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SUMMARY

The application of genomic tools, commonly known as metagenomics, has represented a
revolution in the dawn of the XXI century Microbiology. It allows to directly study microbial
assemblages in their habitat, without the isolation and culture of each one of the species present in
the sample. Moreover, thanks to the widely used high-throughput sequencing, the assembly of
multiple genomes obtained from metagenomes (“MAGs”) have been achieved. The assembly of
these MAGs allows a precise assignment of their phylogeny, distribution and, also, their ecology
and metabolism. During the development of this Thesis, high-throughput sequencing has been used
to study the prokaryotic community present in the off-shore water column of the Mediterranean
Sea. The water column is thermally stratified during summer. However, during winter, the water
column is mixed, triggering the upwelling of nutrients from mesopelagic waters. Six metagenomic
samples were taken from the uppermost 100 m of the stratified (summer) water column at intervals
of 15 m deep. Also, two more samples were taken during winter for comparison. By genome
recruitment of the novel assembled MAGs and some reference microbes, results showed a marked
distribution of microorganisms through the stratified water column. These microbes seemed to be
found in layers of no more of 30-m. After comparing the two seasons, results showed a persistent
prokaryotic community, although some microbes were to the season-associated, appearing only
during summer or winter. Also, the analysis of rhodopsins indicated a sharp gradient of the copy
number of this gene, being present in more than half of the prokaryotes in surface waters. From the
pool of assembled contigs, a few fragments were detected with genes matching the genome of Ca.
Nitrosopumilus, a marine archaeon belonging to the phylum Thaumarchaeota. Besides, in these
contigs some common viral genes of the order Caudovirales were detected. Therefore, the second
work included in this Thesis is the discovery of the first putative viruses capable of infecting this
archaeal group. Lastly, in this Thesis is also included the discovery of eight novel MAGs of marine
group III Euryarchaeota (MG-III), six of them collected from the photic zone, and two more from
samples collected in the aphotic zone. Due to the fact that there are no cultured representatives of
this group, the study of their genomes allowed to obtain information about their phylogeny and
abundance in the ocean, indicating that they are ubiquitously distributed but in low numbers.

Besides, from their genome, traits about their heterotrophic metabolism were attained.



RESUMEN

La aplicacion de técnicas gendmicas, cominmente conocido como metagenomica, ha supuesto
una revolucion en la microbiologia del siglo XXI debido a que permite el estudio directo de la
comunidad microbiana en su entorno natural, sin la necesidad de aislar y cultivar cada una de las
especies presentes en la muestra. Ademas, gracias a la secuenciacion de alto rendimiento utilizada
actualmente se ha conseguido con facilidad el ensamblaje de numerosos genomas obtenidos a partir
de metagenomas (“MAG”), que permite asignar con una mayor precision la filogenia del
microorganismo, su distribucion y su ecologia a partir de su metabolismo. Para el desarrollo del
primer trabajo de esta tesis se ha utilizado la secuenciacion de alto rendimiento para el estudio de
la microbiota presente en la columna de agua del mar Mediterrdneo. La columna de agua de este
habitat se encuentra térmicamente estratificada durante los meses de verano. Sin embargo, en
invierno la columna se homogeniza, con el consiguiente afloramiento de nutrientes provenientes
de aguas mesopeldgicas. Se tomaron seis muestras en los 100 primeros metros de la columna de
agua estratificada (verano) y 2 muestras adicionales en invierno. Mediante el reclutamiento de los
MAGs obtenidos y otros genomas de referencia, los resultados indicaron una marcada distribucion
de los microorganismos, encontrandose éstos delimitados en regiones dentro de la columna de agua
de no mas de 30 metros de anchura. Al comparar las dos estaciones, se observo que una gran parte
de la poblaciéon microbiana era persistente al cambio, mientras que la poblacion restante era
susceptible, apareciendo unicamente en una de las dos estaciones. Asimismo, el analisis de la
rodopsina indic6 un acusado gradiente del nimero de copias de este gen, resultando estar presente
en mas de la mitad de los procariotas en aguas superficiales. De la fraccion de los contigos virales
ensamblados de los metagenomas se detectd varios fragmentos con varias proteinas similares a
aquellas codificadas en el genoma de Ca. Nitrosopumilus, una arquea marina perteneciente al filo
Thaumarchaeota. Ademads, en estos contigos se detectaron genes tipicos del orden viral
Caudovirales. Por ello, en esta tesis se incluye como segundo trabajo el descubrimiento de los
primeros virus detectados capaces de infectar a este grupo de arqueas. Por ultimo, en esta tesis
también incluye la obtencion mediante ensamblaje de metagenomas de ocho nuevos representantes
del grupo marino III Euryarchaeota, seis de ellos provenientes de muestras recogidas en la zona
fotica y dos de la zona afética. Debido a que en la actualidad no existe ningun representante
cultivado, el estudio de sus genomas ha permitido obtener informacion sobre su filogenia y de su
abundancia en los océanos y mares, indicando que se encuentran distribuidos ubicuamente pero
que contribuyen, dentro de la comunidad microbiana, con una proporcion relativamente pequeiia.

Ademas, el estudio de sus genes ha permitido obtener pistas sobre su metabolismo heterotrofico.
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Introduction

1.1 Physical and chemical structure of the Ocean

The ocean, with an average depth of 3.6 km, represents approximately 70% of the Earth
surface and contains nearly 97% of the total water [1]. All kinds of organisms need water to
live. Is, in this medium, where all the chemical reactions take place. For that reason, the ocean
is a living ecosystem that comprises 90% of the biosphere, and thousands of species of macro-
and micro-organisms live together. Due to their wide metabolism, they play an essential role
in the biogeochemical cycles of carbon (i.e. carbon fixation, methane and CO2 production),
nitrogen (i.e. N2 fixation, ammonia oxidation) and sulfur (i.e. sulfur oxidation, dimethyl sulfide
production) [1]. However, the ocean is far from homogeneous, and differences on it are found

both horizontally among water bodies, and vertically within the water column [1].

1.1.1 Surface and deep-water currents in the open ocean

Two types of flow contribute to the currents in the ocean. Surface currents are driven by
the continuous friction that the wind generates over the surface, transmitting the momentum
associated with air molecules to the water. However, these wind-driven surface currents affect
only about 10% of the total ocean volume [1]. Winds are formed due to differences in the
temperature between the equator and the poles. In warm latitudes, as in the equator and
subtropics, the sun heats and expands the air, decreasing its density and originating a low-
pressure zone. The wind generated from warm air rises and moves to the poles. Here, the air is
cooled and increases its density (high-pressure zone), to the point that descends to the surface
and generates friction over the ocean surface [1]. Nonetheless, water currents do not flow
parallel to the wind, but instead, they bend to the right in the North Hemisphere and to the left
in the South. This bending, called the Coriolis deflection, depends on the water speed and
latitude, and have an impact on the different surface current pattern. The movement of the top-
most water molecules in the surface sets in motion those that lie beneath them and the
movement is transferred downwards the column [1]. Again, due to the Coriolis deflection,
deeper layers move slower but to the right of the flow, showing a spiraling pattern, until no
more energy is transferred from the upper layer to a lower layer. This spiral can extend to a
depth of 100 to 200 meters, depending on the strength of the wind [1]. As a result, the surface
current is displaced 90 degrees to the right of the wind in the North Hemisphere and the
opposite direction in the South Hemisphere. This effect, named Ekman transport, plays a role
in other types of surface water currents, such as the downwelling and upwelling. If the wind

flows parallel to the edge of a shore in the proper direction, the resulting Ekman transport
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moves surface water far from the shoreline, and deeper water rises to compensate the loss
(upwelling) [1]. Conversely, if the wind flows in the opposite direction, surface water sinks
(downwelling) [1]. These vertical currents can also occur in the open ocean. At midlatitudes,
the surface currents of the circulation gyres converge and induce the downwelling of water.
This phenomenon happens, as an example, in the very oligotrophic Sargasso Sea [1].
Conversely, the upwelling of water happens near the equatorial ring [1].

Subsurface currents, called the thermohaline circulation, arise from density differences
between water masses generated by variation in the water temperature and salinity, rather than
the action of the wind. Although these currents flow very slowly, they affect the 90% of the
ocean’s total volume. It is important to note that the processes modifying the temperature and
salinity occur near the surface. Hence, the thermohaline circulation depends on climate and
latitude. When dense, cold water coming from the poles travels to the equator, sinks below less
dense, warmer surface waters from temperate zones. The cold water descends and flows
horizontally, filling the deep ocean with water rich in nutrients and oxygen. At some point, the
deep water goes upward and reaches the surface waters again (upwelling) and return nutrients
to the surface. One proposed model tries to connect the deep and surface circulation, as the
water flow follows an immense conveyor belt (Figure 1). This large-scale circulation has a

tremendous effect on marine organisms.
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Figure 1: An scheme of the ocean conveyor belt representing the thermohaline circulation [2].
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1.1.2 Vertical stratification of the water column

Light is not only used to heat the surface layers of the oceans but also is to paramount
importance to sustain life in such an oligotrophic environment. Certain microorganisms are
capable of using the light to obtain energy in the form of ATP (rhodopsins) or to fix inorganic
carbon (photosynthesis). Thus, in the open ocean, the water column is divided into two main
layers. The photic zone extends from the water surface down to 100-150 m and corresponds
with the epipelagic zone [1]. Below lies the aphotic zone, that comprises the largest part of the
water in the ocean. This place is entirely dark, so the expression of light-related metabolic
pathways is nearly absent. However, these waters are rich in nutrients and oxygen, and
microorganisms can obtain energy from the oxidation of inorganic compounds, such as NH4"
or NO2", and the oxidation of recalcitrant dissolved organic matter [1]. The aphotic zone
comprises the mesopelagic (200-1000 m deep), bathypelagic (1000-2000 m deep),
abyssalpelagic (2000-6000 m deep) and the hadalpelagic zones, the latter found only in deep-
sea trenches [1].

Due to differences in temperature between the surface and deeper waters, the water
column, mainly the photic zone, is strongly stratified and a gradient of physicochemical
parameters, such as temperature, salinity and nutrients vary with depth. In the very top, surface
waters are warmer, saltier and, typically less dense than waters below. These differences create
the thermocline, halocline and pycnocline, respectively, and have profound implications for
the microorganisms inhabiting in the water column [1]. They physically separate two water
masses and impede the upwelling of nutrients from deeper waters to the surface. As a result,
due to the continuous activity of phytoplankton and bacteria, surface waters become
ultraoligotrophic, being depleted of nutrients, mostly nitrogen and phosphorus, limiting the

growth and primary productivity of the microbial community [1].

1.1.3  The Deep Chlorophyll Maximum (DCM)

Within the photic zone, it is found the DCM (Figure 2), a layer where the highest
concentrations of photosynthetic organisms are detected and, therefore, most of the primary
productivity takes place [3]. The net primary productivity denoted as the amount of carbon
fixed by photosynthesis that exceeds respiration occurs in the water column down to the
compensation depth, below which there is no net productivity [3]. The compensation depth
occurs where light levels are reduced to about 1 per cent of their surface value. In the open

ocean, the compensation depth can reach down to approximately 100-150 m below the sea



Introduction

surface [1]. Furthermore, the DCM is also associated with the nutricline, a region in the water
column where the greatest change in the nutrient concentration occurs, allowing to
phytoplankton and heterotrophic bacteria to have access to nutrients coming up from
mesopelagic waters [3]. Given the high number of microorganisms in this layer, the DCM plays
a significant role in the cycling of nutrients, such as carbon, nitrogen and phosphorus [1]. The
location and depth of the DCM depends mainly on two factors, light availability and
temperature, being present below the thermocline. Thus, the DCM is a permanent feature in
tropical waters, located down to 100 m deep [4], while in temperate waters, however, is a

seasonal phenomenon present only from mid-April to late-October (see below), located down

to 75 m deep [5].
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Figure 2. Typical conditions in the subtropical ocean. The thermocline stratifies the upper water
column. The deep chlorophyll maximum (DCM) appears where there is enough light for photosynthesis

and nutrient supply from below [6].

1.1.4 Seasonal dynamics of the water column

Nevertheless, the stratification of the water column varies with latitude. In tropical and
subtropical latitudes (20°N — 20 °S) the stratification is a permanent feature, which is created
by the persistent and robust heating of the water by the tropical sun throughout the year. There

is no physical connection from the poor-nutrient surface and rich-nutrient deep waters, so the

6
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surface layer remains ultraoligotrophic regardless of the season. In fact, tropical and subtropical
waters harbor the lowest primary productivity in the ocean [1]. Only those waters close to 1)
the equatorial ring and ii) near the coast are productive due to the upwelling of nutrients from
deep-rich water towards the ocean surface [1]. In the first case, Ekman transport causes water
to move far from the equator due to the Coriolis deflection. Surface water is then replaced by
nutrient-rich water coming from below. Secondly, winds blowing parallel to the edge of a land
can generate Ekman transport that displaces surface water away from the coastline and induce
the upwelling of nutrients [1].

In temperate waters (20-60 °N and 20-60 °S), the thermocline appears between 40 and 100
m, but it changes with the season, being present during warmer months (typically mid-April to
late October [7]). However, the thermocline disappears during winter, which triggers the
mixing of the water column and, therefore, the upwelling of nutrients from deeper layers [7].
Despite the availability of nutrients in winter, the weaker sunlight limits productivity. It is
during spring that the combination of both light and the availability of nutrients induces
phytoplankton blooms. Finally, during summer, phytoplankton decays because of the intense
grazing pressure by zooplankton and the formation of the thermocline that limits the
availability of nutrients in the surface [7].

What is clear is that the seasonal variation of the water column impacts the prokaryotic
community composition. Several studies have illustrated the community change between
seasons. For instance, the bacterial phyla Bacteroidetes and Verrucomicrobia are related to the
blooming of phytoplankton during spring [7]. Members of these phyla are (photo)heterotrophic
bacteria that excrete an unusually high number of extracellular enzymes [7, 8]. These enzymes
catabolize the degradation of complex sugars (i.e. oligo- and polysaccharides) released to the
media after phytoplankton death. Other fast-growing microorganisms are also benefited by the
release and upwelling of nutrients [9]. On the other hand, other resilient microorganisms [10]
seem to appear during summer, when conditions are extreme and disappear in winter [7, 11—
14].

Lastly, in polar latitudes (60-90° N and S), the surface water is always too cold, so there is
no thermocline, and the water column is thoroughly mixed and rich in nutrients [7]. However,
the biological productivity in polar seas is limited not by nutrients but by solar energy. It is
only in summer when there is a continuous flux of sunlight that the net primary productivity

reaches its maxima [7].
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1.2  Marine metagenomics

Initial marine microbiology studies used the isolation of culturable microorganisms as a
method to understand their diversity and function in a given environment, but culture did not
capture the enormous spectrum of the microbial diversity and, hence, those studies represented
only a tiny part of the entire community. This fact was apparent when the numbers of plate
counts and viable cells estimated by staining substantially differed by four to six orders of
magnitude [15], indicating that only 0.1 to 1% of the microorganisms were culturable. Taking
advantage of the development of the Sanger sequencing, it was in 1985 when Pace and
colleagues first described the diversity of microorganisms in an environmental sample without
culturing [16—18]. This new field comprised both the analysis of the community by using a
gene marker, mainly the 16S ribosomal RNA (rRNA) sequence, and by randomly sequencing
DNA fragments. However, some authors claim that only the latter approach can be called
“metagenomics”, first coined by Handelsman in 1998 [19], and we should refer the former as
metataxonomics [20, 21]. Figure 3 shows a summary of the main milestones of these two

disciplines in the ocean.
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Figure 3. Timeline with the major milestones in metataxonomics and metagenomics.

1.2.1 First attempt: Metataxonomics
Metataxonomics has been widely used to sequence the 16S rRNA gene, due to its
conserved regions that can be targeted by universal PCR primers, and its ubiquitous presence

in the prokaryotic community. Furthermore, there are databases such as RDP [22] and SILVA
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[23] that contain hundreds of thousands of 16S rRNA sequences and allow classifying
taxonomically environmental sequences with simple bioinformatics tools. One caveat when
dealing with metataxonomics is the low resolution to discriminate between species of some
abundant taxa, such as Prochlorococcus and Ca. Pelagibacter. In Prochlorococcus, the
comparison of three isolates [24, 25] at the level of 16S rRNA gene sequences shows that the
three strains belong to the same species (>97% identity), although they have different genome
sizes (1.7 to 2.4 Mb) and different ecological niches. Thanks to a robust whole-genome
comparison among these three strains, which shared less than 95% of average nucleotide
identity (ANI), it is known that they represent different species within the same genus. The
same anomaly has been described within genomes of Ca. Pelagibacter, on which members of
the same Ia subclade share 16S rRNA gene identity values higher than 98% and an average
amino acid identity (AAI) lower than 80%, values that are representative at the genus level
[26]. Moreover, other issues may appear when dealing with metataxonomics: 1) the variation
of the 16S rRNA gene copy number and their intragenomic (within the same microbe)
heterogeneity in some taxa may overestimate the microbial diversity and relative abundance in
a sample [27]; i1) depending on the primers used, results may be strongly biased, and some taxa
cannot be detected [28, 29].

Nevertheless, we should not ignore the fact that most of the information regarding the
hidden microbial community composition in different environments was started by several
authors that applied metataxonomics. The first reports of mesophilic archaea inhabiting in the
sea were published in the early 90s [30-32]. Before that, only some isolates from high
temperature or high salinity environments were retrieved and was thought that these organisms
were exclusive from such extreme habitats. From a natural sample taken in the Sargasso Sea
[33], researchers were able to describe a high diversity, mostly dominated with the
alphaproteobacterial clade SAR11, that numerically accounted for 15% of the prokaryotic
rRNA fragments analysed. This group was followed by picocyanobacteria of the genera
Synechococcus and Prochlorococcus and in a lesser extent with other previously unclassified
bacteria such as SAR86, SAR116 or archaea. Other studies also detected the presence of
ubiquitous organisms, such as members of the Bacteroidetes and Actinobacteria phyla [34—-36].
These studies opened the door to understand that the microbial world is enormously rich,
complex and sharply uneven, i.e. in which a few organisms are numerically dominant, whereas

many others are represented at very low abundance and are known as the “rare biosphere” [37].
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1.2.2 Second attempt: Shotgun metagenomics

However, only with the general adoption of shotgun metagenomics, first by cloning short
environmental DNA fragments and later with the advent of the high-throughput sequencing, it
has become possible to obtain, not only the community composition (who are there) but also
their functional role in the environment (what are they doing). In the first approach, relatively
large fragments (up to 100 Kb) of DNA from an environmental sample are cloned in fosmid or
plasmid libraries. These DNA fragments contain several genes from the same genome they
came on and, if a 16S rRNA gene is found in the fosmid clone, some metabolic traits can be
associated with a specific species, genus or group.

The well-known study of this approach in the ocean and a milestone in marine ecology
was carried out in 2004 in the Sargasso Sea [38]. This study, led by Craig Venter, marine
samples were taken at three different stations off the coast of Bermuda, filtered and sequenced
by automatic Sanger sequencers, generating up to 1.5 Gb of prokaryotic and viral DNA
sequences, detecting roughly 70,000 novel genes, describing a novel ammonia oxidation
pathway not photo-inhibited by UV light and characterizing an enrichment of genes for the
uptake of organophosphates as a source of phosphorus (P) in a P-limited environment. In
another illustrative example of shotgun metagenomics, Delong and colleagues cloned and
sequenced an extensive collection of fosmids (~125,000 fosmids, 4.5 Gb of sequence) collected
in the North Pacific Subtropical Gyre [4]. They took samples at seven depths, ranging from
surface (10 m) to near seafloor (4000 m) and concluded the presence of a taxonomic and
functional vertical distribution in the water column. Specifically, samples from the upper
euphotic and DCM were dominated by members of SAR11 clade and Prochlorococcus,
whereas in deep aphotic samples they were replaced for microorganisms belonging to
Thaumarchaeota, Planctomycetes, Nitrospina and the SAR202 clade of Chloroflexi.
Remarkably, they captured in the prokaryotic filter a large number of viral DNA, that was
originated from the replication of phages infecting host cells. The highest recovery of viral
DNA occurred in the photic zone, and decreased trough depth, due to almost 67% of them
shared high similarities to cyanophages.

The linkage of the 16S rRNA marker gene to the metabolic potential of the fosmid clone
resulted in the discovery of the proteorhodopsin gene in the yet uncultured cluster bacterium
SARS86 [39], where the existence of this kind of proteins had only been detected so far in
halophiles. When this protein is irradiated with blue/green light, it generates, in most of the

cases, a proton gradient towards the outside of the cell. The coupling of this electrochemical
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gradient to an ATP synthase serves to fill the cell with energy (ATP) [40]. Further metagenomic
studies have increased our knowledge of the rhodopsins. For instance, in the Sargasso Sea
metagenomic study, almost 800 new proteorhodopsin genes were retrieved, which gave
insights into the widespread photoheterotrophic lifestyle of marine bacteria and archaea [38].
Indeed, diverse types of rhodopsins (H", Na* or CI" pumps) and families have been detected in
metagenomes and structurally characterised [40—44]. The discovery of functional traits within
metagenomic sequences opened the door to a novel branch, named “functional metagenomics”,
which mainly aimed to find novel genes that, after heterologous expression in a bacterial host,
their product has an activity of interest, such as novel antibiotics [45], antibiotic-resistant genes
[46] or enzymes involved in the degradation of complex compounds [47].

In the second approach, next-generation sequencing technologies (NGS), mostly, 454
pyrosequencing and Illumina, were used in metagenomic studies, where environmental DNA
is randomly fragmented in pieces of 100 to 800 bp, depending on the technology, and massively
sequenced. This approach has been widely accepted due to its low cost. Besides, the higher
sequencing coverage achieved with NGS allowed researchers to 1) discover a large number of
low abundance microorganisms and ii) reconstruct their genomes to understand their
metabolism and their interaction with nutrient cycles. Thus, this approach has been used to
explore, in much finer detail than previously studied, the microbial diversity in several oceanic
locations and depths [5, 37, 48-53]. Moreover, due to its advantages, as mentioned earlier, the
application of NGS has been used in several sampling expeditions. The Global Ocean Sampling
(GOS) was the first to collect surface samples from the Northwest Atlantic and Eastern tropical
Pacific Oceans [54], producing more than 6 Gb of short-read sequences. Conversely, the
Malaspina circumnavigation collected multiple prokaryotic and viral samples from the
bathypelagic ocean [55]. Recently, the Tara Oceans consortium made a massive sampling
effort [56], sequencing 7.2 Tb of DNA recovered from 243 samples from 68 locations at
different depths comprising the surface, DCM and mesopelagic layers and from different filters

(viral and prokaryotic free-living or particle attached).

1.2.3 Metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs)

After the metagenomic assembly of the sequenced short-reads (mostly Illumina), resulting
contigs can be grouped according to their (i) genomic signatures (i.e. tetranucleotide
frequencies and GC content), (i1) taxonomic affiliation, and (iii) their co-abundance values

within metagenomic datasets. The resulting groups are called metagenome-assembled genomes
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(MAGs) and represent composite genomes of clonal lineages within species. Thanks to the
public availability of several metagenomic datasets, it has been possible to reconstruct
thousands of novel MAGs, which have served to significantly increase the number of novel
species, genera and families [57-60]. In this way, a more reliable taxonomic classification
based on the presence of several shared genes from genomes rather than the use of a single
marker gene such as the 16S rRNA has been possible [61], which enabled an improved
classification of uncultured bacteria. Through this genome-based classification, almost 60% of
the genomes changed their existing taxonomy, and the prokaryotic realm was condensed to a
total of 99 phyla [61].

The recovery of MAGs can be a powerful tool when no close relatives of a species are
available, as sometimes happens with samples from unexplored ecological niches. Thus,
MAGs can be used as references to recruit metagenomic reads and obtain a more reliable
picture of the horizontal and vertical distribution of these microbes at the finer levels of
diversity, such as species, ecotypes or even clonal lineages. Furthermore, it is possible to infer
their biological role in a specific location or depth by reconstructing their core metabolic traits,
that could explain their differential distribution among samples. For instance, Delmont and
colleagues [59] studied the assemblages collected from the 7Tara Oceans sampling to
characterise the MAGs involved in nitrogen fixation in the surface ocean, which corresponded
to lineages within Proteobacteria and Planctomycetes, previously not identified as marine
diazotrophs. Although widespread, they found that they were abundant in both the Pacific
Ocean and the Atlantic Ocean northwest. Hawley and colleagues determined the global
biogeographic distribution of the phylum Marinimicrobia along eco-dynamic gradients ranging
from oxic to anoxic, together with sulfidic and methanogenic conditions [62]. There are many
other examples of the metabolism characterisation, geographical distribution and ecological
niche partition in different microbes such as Euryarchaeota [63, 64], SAR202 clade of
Chloroflexi [65, 66], SAR11 [67-69] or the gammaproteobacterial clade SAR86 [70].

However, MAGs are not flawless. First, as mentioned above, MAGs are “composite”
genomes. They do not represent a unique organism, but they are comprised from the consensus
of the local assembly of several clones that differ in abundance, gene content and nucleotide
composition (single nucleotide polymorphism — SNP). Second, the presence of multiple
genomic repetitions, such as gene duplications, insertion sequences or multiple copies of the
rRNA ribosomal operon, interrupt the assembly, and the genome is fragmented into hundreds
of small contigs. A low sequencing coverage for the less abundant microbes also contributes

to the fragmentation. Third, these contigs only represent the core genome, leaving the flexible
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genome out of the bin. Therefore, joining the resulting small contigs of a given organism from
a pool of thousands of microbes (metagenome) can become a challenging task. For that,
binning algorithms have been applied that rely on co-abundance profiles among samples and
in the shared genomic features in terms of GC content and k-mer frequencies [71]. However,
very often when done automatically, MAGs can be contaminated with fragments of other
organisms and, in the end, interfere in the correct phylogenetic placement of the bin and its
metabolic reconstruction. Therefore, after this automatic binning it is recommended to carry
out a manual curation of all the MAGs in order to avoid chimeras.

Single-cell genomics (SCGs) overcome some of the issues described before for MAGs. In
this novel approach, cells collected from an environmental sample pass through a flow
cytometer that selects, using different criteria (i.e. size or fluorescence), for a particular
population (eukaryotic, prokaryotic or even viruses). Later, cells are distributed into a multi-
well plate, and only one cell goes in one well, which are individually amplified, sequenced and
assembled, generating single-amplified genomes (SAGs). Following this method, the
sequenced DNA of a SAG truly represents one single clone collected from a drop of water. In
addition, there is no need to bin contigs into genomes and, therefore, the risk to have significant
levels of contamination is scarce. Because of that, the application of SCGs in microbiology has
allowed to study the existing microdiversity between clones within the same species, as
reflected in one study with Prochlorococcus in the North Pacific Ocean [72]. Authors
concluded that the sample was composed of hundreds of divergent and stable subpopulations
of Prochlorococcus. Additionally, they found that each subpopulation carried a small set of
distinct genes grouped in cassettes within genomic islands involved in outer membrane
modifications. This variation in the flexible gene content and its fine-scale resolution
represented a new dimension of microdiversity within wild Prochlorococcus populations [72].
Another illustrative example resides in the recovery of SAGs belonging to SARI1 clade.
Members of this group are oligotrophic, slow-growing bacteria, so the number of isolates is
quite small (#18), considering that is the most abundant bacteria in the ocean (see below). Thus,
SCG has provided with the first genomes of freshwater (clade I1Ib — LD12) and marine aphotic
(clade Ic) SARI11 bacteria, that enabled genomic comparisons between photic and aphotic, and
between marine and freshwater sequences [73, 74].

It is important to note that, due to the small DNA concentration within one cell, an
amplification step is needed in order to perform the sequencing of the SAG. Unfortunately, the
multiple-displacement amplification (MDA) of the cell genome results in an uneven

amplification, with parts with high coverage and others with low coverage or even unamplified.
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In the end, MDA generates very fragmented contigs and, in some cases, the percentage of the
recovered genome is less than 10% [66]. The low genome completeness aggravates future
genomic analysis, missing essential genes or even the flexible genome, generating an

incomplete metabolic reconstruction.

1.2.4  Future perspectives: The Third-Generation Sequencing

In 2011, Pacific Biosciences (PacBio) commercialised the “Single Molecule Real Time
(SMRT)” sequencing technology [75]. Three years later, in 2014, Oxford Nanopore released
its first Minlon sequencer [76], a user-friendly device no bigger than a smartphone that
permitted researchers to efficiently sequence samples anywhere, just with the help of a laptop.
Although based on different approaches [77], both technologies promised very long reads, in
the order from thousands to hundreds of thousands of bases [78, 79]. These long reads
surpassed the limitations of the second-generation technologies, in which the retrieval and
taxonomic assignment of the flexible genome and larger genomic fragments were hampered in
complex populations, where multiple strains were abundant and highly diverse. The term
flexible genome refers to the accessory genes that are not present in every one of the strains of
a species [80]. These genes are diluted in the pool of multiple strains within the same sample,
and usually contains repeat regions at the boundaries [81, 82], for this reason, the assembly
based on Illumina short-reads is usually broken. These regions are often acquired through
homologous gene transfer (HGT), which in most of the cases contains different GC-content
and tetranucleotide frequencies, different genome coverage, and taxonomical assignment of
genes; thus, they cannot be binned with the core genome into any MAG. The lack of the flexible
genome in MAGs results in the loss of information of niche-defining genes that usually drive
ecological speciation [83]. However, these problems can be overcome using long reads (PacBio
and Nanopore), comprising both the core and the flexible genome (i.e. genomic island), which
can ultimately be linked to one specific organism and, in the end, can be used to retrieve much
more complete genomes from metagenomes.

However, these new technologies are more expensive and give much less throughput than
the Illumina platform. Furthermore, the resulting long reads have high error rates (on the order
of 5-15%), generally as insertions and deletions, which introduce frameshifts and premature
stop codons [84]. This has resulted in the development of several methods to correct the error
rate. One approach consists of a hybrid assembly, on which the almost error-free and short

[llumina reads are used to correct the high error rate found in the long PacBio or Nanopore
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reads. Other approaches consist of technical changes. For instance, PacBio improved the
technique by repeatedly sequencing the same DNA fragment that has been circularised by
adding adapters at the ends. In this way, the error rate can be reduced down to 0.01%, and the
accuracy significantly increased, as announced on April 2019 for the new Sequel II system.
Eventually, the second sequencing generation will be replaced with the new, much better
“Third-Generation Sequencing”, and although nowadays is widely used for the sequence of
individual genomes, in metagenomics is still lagging, and only a few studies have been

published [85, 86].

1.3 Description of marine organisms

1.3.1 Common features of marine bacteria and archaea

Metataxonomics and metagenomics studies have pictured the ocean as a vastly rich and
incredibly complex environment, with thousands of species living in a single drop of water. In
fact, several studies indicated that in one millilitre live 10° to 107 prokaryotes. Thus, the oceans
are populated by more than 10?° microbial cells [87]. However, most of the abundant and
widespread prokaryotes that inhabit the ocean have small cells and genome sizes, with low GC-
content, caused by an evolutionary streamlining of their genomes [88]. By these means, they
are competitive in oligotrophic environments. Although these microorganisms seem to have
less metabolic potential and a lower number of transporters for different substrates originated
from the loss of genes during their evolutionary history, streamlining has provided them with
some advantages. For instance, a smaller and AT-rich genome requires less nitrogen and
phosphorus for cell replication; these essential elements are generally limited in the ocean [4,
89]. Besides, due to the small cell size, they benefit by a higher surface-to-volume ratio that
bestows a better nutrient transport [90], which can be critical to success in nutrient-poor
environments, like the oligotrophic open ocean [88]. Of course, organisms have to balance
genome reduction and the need to keep enough genes to maintain a functional ability to succeed
within a specific niche or even after responses to environmental changes [88]. In that way,
some abundant organisms (i.e. Synechococcus or the Marine Group II Euryarchaeota) do not
suffer a strong genome streamlining.

Very often, prokaryotes are divided based on their nutrient demands. The term oligotroph
is used to those microbes that grow at very low-nutrient concentrations, such as those present

in the open ocean. Thus, most of the marine microorganisms that are abundant and
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cosmopolitan are oligotrophs [91, 92]. Copiotrophic refers to bacteria that grow at high-nutrient
concentrations, like in coastal waters or after the mixing of the water column during winter that
upwells nutrients from bottom to surface layers. Examples of marine copiotrophic bacteria are
Alteromonas or Pseudomonas, which appear forming blooms in rich-waters and are easily
culturable. The terms r-strategist and K-strategist are often interchangeable with copiotroph
and oligotroph, respectively, although sometimes their use can be misleading. K- and r-
strategist terms refer to the speed of the replication when nutrients are abundant, differentiating

between a low steady growth (K-) versus a fast bloomer (-) [93].

1.3.2 Common marine prokaryotes in the water column

Independently of their genome or cell size, marine bacteria and archaea are considered the
major contributors in several biogeochemical cycles. Some examples of cosmopolitan and
abundant microorganisms that play a central role in these cycles are listed below. It has been
calculated that approximately half of the oxygen on Earth is produced in the oceans by marine
Cyanobacteria and eukaryotic phytoplankton, which also contribute to the carbon fixation [94].
Other chemolithoautotrophic microorganisms also contribute to the carbon fixation [95, 96].
However, almost all the oxygen and the newly synthesised organic matter is rapidly consumed
in the photic zone by (photo)heterotrophic bacteria to CO2 and recalcitrant dissolved organic
matter, that continuously sinks to the bottom of the ocean, process known as the “biological
pump” [97]. Some bacteria can degrade dimethylsulfoniopropionate (DMSP), an organosulfur
compound that acts as an osmolyte in marine algae, to methanethiol and dimethyl sulfide
(DMS) [98]. The former is a source of protein sulfur while the latter flows towards the
atmosphere and have a significant impact on global warming [99]. Other bacteria and archaea
contribute to the nitrogen cycling, by fixing atmospheric nitrogen [59], nitrifying ammonia to
nitrate [95, 100] or denitrifying, in oxygen-limited zones, the dissolved nitrate to N2O and N2,

well-known greenhouse gases [101].

a) Picocyanobacteria. Two genera, Prochlorococcus and Synechococcus, dominate marine
picocyanobacteria. These bacteria represent the most abundant and widespread oxygenic
primary producers in the ocean. However, due to the main oligotrophic condition of the oceans,
Prochlorococcus are, by large, more abundant than Synechococcus [102]. Only in nutrient-rich
waters, Synechococcus outnumbers Prochlorococcus [103]. Both genera had been successfully

cultured, so their isolates had resulted in several studies on their physiological and genetic
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diversity. They were first detected in 1979 by epifluorescence on natural seawater samples
[104] and later classified based on their size and photosynthetic pigments. Prochlorococcus
light-harvesting chromophore is a derivative of chlorophyll, divinyl chlorophyll-a and -b [91].
The ratio of these two pigments affects their vertical distribution across the stratified water
column and separate the genus Prochlorococcus into two big groups or ecotypes, High-Light
(HL) and Low-Light (LL). The term ecotype refers to organisms within the same species or
genus that share the same ecological niche [91]. For instance, members of the LL clade have a
higher ratio of divinyl chlorophyll b/a and a higher number of genes encoding the light-
harvesting antenna protein Pcb than their HL counterparts [91]. This allows them to grow at
very low light intensities [ 105]. Prochlorococcus possess a very streamlined genome, between
1.64 and 2.68 Mb and a GC-content between 31 and 51%. However, most of them are smaller
than 2 Mb, and only the members of the LL-IV clade have high GC-content and large genome
size [106]. Conversely, Synechococcus cells lack chlorophyll-a but rather possess the
phycobilisome, a structure composed with the accessory pigments phycoerythrin, phycocyanin
and allophycocyanin, that act as light-harvesting receptors [107]. Remarkably, there is
considerable spectral diversity in the phycobilisome depending on the type and ratio of the
chromophores present [107], that affects their global distribution [108]. Synechococcus
genomes range in size between 2.2 and 2.86 Mb and a GC-content between 52 and 66 % [109].

These genera tend to co-occur in temperate and tropical areas. However, their pattern of
abundance differs both spatially and seasonally [91, 103, 110]. Prochlorococcus is mainly
found in temperate oligotrophic waters, with a maximal concentration in summer in deep
waters of the photic zone, when the water column is stratified. On the other hand,
Synechococcus prefers nutrient-rich waters, like those close to the coast, latitudes higher than
40° N or 40° S or after a mixing event in temperate waters (spring). Within Prochlorococcus,
the aforementioned HL and LL groups are further subdivided into several ecotypes. Within the
polyphyletic Synechococcus genus, the same subdivision occurs. These ecotypes are adapted
to a different temperature, light intensity, depth and nutrient availability [110]. For instance,
the HL-1 P. marinus strain MED4 and the LL-I P. marinus strains NATL1A and NATL2A
encode a set of genes to the high-affinity uptake of phosphorus and alkyl phosphonates in
waters that are P-limited [111]. Nitrogen and ferrous limitation in some places also favoured
the acquisition of specific genes in genomic islands to deal with [91, 112]. In that way, their
global distribution is then delimited, and members of the HL-I Prochlorococcus and the Clade-
III of Synechococcus dominate over the Mediterranean Sea, whereas members of the HL-II and

Clade-II are the main picocyanobacterial contributors in the Red Sea or the Indian Ocean [110].

17



Introduction

b) SARI11. Like most of the marine microbes described here, the alphaproteobacterial clade
SARI11 was firstly described after a 16S rRNA amplicon survey from a natural sample taken
in the Sargasso Sea [33], and later confirmed by fluorescence in-situ hybridization (FISH) to
be the most abundant microbe in the ocean’s surface, accounting to 20-40% of all
bacterioplankton in the photic zone and approximately 20% in the aphotic [113]. Indeed, it also
contributes to the freshwater bacterioplankton composition. Some close members of the
SARI11 clade, the LD12 subgroup IIIb, now in pure culture (Fonsibacter) [74] or a recently
discovered MAG belonging to the Ia clade [114], were found in freshwater systems. Based on
a 16S phylogenetic tree, several metagenomic surveys have divided this abundant and
widespread group into nine subclades [113] which are discernible by season, depth and
geographical location [115-117]. For instance, the subclade Ic has been only found in meso-
and bathypelagic waters; the subclades Ila and IV mainly in the DCM; and the subclade Ia is
further divided into Ia.1 and Ia.3 with differences in their abundance in cold and warm waters,
respectively.

Since their discovery in 1991, eleven years had to pass so that they could be isolated in
pure culture [118, 119], that allowed to recover information about their genome and
ecophysiology. Due to their high abundance and metabolic activity [120, 121], members of the
SAR11 clade play a central role in the cycling of dissolved organic matter (DOM) [113]. These
microbes have a minimal genome and cell volume, with an average of 1.33 Mb and 0.015 pum?,
respectively [119]. They are photochemoorganotrophs, obtaining energy through light
(proteorhodopsin) and the oxidation of reduced organic compounds [90, 122, 123].
Specifically, they can use a wide variety of labile low-molecular-weight dissolved organic
matter, like pyruvate, C1 compounds (methanol, methylamine or formaldehyde, among
others), amino acids, glycine betaine, taurine, polyamines (putrescine and spermidine).
Furthermore, they can obtain reduced sulfur from the osmolyte DSMP and the dissolved gas
methanethiol [98]; and some strains contain the operon for the assimilation of phosphonate in

P-limited environments [90].

¢) Thaumarchaeota. Based on rRNA studies, the domain Archaea was first discovered in the
70s [124] and subdivided into two groups, Euryarchaeota and Crenarchaeota. At that time, only
isolates from extreme environments (thermophilic, acidophilic and hyperhalophilic) were

known. It was not until the development of metagenomics when sequencing the 16S rRNA
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amplicon from natural marine samples detected the presence of a new phylum, the
Thaumarchaeota [30], which emerged as a sister group of the hyperthermophilic Crenarchaeota
[32, 125].

