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Abstract	

Three-dimensional vertical structures such as bridges, skeletons of buildings in 
the construction industry, or electrical and telecommunication towers, require 
inspection and maintenance tasks. These tasks imply important risks for the 
human operators that usually perform them, such as falling from heights. A 
solution to this problem consists in using climbing robots for performing such 
dangerous tasks. 

This thesis presents the kinematic analysis and design of the HyReCRo robot 
(Hybrid Redundant Climbing Robot), a robot designed for climbing three-
dimensional metallic structures. This robot is redundant and has a hybrid 
architecture, since it is composed of four 2RPR-PR parallel mechanisms serially 
connected. The main characteristic of this robot is that it can be driven by binary 
actuators in order to get closer to the basic postures necessary for exploring 
three-dimensional structures (namely: convex and concave plane transitions), 
finely adjusting later the pose of its grippers by means of continuous actuation, in 
order to adhere its grippers to the climbed structure. This mixed binary-
continuous strategy facilitates the control and movement planning of the robot, 
which usually are very complex tasks in structure-climbing robots. The present 
thesis is focused on the study of the HyReCRo robot as a continuously-actuated 
robot, with the purpose of using mixed actuation strategies in the future. 

In the first place, this thesis presents a complete kinematic analysis of the 
HyReCRo robot and of the parallel mechanisms that make up its legs. Regarding 
the kinematic analysis of these parallel mechanisms, this thesis demonstrates 
that these mechanisms can enlarge their workspace by switching between 
different assembly modes without traversing singularities. This occurs when 
enclosing special isolated singularities which are fourfold solutions of the forward 
kinematic problem of these parallel mechanisms. Regarding the kinematic 
analysis of the complete HyReCRo robot, this thesis solves both its forward and 
inverse kinematic problems, obtaining simple parameterizations of the 4- and 5-
dimensional self-motion manifolds of this robot. These kinematic analyses are 
performed with the help of PaRoLa, a collection of graphical simulators developed 
specifically in the present thesis with the purpose of facilitating the kinematic 
analysis of parallel robots. 

The present thesis also presents the study of the workspace of the HyReCRo 
robot, with the purpose of designing this robot so that it can perform convex and 
concave plane transitions required for exploring structures. As a result of this 
workspace analysis, this thesis proposes two new methods for obtaining the 
workspace of redundant robots, like the HyReCRo robot. 



The first proposed method is an improved Monte Carlo method, which is able to 
obtain the boundaries of the workspace much more accurately than previously 
existing Monte Carlo methods, requiring the same or less computation time than 
them. This method consists in uniformly growing the workspace by means of 
normal random distributions, until the boundaries of the workspace are attained. 

The second method proposed in this thesis is a method for obtaining the 
boundaries and interior barriers of the workspace of redundant robots induced by 
general collision constraints, which are difficult to obtain using previously existing 
methods due to their difficulties to handle such collision constraints. The 
proposed method identifies the vanishing of self-motion manifolds of the robot 
with the occurrence of interior barriers, and it consists of three stages. First, these 
self-motion manifolds are densely sampled, discarding samples that do not 
satisfy collision constraints. Next, non-discarded samples are clustered using kd-
trees, with the purpose of identifying disjoint components of these manifolds. 
Finally, the disjoint manifolds identified at pairs of neighboring points of the 
workspace are compared, in order to determine if any of these manifolds 
vanishes when traveling from one point to its neighbor. The application of this 
method demonstrates that collision constraints drastically alter the distribution of 
interior barriers within the workspace. 

Finally, this thesis concludes with the development of a totally functional 
prototype of the HyReCRo robot. This prototype, which weighs 2.19 kg, uses 
magnetic grippers based on the technology of switchable permanent magnets, 
achieving an adhesion force of 33 kg per gripper. This prototype has been 
successfully validated on real steel structures. 



Resumen	

Las estructuras verticales tridimensionales, como los puentes, los esqueletos de 
edificios en la industria de la construcción, o las torres eléctricas y de 
telecomunicación, requieren tareas de inspección y mantenimiento. Dichas 
tareas suponen riesgos importantes para los operarios humanos que las realizan 
habitualmente, como la caída desde altura. Una solución a este problema pasa 
por utilizar robots trepadores para desarrollar tales peligrosas tareas. 

Esta tesis presenta el análisis cinemático y diseño del robot HyReCRo (Hybrid 
Redundant Climbing Robot), un robot diseñado para trepar por estructuras 
metálicas tridimensionales. Se trata de un robot redundante y de arquitectura 
híbrida, formado por la conexión en serie de cuatro mecanismos paralelos de 
tipo 2RPR-PR. La principal característica de este robot es que puede ser 
accionado de forma binaria para aproximarse a las posturas básicas necesarias 
para explorar estructuras tridimensionales (a saber: transiciones convexas y 
cóncavas entre distintos planos de trabajo), ajustando posteriormente de forma 
fina la pose de sus garras mediante actuación continua para fijar sus garras a la 
estructura. Esta estrategia mixta binaria-continua facilita el control y la 
planificación de movimientos del robot, tareas que suelen ser muy complejas en 
robots trepadores de estructuras. Esta tesis se focaliza en el estudio del robot 
HyReCRo como robot accionado de forma continua, con el fin de poder operarlo 
mediante estrategias mixtas en el futuro. 

En primer lugar, esta tesis presenta un análisis cinemático completo del robot 
HyReCRo y de los mecanismos paralelos que forman sus patas. En cuanto al 
análisis cinemático de dichos mecanismos paralelos, en esta tesis se demuestra 
que éstos pueden ampliar su espacio de trabajo alternando entre distintos modos 
de ensamblado sin cruzar singularidades. Esto ocurre al rodear singularidades 
aisladas especiales que son soluciones cuádruples del problema cinemático 
directo de dichos mecanismos paralelos. En cuanto al análisis cinemático del 
robot HyReCRo completo, se resuelven en esta tesis sus problemas cinemáticos 
directo e inverso, obteniéndose parametrizaciones sencillas de las variedades 
de auto-movimiento 4- y 5-dimensionales de este robot. Estos análisis 
cinemáticos se realizan con la ayuda de PaRoLa, una colección de simuladores 
gráficos desarrollados específicamente en la presente tesis para facilitar el 
análisis cinemático de robots paralelos. 

La presente tesis también presenta el estudio del espacio de trabajo del robot 
HyReCRo, con el fin de diseñar este robot para que pueda realizar las 
transiciones convexas y cóncavas requeridas para explorar estructuras. Como 
resultado de este análisis del espacio de trabajo, se proponen en esta tesis dos 
nuevos métodos para determinar el espacio de trabajo de robots redundantes, 
como el robot HyReCRo. 



 
El primer método propuesto se trata de un método Monte Carlo mejorado, capaz 
de obtener las fronteras del espacio de trabajo con mucha más precisión que los 
métodos Monte Carlo preexistentes, requiriendo el mismo o menos tiempo de 
cálculo que dichos métodos. Dicho método se basa en hacer crecer de forma 
uniforme el espacio de trabajo mediante distribuciones aleatorias normales, 
hasta alcanzar las fronteras del mismo.  
 
El segundo método propuesto en esta tesis es un método capaz de obtener las 
fronteras y barreras interiores del espacio de trabajo de robots redundantes 
debidas a restricciones de colisión generales, que son difíciles de obtener 
mediante los métodos preexistentes, los cuales presentan dificultades notables 
para manejar tales restricciones de colisión. El método propuesto identifica el 
desvanecimiento de variedades de auto-movimiento del robot con la ocurrencia 
de barreras interiores, y consta de tres etapas. Primero, se muestrean 
densamente dichas variedades de auto-movimiento, descartando las muestras 
que no cumplen las restricciones de colisión. Seguidamente, se agrupan las 
muestras no descartadas mediante kd-trees, con el fin de identificar 
componentes disjuntas de dichas variedades. Por último, se comparan las 
variedades disjuntas identificadas en pares de puntos vecinos del espacio de 
trabajo, para determinar si alguna de dichas variedades se desvanece al viajar 
de un punto a su vecino. La aplicación de este método demuestra que las 
restricciones de colisión alteran drásticamente la distribución de barreras 
interiores dentro del espacio de trabajo. 
 
Finalmente, esta tesis concluye con el desarrollo de un prototipo totalmente 
funcional del robot HyReCRo. Dicho prototipo, que pesa 2.19 kg, utiliza garras 
magnéticas basadas en la tecnología de imanes permanentes alternables 
(switchable magnets), logrando una fuerza de adhesión de 33 kg por garra. Este 
prototipo ha sido validado con éxito en estructuras de acero reales. 
 



Acknowledgments

First of all, I wish to thank my supervisors Óscar Reinoso and Arturo Gil for their
valuable guidance and support, their trust placed on me, and, especially, their patience.
I am also very grateful to José María Marín, whose devotion, kindness, and know-how
have helped me during many stages of the present thesis.

I also wish to thank Luis Miguel Jiménez, Luis Payá, and all other members and col-
leagues of the Automation, Robotics and Computer Vision lab of the Miguel Hernández
University for welcoming me into their research group many years ago.

I am also very grateful to Mahmoud Tavakoli from the University of Coimbra for
welcoming me to work with them during three months in the fall of 2016. I also very
much appreciate the kindness and help received from my friend Carlos Viegas, also
from the University of Coimbra, during this three-month stay.

Last but not least, I wish to thank my family, my girlfriend Mariasa, and my friends
for their support and encouragement during these years.

This thesis has been supported by the Spanish Ministry of Education, Culture, and
Sport through two grants with reference numbers: FPU13/00413 and EST15/00483.





Contents

Contents a

List of Figures e

List of Tables m

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Topics Covered by this Thesis . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Framework of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Grants and Awards . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Research Stays and Collaborations . . . . . . . . . . . . . . . 8
1.3.3 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Journal Publications Supporting this Thesis . . . . . . . . . . 8
1.4.2 Other Publications Related to this Thesis . . . . . . . . . . . 9

1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Summary of Materials, Methods, and Discussion of Results . . . . . 14

1.6.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 16

2 Literature Review of Climbing Robots 21
2.1 Climbing Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Wall-climbing Robots . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Structure-climbing Robots . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Cable-climbing Robots . . . . . . . . . . . . . . . . . . . . . . 30
2.1.4 Rough-terrain Climbers . . . . . . . . . . . . . . . . . . . . . 33

2.2 The HyReCRo Robot: a Redundant Serial-parallel Structure-climbing
Robot with Binary Actuation . . . . . . . . . . . . . . . . . . . . . . 35

3 Parallel Modules and Nonsingular Transitions 39
3.1 2RPR-PR Parallel Mechanisms . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Nonsingular Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Nonsingular Transitions in Analytic 2RPR-PR Mechanisms . 49

3.3 Practical Considerations and Implications for the HyReCRo Climb-
ing Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 3RPR Parallel Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 57



3.4.1 Forward Kinematics of Analytic 3RPR Parallel Robots . . . . 59
3.4.2 Nonsingular Transitions . . . . . . . . . . . . . . . . . . . . . 62

3.5 Stability Analysis of Quadruple Solutions . . . . . . . . . . . . . . . 69
3.5.1 Another Example of Nonsingular Transitions in Analytic 3RPR

Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.2 Perturbation of the Geometry of Non-generic 3RPR Robots . 75

3.6 Second-order Taylor Stability Analysis of Isolated Singularities . . . 79
3.6.1 Formulation of the Method . . . . . . . . . . . . . . . . . . . 79
3.6.2 Example 1: Lips Singularity . . . . . . . . . . . . . . . . . . . 81
3.6.3 Example 2: Isolated Quadruple Singularity . . . . . . . . . . 88
3.6.4 Example 3: Exceptions of the Method . . . . . . . . . . . . . 89

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.8 Publications Related to this Chapter . . . . . . . . . . . . . . . . . . 92

4 PaRoLa: a Virtual Laboratory for Simulating Parallel Robots 95
4.1 Easy Java Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 PaRoLa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Robots Available in PaRoLa . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Parallel Robots Implemented . . . . . . . . . . . . . . . . . . 100
4.3.2 Other Robots Available in PaRoLa . . . . . . . . . . . . . . . 103

4.4 Functionalities of PaRoLa . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Simulation of the Inverse Kinematics . . . . . . . . . . . . . . 104
4.4.2 Simulation of the Forward Kinematics . . . . . . . . . . . . . 105
4.4.3 Multiple Visualizations of the Solutions of the Forward Kine-

matics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.4 Visualization of the Workspace and Singularities . . . . . . . 110
4.4.5 Modification of the Geometry of Parallel Robots . . . . . . . 111
4.4.6 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.7 Dynamics and Control Simulation . . . . . . . . . . . . . . . 114

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6 Publications Related to this Chapter . . . . . . . . . . . . . . . . . . 118

5 Kinematics of the HyReCRo Robot 121
5.1 Description of the HyReCRo Robot . . . . . . . . . . . . . . . . . . 121
5.2 Forward Kinematic Problem (FKP) . . . . . . . . . . . . . . . . . . 123

5.2.1 FKP of the Parallel Modules . . . . . . . . . . . . . . . . . . 124
5.2.2 FKP of the Complete Robot . . . . . . . . . . . . . . . . . . 125

5.3 Planar Symmetric Postures . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.1 Planar Symmetric Inverse Kinematic (PSIK) Problem . . . . 128
5.3.2 Workspace for PSIK Postures: Sensitivity Analysis . . . . . . 132

5.4 General Inverse Kinematic Problem . . . . . . . . . . . . . . . . . . 136
5.4.1 Workspace of Symmetric 2RPR-PR Parallel Mechanisms . . . 136
5.4.2 Intermediate Joint Coordinates . . . . . . . . . . . . . . . . . 139
5.4.3 Solving the Inverse Kinematics . . . . . . . . . . . . . . . . . 139
5.4.4 Geometric Interpretation: Self-motion Manifolds . . . . . . . 144
5.4.5 Regions of Feasible Solutions . . . . . . . . . . . . . . . . . . 145

b



5.4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.5 A Simulator of the HyReCRo Robot . . . . . . . . . . . . . . . . . . 152

5.5.1 Simulating the Forward Kinematics . . . . . . . . . . . . . . 153
5.5.2 Simulating the Inverse Kinematics . . . . . . . . . . . . . . . 154

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.7 Publications Related to this Chapter . . . . . . . . . . . . . . . . . . 157

6 Boundaries of the Workspace 159
6.1 Review of Methods for Computing Workspaces . . . . . . . . . . . . 159
6.2 Computing the Workspace of the HyReCRo Robot via Classical

Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.1 Reachable Workspace of the HyReCRo Robot . . . . . . . . . 163
6.2.2 Constant-orientation Workspace of the HyReCRo Robot . . . 166

6.3 Accuracy Problems of Classical Monte Carlo Methods . . . . . . . . 170
6.4 An Improved Monte Carlo Method Based on Gaussian Growth . . . 172

6.4.1 Stage 1: Generating a Seed Workspace . . . . . . . . . . . . . 173
6.4.2 Stage 2: Densifying and Growing the Seed Workspace . . . . 173

