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Abstract
Bounded additive models in data envelopment analysis (DEA) under the assumption
of constant returns to scale (CRS) were recently introduced in the literature (Cooper
et al. in J Product Anal 35(2):85–94, 2011; Pastor et al. in J Product Anal 40:285–292,
2013; Pastor et al. in Omega 56:16–24, 2015). In this paper, we propose to extend the
so far generated knowledge about bounded additive models to the family of directional
distance function (DDF) models in DEA, giving rise to a completely new subfamily of
bounded or partially-bounded CRS-DDF models. We finally check the new approach
on a real agricultural panel data set estimating efficiency and productivity change over
time, resorting to the Luenberger indicator in a context where at least one variable is
naturally bounded.

Keywords Data envelopment analysis · Directional distance functions · Bounded or
partially-bounded DEA CRS-models

1 Introduction

Data envelopment analysis (DEA) is a non-parametric methodology based on Mathe-
matical Programming for the assessment of relative efficiency of a set of homogeneous
decisionmaking units (DMUs) that use different amounts of the same inputs to produce
different amounts of the same outputs. DEA models generally provide efficiency—or
inefficiency—measures for each of the assessed DMUs as well as information on the
targets that have been used in the efficiency assessment in the case of inefficientDMUs.
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In recent times, DEA has grown into a powerful quantitative tool for measuring and
evaluating performance. In fact, this technique has been successfully applied to a mul-
titude of different entities engaged in a wide variety of activities: banking, health care,
education, sports, agriculture, manufacturing and so on (see Liu et al. 2013; Toloo
et al. 2017, 2018).

Bounded additive models have been introduced quite recently in the DEA literature
(Cooper et al. 2011). The justification for defining bounded measures follows. The
usual benchmarks yielded by traditional models in DEA may exhibit properties that
are undesirable from a managerial and practical point of view. When constant returns
to scale (CRS) is assumed in the evaluation of technical efficiency, a target in an
input-oriented model can be a point that requires the usage of less input than in any
of the given observations. Similarly, in output-oriented models, the target point may
require the production of more output than what is currently observed in the data set.
Additionally, in a non-orientedmodel, a targetmayneed one of these two requirements.
Such input and output targets, which result from the extrapolation outside of the
observed data set under the CRS assumption, may be inappropriate or undesirable in
some situations. One potential problem is the lack of empirical evidence to support
the feasibility of these points, e.g., when the sample matches up the whole population.
Another potential problem may arise if there are natural upper bounds for the variable
values, for instance in the case of ratio variables (see, e.g., Olesen et al. 2015), or
percentages (e.g., unemployment rate as a percentage of the work force). Indeed,
if we use ratio variables and/or variables expressed in terms of percentages, it may
also be desirable to specifically only allow CRS when the nature of these variables
implies that the size effect of the units being assessed has been removed. In this way,
bounded additive models were introduced in order to deal with naturally lower and
upper bounded inputs and outputs, while working within a CRS context at the same
time.

Since their inception, the bounded additive models have been applied to several
sectors and situations. Chronologically speaking, Vidal et al. (2013) estimated pro-
ductivity change over time in the Spanish wine sector. Vidal et al. (2014) applied these
models to measure the evolution of technical efficiency of a set of Spanish virgin olive
oil Designations of Origin. Pastor et al. (2014) studied the effectiveness of tourism
websites in Mediterranean countries by applying bounded models. More recently,
Rashidi and Saen (2015) have developed and checked a bounded additive measure
based on green indicators in order to calculate eco-efficiency.

Bounded DEA models were introduced in Cooper et al. (2011), as we have already
mentioned, and extended in Pastor et al. (2013, 2015). Their origin was a direct con-
sequence of the introduction of a weighted additive model under Variable Returns
to Scale (VRS) with a new structure of weights, which was named BAM (Bounded
Adjusted Measure; Cooper et al. 2011). This model was designed in order to achieve
a new efficiency measure, so as to improve the discriminatory power of the previ-
ous defined Range Adjusted Measure (RAM; Cooper et al. 1999). In the above first
mentioned paper the extension of the BAM model assuming any returns to scale
was proposed, and, particularly, the CRS-BAM model was formulated. Its formula-
tion was similar to the BAM model working under VRS, with a basic difference,
besides the usual deletion of the convexity constraint, input-lower range bound and
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output-upper range bound restrictions had to be added to the corresponding linear
programming model. The new added constraints guaranteed that the projection of the
point being rated belonged to an associated bounded production possibility set under
CRS. This was the first bounded DEA model proposed in the specialized literature.
Its formulation was refined by Pastor et al. (2013) adding a set of “point-slacks” to
each projection which proved to be critical for obtaining the characterization of the
Pareto-efficient points of the bounded technology. Very recently, Pastor et al. (2015)
created the Enhanced BAM (EBAM) under CRS, introducing a new set of bounds,
identified as “comprehensive-bounds”, which have the property of maintaining the
original CRS efficient projections as points of the corresponding bounded technology.
Moreover, and when certain inputs and/or outputs have natural lower and/or upper
bounds, these authors introduced the so called CRS partially-bounded weighted addi-
tive model, which also gave rise to two possible efficiency measures, the BAM under
CRS and the EBAM under CRS for partially-bounded additive models. The first one
adds to the non-bounded variables their corresponding range-bounds, while the second
one considers comprehensive bounds instead.

All the aforementioned boundedmodels were introduced considering, at each point
being rated, the maximization of a weighted L1-path towards the Pareto-efficient fron-
tier. In this sense, what we propose in this paper is to extend the notion of bounded
CRS weighted additive model to other types of well-known CRS-DEA models where
the path towards the frontier is directional, that is, it follows the direction of a pre-
specified vector, and Pareto-efficiency is not required. Moreover, instead of generating
an efficiency measure, the new model under consideration generates an inefficiency
measure. Being more specific, we are going to focus our attention on the directional
distance function (DDF)model,which is one of themostwidely usedDEA inefficiency
models. Our purpose is to introduce the theoretical tools that will allow us to consider
CRS-DDF models with at least one of its inputs—or outputs—lower-bounded—or
upper bounded. One of the potential uses of the new DDF model is its application to
the field of efficiency and/or productivity measurement over time when one or more
of the variables are ratios or are expressed as percentages.