The cultivation of numerous strains [95, 100, 126], together with the sequences from
environmental metagenomes, MAGs, and SAGs [127, 128] have provided invaluable
information on the ecology of this phylum. The two more abundant genera in the oceans, Ca.
Nitrosopelagicus and Ca. Nitrosopumilus, have a small genome size (1.23-1.64 Mb) and low
GC-content (33.2-34.2 %) and are examples of genome streamlining. In the open ocean, marine
Thaumarchaeota are ubiquitously detected in deeper waters below the DCM [4] and are some
of the most abundant microorganisms in the aphotic realm, accounting for up to 40% of the
picoplankton [129, 130]. Besides, metatranscriptomic analysis demonstrated a high activity of
this group in these waters [131, 132]. Members of this lineage are chemolithoautotrophs, which
fix inorganic carbon [133] fueled by the oxidation of ammonia to nitrite [95], and are
responsible for the majority of the aerobic nitrification measured in the ocean [134].
Furthermore, they globally contribute to cobalamin synthesis [135], an essential cofactor
involved in amino acid and DNA synthesis. Their abundance and metabolism confirmed that
the marine Thaumarchaeota are essential players in global carbon and nitrogen biogeochemical

cycles.

d) Marine group II/III Euryarchaeota. In the same way as Thaumarchaeota, mesophilic
Euryarchaeota evolved from thermophilic ancestors through adaptation to a mesophilic
lifestyle [136]. Marine Euryarchaeota were discovered by 16S rRNA surveys in the early 90s
[125]. They are represented by two deep and well-differentiated clades, named Marine Group
IT (MG-II) and Marine Group III (MG-III), distantly related with the order Termoplasmatales
and the deep-sea hydrothermal vent Euryarchaeota group 2 (DHVE2) [137]. Further studies
enhanced the phylogenetic resolution of this marker gene, and MG-II was divided into four
groups, with two dominant clades (MG-IIA and MG-IIB) [138, 139] and two less-represented
(MG-IIC and MG-IID) [140]. Given that it has not yet been possible to culture any
representative of this group, a few studies with fosmid libraries tried to evaluate their
metabolism, but only mere traits could be determined [139, 141-143]. However, with the
development of high-throughput metagenomics and global expeditions [58—60, 144-146],
several MAGs (>200 genomes) allowed a more reliable phylogenetic resolution of the MG-II
Euryarchaeota clade. Thus, by using the concatenated of shared proteins among the several

retrieved MAGs of MG-II, the phylogenetic tree resulted in up to 21 genera [63, 64], with
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different biogeographic ranges and nutrient preferences. Besides, Rinke et al., [64] proposed
that MG-II is an order level lineage named Candidatus Poseidoniales, comprising the families
Ca. Poseidoniaceae (MG-I1A) and Ca. Thalassarchaecaceae (MG-IIB).

Furthermore, these recent analyses significantly improved the knowledge of their
metabolism, ecology and biological function in the oceans. Ca. Poseidoniales genomes share a
photoheterotrophic lifestyle. They contain one copy per genome of a proteorhodopsin, but two
groups of rhodopsins with different absorbing spectra (blue or green) are found among the MG-
IT genomes [44]. It has been proposed that these differences in the spectra are due to their
vertical distribution in the photic zone [44, 147]. They encode metabolic functions
characteristic of heterotrophs, including glycolysis, a Tricarboxylic acid cycle (TCA), and
electron transport chain [64]. To deal with the dissolved organic matter, Ca. Poseidoniales can
degrade extracellular proteins and fatty acids, as they encode peptidases, acyl-CoA
dehydrogenase and acetyl-CoA acetyltransferase [63, 64, 144, 145]. Their auxotrophy for
specific amino acids explains their need to degrade dissolved proteins since they depend on
external sources of amino acids [64]. They can also degrade complex sugars, but it appears that
MG-IIA contains more and different families of glycoside hydrolases [63]. GH involved in the
breakdown of algal oligosaccharides, including pectin, starch, and glycogen, are found
exclusively amongst the MG-IIA [63]. Another differentiating factor is the presence of genes
for the synthesis of the flagellum in all the MG-IIA genera, but not in MG-IIB. Some authors
argue about the role of these proteins because genes involved in the chemotaxis were not found
[64]. Therefore, whereas Tully et al. [63] proposed that MG-IIA is motile, Rinke et al. [64]
proposed that the primary role of this cluster is the adhesion to particulate material.

Members of the order Ca. Poseidoniales are ubiquitously distributed throughout the major
ocean basins, although there exist significant differences between Ca. Poseidoniaceae and Ca.
Thalassarchaeaceae. The former family tend to dominate nutrient-rich surface coastal waters
[144, 148, 149], while Ca. Thalassarchaeaceae is found at deeper waters, mostly at the DCM
layer and below, in the open ocean [145, 148]. These results indicate that planktonic
Euryarchaeota occupy diverse ecological sites.

Conversely, 16S rRNA studies suggested that MG-III is predominately found in the deep
ocean at relatively low abundance [138, 150], although in rare occasions it has been detected
in high numbers in the Arctic Ocean [151] or an aphotic sample in the Marmara Sea [152]. In
surface waters, they can represent up to 10 % in the Mediterranean Sea [149]. Several archaeal
fosmids from the deep Mediterranean [141], five MAGs from deep waters of the Guaymas
basin and the Cayman Rise (located in the Gulf of California and the Caribbean Sea,
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respectively) [146], and eight MAGs from the photic zone in the Mediterranean Sea [153] led
to the conclusion that MG-III genomes share most of the (photo)heterotrophic metabolism with
the sister clade MG-II. Since the MAGs of MG-III retrieved from the Mediterranean Sea is one
of the topics in this Thesis, an extended analysis of the distribution and metabolism of this

group can be found in the “Results” and “Discussion” sections.

e) Actinobacteria. With a lesser abundance, Actinobacteria is also a widespread phylum in the
oceans. Depending on the season and depth, they can contribute approximately to 5 % of the
total bacterial population in oligotrophic waters [11, 154, 155]. First detected in seawater by
16S rRNA assays [34], the phylum was later divided into two marine clades, the
Acidimicrobiales (formerly OM1 clade) [154] and the new proposed Ca. Actinomarinales
(previously known as the “marine actinobacterial clade” [MAC]) [156]. Members of the Ca.
Actinomarinales are examples of streamlined bacteria, similar to the alphaproteobacterial
SARI11 clade, with a low GC-content (33%), small genome size, estimated to be close to 1 Mb,
and small intergenic spacers (3 bp). Remarkably, their volume size of 0.013 um?, the lowest
described so far, makes the members of this group the smallest free-living marine microbes
[156]. Conversely, members of the class Acidimicrobiales exhibit larger genomes (1.7-2.3 Mb)
and have a moderate to high GC-content, between 40 to 50 %.

Despite the notable differences in genome size and GC-content, they share similar
metabolic traits. Both are photochemoorganotrophs, containing transporters for sugars and
amino acids; enzymes involved in the glycolysis, pentose phosphate and TCA pathways; and
the light-harvesting rhodopsin [156, 157]. However, their rhodopsins are phylogenetically
distant; while the rhodopsins encoded within the marine Acidimicrobiales cluster together with
the freshwater counterparts [157], the rhodopsins within the Ca. Actinomarinales form a new
group named MAC-rhodopsins [156]. Despite the similar metabolism, the larger genome size
of the Acidimicrobiales allows them to use several other nutrients (DMSP, C2 compounds or
CO, among others) as sources of carbon and energy [157].

These two groups co-occur in temperate and tropical waters [157], although only
Acidimicrobiales have been detected from polar samples [158]. They can be found permanently
through the photic zone in the water column [159] and, during summer stratification, they
concentrate on the DCM and deeper layers [156, 157]. However, only members of

Acidimicrobiales were found in meso- and bathypelagic samples [157].
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f) Other less abundant marine bacteria. Indeed, the microbes described above, although they
are abundant and ubiquitously distributed, there are many other bacterial groups in the ocean.
For instance, two phyla, Bacteroidetes and Verrucomicrobia are always present in the water
column. Members of these groups have been characterised as particle-attached microbes that
degrade polymeric organic matter, mainly polysaccharides and proteins [8, 160]. Members of
the recently designated SUPO5 clade of marine gammaproteobacterial sulfur oxidisers are
among the most abundant chemoautotrophs in the ocean and are mainly found in low-oxygen
environments [161, 162], but also the aerobic water column [96]. The OM60/NORS5 clade
contains aerobic anoxygenic photoheterotrophic bacteria commonly detected throughout the
euphotic zone of marine environments. They are found very often in coastal waters [14], since
the aerobic anoxygenic photosynthesis is not affected by photoinhibition and, therefore, plays
an important role in the ocean’s carbon cycle [163]. As the last example, SAR116 and SAR86
clades are photoheterotrophic bacteria (contain rhodopsin) widely distributed in the ocean.
Both groups share similar metabolism with SAR11 in terms of nutrient uptake (C, P and N)
[164, 165] as well as in the case of SAR116 with the degradation of DMSP [166].

1.4 Marine Viruses

If the abundance of bacterial cells in the ocean seem astonishing, their main predators, the
viruses (also known as bacteriophages or phages), outnumber them by a factor of no less than
10 [167]. Indeed, the viral abundance often varies along with the prokaryotic abundance,
decreasing in the open ocean and deep layers of the water column [168]. The first estimates of
the viral abundance based on electron microscopy started to appear in the late 1980s [169].
Epifluorescence microscopy, which emerged as a more reliable technique to quantify the

abundance of viruses, displaced electron microscopy in further studies [170, 171].

1.4.1 Isolation and metagenomic sequencing of marine viruses

Phage genome sequencing relies on host isolation and phage purification. However,
considering that most of the prokaryotes in the ocean remains uncultured, viral diversity and
abundance have been poorly characterised. Unfortunately, viruses lack universal marker genes,
like the 16S rRNA gene in prokaryotes, that prevent a robust phylogenetic classification.
However, metagenomics has provided a powerful tool to unveil the structure of viral

communities, which appears to be more diverse than previously appreciated. By using fosmid
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libraries, shotgun metagenomics and viromics, thousands of novel viral species have been
recently published [172, 173], including the recently discovered putative phage genomes
infecting the archaeal phyla Euryarchaeota (magrovirus [174]). Single-cell sequencing is also
an useful approach when it is applied to separate and sequence viral genomes [175].
Nevertheless, although it has been exponentially increased the number of viral genomes, there
is still a gap in determining the host. Certain protocols use the presence of tRNAs and specific
host-related metabolic proteins encoded in the phage genome, the high-similarity match to a
CRISPR spacer in a given bacterial host, or the co-occurrence of bacterial and viral sequences

within samples [173].

1.4.2 Role of viruses in the environment and interaction with their hosts

The isolation and reconstruction of phage genomes have increased our knowledge about
the function of these biological entities. It was already known that the viral lysis modifies the
prokaryotic community both directly and indirectly. Directly because it kills the organism, so
the phage regulates the cell concentration of its host and maintains the diversity of the
ecosystem, avoiding overpopulation of a few microorganisms [176], and indirectly because the
lysis of their hosts releases nutrients into the environment that become available to the
microbial community, in a process called “viral shunt” [177] (Figure 4). This process restricts
the uptake of nutrients to high trophic levels (predation) or a few microbial species. The viral
killing of its host was estimated to release a large amount of carbon, in the order of 10° tons
per day [178]. Other studies highlighted the importance of viral shunt in nitrogen cycling [179].
Furthermore, genomic studies have determined the presence of auxiliary metabolic genes
(AMGs) encoded in the phage genome. These AMGs are thought to enhance during the
infection the metabolic potential of the host. In this sense, phages encode genes related to the
DNA replication [180], photosynthesis in cyanobacteria [181], nitrogen [182] or sulfur [183]
metabolisms, among others.

Consequently, marine viruses are critical players in the ecosystem, influencing over the
ocean productivity and biogeochemical cycles. But it should not be forgotten that
bacteriophages are also involved in bacterial evolution, either due to the selective pressure of
the virus-host interaction in terms of viral infection and defence [184], and the outer layer of
host cells (i.e. LPS in gram-negative bacteria) suffers changes in its chemical composition, that

is encoded in the flexible bacterial genome. Alternatively, due to phages can act as vehicles to
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horizontally transfer fragments of bacterial DNA from one cell to another (transduction) [185],

providing the acceptor cell with novel genes that may modify its phenotype.

Viruses of Autotrophs
Autotrophs

Infection
——————— Growth

Viral
reproduction

> Higher
RS Trophic Levels

Infection Growth

Viruses of

Heterotrophs Heteratiophs

Figure 4. Schematics of the viral shunt [186].

1.5 The Mediterranean Sea: a case study of the microbial diversity

1.5.1 Main features of the Mediterranean Sea: location, physicochemical properties
and water currents

The Mediterranean Sea (“the sea between the lands”) is a semi-closed basin, with an
estimated area of 2.5 million km?. It is confined between the temperate latitudes 30° and 46° N
and longitudes 5.50° and 36° E. The maximum depth of 5,267 m is found in the Calypso Deep,
although the average depth is 1.5 km. A submarine ridge near Sicily and the African Coast
divides the Mediterranean Sea into western and eastern parts. The western part is connected
with the North Atlantic Ocean through the Strait of Gibraltar, while the Eastern Mediterranean
connects in the north with the Sea of Marmara and in the south with the Red Sea through the
Suez Canal. Moreover, the sea is subdivided in several basins (Figure 5), each one with
different temperature, salinity and nutrient concentrations [187] . Due to the high evaporation
in the surface and the insufficient input of freshwater coming from land (rivers) and
precipitations, salinity is, on average, slightly higher in the Mediterranean (3.8% w/v) than in
the rest of the oceans (3.5% w/v) (Figure 6). In summer, this value is exceptionally high,

reaching 4% in the eastern Mediterranean [1]. Surface temperature significantly varies among
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seasons. In the eastern Mediterranean, surface temperatures in summer can surpass the 30 °C.
In winter, the average temperature is found between 14 and 15 °C [188]. Remarkably, the
temperature in the Mediterranean water column does not decrease below 13 °C, in contrast to
the average temperature of 4 °C found in the aphotic realm in the Ocean [189]. Overall, surface
temperatures are higher in the east than in the west. Surface chlorophyll measures showed a
decreasing gradient between Western and East, with values of 0.4 to 0.05 mg/m3, respectively
[190]. Nutrient concentrations (carbon, nitrogen or phosphorus) are correlated with
chlorophyll-a concentrations, as in the western part of the basin are approximately two times
higher than in the eastern basin [187] (Figure 6). In the end, the Mediterranean Sea has overall
low productivity, and the total phytoplankton biomass is dominated by small picocyanobacteria

[191].
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Figure 5. The Mediterranean Sea geography and nomenclature of the major sub-basins and straits [192].

Due to the Mediterranean characteristic hot and dry climate, surface and subsurface
currents are controlled by the intense surface evaporation [1]. As a result, the relative cold,
normal-salinity surface water from the North Atlantic Ocean flows through the Gibraltar sill
into the Mediterranean Sea, while the water mass gets warmer and saltier as it moves eastward
[1]. In the Eastern Mediterranean, the dense water sinks and fills the depths of the basin as it
moves westward. As it happens in other temperate zones, the downwelling of water in the
eastern Mediterranean by the effect on the land (Ekman transport) removes nutrients from the
surface [1]. Hence, the low nutrient concentrations in the photic zone keep net productivity low

[1]. The deep water continues until overtops the shallow sill at Gibraltar strait and then returns
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out into the Atlantic Ocean as subsurface outflow [1]. These subsurface currents make the deep
Mediterranean unique, as there is no contact with the dense cold waters from the open Ocean,
and the mean deep temperature does not decrease below 13 °C [1]. Calculations of residence

time indicate that the water that flows into the Mediterranean Sea from the Atlantic Ocean

remains in the basin for about 100 years before it returns to the Atlantic [1].

20 25 30 35 -5 o E 10 20 24 30
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Figure 6. A longitudinal transect in the Mediterranean Sea showing the variations of a) salinity, b)

temperature, ¢) nitrates and d) phosphates through depth. Figure adapted from [187].

1.5.2 The water column in the Mediterranean Sea: water stratification and seasonal
dynamics

Due to its temperate location, the water column of the Mediterranean Sea is seasonally
stratified [193]. Since April until November, differences in water temperature from surface and
deep water causes the appearance in the photic zone of a thermocline layer around 40 m deep
that separates the warm surface waters (20-25 °C) from the deep colder waters (14.5 °C). During
these months, below the thermocline appears the DCM, a maximum in chlorophyll
concentration associated with the increase in bioavailable pools of nitrogen and phosphorus
[194]. Although light intensity decreases by depth, the availability of these nutrients boosts the
growth of autotrophic and heterotrophic microorganisms within this layer. In the
Mediterranean, the DCM often appears between 45 and 70 m deep, depending on the light
intensity and season [5]. During the late autumn and winter, temperature decreases near the
surface breaks the thermocline and leads to vertical mixing of the water column. This effect

promotes the upwelling of nutrients from the mesopelagic zone [7, 195]. During this period,
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the DCM disappears, and the temperature, nutrients and chlorophyll concentrations remain
homogenous throughout the photic zone [196]. The bioavailability of these nutrients ultimately
results, during spring, in phytoplankton and heterotrophic blooms [195] near the surface, as
detected by chlorophyll-a measurements [197].

Metataxonomic and metagenomic studies have been carried out in the Mediterranean Sea
to characterise the microbial community inhabiting at different depth and seasons. For instance,
results published by Martin-Cuadrado and colleagues [189] showed that the Mediterranean
bathypelagic community (3000 m deep, 13 °C) resembled more to the mesopelagic community
in the Pacific Ocean (500 m deep, 7.2 °C) than samples gathered from the cold bathypelagic
ocean (4000 m deep, 1.4 °C) [4]. These results indicated that, in the absence of light, the
temperature might be considered as a major factor in the aphotic water column [189]. Besides,
it showed the dominance of heterotrophic bacteria, such as Alteromonas sp. or the ammonia
oxidising Thaumarchaeota. In another study, an unusual number of CO dehydrogenase genes
was found encoded in fosmids collected at 3000 m, indicating that the oxidation of CO is a
source of energy in bathypelagic habitats [198]. In the photic zone, due to the easiness to
retrieve and process the sample, several studies defined the prokaryotic community in surface
waters, dominated by heterotrophic bacteria (mainly SAR11) [35, 199-201]. These studies
highlighted a prokaryotic community enriched in rhodopsin genes to cope with the low nutrient
concentration in this layer [201]. Moreover, some studies indicated that the surface microbial
community varies by season, with some phylotypes disappearing during winter [12, 158, 202].
The Mediterranean DCM has also been thoroughly studied. By using fosmid libraries and
shotgun sequencing, Ghai and colleagues [5] revealed a remarkable number of similarities with
other DCM samples from other oceans [4, 38], dominated with picocyanobacteria. However,
they described a local dominance of the Prochlorococcus ecotype HL-I over others, resulting
in a niche differentiation between the Mediterranean and the North Pacific Ocean [110].
Besides, other heterotrophic prokaryotes contributing to the DCM community, like the
alphaproteobacterial clade SARI11 or planktonic marine Euryarchaeota were detected.
Remarkably, from the Mediterranean DCM, novel planktonic microbes were first recovered,
as the Ca. Actinomarina minuta [156], Acidimicrobiales [157] or the Ca. Thalassoarchacota

(MG-IIB) [145].
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Objectives

There are many previous studies that have characterised the prokaryotic community in the

Mediterranean Sea. However, most of them relied in low-resolution molecular biology tools

(i.e. 16S rRNA sequencing, denaturing gel gradient electrophoresis or fluorescence in situ

hybridization), or only sampled one depth, mainly surface water, ignoring the fact that different

ecotypes are distributed through the water column, and their location in the column and

abundance varied with the season. Besides, with the application of these techniques, only a

small glimpse about the taxonomy of the microbiota was possible, missing information about

their metabolism and, hence, their role in the ecosystem.

The aim of this Thesis was to analyse the fine-scale variations in the marine microbiome

from the Mediterranean Sea using high-throughput metagenomic sequencing. To achieve this

goal:

We compare the samples collected during summer, when the water column is
thermally stratified, against samples retrieved during winter, after the mixing of the
water column. Besides, we analyse, in a finer detail, the variation of the microbiota

in the uppermost 100 m of the water column.

We analyse the genomic fragments generated after metagenomic assembly, to find
novel microorganisms (prokaryotic and viral sequences) inhabiting in these

samples.

We use genome-resolving metagenomics of these fragments to focus on the
assembly of novel metagenome-assembled genomes (MAGs) (i.e. members of the
marine group III Euryarchaeota, among others), to analyse their distribution
through the water column and in other oceanic regions, their phylogeny and their

metabolism.

We characterise the variation of some functional genes (i.e. rhodopsin) through the

water column.

31



= Biblioteca

N uNIVERSITAS Migwel Hernadndes




-‘IATERIAL AND METHODS



= Biblioteca

N uNIVERSITAS Migwel Hernadndes




Material and Methods

3.1 Sample collection, processing and sequencing

Two sampling sites have been used to recover the microbial diversity off the coast of
Alicante, Spain (Figure 7). These places were far enough to avoid the effect of the coast in
order to characterise the real prokaryotic community inhabiting in the open sea. In the first
sampling site, located at 20 nautical miles off the coast of Alicante (38.07° N, 0.23° W; bottom
depth of 200 m), seven metagenomic samples were collected in summer, during a period of
strong water stratification. From 2012 to 2015, four samples were retrieved from the DCM
(between 55 to 75 m deep). Another sample from the same depth was collected in 2007. Two
more samples, at 15 m and 30 m deep, were collected at the same time in 2014. Also, three
more samples were collected at two consecutive winters, one sample collected at 20 m deep in
December 2013 and two samples at 20 and 80 m deep in January 2015. Thanks to the help of
the research vessel “Garcia del Cid”, eight samples from different depths were taken in October
2015 from the second sampling site, located at approximately 60 nautical miles off the coast
of Alicante (37.35° N, 0.29 °W; bottom depth of 2600 m). Six of them were collected from the
uppermost 100 m at 15 m intervals using a hose attached to a CTD (Seabird) connected to a
water pump, to directly transfer seawater from the selected depth to the filtration system. The
last two samples were collected at 1000 and 2000 m deep in two casts (100 L each) using the
CTD rosette. Additionally, on the same cruise, three metatranscriptomes were made from

samples collected at 15, 60 and 90 m deep.
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Figure 7. Location and number of samples taken from the Mediterranean Sea.
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Seawater samples were sequentially filtered on board through 20, 5, and 0.22 pm pore size
polycarbonate filters (Millipore). All filters were immediately frozen on dry ice and stored at
—80 °C until processing. For the RNA sample, seawater was filtered onboard through a 0.22
um polyethersulfone filter that was suspended with RNAlater and kept on dry ice until storage
at —80 °C.

To retrieve the free-living prokaryotic community, one-quarter of the 0.22 pm filter
(containing approximately the biomass of 50 L of seawater) was thawed on ice, cut into small
pieces with previously autoclaved material, and submerged in 5 mL of lysis buffer (40mM
EDTA, 50mM Tris/HCI, 0.75M sucrose). Next, the solution was treated with final
concentrations of 1 mg/mL lysozyme during 45 min at 37 °C, followed with 0.2 mg/mL
proteinase-K during 60 min at 55 °C. During the process, autoclaved glass beads were added
to the solution to mechanically increase, by vortexing, the lysis rate of the biomass. Nucleic
acids were extracted from the aqueous phase using phenol-chloroform isoamyl alcohol
centrifugation (twice the volume of the lysis solution). A second step of phenol-chloroform
isoamyl alcohol followed with chloroform-isoamyl alcohol centrifugation was applied to
increase the purity of the recovered DNA. DNA was precipitated overnight using absolute
ethanol amended with 0.1 volumes of sodium acetate 3M, followed with a second precipitation
of the DNA using a solution containing 70% ethanol. Nucleic acids were concentrated using a
vacuum contentrator (miVac, Genevac, UK) and DNA integrity was checked by agarose gel
electrophoresis. DNA was quantified with Qubit (ThermoFisher) and sent it to sequence. The
sequencing company performed metagenomic library construction and sequencing.
Metagenomes from the first and second sampling sites were sequenced using [llumina Hiseq
2000 (100 bp paired-end) (BGI — Hong Kong) and Illumina Hiseq-4000 150 bp paired-end
(Macrogen — Republic of Korea), respectively.

3.2  Metagenomic raw-read processing

To remove those reads with errors generated during the sequencing from the bulk of
metagenomic raw-reads, trimmomatic [203] was used with the following options (PE, -
phred33, ILLUMINACLIP:adapters.fa:2:30:10, LEADING:3, TRAILING:3,
SLIDINGWINDOW:4:15, MINLEN:50) to remove these reads or to trim some regions within

the read sequence (low-quality regions or adapters).
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3.3 Phylogenetic analysis of the 16S rRNA gene fragments derived from

metagenomic reads

To identify candidate 16S/18S rRNA gene fragments within the metagenomic reads, we
prepared a non-redundant version of the RDP database [22] by clustering all available 16S/18S
rRNA gene reads (ca. 2.3 million) into approximately 800,000 clusters at 90% identity level
using UCLUST [204]. Using USEARCH [205], a subset of 10 millions of metagenomic reads
were aligned to this database (E-value < 10~) and positive hits were considered potential 16S
rRNA gene fragments. To further refine sequences from the bulk of the putative rRNA
sequences, these candidates were then aligned to archaeal, bacterial, and eukaryal 16S/18S
rRNA HMM models [206] using ssu-align [207]. Final 16S/18S rRNA sequences were
compared to the entire RDP database and classified into a high-level taxon if the sequence
identity was > 80% and the alignment length > 90 bp. Sequences failing these thresholds were
discarded.

3.4  Cross-comparison of metagenomic samples

Two different approaches were used to compare similarities between metagenomic
samples. First, a reciprocal global alignment of the short Illumina reads (in subsets of 2 million
reads > 50 bp) at > 95% identity was performed using USEARCH6 [205]. The results of the
comparison were then clustered with the hclust package in R using a Euclidean distance matrix.
In a second approach, subsets of 20 million reads > 50 bp (where applicable) were
taxonomically classified against the NR database using DIAMOND [208] with a minimum of
50% identity and 50% alignment. The resulting alignment was later analyzed with MEGANG6

Community Edition [209], and a canonical correspondence analysis (CCA) was inferred with

the cluster analysis option and a Bray-Curtis ecological distance matrix.

3.5 “De novo” assembly and gene annotation

“De novo” assembly of the Illumina trimmed-reads into long contigs was performed
individually for each metagenome using IDBA UD [210]. Gene predictions on the assembled
contigs were carried out using Prodigal [211]. tRNA and rRNA genes were predicted using
tRNAscan-SE [212], ssu-align [207], and meta-RNA [213]. Taxonomic and functional
assignment of the predicted protein sequences was performed by comparing against the NCBI-

nr database using USEARCHG6 [205], and against COG [214] and TIGRFAM [215] using
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HMMscan [207]. GC content was calculated using the GeeCee program from the EMBOSS
package [216].

3.6  “Binning” and genome reconstruction from metagenomic datasets

To bin the resulting assembled contigs into MAGs, only those longer than 10 Kb were
used. Binning is the process of grouping contigs that share similar genomic traits and
covariance values across samples into individual genomes. In complex metagenomes, these
individual genomes are sometimes referred to as “composite” genomes, due to the contigs are
assembled from a population of very closely related organisms. To do that, principal
component analysis of tetranucleotide frequencies, GC-content and co-abundance values
(retrieved by metagenomic read recruitment) within several samples were used. Moreover, we
included in the analysis the taxonomic affiliation of each contig, obtained after the assignment
of at least 50% of the genes that shared the same taxonomy at the phylum level (Proteobacteria
was divided at the class level). Contigs were classified as unclassified if they did not meet the
threshold. Tetranucleotide frequencies were computed using wordfreq program in the
EMBOSS package [216] and the principal component analysis using the FactoMineR package
[217] in R.

To guarantee the quality of the resulting MAGs, we analysed their completeness, which
was estimated by comparison, using HMMscan [207], against three different universal gene
sets, one with 35 genes [218], other with 111 genes [219] and another with 52 genes [52]. The
degree of contamination was estimated by counting the number of marker genes that appeared
more than one time over the total number of genes (in percentage). Also, the software CheckM
[220] was also applied to estimate the completeness and degree of contamination. Only MAGs
with >50% completeness and <5% contamination were kept for further analyses.

In order to improve the completeness and remove redundancy, a second assembly step was
performed combining the genomic fragments with the short paired-end Illumina reads of the
metagenomes from which they were assembled. For each genome, we used the BWA aligner
[221] with default parameters to retrieve the short-paired reads that mapped onto the contigs.

These reads were then pooled and assembled with the contigs using SPAdes [222].

3.7 Phylogenomic classification of the reconstructed genomes

Phylogenomic analysis was used to classify the reconstructed genomes. For each MAG,

based on the gene annotation, “close” relatives were downloaded from the NCBI database and
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pooled together with other known reference marine microbes. Phylogenomic trees were
performed for each one of the class-level taxonomies. To retrieve the maximum number of
shared proteins among genomes, we aligned the protein sequences against the COG database
[214] using HMMscan. In the case of the composite genomes of marine group III
Euryarchaeota, only the ribosomal proteins shared among them were used to classify the
sequences phylogenomically. For each genome, shared proteins were concatenated and later
aligned using Kalign [223]. A maximum-likelihood tree was then constructed using MEGA
[224] with the following parameters: Jones-Taylor-Thornton model, gamma distribution with
five discrete categories, and 100 bootstraps. Positions with less than 80% site coverage were

eliminated.

3.8  Metagenomic read recruitments

To retrieve the relative coverage (abundance) of a given microbe in a sample, filtered
metagenome reads are aligned (mapped) against a reference genome. This process, called
metagenomic recruitment, allows to semi-quantify and normalise the abundance of genomes
across several metagenomic datasets. In this way, genomes of known marine microbes in pure
culture, MAGs or SAGs are used to recruit reads from the samples taken in our two sampling
sites, as well as from samples collected elsewhere (i.e. Tara Oceans [56] or Malaspina
expeditions [55]). To do that, reads are mapped using BLASTN [225], applying a cutoff of
99% nucleotide identity over a minimum alignment length of 50 nucleotides. The high identity
(99%) applied here allowed us to recover only the closest bacterial genomes (highly similar
clones) to a given reference and, therefore, we limited our analysis to a specific strain rather
than the whole species (threshold of 95% nucleotide identity). The resulting numerical value
is expressed as the number of reads per kilobase of genome per gigabase of metagenome

(RPKG).

3.9  Functional assignment of assembled proteins

Since one part of the assembled contigs remained unbinned, we extracted all proteins
encoded within the assembled contigs longer than 1 Kb and, for each metagenome, their
putative functionality was inferred against the SEED subsystems [226] and KEGG [227]
databases. These databases contain hundreds of thousands of sequences that have been
manually curated and classified from general to concrete metabolic and ecologic pathways.

Proteins were compared to the SEED database using DIAMOND [208] (blastp option, top hit,
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> 50% identity, > 50% alignment length, E value < 10). On the other hand, GhostKOALA
[228] was used to classify the sequences against the KEGG database.

Also, from the bulk of the whole proteins, some single-gene families with biological
interest were analyzed in more detail.

Rhodopsins. 168 rhodopsin sequences were extracted from all the metagenomes from the
assembled contigs longer than 5 Kb. We imposed the minimum size of 5 Kb to have enough
genes to apply the taxonomic assignment for the contig (see “Binning” and genome
reconstruction (MAGs) from metagenomic datasets”). To infer their phylogeny, these
sequences were pooled with 100 more rhodopsins of fungal, archaeal, viral, and bacterial origin
obtained from databases. Sequences were aligned with MUSCLE [229], and a maximum-
likelihood tree was constructed with MEGA (Jones-Taylor-Thornton model, gamma
distribution with five discrete categories, and 100 bootstraps, positions with less than 80% site
coverage were eliminated). Blue versus green light absorption was determined by looking at
the L/Q point mutation in the third transmembrane helix, as described previously [147]. To
compare the abundance of microbial rhodopsins with depth, we initially created a database
containing our metagenomic rhodopsin sequences and approximately 7,900 rhodopsin genes
obtained from the MicRhoDE database [230]. Rhodopsin sequences were recruited against
metagenomic reads (in subsets of 20 million sequences) from the different metagenomes using
BLASTN [225] (= 50 bp alignment, > 99% identity). Rhodopsin sequences that recruited > 1
RPKG were kept for further analyses.

In parallel, metagenomic reads were compared to the NR database using DIAMOND [208]
(blastx option, top hit, > 50% identity, > 50% alignment length, E-value < 10-°). The abundance
of rthodopsin genes in each metagenome was estimated from the number of reads matching
rhodopsin sequences in NR, normalised by the number of reads matching the universal single-
copy recA/radA sequences and by their respective gene length. Reads matching viral or
eukaryotic proteins were not taken into account.

Glycoside Hydrolases. Predicted protein sequences from contigs longer than 5 Kb
previously taxonomically classified were compared against the Carbohydrate-Active enZYmes
(CAZy) database [231]. Using dbCAN [232], sequences that matched as glycoside hydrolases
(GH) with an E-value < 10® were kept for further analyses.
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Results

4.1 Results derived from the work “Fine metagenomic profile of the

Mediterranean stratified and mixed water column”

Summary. In this study, eight samples were taken from a single off-shore location during
the thermal stratification of the water column to analyse the fine-scale variations in the marine
microbiome. Six were collected from the first 100 m at 15 m depth intervals, while the
remaining samples were collected at 1000 and 2000 m deep. Furthermore, to compare the
stratified and mixed water columns, two more samples were processed at 20 and 80 m deep
during winter. To assess the variations in the community structure, we used genome-resolved
metagenomics to measure the recruitment of 94 novel metagenome-assembled genomes
(MAGs) and reference genomes at the different depths and conditions (stratified or mixed), at
high similarity thresholds. We detected a marked stratification of ecotypes that reflects species
adaptation to live at a defined depth range. The majority of microorganisms were confined to
discreet horizontal layers of no more than 30 m (stenobathic). Only a few such as members of
the SAR11 clade appeared at all depths (eurybathic). Furthermore, we detected a stable
component of the photic zone microbial community, which was present regardless of the
season or physicochemical parameters. Other microbes were more sensitive and appeared only
in a specific season. For instance, during the winter mixing period, only some groups of
bloomers such as Pseudomonas were favoured, while the SARI116 clade and some
Bacteroidetes and Verrucomicrobia disappeared during the mixing period. Results also
indicated a strong specialisation at the functional level for the manipulation and uptake of
specific polysaccharides, or the transport of different substrates. Lastly, rhodopsin sequences
(green or blue) also showed narrow depth distributions that correlated with the taxonomy of

the microbe in which they were found but not with depth.

4.1.1 The photic zone is delimited into three regions

A vertical profile showed that, during the thermal stratification, several gradients for
physical parameters and chemical compounds appeared within the first 100 meters of the water
column (Annex 1:Table 1). For instance, the surface water temperature at 15 m was 22.9 °C,
which decreased down to 14.5 °C and 13.8 °C at 60 and 90 m, respectively. At 1000m
temperature was 13.1 °C. The seasonal thermocline was located between 30 and 45 m deep.
The highest values of chlorophyll-a measured between 45 and 60 m deep indicated that the
DCM occurred just below the seasonal thermocline. Chlorophyll-a reached 0.8 mg-m™, almost

one order of magnitude above those from surface waters and 100 times those from deep (1000
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m) waters. Small variations of dissolved Oz concentration were detected, with a maximum at
the DCM (9 mg/L) and a minimum at 2000 m deep (6.1 mg/L). NH4" concentration peaked at
the DCM. Phosphates, nitrites and nitrates increased with depth, with a sharp variation found
between 60 and 75 m. Conversely, a maximum of the concentration of total organic carbon
(TOC) was found at 15 m (2.43 mgC/L), which decreased down to 0.84 mgC/L at 1000 m.

In the winter sampling, the vertical profile indicated that the seawater column was mixed,
and no significant differences in temperature or any other physical or chemical features were
observed. Moreover, values were more similar to those found between 45 and 60 m.

Using flow cytometry, we measured the absolute numbers of planktonic picoprokaryotes
for the whole water column (Annex 1:Figure 1A). In the stratified period, the maximum of
Prochlorococcus (nearly 3.2 x 10* cells mL™") and Synechococcus (1.35 x 10* cells mL™!) were
found in the DCM peak. These values were one to two orders of magnitude higher than those
in surface waters. Besides, the distribution of Prochlorococcus cells was wider than
Synechococcus. Heterotrophic bacteria were almost constant through the photic zone, with a
slight increase in the DCM. In winter, values for both heterotrophic and autotrophic
prokaryotes were highest in the shallowest sample (20 m), though the relative abundance of
active heterotrophic bacterioplankton was higher in the deepest sample (80 m).

Using the number of similar reads (> 95% identity) among metagenomes, we examined
the relationship between the nine sequenced samples (Annex 1:Figure 1B). The stratified
samples were clustered by depth, with three main branches corresponding to (i) upper photic
(UP, 15 and 30 m), (ii) DCM (45 and 60 m), and (iii) lower photic (LP, 75 and 90 m) layers.
Despite the different depths at which the mixed samples (MIX) were obtained (20 and 80 m),
both clustered together within the group of DCM samples. As an outgroup appeared, distant to
all the photic zone samples, the bathypelagic 1000 m sample. Furthermore, the canonical
correspondence analysis (CCA) of the read annotations and environmental parameters
confirmed the clustering of samples according to the depth, and MIX samples with DCM group
(Annex 1:Figure 1C). Inorganic nutrients (such as NOx and PO4*") increased with depth, while
ammonia correlated closely with chlorophyll-a, and TOC increased at the surface together with
water temperature.

Measurements of Simpson’s Diversity Index at both genus and species levels (Annex
1:Figure S3) indicated that bacterial diversity increased continuously with depth only for the
stratified season, being relatively constant during winter. GC content also varied with depth

(Annex 1:Table 1), being lowest at 15 m (ca. 38.6%) and highest at 1000 m (45.9%).
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4.1.2  Prokaryotic community structure of the stratified water column derived from 16S
rRNA analysis and genome reconstruction and recruitment

Analysis of the metagenome-derived 16S rRNA fragments (Annex 1:Figure 1A and Table
S1) revealed broad, depth-dependent variations in taxonomic ranges during stratification in the
photic zone. The most striking difference appeared within Archaea, absent in the UP region
but represented nearly 16% of the population at 90 m. In the DCM and LP samples,
Euryarchaeota remained constant (ca. 5%), while Thaumarchaeota increased from 1% in the
45 m sample to 10% of all the rRNA reads in the 90 m sample. Some members of the bacterial
community, such as Actinobacteria, Bacteroidetes, Cyanobacteria and Marinimicrobia, were
present in the whole water column, while Deltaproteobacteria, Planctomycetes, Chloroflexi
and Acidobacteria had a much more restricted range, appearing only in deeper layers of the
photic zone. Verrucomicrobia were present at all depths except in the 45 m sample. Using a
finer-scale taxonomic classification of the 16S rRNA sequences, we found that UP (15 and 30
m) Verrucomicrobia belonged to Puniceicoccaceae, whereas the members of
Verrucomicrobiaceae were predominantly found below the DCM. The proportion of 16S rRNA
gene reads assigned to unclassified bacteria also increased with depth, from 3% at 15 m to more
than 10% at 90 m, indicating that a significant fraction of the microbes at the subsurface is still
uncharacterized.

Metagenomic assembly and binning of contigs from samples collected in the
Mediterranean Sea generated 94 MAGs (>50% completeness and <5% contamination) (Annex
1:Table S2), expanding most of the archaeal and bacterial phyla detected by 16S. These
genomes, together with several selected genomes of well-known marine microbes, were used
to infer changes in the prokaryotic community through the stratified photic zone. All the
genomes recruited much more at one single specific depth and most (ca. 70%) recruited only
from metagenomes sampled at either one or two consecutive depths (stenobathic) (Annex
1:Figure S13). This result indicates that the distribution of most of these microbes only extends
over a 30-m-thick layer within the ca. 100 m deep photic zone. Most microbes were
preferentially found at the UP or DCM depths except for some archaea. For example, members
of the MGI Thaumarchaeota and some groups of Euryarchaea appeared to prefer the LP
(Annex 1:Figure S13). For Cyanobacteria, the first 45 m were dominated by the HL-I clade
(the pure culture Prochlorococcus MED4 and the MAG Prochlorococcus MED-G72) with a

peak in abundance at approximately 30 m, which then decreased below this depth when clade
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LL-I Prochlorococcus NATL1A and Prochlorococcus MED-G73) appeared (Annex 1:Figure

S13). On the other hand, Synechococcus genomes were not detected deeper than 30 m.

4.1.3 Seasonal variation in the prokaryotic community structure derived from 16S
rRNA analysis and genome reconstruction and recruitment

When comparing the late summer stratified and the winter mixed water columns as a
whole, 16S rRNA-based analysis did not show any significant changes in the prokaryotic
community at this high-level taxonomy (phylum and class levels), and a homogeneous
distribution similar to the DCM and LP samples was observed in the MIX samples (Annex
1:Figure 1A).

However, an in-depth analysis using genome recruitment indicated that, despite the
substantial variability in the physicochemical parameters (i.e. light, temperature and nutrients),
only 47% of the recruited genomes were found in both the mixed and the stratified periods
(Annex 1:Figure 2). Among the groups that were always present, 21 out of 49 (43%) were
Alphaproteobacteria and Cyanobacteria (mainly the SARI1 clade and Symechococcus,
respectively). Some less abundant, but resistant, taxa included members of the Actinobacteria
families Acidimicrobiaceae (MedAcidi-G1, G2A, G2B, G3) and Ca. Actinomarinaceae, three
SAR86 clade genomes within Gammaproteobacteria and the Bacteroidetes family
Flavobacteriaceae (Annex 1:Figure 2).