6.5 Examples, Comparative Analysis, and Discussion . . . . . . . . . . . 176
6.5.1 Example 1: Reachable Workspace . . . . . . . . . . . . . . . 178
6.5.2 Example 2: Workspace with Equality Constraints . . . . . . . 180
6.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.6 GG Method in the Simulator of the HyReCRo Robot . . . . . . . . . 187
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.8 Publications Related to this Chapter . . . . . . . . . . . . . . . . . . 190

7 Interior Barriers of the Workspace 191
7.1 Interior Barriers of the Workspace . . . . . . . . . . . . . . . . . . . 191

7.1.1 Relationship Between Self-motion Manifolds and Interior Bar-
riers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.1.2 Introducing Kinematic Constraints . . . . . . . . . . . . . . . 197
7.2 A Method for Obtaining Interior Barriers Under Collision Constraints199

7.2.1 Sampling Self-motion Manifolds . . . . . . . . . . . . . . . . . 200
7.2.2 Clustering Self-motion Manifolds . . . . . . . . . . . . . . . . 204
7.2.3 Matching Self-motion Manifolds . . . . . . . . . . . . . . . . 207
7.2.4 Obtaining Workspace Barriers . . . . . . . . . . . . . . . . . 210
7.2.5 Elusive Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.3.1 Stewart Platform with 1D Self-motion Manifolds . . . . . . . 217
7.3.2 Stewart Platform with 2D Manifolds . . . . . . . . . . . . . . 222
7.3.3 3RRR Parallel Robot with 1D Manifolds . . . . . . . . . . . 225

7.4 A First Approach to the Interior Barriers of the HyReCRo Robot . . 229
7.4.1 Workspace Barriers and Empty Feasible Regions Rf . . . . . 230
7.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.5 Simulator of the HyReCRo Robot: Interior Barriers . . . . . . . . . 238
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.7 Publications Related to this Chapter . . . . . . . . . . . . . . . . . . 240

c



8 Development of a Prototype with Magnetic Grippers 241
8.1 A Prototype of the HyReCRo Robot . . . . . . . . . . . . . . . . . . 242
8.2 Switchable Magnets in Robotics . . . . . . . . . . . . . . . . . . . . . 244
8.3 Basic Movements for Exploring Structures . . . . . . . . . . . . . . . 246
8.4 Conceptual Design of Magnetic Grippers . . . . . . . . . . . . . . . . 248
8.5 Preventing Tip-over . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.5.1 Gravity Along Axes X or Z . . . . . . . . . . . . . . . . . . . 252
8.5.2 Gravity Along Axis Y . . . . . . . . . . . . . . . . . . . . . . 253

8.6 Developed Magnetic Gripper . . . . . . . . . . . . . . . . . . . . . . 253
8.7 Preventing Slippage . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8.7.1 Purely Translational Slippage . . . . . . . . . . . . . . . . . . 260
8.7.2 Mixed Roto-translational Slippage . . . . . . . . . . . . . . . 260
8.7.3 Determining the Necessary Friction Coe�cient . . . . . . . . 266

8.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
8.8.1 1st Experiment: Performing an Interior Transition and Climb-

ing Up a Vertical Beam . . . . . . . . . . . . . . . . . . . . . 268
8.8.2 2nd Experiment: Slipping Due to Gravity Acting Along Z . . 269
8.8.3 3rd Experiment: Preventing Slippage with Friction Accessories269

8.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9 Conclusions and Future Work 273
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A Appendix: Set of Publications 281
A.1 An improved Monte Carlo method based on Gaussian growth to

calculate the workspace of robots . . . . . . . . . . . . . . . . . . . . 282
A.2 A method based on the vanishing of self-motion manifolds to deter-

mine the collision-free workspace of redundant robots . . . . . . . . . 312

Bibliography 335

d



List of Figures

1.1 The binary HyReCRo robot as originally proposed in [183]. . . . . . . . 2
1.2 Venn diagram illustrating the main topics covered by the present thesis. 6

2.1 Vertical structures require inspection and maintenance tasks which are
dangerous for human operators due to several risks, including falling
from considerable heights. Examples of structures requiring operators
working at heights: (a) Bimillenary’s Hanger Bridge of Elche, (b) ex-
pansion works at the Quorum III building of the Miguel Hernández
University. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Some wall-climbing robots. . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Types of structure-climbing robots. . . . . . . . . . . . . . . . . . . . . . 26
2.4 Serial step-by-step structure-climbing robots. . . . . . . . . . . . . . . . 27
2.5 Parallel and hybrid step-by-step structure-climbing robots. . . . . . . . 27
2.6 Tree-climbing robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Cable-climbing robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Climbing robots for inspecting high-voltage power lines. . . . . . . . . . 32
2.9 Rope-climbing robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Robots for traversing rough terrains and climb their irregularities. . . . 34
2.11 The binary HyReCRo robot as originally proposed in [183] (Repeated

from Figure 1.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 General (a) and analytic (b) 2RPR-PR mechanisms. . . . . . . . . . . . 40
3.2 Zeros of P (Â) in (≠1, 1) with di�erent multiplicities. (a) Simple zero.

(b) Double zero (singularity). (c) Triple zero (cusp point). . . . . . . . . 42
3.3 Simple (left) and double (right) zeros of P (Â) at Â = ≠1 . . . . . . . . . 44
3.4 Joint space of an analytic 2RPR-PR robot . . . . . . . . . . . . . . . . . 47
3.5 (a) Encircling cusps of the singularity curves in the active joint space of a

2-DOF parallel mechanism allows the mechanism to switch its assembly
mode without crossing singularities. This can be easily understood in a
reduced configuration space of a 2-DOF mechanism, which is the projec-
tion of the configuration space surface (which is the common solution
set of all kinematic constraints of the mechanism) on a three dimen-
sional space (Ê1, Ê2, t), where (Ê1, Ê2) are active joint coordinates and
t is a pose parameter (i.e., a position or orientation coordinate) of the
mobile platform. (b) Similarly, encircling a so-called –-loop can also
produce nonsingular transitions. . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Rectangular (a), polar (b), and cylindrical (c) representations of „ . . . 51
3.7 Polar plots of the solutions to the forward kinematics when approaching

the point ⁄fi along tfi (top row). Solutions at ⁄fi (bottom row). . . . . . 52
3.8 Polar plots of the solutions to the forward kinematics when approaching

the point ⁄0 along t0 (left). Real quadruple solution at ⁄0 (right). . . . 52

e



3.9 Polar plots of the evolution of the six solutions ‡i (i = 1, . . . , 6) to the
forward kinematics along the circular trajectory abcdefgha in the joint
space, shown in Figure 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Trajectory of the solution ‡4 in the reduced configuration space . . . . . 54
3.11 Configuration of the analytic 2RPR-PR robot for the solution ‡4 along

the circular trajectory abcdefgha of Figure 3.4 . . . . . . . . . . . . . . . 55
3.12 (a) A symmetric analytic 2RPR-PR parallel mechanism, like those used

in the legs of the HyReCRo climbing robot. (b) Active joint space of a
mechanism with b = 2.5 cm and p = 3.15 cm. JL is the square region
inside the joint limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.13 Reduced configuration space (l1, l2, y) of the parallel mechanism of Fig-
ure 3.12, for values of l1 and l2 inside the square region JL delimited
by the joint limits. Each surface corresponds to a di�erent assembly
mode. The typical posture of the mechanism in each assembly mode is
represented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.14 General (a) and analytic (b) 3RPR planar parallel robots. . . . . . . . 58
3.15 (a) Joint space of the analytic 3-RPR robot, with the singularity locus

and the “-curves. Dotted lines indicate lines hidden by the singularity
surface. (b) Polar diagrams with the evolution of the six solutions ‡i

(i = 1, . . . , 6) to forward kinematics along the trajectory t0 that encircles
the curve “≠

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.16 Evolution of the configuration of the 3-RPR robot for the solution ‡1

along the nonsingular assembly-mode-changing trajectory t0 . . . . . . . 64
3.17 (a) Slice of the joint space of Figure 3.15a at fl2 = 1. (b) Polar plots

with the evolution of the six solutions ‡i (i = 1, . . . , 6) to the forward
kinematics along the circle centered at d, shown in Figure 3.17a. . . . . 66

3.18 Trajectory of the solution ‡1 in the reduced configuration space of the
3-RPR robot, for the trajectory of Equation (3.49) and fl2 = 1 . . . . . 67

3.19 Trajectory of the solution ‡1 in the output space of the 3-RPR robot,
for the trajectory of Equation (3.49) and fl2 = 1 . . . . . . . . . . . . . . 67

3.20 Conics C1 (continuous line) and C2 (dashed line) for di�erent values of
0 < Â < 1. Each value of Â is indicated with a di�erent color. For
Â = 0.999, C1 and C2 almost intersect, as shown in the zoomed areas. . 68

3.21 Higher-order unstable singularities and their perturbations. . . . . . . . 70
3.22 Singularity locus of an analytic 3RPR robot with the following geome-

try: c2 = 1.5, c3 = l3 = l1 = 0.5 (also, the third input is kept constant
at fl3 = 1). The figure indicates the number of di�erent real solutions
to the forward kinematic problem in each region of the (fl1, fl2) plane. . 72

3.23 Trajectories described by the six solutions of the forward kinematic
problem of the analytic 3RPR robot when encircling the point f4. The
trajectories of the solutions {1, 2, 3, 4} lie on the real axis, but since they
overlap, the trajectories of the solutions 3 and 4 have been displaced
vertically to facilitate the visualization. The trajectories of the solutions
5 and 6 are contained in the imaginary axis, but they have been shifted
horizontally since they also overlap. . . . . . . . . . . . . . . . . . . . . 74

f



3.24 Evolution of the configuration of the robot along the solution 4 of Fig-
ure 3.23. The mobile platform BED begins (Â = 0) and ends (Â = 6.28
rad) the trajectory with di�erent configurations: a nonsingular change
of assembly mode occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.25 Deformation of the singularity locus as the geometry of the 3RPR robot
is slightly perturbed from the analytic geometry. The points {f1, f2, f3}
transform into cusps. The point f4 transforms into a deltoid with three
cusps. The size of the deltoid increases with the magnitude of the
perturbation from the analytic geometry. The remaining geometric pa-
rameters of the robot are: c2 = 1.5, c3 = l3 = l1 = 0.5. . . . . . . . . . . 76

3.26 Trajectories described by the six solutions to the forward kinematic
problem of an “almost analytic” 3RPR robot when encircling the del-
toid of Figure 3.25b. The trajectories of the solutions {1, 2, 3, 4} are
contained in the real axis, but since they overlap, the trajectories of the
solutions 3 and 4 have been shifted vertically to facilitate the visualization. 78

3.27 Evolution of the configuration of the robot along the solution 4 of Fig-
ure 3.26. The mobile platform BED begins (Â = 0) and ends (Â = 6.28
rad) the trajectory with di�erent configurations: a nonsingular change
of assembly mode occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.28 Representation of the singularity locus in the (◊3, „) plane of a 3RPR
parallel robot with non-generic geometry. . . . . . . . . . . . . . . . . . 83

3.29 Variation of Ê with �fl3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.30 When fl3 decreases slightly, the isolated point y0 transforms into a closed

curve which can be approximated by an ellipse. . . . . . . . . . . . . . . 85
3.31 Singularity locus of a perturbed 3RPR robot with �fl3 = ≠0.00001.

The figure shows a zoomed view of the closed bicuspid curve which is
the image of real ellipse Er of Figure 3.30a in (fl1, fl2) plane. . . . . . . 86

3.32 Variation of the sign of Ê in terms of perturbations �fl3 and �c2. . . . 87
3.33 Singularity locus of a 3RPR robot with flat non-similar platforms. . . . 88
3.34 (a) (Approximately elliptic) singularity locus near y0 when the non-

generic geometry of a 3RPR robot with flat platforms is slightly per-
turbed (�d3 = 0.01, �— = ≠0.01). (b) The image of this ellipse
in the input plane is a deltoid ”, with cusps: k1 ¥ (0.9995, 1.5014),
k2 ¥ (0.9999, 1.4999) and k3 ¥ (1.0009, 1.4999). . . . . . . . . . . . . . . 89

3.35 A 2UPS-U parallel robot. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.36 Special singularities of a non-generic 2UPS-U robot. The details of

this example (e.g., numerical values of the geometric parameters of the
robot) are omitted here, but can be found in [130]. . . . . . . . . . . . . 91

4.1 (a) Model and (b) view parts of Easy Java Simulations. . . . . . . . . . 96
4.2 Website of the virtual laboratory PaRoLa. . . . . . . . . . . . . . . . . . 100
4.3 Simulated parallel robots implemented in PaRoLa. . . . . . . . . . . . . 101
4.4 Other remote and simulated robots implemented in PaRoLa. . . . . . . 103
4.5 Simulating the inverse kinematics in PaRoLa. (a) Dragging the end-

e�ector. (b) Switching between di�erent solutions of the inverse kine-
matic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

g



4.6 Simulating the forward kinematics in PaRoLa. (a) Dragging the actu-
ated joints. (b) Switching between di�erent solutions of the forward
kinematic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Evolution of the kinematic constraints defined by Equations (4.1) (red
curve) and (4.2) (blue curve), when describing the circular trajectory
shown in Figure 3.4. Solutions of the forward kinematics, which are
the intersection points between the red and blue curves, are enclosed
by magenta circles. Solutions ‡3 and ‡4 swap their positions along this
trajectory, resulting in a nonsingular transition (see Section 3.2.1). . . . 108

4.8 Evolution of the kinematic constraints defined by Equations (4.1) (red
curve) and (4.2) (blue curve), when approaching singularity ⁄fi shown
in Figure 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.9 (a): a non-generic 2UPS-U parallel robot with aligned universal joints.
(b-d): two diamonds degenerate into points for this non-generic robot.
(e): evolution of the solutions in the complex plane when approaching
one of the point diamonds. (f-h): evolution of the solutions in the real
plane when approaching one of the point diamonds. . . . . . . . . . . . 111

4.10 (a) Representation of the constant-orientation workspace in PaRoLa.
(b) Reachable workspace. (c) Planar slices of the singularity locus in
the joint space. (d) The forward kinematics can also be simulated by
dragging the actuated joint coordinates in the actuated joint space. . . . 112

4.11 PaRoLa is useful for analyzing how the workspace and singularities
transform under changes in the design of parallel robots. . . . . . . . . . 113

4.12 Trajectories of a 5R robot simulated in PaRoLa. (a-g): an unfeasible
trajectory. (h-n): a feasible trajectory. . . . . . . . . . . . . . . . . . . . 114

4.13 Joint space of the 5R robot, in which trajectories are planned. Left:
the “naive” planner does not take into account singularities, and plans
straight trajectories that may contain unfeasible values of the joint co-
ordinates. Right: the “intelligent planner” avoids unfeasible configura-
tions of the joint coordinates, finding a feasible joint trajectory. . . . . . 115

4.14 Simulating singular transitions in PaRoLa. . . . . . . . . . . . . . . . . 116

5.1 (a) 3D model of the climbing robot. (b) A symmetric 2RPR-PR parallel
mechanism used in the legs of the HyReCRo robot. . . . . . . . . . . . . 122