The productivity analysis offers two different ways of measuring productivity
change over time, namely Malmquist indexes or Luenberger indicators. The latter
were designed for dealing with DDFs, or, in a more open context, for dealing with
additive inefficiency measures. In any case, the specialized literature for estimating
productivity change over time recommends using constant returns to scale models (see
Grifell-Tatjé and Lovell 1995; Ray and Desli 1997; Balk 2001; Lovell 2003; Kapelko
et al. 2015). However, a priori this assumption cannot be combined with, for example,
percentage variables, since in this case, the obtained projections could be greater than
100. In this respect, we introduce the necessary tools for mixing CRS and this type of
inputs and outputs, defining the appropriate CRS-bounded DDF model and showing
how it can be utilized for measuring productivity change through the corresponding
Luenberger indicator.

The paper unfolds as follows. In Sect. 2 we revise the main definitions and results
associatedwith bounded additivemodels. The boundedCRS-DDFmodel is introduced
in Sect. 3, while Sect. 4 is devoted to introducing the partially-bounded CRS-DDF
model. Section 5 considers the well-known Luenberger indicator for measuring pro-
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ductivity change based on the new partially bounded—or bounded—DDF models,
showing its decomposition into efficiency change and technical change. Section 6
presents an illustrative empirical example and, finally, Sect. 7 concludes.

2 A revision of the bounded additive models

In this section, we revise the basic definitions and results linked to the bounded additive
models (see Cooper et al. 2011; Pastor et al. 2013, 2015). They will be called upon
later in the text.

The typical formulation of a DEA model that measures inefficiency corresponds
to a linear program that evaluates the technical inefficiency of a fixed unit selected
among a finite sample of units. The finite sample of units defines T , the production
possibility set.

Let us consider the sample of n units to be evaluated. Unit j ∈ {1, 2, . . . , n} uses a
specific amount ofm inputs, x j � (

x1 j , . . . , xmj
) ∈ Rm

++, to produce a certain amount
of s outputs y j � (

y1 j , . . . , ys j
) ∈ Rs

++. If we assume that the technology satisfies
CRS, the definition of T follows (see Charnes et al. 1978).

T �
⎧
⎨

⎩
(x, y) ∈ Rm+s

+ :
n∑

j�1

λ j xi j ≤ xi , ∀i,
n∑

j�1

λ j yr j ≥ yr , ∀r , λ j ≥ 0, ∀ j

⎫
⎬

⎭
.

(1)

Let us introduce some additional notation. Let x−i
≤ xi , i � 1, . . . ,m, be a lower

bound for each input i and ȳr ≥ yr , r � 1, . . . , s, be an upper bound for each output
r. Now, under CRS, we define the bounded technology, T B , as follows:

T B �
⎧
⎨

⎩
(x, y) ∈ Rm+s

+ : (x, − y) ≥
n∑

j�1

λ j

(
x j , − y j

)
, λ j ≥ 0, ∀ j ; xi ≥ x−i

, ∀i ; yr ≤ ȳr , ∀r
⎫
⎬

⎭
.

(2)

By definition, the bounded technology (2) is the result of adding lower bounds for
inputs and upper bounds for outputs to the original (unbounded) technology (1). Let
us observe that upper bounds for inputs or lower bounds for outputs are superfluous
because the projection of an inefficient point towards the efficient frontier in any DEA
model either reduces inputs or increases outputs or both.

Additionally, the weakly efficient frontier of T B is defined as

∂w
(
T B

)
:�

{
(x, y) ∈ T B : x̂ < x, ŷ > y ⇒ (

x̂, ŷ
)

/∈ T B
}
. (3)

Following Koopmans (1951), in order to measure technical efficiency in the Pareto
sense, isolating a certain subset of ∂w

(
T B

)
is necessary.We are referring to the strongly

efficient frontier, defined as

∂s
(
T B

)
:�

{
(x, y) ∈ T B : x̂ ≤ x, ŷ ≥ y ,

(
x̂, ŷ

) �� (x, y) ⇒ (
x̂, ŷ

)
/∈ T B

}
. (4)
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In words, ∂s
(
T B

)
is the set of all the Pareto-Koopmans efficient points of T B .

The next proposition characterizes the set of points of the bounded technology T B

(Pastor et al. 2013), resorting in this case to the set of Pareto-efficient DMUs, denoted
as E.

Proposition 1 (Pastor et al. 2013) The bounded technology, T B, can be equivalently
rewritten as

T B �
⎧
⎨

⎩
(x, y) ∈ Rm

+ × Rs
+ : (x, − y) ≥

∑

j∈E
λ j (x j , − y j ); λ j ≥ 0, ∀ j ; xi ≥ x−i

, ∀i ; yr ≤ ȳr , ∀r
⎫
⎬

⎭
.

(5)

Let us nowadditionally introduce the formulation of input and output range-bounds.
For any input i its lower range-bound is defined as x−

R

i
min

{
xi j , j � 1, . . . , n

}
, while

for each output r its upper range-bound is defined as ȳ Rr � max
{
yr j , j � 1, . . . , n

}
.

These (side-) bounds are crucial for defining the CRS version of the BoundedAdjusted
Measure of inefficiency. Its formulation follows (see Pastor et al. 2013, p. 288).

BAM
(
xk, yk

) � Max 1
m+s

(
m∑

i�1

s−ik
xik−x−R

i

+
s∑

r�1

s+rk
ȳ Rr −yrk

)
(6.1)

s.t .∑

j∈E
λ j xi j + τ−

ik � xik − s−
ik, i � 1, . . . ,m (6.2)

∑

j∈E
λ j yr j − τ+rk � yrk + s+rk r � 1, . . . , s (6.3)

∑

j∈E
λ j xi j + τ−

ik ≥ x−
R

i
, i � 1, . . . ,m (6.4)

∑

j∈E
λ j yr j − τ+rk ≤ ȳ Rr , r � 1, . . . , s (6.5)

λ j ≥ 0, j ∈ E (6.6)
s−
ik ≥ 0, i � 1, . . . ,m (6.7)
s+rk ≥ 0 r � 1, . . . , s (6.8)
τ−
ik ≥ 0, i � 1, . . . ,m (6.9)

τ+rk ≥ 0, r � 1, . . . , s (6.10)

(6)

Model (6) can be simplified and is equivalent to the next model (7) thanks to (6.9)
and (6.10) and the maximization criterion, deleting in this way the second set of point-
slacks of (6), which in general are relevant for identifying the strongly efficient points
of the bounded technology. In what follows the last mentioned identification plays a
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minor role, because when dealing with bounded DDFs the projections belong to the
weakly efficient frontier and, in general, not to the strongly efficient frontier.

