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As requested by reviewers Figure 4 and Figure 8 have been 
modified. Also, minor changes have been introduced in Figure 1, 
Figure 2, Figure 9 and Figure 10. Modifications are also translated 
to the datasets, with corrections in Dataset 1, Dataset 3 and 
Dataset 6. 

See referee reports

REVISED

Introduction
Fish are the most primitive vertebrates possessing many of the 
immune system cells (lymphocytes, NK cells, macrophages,  
etc) and molecules (interleukins, chemokins, receptors, etc)  
found in higher vertebrates. In contrast to higher vertebrates, 
however, fish lack bone marrow, lymph nodes, IgG-switch, and 
have tetrameric rather than pentameric IgM, with a more limited  
binding repertoire than mammals1. Fish red blood cells (RBCs), 
the most abundant cell type in the blood, have receptors capable  
of recognizing pathogen associated molecular patterns and respond 
to them with differentially expressed cytokine transcripts2,3 and 
cytokine-like factors4. Fish RBCs generate a wide variety of 
immune-related gene transcripts when viruses highly replicate 
inside them5–7, while their mammalian counterparts are unable 
to do this. In light of this evidence, an outstanding question is  
whether fish RBCs are able to respond to viral infections that 
are well known to replicate in other cells or tissues, and if they  
could further contribute with compensatory immune responses 
in order to physiologically combat viral infections that do not  
target RBCs.

To explore in vitro the above mentioned question, we used  
rainbow trout (Oncorhynchus mykiss), an important aquacul-
tured species, together with Viral Haemorrhagic Septicemia  
virus (VHSV), a rhabdovirus also called the ‘fish ebola’, which 
causes important losses of high economic impact on world-
wide salmonid aquaculture8. VHSV viruses are bullet-shaped  
enveloped virions with single-stranded negative-sense RNA with 
a genome of 11.2 kbp8–10. In rainbow trout, kidney and spleen 
endothelial cells are the first targets of VHSV. Afterwards, hemat-
opoietic elements of kidney and spleen undergo necrosis and 
degeneration, most specifically at melanomacrophage centers  
(reviewed in Kim and Faisal11). However, there are no  
references for VHSV targeting specifically RBCs, therefore repre-
sent a good model to investigate the immune response of RBCs 
to viruses targeting other cells or tissues. VHSV cell entry has 
been described to be mediated by binding initially to fibronec-
tin, an abundant glycoprotein of the extracellular matrix, allowing  

then VHSV to bind to the cells via integrin receptors and enter  
by fusion or endocytosis12. 

In this study, we describe how in vitro cultures of rainbow trout 
RBCs upregulated the expression of some immune proteins as 
part of their antiviral immune response against VHSV, whose  
infection appeared to be halted in rainbow trout RBCs. Simul-
taneously, interferon-inducible mx and pkr genes showed  
a downregulation tendency during VHSV early replication,  
after 6 hpe. In addition, protein levels corresponding to BD1  
( -defensin 1 – an anti-microbial peptide known to be involved  
in antiviral innate immunity13,14– and IL8 (Interleukin 8 – a  
neutrophil chemotactic factor–), are shown, to our knowl-
edge, for the first time, as characteristic of rainbow trout RBCs  
antiviral immune protein responses. Further, iTRAQ-based pro-
tein profiling of VHSV-exposed RBCs showed a global pro-
tein downregulation, mainly related to RNA stability and  
proteasome pathways. Related to this fact, phosphorylation of 
the -subunit of translational initiation factor 2 (eIF2 ) and pro-
tein synthesis inhibition could be implicated in the inhibition  
of VHSV replication and RBCs proteome shut-off. Also,  
antioxidant related antiviral response is also suggested as 
involved in the response of rainbow trout RBCs to VHSV halted  
infection. In summary, we suggest a wide range of mecha-
nisms implicated in the antiviral response of rainbow trout RBCs  
against VHSV halted infection.

Methods
Animals
Rainbow trout (Oncorhynchus mykiss) individuals of approxi-
mately 5–6 cm were obtained from a VHSV-free commercial  
farm (PISZOLLA S.L., CIMBALLA FISH FARM, Zaragoza, 
Spain), and maintained at University Miguel Hernandez (UMH) 
facilities at 14°C, with a re-circulating dechlorinated-water  
system, at a stocking density of 1fish/3L, and fed daily with  
a commercial diet (SKRETTING, Burgos, Spain). Prior to 
experiments, fish were acclimatized to laboratory conditions  
over 2 weeks. The number of individuals used is indicated by  
an “n” in each experiment.

Antibodies
Rabbit polyclonal antibodies against rainbow trout -defensin  
(BD1) (RRID: AB_2716268) (unpublished, Figure S1) and  
rainbow trout Mx3 (RRID: AB_2716267)15–17 were produced at 
the laboratory of Dr. Amparo Estepa. Mouse polyclonal antibod-
ies against rainbow trout IL1  (RRID: AB_2716269)18,19, IL8 
(RRID: AB_2716272)20, TNF  (RRID: AB_2716270)21, Hepci-
din (RRID: AB_2716273)22, NKEF (RRID: AB_2716271)23,24, 
IFN  (RRID: AB_2716275) (unpublished, Figure S2A) and IFN1 
(RRID: AB_2716274) (unpublished, Figure S2B) were produced 
at the laboratory of Dr. Luis Mercado. Rabbit polyclonal anti-
body against human NF-  p65 antibody (Cat#ab7970, RRID: 
AB_306184) was purchased from AbCam (Cambridge, UK).  
This p65 antibody epitope corresponds to the C-terminal 
region of the p65 protein, similarly to other p65 antibodies used  
for teleost species25–27. To label VHSV, we used the mouse mono-
clonal 2C9 antibody (RRID: AB_2716276)28 against the N protein 
of VHSV (N

VHSV
) produced at Dr. Coll’s laboratory. Anti-Rabbit  
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IgG (H+L) CF™ 488 antibody produced in goat and Anti-Mouse 
IgG (H+L) CF™ 488 antibody produced in goat were used  
as secondary antibodies (Sigma-Aldrich, Madrid, Spain). Rabbit  
polyclonal antibody against human eIF2 -P (Cat# E2152, RRID:
AB_259283) and rabbit polyclonal antibody against human  

-Actin (Cat#2066, RRID:AB_476693) were purchased from 
Sigma-Aldrich and used for western blotting.

Cell cultures and virus
Rainbow trout RBCs were obtained from peripheral  
blood of fish sacrificed by overexposure to tricaine (tricaine 
methanesulfonate, Sigma-Aldrich; 0.2 g/l). Peripheral blood was 
sampled from the caudal vein using insulin syringes (NIPRO,  
Bridgewater, NJ). Blood samples were placed in a 2 ml eppen-
dorf with RPMI-1640 medium (Dutch modification) (Gibco, 
Thermo Fischer Scientific Inc., Carlsbad, CA) supplemented with  
10% FBS (fetal bovine serum) gamma irradiated (Cultek, Madrid, 
Spain), 1 mM pyruvate (Gibco), 2 mM L-glutamine (Gibco),  
50 μg/mL gentamicin (Gibco) and 2 μg/mL fungizone (Gibco),  
100 U ml−1 penicillin and 100 μg ml−1 streptomycin (Sigma-
Aldrich). Then, RBCs were purified by two consecutive den-
sity gradient centrifugations (7206g, Ficoll 1.007; Sigma- 
Aldrich). Purified RBCs were cultured in the above indicated 
medium at a density of 5·105 cells/ml in 24-well cell culture  
plates at 14°C.

The fish cell lines TSS, RTG-2 and EPC, were also used in 
this work. TSS (Trout Stroma from Spleen)29 was donated by  
the laboratory of Dr. AJ Villena. TSS cells were maintained at 
21°C in RPMI medium containing 20% FBS, 1 mM pyruvate,  
2 mM L-glutamine, 50 μg/mL gentamicin and 2 μg/mL fungi-
zone. RTG-2 (Rainbow Trout Gonad-2) cell line was purchased  
from the American Type Culture Collection (ATCC, 50643). 
RTG-2 cells were maintained at 21°C in MEM medium 
(Sigma-Aldrich) containing 10% FBS, 1 mM pyruvate, 2 mM  
L-glutamine, 50 μg/mL gentamicin and 2 μg/mL fungizone. 
EPC (Epithelioma Papulosum Cyprini)30 cell line was purchased 
from the ATCC (CRL-2872). Cells were maintained at 28°C, 
in RPMI-1640 10% FBS, 1 mM pyruvate, 2 mM L-glutamine,  
50 μg/mL gentamicin and 2 μg/mL fungizone.

Viral haemorrhagic septicaemia virus (VHSV-07.71)31, iso-
lated in France from rainbow trout, was purchased from the 
American Type Culture Collection (ATCC, VR-1388) and 
propagated in EPC cells at 14°C, as previously reported32.  
Supernatants from VHSV-infected EPC cell monolayers were  
clarified by centrifugation at 4000 x g during 30 min and kept  
at -80 °C. The virus stock was titrated in 96-well plates using an 
immunostaining focus assay33. Clarified supernatants were used  
for the experiments at the indicated dilutions.

Viral exposure assays
RBCs and RTG-2 cells were infected with VHSV at different  
multiplicities of infection (MOI), at 14°C. After 3 hours  
of incubation for RBCs and 1.5 hours for RTG-2, cells were washed 
with cold RPMI, then RPMI 2% FBS was added and infection  
incubated at 14°C, at the different times indicated for each  

assay. In the case of the time-course assay, the virus was not 
removed.

Virus titers present in VHSV-exposed RBCs supernatants 
were determined by plaque assays. Briefly, different dilutions  
of the supernatants (from 10-1 to 10-4) were added to EPC cell 
monolayers, grown in 24-well plates, at 14°C for 90 minutes. 
Then, culture media were removed and infected cell monolayers  
covered with a solution of RPMI-1640 cell culture medium 
with 2% FBS and a 2% aqueous solution of methyl cellu-
lose (Sigma-Aldrich). Cell plates were incubated at 14°C for  
5 days and then media with methyl cellulose were removed.  
Finally, EPC cell monolayers were stained with crystal violet- 
formalin to count plaques. Virus titers were expressed as plaque 
forming units (PFU) per ml.

Separately, N
VHSV

 RT-qPCR was also used to quantify viral RNA 
inside VHSV-exposed RBCs.

Blocking of endosome acidification by NH4Cl
To block endosomal low-pH, NH

4
Cl (Sigma-Aldrich) at 7 mM 

was added to RBCs during VHSV exposure, which was car-
ried out as described in the previous section. No significant cell 
death was observed in RBCs treated with NH

4
Cl, since the 

concentration used is known as non-cytotoxic in EPC33 and 
RTG-217 cells, but effective for reducing VHSV infectivity by 
40%33. After incubation period, viral titer in supernatants was  
calculated as described in the previous section.

Neuraminidase treatment assay
Ficoll purified RBCs were pre-treated with 50 and  
100 mU/ml of neuraminidase from Vibrio cholerae (Sigma-
Aldrich), at 21°C for 30 minutes, before virus inoculation. After  
treatment, RBCs were washed once with PBS in order to 
completely remove the enzyme. After that, pre-treated cells  
were inoculated with VHSV at MOI 1. RBCs inoculated with  
UV-inactivated VHSV were used as control. UV-inactivated  
VHSV was generated by exposure to UV-B at 1 J/cm2 using  
a Bio-Link Crosslinker BLX E312 (Vilber Lourmat, BLX-E312), 
as previously described34. Infection was monitored by RT-qPCR  
of N

VHSV
 gene 3 at 72 hpe.

Co-culture assay
One day prior to co-culture, RBCs, extracted and seeded  
as indicated before, were stimulated using UV-inactivated  
VHSV over 24 hours. Subsequently, RBCs were washed  
once with cold RPMI and added to Corning® Transwell® poly-
ester membrane cell culture inserts of 0.4 μm pore size (Corning,  
Sigma-Aldrich) on 24 well plates with previously cultured con-
fluent TSS cells in RPMI 20% FBS. Co-culture was maintained  
for 24 hours at 14°C in RPMI 2% FBS. After that, cells were 
washed and stored in the indicated buffer and conditions for  
RNA extraction.

Separately, RTG-2 cells were treated with UV-inactivated  
VHSV, MOI 1, during 24 hours, at 14°C, in RPMI 2% FBS. 
After that, RTG-2 cell monolayers were washed once with cold 
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PBS and cultured for 24h in RPMI 2%FBS fresh medium. This  
conditioned medium was used to stimulate rainbow trout RBCs, 
during 24h. After that, RBCs were washed and stored in the  
indicated buffer and conditions for RNA extraction.

RNA isolation and cDNA synthesis
E.Z.N.A. ® Total RNA Kit (Omega Bio-Tek, Inc., Norcross, 
GA) was used for total RNA extraction in accordance with  
manufacturer’s instructions. Isolated RNAs were stored at −80°C 
until used. DNAse treatment was done in order to eliminate  
residual genomic DNA using TURBO™ DNase (Ambion,  
Thermo Fischer Scientific Inc.), following manufacturer’s instruc-
tions. RNA was quantified with a NanoDrop® Spectrophotom-
eter (Nanodrop Technologies, Wilmington, DE). M-MLV reverse  
transcriptase (Invitrogen, Thermo Fischer Scientific Inc.) was  
used to obtain cDNA, as previously described35. For viral  
messenger RNA (mRNA) quantitation, cDNA was obtained  
as described in 36.

RT-qPCR and gene expression
Real-Time Quantitative PCR (RT-qPCR) was performed  
using the ABI PRISM 7300 System (Applied Biosystems,  
Thermo Fischer Scientific Inc.). Reactions were performed 
in a total volume of 20 μl comprising 12 ng of cDNA, 900 nM  
of each primer, 10 μl of TaqMan universal PCR master mix  
(Applied Biosystems, Thermo Fischer Scientific Inc.) with 300 nM  

of probe or 10 μl of SYBR green PCR master mix (Applied  
Biosystems, Thermo Fischer Scientific Inc.). Cycling condi-
tions were 50°C for 2 min and 95°C for 10 min, followed by  
40 cycles at 95°C for 15 s and 60°C for 1 min. Primers and  
probes used are listed in Table 1.

Gene expression was analyzed by the 2- Ct or 2− Ct  
method37 where 18S rRNA or ef1  gene (Applied Biosystems, 
Thermo Fischer Scientific Inc.) were used as endogenous control.

Intracellular stain and flow cytometry
RBCs were fixed with 4% paraformaldehyde (PFA; Sigma-
Aldrich) in RPMI medium for 20 minutes. Permeabilization of  
RBCs was done in a 0.05% saponin (Sigma-Aldrich) buffer 
for 15 minutes. Primary antibodies were diluted in permea-
bilization buffer at recommended dilutions and incubated for  
60 minutes at RT. Secondary antibodies were incubated for  
30 minutes at RT. After every antibody incubation, RBCs were 
washed with permeabilization buffer. Finally, RBCs were kept in 
PFA 1% in PBS. For nuclear staining, RBCs were stained with  
1 μg/mL of 4 -6-Diamidino-2-phenylindole (DAPI; Sigma- 
Aldrich) for 5 minutes. RBCs were analyzed by flow cytometry 
(FC) in a BD FACSCanto™ (BD Biosciences) flow cytometer.  
Immunofluorescence (IF) images were performed in an IN  
Cell Analyzer 6000 Cell Imaging system (GE Healthcare, Little 
Chalfont, UK).

Table 1. Primer and probe sequences.

Gene Forward primer 
(5’ – 3’)

Reverse primer 
(5’ – 3’)

Probe 
(5’ – 3’)

Reference or 
accession 
number

ef1 ACCCTCCTCTTGGTCGTTTC TGATGACACCAACAGCAACA GCTGTGCGTGACATGAGGCA 97

tlr3 ACTCGGTGGTGCTGGTCTTC GAGGAGGCAATTTGGACGAA CAAGTTGTCCCGCTGTCTGCTCCTG NM_001124578.1

irf7 CCCAGGGTTCAGCTCCACTA GGTCTGGCAACCCGTCAGT TCGAGCCAAACACCAGCCCCT AJ829673

ifn1 ACCAGATGGGAGGAGATATCACA GTCCTCAAACTCAGCATCATCTATGT AATGCCCCAGTCCTTTTCCCAAATC AM489418.1

mx1-3 TGAAGCCCAGGATGAAATGG TGGCAGGTCGATGAGTGTGA ACCTCATCAGCCTAGAGATTGGCTCCCC 98

pkr GACACCGCGTACCGATGTG GGACGAACTGCTGCCTGAAT CACCACCTCTGAGAGCGACACCACTTC NM_001145891.1

il15 TACTATCCACACCAGCGTCTGAAC TTTCAGCAGCACCAGCAATG TTCATAATATTGAGCTGCCTGAGTGCCACC XM_021575070.1

vig1 CTACAATCAAGGTGGTGAACAATGT GTGGAAACAAAAACCGCACTTATA TCTCAAGCTTCGGCAACTCCAAGCA XM_021582972.1

hepcidin TCCCGGAGCATTTCAGGTT GCCCTTGTTGTGACAGCAGTT AGCCACCTCTCCCTGTGCCGTTG AF281354.1

-globin CAACATCTTGGCCACATACAAGTC TTGTCAGGGTCGACGAAGAGT NM_001160555.2

fth GGCGTATTACTTCGATCGTGATG CCCTCCCCTCTGGTTCTGA EU302524.1

gstp1 CCCCTCCCTGAAGAGTTTTGT GCAGTTTCTTGTAGGCGTCAGA BT048561.1

nkef CGCTGGACTTCACCTTTGTGT ACCTCACAACCGATCTTCCTAAAC U27125.1

sod1 GCCGGACCCCACTTCAAC CATTGTCAGCTCCTGCAGTCA AF469663.1

trx AGACTTCACAGCCTCCTGGT ACGTCCACCTTGAGGAAAAC XM_021614924.1

NVHSV GACTCAACGGGACAGGAATGA GGGCAATGCCCAAGTTGTT TGGGTTGTTCACCCAGGCCGC 35
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Protein digestion and tagging with iTRAQ 4plexTM reagent
Two pools of eight samples (two control: C1 and C2, and  
two VHSV-exposed (MOI 1, 14°C, 72 hpe): V1 and V2), with  
8·106 cells per sample, were used for iTRAQ 4plex protein  
profiling.

Pools, containing 6.4·107 cells, were pelletized by centrifu-
gation (5 min, 700 × g). Supernatant was carefully removed 
and RBC pellets (~70–100 μL) were mixed with 250 μL of 
deionized water and frozen at – 80°C for 3 h. After thaw-
ing the lysate, it was centrifuged at 17000 × g for 20 min  
at 4°C to separate cytosolic supernatant and pelleted mem-
brane fractions, as described in Puente-Marin et al. (unpub-
lished report, Puente-Marin S, Nombela I, Ciordia S, Mena MC, 
Chico V, Coll J, and Ortega-Villaizan M). Subsequently, a new  
proteomic analysis method was carried out that combines  
fractionation into cytosolic and membrane fractions, haemoglobin 
removal of cytosolic fraction, protein digestion, pH reversed-
phase peptide fractionation and finally LC ESI-MS/MS analysis  
of each fraction, as described in Puente-Marin et al. (unpub-
lished report, as before). Briefly, haemoglobin of cytosolic frac-
tion was removed using HemoVoidTM kit (Biotech Support Group,  
Monmouth Junction, NJ), following manufacturer  
instructions38. For protein digestion of each fraction, 120 μg from 
haemoglobin-depleted cytosolic fraction were digested in chao-
tropic buffer, and 40 μg of membrane fraction was precipitated  
by methanol/chloroform method and re-suspended in 20 μl of 
chaotropic buffer. Digested samples (membrane and cytosol 
separately) were subsequently labelled using iTRAQ-4plex Iso-
baric Mass Tagging Kit (SCIEX), according to manufacturer’s 
instructions as follows: 114, C1 (Pool control 1); 115, V1 (Pool 
VHSV-exposed 1); 116, C2 (Pool control 2); 117, V2 (Pool 
VHSV-exposed 2). Then, offline high pH reversed-phase pep-
tide fractionation of the peptides from cytosolic fraction was 
performed on a SmartLine (Knauer, Berlin, Germany) HPLC 
system using an XBridge C18 column (100 × 2.1 mm, 5 μm  
particle; Waters, Milford, MA). Thirty fractions were collected  
and then pooled alternatively into 5 fractions. After labelling,  
samples were pooled, evaporated to dryness and stored  
at -20°C until LC−MS analysis.

Liquid chromatography and mass spectrometry analysis 
(LC-MS)
A 1 μg aliquot of labelled mixture was subjected to 1D-nano  
LC ESI-MSMS (Liquid Chromatography Electrospray Ioniza-
tion Tandem Mass Spectrometric) analysis using a nano liquid  
chromatography system (Eksigent Technologies nanoLC Ultra 
1D plus, SCIEX,) coupled to high speed Triple TOF 5600 
mass spectrometer (SCIEX) with a Nanospray III source. The  
analytical column used was a silica-based reversed phase Acquity 
UPLC® M-Class Peptide BEH C18 Column, 75 μm × 150 mm,  
1.7 μm particle size and 130 Å pore size (Waters Corporation,  
Milford, MA). The trap column was a C18 Acclaim PepMapTM 
100 (Thermo Fischer Scientific), 100 μm × 2 cm, 5 μm particle  
diameter, 100 Å pore size, switched on-line with the analytical 
column. The loading pump delivered a solution of 0.1% formic  
acid in water at 2 μl/min. The nano-pump provided a flow-rate of 
250 nl/min and was operated under gradient elution conditions. 

Peptides were separated using a 250 minutes gradient ranging  
from 2% to 90% mobile phase B (mobile phase A: 2% ace-
tonitrile, 0.1% formic acid; mobile phase B: 100% acetonitrile,  
0.1% formic acid). Injection volume was 5 μl.