Conversely, 53% of the recruited genomes were detected only in one season (Annex
1:Figure 2). Ten genomes, comprising the groups Actinobacteria, Gammaproteobacteria,
Verrucomicrobia, Bacteroidetes, and Euryarchaeota were found exclusively during winter
(Annex 1:Figure 2). These genomes were characterised by having a large estimated genome
size (> 3.0 Mb) and a high GC content (> 50%) (Annex 1:Figure 3). 46 MAGs were only
present during stratification, and most of them restricted to the UP region. Many of these MAGs
were members of the phyla Bacteroidetes (12 genomes), Verrucomicrobia (4 genomes),
members of the SAR116 clade of the Alphaproteobacteria and the OM60/NORS clade within
the class Gammaproteobacteria. However, members of MG-II archaea, OM182, and SUP05
clades of Gammaproteobacteria, that also disappear in winter, came from deeper layers (DCM

and LP) (Annex 1:Figure 2).

4.1.4 The microbial metabolism is modified by depth and season
In order to analyse at functional level the microbial community associated with the

metagenomes, we used the assembled coding sequences collected from all the contigs > 1 Kb
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obtained from the metagenomes against the SEED Subsystems database [226]. Clustering of
level 1 subsystems (Annex 1:Figure 5) revealed a marked discontinuity between UP samples
and the other samples, indicating unique characteristics of surface waters, while once again,
the DCM and MIX samples clustered together, demonstrating that they are similar on a
functional level. After comparing the number of proteins assigned to each subsystem, we found
significant differences (based on the standard deviation among samples) mainly involving
carbohydrates, membrane transport, and motility and chemotaxis.

a) Carbohydrates. To study the taxonomical and in-depth distribution of the genes
encoding the glycoside hydrolases (GH) family of enzymes, which are involved in the
breakdown of complex sugars, we compared all the proteins extracted from contigs larger than
5 Kb assigned to the phyla Actinobacteria, Bacteroidetes, Euryarchaeota, Thaumarchaeota, and
Verrucomicrobia, as well as the classes Alphaproteobacteria and Gammaproteobacteria against
the CAZy database [231]. The phylogenetic distribution of the CAZy genes was analysed,
considering the number of GH per 1000 genes (EQ) and the abundance normalised by the
percentage of 16S rRNA gene reads of each group (NORM) (Annex 1:Figure 5B). We could
not detect any GH gene in Thaumarchaeota. Bacteroidetes was the group with more enzymes
(74.3 GHs/1000 genes) and showed variations of the GH families among samples. For instance,
we found that GH from Bacteroidetes from DCM and LP samples grouped and separated from
UP, which in turn was close to the MIX samples. Verrucomicrobia represented the second
group that included the most significant number of GH genes, with 54.3 GHs/1000 genes
analysed. Results showed that the majority of the GHs present in Verrucomicrobia were
different from Bacteroidetes, indicating that members of these phyla may be utilising different
carbohydrate substrates (Annex 1:Figure 5C). Furthermore, as with Bacteroidetes, we found
that the number of GH families was higher in Verrucomicrobia from UP than in DCM and LP.
Cyanobacteria, Actinobacteria, Euryarchaeota and Alpha- and Gammaproteobacteria, followed
the decreasing trend.

b) Membrane transport. PCA analysis showed that the mixed samples clustered together
and separated from the stratified samples, which, in turn, were also clustered by depth for UP
and LP samples, while the DCM samples showed a more dispersed distribution (Annex
1:Figure S15). In more detail, we found transport systems (ATP-binding cassettes and
phosphotransferases) related to iron, phosphonate, polyamines (putrescine/spermidine),
oligopeptides, and sugars, and several heavy metal resistances such as the cobalt-zinc-cadmium
(CzcA) efflux system enriched in the winter-mixed samples. During the stratification, we found

differences in the distribution of membrane transport systems. For instance, we detected in the
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LP layer a higher proportion of generalistic ABC di/oligopeptide transporters together with
some specific transporters for Archaea (A2 holin family). Conversely, TonB-dependent
transporter proteins, as well as choline and betaine uptake proteins, were relatively abundant
in UP.

¢) Motility and chemotaxis. We detected a significant peak of proteins related to motility
and chemotaxis in the UP. Manual inspection revealed enrichment in high GC-content
microbes mainly from Alpha- (Sphingomonadadales and SAR116) and Gammaproteobacteria
(Oceanospirillales) classes. Remarkably, within the group of MIX samples, bacteria from
MedWinter-JAN2015-80m exhibited a significantly large number of genes involved in

chemotaxis but not for the biosynthesis of the flagella in comparison with all the other samples.

4.1.5 Rhodopsins showed a sharp gradient with depth

Using metagenomic reads, we evaluated the number of reads classified as rhodopsins and
calculated their frequency per genome, normalising them by the number of reads annotated as
recA and radA genes (single-copy housekeeping genes) and by their gene length (Annex
1:Figure 4B). The total numbers of rhodopsin-assigned reads were correlated to light intensity,
with a maximum at 15 m, where ca. 65% of the genomes contain rhodopsin, which then
decreased with depth. Conversely, for winter samples, the number of rhodopsins was similar
regardless of depth throughout the water column.

In another approach, we could assemble 168 rhodopsin genes throughout the stratified
water column and 28 rhodopsin genes from the winter samples. Metagenomic recruitment of
these genes showed that a total of 105 out of 196 rhodopsin genes (53%) recruited only during
stratification, 46% in both seasons, and only one rhodopsin gene in winter. Besides,
phylogenetic analysis revealed a broad diversity of this gene family, comprised of at least 11
major groups (Annex 1:Figure 4A). These rhodopsin sequences clustered by phylum, except
euryarchaeal rhodopsins. Within the proteorhodopsin cluster, a separate cluster including only
sequences from Bacteroidetes was detected. Moreover, within the clusters, rhodopsin
sequences were also grouped by depth, with many branches containing only upper or lower
photic zone varieties. This result confirmed the stenobathic character of most groups at the
finer level of diversity resolution.

Remarkably, when we recruited these genes together with those downloaded from the
MicRhoDE database [230], we could not find any no correlation between the predicted
absorption spectrum (blue versus green light) of the rhodopsins and of the depth from which
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they recruited the most reads (Annex 1:Figure 4C). In contrast, we did see a consistent pattern
of correlation between the absorption spectrum and the phylogenetic affiliation of the host
genome; while genomes of Bacteroidetes and Actinobacteria all carried green rhodopsins,
rhodopsins, the large phylum Proteobacteria mainly have the blue variety.

Lastly, within MAG Verrucomicrobia MED-G86 (3.19 Mb and 55% GC content), we
found the unique rhodopsin that recruited only in the MIX samples but not in the stratified.
This rhodopsin clustered together with a novel clade of freshwater rhodopsins [114] affiliated
closely with the Exiguobacterium rhodopsins (Annex 1:Figure S14). Since this was the first
marine representative, we searched in the 7ara Oceans for similar members within this group
and eight contigs were retrieved. Two of these contigs came from the Mediterranean Sea
(stations 009 and 030), and the remaining six came from the North and South Pacific Oceans
(stations 093, 094, 102, 109, 128, and 136). Detailed analysis indicated that within the novel
clade, another rhodopsin subcluster was exclusively composed with sequences with low GC
values (35 to 40%), evolutionary distant from the Verrucomicrobia MED-G86 and the other
marine genomic fragments (45 to 60% GC). Taxonomical annotation of these contigs
confirmed that these rhodopsins belonged to the Planctomycetes-Verrucomicrobia-

Chlamydiae superphylum.

4.2 Results derived from the work “Novel Caudovirales associated with
Marine Group I Thaumarchaeota assembled from metagenomes”

Summary. In this study, we characterised several uncultivated viruses assembled from
metagenomic samples that infect marine Thaumarchaeota, which we designated as
“marthavirus”. Thaumarchaeota are some of the most abundant autotrophic microorganisms in
the deep ocean and responsible for much of the ammonia oxidation occurring in this
environment. Therefore, their viruses should play a central role in shaping the biogeochemical
cycles of nitrogen and carbon in the ocean. Overall, we could assemble 35 sequences from
metagenomic (23 out of 35) and viromic (12 out of 35) datasets. Most of the sequences were
obtained from cellular metagenomes confirming that they represent an essential tool to study
environmental viral communities due to cells were retrieved while undergoing viral lysis.
Phylogenetic analysis placed these novel viral genomes as a single group, distant to other
archaeal viral sequences retrieved so far. On the other hand, metagenomic recruitment showed
that this viral population is formed by very divergent entities with high intrapopulation

homogeneity. Furthermore, metatranscriptomic analyses revealed a differential expression
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profile with the capsid as a primary transcript, indicative of viruses during the lytic cycle. The
cobalamin biosynthesis gene cobS, an auxiliary metabolic gene, was also highly expressed

during the infection.

4.2.1 Novel Thaumarchaeota viruses were recovered from metagenomes and viromes

From the previous work [159, 233], more than 1,000 sequences could be classified as
viruses. Among them, we detected a 69 Kb contig that had hits to genes encoded in
Thaumarchaeota genomes (the majority of these hits were to the genus Ca. Nitrosopumilus).
However, this contig also had hits to viral-related genes with a very low similarity (32-35%),
like the predicted major capsid protein (MCP), portal protein, tail tape measure protein and the
large subunit of the viral terminase. These viral-related genes gave hits to a complete
unclassified archaeal virus (KY229235) recovered from a metagenomic assembly of a sample
~500 m below the seafloor [234].

To expand the repertoire of putative Thaumarchaeota viruses, the MCP, terminase and
portal proteins of this new contig recovered from the metagenome Med-OCT2015-90m and
KY229235 sequences were used as queries to search against several marine metagenomes and
viromes, including the Mediterranean Sea dataset [153, 159], Tara Oceans [56] and Malaspina
expeditions [55] and datasets publicly available at the Joint Genome Institute (JGI) database
(https:// img.jgi.doe.gov/). In the end, 35 putative viral contigs (Annex 2:Table S1) could be
classified and later manually curated to check for similarity to these reference proteins and
thaumarchaeal genes. Seventeen sequences were found in the cellular fraction of our dataset
(Med-OCT2015-75m and Med-OCT2015-90m), and one in the viral fraction (MedVir-
OCT2015-60m). Furthermore, another large batch containing nine genomes was found in
viromes from the Chesapeake Bay.

Genomic analyses showed that all of the recovered sequences had a low GC content, which
varied from 30 to 37% (average: 33.6%). The genome size ranged from 69,519 to 8,022 bp
(average: 21,988 bp), although only two of them (Marthavirus-1 and -2) had repeated
sequences with more than 30 nucleotides at the ends of the 5 and 3" regions, indicating that
they were complete. Annotation of the coding DNA sequences (CDS) indicated that only 14%
of proteins showed significant homology to sequences present in the Prokaryotic Virus
Orthologous Groups (pVOG) database. Sequence clustering of the total 1289 genes resulted in
684 protein clusters, where due to the incompleteness of most of the viral sequences, only

eleven protein clusters were present in at least half of the sequences and formed the viral “soft”
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core (Annex 2:Table S2). Five of the “soft” core protein clusters contained proteins involved
in DNA metabolism (terminase, RadA, ATPase, PD-D/EXK nuclease and Ribonuclease H)
and one sequence was an auxiliary metabolic gene (AMG), cobS, which catalyses the final step
in cobalamin (vitamin B12) biosynthesis in prokaryotes. The remaining five ‘soft’ core clusters
were hypothetical proteins, and no function could be inferred. Furthermore, no tRNA-encoding
sequences or hallmarks of temperate phages, such as integrase or excisionase genes, were

detected in any of the recovered genomes.

4.2.2 Phylogenomic analyses revealed a separate lineage from other archaeal
Caudovirales

In order to establish the phylogenetic affiliation of these sequences and their relationship
with other archaeal virus sequences, the terminase and the MCP proteins, characteristic of
Caudovirales viruses, were used. Distant, but homologous genes were found in the reference
genomes of the fosmid Oxicl 7 [235] and the provirus Nvie-Prol present in the genome of
Nitrososphaera viennensis, a soil Thaumarchaeota [236], but could not be identified in the
putative thaumarchaeal virus found in the single-cell genome AAA160-J20 [237] or in the
putative provirus of Ca. Nitrosopumilus catalina SPOTOI [126]. Results showed a similar
phylogenetic pattern for both terminase and MCPs (Annex 2:Figure 1), where the new
sequences identified here formed a separate lineage from viruses infecting halophilic and
marine mesophilic Euryarchaeota (named as haloviruses and magroviruses, respectively). Only
the viral genome KY229235 was found close to the novel sequences, while Oxicl 7 and Nvie-
Prol, which clustered together, were found more closely related to haloviruses. Furthermore,
phylogenetic analyses of the viral RadA and PD-D/EXK nuclease genes (both of which are
also present in the genomes of Thaumarchaeota cells) (Annex 2:Figure 1) showed that those
genes were strongly associated with Thaumarchaeota, and distinct from marine Euryarchaeota
and their viruses. Remarkably, all the novel sequences retrieved in this work clustered as a

single, monophyletic lineage in all four phylogenetic trees.

4.2.3 Marthaviruses encode for the auxiliary metabolic gene cobS

Pairwise comparison between the two complete genomes (Marthavirus-1 and -2) showed
a high degree of divergence ([ANI 70.8%, coverage 6.16%]; [Average Amino Acid Identity
(AAI) 53.5%; percentage of common proteins 40.43%]). Nevertheless, the alignment indicated
that synteny among genomes was well-preserved, with two conserved regions, and structural

region and DNA-related region (Annex 2:Figure 2A). These two regions were separated by a
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variable region, that in some viral sequences encoded the CobS protein. This gene was not
detected within the other reference thaumarchaeal viral sequences nor in the magroviruses.
Besides, a phylogenetic analysis containing the host and viral CobS protein for
Thaumarchaeota and Cyanobacteria showed that Marthavirus-encoded cobS are not related to
the archaeal cobS (Annex 2:Figure S4), and viral cobS sequences clustered together and

separated from their hosts.

4.2.4 Metagenomic recruitments showed a patchy distribution with low intra-
population diversity

To assess the abundance, distribution and genomic diversity of the novel group of viruses,
we performed fragment recruitment analysis by comparing each sequence to 314 metagenomes
from Mediterranean, Tara Oceans and Malaspina datasets (cellular and viral fraction) [55, 56,
153, 159, 233] with a sequence identity threshold of 70%. We considered only those samples
where these viral genomes recruited more than 10 RPKG. As expected, the marthavirus
genomes recruited from metagenomes containing Thaumarchaeal genomes, albeit at
significantly lower levels and with more restricted distribution (Annex 2:Figure 2B). While
reference genomes of Thaumarchaeota were detected in 65% of the metagenomic samples
analysed, Marthaviruses were found only in 2% of the metagenomes and 12% of the viromes.
Marthaviruses showed a patchy distribution. The majority of the samples where these viruses
recruited came from the Mediterranean Sea and the South Atlantic Ocean (Annex 2:Figure 2).
Interestingly, most of the viral genomes recruited reads at more than 99% nucleotide identity,

with minimal coverage below 95% identity (Annex 2:Figure S5).

4.2.5 Metatranscriptomics confirmed an active viral replication

From the same seawater sample (Western Mediterranean Sea, 90 m) where we obtained
18 marthavirus genomes, we also performed a metatranscriptome sequencing. These data could
provide clues about the prevailing activities during infection. cDNA reads were mapped onto
the two complete genomes assembled from this sample (Marthavirus-1 and -2). Most abundant
transcripts in both viruses corresponded to the MCPs, which is required for viral assembly
(Annex 2:Figure 2C). Remarkably, we observed that the cobS, encoded within Marthavirus-1
genome, was also highly expressed in the metatranscriptome. Although no study of the
structure and activity of the CobS-like viral proteins has been done, results of the mRNA
transcripts indicate that the presence of this gene may have an essential role during the infection

process.
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Nine marthavirus genomes were recovered from viromic samples from the Chesapeake
estuary. Consequently, we used the metagenomic, viromic and metatranscriptomic datasets
collected there [238]. Similar results were obtained after analysing the transcripts for the two
different genomes (Annex 2:Figure S6). Again, the MCP was the most expressed gene in
Marthavirus-4. The cobS gene encoded within the Marthavirus-10 genome was expressed as
well, although several genes, mostly hypothetical proteins but also an adhesin, which might

mediate the virus-host adhesion, and a metallophosphatase were expressed.

4.3 Results derived from the work ‘“New insights into marine group III
Euryarchaeota: from dark to light”

Summary. While marine group II Euryarchaeota (MG-II) has been extensively studied,
little is known about the ecophysiology and distribution of the less-abundant marine group III
Euryarchaeota (MG-III). Recent work from deep hydrothermal vents was able to recover five
genomes from this group partially. Using genome assembly from direct metagenome reads and
metagenomic fosmid clones, we have identified six novels MG-III MAGs from the photic zone
(Epil-6) and two novel MAGs from deep-sea samples (Bathy1 and —2). Our photic-zone MG-
IIT MAGs corresponded to novel groups with no similarity, and significantly lower GC content
when compared with previously described deep-MG-III MAGs. Besides, they encoded for
photolyases and rhodopsins genes, that were absent in the MAGs from deeper waters, and are
an indicator of their epipelagic habitat. Moreover, they have genes for peptide and lipid uptake
and degradation, suggesting a photoheterotrophic lifestyle. Phylogenetic analysis of these
photolyases and rhodopsins, as well as their genomic context, suggests that these genes are of
bacterial origin, supporting the hypothesis of an MG-III ancestor that lived in the dark ocean.
Epipelagic MG-III occurs sporadically and in relatively small proportions in marine plankton,
representing only up to 0.6% of the total microbial community reads in metagenomes. Based
on differences in genome content and sequence identity, we propose the following
nomenclature: Epipelagoarchaeales for the LowGC-MGIII and Bathypelagoarchaeales for the
HighGC-MGIIL.

4.3.1 Novel MG-III Euryarchaeota genomes were recovered from metagenomes
After an exhaustive search from Tara Oceans and our Mediterranean datasets, eight MAGs
could be retrieved, accounting to a total of 10.5 Mb of sequence. Six of them, named CG-Epil

to CG-Epi6, were isolated from metagenomes of the photic zone. The remaining two genomes,
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Bathyl and Bathy2, were isolated from the aphotic zone (Annex 3:Table 1 and Table 2).
Manual inspection of the differential coverage of the sequences in each bin identified three
subgroups very similar to each other (93-96% ANI) within CG-Epi2, referred to as Epi2A,
Epi2B and Epi2C (Annex 3:Figure S2).

Analysis of the degree of completeness indicated that CG-Epil was the most complete
with 85% of the whole genome, followed by CG-Epi2 (75%) and the mesopelagic CG-Bathy1
(64%). Conversely, CG-Epi5 was the least complete of them (9.4%). Based on the number of
different variants of single-copy genes, all our MAGs contained a single microbial species
each. All MG-III bins had low GC content (36-36.8%) except Bathy2 (64.2%). Due to their
differences in the GC content, MG-III MAGs were divided into two groups, lowGC and
HighGC. Among the lowGC MAGs, ANI varied from 68% to 85.4%, whereas the highGC
showed higher degrees of conservation, with ANIs ranging from 89.5% to 96.2% (Annex
3:Figure S4)

4.3.2 Phylogenomic analysis divided MG-III genomes into small subgroups
Phylogenetic trees for the 16S rRNA and 23S rRNA genes were performed (Annex
3:Figure S5) to assess the phylogenetic relationships among the novel MAGs recovered in this
study, together with those recently recovered from the hydrothermal vents of the Guaymas
basin and Cayman rise [146]. However, due to the difficulty to assemble and bin these genes
into MAGs, most of the assembled genomes did not have any of these gene markers. Therefore,
we looked for other housekeeping genes that might be helpful to define the phylogenetic
relationships of the novel MG-III with other archaea. We identified and constructed
phylogenetic trees for RecA, RpoB, SecY, the geranylgeranylglyceryl phosphate synthase,
DnaK and the two gyrase subunits, GyrA and GyrB (Annex 3:Figure S6 to S12). We also
performed a phylogenomic analysis, including the concatenated ribosomal proteins shared
among the genomes (Annex 3:Figure 1). The phylogenetic analysis of these genes revealed the
same topology and clearly showed the split between MG-II and MG-III sequences. Besides,
MAGs recovered from the epipelagic zone were divided into two well-defined groups.
Accordingly, they were named LowGC1-MGIII, which contained the MAGs CG-Epil, 3, 4
and 6, and LowGC2-MGIII formed with the MAG CG-Epi2 and the reference genome
Guaymas32. Also, a separate clade, containing bins exclusively of bathypelagic origin (CG-

Bathy2, Cayman92 and Guaymas31), corresponded with the HighGC-MGIII.

54



Results

4.3.3 Genomic comparisons confirmed the division of MG-III into small groups

To examine the conservation of synteny across the different genome bins, we performed
an all-versus-all genome comparison with the available sequences of MG-III (Annex 3:Figure
2A). Results showed the share of large fragments within MAGs of the two groups of LowGC.
However, synteny blocks were not conserved between MAGs of LowGC-MGIII and HigGC-
MGIIL. In the case of LowGC-MGIII, the highest synteny was found between Epil and Epi4
(54 block alignments, 62% of Epi4 genome size). For LowGC-MGIII, only Epi2 and
Guaymas32 showed a significant synteny (56 block alignments, 38% of CG-Epi2). The low
level of synteny between Bathyl and other bins confirmed that the microbes represented by
this bin are very distant to the other LowGC-MGIII. Among the HighGC-MGIII bins, the
highest synteny was found between Bathy2 and Guaymas31 (40 block alignments, 42% of CG-
Bathy?2) followed closely by Cayman92 and Guaymas31 (42 block alignments, 40.8% of the
Cayman92 genome).

Moreover, for each MAG, we constructed a non-redundant set of proteins that were used
to analyse the relationships among groups by the reciprocal best hit. Only the best hit for each
protein (>80% similarity) was retained (Annex 3:Figure 2B). This protein content analysis
supported the clustering observed in the phylogenomic tree. Bathyl and SCGC-AAA-288-E19
appeared distantly associated with Guaymas32 and Guaymas31, respectively. MG-III Epil
with Epi4 had the most significant percentage of shared proteins (34.8%), followed by Epi2B
and Guaymas32 (24%) and then Bathy2 and Guaymas31 (25%). Only 8% of Epil proteins
were conserved in Epi2 and 0.5% in Bathy?2.

4.3.4 MG-III shares with MG-II a similar photoheterotrophic lifestyle

In order to infer the metabolic potential of the different MG-III MAGs, the predicted open
reading frames were functionally classified according to the arCOG [239] (a specific database
for Archaea) categories and their frequencies in the different genomes compared (Annex
3:Table S5 to S7).

a) Central carbon metabolism. MAGs harboured enzymes for the glycolysis, the
tricarboxylic acid cycle and oxidative phosphorylation, indicating aerobic respiration. We
found genes for the complete tricarboxylic acid cycle in LowGC-MGIII, but three genes were
absent in Bathy1. Remarkably, only the aconitase and the fumarase were found in Bathy2. MG-
III appears to possess most of the enzymes of the Embden-Meyerhof-Parnas (EMP) pathway,

except the first and the last enzymes. We found typical gluconeogenesis enzymes such as
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phosphoenolpyruvate carboxykinases in the LowGC-MGIII and Bathyl MAGs, as well as
subunits of the pyruvate/oxaloacetate carboxyltransferase in all the MAGs.

Only a small number of amino-acid synthases were found in MG-III: cysteine in Bathy1
and Bathy2, glutamine in LowGC-MGIII, and for glutamate in all MG-III bins. Remarkably,
many enzymes for de novo biosynthesis were missing, including those for synthesising
methionine, arginine, threonine, histidine, aromatic amino acids and branched amino acids.
However, we observed multiple genes related with the uptake and transformation of peptides
or amino acids in our MG-III bins, indicating that these organisms are capable of taking up
amino acids from the environment and incorporating them into their proteins. In this way, genes
for permeases for lysine/arginine (all MAGs), histidine (Bathy2), glutamine (LowGC-MGIII
and Bathyl), proline (LowGC-MGIII and Bathyl) and polar amino acids (Bathy2) were
detected into their genomes. Furthermore, several ABC-transporter-systems were found for
peptides and oligopeptides; for example, Dpp-ABC type dipeptide/oligopeptide transporters
(in all of them) and Liv-ABC-type branch amino-acid transporters (only in LowGC-MGIII and
Bathyl). Several enzymes involved in the degradation of amino acids were also found,
including dehydrogenases for alanine and glutamate (all of them), threonine (LowGC-MGIII
and Bathy?2) and proline (LowGC-MGIII), as well as several aminotransferases for branched-
chain amino acids (LowGC-MGIII and Bathyl) and aspartate/tyrosine/aromatic
aminotransferases (LowGC-MGIII and Bathy1). Peptidases also showed differences in the
distribution among the MAGs; i.e. dipeptidyl-aminopeptidases and several AprE-like
subtilisins (LowGC-MGIII and Bathyl), C1A-peptidases (LowGC-MGIII), C25-peptidases
(Bathyl) and Xaa-Pro aminopeptidases (Bathy?2).

b) Light-related genes. We detected the presence of photolyases and rhodopsin genes
among LowGC-MGIII genomes but not within the deep HighGC-MGIII MAGs (Annex
3:Figure 3). Photolyases are proteins capable of photorepairing ultraviolet-induced pyrimidine
dimers in the presence of light (Essen, 2006; Essen and Klar, 2006). Five related genes, a
phytoene synthase, a phytoene-desaturase, a histidine kinase, a sugar-epimerase and one
hypothetical protein, were found adjacent to the photolyase gene. At the equivalent genomic
position, the aphotic Guaymas32 had neither the photolyase nor the associated genes mentioned
above. Phylogenetically, MG-III rhodopsins clustered with bacterial proteorhodopsins rather
than with the euryarchaeal rhodopsins previously described for MG-II [144, 145] (Annex
3:Figure S14). The analysis of key residues showed that all these MG-III rhodopsins are proton
pumps [42] with glutamine (Q) in the characteristic spectral tuning residue site indicating their

ability to absorb light from the blue range (Annex 3:Figure S16).
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¢) Structural proteins. Given the incompleteness of the MG-III MAGs, we could only
recover some genes involved in cell wall biosynthesis, including several glycosyltransferases
(type I/IV), polysaccharide synthases and genes for carbohydrate modification
(acyltransferases and aminotransferases). Furthermore, we found several sequences containing
two concatenated flaJ genes (implicated in archaeal flagellum assembly) followed by a flal
gene (a transcriptional activator).

d) Other metabolic traits. Lipo-oligosaccharide transport systems (nodl/J-like genes) and
phosphonate transporters were found exclusively in the LowGC-MGIII. Besides, multidrug
and antimicrobial peptide transporters (ABC-type) together with several permeases for

drug/metabolites (RhaT-like family) were abundant in all the genomes.

4.3.5 MG-III represents a cosmopolitan and widespread group

To evaluate the relative abundance of the novel MG-II, I MAGs we used genome
recruitment from >200 metagenomic datasets recovered from the open ocean (Annex 3:Figure
4 and Table S1). The majority of these samples came from the Tara Oceans expedition [56],
although it also was included samples from our Mediterranean sampling site [159, 233].
Recruitment values showed a clear correlation of the two MG-III groups with depth.
Representatives of LowGC-MGIII were only present in epipelagic collections, while the
HighGC-MGIII, Bathyl and Guaymas32 were meso- (>200 m deep) and bathypelagic (>1000
m deep). In the epipelagic zone, the highest abundance was found for CG-Epil, which
accounted for 0.5% of the reads in the sample collected from the Mediterranean station
TARA 018. CG-Epil seemed to be evenly distributed throughout the photic zone, while the
remaining LowGC-MGIII increased their recruitment values at deeper waters within the photic

zone (25-155 m, including the DCM).
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Discussion

5.1 Metagenomics to understand the taxonomical and functional prokaryotic

composition of the water column

It is well-known that in temperate waters, the water structure and, therefore, the microbiota
change within seasons. In the majority of the cases, these studies have characterised the
abundance and variation of the community by (i) using 16S rRNA amplicon sequencing and
fluorescence in situ hybridisation (FISH) [12, 202], and by (i1) comparing weekly to monthly
samples collected from the same depth [240]. These approaches, however, can bias the
detection of certain groups. For instance, it is known that when using FISH, mismatches on the
probes can underestimate the abundance of the different prokaryotic groups [12]. Furthermore,
variations within the community were predicted at low taxonomical resolution (best case
scenario: genus), ignoring the fact that within the same species, different ecotypes have
different niche specialization, and therefore, they are found at different depths, such as
Prochlorococcus HL and LL ecotypes [241]. On the other hand, during stratification, due to
differences in light availability, temperature and nutrients, microbes tend to expand
differentially through the water column [4, 49, 242], and microorganisms present at 5 m deep
in winter may colonise deeper niches during summer stratification.

In this sense, to assess the in-depth variations in the community structure, we have applied
high-throughput metagenomic sequencing over a narrow depth profile in the stratified and
mixed water columns. During summer, results showed that samples were clustered by depth,
with three main branches corresponding to (i) upper photic (UP, 15 and 30 m), (ii)) DCM (45
and 60 m), and (iii) lower photic (LP, 75 and 90 m) layers. Remarkably, the mixed samples
(MIX) clustered together within the group of DCM. In our study, DCM and MIX waters have
similar physicochemical properties, which can explain the similarity of these two regions.

The clustering of samples into different layers of the water column also has implications
in the taxonomic structure, analysed by two approaches, 16S rRNA metagenomic fragments
and genome recruitment. The former method has a shallow taxonomic resolution (as mentioned
above). Conversely, genome recruitment relies on the availability of genomic sequences to
measure their abundance. However, metagenomic assembly is sometimes hampered with the
intra-species diversity of a given microbe [26], as it happened to genomes of Cyanobacteria,
Thaumarchaeota and Pelagibacterales, which although being the most abundant microbes they
assembled poorly in our samples. Nevertheless, independently of the method used, results
indicated a depth distribution of the prokaryotic community during summer. Indeed, around

70% of the recruited genomes were only detected from metagenomes collected at either one or
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two consecutive depths, reflecting their stenobathic nature. This result indicates that the
distribution of most of these microbes only extends over a 30-m-thick layer within the first 100
m deep of the photic zone. Besides, most microbes were preferentially found at the UP or DCM
depths, like Synechococcus that was not detected below 30 m deep; and only a few genomes,
including most of the archaeal genomes and the Prochlorococcus LL ecotype, recruited below
the DCM. The lack of more representatives recruiting at the LP can be explained by the 3-fold
increase of the proportion of 16S rRNA genes reads assigned to unclassified and the lower
recruitment coverage of all the genomes at 95% nucleotide identity (only 10% of the total
community recruited - data not shown), which indicate that a significant fraction of the
microbes at lower depths (LP) is still uncharacterized.

Furthermore, as long as the entire water column is taken into account rather than only a
single depth, our results indicate that there are no significant changes in the prokaryotic
diversity during seasonal fluctuations, and a homogeneous community distribution similar to
the DCM and LP samples is observed in the MIX samples. We measured a temporal persistence
of some taxa previously considered sporadic or rare. For example, it has been suggested, using
pyrosequencing 16S rRNA gene PCR amplicons in a surface sample (3 m depth) in the
northwestern Mediterranean Sea, that Thaumarchaeota MG-I and Euryarchaeota MG-IIB
populations were more abundant during winter [240] and absent in summer. Our results show
that archaea (MG-I, -II and -III) were always present and abundant throughout the water
column during the winter but were almost absent in the UP region during the stratification. A
similar observation was made using metatranscriptomes from the stratified water column in the
Gulf of Agaba/Eilat [243, 244]. As the Planctomycetes or Chloroflexi only appeared below the
DCM. This finding highlights the importance of collecting samples at different depths in the
water column when comparing seasonal variations and has significant ramifications for global
marine studies that most often take samples only from the surface or, at most, from one single
subsurface photic zone depth.

The majority of the persistent microbes (summer and winter) represent widespread and
abundant (photo)heterotrophic microbes characterised by small genome size and low GC
content (and likely a small cell size and more efficient absorption of nutrients), following the
streamlining theory [88]. The lower GC content observed in the near-surface stratified water
has been suggested to be a natural adaptation to reduce nitrogen demand in these environments
with a severe depletion of bioavailable nitrogen [245]. It seems likely that these capabilities
allow for better adaptation to overcome the environmental disturbances produced during winter

mixing and subsequent phytoplankton blooms. Conversely, almost the other half of the
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community was present only during summer, where most of them were found to be restricted
to the ultraoligotrophic UP layer. Our results are in agreement with other studies that detected
the absence of these resilient microbes during winter when the water column was mixed, and
a maximum in mid-summer, mostly limited to surface waters [12—14]. Moreover, one small
part of the population (<10% of the genomes) recruited only during winter. Taxonomic and
functional classification of these microorganisms designated them as opportunistic prokaryotes
(r-strategists) that grow rapidly, taking advantage of the mixing of the water column and
subsequent upwelling of nutrients. These genomes were characterised by having a large
genome size (> 3.0 Mb) and a high GC content (>50%), contrastingly to the persistent
prokaryotic community. Additionally, these genomes also possess multiple clusters for
degrading a wide range of substrates as well as genes responsible for flagellum biogenesis and
motility, which are typical metabolic properties of heterotrophic bacterial communities
associated with high nutrient inputs [246].

We also characterised the distribution of rhodopsins in our samples. Since their first
discovery in marine bacteria [39], several studies have vertiginously increased the knowledge
of their function and diversity [38, 42, 43, 147, 156, 157, 238, 247-249]. Rhodopsins are among
the most widespread genes in the photic zone worldwide [40, 44, 250]. They are very diverse
and are distributed throughout most taxa. From our data, we could extrapolate that total
numbers of thodopsin-assigned reads were correlated to light intensity, with a maximum at 15
m, where ca. 65% of the genomes contain rhodopsin, followed with a decrease through depth.
Our results seem to be different from the situation in the permanently stratified central North
Pacific, where the maximum was found at the DCM [250]. However, we believe that our results
are in agreement with observations about the microbial community and the physicochemical
composition in the UP. It is in this ultraoligotrophic region where bacteria need to cope with
the low DOM concentration of these waters. To do that, they rely on solar energy to keep up
the energetic balance of the cell. The produced ATP (or even the H" gradient) can be used to
fuel the active transport of nutrients, while they use the very low dissolved organic matter to
fill the cellular NAD(P)H, which is needed in anabolism (bacterial growth and cell division).
For instance, Kim and colleagues [251] constitutively expressed a cyanobacterial rhodopsin in
E. coli cells, supplemented with minimal medium with limited glucose as the sole carbon
source and operated under three different illumination conditions (always illuminated and
switched on and off every 15 min and 12 h). Only in those experiments were illumination was

always on, the chemostats were not washed out. Conversely, the DCM is in contact with higher
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pools of inorganic nutrients from deeper waters and is more appropriate for photosynthetic
microbes.

When we phylogenetically classified the assembled rhodopsin sequences, we detected that
these genes clustered primarily by phylum and later by depth, with many branches containing
only upper or lower photic zone varieties. This result confirms the stenobathic character of
most groups at the finer level of diversity resolution of one widespread gene. Moreover, we
found a consistent pattern of correlation between the absorption spectrum and the phylogenetic
affiliation of the host genome. For instance, while Bacteroidetes and Actinobacteria all carried
green rhodopsins, Proteobacteria mostly had the blue variety. The findings suggest, unlike
previously reported findings [44, 252] that the spectral tuning of rhodopsins may not be related
to depth adaptation but tend to be associated with the classification of the microbe instead.

Lastly, following the same approach, we characterised the changes in the abundance and
types of the assembled GH. We detected that, overall, the number of GH genes was similar at
the different layers of the water column. However, the GH families varied with depth,
suggesting specialisation in the degradation of different polysaccharides that is likely
connected with specific groups of algae or particles. Furthermore, between the two most GH-
encoding groups, Bacteriodetes and Verrucomicrobia, there was a minimal overlap of GH
families, indicating that although they share the same niche (most of them are found in the UP
region), they might be using different substrates. Remarkably, we found a few GH families in
the autotrophic Cyanobacteria, which suggests a new source to obtain organic carbon. Previous
studies described that picocyanobacteria (Prochlorococcus and Synechococcus) encode for an
ample amount of amino acid, peptide and sugar transporters [253—-255], which allow them to
uptake organic compounds. This “heterotrophy” can supply the primary autotrophic
metabolism (photosynthesis). In the end, it seems that mixotrophy is present in all the marine
Synechococcus and Prochlorococcus, and globally distributed in the photic zone of the oceans
[255]. Recently, it has been shown that mixotrophy can increase the viability of
Prochlorococcus marinus during extended periods of darkness. A coculture with marine
copiotroph, Alteromonas macleodii, may be supplying organic compounds to Prochlorococcus
[256, 257]. Our results, together with previous studies, highlight the mixotrophic nature of

marine picocyanobacteria, as several glycoside hydrolases are encoded in their genomes.
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5.2  The role of metagenomics to recover the active-replicating viral diversity

Metagenomics (and viromics) have also shed light into the vast uncultured diversity of
phages [86, 89, 172, 173, 175, 258, 259]. While viromics can be helpful to understand the total
viral community, metagenomics represents an important tool to study only those viral
communities that are undergoing viral lysis (their genomes are within the infected cells).
Despite the differences of the filter pore size applied for the collection of viral DNA in these
two methods, both serve to retrieve novel phages through metagenomic assembly and, in the
end, allow to understand the role of the viral population in the biosphere (“viral shunt”) and
their metabolic capacities (AMGs). The most notable example of how high-throughput
sequencing can provide new information about unknown viruses was the discovery of phages
infecting MG-II Euryarchaeota [174]. The lack of MG-II isolates, as well as for other well-
known uncultured marine microbes (i.e. Ca. Actinomarina minuta or the SAR86 clade, among
others) has hampered the retrieval of many phages infecting them. This is still true even for
cultured microbes, such as SAR11 or SAR116 clades, due to the fact that they are hard to get
in pure culture and only a small number of phages have been isolated (18 phages in SARI11
[260, 261] and only one phage for SAR116 [183]).

However, for Thaumarchaeota, one of the most abundant phyla in the deep ocean [129,
130] and with some representatives in pure culture [95, 100, 126], to date, no marine virus has
yet been isolated. Only two putative viral sequences had previously been retrieved by single-
cell genomics [237], fosmid libraries [235], together with one putative provirus within the
genome of Ca. Nitrosomarinus catalina SPOTO1 [126]. Very recently, the discovery of a set of
metagenomic sequences [262] (we named them marthavirus (MARine THAumarchaeota
VIRUS)) has largely improved our knowledge of these viruses. Within these novel viral
genomes, the presence of terminase, major capsid, prohead and portal proteins seemed to
affiliate them to the head-tailed Caudovirales group, representing the first member of this
group described so far for the crenarchaeal superphylum [263, 264]. Besides, phylogenetic
analyses of common proteins among our marthavirus sequences and some other archaeal
viruses, including some representatives from the phylum Euryarchaeota, indicated that they
formed a monophyletic clade representing a separate lineage from haloviruses and
magroviruses and evolutionarily distinct from the previous putative Thaumarchaeota viruses.
Furthermore, host and viral genome recruitments in 314 samples (at 70% nucleotide identity)
encompassing cellular and viral fraction, several seas and oceans, and different depths (photic

and aphotic), showed differences in the number of samples that were present host and viruses

65



Discussion

(64% and 14%, respectively). This striking difference in numbers suggests that our set of
viruses does not extend to the whole marthavirus community, which is likely composed by a
vast population with low intra-population diversity, given that most of the viral genomes
recruited reads at more than 99% nucleotide identity with minimal coverage below 95%
identity, but with significant divergence among groups.

Interestingly, some of the marthaviruses seemed to encode the AMG cobalamin
biosynthesis protein CobS in the variable region of the genome, which is involved in the final
step of the cobalamin biosynthesis. Cobalamin (vitamin B12) plays a vital role as a cofactor in
the synthesis of amino acids or DNA (i.e. cobalamin-dependent methionine synthase and
ribonucleotide reductase — RNR, respectively), as well as in other metabolic pathways [135].
However, its synthesis seems to be restricted to only a few taxa, including autotrophic
microorganisms such as the Thaumarchaeota or Cyanobacteria [135]. Given the role of this
essential cofactor in the central metabolism, the non-synthesizer organisms depend exclusively
on the availability of cobalamin (or its precursor) in seawater [ 135]. Some studies have reported
a relationship between the availability of vitamin Bi2 and the distribution and growth of
phytoplankton and bacterioplankton blooms [265]. This gene, as it happened in some
marthaviruses, has also been found in cyanophages, where it has been theorised that its role
could be potentially associated with RNR during the infection process [266]. However,
phylogenetic analysis showed that cobS encoded in cyanophages and marthaviruses were not
related to any cyanobacterial and archaeal cobS. Besides, given the low similarity between the
viral and prokaryotic CobS proteins, no data is supporting the idea that viral cobS genes share
the same function. Although undetected in our genomes, Ahlgren et al. reported, at the same
time than us, the existence of another distinct set of putative virus-infecting Thaumarchaeota
encoding for the AMG ammonia monooxygenase C (amoC) [182]. This enzyme is implicated
in the aerobic oxidation of ammonia to nitrite, which fuels the thaumarchaeal cells with energy
and reducing power [95]. However, in this case, this protein shares a high amino acid sequence
similarity (>90%) to the cellular Thaumarchaeota, suggesting that the viral protein has the same
function [182]. Nevertheless, our metatranscriptome of the cellular fraction (0.22-5 pm)
indicated that the cobS gene is actively transcribing during infection, as its transcription was
coupled with the MCP, which in cyanophages it transcribes during the last step of the infection
[267]. Therefore, this gene may have an essential role during the infection process that is thus

far unclear.
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5.3 Metagenomics recovery of novel genomes of the uncultured marine group

111 Euryarchaeota

One of the main topics of this Thesis has been the recovery of novel MAGs belonging to
marine group III Euryarchaeota. As it has been widely used by other authors [29, 156, 157,
219], metagenomic assembly and subsequent binning of genomic fragments is a successful
strategy for the discovery of novel microbial lineages. Indeed, this bioinformatics, culture-free
approach allowed to recover the first two genomes of their sister clade, the yet uncultured MG-
11 [144, 145], which very recently has been largely expanded with >200 new genomes [63, 64].
In this sense, from samples collected at different depths and in different places, we were able
to assemble eight MAGs belonging to MG-III. Analysis of the phylogeny, conserved synteny
and pairwise comparison of non-redundant sets of proteins indicated three divergent groups.
Six of them belonged to a novel lineage assembled from epipelagic waters, while the remaining
two came from deeper waters in the aphotic zone. One of them (CG-Bathy?2), composed only
by fosmids coming from the KM3 (Mediterranean Sea, 3000 m deep), was related with a set
of MG-III genomes retrieved from the very cold and deep ocean (Guaymas basin and Cayman
ridge, >2000 m deep) [146]. Conversely, given that most of the genomic fragments included
in CG-Bathy1 came from a sample collected at 600 m deep in the Mediterranean (highly saline,
relatively warm and extremely oligotrophic) might explain the appearance of CG-Bathyl as a
separate basal branch from the photic and aphotic MG-III genomes, the low level of synteny
and gene content among this MAG and the other genomes.