5.2 Kinematics of a generic leg j œ {A, B}. . . . . . . . . . . . . . . . . . . . 126
5.3 The Planar Symmetric Inverse Kinematic (PSIK) problem. . . . . . . . 129
5.4 (a) Executing a concave transition using a planar and symmetric pos-

ture. (b) Two-dimensional solution set R of the PSIK problem. . . . . . 131
5.5 PSIK postures for (a) longitudinally advancing along a beam, and (b)

performing convex transitions between adjacent faces of the same beam. 132
5.6 PSIK workspaces for di�erent values of the geometric design parameters

of the robot. In the axes, µ is in cm and Ê is in rad. . . . . . . . . . . . 133
5.7 An inchworm-like gait to move along a beam. . . . . . . . . . . . . . . . 134
5.8 Advancing longitudinally along a beam by using the rotations ◊A and

◊B of the hip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

h



5.9 (a) Symmetric 2RPR-PR parallel modules and (b) their equivalent serial
mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.10 Workspace of symmetric 2RPR-PR parallel modules. . . . . . . . . . . . 138
5.11 Desired position and orientation in Example 1. . . . . . . . . . . . . . . 149
5.12 Discrete approximation of the set Rf of feasible solutions to inverse

kinematics in Example 1, for Np = 5 · 104 points. . . . . . . . . . . . . . 150
5.13 Desired position and orientation in Example 2, where the robot performs

a convex transition between two planes. . . . . . . . . . . . . . . . . . . 151
5.14 Set Rf of feasible solutions to the inverse kinematics in Example 2, for

Np = 5 · 104 points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.15 Simulator developed for studying the forward and inverse kinematic

problems of the HyReCRo robot. . . . . . . . . . . . . . . . . . . . . . . 153
5.16 (a) Representation of the feasible regions Rf in the simulator. (b) Per-

forming self-motions in the simulator. . . . . . . . . . . . . . . . . . . . 155

6.1 (a) A box B is defined and discretized into nx, ny and nz cells along
the X, Y , and Z axes, respectively (in this figure: nx = 6, ny = 5 and
nz = 3). (b) Illustration of the neighbors of a cell C considered in this
chapter, in three and two dimensions. . . . . . . . . . . . . . . . . . . . 163

6.2 Variation of the reachable workspace when h is modified. . . . . . . . . 167
6.3 Variation of the reachable workspace when p is modified. . . . . . . . . 167
6.4 (a) Desired position and orientation to change between di�erent faces

of a beam. For �fl = 5 cm (b), the constant-orientation workspace for
the desired orientation does not contain the desired point, but it con-
tains the point for �fl = 6 cm (c). (d) Performing transitions between
di�erent beams using the default geometry. . . . . . . . . . . . . . . . . 169

6.5 Comparison between the workspace obtained sampling the joint coor-
dinates from uniform distributions (a) and the true workspace (b) of
the HyReCRo robot. The workspace in (b) has been obtained using the
new method proposed in Section 6.4. The time required to compute the
workspaces (a) and (b) is the same. . . . . . . . . . . . . . . . . . . . . . 170

6.6 Symmetric U-shaped beta distribution. . . . . . . . . . . . . . . . . . . . 172
6.7 A 2D example of the first stage of the proposed GG method. (a) First,

Ns = 17 seed joint coordinate vectors are randomly sampled in the
joint space. (b) These vectors are mapped to the workspace solving
the forward kinematic problem. The workspace is enclosed by a box B,
which is discretized into nx = 4 and ny = 3 cells along the X and Y
axes, respectively. (c) A database of cells is created, and up to Nc = 3
points are stored in each cell. Cells {#2, #3, #12} are empty, cells
{#1, #4, #6, #7, #9, #10, #11} are pending cells, and cells {#5, #8}
are full. Although cell #5 contains four points, only the first three
points {X1, X5, X8} are stored in the database since Nc = 3. . . . . . . 174

6.8 Boundaries of the reachable workspace, obtained with di�erent Monte
Carlo methods. The shown boundaries have been extracted from workspaces
composed of 3,527,664 points each. . . . . . . . . . . . . . . . . . . . . . 180

i



6.9 Intersections between the boundaries of Figure 6.8 and the plane z =
0.45 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.10 Time required to generate 3,527,664 workspace points with di�erent
Monte Carlo methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.11 Slices at z = 0.45 cm of the workspaces obtained using di�erent Monte
Carlo methods (the time is the same in all cases). The number of
points of the complete workspace (i.e., not only of the shown planar
boundaries) is indicated in each case. . . . . . . . . . . . . . . . . . . . . 182

6.12 Planar constant-orientation workspace, obtained approximating all equal-
ity constraints by narrow inequalities. . . . . . . . . . . . . . . . . . . . 183

6.13 Boundaries of the planar constant-orientation workspace, obtained with
di�erent Monte Carlo methods. The shown boundaries have been ex-
tracted from workspaces composed of 521,212 points each. . . . . . . . . 186

6.14 Time required to generate 521,212 workspace points with di�erent Monte
Carlo methods, when solving the equality constraints. . . . . . . . . . . 187

6.15 Computing the workspace of the HyReCRo robot using the GG method
in the developed simulator. . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.1 Workspace of a redundant 3R serial robot with l1 = 17.3, l2 = 7.8 and
l3 = 4.5. The first joint angle is subject to joint limits ◊1 œ [15, 165]¶;
the second and third joints can freely rotate. This example is very
similar to an example presented in [19]. . . . . . . . . . . . . . . . . . . 192

7.2 (a) Self-motion manifolds for task points {e, f, g} (in blue). (b) Sin-
gularities (in red). (c) C-bundles (in yellow), co-regular “surfaces” (in
red), Jacobian “surfaces” (in green), and w-sheets (in magenta). Note:
in this example, Jacobian and co-regular “surfaces” actually are points
and curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.3 A method to densely sample one-dimensional self-motion manifolds,
considering joint limits and collision constraints. In this example, the
forbidden shaded region shown in (b) and (c) may represent configura-
tions for which collisions occur. . . . . . . . . . . . . . . . . . . . . . . . 201

7.4 Matching self-motion manifolds {0a, 1a} at ta with self-motion mani-
folds {0b, 1b} at tb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.5 (a) Two-DOF and (b) three-DOF mechanisms used for illustrating elu-
sive barriers. Links OP and PQ have unitary length: OP = PQ = 1. . . 213

7.6 (a) Workspace of the robot of Figure 7.5a. Self-motion manifolds at
di�erent regions of this workspace are shown in (b), (c), and (d), in
blue continuous line. The perturbation of elusive barrier B is shown in
(e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.7 Maneuvering for traversing a point elusive barrier. . . . . . . . . . . . . 215
7.8 Stewart platform and associated notation. . . . . . . . . . . . . . . . . . 218
7.9 Workspace barriers of a Stewart platform with 1-dimensional self-motion

manifolds (‡m = 15). Mechanical interferences between di�erent links
are allowed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.10 Barriers obtained when forbidding mechanical interferences between dif-
ferent links in the example of Figure 7.9. . . . . . . . . . . . . . . . . . . 223

j



7.11 Workspace barriers of a Stewart platform with 2-dimensional self-motion
manifolds. Mechanical interferences are allowed. . . . . . . . . . . . . . 224

7.12 Barriers obtained when forbidding collisions in the example of Figure
7.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.13 Planar 3RRR parallel robot, and rectangular geometry of each distal
link AjBj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.14 Reachable workspace of a 3RRR parallel robot, including interior barri-
ers, when omitting collisions. Fixed joints of the robot are represented
for reference. Each serial limb OjAjBj is denoted by Lj . . . . . . . . . . 228

7.15 When forbidding collisions between distal links, interior barriers of the
reachable workspace shown in Figure 7.14 change drastically. . . . . . . 229

7.16 A 2D example that illustrates the process to determine whether a given
node k of the potential workspace is reachable or not. For a given
node k, the feasible regions Rf are calculated using all branches of
the solution of the inverse kinematic problem. In this case, the node
k belongs only to the workspaces of branches (‡1 = 1, ‡2 = 1) and
(‡1 = ≠1, ‡2 = ≠1) since these are the only branches leading to non-
empty feasible regions Rf . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.17 Planar constant-orientation workspace that provides the points at which
foot B can be placed with the same orientation as foot A. This constant-
orientation workspace is useful for planing longitudinal movements along
the direction of the beam. The workspaces associated with the branches
‡2 = ≠1 and ‡2 = 1 are represented in red and blue colors, respectively. 234

7.18 (a) A trajectory between both components of the workspace. (b) The
robot cannot reach the left component because it cannot cross a bound-
ary of the component in which it moves (the right component). When
approaching the boundary, the legs are about to collide: foot B is al-
most touching the central body of leg A. To cross the boundary, an
interference between these two bodies would be necessary. . . . . . . . . 235

7.19 Planar constant-orientation workspace containing all the points of the
plane pz = 0 that can be reached with foot B rotated 90¶ about the Z
axis with respect to foot A. . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.20 A posture which places foot B on beam 2 with the desired orientation,
using branch ‡2 = ≠1. In this posture, the robot collides with the
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7.21 Computing the workspace of the HyReCRo robot in the developed sim-
ulator, using the method proposed in Section 7.4. . . . . . . . . . . . . . 238

8.1 Prototype of the HyReCRo robot. . . . . . . . . . . . . . . . . . . . . . 243
8.2 (a) Parts of a switchable magnet. (b) Flat faces reduce flux leakage.

(c) Switchable magnet at OFF state. (d) Switchable magnet at ON state.245
8.3 Basic movements to explore structures: longitudinal displacement along

a beam (a), exterior transition between faces of a beam (b), and interior
transition between beams (c). . . . . . . . . . . . . . . . . . . . . . . . . 247

8.4 Geometry of the grippers to be designed. The XY Z axes shown in this
figure are parallel to the same axes depicted in Figures 8.3a,b,c. . . . . . 249

k



8.5 Positions of the centers of mass of the grippers (cG) and manipulator
(cM ) in general and for the three basic postures. . . . . . . . . . . . . . 252

8.6 Exploded view of the developed gripper. The electric circuit is not
represented. The figure only illustrates the switching mechanism for
one of the switchable magnets; this mechanism is repeated for the other
two switchable magnets. . . . . . . . . . . . . . . . . . . . . . . . . . . 254

8.7 Electric circuit of each gripper. . . . . . . . . . . . . . . . . . . . . . . . 255
8.8 Dimensions and details of the housings. . . . . . . . . . . . . . . . . . . 256
8.9 Positions of the ZMP for all design cases considered. . . . . . . . . . . . 257
8.10 Slippage of the fixed gripper due to insu�cient friction. . . . . . . . . . 258
8.11 (a) Removable friction accessory to prevent slippage. (b) Adjusting the

position of the friction accessory. (c) Photographies of the developed
accessory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

8.12 Free-body diagram of the fixed gripper when gravity acts along axis Z.
Torques are represented by double-headed arrows. . . . . . . . . . . . . 261

8.13 When the gripper starts to slip, it rotates about the ICR. . . . . . . . . 262
8.14 Graphical calculation of the ICR as the intersection of the curves defined

by Equations (8.26) (red dashed curve) and (8.27) (blue continuous
curve), for case LZ+ of Table 8.3. . . . . . . . . . . . . . . . . . . . . . . 266

8.15 Video frames of the robot performing a concave plane transition and
climbing up a beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

8.16 Video frames of the robot slipping due to insu�cient friction when grav-
ity acts along axis Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8.17 Video frames of the robot successfully performing a plane transition
with gravity acting along axis Z. Slippage is avoided thanks to friction
accessories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

l



List of Tables

7.1 Summary of the six experiments performed, indicating the dimensions
of the task space (m), joint space (n), and self-motion manifolds (r). . . 217

7.2 Geometry of a double-ring Stewart platform. . . . . . . . . . . . . . . . 220

8.1 Specifications of the cylindrical permanent magnets used. . . . . . . . . 255
8.2 Positions of the centers of mass of the manipulator and free gripper, in

mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.3 Summary of the static friction analysis for all cases for which gravity

acts along axis Z. In all cases: N2 = N3. . . . . . . . . . . . . . . . . . . 267

m





1 Introduction

1.1 Motivation

This thesis belongs to the field of robots designed for climbing three-dimensional
human-made structures, like those present in industrial pipelines [178], in metallic
bridges, and in the skeletons of buildings in the construction industry, among many
other [14]. These structures require inspection and maintenance tasks to guarantee
their safety and correct performance, tasks which are typically performed by teams of
human operators. However, these tasks are very dangerous for these operators due to
several risks, being the most evident and important risk the fall from a considerable
height.

With the purpose of avoiding risking the lives of human operators, several re-
searchers from all over the world have been investigating for more than thirty years the
possibility of employing climbing robots to perform these dangerous tasks. Dozens of
di�erent climbing robots have been proposed during this period, yet despite this e�ort,
the vast majority of these dangerous industrial inspection tasks are still performed by
human workforce in practice. While robotic manipulators have become very popular
and their use in modern factories and production lines has become completely gener-
alized and normalized, this is not certainly the case of climbing robots for industrial
inspection tasks, which rarely go beyond research laboratories.

Structure-climbing robots typically have an inchworm-like design, for they are
composed of a multi-degrees-of-freedom manipulator whose ends carry grippers with
which the robot adheres to the structure and climbs it. This design e�ectively turns
these robots into mobile manipulators, in which the base of the robot is no longer fixed
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Figure 1.1: The binary HyReCRo robot as originally proposed in [183].

but changes as the robot explores the structure. This manipulator-like architecture
grants these robots a high maneuverability that is necessary for exploring complicated
three-dimensional structures, which are typically crowded by obstacles [178]. However,
their manipulator-like architecture also complicates the development and use of these
robots in practice, since they are slow and it is much more di�cult to control them and
plan their movements when compared to other much simpler wheeled climbing robots
[177]. Indeed, the high complexity of inchworm-like structure-climbing robots seems to
be one of the major reasons that prevent the normalized and generalized use of these
robots in industrial inspection [177].

With the purpose of alleviating this complexity problem and simplifying the
architecture and operation of structure-climbing robots, Úbeda et al. [183] proposed
the biped robot shown in Figure 1.1a. The legs of this biped robot have a hybrid
serial-parallel architecture, since each such leg is composed of a serial combination
of two identical 2RPR-PR parallel mechanisms (this parallel mechanism is shown in
Figure 1.1b). Moreover, this robot has ten degrees of freedom (DOF), which makes
it kinematically redundant. Therefore, in the present thesis, this robot will be named
“HyReCRo”, which stands for Hybrid Redundant Climbing Robot.

Although the hybrid and redundant architecture of the HyReCRo robot initially
seems quite complex, the original advantage and novelty of this proposal was that,
by using only binary actuators, this robot could attain the basic postures necessary
for exploring three-dimensional structures, namely: convex plane transitions to change
between di�erent faces of a beam (Figure 1.1c) and concave plane transitions to change
between di�erent beams (Figure 1.1d). A structure-climbing robot with purely binary
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actuation is very attractive from the points of view of control and trajectory planning,
since both these problems are greatly simplified when considering binary actuation. In
principle, this may contribute to simplify the operation of structure-climbing robots
and encourage their use in industrial inspection tasks.