Data acquisition was performed with a TripleTOF 5600  
System (SCIEX). Data was acquired using an ionspray voltage  
floating, 2300 V; curtain gas, 35; interface heater temperature, 
150; ion source gas 1, 25; declustering potential, 150 V. All data 
was acquired using information-dependent acquisition (IDA)  
mode with Analyst TF 1.7 software (RRID: SCR_015785) 
(SCIEX). For IDA parameters, 0.25 s MS survey scan in the mass 
range of 350–1250 Da were followed by 30 MS/MS scans of 150ms  
in the mass range of 100–1800. Switching criteria were  
set to ions greater than mass to charge ratio (m/z) 350 and  
smaller than m/z 1250 with charge state of 2–5 and an abun-
dance threshold of more than 90 counts (cps). Former target ions  
were excluded for 20 s. IDA rolling collision energy (CE)  
parameters script was used for automatically controlling the CE.

Proteomics data analysis and sequence search
MS/MS spectra were exported to MGF format using Peak View 
v1.2.0.3 (RRID: SCR_015786)(SCIEX) and searched using  
Mascot Server v2.5.1 (RRID:SCR_014322)(Matrix Science,  
London, UK), OMSSA v2.1.939, X!TANDEM 2013.02.01.140, 
and Myrimatch v2.2.14041 against a composite target/decoy data-
base built from the Oncorhynchus mykiss sequences at Uniprot/
Swissprot Knowledgebase (available here, last update: 2017/01/26, 
50.125 sequences), together with commonly occurring contami-
nants. Search engines were configured to match potential peptide 
candidates with mass error tolerance of 25 ppm and fragment 
ion tolerance of 0.02D, allowing for up to two missed tryptic  
cleavage sites and a maximum isotope error (13C) of 1, consider-
ing fixed methyl methanethiosulfonate modification of cysteine  
and variable oxidation of methionine, pyroglutamic acid from 
glutamine or glutamic acid at the peptide N-terminus, acetylation 
of the protein N-terminus, and modification of lysine, tyrosine  
and peptide N-terminus with iTRAQ 4-plex reagents. Score dis-
tribution models were used to compute peptide-spectrum match  
P-values42, and spectra recovered by a FDR (False Discov-
ery Rate)  0.01 (peptide-level) filter were selected for quan-
titative analysis. Approximately 1% of the signals with lowest  
quality were removed prior to further analysis. Differential  
regulation was measured using linear models43, and statistical sig-
nificance was measured using q-values (FDR). All analyses were 
conducted using Proteobotics software (Isobaric Tagging Analysis 
Workflow v.1.0, RRID:SCR_015787; Madrid, Spain). The cutoff  
for differentially regulated proteins was established at FDR  
q-value 5%.

Pathway enrichment analysis
In order to evaluate the functionally grouped Gene Ontology 
(GO) and pathway annotation networks of the differentially  
expressed proteins, pathway enrichment analysis was performed 
using ClueGO (RRID:SCR_005748)44 and CluePedia (RRID: 
SCR_015784)45 Cytoscape plugins (Cytoscape v3.4.0, RRID:
SCR_003032,46). GO Biological process, GO Immunological 
process, KEGG (Kyoto Encyclopedia of Genes and Genomes),  
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Wikipathways and Reactome functional pathway databases  
were used. A P-value 0.05 and Kappa score of 0.4 were  
considered as threshold values.

Western blot assays
Control and VHSV-exposed RBCs cell pellets were resus-
pended in 30 μl of PBS with a cocktail of protease inhibitors  
(Sigma-Aldrich). Cells were then frozen/thawed 3 times and pro-
tein concentration adjusted before loading. Samples were loaded 
in Tris–Glycine sodium dodecyl sulfate 17% polyacrylamide gels 
under reducing conditions. Electrophoresis was performed at  
100 V for 90 min. For blotting, proteins in the gel were trans-
ferred for 75 min at 100 V in transfer buffer (2.5 mM Tris, 9 mM 
glycine, 20% methanol) to nitrocellulose membranes (BioRad,  
Madrid, Spain). Membranes were then blocked with  
8% dry milk, 1% Tween-20 in PBS and incubated with rab-
bit polyclonal antibody against human eIF2 -P (36.1 KDa) or 
rabbit polyclonal antibody against human -Actin (42 KDa,) 
in PBS containing 0.5% dry milk, and 0.5% Tween-20 (PMT 
buffer), overnight at 4°C. Membranes were then washed 3 times 
with PMT buffer for 15 min before incubation with GAR-Po 
(Sigma-Aldrich) in PMT buffer for 45 min. Finally, membranes 
were washed 3 times with PBS containing 0.5% Tween-20.  
Peroxidase activity was detected using ECL chemilumines-
cence reagents (Amersham Biosciences, Buckinghamshire, UK) 
and revealed by exposure to X-ray. Protein bands were analyzed 
by densitometry using the Scion Image 4.0.2 Software (RRID:  
SCR_008673) (www.scionorg.com).

ROS measurement
The intracellular ROS level was assessed in VHSV-exposed  
RBCs using the cell-permeant 2’,7’-dichlorodihydrofluores-
cein diacetate (DCFDA, Sigma-Aldrich). RBCs were exposed to  
VHSV at MOI 1, during 72 h, at 14°C. After that, RBCs were 
washed with RPMI and incubated with 20 μM DCFDA in  
RPMI, for 30 min at RT. Fluorescence intensity of 2 ,7 -dichlo-
rofluorescin was measured using POLARstar Omega microplate  
reader (BMG LABTECH, USA) at excitation 480 nm and  
emission 530 nm.

Software and statistics
Graphpad Prism 6 (RRID:SCR_002798, www.graphpad.com) 
was used for graphic representation and statistics calculation.  
Statistic tests and P-values associated with graphics are indi-
cated in each assay. Flow cytometry data was processed and ana-
lyzed using Flowing Software 2.5.1 (www.flowingsoftware.com/)  
(RRID: SCR_015781).

Ethics statement
All experimental protocols and methods of the experimental  
animals were reviewed and approved by the Animal Welfare Body 
and the Research Ethics Committee at the University Miguel  
Hernandez (approval number 2014.205.E.OEP; 2016.221.E.OEP) 
and by the competent authority of the Regional Ministry of  
Presidency and Agriculture, Fisheries, Food and Water supply 
(approval number 2014/VSC/PEA/00205). All methods were  
carried out in accordance with the Spanish Royal Decree RD 
53/2013 and EU Directive 2010/63/EU for the protection of  

animals used for research experimentation and other scientific  
purposes.

Results
VHSV course of replication in rainbow trout RBCs
For this analysis we first purified RBCs (oval nucleated cells) to 
99.9% (as evaluated by optical microscopy) and then exposed 
the purified RBCs to VHSV, for different times, to monitor  
replication of VHSV in rainbow trout RBCs. For that, time 
course expression of N gene of VHSV (N

VHSV
) was measured by  

RT-qPCR with cDNA performed with random hexamer prim-
ers (to target total RNA). Expression of N

VHSV
 gene was signifi-

cantly upregulated at 3 hpe. However, it drastically decreased from 
6 to 72 hpe, indicating that VHSV could replicate at early times  
postexposure, at the same levels as VHSV susceptible rain-
bow trout cell line RTG-2. However, viral replication was 
halted in RBCs at later stages of infection, in contrast to RTG-2  
(Figure 1A). Besides, cDNA synthesis was also performed with 
oligo(dT) primers to target N

VHSV
 mRNA expression in VHSV-

exposed RBCs and the result was consistent with total RNA  
expression (Figure S3). On the other hand, after VHSV enters 
the cell, the first gene that starts to transcribe is N

VHSV 
gene, since 

it is the closest to the 3’ transcriptional start, and the more distal,  
excluding the polymerase, is the G glycoprotein gene (G

VHSV
) 

gene. Therefore, under a normal transcription scenario a high 
ratio between the N

VHSV
 and G

VHSV
 viral genes transcripts is to 

be expected, taking into account the attenuation phenomenon 
found in rhabdoviruses47,48. However, a ratio of 2 was observed in  
RBCs, compared to the ratio of 8 found in RTG-2 cells, at 1  
and 3 hpe (Figure 1B).

Also, RBCs were exposed to different VHSV multiplici-
ties of infection (MOI). Initial VHSV inoculum titer declined  
~4-logs after 3 days of incubation at the indicated MOI assayed 
(1, 10 or 100, respectively corresponding to inoculum virus tit-
ers 2·106, 2·107, 2·108 PFU/ml) (Figure 1C), in contrast to the 
usual 1-log titer increment in RTG-2 cells infected in the same  
conditions (Figure 1H). Later on, RBCs showed only a minor 
and statistically non-significant ~1-fold increment of VHSV 
titer as time of infection increased from 3 to 6 days (Figure 1D),  
showing that low VHSV titers are maintained in the cell  
after 72 hpe. These low VHSV titers were due to true VHSV 
internalization and not to residual VHSV binding, since they 
were diminished with NH

4
Cl treatment, a characteristic of  

rhabdovirus infections (Figure 1D). NH
4
Cl acts as a lysosomo-

tropic drug, blocking endosomal acidification and inhibiting  
rhabdoviral cytoplasmic entrance steps including those of VHSV33. 

In order to increase the amount of VHSV inside rainbow trout 
RBCs, RBCs were pre-treated with neuraminidase (NA) and then  
exposed to UV-inactivated or live VHSV. NA has been shown to 
enhance rhabdovirus infection in NA pre-treated cells by favor-
ing interaction with cellular membranes49. As a result, VHSV 
RNA inside RBCs was increased about ten times at 3 hpe in 
live VHSV-exposed RBCs, in comparison with UV-inactivated  
VHSV-exposed RBCs. However, seventy-two hpe the VHSV  
RNA drastically decreased to almost disappear, as indicated  
by N

VHSV
 RT-qPCR (Figure 1E).
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Figure 1. VHSV exposure and replication in rainbow trout RBCs. (A) Time course of VHSV gene replication in rainbow trout RBCs and 
RTG-2 cell line. N gene of VHSV (NVHSV) expression profile was quantified by RT-qPCR at time 0, 1, 3, 6, 24 and 72 hours postexposure (hpe) to 
VHSV, in RBCs (black bars) and RTG-2 (grey bars), with a multiplicity of infection (MOI) of 1 at 14°C. Gene expression was normalized against 
eukaryotic 18S rRNA and ef1 , respectively for RBCs and RTG-2 cells, and relativized to control cells (non-exposed, time 0) (fold-change). 
Data represent the mean ± SD (n = 4 for RBCs and n=2 for RTG-2). (B) Ratio of NVHSV and GVHSV genes expression by RT-qPCR at time 0, 1, and 
3 hpe, relative to control cells (non-exposed, time 0), in RBCs (black bars) and RTG-2 (grey bars). Ratio was calculated as 2− Ct NVHSV: 2

− Ct 
GVHSV. Gene expression was normalized against ef1 . Data represent the mean ± SD (n = 3 for RBCs and n=2 for RTG-2). (C) Viral yield in 
VHSV-exposed rainbow trout RBCs. Viral titer (grey bars) (plaque forming units per millilitre, PFU/ml) and NVHSV gene expression by RT-qPCR 
(black bars) of VHSV-exposed RBCs, with MOI 1, 10 and 100, respectively corresponding to inoculum virus titers 2·106 (a), 2·107 (b) and 2·108 
(c) PFU/ml, 72 hpe, at 14°C. Gene expression was normalized against ef1 . Data represent the mean ± SD (n = 3 for viral titer and n=4 for 
NVHSV gene expression). (D) VHSV titers diminished in rainbow trout RBCs after NH4Cl treatment. VHSV titers obtained in VHSV-exposed RBCs 
at MOI 1, at 3 and 6 days postexposure (dpe), at 14°C, in the absence (black bars) or in the presence (grey bars) of NH4Cl. Data represent 
the mean ± SD (n = 4). (E) Pre-treatment of RBCs with neuraminidase enhances early replication of VHSV. RBCs were inoculated with UV-
inactivated or live VHSV, with a MOI of 1, at 14°C. Before infection, cells were pretreated with neuraminidase (NA) at 50 or 100 mU/ml during 
30 minutes at 14°C. VHSV infectivity was quantified by NVHSV gene expression analysis by RT-qPCR at 3 hpe (grey bars) and 72 hpe (black 
bars). Gene expression was normalized against 18S rRNA gene and represented as arbitrary units (AU). Data represent the mean ± SD (n 
= 4). (F) Representative immunofluorescence of VHSV labelling in RBCs exposed to VHSV (MOI 100, 24 and 72 hpe, 14°C) stained from left 
to right with anti-NVHSV 2C9 (FITC), DAPI for nuclei stained and merged (IF representative of 32 images). (G) Representative flow cytometry 
overlay histograms showing untreated RBCs (grey filled histogram), VHSV-exposed RBCs with a MOI 100, at 14°C, 24 hpe (green filled 
histogram) and 72 hpe (black filled histogram). (H) Schematic representation of the VHSV infectivity in RBCs and RTG-2 cells, indicating the 
virus inoculation titer and recovered virus yield after 72 hpe in each cell line. Kruskal-Wallis Test with Dunn´s Multiple Comparison post-hoc 
test was performed for statistical analysis among all conditions. Values over the bars denote pairwise significant differences with the value-
indicated time point or condition (P-value < 0.05).
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Besides, N
VHSV

 protein (2C9 antibody) was detected in RBCs 
exposed to VHSV MOI 100, at 24 hpe, but not at 72 hpe. IF 
images (Figure 1F) showed an intracellular stain, mainly in  
nuclear and perinuclear regions. FC histogram (Figure 1G) 
showed a slight increment of VHSV N protein in VHSV-exposed  
RBCs, at 24 hpe, but not at 72 hpe. VHSV could not be detected  
by IF or FC in RBCs exposed to lower MOIs.

Antiviral transcriptional immune responses in rainbow trout 
RBCs exposed to VHSV in vitro
We next investigated whether rainbow trout RBCs exposed 
to VHSV could be capable of generating immune responses  
in vitro, by means of examining the differential expression pro-
file of some genes characteristic of fish antiviral response. 
First, a time course monitoring of the expression of interferon- 
inducible mx and pkr genes was carried out at different time 
postexposure. The results showed that mx and pkr genes  
exhibited the same increment peak at 3 hpe and a tendency  
to downregulation from 6 to 72 hpe, in parallel to N

VHSV
 gene  

transcription levels tendency (Figure 2A and B, and  
Figure 1A). The expression of mx and pkr genes did not change 
over the time-course in control cells (Figure S4). On the  
other hand, at 3 hpe, ifn1 gene expression already exhibited  
a statistically significant downregulation (Figure 2C), and a slight 
downregulation for tlr3 and irf7 genes.

Antiviral immune protein responses in RBCs exposed to 
VHSV in vitro
Changes in RBCs immune protein response induced by VHSV 
exposure were assessed using specific antibodies. VHSV-exposed 
RBCs showed only an increment in protein levels of chemokine 
IL8 (Figure 3B and E, Figure S5A) and antimicrobial peptide 
BD1 (Figure 3C and F, Figure S5B), verified by means of FC 
and IF. Mx and IFN1 protein levels, according to the RT-qPCR 
results, did not change or downregulate, respectively (Figure 3A).  
Cytokines IL1 , IFN  (Figure 3B), antimicrobial peptide  
Hepcidin (Figure 3C) and natural killer enhancing factor  
(NKEF) (Figure 3D) did not show regulation at 72 hpe.

Figure 2. Interferon signaling in VHSV-exposed rainbow trout RBCs. Time course of interferon-inducible antiviral genes mx (A) and  
pkr (B). RBCs were exposed to VHSV with a multiplicity of infection (MOI) of 1 at 14°C, and mx1-3 and pkr genes expression was quantified 
by RT-qPCR at time 0, 1, 3, 6, 24, 72 hours postexposure (hpe). Data is displayed as mean ± SD (n = 3). Kruskal-Wallis Test with Dunn´s 
Multiple Comparison post-hoc test was performed among all conditions. (C) Interferon signaling at early time postexposure. RBCs were 
exposed to VHSV with a MOI of 1 at 14°C, and tlr3, irf7 and ifn1 gene expression profiles were quantified by RT-qPCR at time 0, and 3 hpe. 
Data is displayed mean ± SD (n = 3). Mann Whitney Test was performed for statistical analysis between the VHSV-exposed and control cells 
(non-exposed, time 0, red line). Gene expression was normalized against eukaryotic 18S rRNA for mx, tlr3, irf7 and ifn1 genes and ef1  
for pkr gene, and relativized to control cells (fold-change). Asterisk denote statistically significant differences between VHSV-exposed and 
control cells (P-value < 0.05).
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Figure 3. Immune protein responses of VHSV-exposed RBCs. Relative immune protein expression levels, (A) interferon pathway related 
proteins (IFN1 and Mx), (B) cytokines (IL8, IL1  and IFN ), (C) antimicrobial peptides (BD1 and Hepcidin) and (D) antioxidant protein NKEF, 
measured by flow cytometry and calculated by the formula MRFI (Mean Relative Fluorescence Intensity) = fluorescence in VHSV-exposed 
RBCs / fluorescence in non-exposed RBCs, at multiplicity of infection (MOI) 1, 72 hours postexposure (hpe), at 14°C, relative to control 
cells (non-exposed, red line). Data is displayed as mean ± SD (n=5). Mann Whitney Test was performed for statistical analysis between the 
VHSV-exposed cells and control cells. Representative immunofluorescences of control and VHSV-exposed RBCs stained with anti-IL8 (IF 
representative of 44 images) (E) and anti-BD1 (IF representative of 46 images) (F) (FITC) and DAPI for nuclei stain.

Interferon crosstalk between RBCs and spleen stromal 
TSS cell line
Rainbow trout spleen is an active hematopoietic organ50,  
and it is composed of various cell types, such as red blood 
cells, leukocytes and reticular or stromal cells51. It has been  
demonstrated that cytokines and soluble factors produced by 
stromal cells are required for rainbow trout blood cells devel-
opment in spleen or head kidney52. In this regard, we wanted to 
evaluate the paracrine effects of the cytokines produced by VHSV  
stimulated RBCs over the stromal cell line from rainbow trout 
spleen, TSS29. For that, rainbow trout RBCs stimulated with 
VHSV UV-inactivated were co-cultured with TSS cell line, using  
a Transwell system to test whether a cross-stimulation medi-
ated by soluble molecules was involved. Gene expression profiles  
for ifn1, and interferon stimulated genes (ISGs) mx, viral induc-
ible gene vig1, and interleukin il15 genes were examined for  
each cell line 24 hours post co-culture (Figure 4E). Linear 
regression analysis of RBCs ifn1 gene expression with their  
respective mx, vig1 and il15 genes showed a significant cor-
relation between ifn1 and vig1 and il15, but not with mx gene  
(Figure 4A). ifn1 gene expression from RBCs and TSS cells  
also showed a significant correlation (Figure 4B). TSS cells  
showed significant correlation between ifn1 and mx, vig1 and 

il15 (Figure 4C). The results demonstrated an IFN crosstalk 
between stimulated RBCs and TSS cells. Besides, this IFN 
crosstalk was also observed when RBCs were incubated with 
conditioned medium from RTG-2 cells previously treated with  
UV-inactivated VHSV, since we could observe an increment  
in ifn1 and mx genes expression, in contrast to ifn1 or mx  
downregulation when RBCs were directly exposed to VHSV  
(Figure 4D).

iTRAQ protein profile of VHSV-exposed RBCs
The iTRAQ data showed a total of 9246 MS/MS Spectra,  
2639 unique peptides with peptide-level FDR<0.01 and 
872 inferred proteins common in all samples. Significant  
up/down regulations between samples were determined by a 
log2FoldChange)>1 with a q-value<0.05. In total, 64 proteins  
were significantly up or down-regulated during VHSV exposure  
(Figure 5). Specifically, 59 proteins were downregulated and 
only 5 proteins were upregulated during VHSV exposure. Cyto-
scape functional annotation was used to investigate underlying  
biologically functional differences that may be related to 
VHSV exposure. The results showed four strongly represented  
networks of interest (mRNA stability, proteasome, viral proc-
ess and cellular catabolic processes) (Figure 5 and Figure S6).  
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Figure 4. Crosstalk between rainbow trout RBCs and spleen stromal cell line TSS. Rainbow trout RBCs, control (non-exposed) and 
exposed to UV-inactivated VHSV, with multiplicity of infection (MOI) 1, were posteriorly co-cultured with TSS cell line, at 14°C, and ifn1, mx, 
vig1 and il15 gene expression profiles were quantified by RT-qPCR at 24 hours postexposure (hpe) for RBCs and TSS. (A) Linear regression 
between ifn1 and interferon stimulated genes vig1, mx, and il15 gene expression profiles in RBCs. (B) Linear regression between RBCs and 
TSS ifn1 gene expression profile. (C) Linear regression between ifn1 and vig1, mx, and il15 gene expression profiles in TSS. Gene expression 
was normalized against eukaryotic 18S rRNA and relativized to control cells (red line) (fold-change). Data is displayed as a linear regression 
line, with individual dots, between indicated cell lines and expressed genes (r2: coefficient of determination, asterisk denote statistical 
significance, P-value < 0.05) (n = 6). (D) Rainbow trout RBCs exposed to VHSV, UV-inactivated VHSV (VHSV-UV) (MOI 1, 14ºC, 24h) or 
treated with conditioned medium from RTG-2 cells pre-treated with VHSV-UV, for 24h at 14ºC. RBCs ifn1 and mx gene expression profiles 
were quantified by RT-qPCR. Gene expression was normalized against eukaryotic 18S rRNA and relativized to control cells (RBCs incubated 
with conditioned medium from untreated RTG-2 cells, red line) (fold-change). Data represent the mean ± SD (n = 4). Kruskal-Wallis Test with 
Dunn´s Multiple Comparison post-hoc test was performed among all conditions. Asterisk denote significant differences with the indicated 
condition and control cells (P-value < 0.05). (E) Schematic representation of RBCs and TSS co-culture assay and analysis.