BAM
(
xk, yk

) � Max 1
m+s

(
m∑

i�1

s−ik
xik−x−R

i

+
s∑

r�1

s+rk
ȳ Rr −yrk

)
(7.1)

s.t .∑

j∈E
λ j xi j ≤ xik − s−

ik, i � 1, . . . ,m (7.2)
∑

j∈E
λ j yr j ≥ yrk + s+rk r � 1, . . . , s (7.3)

xik − s−
ik ≥ x−

R

i
, i � 1, . . . ,m (7.4)

yrk + s+rk ≤ ȳ Rr , r � 1, . . . , s (7.5)
λ j ≥ 0, j ∈ E (7.6)
s−
ik ≥ 0, i � 1, . . . ,m (7.7)
s+rk ≥ 0, r � 1, . . . , s (7.8)

(7)

Constraints (7.4) and (7.5) guarantee that the projection of point
(
xk, yk

)
, as given

by
(
xk − s−∗

k , yk + s+∗
k

)
, belongs to the bounded production possibility set T B with

xi � x Ri , ∀i and ȳr � ȳ Rr , ∀r . Indeed, it can be proved that these targets belong
to the strongly efficient frontier of T B (see Pastor et al. 2013), as the next proposition
states.

Proposition 2 (Pastor et al. 2013) Let
(
λ∗, s−∗, s+∗) be an optimal solution of (7).

Then,
(
xk − s−∗

k , yk + s+∗
k

) ∈ ∂s
(
T B

)
.

Regarding the properties satisfied by BAM, we show the following result.

Proposition 3 (Cooper et al. 2011) The Bounded Adjusted Measure of inefficiency
meets the following properties.

(a) 0 ≤ BAM
(
xk, yk

) ≤ 1.

(b) BAM
(
xk, yk

) � 0 if and only if
(
xk, yk

) ∈ ∂s
(
T B

)
.

(c) BAM
(
xk, yk

)
is weakly monotonic.

(d) BAM
(
xk, yk

)
is units invariant.

3 The CRS bounded DDFmodel

In this section, we extend the notion of bounded models, first introduced in connection
with weighted additive models, to directional distance function models in DEA, defin-
ing the Bounded CRS-DDFmodel. Additionally, we prove some interesting properties
for this new inefficiency measure.

First of all, let us formulate the definition of the directional distance function, given
a general technology T and a reference vector g � (−g I , gO ) �� 0m+s, g I ∈ Rm

+ ,
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gO ∈ Rs
+ when the rated point (x, y) belongs to T (Chambers et al. 1996a, 1998), as

follows.1

DDF
(
x, y; g I , gO

)
� max

{
β :

(
x − β g I , y + β gO

)
∈ T

}
(8)

Any DDF is identified by specifying a directional vector g � (−g I , gO ) at each
point being rated. In order to measure the inefficiency associated to a specific unit of
the finite sample, the DDF projects the unit onto the weakly efficient frontier of the
technology (not necessarily the strongly part of the efficient frontier) along the positive
semi-ray defined by vector g. Additionally, gmay be constant, i.e., g is the same vector
for all the units being rated, or g may be variable, i.e., it is a specific vector for each
unit. In the latter case and for unit

(
xk, yk

)
, we write gk instead of g. As said before,

the projection of unit
(
xk, yk

)
onto the weakly efficient frontier is the intersection of

the semi-ray
{(
xk, yk

)
+ βk(−g Ik , g

O
k ), βk ≥ 0

}
with the weakly efficient frontier.

The specific value of scalar βk that determines this point of intersection is interpreted
as the technical inefficiency of point

(
xk, yk

)
measured by the DDF. Recent details

on the DDF can be found in Briec and Kerstens (2009a, b).
By analogy with (8), the Bounded Directional Distance Function (BDDF) model

may be defined simply by substituting T by T B :

BDDF
(
x, y; g I , gO

)
� max

{
β :

(
x − β g I , y + β gO

)
∈ T B

}
. (9)

Its formulation as a linear programmingmodel under CRS follows fromProposition
1 and is similar to model (7).2

BDDFCRS
(
xk, yk ; g

I
k , g

O
k

) � Max βk (10.1)
s.t .∑

j∈E
λ jk xi j ≤ xik − βkgIki , i � 1, . . . ,m (10.2)

∑

j∈E
λ jk yr j ≥ yrk + βkgOkr , r � 1, . . . , s (10.3)

xik − βkgIki ≥ x−i
, i � 1, . . . ,m (10.4)

yrk + βkgOkr ≤ ȳr , r � 1, . . . , s (10.5)
λ jk ≥ 0, j ∈ E (10.6)
βk ≥ 0 (10.7)

(10)

1 Luenberger (1992) introduced the concept of benefit function as a representation of the amount that an
individual is willing to trade, in terms of a specific reference commodity bundle g, for the opportunity
to move from a consumption bundle to a utility threshold. Luenberger also defined a so-called shortage
function (1992, p. 242, Definition 4.1), which basically measures the amount by which a specific plan is
short of reaching the frontier of the technology. Later, Chambers et al. (1996a, 1998) redefined the benefit
function and the shortage function as the directional distance function.
2 Since we are interesting in measuring productivity, we will assume from now on CRS. The definition of
a Bounded DDF model under any other returns to scale assumption is straightforward.
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The optimal value of (10), β∗
k , is directly related to the “distance” from the rated

DMU to the weakly efficient frontier of the bounded technology T B measured along
the semi-ray defined through the corresponding directional vector.

The next proposition relates efficiency with the optimal value of (10).