Nevertheless, it is argued here that a purely binary actuation scheme is not
completely feasible for structure-climbing robots. This is because, in order for these
robots to e�ectively climb and explore structures, they must place their grippers on
the surface of the structure or su�ciently close to it (so that they can be adhered to
the structure). However, this may not be possible in general if all actuators are binary,
since binary actuators provide only a finite and discrete number of di�erent postures,
and none of these postures may be able to place the grippers at the necessary position
for adhering to the structure. Therefore, it is necessary to continuously actuate at
least some (or all) of the actuators of the HyReCRo robot in order for this robot to be
able to finely place its grippers on the climbed structure and e�ectively perform plane
transitions like those shown in Figure 1.1c-d.

In fact, a mixed continuous-binary actuation scheme may be the most promising
solution. According to this mixed actuation scheme, purely binary actuators may be
initially used for coarsely placing the robot near the posture necessary for performing
a desired plane transition. After this, some of the actuators of the robot would be
continuously actuated in order to correct the discrete posture of the robot (obtained
using purely binary actuation) and finely place its grippers at the necessary position
for performing the desired plane transition. However, this requires performing first a
kinematic analysis of the HyReCRo robot as a robot with continuous actuators, i.e.,
a robot whose actuated joint coordinates can take any value between two joint limits.
This continuous kinematic analysis of the HyReCRo robot is the main purpose of the
present thesis.

Therefore, in this thesis, the binary actuation condition of the HyReCRo robot
is relaxed, and a comprehensive continuous kinematic analysis of this climbing robot
is presented. This analysis is a prerequisite for exploring mixed continuous-binary
actuation schemes in the future, like the proposal sketched in the previous paragraph.
The kinematic analysis presented in this thesis covers the forward and inverse kinematic
problems of the HyReCRo robot, as well as studies of its workspace. On the basis of
these kinematic analyses, a prototype of the HyReCRo robot using magnetic grippers
to adhere and climb real steel structures is also presented in this work.

1.1.1 Topics Covered by this Thesis
The next list summarizes the topics covered by the present thesis. All these topics are
explored in this thesis with a shared main objective: developing a functional prototype
of the HyReCRo robot for climbing real steel structures.

• Parallel kinematics. The HyReCRo robot has hybrid architecture, since it is
made of the serial combination of several 2RPR-PR parallel mechanisms of the
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type shown in Figure 1.1b. In order to solve the forward and inverse kinematic
problems of the complete HyReCRo robot, first it is necessary to solve these
problems for the 2RPR-PR parallel mechanisms that make up the legs of this
robot. As explained in Chapter 3 of the present thesis, the forward and inverse
kinematic problems of these parallel mechanisms were already solved by other
researchers in the past. However, the singularities of these mechanisms were not
investigated yet, so it becomes necessary to study them in the present thesis, in
order to avoid them in the design of the HyReCRo robot. When studying the
singularities of 2RPR-PR parallel mechanisms in the present thesis, it is found
that these mechanisms exhibit special singularities which are fourfold solutions of
the forward kinematic problem of these mechanisms, such that encircling these
special singularities allows the mechanism to switch between di�erent solutions
of the forward kinematics without crossing singularities (nonsingular transitions).

• Simulation of parallel robots. The kinematic analysis of the HyReCRo robot
and of its parallel mechanisms requires the development of new graphical simu-
lation tools that allow us to visualize the di�erent kinematic solutions of these
robot, as well as their singularities. The lack of existing tools that can satisfy the
specific functionalities required by the present thesis (namely: visualizing all the
solutions of the forward kinematics, and visualizing the continuous deformation
of singularity loci as the design of the robot is altered) has led to the development
of new simulation tools presented in Chapter 4 of the present thesis.

• Kinematic analysis of the HyReCRo robot. In this thesis, the forward and
inverse kinematic problems of the HyReCRo robot are solved, considering that all
its actuators are continuously actuated, instead of being binary. These problems,
which require solving first the kinematics of the 2RPR-PR parallel mechanisms,
have not been solved yet for the HyReCRo robot. Worthy of special mention is
the inverse kinematic problem of the HyReCRo robot, which is complicated due to
its serial-parallel architecture and its kinematic redundancy. Since the HyReCRo
robot has 10 degrees of freedom, and since 6 degrees of freedom are su�cient
for arbitrarily positioning and orienting a free body in three-dimensional space,
the solution sets (self-motion manifolds) of the inverse kinematic problem of this
robot generically are (10-6=)4-dimensional. This high dimension complicates
the resolution of the inverse kinematics problem, since 4-dimensional sets cannot
be represented graphically. However, Chapter 5 of the present thesis proposes
simple parameterizations and a compact representation of the solution sets of
the inverse kinematics of the HyReCRo robot, which consists in projecting these
4-dimensional solution sets on some 2- and 3-dimensional subspaces, without
losing relevant information due to this projection.

• Workspace analysis. The workspace of any robotic manipulator is the set of
positions and orientations that its end-e�ector can reach. The workspace is very
important for planning the movements of the robot, as well as for optimally
designing it. In the particular case of the HyReCRo robot, it is necessary to
study its workspace in order to ascertain whether a given design of this robot
will be able to perform the typical plane transitions required for exploring three-
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dimensional structures, which are convex transitions between di�erent faces of
a beam (Figure 1.1c) and concave transitions between di�erent beams (Figure
1.1d). Roughly speaking, the workspace typically is a volume containing all the
poses reachable by the end-e�ector of the robot. When analyzing workspaces,
we can focus on two levels:

– External level. This means that we focus on the outermost boundaries of
the workspace, which define its shape. This analysis gives an idea of the
volume of the workspace, i.e., of the amplitude of movements of the robot.
Most research works on the workspace of robotic manipulators are limited
only to the external level of the workspace.

– Internal level. Inside the workspaces of robot manipulators, normally there
exist interior barriers due to singularities, joint limits, or collision constraints.
These are kinematic barriers which block the motion of the robot. They
are very important for planning the trajectories of a robot since trajectories
crossing these barriers may be unfeasible in practice, depending on the
posture of the robot when approaching them.

The external level of the workspace of the HyReCRo robot (i.e., its boundaries)
is studied in Chapter 6 of the present thesis. Due to the complexity of the
architecture of the HyReCRo robot, Monte Carlo methods turn out to be the
most suitable ones for obtaining the boundaries of this robot. However, these
methods usually yield imprecise results, in which the boundaries of the workspace
are not clearly defined. In order to avoid this, Chapter 6 proposes a new improved
Monte Carlo method for obtaining the boundaries of the workspace of robotic
manipulators with higher precision than previous Monte Carlo methods, without
increasing the computation time.
The internal level of the workspace (i.e., interior barriers) is addressed in Chapter
7. After analyzing the state of the art of existing methods for computing interior
barriers, it is concluded in this thesis that these methods find di�culties for
obtaining these barriers under collision constraints (i.e., interior barriers generated
due to the condition that di�erent bodies cannot mechanically interfere). In the
HyReCRo robot, collision constraints are very important, since the robot must
not collide with itself or with the climbed structure. Chapter 7 presents a new
method for obtaining interior barriers of the workspace of redundant robots under
collision constraints. Unlike previously existing methods, the method proposed
in this thesis can easily accommodate arbitrarily complex collision constraints
(i.e., collisions between arbitrarily-shaped bodies with arbitrary relative pose).
To that end, the method developed in Chapter 7 identifies the interior barriers
of the workspace with the vanishing of disjoint components of the self-motion
manifolds.

• Development of a prototype with magnetic grippers. To conclude this the-
sis, a completely functional prototype of the HyReCRo robot is built. The design
of this prototype is based on the kinematic analyses and simulations developed
in this thesis, which allow the designer to determine the dimensions that the
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Figure 1.2: Venn diagram illustrating the main topics covered by the present thesis.

HyReCRo robot should have in order for this robot to be able to perform convex
and concave plane transitions. Chaper 8 presents the detailed design of mag-
netic grippers for this prototype, so that it can adhere to real steel structures
and climb them. The developed magnetic grippers are based on the technology
of switchable magnets, which are safer and more energy-e�cient than tradi-
tional electromagnets. Moreover, these grippers are very compact, which makes
them especially suitable for adhering to the narrow beams that make up three-
dimensional steel structures.

Figure 1.2 presents a Venn diagram illustrating all these topics studied in the present
thesis.

1.2 Objectives

The main objective of the present thesis is the continuous kinematic analysis of the
HyReCRo climbing robot, as well as the development of a functional prototype of this
robot to climb real steel structures. To that end, several goals were established:

• Analyzing the kinematics of 2RPR-PR parallel mechanisms. These parallel
mechanisms compose the legs of the HyReCRo robot. Therefore, analyzing
their kinematics is a necessary step for solving the kinematics of the complete
HyReCRo robot. Chapter 3 presents a comprehensive analysis on the kinematics
and singularities of these parallel mechanisms.
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• Developing graphical simulation tools for studying parallel robots. In order
to perform the kinematic analyses required by the present thesis, it is necessary
to develop new graphical simulation tools to visualize the solutions of the forward
kinematics of parallel robots and their singularities. The developed simulation
tools are presented in Chapter 4.

• Solving the forward and inverse kinematic problems of the complete HyRe-
CRo robot. These two problems are solved in Chapter 5, departing from the
kinematic analysis of the 2RPR-PR parallel mechanisms.

• Computing the workspace of the HyReCRo robot. In order to aid in the
optimal design of the HyReCRo robot and in the planning of its trajectories, it is
necessary to obtain and visualize its workspace. Chapter 6 develops a new Monte
Carlo method to obtain the workspace of robot manipulators more accurately
than with previous methods.

• Obtaining interior workspace barriers under collision constraints. In order
to e�ectively plan the trajectories of redundant robots like the HyReCRo robot,
which explores environments that include obstacles, it is necessary to obtain the
interior barriers of the workspace originated by collision constraints. Chapter 7
develops a method able to easily deal with arbitrarily complex collision constraints
when computing the interior barriers of the workspace of redundant manipulators.

• Developing a functional prototype of the HyReCRo robot with magnetic
grippers. To conclude this thesis, it is necessary to develop a functional prototype
of the HyReCRo robot using magnetic grippers to adhere to real steel structures
and climb them. Chapter 8 presents such a prototype, whose grippers employ
the technology of switchable magnets in order to firmly adhere to ferromagnetic
surfaces even in the most critical climbing situations.

1.3 Framework of this Thesis

This thesis has been developed under a wider framework supported by di�erent grants,
research projects, and collaborations, as detailed next.

1.3.1 Grants and Awards
The development of thesis has been mainly supported by an FPU grant from the Spanish
Ministry of Education, Culture, and Sport. This grant, whose reference number is
FPU13/00413, has supported financially the author of the present thesis during four
years (from September 2014 to September 2018), in order to develop this thesis during
this period.

Also, another grant from the Spanish Ministry of Education was conceded to the
author of this thesis in 2016 in order to do a short research stay at a foreign university,
as described in the next subsection.
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Finally, it is worth mentioning that a 6-pages communication summarizing this
thesis [139] was presented at the 2018 Spanish Robotics Conference in Valladolid (June
14-15, 2018). This communication was awarded the Best PhD Thesis Communication
Award of this conference.

1.3.2 Research Stays and Collaborations
From September to November 2016, the author of this thesis spent three months
collaborating at the Institute of Systems and Robotics of the University of Coimbra
(Portugal). The objective of this research stay, which was supervised by Prof. Dr.
Mahmoud Tavakoli, was to investigate the kinematic calibration of the climbing robot
studied in the present thesis, as well as to investigate the use of switchable magnets
to develop magnetic grippers for this climbing robot (see chapter 8). This research
stay was supported by the Spanish Ministry of Education, through grant with reference
number EST15/00483.

1.3.3 Projects
The present thesis has been developed under the PhD project entitled “Planificación de
movimientos de robots en entornos no estructurados” (Planning movements of robots
in unstructured environments), which was the original name of the PhD project granted
by the Spanish Ministry of Education with the purpose of analyzing and designing the
HyReCRo climbing robot. This project has been supported by the FPU grant referred
above.

1.4 Publications

The research work conducted in the present thesis has produced 7 journal papers
ranked in JCR Science Edition, 1 book chapter, 10 international conference papers,
and 8 national conference papers.

Section 1.4.1 presents the two main JCR publications achieved under this thesis,
which support much of the developed research work. Section 1.4.2 summarizes the rest
of the publications, which are also intimately related to this thesis.

The last section of each chapter of this thesis includes a list indicating which
of these publications are related to the research work presented in the corresponding
chapter.

1.4.1 Journal Publications Supporting this Thesis
The two main contributions of this thesis are supported by a couple of articles pub-
lished in JCR-indexed journals belonging to the first quartile (Q1) of their respective
categories. These two articles, whose metadata are provided next, are directly aligned
with the motivation and objectives of the present PhD thesis.
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• An improved Monte Carlo method based on Gaussian growth to calculate the
workspace of robots. [145]
A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá
Eng. Appl. of Artificial Intelligence. Vol 64, pp. 197-207 (2017)
ISSN: 0952-1976. Ed. Elsevier.
JCR-SCI Impact Factor: 2.819, Quartile Q1
Web: https://doi.org/10.1016/j.engappai.2017.06.009

DOI: 10.1016/j.engappai.2017.06.009

• A method based on the vanishing of self-motion manifolds to determine the
collision-free workspace of redundant robots. [146]
A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá
Mechanism and Machine Theory. Vol 128, pp. 84-109 (2018)
ISSN: 0094-114X. Ed. Elsevier.
JCR-SCI Impact Factor: 2.796, Quartile Q1
Web: https://doi.org/10.1016/j.mechmachtheory.2018.05.013

DOI: 10.1016/j.mechmachtheory.2018.05.013

The first article proposes a new improved Monte Carlo method for accurately
computing the workspaces of robot manipulators with complex architecture, like the
HyReCRo robot. This method is more e�cient than previously existing Monte Carlo
methods since it can attain much higher accuracy than these methods, requiring the
same or less computation time than them. This method, which is developed in Chapter
6, consists in uniformly “growing” the workspace using normal distributions, until the
boundaries of the workspace are reached.

The second article proposes a new sampling and clustering method for obtaining
the interior barriers of the workspace of redundant manipulators, like the HyReCRo
robot. The main contribution of this method is that it is able to handle arbitrarily-
complex collision constraints very easily, whereas previous methods find it di�cult to
handle these constraints e�ectively. The proposed method identifies the interior barriers
of the workspace of redundant manipulators with the vanishing of disjoint components
of their self-motion manifolds. This method is developed in Chapter 7.

These two articles are appended in Appendix A.

1.4.2 Other Publications Related to this Thesis
In addition to the two main publications presented above, during this thesis many
other articles were published in JCR-indexed journals and conferences. These additional
publications are also related to much of the research work presented in the next chapters
of this thesis.