It is noteworthy that, except CG-Epil, which seems to be a cosmopolitan microbe, the
remaining MAGs were assembled with contigs/fosmids mostly coming from one sample. This
might be due to the low abundance of these groups in the oceans that can hamper their
assembly. Thus, only when these microbes are only abundant enough at specific sites
(endemism) or during a transient environmental condition causing a significant growth (i.e.
bacterial or phytoplankton blooms, replenish of nutrients after water mixing or upwelling of
nutrients, among others), they can be assembled. Previous studies based on 16S rRNA surveys
detected MG-III at very low abundance in the ocean [138, 150, 151, 268], and only in a small
number of studies, MG-II was present in an unusual much higher proportion [140, 151, 152].
Contrastingly, compared to MG-III, their sister clade MG-II is, very often, more abundant in
surface and deep waters [138, 139, 145, 146, 148, 269] and seems to be easily assembled from
metagenomes. Thus, it might explain the astounding difference in the number of genomes

publicly available in the NCBI (296 genomes of MG-II vs 19 genomes of MG-III, June 2019).
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Along these lines, our recruitment analysis indicated that the MG-III MAGs analysed
during this Thesis i) were not well-represented in metagenomes from cold water regions, such
as polar regions, the Baltic Sea or the northeast subarctic Pacific [158, 270, 271], while
previous studies showed the presence of MG-III in these habitats; ii) they were partitioned into
two very well-defined niches, while MAGs (CG-Epil to -6) assembled from the epipelagic
ocean were only present in the photic zone and CG-Bathyl and CG-Bathy2 were clearly meso-
or bathypelagic; and iii) they represented a very small fraction, accounting, in the best-case
scenario, up to 0.5 (CG-Epil) and 1% (CG-Bathy?2) of the prokaryotic community in the photic
and aphotic regions, respectively. Our results confirmed the previous idea that MG-III are
relatively minor components of the archaeal communities in the photic and aphotic zones.

Previous studies have correlated the abundance of MG-II with eukaryotic microorganisms.
For instance, an experimental study demonstrated that eukaryotic phytoplankton additions
could stimulate the growth of MG-II in bottle incubations [272]. Furthermore, a metagenomics
study analysed the succession of the marine microbiota, detecting the growth of MG-II after a
phytoplankton bloom where diatoms, small flagellates and picophytoplankton dominated
consecutively [273]. Thus, to know whether MG-II and MG-III respond to similar blooming
patterns, we measured the recruitment of MG-II in the same samples which MG-III were
assembled. However, we could not find any relationship between MG-II and MG-III, indicating
that, despite being closely related and using similar substrates (see below), MG-1I and MG-III
do not bloom concurrently.

Inference of the functional metabolism has been extensively studied for MG-II [63, 64,
144, 145]. They are (photo)heterotrophs, encoding for metabolic functions characteristic of
heterotrophs, including glycolysis, a TCA cycle, and electron transport chain (ETC). They can
deal with extracellular carbohydrates, proteins and fatty acids, as they encode for hydrolytic
enzymes. By contrast, given that the aforementioned low abundance of MG-III, the metabolism
of MG-III was previously understudied. For instance, the analysis of three fosmids from the
deep Mediterranean showed the presence of some fermentation-related genes, which led to the
hypothesis that they could be facultative anaerobes [139]. However, recent analyses, including
this Thesis [146, 153], suggest that they are aerobic heterotrophs. Besides, they encode for the
same main metabolic pathways (glycolysis, TCA cycle, ETC) and extracellular enzymes that
their sister clade MG-II, indicating that both groups (MG-II and MG-III) are functionally
equivalent in the marine biosphere, mainly modifying the carbon cycle. Despite their similarity,
they encode for different families of extracellular peptidases and GHs, which suggest a niche

differentiation among members of the same family [63, 64, 153] or between MG-II and MG-
68
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III [146]. This differences in the nutrient uptake and degradation might explain their variability
in their recruitment and may be the reason for MG-II and MG-III not blooming concurrently.
Remarkably, as it happened in MG-II [63, 64], epipelagic MG-III encoded for photolyase
and rhodopsin, genes that appeared absent in the aphotic MAGs. The phylogenetic
relationships of these genes, together with the multiple putative horizontal gene transfer (HGT)
events observed in the nearby genes, led us to hypothesise an ancestral “dark nature” for MG-
II1. In this way, these genes would have been “recently” transferred from mesophilic epipelagic
bacteria to MG-III, probably long after the massive HGT events that have been detected before
the diversification of several mesophilic archaeal clades but with sharing some metabolic traits
among MG-II and MG-III [136, 141]. Therefore, the acquisition of proteorhodopsins, together
with ultraviolet-protection photolyases, would have promoted a better adaptation to the

oligotrophic surface waters allowing MG-III clades to expand into new photic niches.
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Conclusions

Physicochemical and metagenomic analyses detected a strong stratification of the
water column during summer. In this sense, the first 100 m were divided into three
regions: UP, DCM and LP. Conversely, during winter, water column represented a

single mixed region (MIX).

Comparison of the 16S rRNA gene fragments derived from metagenomic reads
concluded that the prokaryotic community during the summer stratification
differed, at the level of phylum, along the three regions. The main difference
appeared within Archaea, absent in the UP but present at significant numbers in the

DCM and LP.

High-stringent metagenomic recruitment of reference genomes and MAGs
indicated a stenobathic distribution of most microbes, covering a 30-m-thick layer
of seawater. Therefore, vertical distribution should be considered as the major
element to study the prokaryotic community, rather than comparing single depth

samples collected from different places.

The comparison of the 16S rRNA gene fragments between summer and winter did
not indicate any marked difference in the prokaryotic diversity as long as the entire
water column is taken into account, rather than a single depth. Besides, genome
recruitment indicated that nearly half of the community was resistant to the seasonal
variation, including members that were mistakenly believed to disappear during

winter.

The number of rhodopsin genes was correlated to light intensity, where more than
half of the community in the UP contained a rhodopsin. Furthermore, the spectral
tuning of rhodopsins was not related to depth adaptation. Instead, it was associated

with the taxonomy of the microorganism.

Marthavirus sequences were phylogenetically classified as bona fide Caudovirales-
infecting Thaumarchaeota. These genomes showed a sparse distribution in several
metagenomic and viromic datasets. However, most of the metagenomic reads
recruited at more than 99% nucleotide identity, suggesting that marthaviruses may
form a population with low intra-population diversity, but with significant

divergence among groups.
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10.

11.

Marthaviruses encoded for a cobS, distantly related to the archaeal cobS. Although
its function has not been characterised, metatranscriptomic analysis showed an

active expression of this gene during infection.

Using genome-resolved metagenomics, eight new groups of planktonic marine

group III Euryarchaeota spanning different genera and families could be retrieved.

Genome comparisons between MG-III members showed a marked differentiation
at taxonomical and functional levels of MAGs assembled from photic or aphotic
samples. Genomes were then condensed into two big groups: Epipelagoarchaeota

and Bathyarchaeota.

Genome analyses indicated that MG-III had a heterotrophic lifestyle, with most of
the metabolic pathways and protein families for nutrient uptake and degradation

shared with the sister clade MG-11.

The presence of photolyases and rhodopsin genes encoded in Epipelagoarchaeota
supported the hypothesis that they were bona fide epipelagic microbes. The
acquisition of these genes stimulated a better adaptation to the oligotrophic surface

waters.
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Abstract

Background: The photic zone of aquatic habitats is subjected to strong physicochemical gradients. To analyze the
fine-scale variations in the marine microbiome, we collected seven samples from a single offshore location in the
Mediterranean at 15 m depth intervals during a period of strong stratification, as well as two more samples during
the winter when the photic water column was mixed. We were able to recover 94 new metagenome-assembled
genomes (MAGS) from these metagenomes and examine the distribution of key marine microbes within the photic
zone using metagenomic recruitment.

Results: Our results showed significant differences in the microbial composition of different layers within the
stratified photic water column. The majority of microorganisms were confined to discreet horizontal layers of no
more than 30 m (stenobathic). Only a few such as members of the SART1 clade appeared at all depths (eurybathic).
During the winter mixing period, only some groups of bloomers such as Pseudomonas were favored. Although
most microbes appeared in both seasons, some groups like the SAR116 clade and some Bacteroidetes and
Verrucomicrobia seemed to disappear during the mixing period. Furthermore, we found that some microbes
previously considered seasonal (e.g., Archaea or Actinobacteria) were living in deeper layers within the photic zone
during the stratification period. A strong depth-related specialization was detected, not only at the taxonomic level
but also at the functional level, even within the different clades, for the manipulation and uptake of specific
polysaccharides. Rhodopsin sequences (green or blue) also showed narrow depth distributions that correlated with the
taxonomy of the microbe in which they were found but not with depth.

Conclusions: Although limited to a single location in the Mediterranean, this study has profound implications for our
understanding of how marine microbial communities vary with depth within the photic zone when stratified. Our results
highlight the importance of collecting samples at different depths in the water column when comparing seasonal variations
and have important ramifications for global marine studies that most often take samples from only one single depth.
Furthermore, our perspective and approaches (metagenomic assembly and recruitment) are broadly applicable to other
metagenomic studies.

Keywords: Photic zone, Deep chlorophyll maximum, Mediterranean, Stratification, Stenobathic

* Correspondence: frvalera@umh.es

"Jose M. Haro-Moreno and Mario Lépez-Pérez contributed equally to this work.
'Evolutionary Genomics Group, Divisién de Microbiologia, Universidad
Miguel Herndndez, Apartado 18, San Juan de Alicante, 03550 Alicante, Spain
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.



Haro-Moreno et al. Microbiome (2018) 6:128

Background

Stratified systems are widespread on Earth, from micro-
bial mats to meromictic lakes and the temperate ocean.
A common factor of all stratified systems is strong verti-
cal physicochemical gradients [1, 2]. The large scale of
the oceanic environment makes the upper 100 m seem
relatively small. Nevertheless, this layer of the water col-
umn is one of the most biologically productive microbial
habitats in the biosphere [3]. The open ocean is far from
homogenous, and environmental conditions are strongly
affected by the depth in the water column [4, 5]. As the
depth increases, temperature declines, salinity increases,
and the availability of nutrient dwindles. Among these
factors, light attenuation is of paramount importance.
The main divide in aquatic environments tends to be be-
tween the photic zone, where light allows for photosyn-
thesis, and the aphotic zone, which is beyond the
compensation depth and where the available light (if
any) is insufficient to drive photosynthesis. The availabil-
ity of light is critical for primary productivity and hence
is the main limiting factor for organic matter production
throughout the water column [6]. The differences in the
microbiome between the photic and aphotic zones are
well known using a variety of approaches [4, 7-9]. Stud-
ies at global ocean scales such as those derived from the
Sorcerer 1I Global Ocean Sampling [10] or the more re-
cent Tara Oceans expedition [11] have provided essential
information on the composition, dynamics, and spatial
distribution of surface ocean microbial communities.
However, much less attention has been devoted to the
differences in the vertical distribution of microbial com-
munities. This lack of attention is particularly true of the
microbial assemblages within the photic zone, where
samples from a single depth are often considered repre-
sentative of the complete photic water column. However,
most offshore oceanic waters are permanently or seasonally
stratified, sometimes as deep as hundreds of meters, which
creates strong gradients of environmental parameters.

In the Mediterranean, the water column is seasonally
stratified, typically from March to November. A character-
istic and extensively studied phenomenon associated with
this stratification is the formation of the deep chlorophyll
maximum (DCM) [1], a maximum in chlorophyll concen-
tration that is associated with an increase in bioavailable
pools of nitrogen (N) and phosphorus (P) diffusing from
the mixed layer below the seasonal thermocline [12]. In
tropical waters, the DCM is a permanent feature, whereas
in the Mediterranean and other temperate waters, the
DCM is a seasonal phenomenon [13] that often appears
between 45 and 70 m deep [14], depending on the degree
of light penetration (dictated by the season of the year and
biological productivity).

During late autumn and winter, the temperature de-
crease near the surface leads to vertical mixing of the
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water column and promotes the upwelling of nutrients
(mainly dissolved organic carbon (DOC), P and N) from
the mesopelagic to the euphotic zone [15]. The availabil-
ity of these nutrients results in phytoplankton blooms
during spring [15]. When these blooms decay, a large
amount of nutrients is released, and this ecological dis-
turbance reshapes the composition of the prokaryotic
community [16—19]. The Mediterranean Sea is charac-
terized by a relatively high temperature (>13 °C)
throughout the entire water column. Although the mix-
ing depth is variable depending on the year, it is nor-
mally located beyond 200 m [20].

Previous studies have used denaturing gradient gel elec-
trophoresis (DGGE) [21], catalyzed reporter deposition-
fluorescence in situ hybridization procedure (CARD-
FISH), and clone libraries [22] to demonstrate the sea-
sonal variability of the prokaryotic community in the
northwestern Mediterranean observatory located in
Blanes Bay. However, most of these studies were based at
one single depth (surface). Furthermore, variations within
the community were predicted at the level of a class or at
most at the level of genera, ignoring the fact that within
the same species, different ecotypes have different niche
specialization, and therefore, they are found at different
depths, such as Prochlorococcus high-light and low-light
ecotypes [23]. Besides, many used PCR of 16S rRNA genes
introducing unknown biases, and many others relied on
FISH where mismatches on the probes can underestimate
the abundance of the different prokaryotic groups. Meta-
genome shotgun sequencing, genome reconstruction, and
metagenomics recruitment can give us a glimpse of the
uncultured community inhabiting in this region, and
changes in their concentration among different samples
can be followed at a much finer level.

Here, we have analyzed two temporal sampling efforts,
one with samples collected during the stratified period
every 15 m throughout the photic zone (down to 90 m)
and the other with samples collected during the winter
when the water column was mixed (at two depths, 20 and
80 m). To assess the variations in the community struc-
ture, we used genome-resolved metagenomics [24] to
measure the recruitment of reconstructed and reference
genomes at the different depths and conditions (stratified
or mixed), at high similarity thresholds. This allowed the
discrimination of different ecotypes within the same spe-
cies. We detected marked stratification of ecotypes that re-
flects species adaptation to live at defined depth range.
Furthermore, we detected a stable component of the photic
zone microbial community, which was present regardless
of the season or physicochemical parameters. Other mi-
crobes were more sensitive and appeared only in a specific
season. Our results highlight the importance of collecting
and comparing samples from multiple depths to under-
stand the dynamics between mixed and stratified waters.
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Results and discussion

Seawater samples from six depths in the photic zone
were collected at 15 m intervals (15, 30, 45, 60, 75, and
90 m) on a single day (between 8 am and noon) during
the stratification period (15 October 2015). For the com-
parison between the photic and aphotic regions, we also
collected another sample from 1000 m (the next day
starting at 8 am) from the same site. Another two sam-
ples were collected on 27 January 2015, during the win-
ter mixing at 20 and 80 m. With the exception of the
1000 m sample, all the samples were collected using a
hose directly connected to the filtration apparatus to
minimize processing time and to avoid bottle effects
(Additional file 1: Figure S1). The metadata and sequen-
cing results are described in Table 1.

Variability of environmental parameters

Because of the prolonged physical isolation and accumula-
tion of settled organic matter during the summer stratifi-
cation period, bottom waters were richer in both dissolved
and particulate inorganic nutrients (N and P) (Table 1 and
Additional file 1: Figure S2). However, layers within the
DCM were typically the richest of the photic zone, in
terms of biomass accumulation. The surface water
temperature for the samples taken during the stratification
period was 22.9 °C, decreasing to 14.5 °C in deeper layers
beyond the DCM. However, a similar temperature was
found to be constant through the entire water column in
winter (Table 1). Chlorophyll-a measurements indicated
that the DCM occurred between depths of 40—-60 m, just
below the seasonal thermocline (Fig. 1a). Chlorophyll-a
reached 0.8 mg m™>, almost one order of magnitude above
those from surface waters and 100 times those from deep
(1000 m) waters. Using flow cytometry, we measured the
absolute numbers of planktonic picoprokaryotes for the
whole water column (Fig. 1a). In the stratified period, the
maximum of Prochlorococcus (nearly 3.2 x 10* cells mL™Y)
and Symechococcus (1.35 x 10* cells mL™") were found in
the DCM peak. These values were one to two orders of
magnitude higher than those in surface waters. The distri-
bution of Prochlorococcus cells was wider than that of
Synechococcus (Fig. 1a), as previously described [25]. In
the winter sampling, the seawater column was mixed, and
no significant differences in temperature or any other
physical or chemical features were observed (Table 1). We
also measured the abundances of both heterotrophic and
autotrophic prokaryotes, which were highest in the shal-
lowest sample (20 m), though the relative abundance of
active heterotrophic bacterioplankton was higher in the
deepest sample (80 m) (Fig. 1a).

Depth and seasonal variation of the prokaryotic community
Using the number of similar reads (> 95% identity) among
metagenomes, we examined the relationship between the
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nine sequenced samples (Fig. 1b). The stratified samples
were clustered by depth, with three main branches corre-
sponding to (i) upper photic (UP, 15 and 30 m), (i) DCM
(45 and 60 m), and (iii) lower photic (LP, 75 and 90 m)
layers. As shown in Fig. 1b, despite the different depths at
which the mixed samples (MIX) were obtained (20 and
80 m), both clustered together within the group of DCM
samples. As expected, the bathypelagic 1000 m sample
appeared as an outgroup compared to all the photic zone
samples. Independently, the canonical correspondence
analysis (CCA) of the read annotations and environmental
parameters confirmed the clustering of samples according
to the depth and MIX with DCM (Fig. 1c). Inorganic nu-
trients (such as NOx and PO,>") increased with depth,
while ammonia correlated closely with chlorophyll-a, and
total organic carbon (TOC) increased at the surface to-
gether with water temperature (Fig. 1¢).

Measurements of Simpson’s Diversity Index at both
genus and species levels clearly indicated that bacterial
diversity increased continuously with depth only for the
stratified season (Additional file 1: Figure S3). The 15 m
sample was the least diverse of those from the photic
zone and was markedly predominated by Pelagibacter-
ales. At this depth, high light intensity and nutrient
depletion generate conditions that can be considered
extreme and that may result in the survival of only a few
microbial taxa. In deeper waters, diversity increased with
depth, particularly at the species level, reaching a max-
imum in our deepest sample at 1000 m (Additional file 1:
Figure S3). The larger diversity of microbes in bathypela-
gic waters might correlate with a capacity to degrade or
use a larger number of different substrates [26, 27].
While diversity increased with depth during stratifica-
tion, the constant value in the winter samples was simi-
lar to that of the photic region at both the genus and
species levels suggesting that the disturbances in the en-
vironment produce variations in the bacterial commu-
nity that diminish the diversity in favor of more adapted
species.

Together with diversity, other genomic parameters
also varied with depth, such as the GC content (Table 1).
The GC content was lowest at 15 m (ca. 38.6%) and
highest at 1000 m (ca. 45.9%) while remaining relatively
constant throughout the photic zone deeper than 15 m
and in the winter samples (ca. 41%). The lower GC con-
tent observed in the near-surface stratified waters has
been suggested to be a natural adaptation to reduce N
demand in these environments with a severe depletion
of bioavailable N pools [28].

Metagenome-derived 16S rRNA profiles revealed
broad, depth-dependent variations in taxonomic ranges
during stratification (Fig. 1a). Archaea, absent in the UP
region, represent nearly 16% of the population at 90 m.
In the DCM and LP samples, Euryarchaeota remained
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Table 1 Summary statistics of the sampling, sequencing, and assembly parameters
MedWinter-  MedWinter-  Med- Med- Med- Med- Med- Med- Med-
JAN2015- JAN2015- OCT2015-  OCT2015- OCT2015- OCT2015- OCT2015- OCT2015- OCT2015-
20m 80m 15m 30m 45m 60m 75m 90m 1000m
Sampling parameters
Sampling data 1/27/2015 10/15/2015 10/16/2015
Collection depth (m) 20 80 15 30 45 60 75 90 1000
Sea bottom depth (m) 200 2647
Size 5-0.22 5-0.22
fraction (um)
Latitude (N) 38.06851 37.35361
Longitude (W) 0.231994 0.286194
Environmental parameters
Temperature (°C) 14.50 14.40 2290 1840 15.80 14.50 14.00 13.80 13.10
Chlorophyll (mg/m3) 046 0.21 0.10 0.24 0.78 0.36 0.26 0.08 0.01
Oxygen (mg/L) 9.59 942 7.09 8.77 9.00 7.66 7.16 6.88 6.10
TOC (mgC/L) 1.23 1.03 243 217 146 143 1.36 1.35 0.84
PO (M) 0.12 0.08 0.06 0.07 0.10 0.08 0.12 0.22 0.39
Total P (uM) 0.15 0.12 0.10 0.12 0.14 0.12 0.16 0.25 045
NO (uM) 3.26 3.89 0.20 0.21 0.25 0.23 579 6.23 8.24
NH, ™ (uM) 0.13 0.11 0.13 0.12 0.14 0.15 0.09 0.08 0.03
Total N (uM) 368 436 040 041 048 046 6.33 6.90 8.89
N:P ratio 23.81 3574 4.00 342 343 383 39.56 27.60 19.76
Sequencing statistics
Total bp (Gb) 159 153 199 15.1 3.1 153 16.9 15.0 14.8
Mean read length (bp) 92 91.9 1214 1172 1123 119.8 1214 120.2 1170
Mean GC (%) 40.7 411 386 414 404 406 413 41.1 459
Assembly statistics
Total bp (Mb) 203 201 7385 500.3 79.5 5773 7013 613.5 490.0
Mean GC (%) 38 39 385 357 355 386 389 40 422
Maximum contig length (Kb) 137 109 251 165 118 235 186 140 450
Contigs > 1 Kb 39,794 38491 172,484 125,642 17,760 145,031 173,153 153,245 115,711
Contigs > 10 Kb 869 885 4648 2198 202 2360 2789 2556 1807

constant (ca. 5%), while Thaumarchaeota increased from
1% in the 45 m sample to 10% of all the rRNA reads in
the 90 m sample. The abundance of Thaumarchaeota
correlated with a sharp decrease in ammonia concentra-
tion, although the main increase in Thaumarchaeota oc-
curred at 60 m, while ammonia concentrations showed
the lowest values at 75 m (Fig. 1a and Table 1).

Whereas Actinobacteria, Bacteroidetes, Cyanobacteria,
and Marinimicrobia were present in the whole water col-
umn, Deltaproteobacteria, Planctomycetes, Chloroflexi, and
Acidobacteria had a much more restricted range, appearing
only in deeper layers of the photic zone (Fig. 1a). Interest-
ingly, Verrucomicrobia were present at all depths except in
the 45 m sample. Using finer-scale taxonomic classification
of the 16S rRNA sequences, we found that UP (15 and
30 m) Verrucomicrobia belonged to Puniceicoccaceae,

whereas the members of Verrucomicrobiaceae were pre-
dominantly found below the DCM (Additional file 2:
Table S1). Although the results clearly reveal ecologically
distinct lineages that occupy different niches, we still
know very little about the ecophysiology of these Verruco-
microbia lineages in seawater. The proportion of 16S
rRNA gene reads assigned to unclassified bacteria also
increased with depth, from 3% at 15 m to more than 10%
at 90 m, indicating that a significant fraction of the
microbes at the subsurface is still uncharacterized.
Furthermore, our results indicate no significant changes
in prokaryotic diversity during seasonal fluctuations as
long as the entire water column is taken into account
rather than only a single depth. A homogeneous commu-
nity distribution similar to the DCM and LP samples was
observed in the MIX samples. For example, it has been
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suggested that through using pyrosequencing 16S rRNA
gene PCR amplicons in a surface sample (3 m depth) in
the northwestern Mediterranean Sea, Thaumarchaeota
MGI and Euryarchaeota MGII-B populations were more
abundant during winter [29]. However, our results show
that archaea were always present and abundant through-
out the water column during the winter but were almost
absent in the UP region during the stratification. Similar
observation was made using metatranscriptomes from the
stratified water column in the Gulf of Agaba/Eilat [30]. In
the same way as the Planctomycetes or Chloroflexi that
only appeared below the DCM (Fig. 1a). Even at lower
taxonomic ranks, the distribution was similar, except for

some specific families such as Sphingomonadaceae, Alter-
omonadaceae, and Pseudomonadaceae, that predomin-
antly increased in the deeper layers during the winter
(Additional file 2: Table S1). This finding highlights the
importance of collecting samples at different depths in the
water column when comparing seasonal variations and
has important ramifications for global marine studies that
most often take samples only from the surface or, at most,
from one single subsurface photic zone depth.

Metagenome-assembled genomes
The broad organismal distributions detected by 16S rRNA
genes or raw sequence annotation methods described
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above, however, do not shed light on the more subtle but
ecologically significant variations in community structure
or metabolic function that likely occur at the finer levels of
diversity, such as ecotypes, or even clonal lineages, within
species [31-34]. To investigate the distribution of the major
ecotypes present in the water column, we used stringent re-
cruitment of metagenomic reads for assemblies of locally
predominant metagenome-assembled genomes (MAGs).
We have used the same approach with several metagen-
omes obtained closer to the sampling site [35-37].

Overall, using a combination of different parameters,
such as GC content, metagenomics read coverage, and
tetranucleotide frequencies, we have retrieved new MAGs
belonging to phyla for which we obtained more than
5 Mb of assembled contigs (Additional file 3: Table S2 and
Additional file 1: Figure S4). These genomes were classi-
fied phylogenomically using concatenated sequences of
conserved proteins (Additional file 1: Figures S5-S12). In
the end, we were able to obtain 94 novel MAGs.

In general, genome assembly improved proportionally
with the abundance of the phylum. However, we found
that genomes of representatives from Bacteroidetes, Acti-
nobacteria, and Acidobacteria assembled better than ex-
pected based on their abundance by 16S rRNA
gene fragments recovered (Additional file 1: Figure S4 and
Additional file 2: Table S1). On the other hand, Cyanobac-
teria, Thaumarchaeota, and Pelagibacterales assembled
much more poorly. Both picocyanobacteria and Pelagibac-
terales are known to possess enormous intra-species di-
versity [38], which might be the reason why the assembly
for these two major components of the bacterioplankton
was very poor.

Relative abundance of the prokaryotic community

To examine the patterns of relative abundance and diver-
sity of the microbial communities among the metagen-
omes, we performed metagenomic recruitments of the
reads over the MAGs as well as several reference genomes
from public databases, taking into account only the reads
that match the genomes with a similarity >99% in our
metagenomic samples, thus representing finer levels of
diversity. To simplify, we set a threshold of three reads per
kilobase of genome and gigabase of metagenome (RPKG)
in at least one sample to establish the presence of these
genomes.

Fine taxonomic profile (eurybathic and stenobathic)

Additional file 1: Figure S13 shows the recruitment of
MAGs obtained from the stratified metagenomic sam-
ples of this study (from MED-GO1 to MED-G44), MAGs
from other metagenomic samples previously described
from the same site (from MED-G45 to MED-G94), and
several selected genomes of marine isolates sourced
from public databases (21 recruited more than 3 RPKG
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and are shown in the figure). It is remarkable how un-
even the recruitment depth profile was for the vast ma-
jority of the microbial genomes, particularly considering
that all the samples were collected on the same day (ex-
cept the 1000 m). All the genomes recruited much more
at one single specific depth and most (ca. 70%) recruited
only from metagenomes sampled at either one or two
consecutive depths (stenobathic). This result indicates
that the distribution of most of these microbes only
extends over a 30-m-thick layer within the ca. 100 m
deep photic zone. Only one of the photic zone genomes,
Sphingomonadaceae MED-GO3, recruited in the 1000 m
sample. This genome actually recruited more at this
depth and it may be the only truly eurybathic microbe
among the ones assembled here. The actinobacterial
genomes seemed to be the next most eurybathic, and
although they always appeared to be more prevalent at a
single depth, they were detectable at four depths, with the
lone exception of the single cell genome SCGC-AAA015
-MO09 [39] (only found at 15 and 30 m). Alphaproteobac-
teria (with the exception of Pelagibacterales), such as most
Bacteroidetes and Gammaproteobacteria, were only de-
tected at one or two depths. Most microbes were prefer-
entially found at the UP or DCM depths except for some
archaea. For example, members of the MGI Thaumarch-
aeota and some groups of Euryarchaea appear to prefer
the LP (Additional file 1: Figure S13). Ca. Nitrosopelagicus
brevis [40] and Nitrosopumilus MED-G94 possess the
complete cluster for ammonia oxidation and are expected
to increase with depth due to the much higher availability
of its major substrate (ammonia). Moreover, their abun-
dance in this region is also correlated with the light inten-
sity attenuation in deeper waters due to the ammonia
oxidation photoinhibition [41]. We utilized the relatively
large collections of available pure culture genomes of
picocyanobacteria and used the ones that had contigs with
high similarity (close to 100%) as proxies of local genomes.
Synechococcus MAGs were practically identical (>99.2%
average nucleotide identity [ANI]) to the isolated ge-
nomes, whereas Prochlorococcus MAGs where closely re-
lated but not identical (97-98% ANI) (Additional file 1:
Figure S8). Recruitments of cultured picocyanobacteria
occurred over a range similar to the locally assembled ge-
nomes, and again, the clear depth preferences were appar-
ent. In Cyanobacteria, there are low/high light-adapted
ecotypes, as has been repeatedly described in several
oceanic regions [23, 42]. The first 45 m were dominated by
the HLI clade (the pure culture Prochlorococcus MED4 and
the MAG Prochlorococcus MED-G72) with a peak in
abundance at approximately 30 m, which then decreased
below this depth when clade LLI (Prochlorococcus NATL1A
and Prochlorococcus MED-G73) appeared. On the other
hand, Symechococcus genomes were not detected deeper
than 30 m (Additional file 1: Figure S13).



Haro-Moreno et al. Microbiome (2018) 6:128

Seasonal dynamics of the community structure

To analyze the impact of the strong winter convection on
the community, we included two more samples obtained
in winter (January 2015) at 20 and 80 m depth, during the
period when the water column is fully mixed. Using the
previous criteria, we found that despite the strong variabil-
ity in the physicochemical parameters (light, temperature,
and nutrients), 47% of the genomes were found in both
the mixed and the stratified periods. In fact, based on rela-
tive abundances, microbes that were found only in small
ranges of 15 to 30 m deep during the stratified period
were present at similar values at both depths (20 and
80 m) when the water column was mixed (Fig. 2a).
Among the groups that were always present, 21 out of 49
(43%) were Alphaproteobacteria and Cyanobacteria
(mainly the SAR11 clade and Synechococcus, respectively).
Some less abundant, but nevertheless resistant, taxa
(always present) included members of the Actinobacteria
families Acidimicrobiaceae (MedAcidi-G1, G2A, G2B, G3)
and Ca. Actinomarinaceae (Ca. Actinomarina minuta),
three SAR86 clade genomes within Gammaproteobacteria
and the Bacteroidetes family Flavobacteriaceae (Fig. 2a, b).
Most of these groups represent ubiquitous and abundant
heterotrophic microbes characterized by a small genome
size and low GC content (and likely a small cell size and
more efficient absorption of nutrients) (Fig. 3), highly
adapted to oligotrophic environments by metabolic stream-
lining (K-strategists) [43—47]. This persistence could be due
also to their ability to use organic matter along with light
energy through light-dependent proton pumps (rhodop-
sins). It seems likely that these capabilities allow for better
adaptation to overcome the environmental disturbances
produced during winter mixing and subsequent phyto-
plankton blooms. Unlike what the literature has described
so far, we measured a temporal persistence of some taxa
previously considered sporadic or rare, such as archaea
[22, 29, 48, 49]. Although these taxa only recruit below
the photic zone during the stratified period, members of
the ammonia-oxidizing group I Thaumarchaeota and
groups II and III Euryarchaeota were always found to be
present in the water column.

Conversely, most of the microbes that we found only
during winter could be considered opportunistic (r-strat-
egists or bloomers) and are microbes that grow rapidly,
taking advantage of the sporadic inputs of organic
matter that appear in the environment. However, al-
though they can be easily retrieved in pure culture,
they are usually rare in seawater. These microbes
could be associated with the decay of the phytoplank-
ton blooms and higher nutrient levels [50, 51]. We
were able to assemble seven genomes only found in
winter that were classified within the Actinobacteria,
Gammaproteobacteria, Verrucomicrobia, Bacteroidetes,
and Euryarchaeota phyla (Fig. 2). As was previously
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shown in Fig. 3, these genomes were characterized by
having a large estimated genome size (> 3.0 Mb) and a
high GC content (>50%). Additionally, these genomes
also possess multiple clusters for degrading a wide
range of substrates as well as genes responsible for fla-
gellum biogenesis and motility, which are typical meta-
bolic properties of heterotrophic bacterial communities
associated with these phytoplankton blooms [50].
Remarkably, 46 MAGs were only present during strati-
fication, being totally absent in winter (Fig. 2). Many of
these MAGs were members of the phyla Bacteroidetes
(12 genomes), Verrucomicrobia (4 genomes), members
of the SAR116 clade of the Alphaproteobacteria
(Additional file 1: Figure S6) and the OM60/NOR5 clade
within the class Gammaproteobacteria (Additional file 1:
Figure S10). The vast majority of these genomes were
found to be restricted to the UP layer. However, members
of MGII archaea, OM182, and SUPO5 clades of
Gammaproteobacteria, that also disappear in winter,
came from deeper layers (DCM and LP). A seasonal
analysis carried out in surface waters of Blanes [22],
Bermuda [18], and the North Sea [52] showed varia-
tions in the concentration of members of these clades
throughout the year, with a maximum in mid-summer
and a near absence in winter when the water column
was mixed and which were mostly limited to surface
waters [22, 52, 53] in agreement with our data.

Depth stratification of rhodopsins

Rhodopsins have been shown to be among the most
widespread genes in the photic zone worldwide [54—56].
They are very diverse and are distributed throughout
most taxa. We found 28 rhodopsin genes in both winter
samples, but just one gene recruited only in winter and
not during stratification. This rhodopsin (within the
MAG Verrucomicrobia MED-G86) was analyzed in de-
tail (see below) and belonged to the Planctomycetes-Ver-
rucomicrobia-Chlamydiae (PVC) superphylum. In the
end, a total of 105 out of 196 rhodopsin genes (53%) re-
cruited only during stratification, 46% in both, and just 1
rhodopsin gene only in winter.

We evaluated the numbers of rhodopsins among the
individual reads and calculated their frequency per gen-
ome, normalizing them by the number of single copy
housekeeping genes (recA and radA) and by their gene
length (Fig. 4b). The total numbers of rhodopsin-assigned
reads were clearly correlated to light intensity, with a max-
imum at 15 m, where ca. 65% of the genomes contain a
rhodopsin, which then decreased with depth. This result is
different from the situation in the permanently stratified
central North Pacific, where the maximum was found at
the DCM [56]. Conversely, for winter samples, the
number of rhodopsins was similar regardless of depth
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the mixing event.

We assembled 168 rhodopsin genes throughout the
stratified water column. All of the genes were classified at

least at the phylum level based on the flanking genes
(Fig. 4a). The phylogenetic analysis revealed a large diversity
of this gene family, and at least 11 major evolutionary line-
ages were detected. All the assembled rhodopsin genes
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clustered with previously described groups, indicating that
surveys may have achieved saturation with the extant diver-
sity of rhodopsins, at least in the oligotrophic ocean photic
zone. Rhodopsin sequences clustered primarily by phylum,
with the exception of euryarchaeal rhodopsins as previously
reported [36, 57]. Within the proteorhodopsin cluster, we
clearly differentiated a separate cluster including only Bac-
teroidetes sequences (Fig. 4a). Within the clusters, rhodop-
sin sequences were also grouped by depth, with many
branches containing only upper or lower photic zone var-
ieties. This result confirms the stenobathic character of
most groups at the finer level of diversity resolution.

Rhodopsin genes from our metagenomic assemblies
and from the MicRhoDE database [58] were used to re-
cruit reads from the different depths (Fig. 4c). We ob-
served no correlation between the predicted absorption
spectrum (blue versus green light) of the rhodopsins and
of the depth from which they recruited the most reads.
In contrast, we did see a consistent pattern of correl-
ation between the absorption spectrum and the phylo-
genetic affiliation of the host genome; Bacteroidetes and
Actinobacteria all carry green rhodopsins, while Proteo-
bacteria largely have the blue variety. The findings sug-
gest, as previously reported [55, 59], that the spectral
tuning of rhodopsins may not be related to depth adap-
tation but tend to be associated with the classification of
the microbe instead.

Interestingly, within the MAG Verrucomicrobia MED-
G86 (3.19 Mb and 55% GC content), we found the unique
rhodopsin that recruited only in the MIX samples but not
in the stratified. This is the first marine rhodopsin that
clustered together with a novel clade of freshwater rhodop-
sins [60, 61] affiliated closely with the Exiguobacterium

rhodopsins [62], confirming that this group is a characteris-
tic of the Planctomycetes-Verrucomicrobia PVC superphy-
lum (Additional file 1: Figure S14). Since this is the first
marine representative, we searched in the Tara Oceans as-
sembled contigs >5 Kb for similar members in this group.
Eight genomic fragments containing rhodopsin that clus-
tered with this novel branch were retrieved (Additional file 1:
Figure S14). It is remarkable that although two sequences
came from the Mediterranean Sea (stations 009 and 030),
the remaining six came from the North and South Pacific
Oceans (stations 093, 094, 102, 109, 128, and 136). Further-
more, within the novel clade, we found another rhodopsin
subcluster formed only with Tara sequences. However, the
contigs that contained these sequences differed from the
others in GC content, with low values between 35 and 40%
instead of the high GC values found in Verrucomicrobia
MED-G86 and the freshwater MAGs (Additional file 1:
Figure S14). Unfortunately, we failed to classify taxonomic-
ally these contigs due to the ambiguous annotation of their
proteins (proteins were annotated either as Verrucomicrobia
or Planctomycetes).

Functional analysis of the stratified and mixed water column
To make a functional characterization of the microbial
community associated with the metagenomes, we used
the assembled coding sequences collected from contigs
> 1 Kb against the SEED Subsystems database [63]. Clus-
tering of level 1 subsystems (Fig. 5a) revealed a marked
discontinuity between UP samples and the other sam-
ples, indicating unique characteristics of surface waters,
while once again, the DCM and MIX samples clustered
together, demonstrating that they are similar on a func-
tional level, in concordance with the taxonomic clustering
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based on PCA (Fig. 1a). After comparing the number of
proteins assigned to each subsystem, we found significant
differences (based on the standard deviation among
samples) mainly involving carbohydrates, membrane
transport, and motility and chemotaxis.

Carbohydrates

To study the taxonomical and in-depth distribution of the
genes encoding the glycoside hydrolases (GH) family of
enzymes, which are involved in the breakdown of complex
sugars, we compared all the proteins extracted from con-
tigs larger than 5 Kb assigned to the phyla Actinobacteria,
Bacteroidetes, Euryarchaeota, Thaumarchaeota, and Ver-
rucomicrobia, as well as the classes Alphaproteobacteria
and Gammaproteobacteria (all of which comprised more
than 85% of the metagenomic 16S rRNA gene reads for all
the samples), against the CAZy database [64].