Proposition 4 If BDDFCRS
(
xk, yk ; g

I
k , g

O
k

) � 0, then
(
xk, yk

) ∈ ∂w
(
T B

)
.

Proof Let us assume that BDDFCRS
(
xk, yk ; g

I
k , g

O
k

) � 0. If
(
xk, yk

)
/∈ ∂w

(
T B

)
,

then by expression (3) there exists a point
(
x̂, ŷ

)
that belongs to T B such that x̂i <

xik , ∀i , and ŷr > yrk , ∀r . Then by Proposition 1 we have that ∃λ̂ ≥ 0 so that
x̂i ≥ ∑

j∈E λ̂ j xi j , ∀i , ŷr ≤ ∑
j∈E λ̂ j yr j , ∀r , x̂i ≥ x−i

,∀i and ŷr ≤ ȳr ,∀r . As a

consequence,
(
β̂, λ̂

)
with β̂ :� min

i � 1, . . . ,m,

r � 1, . . . , s

such that

gIik, g
O
rk �� 0

{
xik−x̂i
gIik

,
ŷr−yrk
gOrk

}
, is a feasible solution

of model (10). Note, however, that β̂ > 0 since x̂i < xik , ∀i and ŷr > yrk , ∀r .
This is a contradiction because BDDFCRS

(
xk, yk ; g

I
k , g

O
k

) � 0. Therefore, point(
x̂, ŷ

)
cannot belong to T B and, applying expression (3), we conclude that

(
xk, yk

) ∈
∂w

(
T B

)
. �

The remaining properties satisfied by the Bounded CRSDirectional Distance Func-
tion, however, depend on the characteristics of the selected directional vector. In this
respect, we will go on to show two interesting properties, which correspond to prop-
erties (c) and (d) of Proposition 3.

Proposition 5 Let
(
xk, yk

) ∈ T B , gk � (−g Ik , g
O
k ) �� 0m+s, g Ik ∈ Rm

+ , gOk ∈ Rs
+ or,

alternatively, g � (−g I , gO ) �� 0m+s, g I ∈ Rm
+ , gO ∈ Rs

+. Then the Bounded CRS
Directional Distance Function defined by (10) meets the following properties.

(a) Let t− � (
t−1 , . . . , t−m

) ∈ Rm
+ and t+ � (

t+1 , . . . , t+s
) ∈ Rs

+ such that(
xk + t−, yk − t+

) ∈ T B. Then
BDDFCRS

(
xk, yk ; g

I , gO
) ≤ BDDFCRS

(
xk + t−, yk − t+; g I , gO

)
.

(b) If the components of gk and g are expressed in the units of mea-
surement of the observed data, then BDDFCRS

(
xk, yk ; g

I
k , g

O
k

)
and

BDDFCRS
(
xk, yk ; g

I , gO
)
are units invariant.

Proof (a) Let
(
β∗
k ,λ∗

k

)
be a feasible solution ofmodel (10)when

(
xk, yk

)
is assessed.

We are going to prove that
(
β∗
k ,λ∗

k

)
is a feasible solution of model (10) when(

xk + t−, yk − t+
)
is evaluated. Regarding constraint (10.2),

∑
j∈E λ∗

jk xi j ≤
xik − β∗

k g
I
i ≤ xik + t−i − β∗

k g
I
i , ∀i , and regarding constraint (10.4), xik + t−i −

β∗
k g

I
i ≥ xik − β∗

k g
I
i ≥ x−i

, ∀i . A similar statement can be proved regarding

the two output constraints, (10.3) and (10.5). In this way,
(
β∗
k ,λ∗

k

)
is a feasible

solution of model (10) when
(
xk + t−, yk − t+

)
is evaluated and, consequently,

BDDFCRS
(
xk + t−, yk − t+; g I , gO

) ≥ β∗
k � BDDFCRS

(
xk, yk ; g

I , gO
)
.
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(b) It is a direct consequence of the units invariant property of the DDF (unbounded)
models (see Färe and Grosskopf 2010, p. 321). �

Proposition 5 establishes that, the new measure is weakly monotonic in the case of
using a constant directional vector, independent of the point being rated. Moreover,
the measure is units invariant if the directional vector is expressed in the units of the
data, for example if gk � (xk, yk).

4 The partially boundedmodels

In anyDEAmodel wemay consider variables that are naturally bounded. For instance,
if a variable is expressed as a percentage and is considered as an output, the “natural”
upper bound would be 100. Additionally, if the variable is considered an input, the
upper bound does not play any role and we can ignore it. A similar statement is valid
for ratio-variables. Some inputs may have lower bounds in a production process if,
for economical or technological reasons, it makes no sense to consider a production
unit that does not consume a minimum of some of the inputs. Let us assume that only
the first m1 ≤ m inputs are lower bounded and, similarly, that only the first s1 ≤ s
outputs are upper bounded. It is straightforward to formulate the corresponding CRS
partially-bounded technology, TPB, that gives an expression similar to (5).

The formulation of the corresponding model follows.

PBDDFCRS
(
xk , yk ; g

I
k , g

O
k

) � Max βP
k (11.1)

s.t .∑

j∈E
λ jk xi j ≤ xik − βP

k gIik , i � 1, . . . ,m (11.2)
∑

j∈E
λ jk yr j ≥ yrk + βP

k gOrk , xik − βP
k gIik ≥ x−i

, r � 1, . . . , s (11.3)

xik − βP
k gIik ≥ x−i

, i � 1, . . . ,m1 (11.4)

yrk + βP
k gOrk ≤ ȳr , r � 1, . . . , s1 (11.5)

λ jk ≥ 0, j ∈ E (11.6)
βP
k ≥ 0 (11.7)

(11)

It can be proved that the CRS Partially-bounded DDF model inherits the same
properties as the Bounded CRS-DDF model. We will list them directly.

Proposition 6 ThePartially-boundedDDF inefficiencymeasure satisfies the following
properties.

(a) If PBDDFCRS
(
xk, yk ; g

I
k , g

O
k

) � 0 then
(
xk, yk

) ∈ ∂w
(
T PB

)
.