1.4.2.1 JCR-indexed journals

• A. Peidró, A. Gil, J.M. Marín, L. Payá, and Ó. Reinoso. On the stability of the
quadruple solutions of the forward kinematic problem in analytic parallel robots.
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Journal of Intelligent & Robotic Systems, 86(3):381–396, 2017 [135] (SCI-JCR
Impact Factor: 1.583, Q3).

• A. Peidró, A. Gil, J.M. Marín, and Ó. Reinoso. A web-based tool to analyze the
kinematics and singularities of parallel robots. Journal of Intelligent & Robotic
Systems, 81(1):145–163, 2016 [137] (SCI-JCR Impact Factor: 1.512, Q3).

• A. Peidró, J.M. Marín, A. Gil, and O. Reinoso. Performing nonsingular transitions
between assembly modes in analytic parallel manipulators by enclosing quadruple
solutions. ASME Journal of Mechanical Design, 137(12):122302, 2015 [140]
(SCI-JCR Impact Factor: 1.444, Q2).

• A. Peidro, A. Gil, J.M. Marin, and O. Reinoso. Inverse kinematic analysis of
a redundant hybrid climbing robot. International Journal of Advanced Robotic
Systems, 12(11):163, 2015 [136] (SCI-JCR Impact Factor: 0.615, Q4).

• A. Gil, A. Peidró, Ó. Reinoso, and J.M. Marín. Implementation and assessment
of a virtual laboratory of parallel robots developed for engineering students. IEEE
Transactions on Education, 57(2):92–98, 2014 [60] (SCI-JCR Impact Factor:
0.842, Q3).

1.4.2.2 Book chapters

• A. Peidró, A. Gil, J.M. Marín, Y. Berenguer, and Ó. Reinoso. Kinematics, sim-
ulation, and analysis of the planar and symmetric postures of a serial-parallel
climbing robot. In Joaquim Filipe, Kurosh Madani, Oleg Gusikhin, and Jurek
Sasiadek, editors, Informatics in Control, Automation and Robotics 12th Inter-
national Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised
Selected Papers, pages 115–135. Springer International Publishing, 2016 [133].

1.4.2.3 International conferences

• A. Peidró, J.M. Marín, Ó. Reinoso, L. Payá, and A. Gil. Parallelisms between
planar and spatial tricept-like parallel robots. In Vigen Arakelian and Philippe
Wenger, editors, ROMANSY 22 – Robot Design, Dynamics and Control, pages
155–162. Springer International Publishing, 2019 [141].

• A. Peidró, C. Tendero, J.M. Marín, A. Gil, L. Payá, and Ó. Reinoso. m-PaRoLa:
a mobile virtual laboratory for studying the kinematics of five-bar and 3RRR
planar parallel robots. IFAC-PapersOnLine, 51(4):178 – 183, 2018. 3rd IFAC
Conference on Advances in Proportional-Integral-Derivative Control (PID 2018)
[153].

• A. Peidró, A. Belando, D. Valiente, O. Reinoso, and L. Payá. A multi-perspective
simulator for visualizing and analyzing the kinematics and singularities of 2UPS/U
parallel mechanisms. In INTED2018 Proceedings, 12th International Technology,
Education and Development Conference, pages 3785–3793. IATED, 2018 [130].
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• A. Peidró, Ó. Reinoso, J.M. Marín, A. Gil, L. Payá, and Y. Berenguer. A simula-
tion tool for visualizing the assembly modes and singularity locus of 3RPR planar
parallel robots. In Anibal Ollero, Alberto Sanfeliu, Luis Montano, Nuno Lau,
and Carlos Cardeira, editors, ROBOT 2017: Third Iberian Robotics Conference:
Volume 1, pages 516–528. Springer International Publishing, 2018 [150].

• A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá, and Y. Berenguer. Second-
order Taylor stability analysis of isolated kinematic singularities of closed-chain
mechanisms. In Proceedings of the 14th International Conference on Informatics
in Control, Automation and Robotics - Volume 2, pages 351–358. INSTICC,
SciTePress, 2017 [148].

• A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá, and Y. Berenguer. Calculation
of the boundaries and barriers of the workspace of a redundant serial-parallel
robot using the inverse kinematics. In Proceedings of the 13th International
Conference on Informatics in Control, Automation and Robotics, volume 2, pages
412–420, 2016 [147].

• A. Peidró, Ó. Reinoso, A. Gil J.M. Marín, and L. Payá. A simulation tool to study
the kinematics and control of 2RPR-PR parallel robots. IFAC-PapersOnLine,
49(6):268–273, 2016. 11th IFAC Symposium on Advances in Control Education
(ACE 2016) [149].

• A. Peidró, A. Gil, J.M. Marín, Y. Berenguer, L. Payá, and O. Reinoso. Monte-
carlo workspace calculation of a serial-parallel biped robot. In Luís Paulo
Reis, António Paulo Moreira, Pedro U. Lima, Luis Montano, and Victor Muñoz-
Martinez, editors, Robot 2015: Second Iberian Robotics Conference, pages 157–
169, 2016. Springer International Publishing [131].

• A. Peidró, O. Reinoso, A. Gil, J.M. Marín, and L. Payá. A virtual laboratory
to simulate the control of parallel robots. IFAC-PapersOnLine, 48(29):19 – 24,
2015 [143].

• A. Peidró, A. Gil, J.M. Marín, Y. Berenguer, and Ó. Reinoso. Kinematic analysis
and simulation of a hybrid biped climbing robot. In 2015 12th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO), volume 2,
pages 24–34, 2015 [132].

1.4.2.4 National conferences

• A. Peidró, J.M. Marín, A. Gil, Y. Berenguer, and Ó. Reinoso. Analysis and
design of a serial-parallel redundant biped climbing robot. In Libro de Actas de
las Jornadas Nacionales de Robótica 2018, 2018 [139].

• A. Peidró, L. Payá, V. Román, J.M. Marín, A. Gil, and O. Reinoso. Laboratorio
virtual móvil de robots paralelos. Aceptado, a ser publicado en las Actas de las
XXXIX Jornadas de Automática. CEA, 2018 [142].
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• A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, and L. Payá. Análisis de estabilidad
de singularidades aisladas en robots paralelos mediante desarrollos de Taylor de
segundo orden. In Actas de las XXXVIII Jornadas de Automática, pages 821–828.
CEA, 2017 [144].

• A. Peidró, A. Hortal, A. Gil, J.M. Marín, D. Úbeda, and Ó. Reinoso. Modelado
dinámico y simulación de un robot trepador tipo serie con 4 grados de libertad.
In Actas de las XXXVII Jornadas de Automática, pages 1067–1074, 2016 [138].

• A. Peidró, O. Reinoso, L. Payá, Y. Berenguer, A. Gil, and J.M. Marín. Análisis
cinemático y simulación de un robot trepador con arquitectura serie-paralela. In
Actas de las XXXVI Jornadas de Automática, pages 400–407. CEA, 2015 [151].

• A. Peidró, A. Gil, J.M. Marín, L. Payá, and O. Reinoso. Control de un ascensor
como caso práctico para la docencia de control avanzado. In Actas de las XXXV
Jornadas de Automática, page Capítulo 2. CEA, 2014 [134].

• A. Peidró, J.J. Rodríguez, J.M. Azorín, and O. Reinoso. Implementación de una
maqueta de control bilateral de 1 GDL con Arduino para telerrobótica. In Actas
de las XXXV Jornadas de Automática, page Capítulo 68. CEA, 2014 [152].

• A. Gil, A. Peidró, J.M. Marín, O. Reinoso, D. Valiente, L.M. Jiménez, and
M. Juliá. Laboratorio virtual y remoto de robots paralelos. In Actas de las
XXXIV Jornadas de Automática, pages 235–241. CEA, 2013 [59].

1.4.2.5 Pending publications

In addition to all the journal and conference papers listed above, which are already
published, there are some unpublished results of the present thesis that will be sub-
mitted for publication in other journals in the near future. These pending publications
are:

• A paper on the state of the art of climbing robots, related to Chapter 2.

• A paper on an updated and improved version of the virtual laboratory PaRoLa
presented in Chapter 4, with additional robots and functionalities.

• A paper on the design of the magnetic grippers presented in Chapter 8.

1.5 Structure of this Thesis

This document has been organized as follows:

• Chapter 2 presents an up-to-date literature review of the wide and rich field of
climbing robots, with the purpose of better contextualizing the HyReCRo climb-
ing robot studied in the present thesis. In this chapter, climbing robots are
classified in terms of the environments that they explore, in order to better iden-
tify the class of structure-climbing robots to which the HyReCRo robot belongs.
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1.5. Structure of this Thesis

After reviewing the main classes of climbing robots identified in the scientific
literature, the origins of the HyReCRo robot as a robot with purely binary actu-
ators are revisited, discussing the advantages and shortcomings of using purely
binary actuation schemes in climbing robots.

• Chapter 3 presents a comprehensive kinematic analysis of the 2RPR-PR parallel
mechanisms that make up the legs of the HyReCRo robot. This kinematic anal-
ysis is necessary for analyzing the kinematics of the complete HyReCRo robot in
later chapters. To that end, this chapter solves the forward kinematics of these
2RPR-PR parallel mechanisms, analyzing also their singularities.

• Chapter 4 presents PaRoLa, a collection of Java graphical simulation tools de-
veloped within the framework of this thesis with the main purpose of aiding in
the diverse kinematic analyses performed for the 2RPR-PR mechanisms, for the
HyReCRo robot, and for many more parallel robots.

• Chapter 5 presents the kinematic analysis of the complete HyReCRo robot, de-
parting from the kinematic analysis of the 2RPR-PR parallel mechanisms per-
formed in Chapter 3. Accordingly, the forward and inverse kinematic problems
of the HyReCRo robot are solved in this chapter.

• Chapter 6 deals with the computation of the boundaries of the workspace of the
HyReCRo robot. To that end, methods for computing the workspace of robot
manipulators are first reviewed, in order to choose the method that best fits the
characteristics of the HyReCRo robot. Using Monte Carlo methods, the e�ects of
changes of the design of the HyReCRo robot on its workspace are investigated.
Also, some accuracy problems of Monte Carlo methods are discussed in this
chapter, and a new Monte Carlo method for obtaining the workspaces of robot
manipulators more accurately is developed.

• Chapter 7 copes with the calculation of the interior barriers of the workspace of
the HyReCRo robot. These kinematic barriers are important when planning tra-
jectories, since they constitute motion impediments for the robot. First, existing
methods for obtaining the interior barriers of the workspace of robot manipula-
tors are reviewed, analyzing their ability to handle collision constraints. Then, a
novel method for e�ectively obtaining the interior barriers of the workspaces of
redundant robots considering collision constraints is developed.

• Chapter 8 presents a lightweight prototype of the HyReCRo robot, mainly made
of 3D-printed parts. The geometric design of this prototype is based on the
kinematic and workspace analyses performed in previous chapters, which are used
to determine the necessary dimensions of the robot so that it can perform the
necessary motions for exploring three-dimensional structures, namely: concave
and convex plane transitions. After briefly presenting this prototype, this chapter
presents the detailed design of magnetic grippers based on the technology of
switchable magnets, so that the developed prototype can use these grippers to
adhere to real steel structures and climb them.

13
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• Finally, Chapter 9 summarizes the main contributions of this thesis, and hints
possible future research works derived from these contributions.

1.6 Summary of Materials, Methods, and Discussion of
Results

This section presents a summary of the main materials and methods used for developing
the research work presented in this thesis. Also, the main results obtained in each
chapter will be briefly exposed and discussed.

1.6.1 Materials
The following list summarizes the main materials and tools used during the development
of this thesis.

• Easy Java Simulations (EJS). This authoring tool, originally designed for aiding
in the development of educational simulators, has proven to be extremely useful
in the present thesis for developing simulation tools that support the kinematic
analysis of the HyReCRo robot and of the 2RPR-PR parallel mechanisms that
make up its legs. Most of the simulations presented in the next chapters have
been performed through Easy Java Simulations; in fact, Chapter 4 is devoted
to introducing these developed simulations. The reason for choosing this tool
over other options like Matlab (which has also been used in some parts of this
thesis for performing symbolic calculations and doing other minor simulations)
is that EJS allows one to easily build graphical representations of the simulated
robots, which are of great support when analyzing the kinematics, workspace,
and singularities of parallel robots. A brief introduction to Easy Java Simulations
is presented in Section 4.1.

• 3D printer. A custom-made 3D printer, developed by Prof. Dr. José María
Marín, has been used for printing some PLA parts of the prototype of the HyRe-
CRo robot presented in Chapter 8.

• Prototype of the HyReCRo robot. For the last part of this thesis, a prototype
of the HyReCRo robot was built, with the purpose of testing this climbing robot
on real steel structures. This prototype is described in Chapter 8, it weighs 2.19
kg, it is mainly made of aluminum and 3D-printed PLA parts, it is controlled by
an Arduino MEGA 2560 board, and it is driven by Maxon and Actuonix electric
DC actuators.

• Magnetic grippers. In Chapter 8, the development of novel magnetic grippers
for the HyReCRo robot is described. These magnetic grippers are made of PLA
3D-printed parts, steel housings, and neodymium permanent magnets. They
also carry Pololu DC micromotors, as well as Vytaflex rubber pads for increasing
friction and preventing slippage (see Chapter 8 for more details).
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• MPJExpress [170]. This Java library has been used to parallelize over eight
processors the execution of the method proposed in Chapter 7 for obtaining the
interior barriers of the workspace of redundant robots under collision constraints.

• SOLID [188]. This C library has been used in Chapter 7 to detect collisions
between di�erent cylindrical bodies of the Stewart platform.

1.6.2 Methods
The following list summarizes the main methods used during the development of this
thesis.

• Elimination methods. For solving the position problem of robots and mech-
anisms in this thesis (i.e., their forward and inverse kinematic problems), the
preferred methods have been elimination methods. These methods consist in
carefully eliminating unknowns from the system of equations in successive steps,
until the problem is reduced to finding the roots of a univariate polynomial in one
of these unknowns. The reasons for preferring elimination methods over other
methods are their low CPU times and the possibility of obtaining all solutions,
including the non-real ones. In this thesis, elimination methods have been used
for:

– Solving the forward kinematic problem of 2RPR-PR and 3RPR parallel ma-
nipulators in Chapter 3.

– Implementing the simulation of the forward and inverse kinematics of par-
allel robots in the virtual laboratory PaRoLa presented in Chapter 4.

– Solving the forward and inverse kinematic problems of the complete HyRe-
CRo robot in Chapter 5.

– Solving the forward kinematics to generate random workspace points in the
Monte-Carlo methods described in Chapter 6.

– Densely sampling the self-motion manifolds of redundant robots in the
method proposed in Chapter 7 for obtaining the interior barriers of their
workspace under collision constraints.

– Determining the minimum static friction coe�cient necessary to prevent
slippage of the grippers, in Chapter 8 (part of this problem is solved graph-
ically, as explained next).

