissal stimulation, 
something fulfilled when using NA-MEMD plus HT analysis (see Fig. 4 and 
Supplementary Fig 1). Hence it is possible that those previous analysis may contain 
significant artifacts, what emphasizes the usefulness of this new approach to extract time-
frequency information from neural recordings.   

In addition, this procedure was also applied to visual cortex simultaneous multiunit 
recordings. To the best of our knowledge, this is the first attempt of extracting oscillatory 
information from spiking activity using NA-MEMD analysis. Our T-F analysis of mean 
population activity evidenced intrawave modulations before, during and after 
stimulation, with a power peak that started at 35 Hz and increased to 45 Hz lasting 
approximately 200 ms in the response window (Fig. 6D). This response feature was 
nonlinear, as it changed in time and frequency simultaneously, therefore spectrogram 
analysis was not able to accurately depict it (Fig. 6C). Further analysis of neuronal 
populations oscillatory response to stimulation at different time-scales will be addressed 
in future studies 

 

5  CONCLUSIONS 

We have shown how NA-MEMD analysis, a noise-assisted nonlinear non-
stationary template free approach, extracts monocomponent oscillatory information of 
neurophysiological recordings from deep vibrissal nerve and improves previous 
discrimination analysis using Bhattacharyya distance with enhanced temporal resolution. 
Moreover, we used NA-MEMD to extract oscillatory components from population 
multielectrode spiking recordings of rat visual cortex while visually stimulated and 
obtained oscillatory components related to cortical response in order to describe it with 
instantaneous T-F resolution. We compared these results with spectrogram analysis and 
showed how T-F resolution was strongly increased, and how nonlinear response features 
were obtained with increased accurancy. 

We propose to extend NA-MEMD analysis to oscillatory dynamics of neuronal 
populations to solve the problem of facing nonlinearity and non-stationarity when 
studying the data, as it has already been doing on certain high-scale experimental 
paradigms (EEG/EMG/LFP, Huang et al. 2013; Al-Subari et al. 2015; Naik et al. 2015, 
Hu and Liang 2014). The instantaneous resolution achieved in both frequency and time 
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domains, as well as the noise-removal capability demonstrated by this algorithm may 
open a new field in any kind of neural analysis. 
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Fig. 1 Schematic representation of the experimental stimulus-recording design. A) The facial 
nerve is stimulated to induce the artificial movement of the vibrissa. Rough surfaces are faced to 
vibrissal movement to force contact during movement with controlled pressure while afferent 
activity is recorded. B) Afferent activity recordings obtained in five sweep situations: air sweep 
(control), sweep on wood, sweep on metal, sweep on acrylic and sweep on sandpaper P1000. All 
activity recordings were obtained at slip-resistance 4. Stimulus artifact and an artifact due to EMG 
volume conduction are observed. Protraction, retraction and resting phases are identified 
(Albarracín et al, 2006). 
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Figure 2 

 
 

 
Fig. 2 A) Schematic representation of the experimental stimulus-recording design. B) Screen 
capture showing the display of the extracellular recording from 16 electrodes simultaneously. 
Each panel in the image corresponds to an individual electrode of the array. Scale bar in the last 
bottom panel corresponds to 150 μV in the vertical axis and 50 ms in the horizontal axis.  
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Figure 3 

 

Fig. 3 Spectral analysis using power spectral density (PSD) and noise-assisted empirical mode 
decomposition (NA-MEMD). (A) NA-MEMD analysis of four afferent activity recordings 
evoked by sweep on wood (blue), metal (red), acrylic (black) and on sandpaper P1000 (L1000, 
green). All activity recordings were obtained at slip-resistance. The 3rd to 8th intrinsic mode 
functions (IMF) from each afferent recording and IMFs for each whisking situation are shown. 
B) PSDs computed using the Burg parametric estimation method [110] for each whisking 
situation. C)  PSD represented by its mean spectral frequency (Fm). Left, fifty Fm values were 
obtained for each experimental situation. For raw data, Fm values within the range of 100 to 600 
Hz were obtained. Middle, Fm values from IMFs were obtained within its corresponding 
bandwidth. Right, Fm values from C5 and C6 modes for each whisking situation.  
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Figure 4 

 

 
  
Fig. 4 Time-frequency analysis from spectrogram, NA-MEMD and Hilbert spectral methods. 
A) Spectrogram method. Fifty spectrograms were obtained from fifty afferent recordings for one 
experimental situation. Then, maximum energy components (Fmax) into frequency range of 10–
1000 Hz were obtained for each spectrogram along time. Thus, a mean ± std of Fmax values 
along time is obtained. B) NA-MEMD and Hilbert spectral method. Each afferent recording 
is subjected to the empirical decomposition, and a Hilbert transform is applied to each IMF to 
obtain de instantaneous frequency along time (time-frequency information). C) Comparisons 
and discriminability measure. A discriminability measure was obtained by using Bhattacharyya 
distance (Bd).   
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Figure 5 

 

Fig. 5 Time frequency analysis from single trial and mean activity vectors. A) Left, single trial 
mean population activity; center, IMF 3, containing high frequency (±50 Hz) oscillations; right, 
IMF7 containing low frequency (±2 Hz) oscillations. B) Instantaneous frequency from graphs in 
A) calculated with Hilbert transform. C) Left, mean population activity for all electrodes and 
trials; center, IMF 3, containing high frequency (±50 Hz) oscillations; right, IMF7 containing low 
frequency (±10 Hz) oscillations. D) Instantaneous frequency from graphs in C) calculated with 
Hilbert Transform. Stimulus represented as a grey shaded rectangle. 
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Figure 6 

 

Fig. 6 A) Mean population activity during visual stimulation, mean activity smoothed with a 30 
ms window displayed in blue color for easier visualization. B) Resulting IMFs from 6 to 10 after 
NA-MEMD decomposition. C) Spectrogram of mean population activity data. D) Hilbert 
Spectrum of IMFs 6 to 10. An increase in temporal resolution and power locking is observed. 
Stimulus represented as a grey shaded rectangle in A) & B) and a green horizontal bar in C) & 
D). 
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Supplementary Figures: 

 

 

 

Supp fig. 1 P values (p) obtained from multiple comparisons (Dunn method) and 
Bhattacharyya distance values (Bd) before and after NA-MEMD. A) P values strongly 
decreases when compare evoked Fm decomposing the signal with NA-MEMD plus 
Hilbert Transform over raw signal (RS). B) Bd values are increased when NA-MEMD 
plus Hilbert Transform is implemented.  
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Supp fig. 2 IF example profile of 30 ms of afferent recordings 10ms after stimulation and P1000 
texture, slip1. A) IMF 4 B) IF modulation in Hz of shaded region in A). Intrawave modulations 
(nonlinearity) are seen along the whole recording. IF (Hz) is shown as a color scale (dark red for 
higher frequencies and dark blue for lower frequencies) over the recording  
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