(b) PBDDFCRS
(
xk, yk ; g

I
k , g

O
k

)
is weakly monotonic, as long as the directional

vector is a constant vector.
(c) PBDDFCRS

(
xk, yk ; g

I
k , g

O
k

)
is units invariant, as long as each component of

the directional vector is expressed in the same units of measurement as the cor-
responding input or output.
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5 Productivity changemeasurement

The measurement of productivity change over time using frontier methods continues
to claim considerable attention in the literature that focuses on the assessment of eco-
nomic performance of decision making units. The most popular approach to evaluate
productivity change is the Malmquist productivity index introduced by Caves et al.
(1982) and decomposed for the first time by Färe et al. (1992) into efficiency and
technical changes. The Malmquist index is a ratio-based index that uses the Shephard
(1953) distance functions to evaluate each unit under scrutiny and, in its most popular
forms, adopt either an input contraction or an output expansion perspective.Malmquist
indexes are only appropriate for dealing with efficiency or inverse efficiency measures
with values in the range [0, 1] and belong to the “multiplicative world”. They are
not suitable for dealing with inefficiency measures as the directional distance func-
tion. For this reason, Chambers et al. (1996b) introduced the Luenberger indicator,
which is a difference-based index of directional distance functions that can account for
input contractions, output improvements, or both. In contrast to the Malmquist index,
Luenberger indicators belong to the “additive world”.

Once we have introduced the Bounded CRS Directional Distance Function and its
Partially-bounded version in the paper, we will go on to show in this section how they
can be used in order to estimate productivity change and its components over time.
This is one of the interesting applications of the bounded DDF model under constant
returns to scale. Its operation is completely similar to the usual DDF model.

In a context wheremeasuring productivity is the focus, assuming constant returns to
scale for DEAmodels is a must. This viewpoint has been followed since the papers by
Grifell-Tatjé and Lovell (1995), Ray and Desli (1997), Balk (2001) and Lovell (2003)
for the Malmquist productivity index and, likewise, for the Luenberger productiv-
ity indicator since its definition (see, for example, a recent application that follows
this philosophy in Kapelko et al. 2015). However, at the present time this assump-
tion wouldn’t seem to fit well with datasets where one or more variables (inputs and
outputs) are bounded. In the absence of appropriate Bounded CRS DEA models, the
traditional literature supports the use of the hypothesis of Variable Returns to Scale
instead (Hollingsworth and Smith 2003), simply because it guarantees that the efficient
projections points have, for example for a percentagevariable, an upper-boundedvalue,
lower or equal to 100. In contrast, the hereby introduced new Bounded or Partially-
bounded CRS Directional Distance Functions allow to combine productivity change
measurement based on CRS models and deal with ratio or percentage variables or, in
general, bounded inputs and outputs in a natural way.

Before showing the formulation of the Luenberger productivity indicator, we need
to introduce new notation, associated with time periods. Let us suppose that we have
observed a sample of n units for p different periods of time. Unit j ∈ {1, 2, . . . , n} in
period t ∈ {1, 2, . . . , p} uses a specific amount of m inputs, xtj �

(
xt1 j , . . . , x

t
mj

)
∈

Rm
++, to produce a certain amount of s outputs ytj �

(
yt1 j , . . . , y

t
s j

)
∈ Rs

++. Moreover,

seeking simplicity, let us also develop the Luenberger indicator for the case of using
Partially-bounded CRS Directional Distance Functions. To do that, we need to adapt
model (11) in order to perform an intertemporal analysis. Suppose that we want to
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evaluate unit k, k � 1, . . . , n, observed in period d, d � 1, . . . , p, with respect to the
production possibility set related to period h, h � 1, . . . , p. The d and h indicesmay or
may not coincide. Additionally, x−

h

i
denotes the lower bound of input i, i � 1, . . . ,m1,

ȳhr denotes the upper bound of output r, r � 1, . . . , s1, and Eh denotes the set of
Pareto-efficient DMUs in period h.

PBDDFh
CRS

(
xdk , y

d
k ; g

I d
k , gOd

k

) � Max βh
k (12.1)

s.t .∑

j∈Eh

λ jk xhi j ≤ xdik − βh
k g

Id
ik , i � 1, . . . ,m (12.2)

∑

j∈Eh

λ jk yhr j ≥ ydrk + βh
k g

Od
rk , r � 1, . . . , s (12.3)

xdik − βh
k g

Id
ik ≥ x−

h

i
, i � 1, . . . ,m1 (12.4)

ydrk + βh
k g

Od
rk ≤ ȳhr , r � 1, . . . , s1 (12.5)

λ jk ≥ 0, j ∈ Eh (12.6)
βh
k free (12.7)

(12)

Note that in (12) the decision variable βh
k is not restricted in sign, allowing it

to take both non-negative and negative values. Observe also that m1 =m and s1 = s
corresponds to the case where all the inputs are lower bounded and all the outputs
are upper bounded. In this case we will simply write BDDFh

CRS

(
xdk , y

d
k ; g

I d
k , gOd

k

)

deleting the initial P. As happens in the case of the traditional directional distance
functions (see Chambers et al. 1998), a negative value for βh∗

k will be associated with
an evaluated unit located outside the reference technology, while a non-negative value
will imply that the assessed unit is within the production possibility set.

Now we are ready to measure productivity change resorting to a Luenberger indi-
cator (Chambers et al. 1996b) and decompose it into its two usual components. First
of all, the (total factor) productivity change for unit k when comparing periods t and
t+1 is measured by means of:

T FPk(t, t + 1) � 1

2

[
PBDDFt

CRS

(
xtk , y

t
k ; g

I t
k , gOt

k

)
− PBDDFt

CRS

(
xt+1k , yt+1k ; g I t+1k , gOt+1

k

)]
+

+
1

2

[
PBDDFt+1

CRS

(
xtk , y

t
k ; g

I t
k , gOt

k

)
− PBDDFt+1

CRS

(
xt+1k , yt+1k ; g I t+1k , gOt+1

k

)]
,

(13)

As usual, the Luenberger indicator may then be decomposed into technological
change (TC) and efficiency change (EC).