The phylogenetic distribution of the CAZy genes was an-
alyzed, considering the number of GH per 1000 genes (EQ)
and the abundance normalized by the percentage of 16S
rRNA gene reads of each group (NORM). Figure 5b shows
that the abundance varied across bacterial phyla, and most
of the genes were mainly derived from Verrucomicrobia,
Bacteroidetes, and Cyanobacteria. Thaumarchaeota showed
no GHs within the contigs, demonstrating an inability to
degrade complex polysaccharides, as was expected from
chemolithoautotrophs [40, 65]. Notably, within each group,
the number of GH genes was similar at the different layers
of the water column, although the types of GHs were differ-
ent, suggesting specialization in the degradation of different
polysaccharides that is likely connected with specific groups
of algae or particles.

As expected [16, 66], Bacteroidetes was the group with
more enzymes (74.3 GHs/1000 genes) (Fig. 5b). Cluster-
ing based on the abundance of the samples showed that
Bacteroidetes from DCM and LP samples grouped to-
gether and separated from UP, which in turn was close
to the MIX samples. We found some predominant GH
families in winter, the two most abundant were
endo-f-1,3-glucanases of the families GH5 and GH17,
and a GH30 exo-B-1,6-glucanase (Fig. 5c). These en-
zymes are involved in the cleavage of the main storage
polysaccharide (B-glucan) present in brown algae (lami-
narin) and in diatoms (chrysolaminarin) [67].

Verrucomicrobia represented the second group that in-
cluded the largest number of GH genes, with 54.3 GHs/
1000 genes analyzed. The results showed that the majority
of the GHs present in Verrucomicrobia were different
from Bacteroidetes, indicating that members of these
phyla may be utilizing different carbohydrate substrates
(Fig. 5¢). As with Bacteroidetes, we found that the number
of GH families was higher in Verrucomicrobia from UP
than in DCM and LP. This result suggests that deeper
Verrucomicrobia shows less variability in degrading
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potential substrates. Specifically, we found an overrepre-
sentation of alpha- and beta-galactosidases, xylanases,
fucosidases, agarases, and endoglucanases in UP Verruco-
microbia. The most abundant family at all depths was
GH109, with the only known activity being that of an
a-N-acetylgalactosaminidase that might degrade the pep-
tidoglycan of the cell walls [68].

Remarkably, Cyanobacteria was the third group with a
higher number of GHs (Fig. 5b). Unlike the previous cases,
the type of GH family was similar in all the samples and
was associated with amylose degradation (GH13 and
GH57—a-amylase; GH77—amylomaltase). These three GH
families were also found in Actinobacteria (UP and MIX)
and in Euryarchaeota (LP), which shared the same meta-
bolic potential. Additionally, clustering showed that Cyano-
bacteria from DCM and MIX shared similar values for the
families GH19 and GH24, both with chitinase/lysozyme ac-
tivities. Thus, the degradation of complex sugars (i.e., amyl-
ose or chitin) increases their capability to obtain organic
carbon. It has been described that both Cyanobacteria (Pro-
chlorococcus and Synechococcus) also harbor genes that en-
code a wide number of amino acid, peptide, and sugar
transporters [69—71], which allow them to uptake organic
compounds, that together with the ability to obtain energy
using the sunlight (mixotrophy) seems to be present in all
the marine Synechococcus and Prochlorococcus, and globally
distributed in the photic zone of the oceans [71]. Recently,
it has been shown that mixotrophy can increase the viabil-
ity of Prochlorococcus marinus during extended periods of
darkness, due to the coculture with a marine copiotroph,
Alteromonas macleodii, which may be supplying organic
compounds to Prochlorococcus. Our results, together with
previous studies, highlight the mixotrophic nature of mar-
ine picocyanobacteria, as several glycoside hydrolases are
encoded in their genomes.

Although Alpha- and Gammaproteobacteria comprised
>50% of the prokaryotic community (based on the meta-
genomic 16S rRNA gene reads), they possessed very low
numbers of GHs (14.1 and 16.6 GHs/1000 genes, respect-
ively), indicating a different functional role in the marine
ecosystem.

Membrane transport

We analyzed the abundance of genes affiliated with
membrane transport using KEGG modules. PCA ana-
lysis was performed to determine the clustering of the
samples (Additional file 1: Figure S15). The results
showed that the mixed samples clustered together and
separated from the stratified samples, which, in turn, were
also clustered by depth for UP and LP samples, while the
DCM samples showed a more dispersed distribution. In
terms of nutrient acquisition, we found transport systems
(ATP-binding cassettes and phosphotransferases) related
to iron, phosphonate, polyamines (putrescine/spermidine),
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Fig. 5 a SEED subsystems-based heatmap using the assembled coding sequences coming from contigs > 1 Kb. Proteins were grouped by depth
(stratified samples UP, DCM, and LP) and season (MIX). For each one of the SEED categories, values were normalized by their standard score
(z-score). b Number of glycoside hydrolases (GHs) detected in all the contigs > 5 Kb assigned the different phyla using the Carbohydrate-Active
enZYmes (CAZy) database. EQ, number of GH per 1000 genes analyzed. NORM, number of GH per 1000 genes normalized by the percentage of
16S rRNA reads. ¢ Heatmap of the different GH families. Abundance of GH was clustered by phylum and depth of the samples
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oligopeptides, and sugars, and several heavy metal resis-
tances such as the cobalt-zinc-cadmium (CzcA) efflux sys-
tem, which are typically components of the flexible
genome of some bloomers [72], were enriched in the
winter-mixed samples. This wide variety of transporters
might allow for uptake and use of a large quantity of
phytoplankton-derived compounds. During the stratifica-
tion, in the lower layers of the water column beyond the
DCM, in addition to putative specific transporters for
Archaea (A2 holin family), we found a higher proportion
of ABC di/oligopeptide transporters. TonB-dependent
transporter proteins are relatively abundant particularly in
UP. These transporters allow the uptake of scarce re-
sources (ie., iron complexes and other nutrients [73])
from nutrient-limiting environments such as surface
layers due to their high affinity. Choline and betaine up-
take proteins that play an important role in bacterial
osmoregulation and stress tolerance were also abundant
in the UP [74]. For instance, the SAR11 clade, which based
on 16S rRNA data is the most abundant here, was
enriched in these transporters that are highly active
based on transcriptome data [75].

Motility and chemotaxis

Motility is another adaptation that differentiates copio-
trophs from oligotrophs [45]. Despite that UP presents the
highest value in abundance of genes related to the SEED
category “motility and chemotaxis,” this region is domi-
nated by members of the SAR11 clade, which have no
genes encoding for flagellar synthesis or chemotaxis pro-
teins. Manual inspection of the contigs including these pro-
teins revealed an enrichment in high GC-content microbes
mainly from Alpha- (Sphingomonadadales and SAR116)
and Gammaproteobacteria (Oceanospirillales) classes.
These genomes probably assembled better due to the lower
intra-species diversity. Remarkably, within the group of
MIX samples, bacteria from MedWinter-JAN2015-80m
exhibited a significantly large number of genes involved in
chemotaxis but not for biosynthesis of the flagella in
comparison with all the other samples (Additional file 4:
Table S3). These results suggest that a mechanism to
sense and respond to the chemicals likely released by
phytoplankton is an important competitive advantage for
opportunistic bacteria during winter when the access to
nutrients increases. Other functions reflected the inter-
action with phytoplankton blooms, for example, the inclu-
sion of modules involved in the detoxification of reactive
oxygen species (ROS) since phytoplankton are the most
important source of ROS in the water column [76] or pep-
tidases to process phytoplankton-derived organic matter
[77]. Many studies have demonstrated that there is a mu-
tualistic or parasitic interaction between bacteria and
phytoplankton [50].
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Conclusions

The photic zone of aquatic habitats is subjected to sev-
eral strong gradients of environmental parameters. In
the Mediterranean, similar to in most temperate seas,
thermal stratification appears only during warmer pe-
riods, typically from May to November, while in winter,
the water column is mixed and the gradient of nutrients
disappears. Although there is abundant information
about the prokaryotic community composition during
the stratified and mixed periods, most previous works
derive from 16S rRNA-related techniques (such as FISH
or barcoding approaches). These approaches do not have
enough resolution at the species or ecotype levels. Here,
we have used metagenome recruitment as an alternative
to detect specific MAGs and some previously described
genomes to assess the distribution of specific microbial
genomes in a fine depth profile (every 15 m) from an
stratified and also in a mixed water column during winter.
We found major depth-associated shifts in the community
structure during the stratified period and that, particularly
at the level of fine variation, most microbes had a distribu-
tion covering only a ca. 30-m-thick layer of seawater and
were stenobathic. During the stratified period, it is neces-
sary to consider the vertical distribution as the major
element instead of comparing single depth samples. Thus,
we found that some microbes previously considered rare
or seasonal (such as archaea or Actinobacteria) are actu-
ally resistant to seasonal variations. These microbes gener-
ally live in deeper layers within the photic zone during the
stratification period (Fig. 6). Our results also indicate a
strong specialization not only at the taxonomic level but
also at the functional level, even within the different
clades, for the manipulation and uptake of specific poly-
saccharides and likely for the succession of different
bloom events. This finding has important ramifications
for global marine studies that most often take samples
only at the surface or, at most, from one single subsurface
photic zone. Moreover, the description of seasonal dynam-
ics within the water column has important implications in
the analysis and response to future alterations in the water
conditions due to climate change. Mainly, an increase of
the seawater temperature will produce a change of the
physical mixing dynamics, where the upwelling of nutri-
ents from the deeper layers to the surface will be pre-
vented, reshaping the microbial community structure. As
a result, this will have direct consequences on microbial
metabolism, which will modify the marine global biogeo-
chemical cycles (mostly carbon and nitrogen) [78].

Methods

Sampling, sequencing, assembly, and annotation

Six samples from different depths were taken for meta-
genomic analyses on 15 October 2015 at a single site
from the western Mediterranean (37.35361° N, 0.286194°
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Fig. 6 A graphic summarizing the prokaryotic community dynamics in both stratified and winter seasons. In winter (left panel), physicochemical
parameters like temperature (T, in red) and nitrogen (N, in green) do not vary with depth throughout the photic zone, and microorganisms
extend over the mixed water column. In summer and part of the autumn (right panel), the stratification of the water column is mainly due to the
differences in temperature between surface and deep waters. During this season, three major regions divide the photic zone: upper photic (UP),
deep chlorophyll maximum (DCM), and lower photic (LP), and therefore, most of the microorganisms are restricted to one specific region. Persistent
microorganisms (in black) are always present, independently of the season. During the mixed season, these microbes span over the water column,
while during summer, they inhabit preferentially one or more regions of the photic zone. During winter, some r-strategist microbes (in blue) can grow
easily due to the upwelling of nutrients from mesopelagic waters and the release of dissolved organic matter from phytoplankton blooms. Conversely,
some K-strategist microbes (in pink) only grow in summer, during the stratification event. LL, low light; HL, high light
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W), at approximately 60 nautical miles off the coast of
Alicante, Spain, from the research vessel “Garcia del
Cid.” These seawater samples (200 L each) were col-
lected from the uppermost 100 m at 15 m intervals
using a hose attached to a CTD (Seabird) connected to a
water pump, to directly transfer seawater from the se-
lected depth to the filtration system, and thus minimize
sample storage time and potential bottle effects
(Additional file 1: Figure S1). Each sample was filtered in less
than 30 min. Another sample from a depth of 1000 m was
taken the next day (16 October) in two casts (100 L each)
using the CTD rosette. Two more samples were collected
on 27 January 2015, at 20 and 80 m depth, at 20 nautical
miles off the coast of Alicante (38.068° N, 0.232° W).

All seawater samples were sequentially filtered on board
through 20, 5, and 0.22 pm pore size polycarbonate filters
(Millipore). All filters were immediately frozen on dry ice
and stored at — 80 °C until processing. DNA extraction
was performed from the 0.22 pm filter as previously de-
scribed [79]. Metagenomes were sequenced using [llumina
Hiseq-4000 (150 bp, paired-end read) (Macrogen, Repub-
lic of Korea). Individual metagenomes were assembled
using IDBA-UD [80]. The resulting genes on the assem-
bled contigs were predicted using Prodigal [81]. tRNA and

rRNA genes were predicted using tRNAscan-SE [82],
ssu-align [83], and meta-RNA [84]. Predicted protein
sequences were compared against NCBI NR databases
using USEARCHS6 [85] and against COG [86] and TIG-
FRAM [87] using HMMscan [88] for taxonomic and func-
tional annotation. GC content and richness in each
sample were calculated using the gecee program from the
EMBOSS package [89] and MEGAN6 Community Edition
[90], respectively.

Vertical profiles and chemical features

Vertical profiles of several physical, chemical, and biological
variables were determined in situ using a Seabird SBE 19
multiprobe profiler coupled to several fluorometric probes.
Variables measured were temperature (SBE), dissolved
oxygen (SBE43), pH (SBE27), chlorophyll-a concentration
(WETStar), phycoerythrin (Seapoint) and phycocyanin
(Turner) fluorescence, turbidity (Seapoint), and chromo-
phoric dissolved organic matter (cDOM) concentration
(Wetlabs). Other chemical variables, inorganic soluble
forms of nitrogen (NOx and ammonium), and phosphorus
(soluble reactive phosphorus), as well as total nitrogen
(TN) and total phosphorus (TP), were performed following
standard methods for water analyses [91]. Total organic
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carbon (TOC) was determined on a Shimadzu TOC-VCSN
Analyser. Quantitative determination of chlorophyll-a con-
centrations was determined by HPLC after extraction in
acetone following [92].

Microbial counts

The abundance of heterotrophic and autotrophic pico-
plankton (Symechococcus and Prochlorococcus) were
determined using a Coulter Cytomics FC500 flow cyt-
ometer (Brea, California, USA) equipped with two differ-
ent lasers, an argon laser (488 nm excitation) and a
red-emitting diode (635 nm excitation), and five detectors
for fluorescent emission (FL1-FL5). Quantitative counts
of heterotrophic bacterioplankton and its relative DNA
content (HDNA versus LDNA cells, as a relative measure
of activity) [93] were performed after cell DNA staining
with Sybr Green I (Sigma-Aldrich, Missouri, USA) follow-
ing [94]. Using the green fluorescence of Sybr Green I, the
argon laser allowed detecting the cells with the FL1 de-
tector (525 nm). The abundance of autotrophic picoplank-
ton was determined by combining the argon laser and the
red diode with the red fluorescence of chlorophyll-a and
phycobiliproteins, using the FL4 detector for the identifi-
cation of the populations of Synechococcus and Prochloro-
coccus. Their cells were differentiated by both their
fluorometric signature and size features. Cytometric par-
ameter settings were FSC (550), SSC (390), FL1 (600), FL2
(670), FL3 (670), FL4 (620), and FL5 (700). Analyses were
run for 160 s at the highest possible single flow rate
(128 pL min™"). Abundance of each population was calcu-
lated according to the formula: N = (n x 1000)/(g x ¢?),
where ¢ is the flow rate (microliter per minute), ¢ is the
duration (minutes) of the acquisition, # is the number of
events counted by the flow cytometer, and N is the num-
ber of cells per milliliter. Data were collected using the
Beckman Coulter software for acquisition “CXP Version
2.2 Acquisition,” and the analysis of the data was per-
formed using the Beckman Coulter software for analysis
“CXP Version 2.2 Analysis.”

Phylogenetic classification

A non-redundant version of the RDP database [95] was
prepared by clustering all available 16S/18S rRNA gene
reads (ca. 2.3 million) into approximately 800,000 clus-
ters at 90% identity level using UCLUST [85]. This data-
base was used to identify candidate 16S/18S rRNA gene
sequences in the raw metagenomes (subsets of 10 mil-
lion reads). Using USEARCH [85], sequences that
matched this database (E value < 107°) were considered
potential 16S rRNA gene fragments. These candidates
were then aligned to archaeal, bacterial, and eukaryal
165/18S rRNA HMM models [96] using ssu-align to
identify true sequences [83]. Final 16S/18S rRNA se-
quences were compared to the entire RDP database and
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classified into a high-level taxon if the sequence identity
was >80% and the alignment length > 90 bp. Sequences
failing these thresholds were discarded.

Binning and genome reconstruction

Assembled contigs longer than 10 Kb were assigned a
high-level taxon classification if > 50% of the genes shared
the same taxonomy. The rest of the contigs were grouped
together as unclassified. To bin the contigs into MAGs,
their taxonomic affiliation (including unclassified group)
was used together with the principal component analysis
of tetranucleotide frequencies, GC content, and coverage
values within the metagenomes collected in this work, to-
gether with those described in [36, 37]. Tetranucleotide
frequencies were computed using wordfreq program in
the EMBOSS package [89]. The principal component
analysis was performed using the FactoMineR package
[97] in R. Completeness of the MAGs was estimated by
comparison against two different universal gene sets, one
with 35 genes [98] and another with 111 genes [99], and
with CheckM, which also provides the degree of contam-
ination [100]. In order to improve the completeness and
remove the redundancy, a second assembly step was per-
formed combining the genomic fragments with the short
paired-end Illumina reads of the metagenomes from
which they were assembled. For each genome, we used
the BWA aligner [101] with default parameters to retrieve
the short paired reads that mapped onto the contigs.
These reads were then pooled and assembled together
with the contigs using SPAdes [102].

Metagenomic read recruitments

The genomes of known marine microbes together with
the genomes reconstructed in this study were used to
recruit reads from our metagenomic datasets using
BLASTN [103], using a cutoff of 99% nucleotide identity
over a minimum alignment length of 50 nucleotides. Ge-
nomes that recruited less than three reads per kilobase
of genome per gigabase of metagenome (RPKG) were
discarded.

Phylogenomic trees of the reconstructed genomes
Phylogenomic analysis was used to classify and identify
the closest relatives for all the reconstructed genomes.
Using HMMscan, we aligned the sequences against the
COG database. Shared proteins were concatenated and
aligned using Kalign [104]. A maximum-likelihood tree
was then constructed using MEGA 7.0 [105] with the
following parameters: Jones-Taylor-Thornton model,
gamma distribution with five discrete categories, and 100
bootstraps. Positions with less than 80% site coverage
were eliminated.
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Metagenomic cross-comparisons

Two different approaches were used to compare similar-
ities between metagenomic samples. First, a reciprocal
global alignment of the short Illumina reads (in subsets of
2 million reads > 50 bp) at >95% identity was performed
using USEARCH6. The results of the comparison were
then clustered with the hclust package in R using a euclid-
ean distance matrix. In a second approach, subsets of 20
million reads > 50 bp (where applicable) were taxonomic-
ally classified against the NR database using DIAMOND
[106] with a minimum of 50% identity and 50% alignment.
The resulting alignment was later analyzed with MEGAN6
Community Edition, and a canonical correspondence ana-
lysis (CCA) was inferred with the cluster analysis option
and a Bray-Curtis ecological distance matrix.

Rhodopsins

One hundred sixty-eight rhodopsin sequences were
extracted from all the metagenomes from assembled
contigs longer than 5 Kb. These sequences were pooled
with 100 more rhodopsins of fungal, archaeal, viral, and
bacterial origin obtained from databases. Sequences were
aligned with MUSCLE [107] and a maximum-likelihood
tree was constructed with MEGA 7.0 (Jones-Tay-
lor-Thornton model, gamma distribution with five
discrete categories, and 100 bootstraps, positions with
less than 80% site coverage were eliminated). Blue versus
green light absorption was determined as described pre-
viously [108]. To compare the abundance of microbial
rhodopsins with depth, we initially created a database
containing our metagenomic rhodopsin sequences and
approximately 7,900 rhodopsin genes obtained from the
MicRhoDE  database  (http://micrhode.sb-roscoff.fr).
Metagenomic reads (in subsets of 20 million sequences)
were recruited to these rhodopsin sequences using
BLASTN (=50 bp alignment, > 99% identity). Rhodopsin
sequences that recruited > 1 RPKG were kept for further
analyses. In parallel, metagenomic reads were compared
to the NR database using DIAMOND (blastx option, top
hit, > 50% identity, > 50% alignment length, E value < 107°).
The abundance of rhodopsin genes in each metagenome
was estimated from the number of reads matching rhodop-
sin sequences in NR, normalized by the number of reads
matching recA/radA sequences and by their respective
gene length. Reads matching viral or eukaryotic proteins
were not taken into account.

Analysis of glycoside hydrolases

Predicted protein sequences of contigs longer than 5 Kb
previously taxonomically classified were compared against
the Carbohydrate-Active enZYmes (CAZy) database [64].
Using dbCAN [109], sequences that matched as glycoside
hydrolases (GH) with an E value < 1le™® were kept for
further analyses.
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Functional classification of the assembled proteins

All the proteins encoded within the assembled contigs
>1 Kb were selected, and their putative functionality was
inferred against the SEED subsystems [63] and KEGG
[110] databases for each metagenome analyzed. Proteins
were compared to the SEED database using DIAMOND
(blastp option, top hit, >50% identity, >50% alignment
length, E value < 107°). GhostKOALA [111] was used to
classify the sequences against the KEGG database.

Additional files

Additional file 1: Figure S1. Method used for sampling. Water was
pumped through a hose directly on to the filters instead of using the Niskin
bottles rosette. Figure S2. Bar plot showing the concentration of inorganic
nutrients in both stratified (blue) and mixed (red) samples. Figure S3.
Simpson Diversity Index versus depth. Figure S4. Assembled contigs. A) Size
of individual contigs to the left and total assembled size to the right for each
phylum. Proteobacteria was divided into its class-level taxonomy. The number
of contigs longer than 10 Kb that were taxonomically classified is indicated
within brackets. B) Individual contribution of each metagenome to the total
assembled size. Figure S5. Phylogenetic analysis of Actinobacteria
metagenome-assembled genomes (MAGs). A maximum likelihood genome
tree was constructed with 100 bootstraps using 31 conserved proteins among
the 20 genomes compared. Black circles represent bootstrap values. Between
brackets: ANI, average nucleotide identity; COV, percentage of genome
sequence shared. In red, those MAGs retrieved in this work. Figure S6.
Phylogenetic analysis of Alphaproteobacteria MAGs. A maximum likelihood
genome tree was constructed with 100 bootstraps using 46 conserved
proteins among the 40 genomes compared. Black circles represent bootstrap
values. Figure S7. Phylogenetic analysis of Bacteroidetes MAGs. A maximum
likelihood genome tree was constructed with 100 bootstraps using 21
conserved proteins among the 29 genomes compared. Black circles represent
bootstrap values. Figure S8. Phylogenetic analysis of Cyanobacteria MAGs. A
maximum likelihood genome tree was constructed with 100 bootstraps using
286 conserved proteins among the 45 genomes compared. Black circles
represent bootstrap values. Figure S9. Phylogenetic analysis of Euryarchaeota
MAGs. A maximum likelihood genome tree was constructed with 100
bootstraps using 26 conserved proteins among the 20 genomes compared.
Black circles represent bootstrap values. Figure S10. Phylogenetic analysis of
Gammaproteobacteria MAGs. A maximum likelihood genome tree was
constructed with 100 bootstraps using 32 conserved proteins among the 44
genomes compared. Black circles represent bootstrap values. Figure S11.
Phylogenetic analysis of Verrucomicrobia MAGs. A maximum likelihood
genome tree was constructed with 100 bootstraps using 79 conserved
proteins among the 25 genomes compared. Black circles represent bootstrap
values. Figure S12. Phylogenetic analysis of Thaumarchaeota MAGs. A
maximum likelihood genome tree was constructed with 100 bootstraps using
129 conserved proteins among the 17 genomes compared. Black circles
represent bootstrap values. Figure S13. Relative abundance of the recon-
structed and reference genomes measured by recruitment (RPKG, reads per
kilobase of genome and gigabase of metagenome) from the different depths
of the stratified metagenomes. To show the relationships among genomes, a
maximum likelihood genome tree was constructed using all the conserved
proteins (number in colored square). Each MAG (in blue) has been assigned a
name derived from their position in the phylogenomic tree built with the
closest known relatives from databases and presented in Additional file 1:
Figures S5-512). Black genomes are from databases (cultures, single amplified
genomes, SAGs, or MAGs). Figure S14. Phylogenetic analysis of a novel
rhodopsin branch of Verrucomicrobia-Planctomycetes superphylum in marine
waters. The evolutionary history was inferred by using the maximum likelihood
method based on the JTT matrix-based model. A discrete gamma distribution
was used to model evolutionary rate differences among sites (five categories).
All positions with less than 80% site coverage were eliminated. Sequences in
green were isolated from freshwater systems. Colored circles on the right
side of sequences indicate the GC content (%) of the contig containing the
rhodopsin. Protein sequences were downloaded from NCBI database
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(www.ebiac.uk/ena). Accession numbers are within brackets. Figure S15.
Abundance of genes affiliated with membrane transport function based on
KEGG modules using principal component analysis (PCA) for each of the

maximum; LP, lower photic; MIX, mixed water column (PDF 5881 kb).

Additional file 2: Table S1. Relative abundance of 165 rRNA reads.
(XLSX 25 kb)

Additional file 3: Table S2. Summary statistics of the reconstructed
genomes obtained from metagenomes. (XLSX 16 kb)

Additional file 4: Table S3. Relative abundance of functional gene
categories related to motility and chemotaxis at subsystem level 3 (SEED
database). The highest value for each one has been highlighted in red.
(XLSX 13 kb)

(www.ncbinlm.nih.gov). Tara contigs were downloaded from ENA database

individual metagenomics samples. UP, upper photic; DCM, deep chlorophyll
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Figure S5. Phylogenetic analysis of Actinobacteria metagenome assembled genomes

(MAGs). A maximum likelihood genome tree was constructed with 100 bootstraps using 31 conserved
proteins among the 20 genomes compared. Black circles represent bootstrap values. Between brackets:
ANI, average nucleotide identity; COV, percentage of genome sequence shared. In red, those MAGs
retrieved in this work.
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Figure S6. Phylogenetic analysis of Alphaproteobacteria MAGs. A maximum likelihood
genome tree was constructed with 100 bootstraps using 46 conserved proteins among the 40
genomes compared. Black circles represent bootstrap values. In red, those MAGs retrieved in this work.
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Figure S9. Phylogenetic analysis of Euryarchaeota MAGs. A maximum likelihood
genome tree was constructed with 100 bootstraps using 26 conserved proteins among the 20 genomes
compared. Black circles represent bootstrap values. In red, those MAGs retrieved in this work.
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Figure S10. Phylogenetic analysis of Gammaproteobacteria MAGs. A maximum

likelihood genome tree was constructed with 100 bootstraps using 32 conserved proteins
among the 44 genomes compared. Black circles represent bootstrap values. In red, those MAGs
retrieved in this work.
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Figure S11. Phylogenetic analysis of Verrucomicrobia MAGs. A maximum

likelihood genome tree was constructed with 100 bootstraps using 79 conserved proteins
among the 25 genomes compared. Black circles represent bootstrap values. In red, those MAGs
retrieved in this work.



e

-

t

}—(ANI% ; COV%)
Tree scale: 0.5+——

e 0 @O
50 75 100

o

S

>
&

o &

& e°‘Q

0O

.
&
&

e

O Nitrosopumilus sp. LS_AOA
O Nitrosopumilus sp. BACL13 MAG-120910-bin56

O Nitrosopumilus sp. BACL13 MAG-121220-bin23

}v— (89.9 ; 81.7%)

O Nitrosopumilus sp. PRT-SC01

O Nitrosopumilus sp. Nsub

' Nitrosopumilus MED-G94

O Nitrosopumilus maritimus

O Nitrosopumilus sp. AR

O Ca. Nitrosopumilus piranensis D3C
O Ca. Nitrosopumilus koreensis AR1
O Nitrosopumilus sp. SJ

O Ca. Nitrosopumilus adriaticus NF5
O Ca. Nitrosopumilus salaria BD31
O Ca. Nitrosoarchaeum koreensis MY'1
O Ca. Nitrosoarchaeum limnia BG20
O Ca. Nitrosoarchaeum limnia SFB1

‘ Ca. Nitrosopelagicus brevis

Figure S12. Phylogenetic analysis of Thaumarchaeota MAGs. A maximum likelihood
genome tree was constructed with 100 bootstraps using 129 conserved proteins among the 17 genomes
compared. Black circles represent bootstrap values. In red, those MAGs retrieved in this work.
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Figure S13. Relative abundance of the reconstructed and reference genomes measured

by recruitment (RPKG, Reads per Kilobase of genome and Gigabase of metagenome) from the
different depths of the stratified metagenomes. To show the relationships among genomes, a maximum
likelihood genome tree was constructed using all the conserved proteins (number in colored square). Each
MAG (in blue) has been assigned a name derived from their position in the phylogenomic tree built with
the closest known relatives from databases and presented in Figures S5 to S11). Black genomes are from
databases (cultures, single amplified genomes, SAGs or MAGSs).
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Figure S14. Phylogenetic analysis of a novel rhodopsin branch of Verrucomicrobia-
Planctomycetes superphylum in marine waters. The evolutionary history was inferred by using the
Maximum Likelihood method based on the JTT matrix-based model. A discrete Gamma distribution
was used to model evolutionary rate differences among sites (5 categories). All positions with less
than 80% site coverage were eliminated. Sequences in green were isolated from freshwater systems.
Colored circles on the right side of sequences indicate the GC content (%) of the contig containing the
rhodopsin. Protein sequences were downloaded from NCBI database (www.ncbi.nim.nih.gov). Tara
contigs were downloaded from ENA database (www.ebi.ac.uk/ena). Accession numbers are within
brackets.
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Figure S15. Abundance of genes affiliated to membrane transport function based on

KEGG modules using Principal Component Analysis (PCA) for each of the individual metagenomic
samples. UP: upper photic, DCM: deep chlorophyll maximum, LP: lower photic and MIX: mixed water
column.



Table S1. Relative abundance of 16S rRNA reads.

MedWinter- MedWinter- ~ Med- Med- Med- Med- Med- Med-
Domain Phylum Class Family JAN2015- JAN2015- OCT2015- OCT2015- OCT2015- OCT2015- OCT2015- OCT2015-

20m 80m 15m 30m 45m 60m 75m 90m

Archaea 7.30 5.04 0.03 0.79 6.67 11.12 13.59 15.78
Euryarchaeota 4.45 272 | 0.02 0.72 5.04 5.59 4.97 5.81
Thermoplasmata f 1.85 1.04 i 0.00 0.25 1.56 235 1.99 268
Methanomassiliicoccaceae 0.36 0.12 0.00 0.07 0.02 0.16 0.16 0.20
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Saprospiraceae 0.06 0.02 0.00 0.05 0.02 0.10 0.02 0.00

unc_Bacteroidetes } 0.34 0.45 $ 0.51 0.54 0.33 0.30 0.10 0.22

candidate division ZB3 | 0.00 0.00 | 007 0.16 0.07 0.02 0.06 0.04
Chloroflexi 0.40 0.28 0.02 0.07 0.13 0.77 1.11 2.14
unc_Chloroflexi ) 0.38 0.27 i 0.00 0.00 0.11 0.65 1.03 1.96

Cyanobacteria 6.54 508 | 583 9.79 4.89 5.35 7.92 3.24
Cyanobacteria { 6.54 5.08 § 5.83 979 4.89 5.35 7.92 3.24

Family | 0.22 0.13 0.00 0.05 0.02 0.02 0.06 0.02

Family Il 6.18 4.90 5.75 9.61 4.67 5.26 7.80 3.10

Family IX 0.14 0.03 0.03 0.05 0.11 0.02 0.00 0.04

Deinococcus-Thermus 0.13 0.15 0.05 0.02 0.02 0.00 0.08 0.02
Deinococci f 0.13 0.15 5 0.05 0.02 0.02 0.00 0.08 0.02

Deinococcaceae 0.12 0.15 0.05 0.02 0.02 0.00 0.04 0.02

Firmicutes 0.27 053 | 012 0.25 0.64 0.57 0.49 0.88
Bacilli § 0.09 0.29 % 0.03 0.05 0.20 0.14 0.12 0.20

Alicyclobacillaceae 0.00 0.13 0.02 0.00 0.02 0.00 0.02 0.08

Clostridia I 0.00 0.18 i 0.07 0.14 0.33 0.36 0.31 0.48

Clostridiaceae 1 0.00 0.04 0.02 0.05 0.00 0.10 0.06 0.12

Peptococcaceae 1 0.00 0.01 0.00 0.00 0.04 0.06 0.12 0.08

Negativicutes 5 0.00 0.03 E 0.00 0.02 0.09 0.08 0.04 0.16

Veillonellaceae 0.00 0.00 0.00 0.02 0.09 0.08 0.04 0.16

Marinimicrobia 248 2.32 117 3.1 5.42 4.58 5.17 6.27
Nitrospinae 0.16 0.14 0.00 0.02 0.04 0.38 1.09 0.92
Nitrospinia 2 0.16 0.14 0.00 0.02 0.04 0.38 1.09 0.92

Nitrospinaceae 0.00 0.14 0.00 0.02 0.04 0.38 1.09 0.92

Planctomycetes 1.14 0.96 0.34 0.23 0.15 0.77 1.15 1.02
Phycisphaerae i 0.11 0.10 0.14 0.1 0.04 0.26 0.35 0.34

Phycisphaeraceae 0.11 0.10 0.14 0.11 0.04 0.26 0.35 0.34

Planctomycetia i 0.00 0.84 0.17 0.1 0.11 0.51 0.80 0.64

Planctomycetaceae 0.00 0.77 0.17 0.11 0.09 0.49 0.64 0.48

unc_Planctomycetia 0.00 0.07 0.00 0.00 0.00 0.00 0.16 0.16

Proteobacteria 64.86 70.47 80.82 73.93 66.90 61.43 55.39 56.01

Alphaproteobacteria E 41.62 44.29 57.82 52.05 45.54 42.26 34.82 34.06

Acetobacteraceae 0.08 0.07 0.02 0.00 0.02 0.00 0.06 0.04

Bartonellaceae 0.15 0.14 0.03 0.00 0.02 0.06 0.02 0.02

Bradyrhizobiaceae 0.08 0.14 0.12 0.09 0.07 0.12 0.16 0.10

Caulobacteraceae 0.23 0.63 0.14 0.14 0.02 0.00 0.04 0.00

Erythrobacteraceae 0.06 0.23 0.03 0.05 0.02 0.04 0.12 0.04

Hyphomonadaceae 0.12 0.57 0.00 0.00 0.00 0.00 0.00 0.00

Hyphomicrobiaceae 0.06 0.05 0.03 0.00 0.02 0.06 0.06 0.04

Magnetococcaceae 0.08 0.02 0.17 0.14 0.22 0.08 0.06 0.06

Methylocystaceae 0.02 0.01 0.03 0.02 0.00 0.02 0.00 0.00

Parvularculaceae 0.01 0.05 0.00 0.00 0.00 0.16 0.10 0.00

Phyllobacteriaceae 0.09 0.13 0.03 0.05 0.02 0.00 0.02 0.00

Rhodobacteraceae 277 2.06 292 2.59 4.29 1.60 0.70 0.42

Rhodospirillaceae 2.10 1.50 2.83 2.21 1.23 1.84 1.07 1.02

SAR11 24.80 27.62 39.30 37.87 32.68 30.01 26.18 26.17

Sphingomonadaceae 0.38 1.81 0.74 0.16 0.13 0.18 0.55 0.26
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Spirochaetes

Verrucomicrobia

unc_Bacteria

Betaproteobacteria

Deltaproteobacteria

Gammaproteobacteria

unc_Proteobacteria

Spirochaetia

Opitutae

Subdivision3
Verrucomicrobiae

unc_Verrucomicrobia

unc_Alphaproteobacteria
unc_Rhizobiales
unc_Rhodospirillales

Burkholderiaceae
Methylophilaceae
Rhodocyclaceae
unc_Betaproteobacteria
unc_Burkholderiales

Bacteriovoracaceae
Desulfuromonadaceae
unc_Deltaproteobacteria

Alcanivoracaceae
Alteromonadaceae
Alteromonadales_incertae_sedis
Coxiellaceae
Ectothiorhodospiraceae
Enterobacteriaceae
Halomonadaceae
Legionellaceae
Oceanospirillaceae
Pseudoalteromonadaceae
Pseudomonadaceae
Shewanellaceae
Thiotrichales_incertae_sedis
Vibrionaceae
Xanthomonadaceae
unc_Chromatiales
unc_Gammaproteobacteria

unc_Oceanospirillales

Spirochaetaceae

Puniceicoccaceae

Verrucomicrobiaceae

10.72
0.33

0.39
0.00
0.00

0.02
0.36

0.05
0.02
0.39
21.34
0.00
0.10
0.05
0.27
0.02
0.21

0.03
0.12
0.07

0.03
0.00

0.00
0.02
18.97

0.00
0.63

0.09
0.05
1.85

1.70
0.03

0.07
0.03

1.53

8.10
0.23

0.29
0.00
0.05

0.05
0.16

0.05
0.05
0.50
20.08
0.00
0.18
0.02
0.07
0.00
0.1

0.02
0.07
0.07
0.27
0.07
0.00

0.02
0.14
17.78

0.02
0.77

0.23
0.18
2.18

1.69
0.11

0.20
0.18

1.94

5.11
1.41

0.44
0.02
0.24

0.07
0.02

0.00
0.00
0.77
18.04
0.02
0.18
0.04
0.02
0.02
0.13

0.04
0.13
0.07

0.00
0.04

0.02
0.02
15.44

0.02
2.03

0.13
0.11
0.62

0.35
0.09

0.04
0.13

2.88

6.86
0.91

0.40
0.04
0.16

0.08
0.10

0.22
0.00
1.23
13.40
0.02
0.34
0.00
0.10
0.14
0.06

0.04
0.02
0.06

0.00
0.02

0.00
0.02
10.85

0.08
3.75

0.04
0.04
2.04

0.49
0.24

0.61
0.65

5.16

5.09
0.35

0.35
0.04
0.19

0.02
0.02

0.12
0.08
1.75
12.63
0.00
0.21
0.02
0.14
0.14
0.08

0.08
0.02
0.06

0.02
0.00

0.02
0.06
10.37

0.00
5.42

0.02
0.02
1.35

0.21
0.04

0.58
0.47

5.1

527
0.24

0.16
0.00
0.10

0.02
0.00

0.16
0.04
1.96
13.56
0.00
0.16
0.00
0.08
0.22
0.16

0.06
0.04
0.04

0.00
0.00

0.02
0.08
11.05
0.74
0.04
5.63

0.00
0.00
1.56

0.24
0.02

0.64
0.58

5.75
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Table S2.- Summary statistics of the reconstructed genomes obtained from metagenomes.