Among the 59 down-regulated proteins (Figure 6, Table S1), the 
top-score network was mRNA stability, being SNRPD3 (Small  
nuclear ribonucleoprotein D3 polypeptide) the most down-
regulated protein with ~ -3 log2FoldChange. This protein is 
a core component of spliceosomal small nuclear ribonucleo-
proteins (snRNPs), the building blocks of the spliceosome, 
and therefore, it plays an important role in the splicing of  
cellular pre-mRNAs. Other proteins related to splicing processes  
were also highly downregulated (-2>log2FoldChange>-1), such 
as SRSF4 (Serine/arginine-rich splicing factor 4), which plays a 
role in alternative splice site selection during pre-mRNA splicing,  

RNPS1 (RNA binding protein S1, serine-rich domain), which 
is part of pre- and post-splicing multiprotein messenger ribo-
nucleoprotein (mRNP) complexes. Apart from that, several 
heat shock chaperones were also downregulated (-2>log2Fold-
Change>-1), such as HSPA1L (Heat shock 70kDa protein 1-
like) and HSPA5 (Heat shock 70kDa protein 5) both involved 
in the correct folding of proteins and degradation of misfolded  
proteins, and HSPA8 (Heat shock 70kDa protein 8), which  
may have a scaffolding role in the spliceosome assembly.  
Besides, another protein highly downregulated was NPEPL1  
(Aminopeptidase-like 1), a novel protein which has been  
implicated in HIV replication53.
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Figure 5. Gene ontology (GO) analysis of iTRAQ-based 
differentially expressed proteins in VHSV-exposed rainbow trout 
RBCs. RBCs were exposed to VHSV with a multiplicity of infection 
(MOI) of 1 at 14°C, and protein quantified at 72 hpe. Proteins were 
classified into five specific GO-Biological Process categories 
indicated in the x-axis. The y-axis indicates the number of proteins 
in each category. Grey bars indicate upregulated proteins and black 
bars down-regulated proteins.

Figure 6. iTRAQ-based quantitative protein expression profile of VHSV-exposed rainbow trout RBCs. Bar plot of statistically significant 
differentially expressed proteins in VHSV-exposed RBCs (MOI 1, 14ºC, 72 hpe) compared to control cells (non-exposed) (P-value < 0.05, FDR 
q-value < 0.05). Functional categories are labelled as follows: Blue = proteasome, pink = regulation of RNA stability, light green = cellular 
catabolic process, dark green= viral process, grey = proteins not associated to any function.

On the other hand, among the five upregulated proteins (Figure 6,  
Table S1), BANF1 (Barrier to Autointegration factor 1) has 
been directly implicated in viral processes and plays fundamen-
tal role in nuclear assembly, chromatin organization and gene  
expression. Besides, HNRNPR (Heterogeneous nuclear ribonu-
cleoprotein R) plays an important role in processing precursor  
mRNA in the nucleus, and SRSF1 (Serine/arginine-rich splicing 
factor 1) is also implicated in mRNA splicing, via spliceosome.

The 59 downregulated proteins were analyzed using  
STRING v10.5 (RRID:SCR_005223, http://string.embl.de/)54  
with a medium confidence score threshold of 0.4. An interactome 
network was built for these set of proteins to find out protein- 
protein interaction and predict functional associations. We found 
that proteins within spliceosome and proteasome networks inter-
acted with each other as well as with their partners. We also  
found that 17 proteins were involved in viral process category 
and that most of them interacted with each other as well as with  
their partners (Figure 7).

Phosphorylation of eIF2  in VHSV-exposed RBCs
Since a global protein downregulation was observed in VHSV-
exposed RBCs, we further investigated whether this phenom-
ena could be due to the phosphorylation of the -subunit of  
translational initiation factor 2 (eIF2 ), a recognized key  
mechanism of global inhibition of translational initiation. For 
that, phosphorylation of eIF2  (eIF2 -P) was evaluated in 
VHSV-exposed RBCs compared to control cells by western blot  
(Figure 8A and B). The results showed a small upregulation of 
eIF2 -P in VHSV-exposed RBCs.
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Figure 7. Constructed protein-protein interaction of differentially downregulated proteins (DDPs) predicted using STRING software. 
Nodes represent DDPs and edges the interactions between two proteins. The colour of the edge indicates the interaction score (edge score). 
Red nodes highlight DDPs functionally annotated in viral processes.

Figure 8. Phosphorylation of translation initiation factor eIF2  in VHSV-exposed rainbow trout RBCs. (A) Representative western blot 
of eIF2  phosphorylation (eIF2 -P) in VHSV-exposed (V) (MOI 1, 14ºC, 72 hpe) and control RBCs (C) (non-exposed). (B) Bar plot of eIF2 -P 
protein content of stained bands estimated by densitometry, relative to -Actin. Mann Whitney Test was performed for statistical analysis 
between VHSV-exposed cells and control cells. Asterisk denote statistically significant differences (P-value < 0.05).

91



Figure 9. -globin gene expression time-course in VHSV-exposed rainbow trout RBCs. RBCs were exposed to VHSV with a multiplicity of 
infection (MOI) of 1 at 14°C. Gene expression was quantified by RT-qPCR at time 0, 1, 3, 6, 24, 72 hours postexposure (hpe). Gene expression 
was normalized against eukaryotic 18S rRNA and relativized to control cells (non-exposed, time 0, red line) (fold-change). Data is displayed 
as mean ± SD (n = 3). Kruskal-Wallis Test with Dunn´s Multiple Comparison post-hoc test was performed among all conditions. Values denote 
pairwise significant differences with the value-indicated condition (P-value < 0.05).

Figure 10. Effect of VHSV on ROS intracellular production and antioxidant enzymes gene expression in rainbow trout RBCs. RBCs 
were exposed to VHSV with a multiplicity of infection (MOI) of 1 at 14°C, (A) DCFDA (2 ,7 -Dichlorofluorescin diacetate) fluorescence intensity 
of VHSV-exposed RBCs relative to control cells (non-exposed), 72 hours postexposure (hpe). (B) Antioxidant genes (fth: ferritin, gstp1: 
glutathione S-transferase P, nkef: natural killer enhancement factor-like protein, sod1: superoxide dismutase [Cu-Zn], trx: thioredoxin) gene 
expression quantified by RT-qPCR at 3 hpe (grey bars) and 72 hpe (black bars). Gene expression was normalized against eukaryotic 18S 
rRNA and relativized to control cells (time 0, red line) (fold-change). Data is displayed as mean ± SD (n = 3). Kruskal-Wallis Test with Dunn´s 
Multiple Comparison post-hoc test was performed among all conditions. Values denote pairwise significant differences (P-value < 0.05) with 
the value-indicated condition.

Four eIF2  kinases have been identified to inhibit protein syn-
thesis by phosphorylation of eIF2 : double-stranded RNA-
dependent eIF2  kinase (PKR), mammalian orthologue of the 
yeast GCN2 protein kinase, endoplasmic reticulum (ER) resident 
kinase (PERK) and heme-regulated eIF2  kinase (HRI)55. HRI,  
which was first discovered in reticulocytes under conditions of 
iron and heme deficiencies56,57, was later known to regulate the 
synthesis of both - and -globins in RBCs and erythroid cells  
by phosphorylation of eIF2 58, and therefore inhibiting protein 
synthesis. Besides, heme is also known to regulate the transcrip-
tion of globin genes through its binding to transcriptional factor 
Bach159. Taking this fact into account, we explored RBCs -globin 
gene expression during the course of VHSV exposure and the 
results showed that -globin gene was downregulated after 6 hpe  
(Figure 9), therefore suggesting an activation/phosphorylation  
of HRI and consequent phosphorylation of eIF2  and protein  
inhibition.

Oxidative stress and antioxidant response in VHSV-
exposed RBCs
Oxidative stress is known to be induced by viral infections, being 
one of the major pathogenic mechanisms by altering the balance 
of intracellular redox60. On the other hand, oxidative stress is 
known to activate HRI, which in turn phosphorylates eIF2  and 
inhibits protein translation. In order to evaluate the oxidative stress 
induced in VHSV-exposed RBCs as possible causative mechanism 
for the proteome downregulation found in our study, we exam-
ined, at 72 hpe, the ROS intracellular production by means of 
DCFDA (2 ,7 -Dichlorofluorescin diacetate) fluorescence inten-
sity. The results showed that VHSV-exposed RBCs significantly  
augmented DCFDA fluorescent intensity 72 hpe (Figure 10A), 
therefore VHSV halted infection in RBCs generated oxidative 
stress in rainbow trout RBCs. Besides, in order to evaluate the  
capability of RBCs to respond to oxidative stress, antioxidant 
response of VHSV-exposed RBCs was evaluated examining  
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transcript levels of antioxidant genes fth (ferritin), gstp1  
(glutathione S-transferase P), nkef (natural killer enhancement 
factor-like protein), sod1 (superoxide dismutase [Cu-Zn]) and 
trx (thioredoxin). The results depicted an increment in tran-
script levels of fth, gstp1, nkef and trx (Figure 10B) as the time  
of exposure increased from 3 to 72 hours, demonstrating the  
capability of rainbow trout RBCs to counteract oxidative stress.

Dataset 1. Excel file containing qPCR data. Each sheet contains 
the raw Ct values for the indicated figure numbers, organized by 
samples (rows) and genes (columns)

http://dx.doi.org/10.5256/f1000research.12985.d192872

Dataset 2. Excel file containing the virus titration data. Each sheet 
contains the virus titer (PFU/mL) results of the indicated figure 
number

http://dx.doi.org/10.5256/f1000research.12985.d182834

Dataset 3. Flow cytometry data. Each folder contains the Flow 
Cytometry Standard (.fcs) format files. Source data files are 
organized by figure number, and then by antibody, sample 
number and condition

http://dx.doi.org/10.5256/f1000research.12985.d192873

Dataset 4. Excel file containing the computed peptide spectrum 
match (PSM) raw data, and the spectra recovered in the iTRAQ 
4-plex analysis

http://dx.doi.org/10.5256/f1000research.12985.d182836

Dataset 5. Excel file containing the iTRAQ 4-plex quantitative 
analysis raw data

http://dx.doi.org/10.5256/f1000research.12985.d182837

Dataset 6. Excel file containing the densitometry raw data of 
eIF2 -P and -Actin western blots. Related uncropped blots are 
included

http://dx.doi.org/10.5256/f1000research.12985.d192879

Dataset 7. Excel file containing DCFDA absorbance raw data

http://dx.doi.org/10.5256/f1000research.12985.d182839

Discussion
Most viral infections release their progeny to the outside  
of the cells (productive infections). However, viral infections 
can be also non-productive in non-permissive cells (also called 
abortive). Viral abortive infections occur when a virus enters a  
host-cell, then some or all viral components are synthesized 
but finally no infective viruses are released61. This situation may 
result from an infection with defective viruses or because the 
host cell is non-permissive and inhibits replication of a particular 
virus. Our results are consistent with VHSV binding and inter-
nalization in rainbow trout RBCs. Internalization of VHSV occurs  
via fibronectin-integrin receptors in the host cell12. Integrin  

proteins expression has been found in human red blood  
cells62, however, it is unknown whether non-mammalian nucle-
ated RBCs express integrins. VHSV internalization is followed 
by viral genes transcription at early times of viral exposure and  
posterior quasi-inhibition inside rainbow trout RBCs. In this sense, 
rainbow trout RBCs could be classified as a non-permissive cell 
for VHSV replication, in contrast to other rainbow trout cells or 
tissues where VHSV is productive, such as RTG-2 cells63,64, fin  
cells65 or stroma66. Therefore, from our results, VHSV infec-
tion could be classified as halted in rainbow trout RBCs, since it 
enters the cell, but does not replicate at the levels comparable to  
the ~100-fold increase in titre of PRV and ISAV infections in 
salmon RBCs5,7. In fact, an apparent inhibition of the early viral 
genes transcription seemed to occur since N

VHSV
: G
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 viral genes  

transcripts ratio was very low, and therefore did not follow the 
attenuation phenomenon found in rhabdoviruses47. However,  
strikingly, even though recovered VHSV titer in the RBCs super-
natant was very low at 3 and 6 dpe, at 40 dpe almost the same  
virus titer could be recovered from RBCs supernatant (data  
not shown), suggesting an ex vivo persistence of VHSV inside 
RBCs.

In the literature, innate immune responses have been  
associated with viral abortive infections, including rhabdovi-
ruses. Pham et al.67 speculated that the cause of aborted VHSV 
infection in rainbow trout macrophage cell line (RTS-11) could 
be the constitutive expression and/or upregulation of mx genes. 
The abortive infection of snakehead fish vesiculovirus (SHVV) 
in zebrafish embryonic fibroblast cell line (ZF4) was associated  
with activation of Retinoic acid-Inducible Gene I (RIG-I)-like  
receptors and interferon pathway by viral replicative  
intermediates68. Similarly, in mammals, Pfefferkorn et al.69 dem-
onstrated that abortive viral infection of astrocytes by rabies 
virus (RABV) and vesicular stomatitis virus (VSV) triggered 
a pattern recognition receptor signaling which resulted in the  
secretion of IFN- . On the other hand, it has been also described 
that alveolar macrophages are able to restrict respiratory syncy-
tial virus (RSV) replication even in the absence of type I IFNs  
(IFN1)70. In this sense, VHSV halted infection in rainbow 
trout RBCs did not seem to be related to IFN1 or IFN1-induc-
ible genes, since inf1, mx and pkr genes as well as Mx and IFN1  
proteins appeared poorly modulated or downregulated dur-
ing VHSV exposure, in contrary to the 8-fold increase in ISAV 
productive infection in salmon RBCs7, the 50-fold increases  
in PRV productive infection in salmon RBCs5 or the 50-fold 
increases in IPNV non-productive infection in rainbow trout  
RBCs71. Alternatively, high levels of constitutive Mx pro-
tein expression might have prevented its further increase in  
VHSV-exposed RBCs, like it is the case of the rainbow trout 
monocyte-macrophage RTS-11 cell line72. On the other hand, sev-
eral cell mechanisms have been reported to suppress IFN1-medi-
ated responses, which include downregulation of cell surface  
IFN  receptor (IFNAR) expression, induction of negative regu-
lators (such as suppressor of cytokine signalling (SOCS) pro-
teins and ubiquitin carboxy-terminal hydrolase 18 (USP18)), as  
part of a negative feedback loop to limit the extent and dura-
tion of IFN1 responses73. Separately, a putative antagonistic  
effect of VHSV virus on Mx induction has been previously 
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reported74,75. From our results, in VHSV-exposed RBCs, mx gene 
poor induction or slight downregulation could be probably sup-
ported by the existence of a VHSV antagonistic effect against  
RBCs IFN response. To further clarify whether a viral antago-
nistic effect or a feedback loop of IFN1 and/or IFN1-inducible  
genes induction is related to or responsible for aborting or  
halting viral infections in rainbow trout RBCs remains to be  
studied, and are part of our ongoing research.

Separately, although the IFN levels were low, our results  
demonstrated the paracrine IFN crosstalk between RBCs, stimu-
lated with UV-inactivated VHSV, and spleen stromal TSS cell 
line. TSS cell line has been described to resemble the immune  
responses observed in cultures of head kidney macrophages76. 
Also, it has been demonstrated the ability of TSS to positively  
respond to conditioned supernatants from head kidney  
macrophage cultures exposed to poly I:C76. As well, after expo-
sure to poly I:C, TSS produced a high upregulation of the Mx-1 
gene77. Our results showed the correlated ifn1 regulation in both  
cell lines, as well as the correlative regulation of interferon-
inducible mx gene in TSS, the regulation of il15, an interleukin  
that can activate antiviral responses via an interferon- 
dependent mechanism78, and the regulation of VHSV-inducible  
vig1, a gene induced by VHSV as well as by interferon79.  
Separately, we observed that conditioned medium from RTG-
2 cells previously treated with UV-inactivated VHSV could 
induce an increment in ifn1 and mx genes expression in RBCs,  
in contrast to ifn1 or mx observed downregulation when RBCs 
were directly exposed to VHSV. Therefore, this crosstalk  
observations demonstrated the capacity of rainbow trout RBCs 
to exert a paracrine molecular antiviral communication with  
other cells with capacity to generate an immune response, as  
it is the case of the TSS cell line77 or RTG-2 cells15. More extended 
research is need to further identify the molecules involved in  
this crosstalk.

On the other hand, other immune proteins, such as BD1,  
IL1  and IL8, known to be involved in antiviral immunity, which 
were upregulated in VHSV- exposed RBCs, appeared to be  
part of the antiviral immune response of rainbow trout RBCs  
and could be implicated in the halted viral replication inside 
RBCs.

To further investigate the mechanisms implicated in the immune 
response of rainbow trout RBCs to VHSV, the comprehen-
sive analysis of differentially expressed proteins, obtained by  
means of iTRAQ proteome profiling, revealed the regulation of 
two typical mechanisms for viral subversive strategies: regula-
tion of spliceosome, or splicing hijacking, and host-cell shut-off.  
However, even though these strategies usually lead to viral aug-
mented replication and cell death, in the case of VHSV-exposed 
RBCs this is not observed. Therefore, how these strategies or 
another strategies contribute to halting viral replication yet  
remains elusive. Future research could be directed to investi-
gate the role/implication of small nuclear ribonucleoprotein  
SNRPD3, aminopeptidase NPEPL1, serine/arginine-rich splic-
ing factor SRSF1 and heterogeneous nuclear ribonucleo-
protein HNRNPR, in the response of RBCs against VHSV  

replication, since these proteins were the more regulated  
ones and they have been shown to be implicated in HIV  
replication53,80–82).

On the other hand, inhibition of both host and viral trans-
lation has been shown during infection with the prototype  
rhabdovirus vesicular stomatitis virus (VSV)83. During  
VSV infection, there is a rapid inhibition of host mRNA trans-
lation early after infection, followed by a later inhibition of 
viral mRNA translation, which has been associated to eIF2   
phosphorylation84. Our results showed a slight increment in  
eIF2  phosphorylation in VHSV-exposed RBCs, indicating that 
this mechanism could be implicated in the inhibition of VHSV 
replication in rainbow trout RBCs. In this context, HRI, heme-
regulated eIF2  kinase, is one of the four kinases identified to 
inhibit protein synthesis by means of eIF2  phosphorylation.  
HRI is predominantly expressed in reticulocytes and eryth-
roid precursors56,57, and it is known to regulate the synthesis  
of both - and -globins in RBCs and erythroid cells by  
phosphorylation of eIF2 58. Moreover, heme, the prosthetic group 
of hemoglobin, is known to inhibit eIF2  and therefore the tran-
scription of globin genes through its binding to transcriptional  
factor Bach1. From our results, a decrease in -globin gene tran-
scripts levels during the course of viral exposure, accompanied  
with the observed phosphorylation of eIF2 , could suggest  
a possible heme regulation mechanism of eIF2 pathway in  
response to VHSV exposure in rainbow trout RBCs. The  
mechanism by which heme is altered in rainbow trout RBCs  
during VHSV exposure remains to be investigated.

An interesting mechanism found in rainbow trout RBCs in  
response to VHSV was the implication of protective antioxi-
dant enzymes genes gstp1, nkef and trx in the defense of RBCs 
against the induction of ROS after VHSV exposure, since 
as the course of virus exposure increased ROS slightly aug-
mented in parallel to transcript levels of these enzymes. It is  
known that ROS plays an important role in cell signalling and 
immunomodulation among others85,86 as well as performing 
antimicrobial actions against pathogens87. However, oxidative  
stress due to imbalance in the production/elimination of ROS 
can have cytotoxic effects88. ROS scavengers are the major 
defense against oxidative stress produced in the cells88. These  
systems are known to contribute not only to repair the oxidative 
damage maintaining redox homeostasis, but also to the over-
all response of the cell to ROS by acting as oxidative sensors in  
signal transduction pathways89. However, although it has been 
said that ROS production contributes to eliminate pathogens, 
nowadays it is becoming evident that viruses, bacteria, and pro-
tozoans ROS induction can also promote pathogen burden90. In 
this regard, in relation to the implication of antioxidants activity 
against viral replication, it has been also described that antioxi-
dants can suppress virus-induced oxidative stress and reduce RNA 
virus production91. GSTP1, NKEF and TRX are known antioxi-
dant enzymes with implication and up-regulation in RNA-virus 
infections92 and rhabdovirus infections24,93. However, whether 
these enzymes may contribute to halting or reducing viral replica-
tion remains to be studied. On the other hand, mammals’ RBCs 
have an extensive array of antioxidant enzymes to counteract  
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oxidative stress and maintain redox homeostasis and  
RBCs survival94. However, to our knowledge this is the first report 
that implicates nucleated RBCs ROS scavengers in the antivi-
ral immune response. Separately, these antioxidant enzymes  
are known NF-  antioxidant targets in response to inflamma-
tion stimulus (reviewed in Morgan and Liu, 201189) and ROS can 
be sometimes produced in response to cytokines. Since NF-  
appeared slightly activated in VHSV-exposed RBCs (Figure S7A  
and B), it is suggested that the cytokine response generated after 
VHSV exposure in rainbow trout RBCs would induce ROS pro-
duction, and in turn this would modulate the NF-  response and 
NF-  target genes could attenuate ROS to promote RBCs survival.  
Apart from the observation of NF-  translocation to the 
nucleus in some of the RBCs, it is noteworthy that it is always  
accompanied by an increase in the protein levels of the p65 NF-

 subunit in the cytoplasm. This phenomenon has been also 
observed in human foreskin fibroblasts during HCMV infec-
tion, where an increase in p65 mRNA levels correlated with 
the sustained increase in NF-kB activity during the course 
of infection95. Another fish rhabdovirus, the SVCV, has been  
reported to induce accumulation of ROS accompanied by  
the up-regulation of Nrf2 and its downstream genes (i.e. Heme 
Oxygenase-1 and thrioredoxin). The overexpression of Nrf2  
has been also reported to significantly suppress either entry  
or replication of several viruses (reviewed in 96), and Shao  
et al.96 also demonstrated that the activation of Nrf2 repressed 
the replication of SVCV. Therefore, future research could be  
directed to investigate the implication of the Nrf2 pathway  
in inhibiting VHSV replication in rainbow trout RBCs.