However, elimination methods may have some limitations. On the one hand,
these methods may miss solutions or may introduce spurious solutions. On the
other hand, in some cases elimination methods become impractical since they lead
to univariate polynomials whose degree is too high, and even computer algebra
systems find it di�cult to obtain the final univariate polynomial obtained after
eliminating all other unknowns. For these reasons, at some points of this thesis,
graphical methods have been used for solving nonlinear systems of equations
instead of elimination methods, as explained next.
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• Graphical methods. For nonlinear systems of two equations in two unknowns,
these two equations can be regarded as defining two curves in the plane of these
unknowns. Thus, one can plot these curves and solve the original system by
finding the points where these two curves intersect. This graphical method has
been used at two points of this thesis:

– For solving the forward kinematics of 2-degrees-of-freedom degenerate par-
allel robots. The forward kinematics of the degenerate 2UPS-U parallel
robot studied in Section 3.6.4 has a positive-dimensional solution set that
can be missed by elimination methods. Alternatively, the simulators pre-
sented in Chapter 4 solve graphically this problem as the intersection of
two planar curves, and this graphical resolution does not miss solutions
(see Section 4.4.3.2).

– For determining the coordinates of the Instantaneous Center of Rotation
(ICR) of the fixed gripper of the HyReCRo robot when it is on the verge
of slipping due to insu�cient friction. As shown in Section 8.7.2, the co-
ordinates of the ICR must be solved from a system of two highly nonlinear
equations that are too complicated to be solved via elimination. Therefore,
it is much more practical to solve these equations graphically.

Other graphical methods have been used to solve the inverse kinematics of the
HyReCRo robot in Chapter 5. Since this is a kinematically redundant robot, the
solution to its inverse kinematic problem is a positive-dimensional set (generically,
a positive-dimensional manifold). As explained in Chapter 5, one possible way to
solve the inverse kinematics of the HyReCRo robot consists in plotting projections
of these positive-dimensional solution sets on two- and three-dimensional spaces
(e.g., see Figures 5.4, 5.12, and 5.14).

• Monte Carlo methods. Classical Monte Carlo methods have been compared in
Chapter 6 with a new Monte Carlo method developed in that chapter to obtain
the boundaries of the workspace more accurately. As explained in that chapter,
beta and Gaussian random numbers were generated from uniformly distributed
numbers in (0, 1) using the methods of Johnk ([49], p. 432) and Box-Muller
([49], p. 235), respectively.

• kd-trees. kd-trees are used by the method proposed in Chapter 7 to obtain the
interior barriers of the workspace of redundant robots under collision constraints.
More precisely, kd-trees are used in that chapter for clustering and matching
discrete approximations of disjoint components of self-motion manifolds.

1.6.3 Results and Discussion
To conclude this introductory chapter, this subsection summarizes and discusses the
main results derived from the research work described in each chapter. Most of these
results have been published in JCR-indexed journals, as well as in peer-reviewed national
and international conferences. All these publications have been listed in Section 1.4.
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• Chapter 2: the review of the state of the art of climbing robots suggests that
step-by-step structure-climbing robots can be very versatile, but they are usually
too complex and this may contribute to the fact that the use of these robots in
industrial inspection has not managed to generalize in practice. As an attempt
to simplify these robots, the HyReCRo robot was originally proposed in the past
as a robot with purely binary actuators, but purely binary actuation may prevent
the robot from finely adjusting the position of its grippers to adhere them to
the structure and perform plane transitions. It will be necessary to continuously
actuate some of the actuators of the robot to finely position and attach its
grippers to the climbed structure. Thus, a continuous kinematic analysis of the
HyReCRo robot is necessary, and this analysis is conducted in the next chapters
of the present thesis. This continuous analysis will be a necessary preliminary
step to propose mixed continuous-binary motion schemes in the future.

• Chapter 3: this chapter mainly focuses on the kinematic analysis of the 2RPR-PR
parallel mechanisms that make up the legs of the HyReCRo robot. First, it is
found that the kinematics of these mechanisms was solved by other researchers
in the past. In this chapter, however, the forward kinematics and singularities
are revisited and studied in more depth, and it is demonstrated for the first time
that this mechanism always exhibits two special singularities which are fourfold
solutions of the forward kinematic problem. One of these two singularities is
isolated, and this chapter demonstrates that encircling this isolated singularity
allows this mechanism to perform transitions between di�erent solutions of the
forward kinematics (also known as assembly modes) without traversing singu-
larities. Then, this chapter extends this analysis to well-known 3RPR planar
parallel robots with flat platforms, which are shown to exhibit analogous fourfold
singularities and the ability to perform nonsingular transitions by encircling these
singularities. Despite all of this, the HyReCRo robot (whose legs are composed
of these 2RPR-PR parallel mechanisms) cannot perform such nonsingular tran-
sitions since its joint limits completely separate the di�erent assembly modes of
its 2RPR-PR mechanisms and do not allow for encircling the aforementioned
fourfold singularities. Actually, this separation of assembly modes is beneficial
for simplifying the kinematic analysis of the complete HyReCRo robot in Chapter
5.

• Chapter 4: the authoring tool Easy Java Simulations turned out to be very
useful for developing graphical simulators of parallel robots in this thesis. The
simulators developed using this tool, and presented in Chapter 4, allow the user
to visualize and graphically analyze the solutions of the forward and inverse
kinematic problems of parallel robots, as well as their workspace and singularities.
In particular, the developed tools have proven to be especially useful and powerful
when visualizing how the singularities and workspace of parallel robots deform
under changes in the design of the robot.

• Chapter 5: in this chapter, the forward and inverse kinematic problems of the
HyReCRo robot are solved.
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– Regarding the forward kinematic problem, this problem is quite straight-
forward once the forward kinematics of the 2RPR-PR parallel modules of
the legs of the robot is solved. In principle, since the forward kinematics
of each of these modules has four real possible solutions, one should ex-
pect 44 = 256 di�erent solutions to the forward kinematics of the complete
HyReCRo robot (since this robot is made of the serial combination of four
2RPR-PR parallel modules). However, due to joint limits and collision con-
straints, only one of these four solutions of the parallel modules is valid,
which means that the forward kinematics of the complete HyReCRo robot
has only one collision-free solution.

– After solving the forward kinematics, a simplified version of the inverse
kinematics is solved before addressing the general inverse kinematics of
the HyReCRo robot, which is a more complex problem. This simplified
version considers planar and symmetric postures of this robot. Although
these postures may seem limited, it its found that they are very useful for
analyzing the basic movements necessary for exploring structures, such as
longitudinal movements along beams, convex transitions between di�erent
faces of the same beam, or concave transitions between di�erent beams.
After solving the Planar and Symmetric Inverse Kinematic (PSIK) problem,
the PSIK-workspace (i.e., the reachable space attainable by the HyReCRo
robot using only planar and symmetric postures) is analyzed in order to
determine the sensitivity of this workspace with respect to its geometric
design parameters. From this analysis, it is found that the workspace is
most sensitive to changes in the width of the feet, which is one of the main
geometric parameters of the 2RPR-PR parallel modules, and in the stroke
of the linear actuators used in these parallel modules.

– After solving the simplified inverse kinematic problem that considers only
planar and symmetric postures, the general inverse kinematic problem of
the HyReCRo robot is solved. Due to the kinematic redundancy of the
HyReCRo robot, this problem has infinitely many di�erent solutions lying
on the so-called self-motion manifolds of redundant robots. For the HyRe-
CRo robot, these manifolds generically are four dimensional. However, it is
found that these manifolds become five-dimensional for special singularities
of this robot in which one of the faces of both its feet become parallel,
which turns out to be a very frequent case when performing plane transi-
tions in a structure. In both cases, with four- or five-dimensional manifolds,
the high dimensions of these self-motion manifolds impedes plotting them
and performing a graphical analysis of the solutions of the inverse kinemat-
ics of this robot. Nevertheless, it is found that, for the HyReCRo robot,
these four-dimensional manifolds can be projected to two-dimensional sub-
spaces without losing relevant information regarding the overall posture of
the robot, which allows for an intuitive and compact graphical visualization
of the solutions of the inverse kinematics of this complex robot (analo-
gously, in the case of five-dimensional manifolds, they can be projected to
three-dimensional subspaces). Using these lower-dimensional projections,
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compact graphical representations of the solutions to the inverse kinematic
problem of the HyReCRo robot can be visualized, which is of great use for
planning the movements of this robot (i.e., for determining how to reach a
desired position and orientation).

• Chapter 6: in this chapter, conventional Monte Carlo methods are first used
for obtaining the workspace of the HyReCRo robot and study the sensitivity of
its shape with respect to the design parameters of this robot, supporting the
results found in Chapter 5 for the PSIK-workspace: the workspace of this robot
is most sensitive to the width of its feet and the stroke of its linear actuators.
Then, after discussing the limitations of existing Monte Carlo methods, which
cannot obtain accurately the boundaries of the workspace even when largely
increasing the number of randomly sampled points, a new Monte Carlo method
is proposed in this chapter. Through several experiments performed with the
workspace of the HyReCRo robot, it is demonstrated that the new proposed
method can compute the boundaries of the workspace of robot manipulators
more accurately than previous methods, requiring the same or less computation
time than them, which makes the proposed method more e�cient. The proposed
method consists in using normal distributions to uniformly “grow” the workspace
until its boundaries are reached.

• Chapter 7: this chapter begins by analyzing the limitations of existing methods for
obtaining the interior barriers of the workspace of redundant manipulators under
collision constraints. It is argued in this chapter that, with the exception of some
simple cases, collision constraints generally are too complex for existing methods
to accommodate them. Thus, in order to compute the interior workspace barriers
in redundant robots under general collision constraints (which are important for
the HyReCRo robot), a new method is developed in this chapter which is able
to easily cope with such constraints. The proposed method consists in densely
sampling the self-motion manifolds of redundant robots (discarding samples that
do not satisfy collision constraints), clustering these samples to identify disjoint
self-motion manifolds, and detecting when one of such manifolds vanishes, which
denotes the occurrence of an interior barrier. Several experiments with redun-
dant parallel robots are performed in Chapter 7 in order to demonstrate the
feasibility of the proposed method and the importance of collision constraints,
which drastically alter the distribution of interior barriers inside the workspace of
redundant robots. In practice, however, this method is only feasible for robots
with one- and two-dimensional self-motion manifolds, since applying it to robots
with higher-dimensional manifolds would require prohibitive computational times.
Thus, in order to apply this method to the HyReCRo robot, whose self-motion
manifolds are four- and five-dimensional, an approximate method is suggested,
which consists in detecting the vanishing of lower-dimensional projections of these
manifolds. However, this approximate method may miss some interior barriers
due to some information lost on account of these projections.

• Chapter 8: in this chapter, a lightweight prototype of the HyReCRo robot is built.
This prototype is mainly made of PLA 3D-printed parts, is driven by electric DC
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motors and linear actuators, and is controlled by an Arduino and a custom-made
power board. The dimensioning of this prototype is done on the basis of the
kinematic analyses performed in the previous chapters of this thesis, and with the
help of the developed simulation tools, in order to find a design of the HyReCRo
robot which is able to perform concave and convex plane transitions necessary
for exploring three-dimensional structures. After building this prototype, which
weighs 1.55 kg (excluding grippers), magnetic grippers are developed, which
employ the technology of switchable magnets. Each of the developed grippers
o�ers a holding force of 33 kg on 3mm-thick steel plates, and their design is
based on two safety criteria. Firstly, the grippers should not detach from the
structure, which would produce the tip-over and fall of the robot. Secondly, the
grippers should not slip due to insu�cient friction. By imposing these criteria,
design conditions are obtained, and magnetic grippers satisfying these conditions
are built. The prototype carrying the developed grippers is tested on a real steel
structure, demonstrating that it can firmly adhere to the structure and climb it
even in the most demanding climbing scenarios, in which the detaching torque
due to the weight of the robot is maximal. The developed grippers have reduced
dimensions, which make them especially useful for structure-climbing robots,
since these robots must move along the narrow beams of structures, in which
there is little room available for robust (yet bulky) grippers.

Finally, the last chapter of this thesis presents further discussion regarding possible
future research work derived from the results summarized in the previous list.
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2 Literature Review of Climbing
Robots

This chapter presents an up-to-date literature review of climbing robots, in order to
contextualize the HyReCRo robot, which is the structure-climbing robot studied in the
present thesis. To that end, climbing robots are first classified in section 2.1 according
to the geometric characteristics of the environment explored by the di�erent types
of climbing robots. Then, section 2.2 introduces the original binary HyReCRo robot,
places this robot in context considering the previous literature review, and analyzes the
shortcomings of using a purely binary actuation scheme.

2.1 Climbing Robots

The framework of this thesis is the field of climbing robots. Generally speaking, the
objective of climbing robots is to perform tasks at height, which are too dangerous
to be performed by human operators due to several risks such as falling from height,
electrocution, or working in di�cult-to-access areas. Some of the typical applications
of climbing robots are:

• cleaning facades of tall buildings,

• inspecting and maintaining bridges and other large structures in the construction
industry (Figure 2.1),

• inspecting large vessels and storage tanks,

• inspecting electrical power lines,

• inspecting pipeline networks in industrial plants,
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Figure 2.1: Vertical structures require inspection and maintenance tasks which are dangerous
for human operators due to several risks, including falling from considerable heights. Examples
of structures requiring operators working at heights: (a) Bimillenary’s Hanger Bridge of Elche,
(b) expansion works at the Quorum III building of the Miguel Hernández University.

• fumigating and harvesting in tall trees,

• exploring rough natural terrains and unstructured areas after disasters,

• and many more.

Nowadays, the field of climbing robots is quite mature and fertile, as it has been
enriched by the work of numerous researchers from all over the world during the last
thirty years. For example, as an indicator of the general interest of the scientific
community in this field, one can check that searching the string “climbing robot” in
the Web of Science returns more than 2000 results. Due to this large number of
research works performed during the last decades, a wide variety of climbing robots
have been developed, such that the term “climbing robot” has become a too broad
term that includes from insect-like wall-climbing robots to rover-like robots for space
exploration.

In essence, and roughly speaking, the design of any climbing robot encompasses
two main parts [168]:

• Design of the adhesion system used by the robot to adhere to the climbed
surfaces. Typical adhesion technologies used in climbing robots are [168]: mag-
netic, pneumatic, mechanical prehension, electrostatic adhesion, and chemical
adhesion.

• Design of the locomotion mechanism that allows the climbing robot to move
along the environment. Typical locomotion mechanisms used by climbing robots
are [168]: arms and legs, wheels and chains, sliding frames, wires, and rails.
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Based on these two dimensions (adhesion and locomotion technologies), Schmidt and
Berns [168] present an excellent and quite exhaustive review of climbing robots until
year 2013, which the reader is invited to read in order to get an overview of the field
of climbing robots.

In this chapter, we present a di�erent review of climbing robots, with the pur-
pose of better contextualizing the present thesis. The review presented in the next
subsections will classify climbing robots depending on the geometrical characteristics
of their environments, since this classification will allow us to better contextualize the
climbing robot studied in this thesis, distinguishing it from other climbing robots which
are more suitable for other environments. The classification here presented is not per-
fect, since in some cases, a robot classified into a group may also fit into another group
if other classification criteria are considered. Also, the review presented next is obvi-
ously not exhausting, since there exist over 2000 bibliographic references of climbing
robots. Only the most relevant robots inside each group have been included in the
following review, or those robots which are more strongly related to the present thesis.