- . o %Completeness Raes / % Contamination
#icontigs  Size (Mb)  %GC (+SD) Albertsen / CheckM CheckM
Bacteria
Bacteria MED-G45 22 0.45 31.9(1.1) 88.6/50.0/45.9 0.0
Bacteria MED-G46 24 1.23 35.0 (1.4) 94.3/65.7/68.1 0.0
Bacteria MED-G47 36 0.72 28.2 (1.3) 82.9/56.8/51.7 0.0
Actinobacteria
Acidimicrobiales MED-G01 37 1.96 53.1(0.5) 85.7/63.1/87.7 0.8
Ca. Actinomarinales MED-G02 22 0.49 34.1(1.5) 88.6/56.8/45.0 1.3
Microbacterium MED-G48 199 1.66 66.6 (2.1) 60.0/44.1/55.1 0.0
Alphaproteobacteria
Sphingomonadaceae MED-G03 69 3.15 66.3 (1.0) 100.0/83.8/95.3 0.2
SAR116 MED-G04 65 1.56 57.4 (1.4) 74.3/67.6/79.5 0.5
SAR116 MED-G05 58 1.66 57.1(1.3) 80.0/61.3/67.3 0.0
SAR116 MED-G06 85 1.67 61.1(1.2) 42.9/52.25/80.5 0.5
Rhodobacteraceae MED-GO7 41 1.1 40.2 (0.9) 17.1/33.3/56.6 0.0
Rhodobacteraceae MED-G08 39 2.21 42.5(1.2) 100.0/80.2/89.7 0.3
PS1 MED-G09 18 0.75 329(1.2) 77.1/64.9/56.6 0.4
HIMB59 MED-G10 42 0.99 30.2 (1.6) 91.4/73.9/74.7 1.1
Hyphomonas MED-G49 127 3.16 58.8 (1.7) 97.1/77.5/954 0.8
PS1 MED-G50 50 1.32 455 (1.9) 97.1/80.2/75.3 0.3
Alphaproteobacteria MED-G51 38 1.16 29.5 (1.5) 88.6/63.1/68.8 0.0
Rhodobacteraceae MED-G52 48 1.39 39.9 (1.6) 74.3157.7162.7 0.0
SAR116 MED-G54 37 1.34 414 (1.2) 91.4/75.7/80.1 0.0
PS1 MED-G55 42 1.35 46.3 (1.3) 91.4/68.5/83.4 0.1
Alphaproteobacteria MED-G56 28 1.56 37.2 (0.8) 97.1/79.3/81.1 0.5
Bacteroidetes
Cryomorphaceae MED-G11 30 0.85 30.1(1.2) 91.4/65.8/73.9 0.0
Rhodothermaeota MED-G12 54 1.38 41.4 (1.9) 80.0/67.6/76.7 0.0
Bacteroidetes MED-G13 32 1.06 30.2 (1.8) 88.6/71.2/63.3 0.3
Cryomorphaceae MED-G14 43 1.06 28.6 (1.3) 85.1/61.3/66.5 0.0
Flavobacteriales MED-G15 55 0.93 374 (1.1) 17.1/31.5/55.2 1.7
Rhodothermaeota MED-G16 39 1.01 29.5(2.2) 80.0/60.4/54.9 0.6
Bacteroidetes MED-G17 17 1.67 35.4(0.8) 97.1/82.0/95.6 0.6
Rhodothermaeota MED-G18 38 1.24 31.4(2.1) 88.6/66.7/63.8 0.4
Rhodothermaeota MED-G19 25 1.31 29.8 (1.8) 94.3/76.6/68.4 0.9
Bacteroidetes MED-G20 60 1.27 30.1(1.2) 40.0/45.1/65.9 0.7
Bacteroidetes MED-G21 66 1.40 34.2(1.9) 91.4/721/74.4 0.0
Flavobacteriales MED-G22 32 1.06 36.5(1.2) 88.6/57.8/55.9 0.0
Flavobacteriales MED-G58 78 1.66 35.8 (1.1) 42.9/52.3/72.9 0.0
Flavobacteriales MED-G59 19 1.46 39.4 (1.5) 94.3/81.1/87.5 0.0
Cryomorphaceae MED-G60 27 1.08 30.3 (1.1) 91.4/721/67.7 0.1
Cryomorphaceae MED-G61 36 0.87 28.2(1.4) 80.0/66.6/66.9 0.0
Bacteroidetes MED-G62 35 0.79 30.1(1.7) 85.7/54.9/47.6 0.0
Cryomorphaceae MED-G63 38 0.83 29.1 (1.3) 457/451/61.9 0.0
Cryomorphaceae MED-G65 43 1.54 29.5 (1.4) 91.4/71.2/81.2 0.2
Cyanobacteria
Synechococcus MED-G67 30 1.68 62.2 (1.5) 94.3/70.3/81.5 0.3
Synechococcus MED-G70 36 1.80 63.1 (2.5) 77.1/64.9/84.4 0
Prochlorococcus MED-G72 22 1.28 30.5(1.4) 85.7/67.6/79.4 0
Prochlorococcus MED-G73 37 0.78 35.7 (1.6) 74.3/54.1/55.8 0
Gammaproteobacteria
SUP05 MED-G23 36 0.85 55.6 (1.4) 77.1/57.7/62.6 0.0
OM182 MED-G24 86 2.09 55.2 (0.7) 40.0/51.4/75.2 1.1
SUP05 MED-G25 33 1.61 51.3(1.7) 88.6/77.5/86.3 1.2
OM60/NORS5 MED-G26 62 1.28 53.7 (0.8) 17.1/39.6/55.2 0.0
OM60/NOR5 MED-G27 68 2.02 52.9 (1.4) 91.4/69.4/81.6 0.1
OM182 MED-G28 25 2.95 43.9 (0.9) 94.3/82.9/88.7 0.5
SAR92 MED-G29 53 1.29 42.5(1.2) 100.0/76.6/71.1 0.0
Pseudomonas MED-G74 304 4.06 63.9 (3.0) 40.0/51.4/73.4 1.1
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OM60/NOR5 MED-G75 40 0.92 52.6 (0.7) 77.1/52.3/53.3 0.0
SUP05 MED-G77 56 1.19 47.0 (1.0) 91.4/76.6/69.3 0.6
SAR86 MED-G78 25 0.75 33.1(1.3) 88.6/65.8/54.2 0.0
SAR86 MED-G79 7 1.00 33.1(0.8) 94.3/79.3/74.7 0.0

Gammaproteobacteria MED-G80 29 1.31 35.5(1.1) 94.3/73.9/63.0 1.4
SAR86 MED-G82 38 0.80 35.2 (1.3) 74.3/55.9/51.2 0.0
SAR86 MED-G83 11 0.94 36.6 (0.9) 94.3/80.2/75.4 0.0
SAR86 MED-G84 33 0.86 35.9(1.2) 94.3/66.7 / 50.8 0.1
SAR86 MED-G85 15 1.06 31.3(0.8) 94.3/76.6/63.3 0.0
Verrucomicrobia

Puniceicoccaceae MED-G30 67 1.73 52.6 (2.2) 97.1/73.9/89.9 0.0
Puniceicoccaceae MED-G31 40 1.1 429 (2.1) 94.3/63.1/65.2 0.0
Puniceicoccaceae MED-G32 30 0.67 38.3 (1.5) 91.4/60.4/69.6 0.0
Verrucomicrobia MED-G86 101 3.19 55.0 (1.2) 77.1/73.9/95.0 0.7
Puniceicoccaceae MED-G87 52 1.68 49.8 (1.9) 85.7/73.9/92.1 0.0
Verrucomicrobia MED-G88 75 1.44 38.5(2.2) 40.0/34.2/51.8 0.0
Euryarcheaota
EUIl MED-G33 66 1.27 48.3 (1.2) 60.0/19.8/57.3 0.0
EUIl MED-G34 31 1.03 53.8 (1.6) 57.1/24.3/59.4 0.0
EUIl MED-G35 29 1.20 52.7 (3.3) 68.6/26.1/65.4 0.0
EUIl MED-G36 40 0.89 43.8 (1.4) 74.3/21.6/56.4 0.0
EUIl MED-G37 25 1.28 45.4 (1.3) 85.7/129.7/71.7 0.0
EUIl MED-G38 21 1.37 35.9(0.9) 54.3/26.1/73.9 0.0
EUIl MED-G90 23 1.46 49.5 (3.9) 91.4/31.5/85.9 0.8
EUIl MED-G91 19 1.73 48.6 (1.4) 88.6/29.7/79.7 0
EUIl MED-G92 11 1.50 51.9 (1.3) 91.4/30.6/81.6 0
EUIl MED-G93 20 1.37 38.1(0.9) 88.6/32.4/82.0 0
Thaumarchaeota

Nitrosopumilus MED-G94 16 1.24 31.2(0.8) 97.1/32.4/100.0 0

Pelagibacterales
Pelagibacterales MED-G39 28 0.53 30.5(1.3) 65.7/36.0/43.6 0.2
Pelagibacterales MED-G40 8 0.91 29.6 (1.4) 74.3/70.3/89.8 0.0
Pelagibacterales MED-G41 18 0.37 28.0 (1.8) 77.1/52.3/35.7 0.0
Pelagibacterales MED-G42 26 0.83 28.8 (1.7) 31.4/523/77.4 0.0
Pelagibacterales MED-G43 22 0.42 29.4 (1.7) 74.3/58.6/57.8 0.0
Pelagibacterales MED-G44 28 0.53 29.7 (2.7) 20.0/29.7/39.6 0.0
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Table S3. Relative abundance of functional gene categories related to Motility and Chemotaxis at subsystem level 3 (SEED database). The highest value for each one has been highlighted in bold.

Flagellar biosynthesis protein Med-Oct-2015- Med-OCT2015- Med-OCT2015- Med-OCT2015- Med-OCT2015- Med-OCT2015- -JAN2015
15m 30m 45m 60m 75m 90m 20m JAN2015-80m

Flagellar motor rotation protein MotB 0.053 0.036 0.005 0.024 0.012 0.011 0.023 0.023
Flagellar regulatory protein FleQ 0.044 0.015 0.005 0.012 0.006 0.008 0.005 0.011
Flagellin protein FlaA 0.040 0.026 0.022 0.020 0.019 0.014 0.003 0.002
Flagellar hook protein FIgE 0.033 0.020 0.000 0.009 0.004 0.003 0.000 0.007
Flagellar biosynthesis protein FIhA 0.029 0.026 0.011 0.015 0.008 0.006 0.005 0.009
Flagellar basal-body rod protein FIgG 0.028 0.015 0.005 0.011 0.005 0.004 0.002 0.011
Flagellar biosynthesis protein FIhB 0.027 0.028 0.005 0.013 0.007 0.006 0.005 0.011
Flagellar P-ring protein Figl 0.027 0.011 0.005 0.010 0.007 0.002 0.000 0.005
Flagellum-specific ATP synthase Flil 0.025 0.017 0.011 0.010 0.007 0.006 0.002 0.007
Flagellar motor rotation protein MotA 0.025 0.021 0.022 0.013 0.011 0.011 0.000 0.014
Flagellar motor switch protein FIiG 0.025 0.019 0.011 0.010 0.005 0.005 0.002 0.011
Flagellar hook-length control protein FliK 0.023 0.026 0.027 0.038 0.050 0.047 0.023 0.013
Flagellar M-ring protein FliF 0.023 0.014 0.005 0.007 0.004 0.001 0.000 0.005
RNA polymerase sigma factor for flagellar operon 0.023 0.014 0.005 0.012 0.009 0.006 0.003 0.004
Flagellin protein FlaB 0.022 0.013 0.005 0.008 0.005 0.005 0.000 0.002
Flagellar basal-body rod protein FigC 0.022 0.014 0.005 0.010 0.006 0.004 0.000 0.004
Flagellar biosynthesis protein FliP 0.021 0.016 0.005 0.010 0.007 0.004 0.005 0.007
Flagellar L-ring protein FIgH 0.021 0.009 0.000 0.005 0.002 0.001 0.002 0.005
Flagellar basal-body rod protein FigB 0.020 0.012 0.000 0.008 0.004 0.004 0.000 0.007
Flagellar biosynthesis protein FliQ 0.019 0.016 0.005 0.008 0.004 0.003 0.003 0.007
Flagellar biosynthesis protein FIiR 0.019 0.016 0.005 0.007 0.003 0.004 0.002 0.007
Flagellar synthesis regulator FleN 0.019 0.014 0.005 0.007 0.005 0.003 0.000 0.005
Flagellar basal-body rod modification protein FIgD 0.019 0.014 0.000 0.005 0.002 0.002 0.002 0.005
Flagellar motor switch protein FliM 0.019 0.016 0.005 0.007 0.007 0.005 0.003 0.009
Flagellar motor switch protein FIiN 0.018 0.019 0.022 0.011 0.008 0.008 0.002 0.009
Flagellar hook-basal body complex protein FIiE 0.018 0.012 0.005 0.009 0.008 0.007 0.000 0.009
Flagellar protein FigJ 0.017 0.006 0.005 0.009 0.005 0.002 0.000 0.005
MotA/TolQ/ExbB proton channel family protein 0.014 0.009 0.005 0.006 0.004 0.003 0.005 0.005
Flagellar protein FigP 0.014 0.006 0.000 0.004 0.000 0.000 0.002 0.000
Flagellar basal-body rod protein FIgF 0.013 0.009 0.000 0.004 0.002 0.002 0.002 0.013
Flagellar biosynthesis protein FliS 0.010 0.007 0.000 0.005 0.003 0.001 0.000 0.004
Flagellar biosynthesis protein FliL 0.008 0.007 0.000 0.003 0.000 0.002 0.002 0.007

Chemotaxis protein Med-Oct-2015- Med-OCT2015- Med-OCT2015- Med-OCT2015- Med-OCT2015- Med-OCT2015- -JAN2015 i

15m 30m 45m 60m 75m 90m 20m JAN2015-80m

Chemotaxis protein methyltransferase CheR 0.008 0.006 0.000 0.005 0.004 0.003 0.005 0.032
Chemotaxis response regulator methylesterase CheB 0.004 0.008 0.005 0.004 0.007 0.008 0.003 0.014
Methyl-accepting chemotaxis protein | 0.004 0.003 0.000 0.005 0.007 0.009 0.002 0.088
Chemotaxis regulator CheY 0.004 0.004 0.005 0.007 0.004 0.008 0.003 0.022
Signal transduction histidine kinase CheA 0.004 0.005 0.005 0.005 0.008 0.007 0.002 0.020
Aerotaxis sensor receptor protein 0.001 0.001 0.000 0.000 0.000 0.000 0.002 0.022
Chemotaxis protein CheV 0.001 0.001 0.000 0.001 0.000 0.001 0.002 0.018
Predicted signal transduction protein 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.013
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Summary

Marine Group | (MGIl) Thaumarchaeota are some of the
most abundant microorganisms in the deep ocean and
responsible for much of the ammonia oxidation occur-
ring in this environment. In this work, we present
35 sequences assembled from metagenomic samples
of the first uncultivated Caudovirales viruses associ-
ated with Thaumarchaeota, which we designated
marthavirus. Most of the sequences were obtained
from cellular metagenomes confirming that they repre-
sent an important tool to study environmental viral
communities due to cells retrieved while undergoing
viral lysis. Metagenomic recruitment showed that this
viral population is formed by very divergent entities
with high intrapopulation homogeneity. However, meta-
transcriptomic analyses revealed the same differential
expression profile with the capsid as major transcript,
indicative of viruses during the lytic cycle. The cobala-
mine biosynthesis gene cobS, an auxiliary metabolic
gene, was also highly expressed during the infection.
These analyses expand our understanding of the
global diversity of archaeal viruses.

Introduction

Marine Thaumarchaeota, initially discovered 26 years
ago by 16S rRNA gene surveys (Fuhrman and McCal-
lum, 1992; Delong, 1992), are some of the most abun-
dant microorganisms in the deep ocean, accounting for
up to 40% of the bacterioplankton below the euphotic
zone (Karner et al., 2001; Fuhrman and Ouverney, 1998;
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Church et al., 2003). This abundance and the discovery
that members of this lineage derive energy from the oxi-
dation of ammonia (Kénneke et al., 2005) and are able to
fix inorganic forms of carbon (Berg et al., 2010) argue
that the marine Thaumarchaeota are important players in
global Carbon (C) and Nitrogen (N) biogeochemical
cycles. Recent studies have shown that these marine
archaea are responsible for the majority of the aerobic
nitrification measured in marine environments and may
be a significant source of the greenhouse gas nitrous
oxide (Santoro et al., 2011). The cultivation of numerous
strains, as well as sequences from environmental meta-
genomes and single-cell genomes have provided invalu-
able information on the ecology and evolution of this
diverse lineage (Luo et al., 2014; Swan et al., 2014;
Santoro et al.,, 2015). However, despite these efforts,
remarkably little is known about their viruses. The vast
majority of archaeal viruses that have been isolated so
far came from either hyperthermophilic or hyperhalophilic
environments, where Crenarchaeota or Euryarchaeota
dominate (Snyder et al., 2015). Conversely, in the case
of the mesophilic archaea, only the advent of high-
throughput sequencing has provided novel information of
the unknown viruses infecting archaea (Vik et al., 2017;
Roux et al., 2016), expanding viral diversity far beyond
that established by traditional methods for virus isolation.
The recently discovered Marine Group |l Euryarchaeota
viruses (magrovirus) group from assembled sequences
(Philosof et al., 2017), which infects the ubiquitous and
abundant but yet uncultured Marine Group Il Euryarch-
aeota, is an example of the benefits of metagenomics.
However, to date no marine thaumarchaeal virus has yet
been isolated probably because their host are also diffi-
cult to obtain in pure culture. Only two putative viral
sequences have been retrieved by single-cell genomics
(Labonté et al., 2015) and fosmid libraries (Chow et al.,
2015). Additionally, a putative provirus has been found
within the genome of Ca. Nitrosomarinus catalina
SPOTO1 (Ahlgren et al., 2017). Previous studies showed
that viruses infecting Thaumarchaeota from the deep
ocean were more active than bacterial viruses, contribut-
ing to their cell lysis and, hence, modifying the biogeo-
chemical cycles of N and C (Danovaro et al., 2016).



In this work, we present 35 sequences assembled from
metagenomic samples of the first uncultivated viruses
associated with marine Thaumarchaeota. Sequences of
this newly identified viral population are locally distributed
with low intra-population diversity. Metatranscriptomic
analyses showed that they were retrieved while undergo-
ing viral lysis and apart from the capsid, the essential
structural component, expression of the cobalamine bio-
synthesis gene cobS, an auxiliary metabolic gene, was
also high during the infection. Our analyses provide
important insights into the genomic diversity of this new
marine viral population, which remain uncultivated,
expanding our understanding of the global diversity of
archaeal viruses.

Results and discussion

Recently, we characterized variations in the marine
microbiome at different depths within the photic zone dur-
ing a period of strong thermal stratification of the water
column (Haro-Moreno et al., 2018). Results showed that
marine Thaumarchaeota were only found below the deep
chlorophyll maximum (accounted for up to 10% of the
community at 90 m), coinciding with the increase of avail-
able ammonia that is practically non-existent at shallower
depths. Analyses of the assembled contigs from these
samples showed the presence of a 69 kb contig that had
hits to a few Thaumarchaeota genomes (the majority of
these hits were to the genus Ca. Nitrosopumilus) but also
to viral-related genes, including predicted major capsid
proteins (MCP), portal proteins, tail tape measure pro-
teins and the large subunit of viral terminases. Both the
terminase and the MCP proteins gave hits with low iden-
tity (32—35%) to a complete, unclassified archaeal virus
(KY229235) recovered from a metagenomic assembly of
a sample ~550 m below the seafloor (Nigro et al., 2017).
Like in the case of KY229235, our contig had identical
repeated sequences (>30 nucleotides) at the 5’ and 3’
terminal regions suggesting a complete viral genome. It
has been demonstrated that cellular metagenomes
(>0.22 um size fraction) are a source of bacterial and
archaeal viruses that are undergoing the lytic cycle and
actively replicating their DNA (Lopez-Pérez et al., 2017).

New Thaumarchaeota viruses recovered from
metagenomic samples

In order to expand the repertoire of putative Thaumarch-
aeota viruses we used the MCP, terminase and portal
proteins of this new contig and KY229235 sequences as
queries to search against several marine metagenomes
and viromes, including the Mediterranean Sea dataset
(Haro-Moreno et al., 2018; Lopez-Pérez et al., 2017),
Tara Oceans (Sunagawa et al., 2015) and Malaspina
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expeditions (Duarte, 2015) and datasets publicly avail-
able at the Joint Genome Institute (JGI) database (https://
img.jgi.doe.gov/). In the end, we identified 35 putative
viral contigs (Supporting Information Table S1) manually
curated to check for similarity to these reference proteins
and thaumarchaeal genes (see Material and Methods).
Most contigs with similarity to these proteins (#18) were
found in our own dataset (Med-OCT2015-75m and Med-
OCT2015-90m), 17 in the cellular and one in the viral
fraction (MedVir-OCT2015-60m). Interestingly, another
large batch (9 genomes) was found in viromes from the
Chesapeake Bay, an estuary where strong ammonia gra-
dients are also found (Maresca et al., 2018). All had a
GC content varying from 30% to 37%, as expected from
the low-GC content of marine Thaumarchaeota genomes
(Ahigren et al., 2017; Supporting Information Table S1).
Based on the presence of terminal inverted repeats >30
nucleotides only two viral genomes were complete. A
total of 1289 open reading frames were identified in all
the sequences. However, only 14% showed significant
homology to sequences present in the pVOGs
(Prokaryotic  Virus Orthologous Groups) database
(Grazziotin et al., 2017), as typical for novel viruses.
Clustering of the sequences based on similarity resulted
in 684 protein clusters, 11 of which formed the viral ‘soft’
core (they were present in at least half of the sequences)
(Supporting Information Table S2). Five of the ‘soft’ core
protein clusters contained proteins involved in DNA
metabolism (terminase, RadA, ATPase, PD-D/EXK
nuclease and Ribonuclease H) and one sequence was
an auxiliary metabolic gene (AMG), cobS, that encodes a
protein that catalyses the final step in cobalamin (vitamin
B,2) biosynthesis in prokaryotes, which has previously
only been found in cyanophages (Sullivan et al., 2005).
Unfortunately, the remaining five ‘soft’ core clusters were
hypothetical proteins and no function could be inferred.
Furthermore, no tRNA-encoding sequences or hallmarks
of temperate phage, such as integrase or excisionase
genes, were detected in any of the recovered genomes.
In addition to the terminase, we found other clusters indi-
cating the Caudovirales affiliation of these viruses such
as prohead or portal proteins. This is to our knowledge
the first group of head-tail viruses described for the Cre-
narchaeal superphylum, although they are relatively com-
mon in Euryarchaea (Rachel et al., 2002; Pietila
etal., 2014).

Phylogeny and host assignment

We next sought to establish the phylogenetic affiliation of
these sequences and their relationship with other
archaeal virus sequences. We used two characteristic
Caudovirales marker genes, the terminase and the MCP.
Homologous (although less than 30% nucleotide identity)
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terminases and MCPs were found in the fosmid Oxic1_7
(Chow et al., 2015) and the provirus Nvie-Pro1 present in
the genome of Nitrososphaera viennensis, a soil Thau-
marchaeota (Krupovic et al., 2011), but could not be iden-
tified in the putative thaumarchaeal virus found in the
single-cell genome AAA160-J20 (Labonté et al., 2015) or
in the putative provirus of Ca. Nitrosopumilus catalina
SPOTO1 (Ahigren et al.,, 2017). Both Nvie-Pro1 and
Oxic1_7 encoded a multifunctional MCP fused with a pro-
tease sequence. This particular fusion between the two
domains has not been seen in any of our recovered virus
genomes. For the phylogenetic analyses, we selected
only the MCP domain of the mentioned reference
sequences. Results showed a similar phylogenetic pat-
tern for both terminase and MCPs, where the new
sequences identified here formed a separate lineage
from haloviruses and magroviruses (Fig. 1A and B). Only
the viral genome KY229235 was found close to our
sequences, while Oxic1_7 and Nvie-Pro1, which clus-
tered together, were found more closely related to halo-
viruses. Additionally, we carried out phylogenetic
analyses of the viral RadA and PD-D/EXK nuclease
genes (both of which are also present in the genomes of
Thaumarchaeota cells) and appeared to be strongly
associated with the Thaumarchaeota, and distinct from
Euryarchaeota group Il and their viruses (Fig. 1C and D).
Our results confirm the association of these novel viruses
to the marine archaeal phylum. Neither Oxic1_7 or Nvie-
Pro1 encoded these genes in their sequence. Remark-
ably, all 35 putative viral sequences clustered as a single,
monophyletic lineage in all four phylogenetic trees, indi-
cating that they are a novel clade of marine archaea-
infecting Caudovirales, evolutionarily distinct from previ-
ous putative Thaumarchaeota viruses. These findings
have led us to name this group of new viruses martha-
virus (MARine THAumarchaea viruses). The terminase,
PD-D/EXK nuclease and the combination of RadA/
ATPase protein sequences of only the marthavirus were
aligned, and a phylogenetic tree was constructed for
each of them (Supporting Information Fig. S1). However,
we could not identify any clustering of the sequences or
a distinct pattern linking genomic phylogeny and place of
isolation.

In order to gain more insights into the putative host of
the new viruses, we first identified all the Thaumarchaea
genomes including pure culture, Single-Cell Genomes
(SAGs) and Metagenomic Assembled-Genomes (MAGs)
available. Only those SAGs and MAGs with an estimated
completion =70% and < 5% contamination were consid-
ered. In total, we analysed 94 genomes that were classi-
fied into 12 clusters based on pairwise comparisons of
average nucleotide identity (ANI; Supporting Information
Fig. S2). Clusters A-G form an independent clade com-
posed of strains from marine origin belonging to the order

Nitrosopumilales and unclassified Thaumarchaeota. The
other clade contained a mix between genomes recovered
from soil metagenomes, mostly members of the genus
Nitrososphaera (clusters H-J) and marine samples
(K and L) (Supporting Information Fig. S2). Metagenomic
recruitment of a representative of each cluster in the
same metagenomic samples where marthavirus recruited
showed that clusters F and G were the most prevalent
(Supporting Information Fig. S3). Cluster G is repre-
sented by members of the genus Ca. Nitrosopelagicus.
Only one representative of this group has been recov-
ered by pure culture and showed a ubiquitous distribution
in oligotrophic marine waters (Santoro et al., 2015).

Viral genomic features

Despite the high degree of sequence and gene-content
divergence ([ANI 70.8%, coverage 6.16%]; [Average Amino
Acid Identity (AAl) 53.5%; percentage of common proteins
40.43%)]), the alignment of the two complete genomes
showed that synteny was remarkably well preserved, also
among the other sequences, with two clearly conserved
genomic regions (structural and DNA related) (Fig. 2A),
separated by a variable region that in Marthavirus-1 con-
tains the auxiliary metabolic gene cobalamin biosynthesis
protein (cobS). This gene catalyses the final step in the
cobalamin biosynthesis in Thaumarchaeota, but not in
marine Group II/lll Euryarchaeota. Cobalamin (vitamin B;»)
plays an important role in all three domains of life as a
cofactor in the synthesis of amino acids (cobalamin-
dependent methionine synthase) or DNA (ribonucleotide
reductase—RNR), as well as in other metabolic pathways
(Doxey et al., 2015), but only a few taxa are capable to
synthetize it (Doxey et al., 2015). A recent study has impli-
cated the Thaumarchaeota as important producers of
cobalamin in aquatic environments (Doxey et al., 2015). In
fact, some studies have reported a relationship between
the availability of vitamin B, and the distribution and growth
of phytoplankton and bacterioplankton blooms (Safiudo-
Wilhelmy et al., 2006). Furthermore, this gene has been
found in cyanophages, suggesting that it could be poten-
tially associated with RNR during nucleotide metabolism
(Helliwell et al., 2016) boosting the replication of viral DNA.
Phylogenetic analysis showed that Marthavirus-encoded
cobS is not related to archaeal cobS (Supporting Informa-
tion Fig. S4). Remarkably, viral cobS sequences clustered
together and separated from their hosts, suggesting a differ-
ent evolutionary history.

Distribution and genomic diversity

To assess the abundance, distribution and genomic diver-
sity of the novel group of viruses, we performed fragment
recruitment analysis by comparing each sequence to
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Fig. 1. Unrooted Maximum Likelihood phylogenetic trees of the (A) terminase large subunit, (B) major capsid, (C) DNA repair RadA and (D) PD-D/
EXK nuclease proteins. Marthavirus gene sequences were compared against the putative thaumarchaeal reference genomes KY229235, Oxic1_7
and Nvie-Pro1 (coloured in red). Additionally, viral sequences of magrovirus, halovirus and cyanophages and archaeal cellular sequences of MG-|
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314 metagenomes from Mediterranean, Tara Oceans and
Malaspina datasets (cellular and viral fraction) with a
sequence identity threshold of 70%. We considered only
those samples where these viral genomes recruited more
than 10 Reads per Kilobase of genome and Gigabase of

metagenome (RPKG). As expected, the marthavirus
genomes recruited from metagenomes containing Thau-
marchaeal genomes, albeit at significantly lower levels and
with a more restricted distribution (Fig. 2B). While reference
genomes of Thaumarchaeota were detected in 65% of the

© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 21, 1980-1988



1984 M. Lopez-Pérez, J.M. Haro-Moreno, J.R. de la Torre and F. Rodriguez-Valera

A

PO-D/EXK
nucisase

Phage-retated
tail fiber protein

Marthavirus-1
(69,519 bp; GC 33.87%)

Marthavirus-2
(59,498 bp; GC 34.32%)

Concanavalin Adike

PO-D/EXK
lectin domain -

Matrin
Phage-liks protests
matallaprotainase raF protein FE

Metagenomes (>0.22 pm)

iBlast {Suidentity}

Cc

Phage tall tape
measure protein

g

w0 |

H
L

read coverage
g

g

Ed
3
4

B

read identity (%)

@
]

g

3

2

Vi [<0.22
L , . p b iF iF mT?(_. "T] y 0 & 10 15 20 25 30 35 40 45 B0 655 60 65 70
___,;9‘ J’ G g "‘ :,a J’\_'_,‘}’ "'r.' Genomae size (Kb)
s P
s | S B ol I
e e d g‘ﬁo— ace 1
-........"""“‘:’ 100+
e} _—
______________________ [rm— — | E 504
e et} i i 1
Wetagerars asseens Marturvees 13 | — RPKG Py}
Mammran {1 L L
et =
s == » EWE =
| z ¥
o] et — s 65 v
Sarmaret b T ; -
Marrerranaa | — " $ N
a1 2 0 H
et 2
Marrurviea-11 ° -
Wowe datanets. Saravin-34 1 1 4 i
Marrurran 33 | 85 8
ot
Marea 37 1
oy st e — 80 :
e — £
sarmren 3 T 75 . 7
et} — S
[ro— . ] 0 z
2 E 2 = 8 B £ £ © § 10 15 20 25 30 35 40 45 50 55 60
§ 5 H i g B 2 LA Genome size (Kb)
¥ B & g = g E & £ 2 3
§ & = § & § & 2 =
Wi TARA 3 Wi TARA o

Fig. 2. A. Whole-genome translated nucleotide (tBlastX) comparison between the two complete Thaumarchaeota viruses, Marthavirus-1
and Marthavirus-2. Genome size and GC content are indicated between brackets. Hypothetical and annotated proteins are coloured in
green and blue respectively.B. Recruitments of the novel Marthaviruses within the different metagenomic and metaviromic datasets of the
Mediterranean Sea (MED), Tara Oceans (TARA) and Malaspina (MP) expeditions. On the left, pie charts indicating the percentage of data-
sets where MG-l Thaumarchaeota and Marthaviruses recruited >10RPKG with a threshold of 70% identity. On the right, a heatmap showing
the abundance, measured in RPKG of the selected metagenomes and viromes where the genomes recruited >10RPKG with a threshold of
70% identity.C. Metagenome and Metatranscriptome analysis of Marthavirus-1 and -2. In the upper panel, a mapping of the metatranscrip-
tomic raw reads from the sample Med-OCT2015-90m_MT (>99% identity, 100 bp window) is represented. In the lower panel, a recruitment
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MCP: major capsid protein. [Color figure can be viewed at wileyonlinelibrary.com]

metagenomic samples analysed, marthaviruses were found
only in 2% of the metagenomes and 12% of the viromes
contrasting with the global abundance of magroviruses in
the Tara Oceans samples (Philosof et al., 2017), martha-
viruses showed a patchy distribution. In fact, the majority of
the samples where these viruses recruited came from the
Mediterranean Sea and the South Atlantic Ocean (Fig. 2B).

Interestingly, most of the viral genomes recruited reads
at more than 99% nucleotide identity, with minimal cover-
age below 95% identity (Supporting Information Fig. S5).
These results suggest that marthaviruses may form a
population with low intra-population diversity, but with sig-
nificant divergence among groups.

Metatranscriptome analysis

From the same seawater sample (Western Mediterranean
Sea, 90 m) where we obtained 18 marthavirus genomes
(Supporting Information Table S1) we also performed a

metatranscriptome sequencing. These data could provide
clues about the prevailing activities during infection. cDNA
reads were mapped onto the two complete genomes
assembled from this sample (Marthavirus-1 and -2). Most
abundant transcripts in both viruses corresponded to the
MCPs, which is required for viral assembly (Fig. 2C). In
cyanophages, transcription of the structural genes, including
MCP, tail and putative tail fiber proteins, is highest during
the final phase of infection (Doron et al., 2016). These data
confirm the active viral replication in our sample.
Remarkably, we observed that the cobS, encoded
within Marthavirus-1 genome, was also highly expressed
in the metatranscriptome. Although no study of the struc-
ture and activity of the CobS-like viral proteins has been
done, results of the mRNA transcripts indicate that the
presence of this gene may have an important role during
the infection process. The acquisition of AMGs has been
repeatedly seen in both bacterial and archaeal viral
genomes (Rosenwasser et al., 2016), and their presence
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modulate host metabolism to favour a more efficient viral
replication.

Nine marthavirus genomes were recovered from viromic
samples from the Chesapeake estuary. Consequently, we
used the metagenomic, viromic and metatranscriptomic
datasets collected there (Maresca et al., 2018). Similar
results were obtained after analysing the transcripts for the
two different genomes (Supporting Information Fig. S6) that
recruited the most (Supporting Information Fig. S7). Again,
the MCP was the most expressed gene in Marthavirus-4.
The cobS gene encoded within the Marthavirus-10 genome
was expressed as well, although several genes, mostly
hypothetical proteins but also an adhesin, which might
mediate the virus-host adhesion, and a metallo-
phosphatase were expressed.

In summary, this study characterized several unculti-
vated viruses assembled from metagenomic samples
that infect marine Thaumarchaeota, which we designated
marthavirus. It is important to emphasize that several
(23 out of 35) of the sequences were obtained from cellu-
lar (>0.2 um) metagenomes reinforcing the idea that they
are an important tool to study environmental viral commu-
nities containing complementary information which is
sometimes missing in viromes. The cellular fraction obvi-
ously contains abundant viral material due to the cells
retrieved while undergoing viral lysis (Lopez-Pérez et al.,
2017). Due to the ecological importance of marine Thau-
marchaeota, which are important components in the
global nitrogen and carbon nutrient cycling, the study of
the thaumarchaea-infecting viruses comprises a key ele-
ment to understand the dynamics of marine Thaumarch-
aeota in the ocean.

While this article was in revision, another set of viruses
linked to Thaumarchaeaota was reported. They were
identified as contigs that encode the viral capsid and
thaumarchaeal ammonia monooxygenase genes (amoC),
highlighting the potential impact of these viruses on N
cycling in the oceans (Ahlgren et al., 2018). However,
those genomes are very different from the ones
described here (only one sequence had 3.3 Kb 99% simi-
lar to the marthavirus-13). In addition, we have not found
in our dataset any gene encoding AmoC that was the
search criterium used by these authors (Ahlgren et al.,
2018). Together with our results, the discovery of these
viruses highlights the likely enormous diversity of Thau-
marchaeota viruses present in the ocean.

Experimental procedures
Sample collection and processing

Six metagenomic samples from a depth profile in the Medi-
terranean Sea were taken on 15 October 2015. Information
about the location and sampling procedure can be found in
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Haro-Moreno et al. (2018). Additionally, in the same cruise,
a metatranscriptome was made from a sample collected at
90 m deep. For the RNA sample, 200 liter of seawater was
collected and immediately filtered in a shaded area onboard
through a 0.22 pm polyethersulfone filter that was sus-
pended with RNAlater and kept on dry ice until storage at
—80 °C. RNA extraction was performed according to the
phenolic PGTX (Miller et al., 2017). Metatranscriptome was
sequenced using lllumina Hiseq-4000 (150 bp, paired-end
read) (Macrogen, Republic of Korea).

Genome annotation

The resulting genes on the assembled contigs were pre-
dicted using Prodigal (Hyatt et al., 2010). tRNA and rRNA
genes were predicted using tRNAscan-SE (Lowe and
Eddy, 1996), ssu-align (Nawrocki, 2009) and meta-RNA
(Huang et al., 2009). Predicted protein sequences were
compared against NCBI NR databases using USEARCH6
(Edgar, 2010) and against COG (Tatusov et al., 2001) and
TIGFRAM (Haft et al., 2001) using HMMscan (Eddy, 2011)
for taxonomic and functional annotation.

Identification of novel archaeal viruses

MCP, terminase and portal proteins of marthavirus-1 and
KY229235 sequences were used as queries to search
against several marine metagenomes (Haro-Moreno
et al.,, 2018; Lopez-Pérez et al., 2017; Duarte, 2015;
Sunagawa et al., 2015) using DIAMOND (blastp option,
top hit, = 30% identity, = 50% alignment length, E value
< 107%; Buchfink et al., 2015). Only contigs larger than
8Kb were taken into account. These sequences were
also filtered using VirFinder (Ren et al., 2017) to confirm
the viral origin.

Metagenomic read recruitments

Genomes of known marine Thaumarchaeota (available
up to May 2018 in the NCBI database) and the Martha-
virus recovered in this work were used to recruit reads
from our metagenomic and metaviromic datasets
(Haro-Moreno et al., 2018; Lopez-Pérez et al., 2017),
together with those retrieved from the Tara Oceans
(Sunagawa et al.,, 2015) and Malaspina expeditions
(Duarte, 2015) and the Chesapeake estuary (Maresca
et al.,, 2018), using BLASTN (Altschul et al., 1997), with a
cut-off of 70% nucleotide identity over a minimum align-
ment length of 50 nucleotides. Metagenomic samples
where archaeal and viral genomes recruited less than
10 reads per kilobase of genome per gigabase of meta-
genome (RPKG) were discarded.
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Phylogenetic trees of hallmark proteins

Manual inspection of the viral genomes was used to
retrieve the amino acid sequences of the Terminase, Major
Capsid, RadA, PD-D/EXK nuclease and CobS proteins. To
infer their taxonomic relationships, sequences coming from
marine Thaumarchaeota and Euryarchaeota genomes, as
well as from other archaeal viruses (magroviruses and halo-
viruses) were used. For the CobS protein, we also included
sequences coming from cyanobacterial genomes and
phages. Sequences were aligned with MUSCLE (Edgar,
2004) and a Maximum-Likelihood tree was constructed with
MEGA 7.0 (Kumar et al., 2016). Jones-Taylor-Thornton
model, gamma distribution with five discrete categories,
100 bootstraps, positions with less than 80% site coverage
were eliminated.

Thaumarchaeota diversity

Genome completeness and degree of contamination was
estimated with CheckM (Parks et al., 2015). The ANI
between strains was calculated using JSpecies software
package v1.2.1 using default parameters (Richter and
Rossello-Mora, 2009).
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Supplementary Table 1. Genomic properties, isolation source and accession number for the 35 marthaviruses.