In summary, this study unveils previously unobserved but impor-
tant mechanisms for fish nucleated RBCs in the contribution to 
the defense against a viral aggression not involving RBCs as  
targets. To our knowledge, this is the first report that implicates 
fish RBCs as antiviral mediators against viruses targeting other 
tissues or cells. The recognition of body circulating viruses and 
the subsequent generation of immune defenses by RBCs may 
largely contribute to fish survival, given the large volume of RBCs 
and its rapid and wide distribution to the whole body. We are  
further investigating if similar mechanisms operate in vivo, the 
molecules that trigger such immune responses or the cellular  
factors implicated in the interaction with the virus.

Data availability
F1000Research: Dataset 1. Excel file containing qPCR data.  
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Figure S1. Validation of the polyclonal antibody against Onchorhynchus mykiss BD1. Western blotting using the antibody developed in 
rabbit that recognizes the synthetic BD1 (41aa), in samples from O. mykiss: head kidney, muscle, untreated red blood cells (RBCs), VHSV-
exposed RBCs, and the synthetic BD1.
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Figure S2. Validation of the polyclonal antibodies against Onchorhynchus mykiss IFN  and IFN1. Left Panel: Prediction of  
three-dimensional structure of the molecules (by Phyre2). Right panel: Western blotting using the respective antibody. A: Validation of  
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Introduction
Fish viral infections cause significant losses in aquaculture. 
Infectious pancreatic necrosis (IPN) is a highly contagious viral  
disease with a high impact on salmonid aquaculture industry. 
Infectious pancreatic necrosis virus (IPNV) is the causative agent 
of IPN and was the first fish virus isolated in cell culture1. IPNV  
outbreaks are usually related to high mortality rates in  
salmonid aquaculture, especially in young individuals2,3, highlight-
ing the urgent necessity for the development of efficient strate-
gies in vaccination. IPNV belongs to the Aquabirnavirus genus  
within the Birnaviridae family. Viruses of this family are non-
enveloped particles with a double stranded RNA genome. This 
genome consists of two segments: the A segment contains the infor-
mation to encode a protein that is post-translationally cleaved into  
VP2, VP3 and VP4 viral proteins; the B segment encodes the  
viral RNA polymerase VP14. VP2 and VP3 are the major struc-
tural and immunogenic proteins, as they represent 64% of the total  
proteins of the virion5.

In contrast to mammals, fish, reptiles and avian red blood 
cells (RBCs) are nucleated. Typically, the role associated with 
RBCs has been the transport of O

2
 to different tissues and gas  

exchange. However, a whole set of biological processes related 
to the immune response has been recently reported for nucle-
ated RBCs from different species: recognition of pathogen 
associated molecular patterns6,7 through expression of pattern  
recognition receptors, such as toll-like receptors (TLRs)8; produc-
tion of cytokine-like factors7,9–11; phagocytosis12; and formation 
of complement immune complexes13. Fish RBCs are known to 
be the target of some viruses, such as infectious salmon anemia  
virus (ISAV)11 and piscine orthoreovirus (PRV)14,15. Furthermore, 
both viruses can induce immune responses in infected RBCs,  
characterized by the expression of genes related to IFN-1 (type I  
interferon) pathway. Besides, recently it has been shown that 
viral hemorrhagic septicemia virus (VHSV) halted replication in  
rainbow trout RBCs could induce cytokine production16.

In view of the aforementioned evidence, this study was aimed 
to evaluate the immune response of rainbow trout RBCs against 
IPNV, one of the most ubiquitous viral fish pathogens. To  
achieve this objective, we first analyzed the infectivity of IPNV 
in rainbow trout RBCs. Then, RBCs immune response was evalu-
ated after ex vivo exposure to IPNV, by means of antiviral gene  

and protein expression analysis. Finally, we evaluated the ability 
of RBCs to confer protection against IPNV in CHSE-214 cells,  
which are susceptible to IPNV infection. To summarize, here 
we report the regulation of the immune response of rainbow 
trout RBCs by IPNV, a non-infective virus in this cell type. This  
immune response was characterized by the expression of genes 
related to the IFN-1 pathway, Mx production and induction  
of an antiviral state to IPNV in CHSE-214 cells.

Methods
Animals
Rainbow trout (Oncorhynchus mykiss) individuals of  
approximately 10 g were obtained from a commercial fish farm 
(PISZOLLA S.L., CIMBALLA FISH FARM, Zaragoza, Spain). 
Fish were maintained at the University Miguel Hernandez 
(UMH) facilities with a re-circulating dechlorinated-water sys-
tem, at a stocking density of 1 fish/3L, at 14°C, and fed daily with  
a commercial diet (SKRETTING, Burgos, Spain). Fish were  
acclimatized to laboratory conditions over 2 weeks before  
experimentation. The number of fish used is indicated for each 
experiment/figure.

RBCs purification
Rainbow trout were sacrificed by overexposure to tricaine 
methanesulfonate (Sigma-Aldrich, Madrid, Spain) at 0.2 g/L.  
Peripheral blood was sampled from the caudal vein using insu-
lin syringes (NIPRO Bridgewater, NJ). Approximately 100 μL  
of blood was diluted in RPMI-1640 medium (Dutch modifica-
tion) (Gibco, Thermo Fischer Scientific Inc., Carlsbad, CA)  
supplemented with 10% FBS (Cultek, Madrid, Spain), 1 mM pyru-
vate (Gibco), 2 mM L-glutamine (Gibco), 50 μg/mL gentamicin 
(Gibco), 2 μg/mL fungizone (Gibco) and 100 U/mL penicillin/
streptomycin (Sigma-Aldrich). Then, RBCs were purified by two  
consecutive density gradient centrifugations with Histopaque  
1077 (7206g, Ficoll 1.007; Sigma-Aldrich). Finally, RBCs were 
washed twice with RPMI 2% FBS. Purity of RBCs of 99.9% 
was estimated by optical microscopy evaluation. Then, purified 
RBCs were cultured in the above indicated medium at a density of  
107 cells/mL, in cell culture flasks, at 14°C, overnight.

Viral infection assays
Ex vivo rainbow trout RBCs along with CHSE-214 cell line  
(Chinook Salmon Embryo, ATCC CRL-1681) were infected 
using IPNV Sp strain17. IPNV was grown as previously  
described18. Ex vivo RBCs exposure to IPNV was performed by 
incubating RBCs with diluted IPNV at the indicated MOI (mul-
tiplicity of infection) in RPMI 2% FBS. After three hours of  
incubation at 14°C, RBCs were centrifuged at 1600 rpm for  
5 minutes and then washed with medium to completely elimi-
nate the non-adsorbed excess of virus. Finally, RBCs were placed  
in 24 well plates (Corning Costar, Sigma-Aldrich, Madrid, Spain) 
with 500 μl of RPMI 2% FBS. The whole process was done at  
14°C. Infection of the CHSE-214 cell line was done by incu-
bating IPNV diluted in RPMI 2% FBS at the desired MOI for  
1 hour at 14°C. After that, medium was removed and RPMI 2% 
FBS was added to each well. Infected CHSE-214 cells were  
maintained at 14°C18.
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In time course experiments, the initial supernatant with IPNV  
was not removed. When each of the time points was reached,  
RBCs were washed with cell culture medium and CHSE-214 cells 
with PBS supplemented with calcium.

Viral titration assay
The virus titer in IPNV-exposed RBCs supernatants was  
quantified by TCID

50
 and by RT-qPCR. Briefly, different dilutions 

of the supernatants (from 10-1 to 10-4) were added to CHSE-214 
cell monolayers, and incubated at 14°C for 90 minutes. Then,  
the virus was removed and infected CHSE-214 cell monolay-
ers covered with a solution of RPMI 2% FBS. Cell plates were  
incubated at 14°C for 7 days. For RT-qPCR titration, 30 μL of  
IPNV with known titer (109 TCID

50
/mL) and 30 μL of  

IPNV-exposed RBCs supernatants were used to extract RNA 
and synthetize cDNA, as explained hereafter. Ten-fold serial  
dilutions from 108 to 102 TCID

50
/mL were done to obtain IPNV 

cDNA and create a standard line.

RNA isolation and DNAse treatment
The E.Z.N.A.® Total RNA Kit (Omega Bio-Tek Inc., Norcross, 
GA) was used for total RNA extraction, in accordance with  
manufacturer’s instructions. DNAse treatment was done in 
order to eliminate residual genomic DNA using TURBO™ 
DNase (Ambion, Thermo Fischer Scientific Inc.), following the  
manufacturer’s instructions. RNA was quantified with a  
NanoDrop® 377 Spectrophotometer (Nanodrop Technologies, 
Wilmington, DE).

Gene expression by RT-qPCR
cDNA was synthesized from RNA using M-MLV reverse tran-
scriptase (Invitrogen, Thermo Fischer Scientific Inc.), as previ-
ously described19. Final concentration of cDNA was 6 ng/μL.  
RT-qPCR reactions were performed in a total volume of 20 μl 
using 12 ng of cDNA, 10 μl of TaqMan universal PCR mas-
ter mix (Thermo Fischer Scientific), 900 nM final concentration  
of each primer (300 nM for IPNV segment A) and 300 nM  
of probe (150 nM for IPNV segment A). RT-qPCR was performed 
using the ABI PRISM 7300 System (Thermo Fischer Scientific). 
Cycling conditions were 50°C for 2 min and 95°C for 10 min,  
followed by 40 cycles at 95°C for 15 s and 60°C for 1 min.

Gene expression was analyzed by the 2- Ct method20. The  
eukaryotic 18S rRNA gene (Cat#4310893E, Thermo Fischer  
Scientific) was used as endogenous control. Primers and probes are 
listed in Table 1.

Antibodies
Several antibodies were used to stain cells for cytokines and 
to measure polypeptides in RBCs extracts by western blotting. 
They are briefly described below and their Research Resource  
Identifiers (RRIDs) given. For intracellular staining,  
mouse polyclonal antibodies against rainbow trout IL1  (RRID: 
AB_2716269)21,22, IL8 (RRID: AB_2716272)23 and TNF-  (RRID: 
AB_2716270)24 were produced at the laboratory of Dr. Luis  
Mercado. Rabbit polyclonal antibody against rainbow trout Mx3  
(RRID: ABA_2716267)25,26 was produced at the laboratory of 
Dr. Amparo Estepa. Anti-IPNV-VP3 monoclonal antibody 2F12 
(RRID: AB_2716296) was used for IPNV labelling27. Anti-rabbit 
IgG (H+L) CF™ 488 antibody produced in goat and anti-mouse 

IgG (H+L) CF™ 488 antibody produced in goat were used as  
secondary antibodies for proteins and anti-mouse IgG (H+L)  
CF™ 647 produced in goat to detect 2F12 antibody.

For western blotting, rabbit polyclonal antibody against  
human eIF2 -P (Cat# E2152, RRID:AB_259283) and rabbit  
polyclonal antibody against human -Actin (Cat#2066, RRID: 
AB_476693) were purchased from Sigma-Aldrich.

Western blot
Control and IPNV-exposed RBCs pellets ( 107 cells) were used 
for protein extraction. Cell pellets were washed 3 times with 
PBS and then resuspended in 30 μl of PBS with a cocktail of  
protease inhibitors (Sigma-Aldrich). Then, cells were frozen/ 
thawed 3 times and lysed using an eppendorf micropistile  
(Eppendorf, Hamburg, Germany). Samples were loaded in Tris–
Glycine sodium dodecyl sulfate 12% polyacrylamide gels under 
reducing conditions. Electrophoresis was performed at 200 V 
for 60 min. For blotting, the proteins in the gel were transferred  
for 80 min at 100 V in transfer buffer (2.5 mM Tris, 9 mM glycine, 
20% methanol) to nitrocellulose membranes (BioRad, Madrid, 
Spain). Then, membranes were blocked with 8% dry milk and 
1% Tween-20 in PBS and incubated with eIF2 -P or -Actin  
antibodies, at the recommended dilutions in PBS containing  
0.5% dry milk and 0.5% Tween-20 at 4°C and overnight. Incuba-
tion with secondary antibody GAR-Po (Sigma-Aldrich) was done 
in 0.5% milk 0.5% Tween-20 in PBS for 45 min. Membranes 
were washed 3 times with PBS containing 1% dry milk 0.5%  
Tween-20 for 15 min after every antibody incubation. Finally, 
the membrane was washed 3 times with PBS before analysis of  
the peroxidase activity. Peroxidase activity was detected using 
ECL chemiluminescence reagents (Amersham Biosciences,  
Buckinghamshire, UK) and revealed by exposure to X-ray.  
Protein bands from western blotting were analysed by densitometry  
using the Scion Image 4.0.2 Software (RRID: SCR_008673)  
(www.scionorg.com).

Intracellular immunofluorescence stain and flow cytometry
RBCs were fixed with 4% paraformaldehyde (PFA; Sigma- 
Aldrich) and 0.08% glutaraldehyde (Sigma-Aldrich) diluted in 
RPMI medium for 20 minutes. Then, RBCs were incubated with 
permeabilization buffer containing 0.05% saponin (Sigma-Aldrich) 
in RPMI, for 15 minutes. Primary antibodies were used at 1/50 
dilution for IL-1 , IL-8 and TNF- , 1/300 for Mx and 1/500  
for 2F12 in permeabilization buffer and incubated for 60 minutes  
at room temperature. Secondary antibodies were incubated  
for 30 minutes at 1/200 dilution. RBCs were washed with per-
meabilization buffer after antibody incubations. Finally, RBCs  
were kept in PFA 1% in PBS. For nuclear staining, RBCs were 
stained with 1 μg/mL of 4 -6-408 Diamidino-2-phenylindole 
(DAPI; Sigma-Aldrich) for 5 minutes. Flow cytometry (FC) 
analysis was done in a BD FACSCanto™ II (BD Biosciences) 
flow cytometer. Immunofluorescence (IF) images were performed  
in the INCell Analyzer 6000 Cell imaging system (GE Healthcare, 
Little Chalfont, UK).

Antiviral activity of conditioned medium
Conditioned medium (CM) was obtained from control  
and IPNV-exposed RBCs at MOI 0.5, during 3 days. The  
CMs were clarified at 1600 rpm for 5 min. IPNV titer in the 
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supernatants of IPNV-exposed RBCs resulted in 10 TCID
50

/mL 
or less, therefore viral presence in the supernatants was obviated.  
To test the antiviral activity of the CM, confluent CHSE-214 cells 
(7.8×104 cells/well), seeded in 96 well plates, were pre-treated 
with 100 μL of each supernatant at the indicated dilutions for  
24 hours. After that, CHSE-214 cells were infected, as described 
previously, with IPNV at MOI 0.05, for 24 hours. Finally,  
intracellular staining of IPNV foci was carried out.

Intracellular staining of IPNV foci
CHSE-214 cells were fixed with PFA diluted at 4% in PBS 
followed by a second fixation with cold methanol. Each  
fixation step lasted 15 minutes. Cells were washed with PBS 
after each fixation step. Blocking buffer containing 5% goat  
serum (Sigma-Aldrich) and 0.3% Triton X-100 (Sigma-Aldrich) 
was added to each well with the cells for 1 hour. Then, anti-VP3 
2F12 antibody was diluted 1/500 in antibody dilution buffer  
(1% BSA (Sigma-Aldrich), 0.3% Triton X-100) and was incu-
bated for 1 hour. FITC-labelled goat anti-rabbit was used as sec-
ondary antibody at 1/300 dilution. Cells were washed three times  
after each antibody incubation with PBS. IF images were  
taken INCell Analyzer 6000 imaging system. IN Cell Devel-
oper Toolbox 1.9.2 (RRID: SCR_015790; GE Healthcare, Little  
Chalfont, UK) was used to count number of IPNV foci  
(positive areas after image segmentation were selected when 
>21000 fluorescence units and >2500 μm2 criteria was reached).

MTT assays
Cell viability was tested using MTT (3-(4,5-dimethylthiazol-2-yl)- 
2,5-diphenyltetrazolium bromide) colorimetric assay32. Briefly,  
25 μl of MTT at a final concentration of 1.9 mg/mL were added 
to previously treated CHSE-214 cells monolayers, seeded in  
96 well plates. Cells were incubated for 3 hours at 21°C with the 
reagent. Then, the medium was removed from the wells. Formazan  
crystals were dissolved in 100 μl of 100% DMSO, incubated for  
30 minutes. Absorbance was read at 570 nm in the EONTM 
microplate spectrophotometer (Biotek, Winooski, VT). Percent-
age of viable cells was calculated as follows: absorbance treated  
cells/absorbance non-treated cells) x100.

Software and statistics
All the figures and graphics show the mean and standard devia-
tion of the data. P-values associated with each graphic are repre-
sented by the legends: *, p-value < 0.05; **, p-value < 0.01; ***,  
p-value < 0.001, ****, p-value < 0.0001. Graphpad Prism 6  
(RRID: SCR_002798, www.graphpad.com) (Graphpad  
Software Inc., San Diego, A) was used for preparing graphs 
and  preforming statistical calculations. FC data were analyzed  
using Flowing Software 2.5.1 (RRID: SCR_015781)(www.flow-
ingsoftware.com) to obtain Mean Fluorescence Intensity (MFI) and 
Mean Relative Fluorescence Intensity (MRFI) (relative to control 
cells) values.

Ethics approval
Methodology was carried out in accordance with the  
Spanish Royal Decree RD 53/2013 and EU Directive 2010/63/EU  

for animals used in research experimentation. All experimen-
tal protocols involving animal handling were also reviewed and  
approved by the Animal Welfare Body and the Research  
Ethics Committee at the Miguel Hernandez University (approval 
number 2014.205.E.OEP; 2016.221.E.OEP) and performed  
by qualified research personnel.

Results
IPNV did not infect rainbow trout RBCs
To evaluate the infectivity of IPNV in rainbow trout RBCs,  
RBCs were exposed to IPNV at MOI 0.5 and the viral RNA 
was evaluated by RT-qPCR in the cell pellet at different times  
post-exposure. IPNV infectivity was also evaluated in  
parallel in the CHSE-214 cell line, used as a positive control 
of infection. IPNV segment A (IPNV-A) RNA levels inside 
RBCs and CHSE-214 cell line were similar at 1 and 3 hours  
post-exposure (hpe) (Figure 1A). After 6 hpe, IPNV-A RNA level 
was 3 logarithms lower in RBCs in comparison with CHSE-214 
cells. On the other hand, the titer of IPNV in the supernatants 
from IPNV-exposed RBCs at a MOI of 0.5 and 5, was evalu-
ated by TCID

50
, at 3 days post-exposure (dpe), and showed a  

recovered titer of 5 and 4 logarithms lower, respectively  
(Figure 1B). Furthermore, the supernatants titrated by RT-qPCR, 
were below the lowest limit of detection 102 TCID

50
 (Table 2). 

Moreover, FC analysis of control and IPNV-exposed RBCs  
for IPNV VP3 protein did not show significant differences  
(Figure 1C and D). Therefore, IPNV did not infect rainbow trout 
RBCs.

IPNV exposure increased the expression of interferon-
related antiviral genes and proteins in rainbow trout RBCs
To determine if IPNV would induce an antiviral response  
in RBCs, RT-qPCR analysis of IFN-related antiviral genes was 
performed for IPNV-exposed RBCs. The results showed that  
mx1–3 and pkr genes were significantly expressed at 72 hpe. On 
the other hand, ifn1 gene presented a tendency to increase its  
expression after 6 hpe, having a peak at 24 hpe. Also, tlr3 gene 
expression tended to be upregulated at 24 hpe, whereas irf7  
expression was upregulated at 72 hpe (Figure 2A). Three and six 
dpe with IPNV, RBCs were stained intracellularly with an anti-Mx 
antibody and analyzed by FC and immunofluorescence imaging 
(IF). The results showed a significant increment in the expres-
sion of Mx protein at 6 dpe by both FC an IF (Figure 2B and D).  
FC histograms showed, at 6 dpe, that RBCs depicted distinct  
peaks of Mx expression, showing that the expression of Mx in  
RBCs was heterogeneous in the total RBCs population  
(Figure 2C).

Conditioned medium from IPNV-exposed RBCs protected 
CHSE-214 cells against IPNV infection
To analyze if IPNV-exposed RBCs could secrete factors  
that were capable to protect other fish cells against IPNV infec-
tion, conditioned medium (CM) from control and IPNV-exposed  
RBCs (with IPNV titer <10 TCID

50
/mL) were added to CHSE-

214 cells prior to infection. Figure 3A shows a significant  
decrease in the number of IPNV infective focus forming units  
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Figure 1. Infectivity of IPNV in RBCs. (A) Time-course experiment of the expression of IPNV segment A (IPNV-A) in RBCs ( ) (n = 6) and 
CHSE-214 cells ( ) (n = 2) at MOI 0.5. Data is represented as mean±SD. Kruskal-Wallis Test with Dunn´s Multiple Comparison post-hoc 
test was performed among all time-points post-exposure in comparison with control time point (0 hpi) (*, p-value < 0.05). (B) Recovered  
virus titer in supernatants from IPNV-exposed RBCs with an inoculum titer of 106 (MOI 0.5) and 107 (MOI 5) TCID50/mL obtained after  
72 hpe (n = 5). Data is represented as mean±SD. Mann-Whitney test was performed among both conditions (*, p-value < 0.05).  
(C) MFI (mean fluorescence intensity) of viral protein VP3 in control and IPNV-exposed RBCs at MOI 0.5 and 3 dpe (n = 6) Mann-Whitney 
test was performed among both conditions. (D) Representative flow cytometry histograms of IPNV VP3 protein detection in control and  
IPNV-exposed RBCs at MOI 0.5 and 3 dpi.

Table 2. Rt-qPCR virus titration. 

Ct value ± standard deviation from 
standard line points (108 to 102 
dilutions) and supernatants from 
IPNV-exposed RBCs at MOI 0.5, at 
3 and 6 dpe. (n=7 individuals).