Taking this into account, next we will present a literature review of climbing
robots, in which robots will be classified into one of the following four groups:

• Wall-climbing robots

• Structure-climbing robots

• Cable-climbing robots

• Robots for traversing rough terrains

Most of the climbing robots found in the scientific literature fall into one of these four
groups, although there are a few exceptions which will not be included in the next
discussion.

In the next subsections, each of these four groups of climbing robots will be
reviewed, identifying some of the most representative robots of each group, and high-
lighting their most characteristic features.

2.1.1 Wall-climbing Robots
This group of robots encompasses those robots that typically climb vertical walls, or
surfaces with small curvature (almost flat walls), with the possibility of performing
transitions between di�erent working planes. This group of robots is characterized by
the fact that their dimensions are much smaller than the size of the climbed surface.
The case in which the climbed surface has similar dimensions to the robot will be
discussed in next subsection 2.1.2 (structure-climbing robots). The robots considered
in the present subsection usually are too bulky to climb structures.

Wall-climbing robots are used for performing diverse tasks at heights. For ex-
ample, these robots are used for cleaning the large facades of tall skyscrapers, which is
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Figure 2.2: Some wall-climbing robots.

a very dangerous task for human cleaners due to the risk of falling from a considerable
height [94]. Other robots which can be considered as wall-climbing robots are those
that climb large pressure vessels in nuclear reactors [103], those that climb ship hulls in
the maritime industry for inspecting and welding [8], or robots that climb large concrete
bridges and other civil infrastructures [98, 168].

While the other classes of climbing robots that will be discussed in the next
subsections have fairly homogeneous architectures (i.e., the overall design of the robot
does not change drastically between di�erent robots), the architectures of wall-climbing
robots are quite heterogeneous. This is because the walls climbed by these robots,
which have large sizes compared to the robots, provide enough space for the climb-
ing robots to freely maneuver on them, which o�ers some flexibility for choosing a
locomotion technology. Thus, one can find wall-climbing robots using legs, such as
the NINJA quadruped robots ([74], Figure 2.2a), the RobugIIs robot ([103], Figure
2.2b), the MRWALLSPECT robot ([82], Figure 2.2c), or the REST robots ([8], Figure
2.2d). It is also possible to find wall-climbing robots using wheels, such as the Ali-
cia3 robot ([98], Figure 2.2e) or the robot presented in [94] for cleaning glass facades
(Figure 2.2f). Other robots use tracks, like those presented in [76] and [90] for the
ship-building industry (Figures 2.2g and 2.2h). Finally, other researchers have designed
bio-inspired gecko robots for climbing and maneuvering on vertical walls [184, 114]
(Figures 2.2i and 2.2j).

As for the adhesion technologies used in wall-climbing robots, these will depend
on the characteristics of the walls to be climbed. Thus, ferromagnetic walls present
in ship hulls and storage tanks can be climbed using electromagnets [8] or permanent
magnets [90], but also suction cups [103], which are also the preferred adhesion tech-
nologies for climbing concrete and glass walls [98, 94]. Another adhesion technology
used in wall-climbing robots is dry adhesion [184]. Regarding mechanical prehension,

24



2.1. Climbing Robots

this technology is not suitable for wall-climbing robots since these walls usually lack
bulky protuberances that can be grasped, and the robot can usually access only one of
the faces of the wall, i.e., it is not possible to “enclose” the wall using some claw, unlike
in structure-climbing robots, in which this adhesion technology is very appropriate (see
next subsection and Figure 2.4).

Sometimes, wall-climbing robots must negotiate diverse obstacles present on
the climbed walls. The most frequent obstacles are small protuberances whose height
is just a few milimeters, like small slots and ledges present on the facades of buildings
[98]. Wheeled and tracked robots can usually overcome these small obstacles without
any problem [76, 98]. However, for climbing higher obstacles it is necessary to provide
the robot with specific mechanisms, like the arms of the Alicia3 robot [98], which lift
the mobile modules of this robot (one at a time) to overcome obstacles present on
concrete walls. Obviously, legged climbing robots can easily negotiate any obstacle
present on walls, thanks to the high maneuverability o�ered by legs.

Another typical obstacle encountered by wall-climbing robots is a corner formed
between two intersecting walls, which the robot must overcome in order to switch
between di�erent working planes (e.g., passing from floor to a vertical wall, or from wall
to ceiling, or from one wall to another wall). Many wall-climbing robots are designed
without the ability to perform these plane transitions, since many applications do not
require them (for example: this is not usually required when cleaning the large glass
facades of a building, or when inspecting large ship hulls). However, other wall climbing
robots do have the ability to change between di�erent working planes [103] (Figure
2.2b). Nevertheless, we may consider that, usually, wall-climbing robots are especially
designed for working on large vertical planes and surfaces, with few transitions between
di�erent working planes. On the contrary, the structure-climbing robots analyzed in
the next subsection are characterized by having to explore complex three-dimensional
structures, in which transitions between di�erent working planes are very frequent in
order to explore all faces of all beams of the structure.

2.1.2 Structure-climbing Robots
This class refers to robots that climb and explore three-dimensional structures, com-
posed of a network of beams and bars interconnected through structural nodes. In this
case, we consider that the dimensions of the robot are similar to the width of the beams
of the structure, for if the width of these beams was much larger than the dimensions
of the robot, then it may be practically considered as a wall-climbing robot like those
analyzed in the previous subsection.

Structure-climbing robots find applications in a number of inspection and main-
tenance tasks of human-made structures. For example: in the construction industry
[14], these robots can be used for inspecting and searching structural defects such
as corrosion or cracks of the protective coating of the metallic beams, both in the
skeletons of buildings and in large metallic bridges [126]. In industrial plants, there
are complex pipeline networks that constitute true three-dimensional structures that
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Figure 2.3: Types of structure-climbing robots.

include horizontal and vertical pipes, bends and T-junctions, pipes with di�erent sec-
tions, valves and other obstacles. These pipelines require inspection and maintenance
tasks such as NDT (non-destructive testing) for assessing the degradation of material
or detecting welding defects [178]. The maintenance and change of light bulbs of
street lights is another dangerous task especially suitable for climbing robots, which
can climb the light pole, negotiating such obstacles as bends, changes of the diameter
of the pole, and boxes [67, 181]. Other truss-like structures in which these robots
can be useful are present in electric and telecommunication towers, stadiums, airports,
and in general any man-made truss-like structure composed of many interconnected
metallic bars. It is also worth to mention that structure-climbing robots are not limited
to maintaining or inspecting existing structures, but they can also participate actively
in their construction [125].

While wall-climbing robots analyzed in the previous subsection usually have
heterogeneous architectures (i.e.: tracked, wheeled, legged, bio-inspired, gecko-like
robots, etc.), structure-climbing robots usually have much more homogeneous archi-
tectures and can be classified into two main groups [178]: continuous-motion robots
and step-by-step robots. Continuous-motion robots (Figure 2.3a) typically are mobile
robots that employ wheels to slide along the structure [176, 11], whereas step-by-step
robots (Figure 2.3b) are inchworm-like robots consisting of two grippers interconnected
through a multi-Degrees-of-Freedom (DOF) manipulator. One of these grippers is at-
tached to the structure through some adhesion technology (magnetic, suction cups,
etc.), whereas the other gripper, which is free, is moved and placed by the manipula-
tor at the next attachment point of the environment. Next, the grippers swap their
roles, so that the previously free gripper adheres to the structure whereas the previously
attached gripper is released, and a new motion cycle begins.

Generally, continuous-motion climbing robots are faster and simpler than step-
by-step ones, which are slower, complex, and di�cult to build and control. However,
step-by-step robots o�er a higher maneuverability due to their manipulator-like struc-
ture, which allow them to negotiate obstacles and move between di�erent working
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Figure 2.4: Serial step-by-step structure-climbing robots.

Figure 2.5: Parallel and hybrid step-by-step structure-climbing robots.

planes more easily. There is also the possibility of building hybrid robots (Figure 2.3c),
which typically consist of wheeled continuous-motion robots equipped with articulated
arms that increase their maneuverability and allow them to easily perform transitions
between di�erent working planes [189, 35].

The design of step-by-step climbing robots comprises two main parts: design of
the grippers that provide adhesion to the climbed structure, and design of the multi-
DOF manipulator that connects these grippers. Regarding the manipulator connecting
both grippers, it can have a serial, parallel, or hybird architecture:

• Serial climbing robots: Balaguer et al. [14] developed the ROMA1 robot (Fig-
ure 2.4a), which was a serial climbing robot with six degrees of freedom (DOF),
for climbing and inspecting metallic structures. Then, the ROMA2 robot was
developed, which was a lighter improved version of the previous robot [62]. The
ROMA2 robot (Figure 2.4b) only had four DOF and, for movements like con-
vex transitions between di�erent faces of a beam, it requires performing more
maneuvers in order to perform the same plane transition as the ROMA1 robot
[62]. Another 4-DOF serial climbing robot is the 3DCLIMBER ([178], Figure
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2.4c), which was able to perform all the basic movements necessary for explor-
ing three-dimensional structures with just four DOF. Guan et al. [67] developed
the Climbot, a serial robot with five DOF for climbing poles and other vertical
structures (Figure 2.4d). This climbing robot shares its architecture with other
two serial climbers: a robot presented in [126] for inspecting steel bridges (Figure
2.4e), and the TREMO robot ([160], Figure 2.4f). Shvalb et al. [173] presented
an inchworm-like 8-degrees-of-freedom redundant robot for climbing steel struc-
tures (Figure 2.4g). Mampel et al. [110] presented modular robots for climbing
structures, they developed locomotion and gripping modules that provided the
robots with a number of DOF between three and six (Figure 2.4h). Other mod-
ular robots for exploring three-dimensional structures are the Shady3D robots
[204], which are 3-DOF robots that can individually explore three-dimensional
structures, but they can also combine with other identical modules for building
robots with higher maneuverability (Figure 2.4i). Finally, [193] presents a 7-DOF
serial robot for climbing steel bridges (Figure 2.4j).

• Parallel climbing robots: the 6-DOF Stewart parallel platform has also been
proposed as the manipulator of step-by-step structure-climbing robots, demon-
strating its ability to negotiate structural nodes [165]. This climbing robot con-
sists of a Stewart platform in which the mobile and fixed platforms carry grippers
for laterally grasping the beams of the climbed structure (Figure 2.5a). By mod-
ifying this adhesion system, it is possible to use this robot also for outer and
inner inspection of pipes (Figure 2.5b) [7], as well as for climbing and fumigating
palm trees (Figure 2.5c) [166].

• Hybrid Climbing robots: these robots are combinations of serial and parallel
mechanisms. For example: Tavakoli et al. [181] developed a hybrid pole climbing
robot for replacing light bulbs of streetlights (Figure 2.5d). This robot consisted
of a 3RPR parallel robot serially connected to an actuated revolute joint. Figliolini
et al. [58] developed a biped robot, in which each leg is composed of two
identical 3RPS parallel mechanisms serially arranged (Figure 2.5e). Although
this biped robot was not originally presented as a structure-climbing robot but as
a wall-climbing robot, we consider that its architecture seems capable of easily
performing both concave and convex plane transitions and, therefore, it would
be also appropriate for climbing structures.

Hybrid architectures seem to be especially suitable for structure-climbing robots, since
they exploit both the wide workspace of serial manipulators (which is necessary for
maneuvering and negotiating the obstacles found in these structures) and the high
payload-to-weight ratio of parallel manipulators (which is desirable for general climbing
robots, since they must carry their own weight as they climb).

As for the design of the grippers, the most frequently used adhesion technologies
in structure-climbing robots are magnetic adhesion [173, 126, 193, 160] since climbed
structures typically are ferromagnetic, and also mechanical prehension [178, 181, 14,
165, 67, 110], since the beams of the climbed stuctures usually have small width, which
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Figure 2.6: Tree-climbing robots.

allows the robot to grasp and embrace them using claws with appropriate size. It is
also possible to find structure-climbing robots making use of suction cups [62].

The typical obstacles found in three-dimensional structures are T-joints, struc-
tural nodes (like the one illustrated in Figure 2.3, at which several beams meet), changes
in the cross-section of the beams, valves and other control elements of pipelines,
concave and convex transitions between di�erent planes, etc. Continuous-motion
structure-climbing robots usually find it di�cult to negotiate these obstacles, although
they can carry additional articulated arms for evading them, as explained above. On the
contrary, step-by-step robots can easily and naturally evade such obstacles, since their
manipulator-like architecture provides them with a high maneuverability for negotiating
obstacles.

2.1.2.1 Tree-climbing robots

In this subsection, we have focused on robots for climbing artificial structures, com-
posed of interconnected bars and beams. However, structure-climbing robots are closely
related to tree-climbing robots, since trees can be regarded as natural structures, which
are composed of a trunk and several interconnected branches. Tree-climbing robots
are very similar to the structure-climbing robots discussed above: in fact, some of the
discussed robots, like the parallel robot based on the Stewart parallel platform, were
designed also with the purpose of climbing trees [166]. The objective of using robots
for climbing trees is to perform dangerous tasks at them, such as fruit harvesting or
pruning, but also fumigation, which is doubly dangerous for human operators since
they may fall from the top of the tree or breathe the toxic pesticides.

Besides the parallel climbing robot mentioned earlier, we can find other tree-
climbing robots in the literature. For example, the Treebot [104], shown in Figure
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Figure 2.7: Cable-climbing robots.

2.6a, is an insect-like climbing robot with a tendon-driven continuum body and two
claws at both ends of this body. These claws have spines which are used for adhering
to the rugged surface of the tree. Unlike most tree-climbing robots, which usually
wrap completely the trunk of the climbed tree and have limited ability to negotiate
obstacles, the Treebot can perform transitions between di�erent branches and the
trunk. Examples of robots that completely wrap the trunk are: a robot for harvesting
areca nut ([119], Figure 2.6b), the robot by Nor Faizal et al. ([57], Figure 2.6c), a
coconut harvester ([51], Figure 2.6d), and the ingenious robot by Li et al. [92], which
uses a single motor and some cams to climb trees (Figure 2.6e). All these robots have
a common architecture, which consists of two grippers interconnected through some
articulated or extensible mechanism that allows the robot to climb a tree following
an inchworm-like gait, similar to step-by-step structure-climbing robots. However, we
can also find single-body wheeled tree-climbing robots with simpler structure, like the
robots presented in [69, 158, 172] (Figure 2.6f-h), which are very compact.

2.1.3 Cable-climbing Robots
The third group of robots considered in this chapter are those for climbing cables.
Actually, the separation between structure- or pole-climbing robots and cable-climbing
robots may not be clear in some cases, since a pole with a su�ciently small diameter
may be regarded as a cable. However, we will consider here that cable-climbing robots
refer to those robots that slide along cylindrical elements whose diameter is negligible
compared to their length, and with much fewer obstacles than those encountered when
climbing structures (in which structural nodes and plane transitions are very frequent).
These cables are typically found in large hanger bridges, like the one shown in Figure
2.1a. In this subsection, we will also analyze the robots that move along electrical
power lines, in order to inspect them.