Marine GC Size HORFs Isolation source sampling type Metagenome Biosample Original contig name
Marthavirus-1 3387 69519 94 Mediterranean Sea Metagenome SAMN05992384
Marthavirus-2 34.32 59498 104 Mediterranean Sea Metagenome SAMN05992384 )
Marthavirus-3 33.19 41184 68 Mediterranean Sea Metagenome SAMN05992384 (1)
(2) Ga0208161_1000420; Ga0099846_1001419; Ga0196905_1000506; Ga0208795_1000106;
SAMNO6265875; SAMNO6343780;  Ga0099851_1002458; Ga0208160_1002395; Ga0196901_1000213; Ga0208160_1000184;
Marthavirus-4 33.71 38949 72 North Atlantic Ocean MN0626472 ; Ga0099851_1000908; Ga0099850_1001506; Ga0099848_1001103; Ga0208161_1000696;
SAMN06264725; SAMN06265875 Ga0099848_1002491; Ga0099846_1001964; Ga0196905_1003554; Ga0099850_1009336;
Ga0196905_1000423; Ga0099851_1001790; Ga0099850_1002439; Ga0099846_1002658
Marthavirus-5 1372 38734 77 North Pacific Ocean Metagenome fosmid library SAMN05422230 (2)J6124914138485-100191
Marthavirus-6 34.92 28827 a2 Mediterranean Sea Metagenome SAMN05992384 )
Marthavirus-7 3207 28697 a1 Mediterranean Sea Metagenome SAMN05992384 )
Marthavirus-8 33.16 27843 63 Mediterranean Sea Metagenome SAMN05992384 [t)
Marthavirus-9 37.04 27413 34 Mediterranean Sea Metagenome SAMN04325110 (1)
SAMNO6265905; SAMNO6343780; (2) Ga0129342_1001450; Ga0196905_1000181; Ga0208160_1000372; Ga0208795_1000399;
Marthavirus-10 33.54 27114 37 North Atlantic Ocean ; Ga0208161_1000461; Ga0196901_1000383; Ga0208019_1000380; Ga0129342_1000513;
SAMN06266357; SAMNO06266062 Ga0136656_1001370
Marthavirus-11 3281 26201 46 Mediterranean Sea Metavirome SAMN09755890 &Y
Marthavirus-12 3307 26021 38 North Atlantic Ocean Metagenome SAMEA2623756 (3)TARA 148b MES 0.22-3 scaffold144681 1
Marthavirus-13 3397 25293 a4 North Atlantic Ocean Metavirome 3; ; )_1003631; Ga0208899_1007809; Ga0070749_10002414; Ga0070751_1002345;
SAMN06264918; SAMNO6343810 Ga0070751_1001009; Ga0208767_1001848
Marthavirus-14 33.55 24765 37 North Atlantic Ocean Metavirome SAMNO6343780 (2) Ga0196905 1000181
Marthavirus-15 33.62 22109 37 Mediterranean Sea Metagenome SAMN059923; ()
Marthavirus-16 34.99 21137 33 Mediterranean Sea Metagenome AMN05992384 1)
Marthavirus-17 33.48 20709 46 Red Sea Metagenome SAMEA2619907 (3) TARA_034_DCM _0.22-1.6_scaffold241908 1
Marthavirus-18 33.92 16137 17 Mediterranean Sea Metagenome SAMN05992384
Marthavirus-19 33.69 16134 2 Red Sea Metagenome SAMEA2619907 (3) TARA 034 DCM 0.22-16 scaffold68959 2
Marthavirus-20 33.88 15273 2 Mediterranean Sea Metagenome SAMN05992383
Marthavirus-21 34.88 15223 29 North Atlantic Ocean Metavirome SAMNO6343810 (2) Ga0070746 10001264
Marthavirus-22 3295 14724 38 Mediterranean Sea Metagenome SAMN05992384 (1)
Marthavirus-23 30.59 13497 36 Mediterranean Sea Metagenome SAMN05992384 (1)
Marthavirus-24 3172 13132 23 South Pacific Ocean Metagenome SAMEA2622837 (3) TARA_125_SRF_0.22-0.45 _scaffold436574_1; TARA_125_MIX_0.1-0.22.scaffold87032 1
Marthavirus-25 36.55 12141 21 Red Sea Metagenome SAMEA2619907 (3) TARA 034_DCM_0.22-1.6_scaffold514352 1
Marthavirus-26 34.03 11785 15 Red Sea Metavirome SAMEA2619923 (3) TARA 034 DCM <-0.22 scaffold10072 1
Marthavirus-27 33.18 11481 2n North Atlantic Ocean Metavirome SAMNO6343912 (2) Ga0075460 10000942
Marthavirus-28 3251 11331 23 Mediterranean Sea Metagenome SAMN05992384 )
Marthavirus-29 3217 10663 16 Mediterranean Sea Metagenome SAMN05992383 [t)
Marthavirus-30 37.61 9845 14 Mediterranean Sea Metavirome SAMN06266140 (4)
Marthavirus-31 31.66 9539 19 North Atlantic Ocean Metavirome SAMNO06343812 (2) Ga0070749_10004237
Marthavirus-32 31.39 9408 17 Mediterranean Sea Metagenome SAMN05992384 )
Marthavirus-33 33.14 8743 13 Mediterranean Sea Metagenome SAMN05992383 )
Marthavirus-34 32.99 8517 14 North Atlantic Ocean Metavirome SAMNO6343813 (2) Ga0070750 10003644
Marthavirus-35 34.6 8022 14 North Atlantic Ocean Metavirome SAMNO06264587 (2) Ga0070747_ 1002923

(1) This study

(2) Contigs downloaded from JG! database (im jgi.doe.gov)

(3) Contigs downloaded from ENA database (www.ebi.ac.uk/ena)
(4) Contigs obtained after assembly of raw reads downloaded from JGI database (img.jgi.doe.gov)



Supplementary Table S2. Protein clusters present in at least half of the Mathavirus genomes

Cluster Presence in Marthavirus p VOG cluster Host Domain Order
1 21/35 DNA repair and recombination protein RadA VOG0025 Bacteria and Archaea Caudovirales
2 19/35 hypothetical protein - - -
3 18/35 cobalamin biosynthesis protein CobS - - -
4 17/35 ATPase VOG9957 Archaea Caudovirales
5 17/35 terminase large subunit VOG4544 Bacteria and Archaea Caudovirales
6 17/35 PD-D/EXK nuclease VOG3505 Bacteria and Archaea Caudovirales
7 17/35 hypothetical protein - - -
8 17/35 ribonuclease H VOG4714 Bacteria Caudovirales
9 17/35 hypothetical protein - - -
10 17/35 hypothetical protein - - -
11 17/35 hypothetical protein - - -
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Supplementary Fig. S3. Metagenomic recruitment of a representative of each
cluster in the same metagenomics samples where mathavirus recruited the most.
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ORIGINAL ARTICLE

New insights into marine group lll Euryarchaeota,

from dark to light

Jose M Haro-Moreno"?, Francisco Rodriguez-Valera®', Purificacién Lépez-Garcia?,

David Moreira®* and Ana-Belen Martin-Cuadrado™*®

'Evolutionary Genomics Group, Departamento de Produccién Vegetal y Microbiologia, Universidad Miguel
Herndndez, Alicante, Spain and *Unité d’Ecologie, Systématique et Evolution, UMR CNRS 8079,

Université Paris-Sud, Orsay Cedex, France

Marine Euryarchaeota remain among the least understood major components of marine microbial
communities. Marine group Il Euryarchaeota (MG-ll) are more abundant in surface waters (4—20% of
the total prokaryotic community), whereas marine group Il Euryarchaeota (MG-Ill) are generally
considered low-abundance members of deep mesopelagic and bathypelagic communities. Using
genome assembly from direct metagenome reads and metagenomic fosmid clones, we have
identified six novel MG-lll genome sequence bins from the photic zone (Epi1-6) and two novel bins
from deep-sea samples (Bathy1-2). Genome completeness in those genome bins varies from 44% to
85%. Photic-zone MG-IIl bins corresponded to novel groups with no similarity, and significantly lower
GC content, when compared with previously described deep-MG-Ill genome bins. As found in many
other epipelagic microorganisms, photic-zone MG-Ill bins contained numerous photolyase and
rhodopsin genes, as well as genes for peptide and lipid uptake and degradation, suggesting a
photoheterotrophic lifestyle. Phylogenetic analysis of these photolyases and rhodopsins as well as
their genomic context suggests that these genes are of bacterial origin, supporting the hypothesis of
an MG-IIl ancestor that lived in the dark ocean. Epipelagic MG-lll occur sporadically and in relatively
small proportions in marine plankton, representing only up to 0.6% of the total microbial community
reads in metagenomes. None of the reconstructed epipelagic MG-lll genomes were present in
metagenomes from aphotic zone depths or from high latitude regions. Most low-GC bins were highly
enriched at the deep chlorophyll maximum zones, with the exception of Epi1, which appeared evenly
distributed throughout the photic zone worldwide.

The ISME Journal (2017) 11, 1102—-1117; doi:10.1038/ismej.2016.188; published online 13 January 2017

Introduction

Marine archaea are important marine microbes in
terms of their metabolic activity and abundance
(Karner et al.,, 2001; Li et al., 2015). Ammonia-
oxidizing Thaumarchaeota (Brochier-Armanet et al.,
2008) are the most abundant archaeal phylum in the
oceans and have a key role in the marine nitrogen
cycle (Konneke et al., 2005; Qin et al., 2014). Studies
have also identified three major groups of marine
Euryarchaeota: (i) group II (MG-II) (DeLong, 1992;
Fuhrman et al.,, 1992; Fuhrman and Davis, 1997;
Massana et al., 2000), (ii) group III (MG-III) (Fuhrman
and Davis, 1997; Lopez-Garcia et al., 2001a), and (iii)
group IV (MG-1IV) (Lopez-Garcia et al., 2001b). So far,
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there are no cultured representatives of marine
Euryarchaeota and little is known about their
physiology and ecological role in the oceans. MG-II
are widely distributed within the euphotic zone of
temperate waters. MG-II are the dominant archaeal
community not only in the surface and in the deep
chlorophyll maximum (DCM) (Massana et al., 2000;
Karner et al., 2001; Herndl et al., 2005; DeLong et al.,
2006; Galand et al., 2010; Belmar et al., 2011; Martin-
Cuadrado et al., 2015) but have also been found in
deep-sea waters (Lopez-Garcia et al., 2001a,Martin-
Cuadrado et al., 2008; Li et al., 2015). The other two
marine Euryarchaeota groups, MG-III and MG-IV,
are considered to be rare components of deep-sea
communities (Lopez-Garcia et al., 2001a,b; Galand
et al., 2009).

MG-III were first described by Fuhrman and Davis,
1997 from deep marine plankton samples and have
subsequently been found in 16S-TRNA gene surveys
from most deep oceanic regions, albeit at very low
abundance (Massana et al., 2000; Lopez-Garcia et al.,
2001a,b), and by metagenomics throughout the water
column in the central Pacific gyre (DeLong et al., 2006).



However, occasionally, they have been identified at
much higher proportions. For instance, 16S-rRNA
sequences from MG-III represented one of the largest
archaeal groups in the deep Arctic Ocean (>40% of
tag sequences) (Galand et al., 2009) and between
30% and 50% of the archaeal sequences from a deep
(500-1250m) Marmara Sea metagenome (Quaiser
et al., 2011). They were also relatively abundant
(ca.18% of the total archaeal population) in the
oxygen minimum zone (50-400m) in the Eastern
tropical South Pacific (Belmar et al., 2011). Only a
few studies report the presence of MG-III in the
photic zone. They represented 0.4% of all the
archaeal sequences obtained in surface Arctic waters
(Galand et al., 2009) and up to 10% in samples
recovered along 4.5 years in the Mediterranean DCM
(Galand et al., 2010).

The initial analysis of three MG-III fosmids from
deep-sea metagenomic libraries allowed a first glance
at their metabolic potential (Martin-Cuadrado et al.,
2008). The presence of some fermentation-related
genes led to the hypothesis that they could be
facultative anaerobes. In a recent study, up to 3% of
the single amplified genomes of archaea recovered
from mesopelagic waters from South-Atlantic and
North-Pacific gyres belonged to MG-III (Swan et al.,
2014). However, only two single amplified genomes
classified as MG-III, SCGC-AAA-007-O11 (isolated at
800m in the South-Atlantic sub-tropical gyre) and
SCGC-AAA-288-E19 (from 770 m in the North-Pacific
sub-tropical gyre), have been deposited in GenBank.
Only the SCGC-AAA-288-E19 partial genome had
ribosomal RNA genes that corresponded to MG-III,
but contig annotation showed contamination with
Chloroflexi (32 genome fragments out of the 102).
Complete archaeal fosmids (452 adding up to 16 Mb of
sequence) from deep Mediterranean samples belonging
to MG-II/III have been published (Deschamps et al.,
2014) and five MG-II partial genomes (31-65%
completeness) were assembled from metagenomes
from the Guaymas basin (1993 m, Gulf of California)
and the Mid-Cayman Rise (2040-2238 m and 4869—
4946 m, Caribbean Sea) (Li et al., 2015). Based on the
genes present in these genomes, it was proposed that
the microbes they represented are motile heterotrophs
with different mechanisms for scavenging organic
matter.

Binning the assembled fragments by oligonucleotide
frequencies, GC content and differential recruitment in
metagenomes is a successful strategy for the discovery
of novel microbial lineages (Tyson et al., 2004; Ghai
et al., 2012; Iverson et al., 2012; Narasingarao et al.,
2012; Martin-Cuadrado et al., 2015; Li et al., 2015;
Vavourakis et al., 2016). We applied this approach to
recover MG-III sequences using several metagenomic
fosmid libraries from the Mediterranean Sea (collec-
tions KM3, AD1000 (Martin-Cuadrado et al., 2008)
and MedDCM-OCT2007 (Ghai et al., 2010)) and from
the assemblies of 16 metagenomes (four collections
from the Mediterranean: MedDCM-JUL2012 (Martin-
Cuadrado et al., 2015), MedDCM-SEP2014 (this work),

Novel epipelagic marine Euryarchaeota group Il
M Haro-Moreno et al

Med-lo7-77mDCM and Med-Ae2—-600mDeep (Mizuno
et al, 2016) and 12 from TARA microbiomes
(Sunagawa et al., 2015)). We obtained a total of eight
different MG-III genome bins. Six of them belong to
novel surface MG-III lineages distantly related to the
previously described deep MG-III sequence bins (Li
et al., 2015). They are the first near-complete genomes
of MG-III living in the photic zone. Some of them
appear to be widespread in the ocean; their distribu-
tion in different water masses has been analyzed.

Materials and methods

Sampling and sequencing

A fosmid metagenomic library of ca. 13 000 clones was
constructed with biomass recovered in October 2007
(50 m deep) at the Mediterranean DCM (38°4'6.64"N 0°
13'55.18"W). Partial results of almost 7000 fosmid seg-
uences have been described previously in Ghai et al.
(2010) and Martin-Cuadrado et al. (2015). Metagen-
omes were also sequenced from samples recovered
at the same location and at a similar depth the follow-
ing years (MedDCM-JUL2012 (Martin-Cuadrado et al.,
2015) and MedDCM-SEP2014) from one sample
recovered at the DCM from the Ionian Sea (Med-lo7—
77mDCM) and from a sample collected from the deep
Aegean Sea (Med-Ae2—600mDeep) (Mizuno et al.,
2016). For these metagenomes, sea water was collected
and sequentially filtered on-board using a positive
pressure system through a 20 pm pore filter followed
by a 5pum pore size polycarbonate filter and, finally,
0.22 pm pore size Sterivex filters (Durapore; Millipore,
Billerica, MA, USA). Filters were frozen on dry ice and
kept at — 80 °C until processed in the laboratory. Filters
were thawed on ice and then treated with 1 mgml~*
lysozyme and 0.2 mgml~" proteinase K (final concen-
trations). Nucleic acids were extracted with phenol—
chloroform—isoamyl alcohol and chloroform—isoamyl
alcohol. Sequencing was carried out using Illumina
HiSeq2000 (PE, 100 bp) (Macrogen, Seoul, Korea and
BGI, Hong Kong).

‘De novo’ assembly, gene annotation and binning of the
MG-III sequences

A schematic of the assembly pipeline is shown in
Supplementary Figure S1. The assembly of the fosmids
from the MedDCM-OCT2007, KM3 and AD1000
metagenomic fosmid libraries has been previously
described (Ghai et al., 2010; Deschamps et al., 2014;
Martin-Cuadrado et al., 2015). Sequences from meta-
genomes MedDCM-JUL2012, MedDCM-SEP2014, Med-
Io7-77mDCM and Med-Ae2—-600mDeep were quality
trimmed and assembled independently using IBDA-UD
(Peng et al., 2012) with the following parameters: —
mink 70, -maxk 100, —step 10, —pre_correction. Gene
predictions on the assembled sequences were carried
out using Prodigal (Hyatt et al., 2010). Ribosomal genes
were identified using ssu-align (Nawrocki, 2009) and
meta_rna (Huang et al., 2009). Functional annotation
was performed by comparing predicted protein
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sequences against the NCBInr database, Pfam
(Bateman et al.,, 2004), arCOGS (Makarova et al.,
2015) and TIGRfams (Haft et al., 2001) (cutoff E-value
107°). Based on sequence similarity against the non-
redundant NCBI database, the best hit for each gene
was determined and used to bin to top-level taxa. Bona
fide Euryarchaeota genome fragments were defined as
having >50% of the predicted open reading frames
with best hits to other Euryarchaeota genes. The
resulting sequences were used to screen for their
presence in several metagenomes (in subsets of 20
million reads, where applicable): the TARA data sets
(Sunagawa et al., 2015), the GOS collection (Rusch
et al., 2007), the depth profiles collections from the
subtropical gyres of North Atlantic (Bermuda Atlantic
Time Series, BATS) and North Pacific (Hawaii Ocean
Time-Series, HOT) (DeLong, 2006; Coleman and
Chisholm, 2010), several Mediterranean Sea metagen-
omes at different depths (Ghai et al., 2010; Quaiser
et al.,, 2011; Smedile et al., 2012; Martin-Cuadrado
et al., 2015), and a number of deep ocean and
cold waters metagenomes (Alonso-Saez et al., 2012;
Larsson et al., 2014). The collections coming from the
surroundings of hydrothermal vents published in Li
et al. (2015) were also included. The screening
was performed using Usearch6 (Edgar, 2010), with a
cutoff of 95% identity over an alignment length of at
least 50bp (approximately species-level divergence,
Konstantinidis and Tiedje, 2005). To compare the
results among different data sets, the number of reads
was normalized to the metagenome size and the
sequence length. The final coverage results were
expressed as the number of reads per kilobase of the
fragment per gigabase of metagenome collection
(rpkg). Only metagenomes in which any of the
MG-III sequences recruited reads at over 3 rpkg, a total
of 33 metagenomes, were used for genome assembly
(Supplementary Table S1).

All the sequences obtained from these assemblies
were binned together in order to cluster them by their
tetranucleotide frequencies, GC content and coverage
values (Supplementary Figure S2 and Supplementary
Table S1). Tetranucleotide frequencies were computed
using the ‘wordfreq’ program from the EMBOSS
package (Rice et al., 2000) and the coverage values
were calculated as rpkg as described before. Only those
clusters with >10 sequences and containing at least
one gene marker with a clear affiliation to MG-II
were retained. The phylogenetic assignment to MG-III
was determined by the presence of at least one
housekeeping gene in the same bin (see below).
Following this method, a total of 375 genomic
fragments > 10 Kb could be classified into 10 different
MG-III bins of sequences, Epil, Epi2A, Epi2B, Epi2C,
Epi3, Epi4, Epi5, Epi6, Bathyl and Bathy2. We also
considered 16 MG-II sequences that contained a
ribosomal or a housekeeping gene but that could not
be included in any of the bins by the criteria used
(Supplementary Table S2).

In order to improve the completeness and remove
the redundancy present in the initial MG-III bins,
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Table 2 Environmental collections from where MG-III sequences were assembled

Depth (m) Fraction size (um)  Epil

Epi3 Epi4 Epi5

Epi6 Epi2A Epi2B Epi2C Bathyl Bathy2

Total, Kb

ERR598993 (TARA_18)* 5 0.22-1.6 658.3
ERR599073 (TARA_18)* 60 0.22-1.6 54.6
ERR315859 (TARA_023)* 55 0.22-01.6
ERR594297 (TARA_068)* 5 0.45-0.8 25.3
ERR594294 (TARA_068)* 50 0.22-0.45 367.2
ERR594348 (TARA_068)* 50 0.45-0.8 159.3
ERR594335 (TARA_070)* 5 0.45-0.8 41.9
ERR598942 (TARA_133)* 45 0.22-3

ERR598983 (TARA_145)* 5 0.22-3

ERR598996 (TARA_150)* 40 0.22-3 128.0
ERR598976 (TARA_151)° 5 0.22-3 264.7
ERR598986 (TARA_151)* 80 0.22-3 216.5
MedDCM-OCT2007> 60 0.22-5 1034.7
MedDCM-JUL2012¢ 75 0.22-5
MedDCM-SEP2014¢ 60 0.22-5

AD1000° 1000 0.22-5
Med-Ae2-600mDeep’ 600 0.22-5
Med-Io7-77mDCM'’ 77 0.22-5

KM3e 3000 0.22-5

2950.4 707.0 631.3 259.7 848.7 542.7

564.7 305.0 1196.5 1061.4

11.7
47.4
707.0 60.9
198.8 422.4 305.0
34.5 733.8
542.7 142.3
596.7
38.7
1017.6
55.8
140.1 1059.6

2Sunaguawa et al. (2015). "Ghai et al. (2010). “Martin-Cuadrado et al. (2015). “This work. *Martin-Cuadrado et al. (2008). ‘Mizuno et al. (2016).

a second assembly was performed combining the
sequences >10Kb with the short paired-end Ilu-
mina reads of the metagenomes from where they
were assembled (Tables 1 and 2 and Supplementary
Figure S3). For each of the MG-III sequence bins, we
used the BWA aligner (Li and Durbin, 2009; default
parameters) to recover the short pair-reads that
mapped onto the >10Kb contigs. For each bin,
these reads were then pooled and assembled together
with the large DNA contigs previously assembled
using SPAdes (Bankevich et al., 2012). The final
assemblies were termed ‘composite genomes’ (CGs),
as they belong to similar MG-III cellular lineages
(defined by the MG-II bins) but from different
samples (Supplementary Table S3). The complete-
ness of the reconstructed archaeal genomes was
estimated by three different criteria and based on the
presence of essential/core genes using HMMER (35,
112 and 53 genes (Raes et al., 2007; Narasingarao
et al., 2012; Albertsen et al., 2013)). An E-value
<107° and an alignment coverage >65% were used
as cutoffs to define homologs of the essential/core
genes. Analysis of the contamination within the CGs
was performed using CheckM (Parks et al., 2014)
(Table 1). Average nucleotide identity (ANI) and
conserved DNA fraction between reconstructed and/
or reference genomes were calculated based on the
whole-genome sequence as in Goris et al. (2007)
(Supplementary Figure S4). GC content was calcu-
lated using the ‘geecee’ tool from the emboss package
(Rice et al., 2000).

Phylogenetic analysis

16S-TRNA and 23S-TRNA gene sequences detected
in the MG-III genomic fragments were used to
retrieve TRNA gene sequences from the most closely
related euryarchaeal genomes and selected genome

fragments in GenBank using BLAST (Altschul et al.,
1990). 16S-rRNA sequences from metagenome
collections were screened and trimmed using ssu-
align (Nawrocki, 2009). Archaeal 16S-rRNA and 23S-
rRNA gene sequences were then aligned using
MUSCLE (Edgar, 2004). Phylogenetic reconstruc-
tions were conducted by maximum likelihood using
MEGAG6-v.0.6 (Tamura-Nei model, 100 bootstraps,
gamma distribution with (five discrete categories), all
positions with <80% site coverage were eliminated)
(Tamura et al., 2013) (Supplementary Figure S5). For
the protein trees of RecA, RpoB, SecY, geranylger-
anylglyceryl phosphate synthase, DnaK, GyrA, GyrB,
photolyase and rhodopsin (Supplementary Figures
S6-S14), sequences were selected based on existing
literature. Sequences were aligned using MUSCLE
(Edgar, 2004) and a maximum likelihood tree
was constructed using MEGA6-v.0.6 (Jones-Taylor-
Thornton model, 100 bootstraps, gamma distribution
with five discrete categories, positions with <80%
site coverage were eliminated). Taxonomic affilia-
tion of the selected bins was also determined by a
phylogenomic tree based on concatenates of several
ribosomal proteins (L13, S9, L5, S8, L6, S5, S12, S7,
L11, L3, L4, L2, L22, S3, L14, S17, L15 and L18).
A balanced taxonomic representation of other
archaeal genomes was included as reference. Shared
proteins were concatenated and aligned using Kalign
(Lassmann and Sonnhammer, 2005) and a maximum
likelihood tree was made using MEGA6-v.0.6.

Genome comparisons

Synteny among the CG-MGIII was examined with
CIRCOS (Krzywinski et al., 2009) and defined as
arrays of contiguous genes in tracts of DNA >5Kb
and having >70% of identity. For each of the
MG-III bins, non-redundant protein databases were
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constructed clustering the coding DNA sequences
with UCLUST (Edgar, 2010) (cutoff: 80% similarity
in 70% of their length). These subsets of proteins
were compared among themselves using a reciprocal
best-hit analysis of putative homologs by BLASTP.
Reciprocal relations were plotted using CYTOSCAPE
(Shannon et al., 2003). In order to identify the unique
proteins of each of the bins, UCLUST was used with
a cutoff of 30% similarity along 70% of their length.

Accession numbers

Mediterranean metagenomes used for recruitment are
available at NCBI-BioProjects: PRINA257723 (MedDCM-
SEP2014, MedDCM-JUL2012 and MedDCM-OCT
2007), PRJNA305355 (Med-lo7-77mDCM, Med-lo16—
70mDCM, Med-Io17-3500mDeep, Med-Ae1-75mDCM
and Med-Ae2—600mDeep). Sequences >10Kb and the
reconstructed CGs genomes have been deposited in Bio-
Project number: PRJNA335308. TARA metagenomes
were downloaded from the European-Bioinformatics-
Institute (http://www.ebi.ac.uk/services/tara-oceans-
data).

Results and Discussion

General features of MG-III archaeal genomes
Following assembly and binning, we obtained 375
genomic fragments that clustered into 8 MG-III bins
(Supplementary Figure S1). Six bins, Epi1-Epi6, were
from epipelagic origin (photic zone) and contained a
total of 386 genomic fragments with a total of 8.3 Mb.
Two bins, Bathy1 and Bathy2, were from deep marine
samples (aphotic zone) and contained 76 fragments for
a total of 2.3 Mb. Manual inspection of the differential
coverage of the sequences in each bin identified three
subsets of Epi2, referred to as Epi2A, Epi2B and Epi2C.
Further genomic comparisons indicated that these
bins were very similar to each other (93—96% ANI,
Supplementary Figure S4) and represent genomes
from related species, likely within the same genus.

Remarkably, seven genome bins were formed by
sequences primarily from a single sampling site
(Table 2). The exception was Epil, which includes
sequences retrieved from nine different sites in the
Mediterranean Sea, Atlantic and North-Pacific oceans.
These findings suggest that the organisms represented
by Epil are cosmopolitan in temperate epipelagic
waters, whereas the other groups are only abundant
enough to assemble from metagenomes at specific sites
(endemic) or under transient environmental conditions
causing significant growth (for example, blooms; see
below).

To improve the analysis of each genome bin, a
second assembly was performed and CGs were
reconstructed using sequences from different samples
and geographic origins (Supplementary Figure S1).
These CGs are non-redundant and consist of genomic
fragments from similar lineages of MG-III cells but
not necessarily from the same sample. In this further

The ISME Journal

assembly, subsets Epi2A, 2B and 2C were condensed
into a single bin, CG-Epi2. Genomic features of
the genome bins can be found in Tables 1 and 2 and
the complete list of the MG-III contigs and the CGs are
given in Supplementary Tables S2 and S3. Using the
criteria of Narasingarao et al. (2012), the genome bins
with highest degree of completeness were CG-Epil
(85%), followed by CG-Epi2 (75%) and the mesope-
lagic CG-Bathyl (64%). Based on the number of
different variants of single copy genes in each bin,
all our CGs contained a single microbial species each
(Supplementary Table S4).

All MG-III bins had low GC content (36—36.8%) with
the exception of Bathy2 (64.2%). Previously described
MG-III sequences from different bathypelagic samples
were all high GC (62.8%—65.4%) except for Guaymas32
(36.8%) (Li et al., 2015). It has been noted that GC
content tends to increase with depth (Romero et al.,
2009; Mizuno et al., 2016). Selection for less nitrogen
demand has been proposed as the main drive toward
low genomic GC content in free-living marine bacter-
ioplankton. In epipelagic waters, nitrogen is more likely
to be the limiting nutrient, in contrast to the dark,
energy-limited but relatively nitrogen-rich, deep ocean
(Dufresne et al., 2005; Swan et al., 2013; Batut et al.,
2014; Giovannoni and Nemergut, 2014). Nevertheless,
Bathy1 and Guaymas32 have similar low GC content to
surface MG-III bins, suggesting that other factors might
be also important.

In general, epipelagic MG-III bins were more gene-
tically heterogeneous. Among the low GC-MGIII
bins, the ANI varied from 68% to 85.4%, whereas
the high GC-MGIII bins (Bathy2 is 90.8% similar to
Cayman92) showed higher degrees of conservation,
with ANIs ranging 89.5% to 96.2% (Supplementary
Figure S4). This apparently higher diversity of the
epipelagic groups may reflect the chemical and
physical heterogeneity of surface water layers, which
are submitted to stronger hydrodynamic, seasonal
and geographical variations (Bryant et al., 2015).
In contrast, MG-III representatives from the deep
ocean inhabit a more stable environment and might
consequently be less diverse, with more homoge-
nous genomes.

Phylogenetic affiliation of the genomic bins

Genes coding for TRNA are difficult to bin because
(i) TRNA genes assemble poorly due to their conserva-
tion and duplication in genomes and (ii) they recruit
metagenomic reads at much higher levels making
coverage-based approaches impractical. Most of the
rRNA sequences came from fosmid-libraries (Km3 and
AD1000) and did not cluster within any of the bins
described here. The only assigned 16S-TRNA sequence
(372 bp) belonged to Bathyl and it appears distantly
related to the previously described OTU-D (Galand
et al., 2009) and DH148-W24 clusters (Lopez-Garcia
et al., 2001a,b) (Supplementary Figure S5a). A similar
result was obtained with the 23S-rRNA gene identified
in Bathy1 (Supplementary Figure S5b). Therefore, we



looked for other housekeeping genes that might be
helpful to define the phylogenetic relationships of
the novel MG-III with other archaea. We identified
and constructed phylogenetic trees for RecA, RpoB,
SecY, the geranylgeranylglyceryl phosphate synthase,
DnaK and the two gyrase subunits, GyrA and GyrB
(Supplementary Figures S6-S12). Although Dnak,
GyrA and GyrB have a complex history of horizontal
gene transfer (HGT) (Gribaldo et al., 1999; Petitjean
et al., 2012; Raymann et al., 2014), their phylogenetic
analysis clearly showed the split between MG-II and
MG-II sequences. The MG-III housekeeping genes
retrieved from epipelagic waters clustered into two
groups, one represented only by Epi2 and the other
including Epi1, 3, 4, 5 and 6. Bathy2 appeared as a
separate cluster from the epipelagic MG-III, and Bathy1
sequences appeared as the most divergent and basal
branch. The phylogenomic analysis of the concate-
nated ribosomal proteins revealed a similar topology
(Figure 1). The two epipelagic clusters shared similar
GC content. Accordingly, they were named LowGC-
MGII (comprising two subclades: LowGC1-MGII
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(Epi1, 3, 4 and 6) and LowGC2-MGII (Epi2 and
Guaymas32)), and a separate clade, containing bins
exclusively of bathypelagic origin (Bathy2, Cayman92
and Guaymas31), was named HighGC-MGIIL Bin Epi5
lacks the ribosomal operon, but it was included into
the LowGC1-MGIII based on the phylogenetic analysis
of the other housekeeping genes (Supplementary
Figures S11 and S12). Bathy1 consistently appeared
as a separate basal branch, which might reflect the
intermediate depth (600m), location (Aegean Sea)
and physicochemical conditions (highly saline, rela-
tively warm and extremely oligotrophic) of the samples
contributing sequences to this genomic bin. The
position of Guaymas32 (retrieved from 1993 m), which
clusters with Epi2 (5—75 m), might be explained by the
presence of two different microbial species in the
Guaymas32 bin (Li et al., 2015). One appears to be
most similar to the surface Epi2 sequences (80.8%
ANI), while the other is closer to the deeper Bathy1
sequences (72.9% ANI) (also observed in the synteny
plot of Figure 2a) (see below). Another plausible
explanation is that Guaymas32 might be a surface
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Thermoplasma acidophilum DSM-1728 (NC_002578.1)

Ferroplasma acidarmanus fer1 (NC_021592.1)

Aciduliprofundum boonei T469 (NC_013926.1)
Candidatus Methanomassiliicoccus intestinalis Mx1 (NC_021353.1)
Archaeoglobus fulgidus DSM-4304 (NC_000917.1)
Natronomonas pharaonis DSM-2160 (NC_007426.1)
Haloferax mediterranei ATCC 33500 (NC_017941.2)
Methanosarcina mazei S-6 (NZ_CP009512.1)
Methanospirillum hungatei JF-1 (NC_007796.1)
Methanocella paludicola SANAE (GCA_000011005.1)
Methanococcus vannielii SB (NC_009634.1)
ﬂnocaldococous jannaschii DSM-2661 (NC_000909.1)
Methanothermus fervidus DSM-2088 (NC_014658.1)
Methanosphaera stadtmanae DSM-3091 (NC_007681.1)
Thermococcus litoralis DSM-5473 (NC_022084.1)
Pyrococcus abyssi (NC_000868.1)

Figure 1 Maximum likelihood tree based on 18 ribosomal proteins concatenated present in draft MG-III archaeal genomes reconstructed
from epipelagic and deep-sea metagenomes. Archaeal genomes from major orders of Euryarchaeota were included as references (accession
number in brackets). Novel sequences from this work are shown in bold. Average GC content is shown on the right and colored depending
on whether it is high or low GC. Only bootstrap values over >50% are shown.
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Figure 2 (a) Overview of genomic conserved synteny among the CG-MGIII genomes. Alignments >5 Kb over 70% identity are shown.
A color code is used for each MG-III bin. (b) Amino-acid comparison among the MG-III bins. Sets of non-redundant proteins (cutoff of 80%
similarity over 70% of their length) were compared through reciprocal BLASTP and the average amino-acid similarity was plotted. Each
circle represents a genome bin. Circles are interconnected as a function of the percentage of shared proteins and colored in accordance
with their similarity. Size of the bins and width of the lines are explained in the legend. Proteins of the MG-II MG2-GG3 (Iverson et al.,
2012), Thalassoarchaea (Martin-Cuadrado et al., 2015) and the deep-sea hydrothermal vent Euryarchaeota (DHVE2) Aciduliprofundum

boneii T469 were included in the analysis.

organism dragged to the bottom by the continuous flux
of surface microbes and particles into the deep. Indeed,
Guaymas sediments are surprisingly enriched in sur-
face planktonic microbes (Edgcomb et al., 2002) when
compared with other deep-sea sediments (Lopez-
Garcia et al., 2003). However, the lack of rhodopsins
and photolyases (discussed below), together with
higher recruitments from deep data sets, would suggest
that Guaymas32 is a bona fide deep inhabitant.

Synteny and gene content

To examine the conservation of synteny across the
different genome bins, we performed an all-versus-all
genome comparisons with the available sequences of
MG-III (Figure 2a). Within the two groups of LowGC-
MGII bins, large fragments have the same genomic
context while synteny blocks are not conserved
between LowGC-MGIII and HigGC-MGIIL In the case
of LowGC-MGIII, the highest synteny was found
between Epil and Epi4 (54 block alignments, 62% of
Epi4 genome size). For LowGC-MGIII, only Epi2 and
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Guaymas32 showed a significant synteny (56 block
alignments, 38% of CG-Epi2). The low level of synteny
between Bathyl and other bins confirms that the
microbes represented by this bin are very distant to the
other LowGC-MGIIL. Among the HighGC-MGIII bins,
the highest synteny was found between Bathy2 and
Guaymas31 (40 block alignments, 42% of CG-Bathy2)
followed closely by Cayman92 and Guaymas31 (42
block alignments, 40.8% of the Cayman92 genome).
Non-redundant sets of proteins were obtained for
each of the bins, including MG-II relatives, and
compared between bins, retaining only the best hit
for each protein and using a threshhold of 80%
similarity. The relationships between bins were then
plotted in the similarity network showed in Figure 2b.
This protein content analysis supported the clustering
observed in the phylogenomic tree (Figure 1). Bathy1
and SCGC-AAA-288-E19 appeared distantly associated
with Guaymas32 and Guaymas31, respectively. MG-III
bins Epil with Epi4 had the largest percentage of
shared proteins (34.8%), followed by Epi2B and
Guaymas32 (24%) and then Bathy2 and Guaymas31



(25%). Only 8% of Epil proteins were conserved in
Epi2 and 0.5% in Bathy2. Although these numbers
may be biased owing to the incomplete nature of the
bins, they suggest that marine Euryarchaeota are very
diverse and contain very different gene pools. Similar
results were obtained by Deschamps et al. (2014) who
found that the core genome of the MGII/IIl Euryarch-
aeota was only 15.6% of their pangenome, while
their flexible genome was almost triple that of the
Thaumarchaeota.

Metabolic functional inference

Several studies have suggested that marine Eur-
yarchaeota have a significant role in the degradation
of dissolved organic matter in marine waters, for
example, dissolved amino acids (Ouverney and
Fuhrman, 2000) or carbohydrates (Boutrif et al.,
2011). The presence of large peptidases related to
protein degradation, together with enzymes for the
use of fatty acids in the MG2-GG3 genome suggested
that particles might be a habitat for MG-II Euryarch-
aeota (Iverson et al., 2012; Orsi et al., 2015). MG-II
shared various features with the deep MG-III
described by Li et al. (2015), suggesting that they
might be aerobic heterotrophs that use proteins and
polysaccharides as major energy source. In order
to infer different lifestyles, the predicted open
reading frames were functionally classified accord-
ing the arCOG categories and their frequencies in the
different genomes compared (Supplementary Tables
S5 and S6 and Supplementary Figure S15).

Central carbon metabolism

MG-III genomes harbored enzymes for glycolysis, the
tricarboxylic acid cycle and oxidative phosphoryla-
tion, indicating aerobic respiration (Supplementary
Table S7). However, owing to the incomplete nature
of these genomes, not all genes could be found,
and some predictions need to be taken cautiously,
especially for Bathy2. We found genes for the
complete tricarboxylic acid cycle in LowGC-MGIII
but three genes were absent in Bathy1. Remarkably,
only the aconitase and the fumarase were found in
Bathy2. As was observed in some MG-II (Martin-
Cuadrado et al., 2015), MG-III appears to possess
most of the enzymes of the Embden—Meyerhof—
Parnas (EMP) pathway for metabolism of hexose
sugars, with the exception of the first and the last
enzymes of the pathway. We were unable to find any
other enzyme that could serve as an alternative for
the missing glucokinase. For the final step of the
EMP, we propose that phosoenolpyruvate synthase,
found in all of our MG-III bins, might be able to
function bi-directionally and substitute for the miss-
ing pyruvate kinase, allowing the EMP to function in
both directions, gluconeogenic and glycolytic. Like-
wise, we found typical gluconeogenesis enzymes
such as phosphoenolpyruvate carboxykinases in the
LowGC-MGIII and Bathy1 bins, as well as subunits of
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the pyruvate/oxaloacetate carboxyltransferase in all
the MG-III bins. We were unable to find glucose
1-dehydrogenase, gluconolactonase and 2-keto-3-
deoxy gluconate aldolase homologs, suggesting that
the Entner—Duodoroff hexose catabolic pathway is
not present in the MG-III, unlike findings in other
Euryarchaea (Makarova et al., 1999; Makarova and
Koonin, 2003; Hallam et al., 2006).

Only a small number of amino-acid synthases
were found in MG-III: cysteine in Bathy1 and Bathy2,
glutamine in LowGC-MGIII, and for glutamate in all
MG-III bins. Remarkably, many enzymes for de novo
biosynthesis were missing, including those for
synthesizing methionine, arginine, threonine, histi-
dine, aromatic amino acids and branched amino
acids (Supplementary Table S7). However, we
observed multiple genes related with the uptake
and transformation of peptides or amino acids in our
MG-III bins, indicating that these organisms are
capable of taking up amino acids from the environ-
ment and incorporating them into their proteins. For
example, we found genes for permeases for lysine/
arginine (all bins), histidine (Bathy2), glutamine
(LowGC-MGIII and Bathy1), proline (LowGC-MGIII
and Bathy1) and polar amino acids (Bathy2). Also,
several ABC-transporter-systems were found for
peptides and oligopeptides; for example, Dpp-ABC-
type dipeptide/oligopeptide transporters (in all)
and Liv-ABC-type branch amino-acid transporters
(LowGC-MGIII and Bathy1). Several enzymes
involved in the degradation of amino acids were
also found, including dehydrogenases for alanine (all
bins), glutamate (all bins), threonine (LowGC-MGIII
and Bathy2) and proline (LowGC-MGIII), as well as
several aminotransferases for branched-chain amino
acids (LowGC-MGIII and Bathy1l) and aspartate/
tyrosine/aromatic aminotransferases (LowGC-MGIII
and Bathy1). These findings suggest that there may
be differences in the substrates used by the different
MG-III groups. Indeed, although several subtilase-
family proteases (arCOG00702 and arCOG02553)
were present in all bins, some peptidases had limited
distributions: dipeptidyl-aminopeptidases (LowGC-
MGIII and Bathy1), C1A-peptidases (LowGC-MGIII),
C25-peptidases (Bathy1), Xaa-Pro aminopeptidases
(Bathy2), and several AprE-like subtilisins (arCO-
G06823, present in LowGC-MGIII and arCOG03610
present in Bathy1) (Supplementary Table S6).

Carbohydrates can be important carbon sources and,
with the exception of Bathy1, several proteins with
sugar-binding domains were found in all the bins
(lectin and laminin-like). In the Epi6 bin, a cutin-like
hydrolase was found (37% similar to a hydrolase from
the Bacteriodetes Rufibacter sp. DG15C). Cutin is a
polyester composed of hydroxyl/hydroxyepoxy fatty
acids present in plants, and cutinases are produced by
pathogenic fungi as extracellular degradative enzymes
(Chen et al., 1997). Lipo-oligosaccharide transport
systems (nodI/J-like genes) and phosphonate transpor-
ters were found exclusively in the LowGC-MGIIL. As
observed in MG-II Thalassoarchaea (Martin-Cuadrado
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et al, 2015), multidrug and antimicrobial peptide
transporters (ABC-type) together with several per-
meases for drug/metabolites (RhaT-like family) were
also abundant in all MG-III bins. Although the nature of
the substrates is difficult to ascertain, these transporters
may be involved in coping with high environmental
concentrations of toxins such as those produced by
cyanobacterial and algal blooms.

Oxygen. The presence of superoxide dismutase
in all MG-III bins, together with several genes for
alkyl-hydroperoxide reductases in LowGC1-MGIII and
Bathy1, suggests that these microbes must cope with
oxygen radicals. Complete cytochrome-C and B-B6
oxidase subunits operons were also found in LowGC1-
MGIII and Bathyl and Bathy2 bins. Copper-binding
proteins and haloarchaeal-like halocyanins were found
in proximity of these operons, an arrangement similar
to that described for MG-II Thalassoarchaea (Martin-
Cuadrado et al., 2015). It has been suggested that MG-II
could be facultative anaerobes (Martin-Cuadrado et al.,
2008; Belmar et al., 2011) and that sulfate could be
used as terminal electron acceptor. Although no sulfate
reductase-like proteins could be identified in our MG-
III bins, several phosphate/sulfate permeases could be
identified in Epi6 and Bathy2 and were also present in
Guaymas31/32 and Cayman92. Pterin-based molybde-
num enzymes (for example, sulfite oxidase, xanthine
oxidase and dimethyl sulfoxide reductase) function
under anaerobic conditions whereby their respec-
tive cofactors serve as terminal electron acceptors in
respiratory metabolism (Schwarz et al., 2009). For
Bathy2 (fosmid Km3—43-F08), a novel operon for the
molybdopterin biosynthesis, was found (catalytic
domains, MOCS1/S2/S3, have <55% similarities in
the nr-database). However, we could not find any of
the pterin-based enzymes.