Sample Ct value ± SD

108 TCID50 25,885 ± 0,052

107 TCID50 29,856 ± 0,117

106 TCID50 33,165 ± 0,168

105 TCID50 36,057 ± 0,11

104 TCID50 39,126 ± 0.873

103 TCID50 Undetected

102 TCID50 Undetected

RBCs #1 3 dpe Undetected

RBCs #1 6 dpe Undetected

Sample Ct value ± SD

RBCs #2 3 dpe Undetected

RBCs #2 6 dpe Undetected

RBCs #3 3 dpe Undetected

RBCs #3 6 dpe Undetected

RBCs #4 3 dpe Undetected

RBCs #4 6 dpe Undetected

RBCs #5 3 dpe Undetected

RBCs #5 6 dpe Undetected

RBCs #6 3 dpe Undetected

RBCs #6 6 dpe Undetected

RBCs #7 3 dpe Undetected

RBCs #7 6 dpe Undetected

NTC Undetected
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Figure 2. RBCs IFN-related antiviral response against IPNV. (A) Gene expression of tlr3, irf7, inf1, mx1–3 and pkr in IPNV-exposed 
RBCs at the indicated times post-infection and MOI 0.5, measured by RT-qPCR. Data represent mean±SD (n = 6). Kruskal-Wallis Test with 
Dunn´s Multiple Comparison post-hoc test was performed among all time-points post-exposure in comparison with control time point (0 hpi) 
(*, p-value < 0.05). (B) Mx protein MRFI (mean relative fluorescent intensity, relative to control cells) in IPNV-exposed RBCs at MOI 0.5  
(n = 5). (C) Flow cytometry histograms of Mx protein expression from control (grey) and IPNV-exposed (red) RBCs at MOI 0.5 and the 
indicated days post-exposure (dpe). (D) Representative immunofluorescence images of Mx protein expression in control and IPNV-exposed 
RBCs at MOI 0.5 (FITC – Mx protein expression, DAPI - Nuclei) (IF representative of 40 images).

Figure 3. Antiviral activity of the conditioned media from IPNV-exposed RBCs. (A) Viral titers (FFU/mL) in CHSE-214 cells  
infected with IPNV at MOI 0.05 previously non-treated (black) or treated with either supernatants from control RBCs (white) or IPNV-
exposed RBCs (grey), during 24 hours, at the indicated dilutions (n = 4, performing triplicates from each individual). Two-way ANOVA, with  
Sidak´s multiple comparison test, was performed among the different dilutions and conditions to test statistical differences. (B) Percentage 
of viable CHSE-214 cells pre-treated with conditioned medium from control and IPNV-exposed RBCs, during 24 hours, and relative  
to non-treated CHSE-214 cells. Percentage of viable cells was calculated as follows: absorbance treated cells/absorbance non-treated  
cells) x100.
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Figure 4. IPNV-exposure decreased cytokine levels in rainbow trout RBCs. (A) Intracellular MFI (mean fluorescent intensity) values of 
IL-1 , IL-8 and TNF  from control and IPNV-exposed RBCs at MOI 0.5 and 3 dpe measured by FC (flow cytometry)(n = 6). Mann-Whitney 
test was performed among both conditions. (B) Phosphorylation of translation initiation factor eIF2  in IPNV-exposed RBCs. Representative 
western blot of eIF2 -P in control and IPNV-exposed RBCs from two individuals at MOI 0.5, 3 dpe. Densitometry ratios were done relativizing 
to -actin. Mann-Whitney test was performed among both conditions.

(FFU/mL) when pre-treating with 1/5 diluted CM from  
IPNV-exposed RBCs. CHSE-214 cells viability, by means of 
an MTT colorimetric assay, was not affected by the exposure to  
CM (Figure 3B).

IPNV exposure decreased the expression of cytokines in 
rainbow trout RBCs
To evaluate whether ex vivo rainbow trout RBCs could  
produce cytokines in response to IPNV exposure, RBCs were 
exposed to IPNV and IL-1 , IL-8 and TNF-  protein levels  
were evaluated by means of FC and IF in control and IPNV-
exposed cell cultures. The results showed a decrease in the protein  
expression of IL-1 , IL-8 and TNF  in IPNV-exposed RBCs  
(Figure 4A).

IPNV exposure did not induce phosphorylation of the 
-subunit of the eukaryotic translational initiation factor 2 

(eIF2 ) in rainbow trout RBCs
The phosphorylation of the translation initiation factor  
eIF2  is a key mechanism of global inhibition of translational  
initiation33 and it has been described to happen after IPNV  
infection in the permissive cell line CHSE-214 cells34. In this 
sense, since IPNV-exposed RBCs depicted a small downregulation  

of the evaluated cytokines protein levels, we further investi-
gated whether IPNV exposure could reduce protein translation in  
RBCs by triggering the phosphorylation of eIF2 . However,  
the results revealed no changes in the phosphorylation of eIF2  
(Figure 4B).

Dataset 1. Excel file containing qPCR data

http://dx.doi.org/10.5256/f1000research.12994.d182842

Each sheet contains the raw Ct values for the indicated figure 
numbers, organized by samples (rows) and genes (columns).

Dataset 2. Excel file containing the virus titration data

http://dx.doi.org/10.5256/f1000research.12994.d182843

Contains the virus titer (TCID50/mL) results of the indicated figure 
number.

Dataset 3. Flow cytometry data

http://dx.doi.org/10.5256/f1000research.12994.d182844

Each folder contains the Flow Cytometry Standard (.fcs) format 
files. Source data files are organized by figure number, and then by 
sample number, condition and antibody.
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Dataset 4. Excel file containing the Focus Forming Units (FFU) 

counting for Figure 3A

http://dx.doi.org/10.5256/f1000research.12994.d182845

Dataset 5. Excel file containing MTT absorbance raw data

http://dx.doi.org/10.5256/f1000research.12994.d182846

Dataset 6. Excel file containing the densitometry raw data of 

eIF2 -P and -Actin western blots

http://dx.doi.org/10.5256/f1000research.12994.d182847

Related uncropped blots are included.

Discussion
Previously, we have demonstrated that rainbow trout  
RBCs can respond to VHSV, a ssRNA virus not targeting  
RBCs, halting its replication, downregulating type I interferon-
related genes, showing global protein downregulation in the  
cell and phosphorylation of the translation initiation factor 
eIF2 16.

It is known that IPNV primarily targets pancreatic and liver  
cells35. It has been also reported that IPNV was detectable in 
kidney hematopoietic tissue, corpuscles of Stannius, in Islets of  
Langherhans, in the lamina propria of the pyloric caeca, the gill 
arch connective tissue, the ventricle of the heart and dermis of  
the skin35. Our results showed that IPNV did not replicate in 
RBCs, although small amounts of IPNV were persistently found  
inside RBCs after 3 dpe (  103 TCID

50
/mL). Similarly, IPNV 

has been shown to enter mammalian cells, without significant  
levels of replication, being this entry suggested to be receptor  
mediated36. From our results, the persistence of IPNV in RBCs  
after 72 hpe could point out the entry of the virus inside RBCs. 
However, we could not further verify the presence of the  
IPNV inside RBCs (Figure 1).

Nevertheless, despite the lack of replication of IPNV in  
RBCs, IPNV could induce an antiviral gene expression mediated 
by the IFN pathway, as it has been observed in RBCs produc-
tive infections with ISAV11 and PRV14. As shown by our results, 
ifn1 and IFN-1 related genes (irf7, pkr and mx) expression levels 
were increased time-dependently in response to IPNV-exposure.  
High inter-individual variability was observed, similarly to that 
found in the RBCs from salmons challenged with PRV37. In 
addition, although we could not verify the entry and uncoating  
of IPNV inside RBCs, we could observe an increment in the 
expression of the tlr3 gene in parallel to the expression of  
the other IFN-related genes in IPNV-exposed RBCs. This  
could indicate the activation of the TLR3/IFN pathway by the  
presence of intracellular viral dsRNA.

IFN-1 leads to the expression of interferon stimulated  
genes (ISGs)38. Among ISGs, the antiviral protein Mx has a well 
characterized antiviral role. Confirming those expectations, 
our results showed the significant upregulation of the Mx pro-
tein 6 dpe, after having a peak of its gene expression at 3 dpe.  

Previously, a positive correlation between the expression of 
Mx protein and the inhibition of IPNV in CHSE-214 cells  
has been established39. Therefore, Mx protein production in 
IPNV-exposed RBCs could be involved in the low IPNV titers  
observed. The high basal levels of Mx protein detected inside 
RBCs (Figure 2D), much elevated than those for CHSE-214 cells  
(Figure S1), could be implicated in the early disappearance of 
IPNV inside RBCs. A similar hypothesis has been made in the  
abortive infection of VHSV in the RTS-11 cell line40 and in  
rainbow trout RBCs16, where upregulation or high constitu-
tive expression of mx genes was speculated to be related to the  
inhibition of the virus.

Moreover, our results showed that CM from RBCs  
exposed to IPNV could partially protect CHSE-214 cells from 
IPNV infection. Similar to other cell types, this antiviral activ-
ity has been also observed in CM of RTS11 and RTG-2 cells 
exposed to Poly (I:C) (polyinosinic:polycytidylic acid) and/or  
infected with chum salmon reovirus41. The fact that RBCs can 
secrete factors that confer protection against IPNV infection in 
other cell lines could indicate that RBCs, despite not being per-
missive to IPNV infection, may exhibit an antiviral response.  
Besides, we evaluated the production of cytokines in IPNV-
exposed RBCs. Previously, the expression of IL-1  in salmon 
gill and head kidney tissues42, IL-8 in rainbow trout head kidney  
tissue43 and TNF  in zebrafish embryonic cells44 have been 
implicated in the immune response against IPNV; therefore,  
we chose these cytokines to evaluate the immune response  
of rainbow trout RBCs to IPNV exposure. However, our results 
showed a reduction trend of these proteins in IPNV-exposed 
RBCs.

A shutdown in protein synthesis by phosphorylation of  
eIF2  has been reported in CHSE-214 cells infected with IPNV34. 
So far, in rainbow trout RBCs exposed to IPNV, although a trend 
to cytokine protein reduction was observed, no phosphorylation 
of eIF2  was detected and Mx protein expression was increased.  
IFN-1 has been reported to inhibit the production of IL-1 45, 
therefore, the cytokine reduction trend observed could have been  
a result of the related IFN-1 pathway upregulation. In  
contrast, in rainbow trout RBCs, VHSV rhabdovirus induced  
phosphorylation of eIF2  and a cell shut-off characterized by  
the downregulation of the proteome16.

Further studies are needed to completely understand the  
molecular mechanism through which IPNV triggers this 
immune response in rainbow trout RBCs. However, the lack of  
commercial antibodies against fish proteins involved in cell sig-
naling networks limits the study of this area. The implication  
of RBCs during in vivo IPNV infection and the response  
against different strains of IPNV remains to be evaluated.

Finally, one of the potential applications of these results  
is that fish RBCs could be considered mediators of the antivi-
ral response and therefore targets of novel DNA vaccines and  
of new strategies against fish viral infections.
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Abstract: Nucleated teleost red blood cells (RBCs) are known to express molecules from the major
histocompatibility complex and peptide-generating processes such as autophagy and proteasomes,
but the role of RBCs in antigen presentation of viruses have not been studied yet. In this study,
RBCs exposed ex vivo to viral hemorrhagic septicemia virus (VHSV) were evaluated by means
of transcriptomic and proteomic approaches. Genes and proteins related to antigen presentation
molecules, proteasome degradation, and autophagy were up-regulated. VHSV induced accumulation
of ubiquitinated proteins in ex vivo VHSV-exposed RBCs and showed at the same time a decrease of
proteasome activity. Furthermore, induction of autophagy was detected by evaluating LC3 protein
levels. Sequestosome-1/p62 underwent degradation early after VHSV exposure, and it may be a link
between ubiquitination and autophagy activation. Inhibition of autophagosome degradation with
niclosamide resulted in intracellular detection of N protein of VHSV (NVHSV) and p62 accumulation.
In addition, antigen presentation cell markers, such as major histocompatibility complex (MHC) class
I & II, CD83, and CD86, increased at the transcriptional and translational level in rainbow trout RBCs
exposed to VHSV. In summary, we show that nucleated rainbow trout RBCs can degrade VHSV while
displaying an antigen-presenting cell (APC)-like profile.

Keywords: rainbow trout; erythrocytes; red blood cells; VHSV; transcriptome; proteome; antigen
presentation; autophagy; ubiquitination

1. Introduction

Nucleated red blood cells (RBCs) can develop immune responses to viruses that directly target
these cells, such as infectious salmonid anemia virus (ISAV) [1] and piscine orthoreovirus (PRV) [2–6],
which mainly results in the up-regulation of the interferon (IFN)-α gene and interferon-stimulated
genes. Recently, we reported that rainbow trout RBCs can mount an antiviral response against viral
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hemorrhagic septicemia virus (VHSV) [7]. Also, we have reported that RBCs can be stimulated by
infectious pancreatic necrosis virus (IPNV), where up-regulation of IFN type 1-related genes leads
to expression of antiviral myxovirus resistance protein Mx [8]. However, rainbow trout RBCs are
nonpermissive to VHSV and IPNV infections, and the cellular mechanisms that make the infection
nonpermissive are being studied [9].

Autophagy is an evolutionarily conserved mechanism in which intracellular material is enveloped
in double-membrane vesicles and targeted for fusion with lysosomes for degradation. Numerous
pathogens have been known to cause autophagy, including viruses [10]. The role of autophagy in
the context of viral infections is still controversial and can have either antiviral or proviral functions
depending on the virus and host cell [11]. Autophagy can contribute to the innate immune response
by delivering viral pathogen-associated molecular pattern (PAMPs) to endosomal Toll-like receptors
(TLRs) [12,13] through vesicle trafficking. Related to VHSV, it was found that rhabdoviral infections,
including VHSV, can be inhibited when autophagy is activated [14]. Moreover, the viral glycoprotein G
is sufficient to induce autophagy [14] and a Pepscan technique has successfully identified the peptides
involved in autophagy activation [15]. In teleosts, VHSV infection in turbot RBCs led to expression of
NK-lysin, an antimicrobial peptide, associated with LC3 protein in autophagosomes [16].

Recently, groups have reported on selective autophagy mechanisms, suggesting that autophagy
is far from being a nonselective degradative process [17]. Autophagy uses adaptors known as
SLRs (sequestosome 1/p62-like receptors) that can selectively target pathogens for degradation in
autophagosomes [18]. p62 contains domains that interact with both ubiquitinated proteins and
autophagy-specific light chain 3 (LC3) modifier [19] in the inner face of the autophagosome; in this
way, p62 is involved in delivering ubiquitinated proteins marked for proteasome degradation to
autophagosomes. Ubiquitination is a process mediated by the E3 ligases, in which a series of three
different enzymes are involved in the activation, conjugation and ligation of ubiquitin to the proteins
targeted for degradation [20]. Ubiquitinated proteins are primarily degraded by the proteasome.
The ubiquitin-proteasome system (UPS) plays an important role in cell homeostasis by ensuring the
quality of newly synthetized proteins and the regulation of levels of proteins performing critical
functions in the cell. Functional 20S proteasomes have been identified in human [21] and rainbow
trout [7] RBCs. As with autophagy, the UPS plays a double role in the context of viral infections: it can
be manipulated by viruses to bypass host defenses mechanisms or participate in the elimination of
viral components [22]. The UPS has been named as the principal source of antigenic peptides for the
major histocompatibility complex (MHC) of the immune system [23]. Autophagy is also known to be
involved in antigen degradation and delivery to MHC class I and II molecules, which could trigger the
adaptive immune response [24–26].

Antigen presentation is a key process to activate T cells. This process is mediated by antigen-
presenting cells (APCs) such as dendritic cells (DCs). DCs act as an important link between the
innate and adaptive immune responses and are involved in patrolling tissues, pathogen engulfment,
degradation, movement to lymphoid tissues, and T cell stimulation. However, the presence of APCs,
and specifically DCs, was largely unknown in fish until recently, when a subset of APCs resembling
those of mammals was identified in zebrafish [27] and rainbow trout [28]. APCs are characterized
through cell markers such as CD86 and CD83, which serve as costimulatory molecules, and MHC
molecules. Among them, MHC molecules are some of the most important proteins involved in the
antigen presentation process, as they display pathogen-derived fragments on the cell surface to allow
recognition by T cells. Expression of MHC molecules indicates that a cell can play an APC role. MHC
class I (MHCI) protein expression has been detected in rainbow trout RBCs [29,30] and MHC class II
(MHCII) transcriptional expression has been recently reported in nucleated rainbow trout [31,32] and
chicken [33] RBCs. However, the role of RBCs in viral antigen presentation is unknown. APCs are
classified as professional or atypical [34]. Professional APCs constitutively express MHC molecules,
possess machinery to process antigens, and can localize to tissues and T cell zones, whereas atypical
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APCs up-regulate MHC expression under certain conditions. Little evidence exists regarding atypical
APCs priming T cells in an antigen-specific manner [34].

The aim of this study was to elucidate whether APCs cell markers regulation occurred in nucleated
teleost RBCs after VHSV exposure, while also analyzing potential autophagy and UPS implications.
These processes have been reported to generate peptides used by MHC molecules for antigen
presentation [35]. Recently, we found that RBCs are nonpermissive to VHSV infection [7], but the
cause of this abortive infection is being studied [9]. Our results show an increase in ubiquitination and
autophagy activation in ex vivo VHSV-exposed RBCs. Inhibition of autophagy degradation led to
increased levels of VHSV in RBCs. We also detected p62 degradation at early stages post infection.
We found up-regulation of MHCI, MHCII, CD83, and CD86 molecules at the protein level on rainbow
trout RBCs after VHSV exposure. Therefore, we show for the first time to our knowledge that nucleated
RBCs can display and up-regulate APCs cell markers and process viral antigens through autophagy.

2. Materials and Methods

2.1. Animals

Rainbow trout (Oncorhynchus mykiss) individuals of approximately 5 to 20 gr. were obtained from
a commercial fish farm (Piszolla S.L., Cimballa Fish Farm, Zaragoza, Spain). Fish were maintained
at the University Miguel Hernandez (UMH) facilities in a recirculating dechlorinated water system
at a stocking density of 1 fish/3L and fed daily with a commercial diet (Skretting, Burgos, Spain).
Water temperature was constantly monitored to maintain fish at 14 ◦C. Fish were acclimatized to
laboratory conditions for 2 weeks before experimentation. Experimental protocols and methods
of the experimental animals were reviewed and approved by the Animal Welfare Body and the
Research Ethics Committee at the UMH (approval number 2014.205.E.OEP; 2016.221.E.OEP) and by
the competent authority of the Regional Ministry of Presidency and Agriculture, Fisheries, Food and
Water supply (approval number 2014/VSC/PEA/00205). All methods were carried out in accordance
with the Spanish Royal Decree RD 53/2013 and EU Directive 2010/63/EU for the protection of animals
used for research experimentation and other scientific purposes.

2.2. Cell Cultures and Virus

Rainbow trout were sacrificed by overexposure to tricaine methanesulfonate (Sigma-Aldrich,
Madrid, Spain) at 0.3 g/L. Peripheral blood was sampled from the caudal vein using insulin syringes
(NIPRO, Bridgewater, NJ, USA). Approximately 100 μL of blood was diluted in RPMI-1640 medium
(Dutch modification) (Gibco, Thermo Fischer Scientific Inc., Carlsbad, CA, USA) supplemented with
10% fetal bovine serum (FBS, Cultek, Madrid, Spain), 1 mM pyruvate (Gibco), 2 mM l-glutamine (Gibco),
50 μg/mL gentamicin (Gibco), 2 μg/mL fungizone (Gibco), and 100 U/mL penicillin/streptomycin
(Sigma-Aldrich). Then, RBCs were purified by two consecutive density gradient centrifugations with
Histopaque 1077 (7206g, Ficoll 1.007; Sigma-Aldrich). Finally, RBCs were washed twice with RPMI
2% FBS. An RBC purity of 99.99% was estimated by optical microscopy evaluation. Then, purified
RBCs were cultured in the above indicated medium at a density of 107 cells/mL in cell culture flasks at
14 ◦C overnight.

For autophagy assays, RBCs were treated with niclosamide (Sigma-Aldrich) after three hours
post-exposure (hpe) to VHSV and then incubated for the time and at the concentration indicated for
each assay. Similarly, the proteasome inhibitor MG132 (Sigma-Aldrich) was added after three hpe to
VHSV and then incubated for the time and at the concentration indicated for each assay.

Viral hemorrhagic septicemia virus (VHSV-07.71) [36] was purchased from the American Type
Culture Collection (ATCC, VR-1388) and propagated in fathead minnow epithelioma papulosum
cyprini EPC cells (ATCC, CRL-2872) at 14 ◦C, as previously reported [37].
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2.3. Antibodies

To label VHSV, we used the mouse monoclonal 2C9 antibody against the N protein of VHSV
(NVHSV) [38] produced at Dr Coll’s laboratory. To label MHCI, mouse anti-MHCI against zebrafish
MHCI (Ab-Mart, Shangai, China; Ref nº #X1-K4HVT2) was used (Supplementary Figure S1). Sequence
alignment between zebrafish (UniprotKB Entry K4HVT2) and rainbow trout (NCBI Entry AAG53681.1)
MHCI protein sequences, using NCBI BLAST tool (https://blast.ncbi.nlm.nih.gov), resulted in 48%
identity and 68% positives. To label LC3, rabbit anti-LC3A/B antibody (Cell Signaling Technology,
Danvers, MA; Ref nº #4108) was used. To label p62, we used rabbit anti-p62/SQSTM1 antibody
(www.antibodiesonline.com; Ref nº #ABIN2854836) (Supplementary Figure S2). This antibody shows
reactivity with zebrafish. Sequence alignment between zebrafish (UniprotKB Entry F1Q5Z8) and
rainbow trout (XP_021439759.1) p62/sequestosome 1 protein sequences, resulted in 61% identity and
70% positives. To label ubiquitin, rabbit anti-ubiquitin antibody (StressMarq, Victoria, Canada; Ref nº
#SPC-119) was used. This antibody shows reactivity with rainbow trout. Mouse anti-MHCII, mouse
anti-CD86, and rabbit anti-CD83 antibodies against respective rainbow trout molecules were produced
at the laboratory of Dr Luis Mercado using synthetic epitopes from the indicated molecules [39]. Western
blots of anti-MHCII, anti-CD86, and anti-CD83 antibodies in RBCs can be found in Supplementary
Figure S3. A polyclonal antibody against VHSV G glycoprotein (GVHSV) produced in rabbit [40],
kindly donated by Dr Niels Lorenzen to Dr Julio Coll, was used in the DuoLink proximity assay. Rabbit
polyclonal antibody against human α-actin (Sigma-Aldrich, Nº #2066) was used for western blotting as
a loading control. Secondary antibodies used are indicated in each assay.