TCk(t, t + 1) � 1

2

[
PBDDFt+1

CRS

(
xt+1k , yt+1k ; g I t+1k , gOt+1

k

)
− PBDDFt

CRS

(
xt+1k , yt+1k ; g I t+1k , gOt+1

k

)]

+
1

2

[
PBDDFt+1

CRS

(
xtk , y

t
k ; g

I t
k , gOt

k

)
− PBDDFt

CRS

(
xtk , y

t
k ; g

I t
k , gOt

k

)]
. (14)

ECk(t, t + 1) � PBDDFt
CRS

(
xtk , y

t
k ; g

I t
k , gOt

k

)
− PBDDFt+1

CRS

(
xt+1k , yt+1k ; g I t+1k , gOt+1

k

)
. (15)

We illustrate the new methodology by an empirical example in the next section.
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6 An empirical example

We have gathered public agricultural data from the Spanish Ministry of “Agriculture,
Land and Food” relative to virgin olive oil producers (MAGRAMA 2016). As it is
well known, olive oil is one of the basic ingredients of the so called Mediterranean
diet. In fact, 97% of the world production corresponds to Mediterranean countries,
where Spain, Italy and Greece account for 75% of the mentioned production and
Spain is the largest producer (50%). Without question, one of the most successful
formulas that agri-food operators have when it comes to competing in global markets
consists of emphasizing all the quality aspects related to the provenance of products
through different figures of protection. One of these figures is precisely the Protected
Designation of Origin (PDO). Moreover, the type of oil produced is regulated by the
European Commission (through EC regulation 1234/2007). The two best qualities are
grouped under the name “virgin olive oil”. Being more precise we have selected all
the PDOs with available data for two consecutive years (2012, 2013). They comprise
22 of the 29 existing PDOs in Spain. Their names and acronyms are listed in Table 1.

From MAGRAMA (2016), we got information corresponding to the following
‘absolute’ data related to each PDO in each of the two considered years:

Ha: surface devoted to olive farming in thousands of hectares
Bott: the number of bottlers3

POO: the number of tons of any kind of olive oil produced and sold4

VOO: the number of tons of virgin olive oil produced and sold5

Rev: the total revenue obtained from POO expressed in millions of euros

The above variables are not directly the inputs and outputs that we will use in
the empirical application. Instead, in our model, Ha and Bott will be the inputs,
while we will consider only two outputs: Rev and the percentage of VOO over POO
(VOO/POO%). The rationale behind the use of VOO/POO% is the following. The
main objective of virgin olive oil PDOs is to produce, certify and commercialize vir-
gin oil, being this the highest quality olive oil and the one that provides more health
benefits, in addition to achieve the highest prices in the market. Hence, a key objective
is to maximize the production of this kind of oil over others, ensuring the highest
profitability. However not all the oil produced by the PDO can be qualified as virgin
oil for various reasons. There are legally bindings by Regulatory Boards of the PDOs,
for example those concerning the variety or varieties that should be certified, the pro-
duction techniques (kind of pressing, harvest, etc.) or the minimum quality standards
(acidity level, bouquet, etc.). Moreover, weather plays an important role in agriculture.
In particular, excess rainfall or, by contrast, long dry periods, solar radiation or certain
pests and diseases (Bactrocera -Dacus oleae -, Phoeotribus scarabeoides, etc) impact
on the quality and, hence, on the impossibility of certain oils to be qualified as virgin.

3 In our empirical context, the bottlers are also marketers.
4 Since olive oil is a perishable product and must be consumed during its first year of life, all the yearly
production must be sold.
5 This is the part of the production of olive oil with the highest quality, either extra virgin olive oil or virgin
olive oil.
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Table 1 Names and acronyms of
the 22 considered PDOs

# PDO Acronym

1 Campo de Montiel
Oil

C Montiel

2 La Alcarria Oil Alcarria

3 Oil from the
Valencian Region

CV

4 Oil from Majorca Mallorca

5 Terra Alta Oil Terra Alta

6 Oil from Baix
Ebre-Montsià

B Ebre-Mo

7 Oil from Lower
Aragón

B Aragon

8 Monterrubio Oil Mterrubio

9 Antequera Antequera

10 Baena Baena

11 Estepa Estepa

12 Les Garrigues L Garrigues

13 Montes de Granada M Granada

14 Montes de Toledo M Toledo

15 Montoro-Adamuz M-Adamuz

16 Poniente de Granada P Granada

17 Priego de Córdoba Priego Cor

18 Sierra de Cádiz S Cadiz

19 Sierra de Cazorla S Cazorla

20 Sierra de Segura S Segura

21 Sierra Mágina S Magina

22 Siurana Siurana

Table 2 Summary statistics of inputs and outputs, year 2012

INPUT 1 Ha INPUT 2 Bott OUTPUT 1
VOO/POO%

OUTPUT 2 Rev

Max 61.00 40.00 100.00 14.66

Min 1.81 1.00 3.00 0.01

Avg 26.11 13.32 55.32 4.62

SD 16.03 9.88 42.38 5.23

According to an economic and productive logic, the target of each PDO is to maximize
the VOO/POO ratio, since it means that all the olive oil produced has been virgin oil,
which represents the highest quality level, fulfilling all the standards established by
PDO’s managers and resulting in the highest market value.

A statistical summary, for each year, of the selected variables are presented in
Tables 2 and 3.
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Table 3 Summary statistics of inputs and outputs, year 2013

INPUT 1 Ha INPUT 2 Bott OUTPUT 1
VOO/POO%

OUTPUT 2 Rev

Max 60.00 40.00 100.00 18.34

Min 1.78 1.00 6.00 0.03

Avg 26.44 13.41 66.27 4.73

SD 15.89 11.16 39.26 5.29

Comparing Tables 2 and 3 we appreciate that, on average, variables have changed
slightly, with the exception of VOO/POO% where the percentage of virgin olive oil
sold over the total olive oil sold has increased over 10% points. Revising the maxi-
mums, only Rev has changed significantly, with an increase of 25% in revenue, while
the minimums have only changed significantly at VOO/POO%. Finally, the standard
deviation has a moderate change in Rev, Bott, and in VOO/POO%.