Light-related genes. The presence of photolyases/
cryptochromes among the LowGC-MGIII bins supports
our hypothesis that they are bona fide epipelagic
microbes (Figure 3a). Photolyases are proteins capable
of photorepairing ultraviolet-induced pyrimidine
dimers in the presence of light (Essen, 2006; Essen
and Klar, 2006). Cryptochromes are proteins structu-
rally similar to photolyases that act as blue light
photoreceptors or regulators of the circadian rhythm
(Cashmore et al., 1999) but that have lost the enzymatic
photolyase activity (Chaves et al, 2011). Up to
now, seven major classes of photolyase/cryptochrome
families have been found (Scheerer et al., 2015).
Interestingly, while the subunits found in Epil and
Epi3 have similarity with eukaryotic cryptochromes
(38—49%), the photolyases found in Epi2A and Epi2C
bins have their highest similarities with Planctomyce-
tales homologs (30-52%), suggesting potential inter-
domain HGT events. Five related genes, a phytoene
synthase, a phytoene-desaturase, an histidine kinase,
a sugar-epimerase and one hypothetical protein,
were found adjacent to the photolyase gene. At the
equivalent genomic position, the aphotic Guaymas32
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had neither the photolyase nor the associated genes
mentioned above (downstream from a 23S-rRNA
gene) (Figure 3a). The phylogenetic origin of the
genes flanking the photolyases was analyzed and, in
several cases, were most closely related to homologs
from Bacteriodetes/Planctomycetes, again suggesting
instances of HGT. These included a chaperone
involved in protein secretion that was 76% similar to
a Rhodopirellula mairorica homolog, a nitroreductase
that was 75% similar to a Gracilimonas tropica
homolog and a sugar-epimerase next to the photolyase
that was 58% similar to a Pirellula staleyi protein.
Likewise, a hypothetical protein adjacent to the
photolyase in Epil and Epi3 was most closely related
to eukaryotic genes, suggesting that this pair of genes
may have been transferred together.

Epipelagic bins Epi1-2-3 all contained rhodopsins
(Figure 2b) indicative of a photoheterotrophic
lifestyle (Beja et al., 2000; Fuhrman et al., 2008;
Inoue et al., 2013). In contrast, and consistent with
previous reports (Deschamps et al., 2014; Li et al.,
2015), Bathy1 and Bathy2 did not have rhodopsins.
Phylogenetically, MG-III rhodopsins cluster with
bacterial proteorhodopsins rather than with the
euryarchaeal rhodopsins previously described for
MG-II (Iverson et al., 2012; Martin-Cuadrado et al.,
2014), suggesting that they may have been acquired
by HGT from bacteria (Supplementary Figure S14).
The analysis of key residues showed that all of these
MG-III rhodopsins are proton pumps (Inoue et al.,
2013) with a glutamine (Q) in the characteristic
spectral tuning residue site indicating their ability to
absorb light from the blue range (Supplementary
Figure S16). In deeper waters (down to 300 m), only
blue light remains available and blue rhodopsins
are more suitable for generating energy. Therefore,
epipelagic MG-III archaea seem to prefer low-light
environments rather than the highly irradiated
uppermost surface. Indeed, epipelagic MG-III bins
recruited better from DCM or subsurface pelagic
metagenomes (~50-70m) than from surface (5m)
ones (see below). Genomic comparisons with MG-II
rhodopsins (Martin-Cuadrado et al., 2014) revealed
two new genomic contexts for this gene (Figure 3b).
Interestingly, one of the clusters also contains
one of the photolyase genes previously mentioned
(Figure 3, contig Epi3-ERR598942-C530). Down-
stream from the rhodopsin genes, a gene for an
unknown GYD domain protein was present. In
cyanobacteria, proteins containing GYD and KaiC
domains are involved in generating circadian
rhythms (Chang et al., 2015). This raises the possi-
bility that epipelagic MG-III Euryarchaeota may also
have a circadian rhythm. A similar genome segment
was found in two Guaymas32 sequences but, in
these cases, the rhodopsin and the GYD domain-
containing protein were absent.

The phylogenetic relationships of photolyases and
rhodopsins, their proximity in at least one of the MG-
IIT bins, together with the multiple putative HGT
events observed in the nearby genes, leads us to
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Figure 3 (a) Comparative genomic organization of MG-III sequences containing photolyases (in yellow). (b) Comparative genomic
organization of MG-III sequences containing rhodopsins (in red) in context with other genomic fragments containing the MG-II Pop, Pop-1,
Pop-2, Pop-3 and Pop-4 rhodopsins (bottom). Conserved genomic regions are indicated by gray shaded areas, gray intensity being a
function of sequence similarity by TBLASTX. Particular open reading frames mentioned in the text are highlighted by a graphic code (see

legend).

hypothesize an ancestral ‘dark nature’ for MG-IIL
These light-related genes would have been recently
transferred from epipelagic bacteria to MG-II,
probably long after the massive HGT events that
have been detected prior to the diversification of
several mesophilic archaeal clades, including MGII/
III (Deschamps et al., 2014; Lopez-Garcia et al.,
2016). The acquisition of proteorhodopsins, together
with ultraviolet-protection photolyases, would have
promoted a better adaptation to the oligotrophic
surface waters allowing MG-III clades to expand into
new photic niches.

Structural components

Cell envelope. One of the advantages of generating
environmental fosmid sequences is that they allow
the unequivocal assembly and detection of the so-
called ‘metagenomic islands’ (Coleman et al., 2006;
Cuadros-Orellana et al.,, 2007; Rodriguez-Valera
et al, 2009). These are clone-specific genome
areas that, owing to their low coverage, are rarely
assembled from metagenomic data sets but can be
easily identified in reference-genome recruitment
plots in the form of empty (or little populated) areas
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with virtually no environmental homologs. One

example can be observed in CG-Epil. The area of
the genome shown in Figure 4b (labeled with an

asterisk) is enriched in genes needed for cell
wall biosynthesis and contains several glycosyl-
transferases (type I/IV), together with polysaccharide
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which any of the MG-III sequences recruited rpkg>1 were represented. (b) Recruitment plots of the CG-Epi1, CG-Epi2, CG-Bathy1 and CG-
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synthases and genes for carbohydrate modification
(acyltransferases and aminotransferases). The pre-
sence of several lipopolysaccharide biosynthesis
proteins in all MG-III bins suggests a more complex
cell envelope than a protein layer (S-layer). Adjacent
to the CG-Epi1 island, we found a giant protein of
7258 amino acids with no similarity in sequence
databases. These types of proteins have previously
been observed in several bacterial and archaeal
genomes (Reva and Tummler, 2008; Strom et al.,
2011) and have been hypothesized to have a role in
defense against predation or in cell adhesion.
Although we could not predict any function for it,
the presence of lectin/glucanase domains (lamin-
in_G3), glycosyl-transferase domains (RfaB), several
beta-helix repeats and copper-binding domains
(NosD) suggest an extracellular function. Large
proteins (>5000 amino acids) with similar domains
were also detected in other bins (Epi2-3-5). The
similarity found between the giant proteins present
in Guaymas31 and Bathy2 (90%) was remarkable.

Flagellum/Pili. Many archaeal surface structures are
assembled by mechanisms related to the assembly of
bacterial type IV pili (Lassak et al, 2012). With
the exception of Epi5, we found several sequences
containing two concatenated flaJ genes (implicated in
archaeal flagellum assembly) followed by a flal gene
(a transcriptional activator). Syntenic operons were also
found among deep-MG-III in Li et al. (2015). However,
these gene clusters are very different from the flagellar
operon found in MG2-GG3 (Iverson et al., 2012) or in
any other Euryarchaeota described to date (Jarrell and
McBride, 2008; Jarrell et al., 2010). Although it has
been claimed that the genes found might be enough to
build a functional flagellum (Li et al., 2015), the lack of
a more complex gene cluster suggests that this operon
might be involved in a secretion system translocating
proteins rather than in cell motility.

Prevalence in the marine environment

To evaluate the relative abundance of the novel
MG-III genomes, we used the non-redundant CGs to
recruit reads from >200 metagenomic data sets that
provide reasonably complete coverage of open-ocean
waters from around the world. Among them, 106
gave values higher than one rpkg for any of the CGs
tested (Figure 4 and Supplementary Table S1).
Negative results are probably due to the small size
of the data sets (for example, GOS) that may have
poor representation of less abundant organisms.
Although a considerable number of MG-III clones
have been detected in cold waters such as the deep
Atlantic layer of the central Arctic Ocean, (Galand
et al., 2009), the MG-III bins described here were not
well represented in metagenomes from cold water
regions such as polar regions (Alonso-Saez et al.,
2012), the Baltic (Larsson et al., 2014) or the
northeast subarctic Pacific (Allers et al., 2013). This
may suggest that there are other abundant MG-III
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groups present in high latitudes that have yet to be
discovered. Even in warmer latitudes, our LowGC-
MG-III bins only represent a small fraction of the
total prokaryotic population of photic marine habi-
tats. The highest abundance we found was for CG-
Epil that accounted for 0.5% of the reads in the
samples from the Mediterranean station TARA-018
(ERR599073 collection) (Figure 4b). The deep MG-III
bins recruited slightly more. For instance, CG-Bathy2
recruited up to 1% of the reads in the deep sample
Med-Io17 (3500 m).

Figure 4 shows a clear correlation of the two MG-III
groups with depth (as already suggested by the origin
of the assembled bins). Most LowGC-MGIII bins are
only present in epipelagic collections, while the
HighGC-MGIII plus the LowGC Bathyl and Guay-
mas32 were clearly bathy or mesopelagic. CG-Epil
seemed to be evenly distributed throughout the photic
zone, but CG-Epi3, 5 and 6 increased at deeper waters
(25—155 m, including the DCM) and the three CG-Epi2
showed an increase in even deeper photic zone waters.
Bathyl has its maximum at mesopelagic waters
(Adriatic Sea 600 m), but it was also detected in colder
bathypelagic waters (for example, the metagenomes
from the Cayman-Rise and Guaymas Basin). CG-Bathy2
together with the Cayman and Guaymas bins revealed
a strong correlation with deeper waters with much
higher abundance in metagenomic collections
<1000m. These bins were more abundant in the
warmer (13 °C) and saltier Mediterranean deep samples
(KM3, 3000m and Io17, 3500 m deep), although the
temperature in most bathypelagic waters, where these
microbes were detected (global ocean), typically
decreases down to <5°C. Overall, these numbers
indicate that MG-III cells are relatively minor compo-
nents of the archaeal communities in the photic and
aphotic zones.

Using the Mediterranean DCM time series data sets,
we found significant temporal variation in the abun-
dance of the different GC bins despite a relatively
constant abundance of reads attributable to euryarch-
aeal 16S rRNA genes (Supplementary Figure S17). For
example, CG-Epi2A predominated in 2012, whereas
CG-Epi6 was dominant in 2013 and CG-Epi4 in 2014.
In the case of MG, it has been experimentally
demonstrated that eukaryotic phytoplankton additions
stimulate their growth in bottle incubations (Orsi et al.,
2015). Also, MG-II became one of the most abundant
organisms (up to 40% of prokaryotes) in a phytoplank-
ton bloom where diatoms, small flagellates and pico-
phytoplankton dominated consecutively (Needham
and Fuhrman, 2016). In order to know whether MG-II
and the genomes of MG-III described here respond to
similar blooming patterns, we measured the recruit-
ment of available MG-II genomes in the metagenomes
from which MG-III were assembled. The results show
very low numbers for MG-II genomes in these samples,
close to 100 times less than for MG-III genomes
(Supplementary Figure S18). These data indicate that,
despite being closely related and using similar sub-
strates, MG-II and MG-III do not bloom concurrently.
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Using published plankton-interactome data (Lima-
Mendez et al, 2015), we constructed an interac-
tion network for MG-II archaea (Supplementary
Figure S19). The results showed that MG-III coexists
mainly with Metazoa and Dinophyta, which repre-
sented 50.6% and 23.5% of the total of interactions
observed. These findings may indicate that MG-II
cells could be attached to other organisms and only
sporadically be released to the environment.

Conclusions

The photic zone of the oligotrophic ocean, one of the
largest microbial habitats on Earth, has been extensively
explored by molecular and genomic approaches
(DeLong, 1992; DelLong et al., 1999; Venter et al.,
2004; Rusch et al, 2007; Sunagawa et al., 2015).
Nevertheless, many epipelagic microbes remain to be
characterized. Using metagenomics, we have uncovered
eight new groups of planktonic marine Euryarchaeota
that likely represent novel taxonomic orders or at least
families. Based on differences in genome content and
sequence identity, we propose the following nomencla-
ture: Epipelagoarchaeales for the LowGC-MGII and
Bathypelagoarchaeales for the HighGC-MGIIL. A sepa-
rate and basal clade with low GC content but apparently
living in the dark ocean (Bathyl) has also been
uncovered. Genome comparisons between these new
groups together and previously described MG-III gen-
omes (Li et al., 2015) showed a marked differentiation
between MG-III from photic and aphotic layers. Geno-
mic analysis indicates that at least some representatives
Epipelagoarchaeales (Epil-Epi6) are planktonic photo-
heterotrophs. Two other groups with the Epipelagoarch-
aeales, Bathyl and Guaymas32, lack genes indicating
photoheterotrophy and are likely mesopelagic microbes
with diverse metabolic capabilities. We hypothesize that
the low GC content characteristic of the Epipelagoarch-
aeales may be an adaptation to the nitrogen limitation of
surface waters. It is remarkable that all marine Eur-
yarchaeota appear to possess similar metabolic profiles
based on heterotrophic degradation of polymers and
proteins (Iverson et al., 2012; Martin-Cuadrado et al.,
2014; Li et al, 2015; Orsi et al, 2015). The broad
diversity of marine microbes exploiting this habitat is
likely a reflection of the enormous diversity of metabolic
substrates available. Our data suggest a possible inter-
action of MG-II with eukaryotic cells and, more
specifically, with metazoa.
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SUPPLEMENTARY INFORMATION

Supplementary Figure S1. Schematic representation of the assembly and binning

procedure.

Supplementary Figure S2. Binning of the MG-lll genomic fragments. a. Principal
component analysis of tetranucleotide frequencies of the MG-III DNA fragments.
Reference sequences are shown as larger circles: Nitrosopumilus maritimus SCM1,
Aciduliprofundum boneii T469, MGII-GG3, MGII-Thalassoarchaea, the single amplified
genome (SAG) SCGC-AAA288-E19 and the DNA fragments from Cayman92,
Cayman93, Guaymas31 and Guaymas32. b. Heat-map of the number of reads per
kilobase per gigabase of metagenome collection (rpkg) of the MG-IIl sequences
recruiting in 33 different metagenomes (only those in which any of the MG-III

sequences recruited over rpkg>3 were considered for the binning analysis).

Supplementary Figure S3. Distribution of the assembled MG-IIl sequences among
the metagenomes of the Mediterranean series and TARA collections ordered by depth.

Size fraction is indicated above each column.

Supplementary Figure S4. Average nucleotide identity (ANI) among the MG-III
genome bins (in bold the sequences published in this work). Dendrogram showing the

similarity among the bins is shown in the y axis.

Supplementary Figure S5. 16S and 23S-rRNA phylogeny. a. Maximume-likelihood
16S-rRNA gene tree showing the relationship of the MG-IIl with other archaea. Circles
at nodes in major branches indicate bootstrap support (see legend). Scale bar
represents the estimated number of substitutions per site. The different MG-Ill clusters
are indicated by different colours and named following Galand et al. 2008 and this
work. Sampling location is indicated in each of the sequences. Those sequences from

samples from more than 500m deep are underlined. b. Maximum likelihood 23S-rRNA



gene tree showing the relationship of the MG-Ill with other archaea. (Picture features

as explained before).

Supplementary Figures S6-S12. Maximum likelihood phylogenetic trees for the
housekeeping genes RecA, RpoB, SecY, geranylgeranylglyceryl phosphate synthase,
DnaK, GyrA and GyrB. Protein sequences from this study are indicated in bold and
coloured accordingly with the sequence bin (see legend in Supplementary Figure S4).
Genomic bins of MG-II and MG-IIII groups are indicated. Bootstrap values over 50 are

indicated.

Supplementary Figure S$13. Maximum likelihood phylogenetic tree of the photolyases
and cryptochromes found among the MG-IIl bins. Protein sequences from this study
are indicated in bold and coloured accordingly with their kingdom affiliation (see

legend). Bootstrap values over 50 are indicated.

Supplementary Figure S14. Maximum likelihood phylogenetic tree showing the
relationship of the MG-IIl rhodopsins with other bacterial and archaeal rhodopsins.
Protein sequences from this study are indicated in bold and coloured accordingly with
the sequence bin (see legend in Supplementary Figure S4). Following the
nomenclature of Iverson et al. (2013), Clade A and Clade B of rhodopsins is shown. In
blue are marked Pop, Pop-1, Pop-2, Pop-3 and Pop-4 euryarchaeal rhodopsins
previously described. Numbers at nodes in major branches indicate bootstrap support
(shown as percentages and only those >50%). Scale bar represents the estimated

number of substitutions per site.

Supplementary Figure S15. Distribution of arCOG functional classes. Percentage of
arCOGs predicted in the MGIIl bins described in this work and MG-Il marine
euryarchaeal genomes MG2-GG3 and Thalasoarchaea. All genes (a) and genes found
only in one of the MGIII bins (b) are indicated. Asterisks indicate categories where a

significant variation was found comparing the epipelagic and pelagic MGlII.



Supplementary Figure S16. Alignment of the MG-Ill rhodopsins with other cloned
rhodopsins sequences. Identical residues are indicated in red. Residues in blue are
conserved in more than 70% of the sequences. Key amino acids for rhodopsins
functionality (listed herein with G. pallidula numbering) are marked by colours: Lys336
(K) binds retinal, and Asp164 (D) and Glu175 (E) function as Schiff base proton
acceptor and donor, respectively. Glutamine (Q) in position 172 (*) in the MG-IlI
rhodopsins sequences indicates an absorption maxima at the blue spectrum range.
Letters (G) and (B) in the name of the sequences indicate the range of the spectrum.
(The GenBank accession numbers of the sequences used for the alignment are as
follows: Pop-2 HF10_3D09, 82548293; Pop-3 HF70_19B12, 82548286; Pop-4
HF70_59C08, 77024964; eBAC49C08, AAY82659; HF130_81HO07, 119713419;
HF10_49E08, 119713779; eBAC20EQ9, AAS73014; HOT75m4, AAK30179;
eBAC31A08 (SAR86), AAG10475; SAR8B6E, WP_008490645; C. Pelagibacter ubique
HTCC1062 (SAR11), YP_266049; Pelagibacter sp. HTCC7211, WP_008544914;
gammaproteobacteria HTCC2207 (SAR92), EAS48197; G. pallidula, WP_006008821;
Dokdonia donghaensis MED134, ZP_01049273; MedDCM-JUL2012-C3793,
KP211865; MedDCM-OCT2007-C1678, KP211832; MedDCM-OCT-S08-C16,
ADD93192; Exiguobacterium sibiricum 255-15, ACB60885; Exiguobacterium sp. AT1b,

WP_012726785; Haloarcula marismortui ATCC 43049, YP_136594.

Supplementary Figure S17. Classification of the DCM-metagenomes reads using the
RDP (16S-rRNA) database. Only those genera which represented more than 1% were

represented.

Supplementary Figure S18. Number of reads per kilobase per gigabase of
metagenome collection (rpkg) for the composite genome CG-Epi1 MG-IIl (ordered from
minus to major) compared with those obtained for the MG-Il (MG2-GG3 (lverson et al.
2013) and the Thalassoarchaea (Martin-Cuadrado et al. 2014)). Other CG MG-IIl were

also included in the graph.



Supplementary Figure S19. Interactions (showed as percentages) calculated by
Mendez-Lima et al., (2015) for the MG-Ill with other organisms. Data extracted from

Supplementary table W7 in Mendez-Lima et al., (2015).

SUPPLEMENTARY TABLES

Supplementary Table S1. List of metagenomes used for recruitments in Figure 4a and

Supplementary Figure 2b, sorted by temperature and depth.

Supplementary Table S2. List of sequences of each of the MG-IIl sequence bins.

Supplementary Table S3. List of sequences of the MG-IIl composite genomes (CG-

MGIIl).

Supplementary Table S4. Housekeeping genes found in the MG-Ill bins and the CG-

MG-III bins (as Narasingarao et al., (2012).

Supplementary Table S5. CG-MGIll-protein categories based on the arCOG

database.

Supplementary Table S6. Classification of the CG-MGIII unique CDSs based on the

arCOG classification.

Supplementary Table S7. List of genes involved in MG-IIl metabolic pathways.
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Assembly and annotation of euryarchaeal sequences

Assembly. Metagenomic reads from MedDCM-JUL2012, MedDCM-SEP2014, Med-lo7-77mDCM, Med-Ae2-
600mDeep and the fosmid reads from MedDCM-OCT2007, KM3 and AD1000 were independent and systematically

@ assembled using IDBA_UD.

Annotation. Assembled DNA fragments were annotated using the NCBI nr-database, Pfam, COGs, arCOGs and
TIGRfam. Only those fragments which have more than 50% of their ORFs annotated as Euryarchaeota were taken for
further analysis (in black).

Retrieving of euryarchaeal sequences

where our initial genomic fragments recruited more than 3 rpkg were selected.

Assembly and annotation of the selected metagenomes (as described previously). DNA fragments classified as

@ Recruitment. Search of Euryarchaeota sequences within different marine databases. Only those metagenomes
@ euryarchaeota were collected.

Binning of MG-IlI by tetranucleotide frequencies, %GC and differential coverage

Binning of the MG-lll sequences by tetranucleotide frequencies, %GC and differential coverage among 33
metagenomes.

Re-assembly

Aligment of the sequences >10 Kb of one specific bin against the metagenomic reads where those contigs came
from using BWA. The process was made for all the bins. The reads extracted were used in the following step.

Assembly of the reads with SPADES using the DNA fragments for scaffolding with the parameter —trusted_contigs.
The re-assembly was done for all the bins and their products are called «composite genome» (CG).
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Supplementary Figure S19
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Table 2. List of used f i in Figure 4a and Figure 2B, sorted by
Metagenome Size fraction | Deoth ) ocation Work Eoi-6 |Epi-2A [ Epi-28 | Epi-2C [ Bathy-1 [Bathv-2 [ c: Guavmas31 MG2-6G3 [A. boneii.
ERR99075 0.22um 5m 30 Indian Monsoon Gyres Province 1 073[ 014 | 016 | 009 008 | 006 | 005 | o001 011 0.0 0.08 012 001
ERR599119 0.22um 5m 28 South Pacific Subtropical Gure Province. North and South 1 075| 016 | 019 | 01| 010 | o010 | 009 | o001 o 009 024 021 003
ERRS99030 0.22um sm 266 North Pacific Equatorial Countercurrent Province 1 028 | 005 | 007 | 006 | 005 | 004 | 004 | 000 007 004 010 on 001
ERR599160 0.22um 5m 266 South Pacific Subtropical Gure Province. North and South 1 034 | 006 | 006 | 006 | 005 | 004 | 004 | 000 006 005 017 01 003
ERRS94307 0.22um sm 265 South Pacific Subtropical Gure Province, North and South 1 172 | 031 | 031 | 025 | o016 | 012 | 01w | 002 021 o1 026 028 003
ERRS599069 0.22um 5m %5 South Pacific Subtropical Gure Province. North and South 1 048 | 009 | 009 | 007 | 006 | 005 | 005 | 000 008 005 017 017 002
ERRS93989 0.22um sm 264 North Pacific Equatorial Countercurrent Province 1 016 | 002 | 003 | 003 | 003 [ 002 | 002 | 000 005 003 o 020 002
ERR599038 0.22um 5m 261 Pacific Eauatorial Diveraence Province 1 046 | 009 | 011 | 01| 008 | 007 | 007 | 000 o1 007 021 032 003
ERRS99142 0.22um sm 252 North Pacific Subtropical and Polar Front Provinces 1 07| 012 | 013 | 009 | 007 | o005 | o005 | o001 008 004 010 010 001
ERR599093 0.22um 5m 251 South Pacific Subtropical Gure Province. North and South 1 033| 006 | 007 | 005| 003 | 002 | 002 | 000 006 002 007 005 o001
ERRS98984 0.22um 5m 25 South Atlantic Gyral Province 1 044 | 006 | 007 | 003 | 003 [ 002 | oor | 000 005 002 007 005 001
ERR599136 0.22um 5m 2 Caribbean Province 1 065 | 031 | 039 | 016| 022 | o015 | 015 | 002 030 o1 041 021 003
ERRS98954 0.22um sm 22 South Pacific Subtropical Gure Province. North and South 1 073| 015 | 021 | 010| 009 | 007 | o006 | o001 013 005 008 0.06 001
ERRS94288 0.22um 5m 29 Mediterranean Sea, Black Sea Province 1 024( 002 | 003 | 002| 002 | oo1 | oo1 | 000 004 001 005 002 o001
ERRS599024 0.22um 5m 238 South Pacific Subtropical Gure Province. North and South 1 032( 005 | 006 | 003| 003 | 002 | 002 | 000 005 003 006 0,07 001
ERR594286 0.22um 5m 23 South Atlantic Gyral Province 1 040 | 007 | 009 | 004 | 004 | 003 | 003 | 000 006 003 008 o008 o001
ERRS99077 0.22um 5m 238 South Pacific Subtropical Gure Province. North and South 1 117 | 017 [ 019 | 015 | 009 | 008 | 006 | 000 o1 007 016 014 001
ERR98970 0.22um 5m 22 Eastern Africa Coastal Province 1 0s7| 010 | 012 | 006 | 006 [ o005 | 004 | o001 008 005 050 014 o001
ERRS98979 0.22um 5m 28 Eastern Africa Coastal Province 1 0s52| 009 | 010 | 007 | 007 | 006 | 006 | o001 o1 006 097 015 002
0.22um sm 214 Mediterranean Sea, Black Sea Province 1 687| 102 | 076 | oas | 010 | 007 | o006 | o001 017 007 050 o1 001
ERRS93955 0.22um 5m 205 North Atlantic Subtroical Gural Province 1 031| 001 | 002 | 003| 002 [ oo1 | oo | 000 004 001 049 013 001
ERR99123 0.22um sm 204 North Atlantic Subtropical Gural Province 1 072 025 | 027 | 02| 013 | 00 | 007 | o001 020 008 041 02 003
ERR594332 0.22um 5m 199 South Atlantic Gural Province 1 040 | 006 | 007 | 005| 003 | 002 | 002 | 000 005 002 036 018 001
0.22um sm 198 South Atlantic Gyral Province 1 06| 014 | 017 | 008 | 011 | 007 | o006 | o001 013 007 161 063 004
ERR593968 0.22um 5m 191 North Atlantic Subtroical Gural Province 1 044 | 032 | 033 | 014| 016 | 008 | 007 | o001 02 007 037 017 003
ERRS98963 0.22um sm 187 North Atlantic Subtropical Gural Province 1 100 | 035 | 029 | 015 | 013 | 008 | 005 | o001 017 008 252 038 002
ERR315858 0.22um 5m 176 Mediterranean Sea. Black Sea Province 1 794 | 043 | 036 | 025 | o005 | 004 | 002 | o000 013 00¢ 045 005 001
ERR599170. 0.22um sm 176 North Atlantic Subtropical Gural Province 1 131 | 020 | 018 | 011 | o005 | 003 | 003 | 000 009 003 279 044 002
ERR598976 0.22um 5m 173 North Atlantic Subtroical Gural Province. 1 180 | 015 | 015 | 008 | 006 | 005 | 005 | 000 008 006 676 154 003
ERRS94297 0.22um sm 168 South Atlantic Gyral Province 1 254 | 130 | 103 | 050 | 021 | o011 [ o010 | 002 031 010 373 020 002
ERR598973 0.22um 5m 15 Benguela Current Coastal Province 1 391 | 101 | 081 | 067 | 007 | 003 | o003 | o000 o1 003 1502 035 o001
ERRS99078 0.22um 5m 143 North Atlantic Subtropical Gural Province 1 147 | 078 | 047 | 035 | o004 | 003 | 003 | o001 009 003 2379 017 001
ERRS93983 0.22um 5m 141 Gulf tream Province 1 874 | 525 | 911 | 981 | 017 | 013 | om | oo1 049 o010 4340 029 003
ERRS99032 0.22um aom 261 Pacific Eauatorial Divergence Province 1 050 013 | 014 | 008| 008 [ 007 | 005 | o001 o1 007 023 026 003
HoTs 0.22um 25m 2 North Pacific Subtropical Gyre s 045 | 009 | 017 | 012 | 004 | 000 | 000 | 000 009 003 006 012 o001
BATS 0.22um som 25 North Atlantic s 0s52| 020 | 009 | 000| 011 | 003 | 004 | 000 013 003 008 002 001
ERR598990. 0.22um 3om 218 Eastern Africa Coastal Province 1 05| 011 | 012 | 008 | o1 | oo | o1 | o0¢ 020 010 091 020 002
ERR599014 0.22um s0m 28 South Pacific Subtropical Gure Province. North and South 1 064 | 012 | 016 | 010 | 008 [ 007 | 007 | o001 o1 007 140 0.6 003
ERR599081 0.22um som 206 South Pacific Subtropical Gyre Province, North and South 1 102 | 024 | 024 | 015 | o010 | 006 | o005 | o001 015 005 087 012 o001
ERRS599007 0.22um aom 196 Pacific Eauatorial Divergence Province 1 073| 008 | 011 | 008 | o004 [ 003 | 002 | o001 007 003 130 014 001
ERRS93987 0.22um aom 186 North Pacific Equatorial Countercurrent Province 1 007| 015 | 015 | 009 | 067 | 136 | 309 | 226 084 347 007 004 001
ERR598996 0.22um 40m 17.7 North Atlantic Subtropical Gural Province 1 117 | 016 | 018 | 010 | 006 | 003 | 003 | 000 009 004 202 046 002
ERRS94294 0.22um som 168 South Atlantic Gyral Province 1 384 | 139 | 111 | 0ss | 026 | 014 | 013 | 002 045 o 201 017 003
ERR599094. 0.22um som 152 Mediterranean Sea. Black Sea Province 1 485 | 096 | 067 | 039 | o004 | 003 | 002 | 000 o 003 043 0.06 001
ERRS98982 0.22um 3om 15 Benguela Current Coastal Province 1 384 | 103 | 086 | 070 | 007 | 004 | 003 | 000 o1 004 121 031 001
ERR599001 0.22um 25m 143 North Atlantic Subtroical Gural Province 1 179 | 137 | 088 | 059 | 006 | 004 | 004 | 000 o1 00¢ 298 019 002
ERRS98942 0.22um asm 132 North Pacific Subtropical and Polar Front Provinces 1 473 | 043 | 04s | 035 | 010 | 009 | 007 | 000 018 007 425 028 o001
ERR599161 0.22um 120m 252 South Pacific Subtropical Gure Province. North and South 1 049 | 022 | 021 | 013 | om | 007 | 007 | o001 016 007 027 014 002
ERRS99100 0.22um 125m 29 Caribbean Province 1 01| 032 | oas | 019| 025 | 019 | o018 | o003 034 016 044 026 004
ERR594342 0.22um 140m 27 South Pacific Subtropical Gure Province. North and South 1 07| 020 | 021 ] 02| 012 | om | 00 | 002 016 009 029 028 003
ERR598957 0.22um 155m 23 South Pacific Subtropical Gure Province. North and South 1 071| 030 | 040 | 019 | 014 | o010 | o008 | o001 020 007 o1 008 001
ERRS98972 0.22um sm 23 Eastern Africa Coastal Province 1 0s59| 013 | 014 | 010| 013 | om | ou | oo 014 010 073 029 004
HOTs 0.22um 75m 2 North Pacific Subtropical Gure B 024 | 001 | 004 | 007 | 002 | 000 | 000 | 000 009 001 007 0,05 001
ERRS94298 0.22um 150m 216 South Atlantic Gyral Province 1 119 | 053 | 01| 034 | 039 | 017 | om | 003 050 013 023 o1 003
ERR598961 0.22um 9om 199 South Pacific Subtropical Gure Province. North and South 1 153 | o046 | 048 | 023 | 016 | 010 | 009 | 001 024 009 068 010 002
ERRS94336 0.22um 120m 193 South Atlantic Gyral Province 1 124 | 064 | 059 | 028 | 019 | 010 | 009 | o001 031 008 048 012 o002
ERRS99087 0.22um om 19 North Pacific Eauatorial Countercurrent Province 1 095 | 028 | 031 | 024| 012 | 008 | 006 | 002 021 006 050 027 002
ERR318618 0.22um 7om 19 Mediterranean Sea, Black Sea Province 1 024 | 003 | 004 | 003| oor | oo1 | oo1 | 000 004 001 002 000 000
ERR599073 0.22um 6om 184 Mediterranean Sea. Black Sea Province 1 929 | 094 | 078 | 040 | 012 | 008 | 00s | o001 020 007 062 015 001
ERRS93986 0.22um som 168 North Atlantic Subtropical Gural Province 1 28| 175 | 124 | 063 | 057 | 008 | 007 | oo01 037 007 731 051 003
ERRS94315 0.22um ssm 162 Mediterranean Sea. Black Sea Province 1 1049| 1141 | 725 | 427 | 014 | o1 | 009 | 002 049 009 721 035 003
ERR315859 0.22um ssm 157 Mediterranean Sea, Black Sea Province 1 933| 25 | 162 | 095 | 008 | 005 | o005 | o001 021 006 123 02 002
MedDCM-SEP2013 0.22um 55m 155 Mediterranean Sea 2 873 | 052 | 042 | 029 | 006 | 004 | 004 | 000 o1 004 7.05 063 002
Med-1016-70mbCM 0.22um 70m 154 Mediterranean Sea 4 513 | 066 | 050 | 027 | s40 | 008 | 006 | 000 013 006 082 005 000
ERR598995 0.22um 115m 153 North Pacific Subtropical and Polar Front Provinces 1 307| 431 | 291 | 1722 | o032 | 015 [ o1 | o002 057 o 178 021 002
MedDCM-SEP2014 0.22um 6om 15 Mediterranean Sea 3 961 | 070 | 062 | 036 | 005 | 007 | 005 | o000 017 006 0386 0.06 001
Med-Ae1-75mDCM 0.22um 75m 15 Mediterranean Sea 4 174 | 091 | 067 | 036 | 405 | 006 | 004 | 002 021 004 027 005 001
Med-107-77m0C! 0.22um 77m 143 Mediterranean Sea 4 551 | 520 | 342 | 196 | 393 | 006 | 005 | 001 028 005 096 o1 002
MedDCM-1UL2012 0.22um 75m 136 Mediterranean Sea 2 395 | 2130 | 1327 | 787 | o088 | 008 | o00s | o001 064 006 2014 018 002
ERRS98958 0.22um 250m 182 North Atlantic Subtropical Gural Province 1 021| 034 | 032 | 07| 342 | o016 | o1 | o004 043 o4 o 016 004
ERR599172 0.22um 270m 156 Indian Monsoon Gyres Province 1 002| 005 | 0os | 002| 045 | 183 | 318 | 232 02 290 001 o001 002
ERRS99109 0.22um 340m 15 Indian Monsoon Gures Province 1 003 | 006 | 006 | 002 | 048 | 105 | 192 | 133 034 172 002 001 002
ted-Ac2-600mDeen 0.22um s00m 1 Mediterranean Sea 4 009 | 020 | 023 | 010| 1397 [ 013 | 009 | o003 142 009 013 006 003
ERRS98953 0.22um 177m 13 ‘South Pacific Subtropical Gure Province. North and South 1 024 | 049 | 0ss | 029| 155 [ 052 | 110 | o076 507 127 o1 005 0.02
ERR594290 0.22um 600m 121 Northwest Arabian Sea Upwelling Province 1 001 | 003 | 006 | 001| 024 | 319 | 599 | 419 o 522 001 o001 o001
ERRS599067 0.22um 380m 13 Chile-Peru Current Coastal Province 1 007| 012 | 018 | 00s| 089 | om | ou | o008 135 o4 019 0.06 002
0.22um 640m 1 North Atlantic Subtropical Gyral Province. 1 008| 023 | 031 | 016| 179 | 036 | o050 | 037 070 056 019 006 003
ERR599086 0.22um 350m 109 South Pacific Subtropical Gure Province. North and South 1 o11| 023 | 028 | 013| 136 | 039 | 030 | o028 265 043 025 008 003
ERRS99020 0.22um 380m 103 South Pacific Subtropical Gyre Province, North and South 1 022 016 | 023 | 010| 086 | 029 | o051 | 036 301 059 044 019 003
ERR598985 0.22um 640m 98 Caribbean Province 1 007| 013 | 022 | 007 | 110 | o047 | 078 | o051 057 087 019 0.06 003
ERRS99055 0.22um agom 52 Pacific Equatorial Divergence Province 1 008| 013 | 027 | 008 | 072 | o1 | o009 | o009 250 0w 016 005 002
ERR599152 0.22um 375m 89 North Pacific Eauatorial Countercurrent Province 1 00s| 009 | 012 | 004| 07 | 226 | 531 | 395 03¢ 602 004 001 002
ERRS99004 0.22um asom 82 North Pacific Equatorial Countercurrent Province 1 004 | 008 | 010 | 003 | 058 | 197 | 47 | 350 035 536 004 002 002
ERR594305 0.22um 600m 7.2 South Pacific Subtropical Gure Province. North and South 1 007| 008 | 025 | 004| 057 | 033 | 03 | o029 029 044 021 007 002
ERRS99166 0.22um 590m 51 Gulf stream Province 1 012| 042 | 061 | 032 | 176 | 143 | 303 | 216 485 32 020 008 003
ERRS99115 0.22um 6s0m 49 North Pacific Subtropical and Polar Front Provinces 1 009 | 017 | 028 | 01| 130 | 072 | 13 | 100 410 153 025 008 003
ERRS98964 0.22um 740m 106 North Atlantic Subtroical Gural Province. 1 007| 017 | 027 | 0a1| 161 | 033 | o046 | o034 o7 053 017 0.06 002
ERR593944 0.22um 800m 102 North Atlantic Subtropical Gyral Province 1 008 | 015 | 025 | 007 | 152 | o0se | 101 | o7 050 109 019 007 003
ERRS98960 0.22um 850m 84 Eastern Africa Coastal Province 1 007| 014 | 026 | 005 | 150 | o040 | o064 | o042 060 o7 016 005 002
ERR599021 0.22um 1000m 77 Eastern Africa Coastal Province 1 006 | 014 | 025 | 005 | 129 | 077 | 148 | 104 063 163 o014 005 003
ERRS98947 0.22um 700m 7 South Atlantic Gvral Province 1 010 032 | 050 | 023| 195 | o045 | o088 | o061 375 100 020 0.06 003
ERR599124 0.22um 800m 59 South Atlantic Gyral Province 1 00s| 013 | 028 | 008 | 084 | o091 | 211 | 144 116 238 008 004 003
ERR599000 0.22um 800m a7 South Atlantic Gyral Province 1 004 | 006 | 017 | 003| 067 | 132 | 290 | 207 052 322 009 003 003
ERR599048 0.22um 800m a7 South Atlantic Gyral Province 1 024| 007 | 010 | 004| 032 | 030 | 052 | o047 020 061 on 005 o002
ERR599149 0.22um 800m a2 South Atlantic Gyral Province 1 004 | 007 | 015 | 003| 062 | 081 | 154 | 127 043 166 010 004 002
ERRS99125 0.22um 790m 05 Antarctic Province 1 008 | 031 | 0as | 018 | 116 | 298 | 69 | s1¢ 350 576 015 006 003
Km3 0.22um 3000m 14 Mediterranean Sea 6 028| 000 | 000 | 000 | 007 | 651 | 137 | 163 013 123 028 0.00 0.00
Med-1017-3500mDeep 0.22um 3500m 1 Mediterranean sea a 002 | 005 | 005 | 004| 014 | 7289 | 2025 | 2085 008 29 002 003 003
SRR483330 0.22um 2000m 3 Basin 7 oot | o011 | 015 | 000 | 005 | 014 | o055 | 038 2 084 010 0.06 003
SRR4S8331 0.22um 2000m 3 ‘Guaymas Basin 7 0o01| 019 | 016 | 07| 017 | o1 | o7 | o2 306 118 015 005 004
SRR2046235 0.22um 2040m 3 Cavman 7 004| 009 | 012 | 002| 389 | 244 | 638 | s01 020 a2 003 003 002
SRR2046236 0.22um 238m 3 Cayman 7 003 | 006 | 008 | 001| s18 | 304 | 804 | 666 020 595 004 002 002
SRR2046222 0.22um 2327m 3 Cavman 7 004| 010 | 011 | 002| 074 | 441 | 1136 | 904 024 853 005 003 002
SRR2046238 0.22um agsom 1 Cayman 7 002| 006 | 009 | 002| 041 | 800 | 2260 | 1988 018 1485 005 004 003
0.22um 4946m 1 Cavman 7 004 | 008 | 007 | 003| 052 | se2 | 249 | 2164 019 1647 006 003 002
SRR2046221 022um 4950m 1 Cavman 7 010 007 005| 011|004 008 | 013 | 00s | a7 | 1239 | 3611 | 3120 027 2389 008 005 003
11 Sunarawa et al. (2015]; (2] Martin-Cuadrado et al. (20151; (3] This work (4] Mizuno et al. (2016}; (1 Coleman and Chisholm, (2010]; (6] Martin-Cuadrado et l. (2007); (7 Li et - (2015)

Highlighted in grev. it of the and used for the binning procedure.
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