2.4. Viral Exposure Assays

Ex vivo rainbow trout RBCs were exposed to VHSV at different multiplicities of infection (MOI),
as indicated in each figure. After three hours of incubation at 14 ◦C, cells were washed with cold
RPMI, then RPMI 2% FBS was added and the culture was incubated at 14 ◦C for the different times
indicated in each assay. Virus was not removed in the time-course assays. MOI was calculated using
the following formula:

MOI =
Viral titer

(TCID50
mL

)
·Volume of infection (mL)·Dilution

N◦ of RBCs

2.5. Rainbow Trout Challenge with VHSV

Young rainbow trout individuals were infected by intramuscular injection of 50 μL RPMI 2% FBS
medium with VHSV (108 TCID50/mL). As a negative control, individuals were injected with 50 μL of
sterile RPMI 2% FBS. Over the course of the challenge, individuals were maintained at 14 ◦C for the
number of days indicated.

2.6. Proteasome Activity Assay

RBC proteasome activity was measured using Proteasome 20S Activity Assay Kit (Sigma-Aldrich).
RBCs were exposed to VHSV for 24 h at the indicated MOI. After, approximately 2 × 105 cells in 90 μL
RPMI were adhered to a transparent 96-well plate previously treated with poly-D lysine (Sigma-Aldrich)
by centrifugation at 800 rpm for two minutes. Then, 100 μL of Proteasome Assay Loading Solution
(prepared following manufacturer instructions) were added to each well. After five hours of incubation
at room temperature with protection from light, fluorescence was measured using POLARstar Omega
Microplate Reader (BMG Labtech, Ortenberg, Germany) with an excitation wavelength of 490 nm and
an emission wavelength of 525 nm.
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2.7. RNA Isolation and cDNA Synthesis

The E.Z.N.A. Total RNA Kit (Omega Bio-Tek Inc., Norcross, GA, USA) was used for total RNA
extraction in accordance with the manufacturer’s instructions. To eliminate possible residual genomic
DNA, the sample was treated using TURBO™ DNase (Ambion, Thermo Fischer Scientific Inc.)
following the manufacturer’s instructions. RNA was quantified with a NanoDrop Spectrophotometer
(Nanodrop Technologies, Wilmington, DE, USA).

cDNA was synthesized from RNA using M-MLV reverse transcriptase (Invitrogen, Thermo Fischer
Scientific Inc.) as previously described [41]. cDNA was stored at −20 ◦C.

2.8. Transcriptome Analysis

Ficoll-purified rainbow trout RBCs were exposed to VHSV as described above. After 4 and 72 hpe,
VHSV-exposed (n = 16) and unexposed (n = 16) RBCs (106 cells per fish) were resuspended in a 1/10
dilution of 9.5 μL of 10× lysis buffer (Clontech, Takara Bio, Mountain View, CA, USA) and 0.5 μL
of RNase Inhibitor (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA). Fish samples were
grouped into 2 pools of 8 individuals for each condition (control and VHSV-exposed) and preserved at
−80 ◦C until cDNA library construction. cDNA was directly produced from pooled lysed cells using
SMART-Seq v4 Ultra Low Input RNA Kit (Clontech, Takara Bio) [31]. Sequence reads are available at
SRA-NCBI accession SRP133501. RNA-Seq library preparation, sequencing, and mapping were carried
out by STABVida Lda (Caparica, Portugal) as previously described [31].

2.9. Proteome Analysis

Ficoll-purified rainbow trout RBCs were exposed to VHSV as described above. At 72 hpe,
VHSV-exposed (n = 16) and unexposed (n = 16) RBCs (8 × 106 cells per fish) were pelletized by
centrifugation (1600 rpm), the supernatant was removed, and the cell pellet was washed three times
with phosphate- buffered saline (PBS), digested, cleaned-up/desalted and grouped into 2 pools of 8
individuals for each condition (control and VHSV-exposed). Then, samples were subjected to liquid
chromatography and mass spectrometry analysis (LC-MS) as previously described [31]. Log2 peptide
ratios followed a normal distribution that was fitted using least squares regression. Mean and standard
deviation values derived from the Gaussian fit and were used to estimate P values and false discovery
rates (FDR) at quantitation level. The confidence interval for protein identification was set to <95%
(P < 0.05), and only peptides with an individual ion score above the 1% FDR threshold were considered
correctly identified. Only proteins with at least two peptide spectrum matches (PSMs) were considered
in the quantitation.

2.10. Pathway Enrichment Analysis

Using the transcriptomic and proteomic results, differentially expressed genes (DEGs) and
proteins (DEPs) pathway enrichment analyses were performed using ClueGO [42], CluePedia [43], and
Cytoscape [44]. The Gene Ontology (GO) Immune System Process, GO Biological Process, Reactome
pathways, KEGG pathways, and Wikipathways databases were used. A P value ≤ 0.05 and Kappa
score of 0.4 were used as threshold values. Genes and proteins were identified by sequence homology
with Homo sapiens using Blast2GO version 4.1.9 (BioBam, Valencia, Spain) [45].

2.11. Semi-quantitative PCR

Semi-quantitative PCR was performed using the commercial kit GoTaq G2 DNA polymerase
(Promega, Madison, WI, USA) and synthesized cDNA. PCR reactions were performed in a total volume
of 12.5 μL using 10 μM for dNTPs (Invitrogen), 0.75 mM MgCl2 (Promega), 1X GoTaq Green Buffer
(Promega) and 1.25 U of GoTaq G2 DNA polymerase (Promega). Primer concentration was 50 nM for
cd83, mhcI, and mhcII and 25 nM for cd86. A total of 12 ng of cDNA was used for each sample. Cycling
conditions were 95 ◦C for 5 min; 35 cycles at 95 ◦C for 30 s, 60 ◦C or 62 ◦C (depending on the Tm of
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primers) for 30 s, and 72 ◦C for 20 s; and 72 ◦C for 5 min. An Aeris (ESCO, Singapore, Singapore)
thermal cycler was used for PCR. Primers sequences used are listed in Table 1. Samples were stored at
−20 ◦C until analysis in agarose gel electrophoresis.

Table 1. List of primer sequences used for semi-quantitative PCR.

Gene
Forward Primer

(5′–3′)
Reverse Primer

(5′–3′)
Reference or

Accession Number

mhcI CCAGAGGATGTATGGTTGTGAG TGGAGCGATCCATGTCTTTGTC AF287490.1
mhcII GTACTCCAGGTGGGAGTGGA TGCAGCGCCTATGACTTCTA AY273808.1
cd86 ATGTAACAGTGGCCTGTGA CCACCCACTGCTGTTCACTA FJ607781.1
cd83 GGAGCGTGAAGTGAACTTT TCCTGGTTCTGCTCTCCTACA AY263797.1
ef1α TGGAGACTGGCACCCTGAAG CCAACATTGTCACCAGGCATGG [46]

2.12. Agarose Gel Electrophoresis

Each amplified DNA fragment generated by semi-quantitative PCR was separated via agarose gel
(2%) (Cleaver Scientific, Warwickshire, UK) electrophoresis. Gel was prepared by diluting agarose
in tris-borate-EDTA buffer (TBE) (45 mM TrisHCl, 0.45 M boric acid, 10 mM EDTA) (Merck, Ñuñoa,
Chile) buffer with the pH adjusted to 8. To visualize DNA bands, 0.5 μL of GelRed (Biotium, Fremont,
CA, USA) were added to 25 mL of TBE buffer/agarose, and 3 μL of each sample were loaded to the
gel. Electrophoresis was done at 90V for 40 min using a PowerPac 300 power supply (Biorad, CA,
USA). DNA bands were visualized using UV light in an Infinity 115 (Vilber Lourmart, Marné La
Vallée, France) gel documentation system with the BioCapt software (Vilber Lourmart, Marné La
Vallée, France). To determine the molecular weight, we used AccRuler 100 Bp Plus DNA RTU ladder
(Maestrogen, Hsinchu City, Taiwan) which includes band sizes from 3000 bp to 100 bp.

2.13. Gene Expression by RT-qPCR

cDNA was synthetized as previously described. RT-qPCR was performed in 20 μL reactions using
12 ng of cDNA, 10 μL of TaqMan universal PCR master mix (Thermo Fischer Scientific), 900 nM final
concentration of each primer (300 nM for NVHSV gene) and 300 nM of probe (150 nM for NVHSV
gene) using the ABI PRISM 7300 System (Thermo Fischer Scientific). Cycling conditions were 50 ◦C
for 2 min; 95 ◦C for 10 min; and 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. Gene expression was
analyzed by the 2−ΔCt or 2−ΔΔCt method [47]. The eukaryotic 18S rRNA gene (Cat#4310893E, Thermo
Fischer Scientific) was used as an endogenous control. Primer and probe sequences are listed in Table 2.
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2.14. Extracellular Immunofluorescence Staining

To stain the cell surface markers MHCI, MHCII, CD83, and CD86, RBCs were fixed in 4%
paraformaldehyde (PFA; Sigma-Aldrich) and 0.008% glutaraldehyde (Sigma-Aldrich) diluted in RPMI
medium for 20 min. Primary antibodies were diluted in PBS at 1/200 dilution for anti-MHCI, 1/200
for anti-MHCII, 1/100 for anti-CD83, and for 1/200 anti-CD86. Samples were incubated for 60 min.
For flow cytometry, goat anti-rabbit IgG (H+L) CF™ 488 antibody (Sigma-Aldrich) was used for the
secondary antibody for anti-CD83, and goat anti-mouse IgG (H+L) CF™ 488 antibody (Sigma-Aldrich)
was used for anti-MHCI, anti-MHCII, and anti-CD86. Secondary antibodies were incubated for 30 min
at 1/200 dilution. RBCs were washed with PBS after each antibody incubation. Flow cytometry analysis
was done in a BD FACSCanto™ II (BD Biosciences) flow cytometer. Immunofluorescence (IF) images
were taken with the INCell Analyzer 6000 cell imaging system (GE Healthcare, Little Chalfont, UK).

2.15. Intracellular Immunofluorescence Staining

RBCs were fixed with 4% PFA and 0.008% glutaraldehyde diluted in RPMI medium. RBCs were
incubated with permeabilization buffer containing 0.05% saponin (Sigma-Aldrich) in PBS, for 15 min.
Primary antibodies were used at 1/1000 dilution for 2C9 anti-NVHSV, 1/200 for anti-p62, and 1/100 for
anti-ubiquitin in permeabilization buffer. Samples were incubated for 60 min at room temperature.
Secondary antibodies were incubated for 30 min at 1/200 dilution in permeabilization buffer. RBCs
were washed with permeabilization buffer after antibody incubations. Goat anti-rabbit IgG (H+L) CF™
647 antibody and goat anti-mouse IgG (H+L) CF™ 488 antibody was used as secondary antibodies
(Sigma-Aldrich). For anti-ubiquitin and anti-NVHSV double staining, goat anti-rabbit IgG (H+L) CF™
488 antibody and goat anti-mouse IgG (H+L) CF™ 647 antibody was used as secondary antibodies.
RBCs were maintained in 1% PFA in PBS. Nuclear staining was performed by staining RBCs with
1 μg/mL of 4′-6-408 Diamidino-2-phenylindole (DAPI; Sigma-Aldrich) for five minutes.

For LC3 staining, RBCs were fixed using 4% PFA and 0.008% glutaraldehyde (Sigma-Aldrich) in
PBS for 20 min and permeabilized with cold methanol (Panreac) for 15 min. LC3 antibody was diluted
1/100 in 0.3% Triton X-100 in PBS and incubated for two hours at room temperature for flow cytometry
and overnight at 4 ◦C for immunofluorescence. Secondary antibody goat anti-rabbit IgG (H+L) CF™
488 (Sigma-Aldrich) was diluted 1/200 in 0.3% Triton X-100 (Sigma-Aldrich) in PBS and incubated
for 30 min for flow cytometry and 90 min for immunofluorescence, both at room temperature. RBCs
were kept in 1% PFA in PBS before the analysis. Immunofluorescence images were taken in the INCell
Analyzer 6000 cell imaging system (GE Healthcare).

2.16. Transmission Electron Microscopy (TEM)

Control and VHSV-exposed RBCs were fixed with glutaraldehyde at 2% in 0.1 M cacodylate buffer
for three to four hours at room temperature. Post-fixation was performed with osmium tetroxide at 1%
in 0.1 M cacodylate buffer for one hour at 4 ◦C. RBCs were centrifuged at 1600 rpm and washed with
0.1 M cacodylate buffer over 10 min three times after both steps. For the last wash, RBCs were kept at
4 ◦C overnight. The sample was applied to 3% agar and dehydrated using an increasing gradient of
alcohol (30%, 50%, 70%, 96% and 100% during 10 min), acetone (two 10-min rounds), acetone/epon
resin 1:1 (1 h), and epon resin (overnight with the Eppendorf tape open and then closed for four hours).
Finally, a block with the sample was polymerized at 58 ◦C to 60 ◦C for 24 h. Images were taken using
the electronic transmission microscope Jeol 1011 (JEOL, Inc. Peabody, MA, USA) from the UMH
Institute of Bioengineering.

2.17. In situ Proximity Ligation Assay (PLA)

Superfrost microscope slides were cleaned using ethanol. Two areas of 1 cm2 were delimited
using a Dako pen (Agilent, Santa Clara, CA, USA) on each microscope slide, and Dako pen stain dried
overnight. Ficoll-purified RBCs were washed three times, and approximately 2.5 × 105 RBCs were used
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from unexposed or VHSV-exposed (MOI 10) RBCs, at 14 ◦C for 24 h. RBCs were added to each area in a
volume of 125 μL of RPMI. RBCs were left to sediment for 15 min. Then, RPMI was carefully removed,
and 100 μL fixation buffer consisting of RPMI with 4% PFA was added for 1 h at room temperature.
RBCs were washed three times with PBS after removing the fixation buffer. Then, 70% ethanol was
applied to the slides for 30 s. Slides dried on ice for one hour and then were stored at −20 ◦C.

Duolink In Situ–Fluorescence kit (Sigma-Aldrich) was used following the manufacturer’s
instructions to perform the PLA. Once slides dried, blocking solution was added to each area,
and slides were incubated for one hour at 37ºC in a wet chamber. Blocking solution was removed,
and a mixture containing the primary antibodies mouse anti-MHCI (1/200) or anti-MHCII (1/200) and
polyclonal rabbit anti- GVHSV antibody [40] (kindly provided by Dr Neils Lorenzen to Dr Julio Coll)
(1/300) were incubated overnight in a wet chamber at 4 ◦C. Alternatively, anti-MHCI or anti-MHCII were
incubated together with rabbit serum (1/300) to detect nonspecific background signals. After incubation
with the primary antibodies, RBCs were washed twice with wash buffer A for 5 min with slow agitation.
Excess wash buffer A was removed, and the PLA Probes MINUS reagent was incubated at a 1/5 dilution
for 1 h at 37 ◦C in the wet chamber. Then, ligation shock reagent and ligase were added to the RBCs
after washing. Amplification reagents were added to the RBCs and then removed after 100 min of
incubation. Slides were mounted with a cover slip using DuoLink In Situ Mounting Medium with
DAPI and stored at −20 ◦C until analysis.

To quantify positive colocalization between MHCI or MHCII and GVHSV peptides in RBCs,
we used a counting algorithm in the IN Cell Developer software (GE Healthcare). Briefly, RBC
cytoplasm was delimited using a collar around the nucleus (labeled by DAPI) of a ~5 μm radius.
Positive colocalization was noted by detection of granules inside the RBCs cytoplasm (settings were
adjusted for a minimum brightness and granular size to be considered for colocalization between the
two molecules).

2.18. Western Blot

RBCs pellets (107 cells) and head kidney tissue samples were resuspended in 100 μL PBS buffer
with a protease inhibitor cocktail (Sigma-Aldrich). Cells were lysed by freezing and thawing samples
three times. Tissues were disrupted using micropestles (Invitrogen). Cell debris was eliminated by
centrifugation at 12,000 rpm for 10 min. Samples were loaded in a 12% polyacrylamide gel (Invitrogen),
except for anti-ubiquitin which was at 16%, under reducing conditions. Electrophoresis was performed
at 150 V for 100 min. Proteins in the gel were transferred to 0.4 μm pore size nitrocellulose membranes
(BioRad, Madrid, Spain) for 120 min at 100 V in transfer buffer (2.5 mM Tris, 9 mM glycine, 20%
methanol). Membranes were then blocked with 5% dry milk and 0.2% Tween-20 in PBS and incubated
with rabbit polyclonal anti-ubiquitin, rabbit polyclonal anti-αactin (42 kDa), mouse monoclonal
anti-MHCI (45 kDa), mouse polyclonal anti-MHCII (~34 kDa), mouse polyclonal anti-CD86 (~31 kDa),
or rabbit polyclonal anti-CD83 (~24 kDa) in PBS containing 5% dry milk and 0.2% Tween-20 (blocking
buffer) overnight at 4 ◦C. Membranes were washed three times for 10 min each with PBS Tween-20
0.2% buffer before incubation with GAR-Po (Sigma-Aldrich) or GAM-Po (Sigma-Aldrich) in blocking
buffer for 60 min. Membranes were then washed three times with PBS Tween-20 0.2%. Peroxidase
activity was detected using enhanced chemiluminescence (ECL) reagents (Amersham Biosciences,
Buckinghamshire, UK) and exposure to X-ray. Protein lanes and bands were analyzed by densitometry
using ImageJ software (version 1.51, National Institutes of Health, Bethesda, MD, USA). Lanes were
selected using the rectangle tool of ImageJ software and the integrated density of the lane was measured.
α-actin band densitometry was calculated by plotting the band density after selecting the bands with
the rectangle tool.
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2.19. Software and Statistics

All graphs show the mean and standard deviation of the data. P values associated with each graphic
are represented by: *, P value < 0.05; **, P value < 0.01; ***, P value < 0.001; ****, P value < 0.0001.
Graphpad Prism 6 (www.graphpad.com) (Graphpad Software Inc., San Diego, CA, USA) was used to
prepare graphs and perform statistical calculations. Flow cytometry data were analyzed using Flowing
Software v2.5.1 (http://flowingsoftware.btk.fi/) to obtain mean fluorescence intensity (MFI) values and
Weasel v3.0.1 (https://frankbattye.com.au/Weasel/) to obtain graphical representation of histograms
and dot plots.

3. Results

3.1. Transcriptomic Analysis Indicated Up-Regulation of Antigen-Processing-Related Molecules in Ex Vivo
VHSV-Exposed Rainbow Trout RBCs

To identify major processes activated when rainbow trout RBCs are exposed to VHSV,
a transcriptomic analysis using RNA-Seq and pathway enrichment evaluation were performed
on VHSV-exposed RBCs at 4 and 72 hpe. Several up-regulated genes were classified into GO categories
of ubiquitination and proteasome degradation and MHC class I antigen processing and presentation
(Figure 1, Supplementary Table S1) at 4 hpe. Selected genes belonging to the ubiquitination and
proteasome degradation category are listed in Table 3 (Supplementary Tables S1 and S2). Among these
up-regulated genes are cullin 3 (cul3) and proteasome subunits α6 (psma6) and β5 (psmb5). Also related
to the MHCI presentation pathway, our analysis identified calnexin (canx), GTPase activating protein
SEC13 (sec13), and inhibitor of nuclear factor kappa B kinase (ikbkb). Ras-related rab 7 (rab7) and tumor
necrosis factor (TNF) receptor-associated factor 6 (traf6) were analyzed by RT-qPCR as genes related to
the MHCI presentation pathway. RT-qPCR validation of the genes identified in the transcriptomic
analysis is shown in Supplementary Figure S4, where a tendency to up-regulation is observed at 4 hpe,
although the RT-qPCR data do not strongly support the fold changes found by RNA-Seq. Moreover,
we also identified up-regulation of some genes involved in autophagy, such as unc-51–like autophagy
activating kinase 1 (ulk1), beclin 1 (becn1), and autophagy-related 9A (atg9a) (Table 4). In contrast,
at 72 hpe, RBCs showed a global down-regulation (Supplementary Tables S1 and S2).

Figure 1. Transcriptomic analysis indicated up-regulation of antigen-processing-related molecules in ex
vivo VHSV-exposed rainbow trout RBCs. Number of up-regulated and down-regulated genes related
to proteasomal protein and catabolic process (GO:0010498), protein deubiquitination (GO:0016579),
ubiquitin-dependent protein catabolic process (GO:0006511), antigen processing and presentation of
peptide antigen via MHC class I (GO:0002474) (Supplementary Table S1), by RNA-Seq from ex vivo
unexposed and VHSV-exposed RBCs at 4 hpe. Asterisks denote GO-term significance.
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Table 3. Fold change of genes from the “class I MHC-mediated antigen processing and presentation”
and “antigen processing: ubiquitination and proteasome degradation” pathways in the transcriptomic
analysis of VHSV-exposed rainbow trout RBCs at 4 hpe. Gene expression values were calculated by
normalization against unexposed RBCs. Gene P values were <0.001 and FDR P values < 0.05. Gene
symbols correspond to homologue Homo sapiens genes identified by sequence homology using Blast2GO.