If now we eliminate the size of each PDO and obtain a sample of PDOs with the
same size, it is clear that we need to resort to a CRS model since it allows a fair
comparison between all the PDOs. This can be accomplished by dividing Bott and
Rev by Ha since VOO/POO% already coincides with the ratio between VOO/Ha and
POO/Ha.AsHollingsworth and Smith (2003, p. 734) pointed out, if we resort to a CCR
output orientedmodel (Charnes et al. 1978), the same results will be obtained using the
original inputs and outputs (Ha, Bott, Rev and VOO/POO%) or with the transformed
variables Bott/Ha, Rev/Ha andVOO/POO%. In our case, wewill consider a CRSDDF
model with directional vector gk � (0m, yk), which is equivalent to a CCR output
oriented model, as Chambers et al. (1998) proved. Given that result of equivalence, we
will consider the original inputs and outputs (Ha, Bott, Rev and VOO/POO%) in the
model and use a CRS DDF with a “proportional” output-oriented directional vector,
with the only particularity that one of the outputs is a natural upper bounded variable
(VOO/POO%). We will finally consider a Partially-Bounded CRS DDF model with a
single upper-bounded output, the variable being expressed as a percentage.6

In order to set upmodel (11)we need first to identify theCRS strongly efficient units
of the two considered frontiers corresponding to years 2012 and 2013. Resorting to the
CRS additive model (Ali and Seiford 1993), for 2012 we obtain six strongly efficient
units (U2—Alcarria, U4—Mallorca, U7—B. Aragon, U11—Estepa, U17—Priego

6 Our empirical application and that published in Vidal et al. (2014) are different regarding the data because
Vidal et al. (2014) used the available information of the years 2008, 2009 and 2010 for 17 DMUs, while we
utilize data from 2012 and 2013 for 22 DMUs. The inputs are similar but the outputs are more different.
Vidal et al. (2014) did not use Revenue as output. They also did not utilize the ratio VOO/POO, which
measures the ‘quality’ of the produced outputs. Instead, Vidal et al. (2014) directly used tons of olive oil.
In Vidal et al. (2014), none of the variables is bounded in a natural way and were really bounded by the
minimum observed input and maximum observed output. Additionally, from a methodological point of
view, these approaches are so different since (1) Vidal et al. (2014) resorted to the ‘Graph’ version of a
BAM, which are based upon the Weighted Additive Model, bounding all inputs and outputs, whereas our
approach is based on an output-oriented (Bounded) DDF, where also only one dimension is bounded; and
(2) the objective in Vidal et al. (2014) was to measure technical efficiency and its evolution, while we also
determined productivity change over time and its drivers.
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Table 4 Comparing the unbounded and the partially-bounded DDF model, year 2012

DDF12(12) PBDDF12(12) Difference

Max 39.86 24.00 15.86

Min 0.00 0.00 0.00

Avg 3.84 2.74 1.09

SD 8.59 5.46 3.13

Cor, and U22—Siurana), while five strongly efficient units were identified for 2013
(U4, U7, U8—Mterrubio, U11 and U22). As can be detected, four strongly efficient
units from 2012 remain as such in 2013. Hence, E2012 ={U2, U4, U7, U11, U17, U22}
and E2013 �{U2, U4, U7, U8, U22}. Before starting the productivity analysis, let us
show in this experimental case the influence, if any, of the considered bounds. We just
focus on the year 2012, i.e., the frontier of year 2012 as well as the 22 units of the
same year, and run the traditional DDFmodel without bounds and our newmodel with
a single natural bound for VOO/POO%. Since the latter model has more restrictions,
the expected objective function value for each unit will be smaller than or equal to that
corresponding to the unbounded model. In Table 4 we provide a summary comparison
about the optimal value of both models, adding the information about the difference
between both models in the last column.

The main conclusion is that there are relevant differences. For instance, the maxi-
mum reduction is close to 40% points, while the average reduction is slightly over 28%
points. Meanwhile, the standard deviation has decreased over 36% points. Looking
at the individual units, the 6 strongly efficient units cannot change their status; hence,
only 16 units can modify its optimal value. The majority of units have changed (U1,
U3, U5, U12, U13, U14, U16, U18, U20).Wewill not carry on this simple exercise but
the conclusion is straightforward: the presence of bounds does influence the efficiency
evaluation, and, as a direct consequence, the productivity analyses.

Let us now undertake the productivity analysis. The first step is to calculate the
total factor productivity change at each PDOk , T FPk(t, t + 1), k �1,…,22, t �2012.
According to expression (13)we need to project each of the 44 PDOs, corresponding to
years 2012 and 2013, onto each of the corresponding frontiers, resorting to the selected
PBDDF. The only considered bound for VOO/POO% is 100. The results obtained are
listed in Table 5. In each of the last four columns the header is PBDDFh(d), where the
superscript stands for the year of the frontier (12 or 13) and d stands for the year of
the projected data.

As expected, the result for the projection of any unit onto its own frontier is
always nonnegative (see columns 3 and 6 in Table 5). In column 3, the projection
of the 2012 units onto its own frontier shows that as many as 12 units are projected
onto the frontier, getting a 0 optimal value, which, of course, include the six already
identified strongly efficient units. The other six units may or may not belong to the
strongly efficient frontier. Similarly, in the year 2013 (see column 6), 12 units also
get a 0 value. Ten units are projected, at the same time, onto the 2012 and 2013
frontier. In columns 4 and 5 the output inefficiency is reported for the projection of
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Table 5 Data projections for the years 2012 and 2013 onto each of the two yearly frontiers