Antigen Processing: Ubiquitination
and Proteasome Degradation

Class I MHC-Mediated Antigen
Processing and Presentation

Gene Symbol Log2 Fold Gene Symbol Log2 Fold

cul3 4.77 canx 4.31
keap1 7.56 sec13 5.35
psma6 5.02 ikbkb 5.69
psmb5 3.72 klhl13 5.36

Table 4. Fold change of the autophagy-related genes ulk1, becn1, and atg9a obtained in the transcriptomic
analysis of VHSV-exposed rainbow trout RBCs at 4 hpe. Gene expression values were calculated by
normalization against uninfected RBCs. Gene P values were < 0.001 and FDR P values < 0.05.

Autophagy-Related Genes

Gene Symbol Log2 Fold

ulk1 3.46
becn1 5.55
atg9a 3.69

3.2. Proteomic Analysis of VHSV-Exposed RBCs Showed Proteasome Down-Regulation, Increased
Ubiquitination, and Regulation of Antigen Presentation-Related Molecules at 72 hpe

We analyzed the response of ex vivo RBCs to VHSV at 72 hpe using a proteomic analysis and
pathway enrichment evaluation. Up-regulated proteins were overrepresented in antigen processing
and presentation of peptide antigen via MHC class II (GO:0002495), and proteasome-mediated
ubiquitin-dependent protein catabolic process (GO:0043161), while proteasome (KEGG:03050) and
antigen-processing and presentation of exogenous peptide antigen (GO:0002478) were mostly
down-regulated (Figure 2a). A list of all overrepresented terms and statistics is provided in Supplementary
Table S3. Table 5 displays the fold change of proteins from these categories (Supplementary Table S4).

A Cytoscape pathway network of significantly overrepresented Immune System Process GO terms
showed up-regulation in antigen processing and presentation of peptide antigen via MHC class II,
cytoplasmic pattern recognition receptor signaling pathway, neutrophil degranulation, and leukocyte
activation; however, it showed down-regulation of antigen presentation via MHC class I. (Figure 2b).
In Supplementary Figure S5, we show a Venn diagram to compare the common products found in our
omics studies.
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(a) 

(b) 

Figure 2. Proteomic analysis of VHSV-exposed RBCs showed proteasome down-regulation, increased
ubiquitination, and regulation of molecules from antigen presentation pathways at 72 hpe. (a) Number of
up-regulated and down-regulated proteins related to proteasome (KEGG:03050), proteasome-mediated
ubiquitin-dependent protein catabolic process (GO:0043161), antigen-processing and presentation of
exogenous peptide antigen (GO:0002478), and antigen processing and presentation of peptide antigen
via MHC class II (GO:0002495), as identified by proteomic analysis from ex vivo unexposed and
VHSV-exposed rainbow trout RBCs at 72 hpe (Supplementary Table S3). Asterisks denote GO-term
significance. (b) Cytoscape pathway network of significantly overrepresented Immune System Process
GO terms in VHSV-exposed RBCs at 72 hpe (Supplementary Table S3). Each node represents a GO-term
from GO Immune System Process. Node size shows GO-term significance (P value): a smaller P value
indicates larger node size. Edge (line) between nodes indicates the presence of common genes: a thicker
line implies a larger overlap. The label of the most significant GO-term for each group is highlighted.
Up-regulated pathways are coded as red, while down-regulated pathways are coded as green. Pathways
with a similar number of up-regulated or down-regulated proteins are coded as gray. Asterisks denote
statistical significance.
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Table 5. List of up-regulated (left) and down-regulated (right) identified proteins from the
“antigen processing and presentation of peptide antigen via MHC class II”, “proteasome-mediated
ubiquitin-dependent protein catabolic process” and “proteasome” pathways. Protein FDR P values
were < 0.001. Protein symbols correspond to homologue Homo sapiens proteins identified by sequence
homology using Blast2GO.

Antigen Processing and Presentation of
Peptide Antigen via MHC Class II

Proteasome-mediated
Ubiquitin-Dependent Protein

Catabolic Process
Proteasome

Upr.
Protein

Log2

Fold
Downr.
Protein

Log2

Fold
Upr.

Protein
Log2

Fold
Downr.
Protein

Log2

Fold
Upr.

Protein
Log2

Fold
Downr.
Protein

Log2

Fold

ACTR1B 3.37 CAPZB −2.68 CD2AP 7.50 HSPA5 −6.23 PSMB3 4.44 PSMA1 −5.33
AP2S1 5.75 CLTC −3.69 DDB1 3.32 PSMA1 −5.33 PSMB6 3.73 PSMA2 −5.43
CLTA 4.51 RAB7A −4.69 GCLC 4.63 PSMA2 −5.43 PSMC2 2.98 PSMA3 −3.31
DNM2 5.32 HSPA1A 4.74 PSMA3 −3.31 PSMD13 2.26 PSMA4 −4.78

DYNC1H1 5.43 NPLOC4 1.68 PSMA4 −4.78 PSMD2 3.98 PSMA5 −6.15
KIF15 3.89 PLAA 5.08 PSMA5 −6.15 PSMD4 5.83 PSMA6 −6.49

PYCARD 3.28 PSMB3 4.44 PSMA6 −6.49 PSME1 5.73 PSMA8 −5.50
PSMB6 3.73 PSMA8 −5.50 PSMB1 −4.45
PSMC2 2.98 PSMB1 −4.45 PSMB2 −5.29

PSMD13 2.26 PSMB2 −5.29 PSMB4 −3.69
PSMD2 3.98 PSMB4 −3.69 PSME2 −3.44
PSMD4 5.83 PSME2 −3.44
PSME1 5.73 RAD23B −3.77
RACK1 3.95 UBC −5.19

RAD23A 4.85 UBR2 −11.48
RPS27A 5.03 VCP −2.86

UBB 4.39 WFS1 −10.33
USP19 8.29
YOD1 2.95

3.3. VHSV Induced Ubiquitination But Impaired Proteasome Degradation in Ex Vivo VHSV-exposed Rainbow
Trout RBCs

To validate the role of the UPS in the nonpermissive infection of rainbow trout RBCs by VHSV, we
performed a time-course experiment analyzing the expression of two genes belonging to the ubiquitin
E3 ligase complex: cul3 and kelch-like ECH-associated protein 1 (keap1). The results showed increased
expression of cul3 at 3 hpe while keap1 expression increased at 12 hpe (Figure 3a). We measured the
activity of the 20S proteasomes using a commercial kit and observed a MOI-dependent decrease in 20S
proteasome activity (Figure 3b). Then, we performed a western blot using an anti-ubiquitin antibody for
unexposed and VHSV-exposed RBCs with or without the proteasome inhibitor MG132. Ubiquitination
of proteins on VHSV-exposed RBCs increased in comparison with unexposed RBCs. A higher amount
of ubiquitinated proteins was also found in RBCs treated with MG132 (Figure 3c,d). To test whether
the proteasome is involved in the degradation of VHSV, we assessed the presence of NVHSV using
2C9 monoclonal antibody in VHSV-exposed RBCs treated with MG132. Flow cytometry results did
not show an increase in intracellular NVHSV in VHSV-exposed RBCs treated with MG132 (Figure 3e).
The population used for the flow cytometry analysis is depicted in Supplementary Figure S6. Double
staining using 2C9 and anti-ubiquitin antibodies showed higher ubiquitin labeling in RBCs with VHSV
(Figure 3f).
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Figure 3. VHSV induced protein ubiquitination but impaired proteasome degradation in ex vivo
VHSV-exposed rainbow trout RBCs. (a) Time-course expression of cul3 and keap1 at 0, 3, 6, 24, 48, and
72 hpe from VHSV-exposed (MOI 1) RBCs. Data represent mean ± SD (n = 5), relative to control cells
(black dotted line). A two-way analysis of variance (ANOVA) with Sidak´s multiple comparisons test
was performed to test statistical significance between unexposed and VHSV-exposed RBCs at each time
point. (b) 20S proteasome activity measured by fluorogenic substrates in RBCs unexposed or exposed
to VHSV at the indicated MOI at 24 hpe. Data represent mean ± SD (n = 3). Kruskal-Wallis with Dunn’s
multiple comparisons test was performed to test statistical significance between each condition and
unexposed RBCs. (c) Western blot of ubiquitin of lysates from unexposed and VHSV-exposed (MOI 10)
RBCs at 24 hpe, treated with or without MG132 (5 μM). α-actin was used as endogenous control.
Results are representative of 2 independent experiments. (d) Integrated densitometry of ubiquitin
lane content from unexposed and VHSV-exposed (MOI 10) RBCs at 24 hpe, treated with or without
MG132 (5 μM). Values were normalized to α-actin. Data represent mean ± SD (n = 2). (e) Intracellular
quantification by flow cytometry of NVHSV in VHSV-exposed (MOI 10) RBCs at 72 hpe, treated with
or without MG132 (1 or 5 μM). Data represent mean ± SD (n = 4). Kruskal-Wallis with Dunn’s multiple
comparisons test was performed to test statistical significance between MG132 treated and non-treated
RBCs. (f) Representative immunofluorescence of unexposed (control) and VHSV-exposed RBCs at MOI
100 and at 9 hpe stained with anti-ubiquitin (488 stain), 2C9 anti-NVHSV (647 stain), and DAPI for
nuclei staining. Asterisks denote statistical significance.

3.4. VHSV Induced Autophagy in Ex Vivo VHSV-exposed Rainbow Trout RBCs

To determine whether VHSV induced autophagy in ex vivo rainbow trout RBCs, we exposed
RBCs to VHSV at MOI 1 for 24 h. We identified the presence of autophagosome-like vesicles inside
VHSV-exposed RBCs (Figure 4a) via TEM. We visually counted the number of autophagosome-like
vesicles in unexposed RBCs and VHSV-exposed RBCs and noted a significant increase in VHSV-exposed
RBCs (Figure 4b). The turnover of the autophagy protein LC3A/B was monitored by means of LC3A/B
immunostaining, as previously described for rainbow trout cells [14,51]. LC3 immunostaining increased
at higher MOIs in a dose-dependent manner up to 2-fold in comparison with unexposed RBCs at 24 and
72 hpe (Figure 4c). By immunofluorescence microscopy, we identified an increased number of LC3 dots
in VHSV-exposed RBCs (Figure 4d). Moreover, we analyzed the ubiquitin-binding protein p62, which
undergoes degradation during activation of autophagy [52], as it is an autophagosome cargo protein
that targets other proteins for selective autophagy. To evaluate whether p62 undergoes degradation
in the RBC response to VHSV, an intracellular staining using anti-p62 antibody was performed
on unexposed and VHSV-exposed (MOI 10) RBCs at 6, 12, and 24 hpe. Decreased intracellular
p62 levels were detected in VHSV-exposed RBCs at 6 hpe compared to control RBCs (Figure 4e,f).
By 24 hpe, p62 levels recovered from the degradation observed at 6 hpe. Kinetics of expression of the
autophagy-related genes ulk1, becn1 and gabarap showed statistically significant up-regulation at 3 hpe
(Supplementary Figure S7).
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Figure 4. VHSV induced autophagy in ex vivo VHSV-exposed rainbow trout RBCs. (a) Representative
transmission electron micrographs of VHSV-exposed RBCs, pointing out autophagosome-like vesicles
(black arrows). (b) Count of autophagosome-like vesicles from transmission electron micrographs of
unexposed and VHSV-exposed rainbow trout. Data represent the mean ± SD (n = 30). A Mann-Whitney
test was performed to test statistical significance. (c) Autophagosome membrane protein LC3 expression
levels in VHSV-exposed RBCs at 24 (gray bars) and 72 hpe (black bars) relative to unexposed RBCs
(red line) evaluated by flow cytometry (n = 5). Data is represented as MRFI (Mean Relative Fluorescence
Intensity) = fluorescence in VHSV-exposed RBCs/fluorescence in non-exposed RBCs. A Kruskal-Wallis
with Dunn´s multiple comparisons test was performed to test statistical significance between each
condition and unexposed RBCs. (d) Representative immunofluorescence of unexposed (control)
and VHSV-exposed RBCs at MOI 1 and at 72 hpe stained with anti-LC3 (488) and DAPI for nuclei
staining. (e) Mean fluorescence intensity of p62 protein expression in RBCs unexposed (gray bars)
and exposed to VHSV at MOI 10 (red bars) after 6, 12, and 24 hpe. Data represent the mean ± SD
(n = 5). A Mann-Whitney test was performed to test statistical significance between unexposed and
VHSV-exposed RBCs at each time point. (f) Representative histograms of p62 in RBCs exposed to
VHSV (MOI 10) at 6, 12, and 24 hpe: unexposed (gray histogram), VHSV-exposed (red histogram).
Asterisks denote statistical significance.

3.5. Niclosamide Increased p62 and Intracellular VHSV Levels in Ex Vivo VHSV-exposed RBCs

The drug niclosamide blocks autophagy degradation via lysosomal dysfunction [53,54]. Moreover,
niclosamide has been previously used in the context of viral infections [55]. After exposing RBCs to
VHSV MOI 10, RBCs were treated with niclosamide at 10 and 20 μM. Then, an intracellular stain using
2C9 and anti-p62 antibodies was done at 72 hpe. Flow cytometry results showed that VHSV-exposed
RBCs treated with niclosamide at both tested concentrations had a higher percentage of NVHSV- and
p62-positive cells compared to RBCs exposed to VHSV but not treated with niclosamide (Figure 5a).
MFI of unexposed RBCs and VHSV-exposed (MOI 10) RBCs were similar, but both NVHSV and p62
MFI increased up to three-fold in the presence of niclosamide (Figure 5b).

(a) 

Figure 5. Cont.
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(b) 

Figure 5. Niclosamide increased p62 and intracellular VHSV levels in ex vivo VHSV-exposed RBCs.
(a) Representative histograms of NVHSV (green) and p62 (red) intracellular expression in RBCs
unexposed (control) and VHSV-exposed (MOI 10) RBCs treated or not with niclosamide 10 or 20 μM
and evaluated by flow cytometry at 72 hpe. Percentages represent the number of positive cells.
Dimethyl sulfoxide (DMSO) was added to untreated RBCs to match culture conditions of treated cells
(DMSO 0.04%). (b) MFI of intracellular NVHSV (green) and p62 (red) in unexposed (control) and
VHSV-exposed (MOI 10) RBCs treated or not with niclosamide 10 or 20 μM and evaluated by flow
cytometry at 72 hpe. Data represent mean ± SD (n = 6). A two-way ANOVA with Tukey´s multiple
comparisons test was performed to test statistical significance. Asterisks denote statistical significance.

3.6. Rainbow Trout RBCs Up-Regulated MHCI, MHCII, CD86, and CD83 after VHSV Exposure

Because antigen presentation pathways were overrepresented in transcriptomic and proteomic
analyses, we investigated whether RBCs expressed characteristic cell markers molecules of APCs. RNA
was extracted from RBCs and then we performed RT-PCR. Semi-quantitative PCR was performed,
and a mix of tissue samples from the head kidney, spleen, and gill was used as a positive control
for APCs genes expression. Final products from semi-quantitative PCR were analyzed in agarose
gel electrophoresis. mRNA transcripts from mhcI, mhcII, and cd83 were detected in rainbow trout
RBCs, whereas there was no cd86 expression (Figure 6a). We then examined how VHSV modified
the expression of these transcripts using quantitative RT-qPCR. We observed a slight increase in mhcI
expression and a pronounced increase in mhcII, cd83, and cd86 expression in VHSV-exposed RBCs
at 4 hpe. Whereas, we only observed up-regulation of cd86 at 72 hpe (although lower than levels at
4 hpe), while no up-regulation was observed at 72 hpe for the mhcI, mhcII, and cd83 genes (Figure 6b).
We confirmed the up-regulation of MHCI, MHCII, CD86, and CD83 at the protein level in VHSV-exposed
RBCs 24 hpe (Figure 6c–e). Also, cd83 gene expression was found to be up-regulated by transcriptomic
analysis at 4 hpe (Log2 fold: 4.87; Supplementary Table S2). In contrast, MHCI protein expression was
found down-regulated by proteomic analysis at 72 hpe (Log2 fold: −11.38; Supplementary Table S4).
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Figure 6. Rainbow trout RBCs up-regulated MHCI, MHCII, CD83, and CD86 molecules after exposure
to VHSV. (a) Specific transcript mRNA expression of mhcI, mhcII, cd86, and cd83 genes from rainbow
trout RBCs. A mix of gill, spleen, and head kidney tissues was used as a positive control of expression
from the assayed cell markers (C+). The ef1α gene was used as an endogenous control. (b) Fold change
in the expression of mhcI, mhcII, cd86, and cd83 in rainbow trout RBCs at 4 and 72 hpe with VHSV MOI
1 in comparison to unexposed RBCs, by RT-qPCR. Data represent mean ± SD (n = 4). Dotted red line
represents basal gene expression from unexposed RBCs. A Mann-Whitney test was performed to test
statistical significance between VHSV-exposed and unexposed RBCs. (c) Representative histograms of
MHCI, MHCII, CD86, and CD83 extracellular stain in unexposed RBCs (black) and VHSV-exposed
RBCs (red) (MOI 10) at 24 hpe. (d) MFI of MHCI, MHCII, CD86, and CD83 extracellular stain in
unexposed RBCs (gray bars) and VHSV-exposed RBCs (red bars) (MOI 10) at 24 hpe. Data represent
mean ± SD (n = 4). A Mann-Whitney test was performed to test statistical significances between
VHSV-exposed and unexposed RBCs. (e) Representative immunofluorescence images of MHCII and
CD83 expression in control and VHSV-exposed RBCs at 24 hpe. Asterisks denote statistical significance.

3.7. VHSV Induced Autophagy and Antigen Presentation Genes Expression in RBCs from VHSV-challenged
Rainbow Trout

We evaluated whether VHSV could induce both autophagy- and antigen-presentation-related
genes in vivo by using RBCs from VHSV-challenged and mock-infected rainbow trout. We used tissue
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samples from the spleen and head kidney, as well as total blood and Ficoll-purified RBC samples,
from VHSV-challenged and mock-infected rainbow trout to quantify NVHSV gene transcripts by
RT-qPCR. RBCs from challenged rainbow trout showed lower levels of NVHSV in comparison with
total blood, spleen, and head kidney samples (Figure 7a). We also analyzed ubiquitination of proteins
in RBCs from VHSV-challenged and mock-infected rainbow trout and we did not observe an increase
in ubiquitinated proteins at 2 days post challenge (dpc) (Figure 7b,c), in contrast to ex vivo experiments.
We analyzed the expression of a set of genes related to autophagy, E3 ubiquitin ligase component, and
antigen presentation in RBCs from VHSV-challenged rainbow trout after 1 and 2 dpc by RT-qPCR.
The expression of autophagy-related genes gabarap and pik3c3 was significantly up-regulated at 1 dpc.
However, only pik3c3 gene expression was observed up-regulated at 2 dpc. On the other hand, atg4b
and becn1 genes were down-regulated at 1 and 2 dpc. ulk1 gene expression was also down-regulated at
2 dpc (Figure 7d). For E3 ubiquitin ligase components, cul3 and keap1 expression was significantly
increased at 1 and 2 dpc, respectively (Figure 7d). For antigen presentation-related genes, mhcI and
cd83 were highly up-regulated in RBCs from VHSV-challenged rainbow trout at 1 and 2 dpc, while
cd86 was significantly down-regulated at 1 dpc. mhcII gene expression showed a tendency to increase
at 1 dpc, but not significantly (Figure 7d).

 
(a) (b) 

 
(c) 

Figure 7. Cont.
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(d) 

Figure 7. VHSV induced autophagy, E3 ubiquitin ligase components, and antigen presentation genes
expression in RBCs from VHSV-challenged rainbow trout. (a) Quantification of NVHSV in head
kidney, spleen, blood, and purified RBC samples from challenged rainbow trout 2 dpc. Data represent
mean ± SD (n = 7). A Kruskal-Wallis with Dunn´s multiple comparisons test was performed to test
statistical significance. (b) Western blot of ubiquitin in RBCs from mock and VHSV-challenged rainbow
trout at 2 dpc. α-actin was used as a loading control. Samples from 2 individuals were loaded for
each condition. (c) Densitometry bar plot of ubiquitin lane protein content of RBCs from mock and
VHSV-challenged rainbow trout after 2 dpc. Values were normalized to α-actin. Data represent
mean ± SD (n = 2). Mann-Whitney test was used to test statistical differences. (d) Gene expression
values of the autophagy-related genes atg4b, ulk1, becn1, gabarap, and pik3c3; E3 ligase component genes
cul3 and keap1; and antigen presentation genes mhcI, mhcII, cd83, and cd86 measured by RT-qPCR in
RBCs from mock (gray) and VHSV-challenged (red) rainbow trout at 1 dpc (no pattern) and 2 dpc
(striped pattern). Data represent mean ± SD (n = 6). A Mann-Whitney test was performed to test
statistical significances between RBCs from mock and VHSV-challenged rainbow trout. Asterisks
denote statistical significance.

3.8. GVHSV Protein Peptides Colocalize with MHCI and MHCII in VHSV-Exposed Rainbow Trout RBCs

To establish a correlation between the presence of VHSV peptides from autophagy and MHCI and
MHCII molecules (the expression of which was up-regulated after VHSV exposure), we performed a
PLA between MHCI or MHCII and VHSV using the DuoLink kit. At 24 hpe, RBCs were stained using
a rabbit polyclonal antibody against GVHSV and a mouse monoclonal antibody against MHCI or
MHCII. We observed an increase in the percentage of positive cells in VHSV-exposed RBCs in contrast
to unexposed RBCs (Figure 8a). A representative positive colocalization is shown in Figure 8b.
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(a) 

(b) 

Figure 8. GVHSV protein peptides colocalize with MHCI and MHCII in VHSV-exposed rainbow trout
RBCs. (a) Percentages of positive RBCs in MHCI – GVHSV and MHCII – GVHSV interaction under
unexposed and VHSV-exposed conditions. Rabbit serum was used to test unspecific interaction with
mouse anti-MHCI and anti-MHCII antibodies in VHSV-exposed RBCs. Data represent percentage
of positives RBCs counted by IN Cell Developer software using an algorithm to detect fluorescent
events in RBCs (n = 2 individuals, 8 fields were analyzed in each slide). A Kruskal-Wallis with
Dunn´s multiple comparisons test was performed to test statistical significances between all the
conditions. (b) Representative microscopy images of Duolink PLA for MHCI or MHCII and GVHSV in
VHSV-exposed RBCs. Positive RBCs for the PLA are indicated with white arrows. Asterisks denote
statistical significance.

4. Discussion

In this study, we have demonstrated that autophagy is implicated in the clearance of VHSV virions
in nucleated rainbow trout RBCs, a cell whose main known function has been oxygen transportation.
While previous studies have identified virus-related autophagy in teleost RBCs [16] and have localized
the expression of MHCI molecules to the surface of nucleated RBCs [30], even in different vertebrate
species [56], our results provide the first evidence of nucleated RBCs up-regulating APC markers in
the context of a viral infection. Our findings suggest that RBCs could potentially play a new role in
which autophagy is involved in viral protein degradation and the generated peptides are coupled to
MHC molecules. A graphical summary of this process is shown in Figure 9.
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Figure 9. Proposed schematic representation of processes involved in VHSV degradation and antigen
processing in rainbow trout nucleated RBCs. VHSV cell entry is mediated by endosome acidification,
which leads to membrane fusion and thus release of the capsid. RBC transcription of autophagy genes
and components of the E3 ubiquitin ligase then starts and intracellular proteins are ubiquitinated to be
marked for degradation. The low proteasome activity induced as a consequence of the VHSV proteins
presence leads to the accumulation of ubiquitinated proteins that are suggested to be degraded in the
autophagosome. Finally, peptides from this process can be coupled into MHC molecules that are later
transported to the membrane to potentially participate in the antigen presentation process.

Transcriptomic analysis of RBCs at four hours after VHSV exposure showed up-regulation
of cul3, keap1, psma6, and psmb5 genes from the antigen-processing category. cul3 and keap1 are
components of the E3 ubiquitin ligase complex involved in the ubiquitination of proteins targeted for
proteasome degradation [57], and psma6 and psmb5 are part of proteasome complexes. In the MHCI
presentation pathway, our analysis identified canx, which is involved in the assembly of MHCI [58];
sec13, whose expression correlates with the expression of MHCI [58]; and ikbkb. These results correlated
with the increase in ubiquitinated proteins induced by VHSV as detected by western blot. Different
viruses have been reported to induce ubiquitination. This effect was observed with West Nile Virus;
its capsid protein was ubiquitinated by Makorin ring finger 1 protein and later sent for proteasome
degradation [59]. Ubiquitination was also reported for the core protein of human hepatitis C virus [60]
and turnip yellow mosaic virus [61]. However, our results also showed lower proteasome activity,
which could be due in part to the accumulation of ubiquitinated proteins in VHSV-exposed RBCs.
Proteasome activity has been reported to favor the replication of different viruses [62,63], and it has
been found to prevent viral replication [64]. In contrast, proteasome activity did not seem to play a
role in VHSV degradation in our study.

Increased autophagy activity was demonstrated both at the transcriptional and translational
levels in VHSV-exposed RBCs. Several studies have shown a protective role of autophagy against
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different viruses, including dengue [65], sindbis [66], vesicular stomatitis virus (VSV) [67], and
VHSV [14]. Our results demonstrated that VHSV exposure induced autophagy in rainbow trout
RBCs; this prevented VHSV infection, as shown by p62 degradation and the results observed when
VHSV-exposed RBCs were treated with niclosamide, which led to the accumulation of both p62 and
VHSV. p62 accumulation suggested that autophagosome degradation was blocked in RBCs. We also
observed an increase in intracellular VHSV. Therefore, autophagy may be a mechanism involved in
VHSV degradation. We previously reported that the N:G gene expression ratio in RBCs exposed
to VHSV was lower than commonly reported ratio levels [7], indicating that VHSV replication in
RBCs was inhibited early after VHSV exposure. VHSV starts replication of the N gene within the first
6 hpe in RBCs in the permissive cell line RTG2 [7], so all processes aiming to inhibit VHSV infection
in RBCs should occur during this time. Our results correlated with this report, since there was an
early transcriptional response of autophagy-related genes together with p62 degradation at 6 hpe.
p62 has been described to be the link between autophagy and the UPS [68,69], since autophagosome
degradation of ubiquitinated proteins has been already reported [70], and p62 itself undergoes
degradation upon autophagy activation. Moreover, some studies have reported a direct interaction
between p62 and different viruses [66] or bacteria [71]. Our results showed a decrease in p62 levels
that later recovered [72], suggesting that p62 may act as an adaptor protein that targeted VHSV for
autophagic degradation, although this cannot be confirmed because we have not observed interaction
between p62 and VHSV proteins. In this sense, other ubiquitin-binding autophagy mediators such as
NRB1, NDP52 and optineurin [73] could be evaluated in the future.

RBCs exhibited an APC-like profile with MHCII, CD86, and CD83 endogenous expression.
CD86 and CD83 are known costimulatory cell surface markers of APC maturation [74] and are
involved in the regulation of different immune processes, such as lymphocytes proliferation and
activation [75]. The presence of MHCII with the costimulatory molecules CD83 and CD86 suggests
a more professionalized APC profile for RBCs, since MHCI has been reported to be expressed in
almost all nucleated cells [76]. Our results showed modulation in the expression of MHCI, MHCII,
CD83, and CD86 proteins when RBCs were exposed to VHSV. Antigen presentation via MHCI is
normally associated with peptides derived from UPS, but recent reports have shown a contribution of
autophagy to antigen presentation via MHCI molecules [77]. On the other hand, autophagy is the
main source of peptides for MHCII molecules [78]. Moreover, we showed that antigen presentation
via MHCI and MHCII potentially could be functional, because peptides from GVHSV colocalized
with MHC molecules. Recently, it has been reported that different cell types called atypical APCs,
such as neutrophils [79] or lymph node stromal cells [80] could be involved in antigen presentation,
supporting the hypothesis that these atypical APCs could play an important role in various immune
processes apart from antigen presentation [34]. However, to properly classify teleost RBCs as a typical
APC, studies are needed to test their ability to activate naïve T cells, as this is main difference between
atypical and typical APCs [34].

The results obtained from ex vivo RBCs culture experiments were partially corroborated under an
in vivo scenario. RBCs from VHSV-challenged rainbow trout showed lower NVHSV transcript load
compared to other tissues, similar to VHSV halted infection in ex vivo RBCs cultures [7]. We observed
the expression of autophagy genes early after VHSV challenge, similar to the kinetics observed in
ex vivo RBCs exposed to VHSV. In addition, we observed up-regulation of cul3 at 1 dpc followed by
keap1 up-regulation at 2 dpc, just as we observed in ex vivo time-course experiments. In vivo results
showed up-regulation of mhcI, mhcII, cd83, and cd86 in RBCs from challenged rainbow trout, which
correlated with their increased expression observed in ex vivo RBCs exposed to VHSV. In contrast,
lack of ubiquitination was observed in RBCs from VHSV-challenged rainbow trout.

In summary, after VHSV cell entry into RBCs, the transcription of autophagy genes and components
of the E3 ubiquitin ligase started. The low proteasome activity that was induced as a consequence of
the presence of VHSV led to the accumulation of ubiquitinated proteins. Finally, peptides from this
process could be coupled into intracellular MHC molecules that would be later transported to the
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membrane to potentially participate in the antigen presentation process. Further studies are being
performed to fully describe the potential functional APC role in nucleated teleost RBCs to ascertain
how MHC molecules participate or are implicated in the presentation of degraded viral antigens in
nucleated RBCs. Given that RBCs are the most abundant cell type in the blood, this new knowledge
will shed light on the design of novel vaccine targets. Potential applications of these results could
imply that RBCs, which can be transfected and induce immune gene expression [32], are target of new
strategies for vaccination.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/5/386/s1.
Figure S1: Anti-MHCI zebrafish antibody labeling in rainbow trout. (a) Western blot of anti-MHCI in rainbow
trout RTS11 monocyte/macrophage-like cell line and Ficoll-purified red blood cells (RBCs). Black arrow indicates
a protein band around 45 kDa marker. (b) Immunofluorescence of anti-MHCI in rainbow trout RBCs. Figure
S2: Anti-p62/SQSTM1 zebrafish antibody labeling in rainbow trout. (a) Western blot of anti-p62/SQSTM1 in
rainbow trout RBCs. Black arrow indicates a protein band under 63 kDa marker. (b) Immunofluorescence of
anti-p62 in VHSV-exposed rainbow trout RBCs. White arrow indicates vesicle-like dots. Figure S3: Protein
expression of MHCII, CD83, and CD86 in rainbow trout head kidney (HK) and RBCs, by means of western blot.
HK samples were used as positive control of expression. Figure S4. Validation of RNA-Seq study by RT-qPCR
representing fold change of cul3, psmb5, keap1, sec13, ikbkb, rab7, and traf6 genes in the transcriptomic analysis of
VHSV-exposed RBCs at 4 and 72 hpe. Gene expression values were calculated with normalization to unexposed
RBCs. Data represent the mean ± SD (n = 4). Mann-Whitney test was used to test statistical significances between
VHSV-exposed and unexposed RBCs. Figure S5: Venn diagram of the common omics products identified by
transcriptomics at 4 and 72 h post-exposure and proteomics at 72 h post-exposure. Figure S6: Gated population
of RBCs used for flow cytometry analysis. Figure S7. Time-course expression of the autophagy-related genes
beclin1, ulk1, and gabarap at 0, 3, 6, 24, 48, and 72 hpe from unexposed and VHSV-exposed (MOI 1) RBCs. Data
represent the mean ± SD (n = 5) relative to control cells (black dotted line). A Two-way ANOVA with Sidak´s
multiple comparisons test was performed to test statistical significance between unexposed and VHSV-exposed
RBCs at each time point. Table S1: GO Terms identified in VHSV-exposed RBCs after 4 and 72 h post-exposure by
RNA-Seq. Table S2: List of significantly regulated genes after 4 and 72 h post-exposure in VHSV-exposed RBCs.
All the listed genes have an FDR lower than 0.05. Table S3: GO Terms identified in VHSV-exposed RBCs after 72 h
post-exposure by proteomic sequencing. Table S4: List of significantly regulated proteins after 72 h post-exposure
in VHSV-exposed RBCs. All the listed proteins have an FDR lower than 0.001.
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3.1. Transcriptomic analysis of PB-RBCs and HK-RBCs from VHSV-challenged rainbow 

trout reveals upregulation of genes related to the complement system and the interferon 

pathway, respectively. 
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3.2. Upregulated DEGs from overrepresented pathways were validated by RT-qPCR. 
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3.3. Proteomic analysis of PB-RBCs from VHSV-challenged rainbow trout shows 

upregulation and interaction of proteins involved in the immune response. 

199



200



P

P

3.4. Antiviral effectors were upregulated in VHSV-challenged rainbow trout RBCs. 
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Introduction
The involvement of nucleated red blood cells (RBCs) as immune response cell mediators is a

novel topic of research. RBCs are the most abundant cell type in the bloodstream and are best

known for their roles in gas exchange and respiration. In mammals, mature RBCs are flexible,

oval, biconcave disks that lack cell nuclei, organelles, and ribosomes (reviewed in Moras et al.

2017 [1]). In nonmammalian vertebrates, RBCs are oval, flattened, biconvex disks with a cyto-

skeleton composed of a marginal band of microtubules and a cell nucleus and organelles in

their cytoplasm [2], which allow them to de novo synthesize proteins and molecules in response

to stress and stimuli. In the recent past, a set of biological processes related to immunity–such

as phagocytosis [3], antigen presentation [3], and interleukin-like production [4–7]–have been

reported in nucleated RBCs from different species. However, elucidating the role of RBCs dur-

ing viral infections is an emergent research topic of great interest. Here, we provide a brief over-

view of the novel role of nucleated RBCs against viral infections.

Viral pathogen-associated molecular patterns (PAMPs) induce pattern-
recognition receptor (PRR) signaling in nucleated RBCs

Nucleated RBCs are implicated in the immune response to viral infections based on their

response to viral PAMPs through various PRR signaling pathways. Among these receptors, the

expression of Toll-like receptor 3 (TLR3) and TLR9–which are endosomal TLRs that recognize

viral double-stranded RNA (dsRNA) and nonmethylated viral 5’-C-phosphate-G-3’ (CpG)-con-

taining DNA, respectively–and retinoic acid-inducible gene I (RIG-I)–a member of the RIG-I-

like receptor (RLR) family that interacts intracellularly with viral dsRNA–have been reported in

rainbow trout RBCs [5, 8] and Atlantic salmon [9], respectively. Chicken RBCs constitutively

express tlr3 and tlr21, which is a homolog of mammalian TLR9 [5, 10]. Stimulation of these

receptors with their corresponding PAMPs leads to the activation of signaling networks that

induce the transcription of a set of genes, resulting in a characteristic immune response.

The activation of these receptors by viral pathogens induces expression of the interferon

system [11, 12]. Stimulation of rainbow trout RBCs with polyinosinic:polycytidylic acid (poly

I:C, a molecule structurally similar to dsRNA) induces the de novo synthesis of mRNAs from

immune genes such as chemokine (C-C motif) ligand 4 (ccl4), interferon- (ifn- ), and myxo-

virus resistance gene (mx) [5]; and in chickens, RBCs respond to poly I:C by upregulating type

I IFN (ifn1) and interleukin-8 (il-8) genes [10]. Moreover, the infectious pancreatic necrosis

virus (IPNV)–a dsRNA virus–has been reported to stimulate the expression of tlr3, ifn1 and
mx genes [13]. The piscine orthoreovirus (PRV) also increases the expression of rig-I,mx, and
ifn- genes in Atlantic salmon RBCs [6].
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The roles that other members of the RLR family, such as melanoma differentiation-associ-

ated protein 5 (MDA5) or probable ATP-dependent RNA helicase DExH-box helicase 58

(LGP2), assume in RBCs are still unknown. In addition, we still do not know if RBCs express

other PRRs that recognize viral genomic RNA, such as TLR7 or TLR8. While IFN1 is thought

to play a similar role in mammalian and nonmammalian species and induce similar sets of

genes [14], the extent of nucleated RBCs’ involvement in the global organism IFN1 response

and how RBCs’ involvement influences defense against viral infections remain to be defined.

Nucleated RBCs may be capable of inducing an adaptive immune response

Nucleated RBCs are linked to the adaptive immune response. Major histocompatibility com-

plex I (MHCI) plays a key role in the antigen presentation of intracellular pathogens, which

initiates adaptive immunity mechanisms. MHCI is expressed on the surface of RBCs from

rainbow trout [15], Atlantic salmon [6], African clawed frogs [16], and chickens [17]. How-

ever, to date, it has only been reported that PRV infection induces genes involved in antigen

presentation via MHCI in salmon RBCs [6] and that poly I:C upregulates gene ontology (GO)

categories related to antigen processing, antigen presentation, and MHCI receptor activity in

rainbow trout RBCs [18].

Molecules bearing the immunoreceptor tyrosine-based activation motif (ITAM), which is

contained in certain transmembrane proteins of the immune system and is important for sig-

nal transduction in immune cells, are known markers of hematopoietic and immune cells

[19]. ITAM-bearing molecules are expressed on rainbow trout RBCs [20]. Further, Epstein–

Barr virus G-protein-coupled receptor 2 (EBI2) plays a critical role in the regulation of T cell–

dependent antibody responses and provides a mechanism to balance short- versus long-term

antibody responses [21]. EBI2 is highly expressed in rainbow trout young RBCs [22]. The pres-

ence of these molecules in nucleated RBCs may indicate a role of these cells in the adaptive

immune response. However, the function of these molecules on RBCs and their effect on the

antiviral adaptive immune response remain to be studied.

Nucleated RBCs trigger diverse immune responses against viral aggression

Three viruses from different families that infect or replicate inside nucleated RBCs have been

identified: (i) infectious salmonid anemia virus (ISAV) from the Orthomyxoviridae family

with single-stranded RNA (ssRNA) [7], (ii) PRV from the Reoviridae family with dsRNA [6,

23], and (iii) erythrocytic viral infections, reviewed in Paperna and Alves de Matos [24]. Fig 1

schematically summarizes the response of nucleated RBCs to these viruses. Unfortunately,

information on the immune response of RBCs to erythrocytic viral infections is not available.

A study of nucleated RBCs from ISAV-infected Atlantic salmon first demonstrated the abil-

ity of RBCs to induce an immunological response against a viral pathogen. This response was

characterized by the induction of ifn- in hemagglutinated RBCs [7]. Recently, it has been

shown that PRV also can induce the expression of ifn- –in addition tomx, protein kinase

RNA-activated (pkr) [6], viperin, and interferon-stimulated gene 15 (isg15) [25] antiviral
genes–in PRV-challenged Atlantic salmon RBCs.

Recently, Nombela and colleagues demonstrated that nucleated RBCs can generate immune

responses to viruses despite not being infected. Rainbow trout RBCs are nonpermissive to viral

hemorrhagic septicemia virus (VHSV) [26] and infectious pancreatic necrosis virus (IPNV)

infections [13], likely due to the inability of VHSV and IPNV to replicate in ex vivo purified

rainbow trout RBCs. This phenomenon is known as nonproductive or abortive infection in

nonpermissive cells and occurs when a virus enters a host cell and some or all viral compo-

nents are synthesized but nonproductive or defective viruses are ultimately released because
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the host cell is nonpermissive or inhibits the replication of the virus. Previously, abortive infec-

tion in a macrophage cell line was linked with the constitutive expression of the antiviral Mx

protein by macrophages [27]. Similarly, high levels of constitutive Mx transcripts and protein

have been identified in rainbow trout RBCs (Fig 2), suggesting a possible mechanism for

aborted or halted infections in RBCs [13, 26]. Nevertheless, rainbow trout RBCs can develop

diverse immune responses to VHSV halted replication, a process characterized by global pro-

teome downregulation–mainly of proteins from the proteasome and RNA stability processes–

increased expression of IL-8 and -defensin 1, decreased expression of genes related to the

IFN1 pathway, and an antioxidant response [13]. In the case of IPNV aborted infection in rain-

bow trout RBCs, there was an increase in the expression of ifn1,mx, interferon regulatory fac-

tor 7 (irf7), and pkr genes, followed by upregulation of Mx protein expression [13]

(summarized in Fig 1).

Considering their ability to produce immune proteins related to interferon, pro-inflamma-

tory cytokines, antimicrobial peptides, proteasome [26], and autophagy [28] pathways, nucle-

ated RBCs likely are able to trigger an immune response similar to that of their leukocyte

counterparts by activating diverse immune mechanisms to complement the protection against

infection conferred to the host organism.

Fig 1. Schematic representation of teleost nucleated RBC immune responses against different infective (target:
RBCs) or noninfective (target: other cell types) viral pathogens. ifn- , interferon- ; IL-8, interleukin-8; isg15,
interferon-stimulated gene 15;mx, myxovirus resistance gene; pkr, protein kinase RNA-activated; RBC, red blood cell.

https://doi.org/10.1371/journal.ppat.1006910.g001

Fig 2. Constitutive expression of Mx antiviral protein in rainbow trout nucleated RBCs. Immunofluorescence
images of Mx protein expression in nucleated RBCs. FITC: Mx protein expression; DAPI: nuclei. Images were
obtained using an INCell Analyzer 6000 Cell imaging system (GE Healthcare, Little Chalfont, United Kingdom).
DAPI, 4’,6-diamidino-2-phenylindole; FITC, Fluorescein-5-isothiocyanate; Mx, myxovirus resistance gene; RBC, red
blood cells.

https://doi.org/10.1371/journal.ppat.1006910.g002
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Nucleated RBCs can mount immune responses against nonviral pathogens

The RBCs of mammalian and nonmammalian vertebrates are hosts for approximately 40 genera,

including protists, prokaryotes, and viruses [18, 29]. Few blood infections of fish, amphibians,

reptiles, and birds have proven pathogenicity, in contrast to the many known intraerythrocytic

mammalian pathogens [29]. To date, few studies have reported diverse immune responses of

nucleated RBCs to this broad spectrum of pathogens.

As previously described, the immune response against viruses is generally associated with

the expression of IFN1 and ISGs. In response to bacterial lipopolysaccharide (LPS), rainbow

trout RBCs upregulate the expression of tumor necrosis factor receptor-like (tnfr-like), oxida-
tive-stress response 1 (oxsr1), irf1, andmhcI genes. Several reports have shown that hemoglo-

bin, the most abundant protein of RBCs, has antibacterial activity and can elicit antimicrobial

activity through reactive oxygen species production when under pathogen attack [30]. In rain-

bow trout, acid-soluble extracts from RBCs showed antibacterial activity against a variety of

bacteria, including Planococcus citreus and Escherichia coli [31]. In the presence of the fungus

Candida albicans, rainbow trout [3], and chickens [4], RBCs performed innate immunity func-

tions, using phagocytosis to bind and engulf C. albicans and present to macrophages. Ulti-

mately, little is known regarding the immune response triggered by nucleated RBCs against

the broad range of pathogens that infect them.

Nucleated RBCs are future targets for vaccines

Human non-nucleated RBCs have long been investigated for the transportation of drugs or

antigens through the blood [32, 33]. Proteomic studies of human [34] and nonhuman primate

species [35] aim to further characterize the biology of human RBCs and identify future targets

for newer-generation vaccines, especially against malaria. Because of the ability of nucleated

RBCs to generate and modulate immune responses, development of a new generation of vac-

cines targeting membrane receptors or intracellular molecules of nucleated RBCs capable of

triggering and stimulating the antiviral immune response is a promising and exciting field.

Such vaccines may contribute greatly to organism survival, given the large volume of RBCs

and their fast distribution through the organism. However, additional proteomic studies of

nucleated RBCs are needed to identify potential therapeutic targets.
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