# PDO PBDDF12(12) PBDDF12(13) PBDDF13(12) PBDDF13(13)

1 C Montiel 0.00 0.00 0.00 0.00

2 Alcarria 0.00 12.34 −0.50 7.33

3 CV 0.00 0.00 0.00 0.00

4 Mallorca 0.00 −0.18 −0.12 0.00

5 Terra Alta 0.00 0.00 0.00 0.00

6 B Ebre-Mo 0.73 −0.26 1.33 0.00

7 B Aragon 0.00 −0.05 0.00 0.00

8 Mterrubio 2.35 −0.53 4.76 0.00

9 Antequera 6.88 0.11 5.89 0.03

10 Baena 1.87 0.76 1.15 0.32

11 Estepa 0.00 0.18 −0.22 0.00

12 L Garrigues 0.00 0.00 0.00 0.00

13 M Granada 24.00 4.56 24.00 4.56

14 M Toledo 0.00 0.00 0.00 0.00

15 M-Adamuz 8.53 2.63 7.07 2.28

16 P Granada 0.00 0.00 0.00 0.00

17 Priego Cor 0.00 0.28 −0.25 0.28

18 S Cadiz 6.69 6.69 6.69 6.69

19 S Cazorla 0.27 0.54 0.05 0.26

20 S Segura 4.56 9.01 4.56 7.01

21 S Magina 4.51 0.82 3.22 0.82

22 Siurana 0.00 −0.29 0.37 0.00

each unit onto the other year’s frontier. The few obtained negative optimal values
have got a italic background. Only 5 units of the year 2013 do not belong to year
2012’s production possibility set (see column 4), while only 4 units of year 2012
do not belong to year 2013’s production possibility set (see column 5). There is a
clear overlap between parts of the two yearly frontiers, which means that, on aver-
age, we cannot expect a relevant productivity change between the two considered
years.

The Luenberger total factor productivity change as well as its two additive compo-
nents, technical change and efficiency change are reported for each PDO in Table 6.
Two units present the two extreme behaviors in our sample, namely U2, Alcarria
and U13, M-Granada. The first one shows a very negative evolution from 2012 to
2013, with a productivity change of −10.09, decomposed into an efficiency change
of −7.33 and a technical change of −2.75. On the other hand, U13 shows a very
positive evolution from 2012 to 2013, with a productivity change of 19.44 that is
all attributable to efficiency change. In agriculture, these high productivity changes
have an easy explanation. In the first case, Alcarria, the harvest of olives in 2013 was
seriously reduced in comparison to the year 2012, due basically to adverse weather

123



Bounded directional distance function models

Table 6 Luenberger productivity
results for each PDO

# PDO TFP EC TC

1 C Montiel 0.00 0.00 0.00

2 Alcarria −10.09 −7.33 −2.75

3 CV 0.00 0.00 0.00

4 Mallorca 0.03 0.00 0.03

5 Terra Alta 0.00 0.00 0.00

6 B Ebre-Mo 1.16 0.73 0.43

7 B Aragon 0.02 0.00 0.02

8 Mterrubio 3.82 2.35 1.47

9 Antequera 6.31 6.85 −0.54

10 Baena 0.97 1.55 −0.58

11 Estepa −0.20 0.00 −0.20

12 L Garrigues 0.00 0.00 0.00

13 M Granada 19.44 19.44 0.00

14 M Toledo 0.00 0.00 0.00

15 M-Adamuz 5.34 6.24 −0.90

16 P Granada 0.00 0.00 0.00

17 Priego Cor −0.41 −0.28 −0.13

18 S Cadiz 0.00 0.00 0.00

19 S Cazorla −0.24 0.02 −0.26

20 S Segura −3.45 −2.46 −1.00

21 S Magina 3.05 3.69 −0.64

22 Siurana 0.33 0.00 0.33

conditions. On the other hand, in M-Granada the misfortune was located in 2012
and the olive harvest recovered strongly in 2013. Besides these two extreme PDOs,
and the intense productivity progress of units U9, Antequera, and U15, M-Ademuz,
the rest of PDOs have a notable or moderate productivity progress or regress, in the
range [−3.45, 3.82]. In fact there is a subset of 7 PDOs, {U1, U3, U5, U12, U14,
U16, U18}, which experience no change at all and another subset of 4 PDOs, {U4,
U7, U11, U22}, with an imperceptible productivity progress, or, in the case of U11,
regress. The strongly efficient units that were identified as points of the two efficient
frontiers, U4, U7, U11 and U22, belong to one of the two last considered subsets. The
two strongly efficient units that belong to the 2012 frontier but not to the 2013 fron-
tier, U2 and U17, experience a productivity regress, while the only strongly efficient
unit that belongs only to the 2013 frontier, U8, experiences productivity progress.

Finally, Table 7 presents a summary of the productivity results. The most relevant
issue is the average behavior, which shows a moderate productivity progress that is
completely due to the catching up effect—or positive efficiency change—accompanied
by a little negative technical change.
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Table 7 Productivity results
summary

2012–2013 TFP EC TC

Max 19.44 19.44 1.47

Min −10.09 −7.33 −2.75

Avg 1.19 1.40 −0.21

SD 5.14 4.89 0.76

7 Conclusions

We have been able to extend the use of bounds, initially proposed exclusively for
additive models, to the family of Directional Distance Function models. The VRS
models are all naturally bounded models, with the range bounds associated to the
finite experimental sample, acting as lower bounds for the inputs and as upper bounds
for the outputs and can be a good choice unless the nature of the available inputs
and outputs determines that the different units under comparison can be judged on
an equal footing. In that case, resorting to a CRS model is a must. Moreover, the
nature of the considered variables establishes the need to resort to a specific bounded
model. This has been the case with our olive oil production empirical case developed
in Sect. 6, where one of the outputs was a percentage that has associated the value 100
as a natural upper bound. In other cases, for example, when the considered sample
corresponds to the whole population, the range bounds are the appropriate choice for
any considered BoundedCRSmodel.We have focused our attention on theDirectional
Distance Function model because, being one of the most widely used models in DEA
that measures technical inefficiency, the use of bounds has been ignored.

In almost all the practical cases where bounds play a role, we note that not all the
variables, inputs and outputs, have to be necessarily bounded. Accordingly, we have
also defined the partially-bounded CRS-DDF models, where the introduced natural
boundswill avoid the projection of any inefficient units towards a point that is unaccept-
able, because it does not satisfy the corresponding natural bounds. This has been the
case in our empirical application in the context of productivity change estimation over
time, where, as explained in the preceding sections, the assumption of constant returns
to scale is inevitable. So far, this combination was unachievable in the literature. The
Bounded or Partially-bounded CRSDirectional Distance Function, combined with the
corresponding Luenberger indicator, permits these types of estimations to be carried
out, as shown theoretically in Sect. 5 and empirically in Sect. 6.
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