2.1.3.1 Robots for climbing cables of hanger bridges

First, we will discuss robots that move along steel cables of hanger bridges. These
cables, which are very tall, must be inspected in order to determine their defects and
prevent further deterioration that may compromise the stability of the bridge [198].
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As shown in Figure 2.7a, many cable-climbing robots consist of pairs of wheels (some
of them motorized) or tracks oriented along the cables and pressed against them by
means of springs that provide the necessary friction to climb. Following this philosophy,
for example, the robot by Fengyu et al. [198, 199] has two pairs of wheels placed on
opposite sides of the climbed cable (Figure 2.7a). Similarly, Cho et al. [34] present a
robot composed of three pairs of wheels symmetrically distributed along a circle, placed
every 120¶ (see Figure 2.7b). A similar robot with three pairs of wheels is presented
in [105] (Figure 2.7c).

Besides wheeled and tracked robots, it is also possible to find step-by-step robots
for climbing cables, in which one of the ends of the robot is attached to the cable
whereas the other end is extended in order to grasp the upper part of the cable and
climb, like the pneumatic robot presented in [91] (Figure 2.7d), which is similar to
the parallel climbing robot shown in Figure 2.5c. Finally, snake-like robots that wrap
around the cables may also be useful for climbing them ([194], Figure 2.7e).

The obstacles encountered in cables typically consist in progressive or abrupt
changes of the diameter of the cable, which are due to defects [198]. Usually, when
the height of these obstacles is moderate, they can be overcome directly by the wheels
of cable-climbing robots.

One of the central topics in relation with cable-climbing robots is the safe land-
ing mechanism. If the robot experiences some failure while climbing the cable at a
considerable height, it is necessary to make the robot descend along the cable in order
to recover it on the ground. However, this descent should be controlled in order to limit
excessive velocities that may damage the robot or the cable. To control the descent of
cable-climbing robots, they are usually provided with safe landing mechanisms which
can be active or passive, such as brakes [33], pneumatic damping [199], or regenera-
tive devices which transform kinetic energy into electrical energy that may be used for
increasing the power autonomy of the robot [199].

2.1.3.2 Robots for climbing electric power lines and ropes

The second class of cable-climbing robots that we will consider are those that slide along
high-voltage power lines in order to inspect their conductors, which are dangerous tasks
for human operators due to the additional risk of electrocution. While the robots that
climb steel cables of hanger bridges usually have to climb cables with large slopes
(almost vertical cables), the robots that slide along power lines usually slide along
cables whose slope does not exceed 30¶ [122].

Robots for power lines must be able to avoid some obstacles present on those
lines, such as [85]: insulators, dampers, spacers, and warning spheres for preventing
collisions between these lines and aircrafts.

Most climbing robots for inspecting power lines have a gondola-like design, in
which a hanging heavy central body (the gondola), which usually carries control and
power elements of the robot, acts as a stabilizer, since it lowers and balances the center
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Figure 2.8: Climbing robots for inspecting high-voltage power lines.

of gravity of the whole robot. This central body hangs below the power lines through
two or three articulated arms, which have wheels at their tops for sliding along the
conductors. For example, the robot presented in [205] (Figure 2.8a) uses two arms
with PRP architecture for hanging from the conductors, and it avoids obstacles by
using inchworm-like or brachiation maneuvers with these arms, displacing conveniently
the gondola to reduce the inertia during these maneuvers. A similar robot is presented
in [93], which also has two RPR arms for avoiding obstacles through brachiation ma-
neuvers (Figure 2.8b). Another similar robot with two arms is presented in [202], which
also balances its center of mass by conveniently displacing the gondola, but the arms
of this robot completely wrap the conductors (Figure 2.8c), which may hinder the
avoidance of some obstacles.

Gondola-like robots with three arms can avoid obstacles more safely, since these
robots can have their gondolas stably suspended from the conductors through two of
the arms at all times, whereas the third arm is used for maneuvering and negotiating
obstacles. For example: the robot presented in [197] has two locomotion arms and one
support arm. When encountering an obstacle, these arms are sequentially disconnected
from the conductor in order to overcome the obstacle, such that two of the arms are
grasping the conductor at all times (Figure 2.8d). The three-arm robot presented in
[200] follows a similar strategy, although this robot has a fairly complicated architecture
by means of which it balances the center of gravity of its gondola in order to increase
stability (Figure 2.8e). Finally, the robot presented in [122] does not have arms, but
its gondola slides directly along the cables through three rollers (Figure 2.8f). This
robot has counterweights for lowering the center of gravity and increasing stability, and
its rollers are actively and sequentially shifted upwards in order to overcome obstacles
such as the warning spheres found in power lines [122].

Although most climbing robots for power lines have gondola-like designs, it is
possible to find also other less-conventional designs, such as snake-like hyper-redundant
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Figure 2.9: Rope-climbing robots.

robots which wrap around the conductors ([192], Figure 2.8g) or hybrid robots like the
one proposed in [84], which consists in a small helicopter with wheels (Figure 2.8h).
This hybrid flying-wheeled robot uses its wheels to slide along the conductors until an
obstacle is found, which is overcome by flying.

Besides having to cope with the negotiation of obstacles, other topics of interest
in the field of power-line-climbing robots are [85]: the possibility of powering the robot
directly from these power lines (instead of carrying batteries), the need to shield the
electronics of the robot from electromagnetic interferences due to the proximity of the
high-voltage conductors, and the di�culty of detecting the aforementioned obstacles
through computer vision systems.

To conclude this subsection, it is worth discussing rope-climbing robots, which
are similar to those that slide along power lines. These robots climb either vertical
or almost-horizontal ropes (with slopes generally not exceeding 30¶). Rope-climbing
robots may be useful in military contexts, in order to transport tools or supplies across
mountains and other natural obstacles [83]. In [83], an innovative robot based on a
four-bar mechanism was proposed for traversing ropes with slopes under 30¶ (Figure
2.9a). Another two-legged robot for traversing low-slope ropes was presented in [73]
(Figure 2.9b). Köse et al. [88] presented an articulated miniature robot for climbing
vertical ropes using clips (Figure 2.9c). Finally, Schober [169] presented another robot
for climbing vertical ropes using two parallel claws driven by a single motor and a chain
mechanism (Figure 2.9d).

2.1.4 Rough-terrain Climbers
To conclude this review of the state of the art of climbing robots, we will discuss the
class of mobile robots designed for traversing rough terrains and unstructured environ-
ments, such as natural terrains or post-disaster scenarios (e.g., after an earthquake).
This class of robots includes rescue robots and robots for space exploration. Actually,
this class of robots cannot be strictly regarded as robots for climbing vertical structures
(unlike most of the robots studied earlier in this chapter), but these robots that traverse
rough terrains certainly have the ability to climb and overcome some obstacles of the
environment, such as stones, steps, stairs, slopes, and other objects that would hinder
the motion of conventional wheeled mobile robots.
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Figure 2.10: Robots for traversing rough terrains and climb their irregularities.

Obviously, and omitting issues related to gait stability and tip-over, legged robots
generally find it easy to traverse rough terrains full of obstacles, since these robots have
an excellent maneuverability for negotiating them. For example, the SpaceClimber
robot [16] is a six-legged insect-like robot designed for planetary exploration (Figure
2.10a). This robot is able to climb slopes below 25¶ with fine-grained soils. The
WAREC-1 robot [111] (Figure 2.10b) is a crawler quadruped robot for rescue and ex-
ploration tasks in unstructured post-disaster environments. This robot can successfully
climb inclines covered by debris, which hinder the motion of the robot since these debris
tend to collapse when the robot walks on them. To decrease the amount of slippage
of the robot due to the debris collapsing under its weight, the belly of this robot has
spikes which act as “hooks” that interfere mechanically with these debris.

Besides legged robots, rover-like all-terrain autonomous vehicles are also quite
suitable to traverse rough terrains. These robots may have four [157] or six [56] wheels.
These robots can passively climb obstacles whose height is twice the diameter of their
wheels [56], and may employ omnidirectional wheels for increasing their maneuverability
in unstructured environments [99] (Figure 2.10c).

Other type of robots especially suitable to traverse rough terrains are those using
tracked locomotion. For example, Lim et al. [95] present a single-track rescue robot
able to modify the shape of its tracks by reorienting its wheels, with the purpose of
facilitating the climbing of steps and stairs (Figure 2.10d). Reference [50] presents an
articulated robot, composed of two serially-connected tracked segments that facilitate
the climbing of stairs (Figure 2.10e). Obviously, one may continue adding more and
more tracked segments in order to increase the mobility of the robot and its ability to
negotiate obstacles. An example of this is presented in [203], which presents a snake-
like robot consisting of five tracked segments that allow it to climb higher steps (Figure
2.10f). Another interesting tracked robot is the OUROBOT by Paskarbeit et al. [128],
which is composed of twelve tracked segments forming a closed loop (Figure 2.10g).
This robot moves by rolling as if the whole robot was a wheel, and since it is composed
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of so many segments, it can adapt its shape to accurately match the obstacles of the
terrain.

Finally, it may be interesting to combine di�erent locomotion technologies to
build more flexible robots for traversing rough terrains. For example, Kamekazi et al.
[81] developed the OCTOPUS robot, a disaster-response robot consisting of a tracked
mobile base that carries four articulated arms. These arms can be used to grasp objects
of the environment, but they can also help the robot to traverse the environment and
negotiate obstacles more easily. For example, these arms can push against the ground
while the tracked base attempts to climb a step, in order to provide an additional
impulse (Figure 2.10h).

2.2 The HyReCRo Robot: a Redundant Serial-parallel
Structure-climbing Robot with Binary Actuation

After the previous review of the state of the art of climbing robots, we are in the position
of better contextualizing the robot studied in the present thesis. The HyReCRo robot
studied in this thesis belongs to the class of step-by-step structure-climbing robots
discussed in section 2.1.2 of the present chapter. This robot, as shown in Figure 2.11a,
was proposed by Ubeda et al. [183] for climbing and exploring three-dimensional
steel structures. This robot is biped, with each of its legs being composed of two
parallel mechanisms of type 2RPR-PR, which is the two-DOF mechanism illustrated
in Figure 2.11b. This robot has ten degrees of freedom, which makes it kinematically
redundant. In chapter 5, a more detailed description of the architecture of this robot
will be provided.

Originally, the HyReCRo robot was conceived as a robot with purely binary
actuators, i.e., all its actuators could adopt only two extreme states: the linear actua-
tors could be either completely retracted or completely extended. The advantages of
a purely binary actuation scheme are related to simpler control and motion planning
algorithms. This idea is very attractive for step-by-step climbing robots, since these
robots usually are quite di�cult to control and operate, which prevents these robots
from finding their way out of laboratories and generalizing their use in industrial in-
spection [177]. However, if all actuators of the robot are binary, it can only attain
a finite subset of discrete postures, which may impede the execution of some move-
ments which are essential for exploring a three-dimensional structure, such as convex
plane transitions between adjacent faces of the same beam (Figure 2.11c) or concave
transitions between adjacent beams (Figure 2.11d). This is because these essential
movements can only be performed if the gripper of the robot is placed on the surface
to which it must be adhered (or su�ciently close to it), which may not be possible in
general if purely binary actuation is used, since binary actuation only yields a finite set
of discrete postures and it may occur that none of these postures places the gripper
su�ciently close to the adhesion surface (actually, this would depend on the initial
position of the robot, before starting to perform the plane transition).

Therefore, it becomes evident that at least some actuators of the HyReCRo robot
should be continuously operated, i.e., the actuated joint coordinates of this robot should
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Figure 2.11: The binary HyReCRo robot as originally proposed in [183] (Repeated from Figure
1.1).

be allowed to take any value between two joint limits. Taking this into account, this
thesis relaxes the purely binary actuation constraint of the original HyReCRo climbing
robot, and presents an in-depth kinematic analysis of the continuously-actuated version
of this robot. As it will be discussed in chapter 9, this continuous kinematic analysis
is the first step towards a mixed binary-continuous version of this robot, in which the
robot may be operated following a two-steps procedure. According to this procedure,
first the robot would be coarsely moved to a configuration near the desired posture
using a purely binary actuation, and then some (or all) of its joint coordinates would
be continuously actuated around the coarse posture attained through binary actuation,
in order to finely reach the precise posture necessary for exploring the structure (e.g.,
for performing a plane transition).

The continuous kinematic analysis of the HyReCRo robot is not easy, due to
two reasons: this robot is kinematically redundant (it has ten degrees of freedom)
and has a hybrid serial-parallel architecture. In order to perform a comprehensive
kinematic analysis of the HyReCRo robot, the following analyses are presented in the
next chapters of this thesis:

• The next chapter presents a detailed kinematic analysis of the 2RPR-PR paral-
lel mechanisms that make up the legs of the HyReCRo robot. This kinematic
analysis is aided by the graphical simulation tools presented in chapter 4. The
kinematic analysis of these parallel mechanisms is a prerequisite for the study
of the forward and inverse kinematic problems of the complete HyReCRo robot,
which are solved in chapter 5.
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• Chapter 6 analyzes the boundaries of the workspace of the HyReCRo robot, with
the purpose of investigating the influence of the geometric design parameters of
this robot on its workspace. These boundaries are computed using a new Monte
Carlo method developed in this thesis to obtain more accurately the boundaries
of the workspace of robot manipulators.

• Chapter 7 investigates the interior kinematic barriers existing within the bound-
aries of the workspace of this robot. These interior barriers are of uttermost
importance for planning the movements of general robot manipulators. To ob-
tain these interior barriers respecting the restriction that mechanical interferences
should not occur (i.e., collisions between di�erent parts of the robot or with the
climbed structure are forbidden), a new sampling method is proposed in Chapter
7.

• Finally, based on the kinematic analyses performed in the previous chapters,
chapter 8 presents a prototype of the HyReCRo robot, as well as the detailed
design of novel magnetic grippers developed so that this prototype can adhere
to real steel structures and climb them.
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3 Parallel Modules and Nonsingular
Transitions

This chapter presents the kinematic analysis of the 2RPR-PR parallel mechanism shown
in Figure 3.1. Each leg of the HyReCRo climbing robot studied in this thesis is com-
posed of two parallel mechanisms of this type connected in series. This chapter begins
by analyzing the kinematics and singularities of this 2RPR-PR mechanism (Section
3.1). This analysis is necessary for analyzing the complete climbing robot in later
chapters. During this analysis, it is found that the 2RPR-PR parallel mechanism has
the ability to enlarge its range of operation by re-configuring itself without crossing
singularities (Section 3.2). This behavior is achieved by encircling isolated singularities
at which the forward kinematic problem admits solutions with multiplicity four. Later,
in Section 3.4, this behavior is demonstrated also in 3RPR parallel robots with flat
platforms, which were thought to be unable to exhibit such behavior until now. Then,
Section 3.5 studies the stability of this behavior (reconfiguration by enclosing isolated
quadruple singularities) under small perturbations in the design of the robot. Finally,
Section 3.6 presents a method for determining how isolated singularities transform
under these perturbations, complementing and completing in a more formal way the
analysis of Section 3.5.

3.1 2RPR-PR Parallel Mechanisms

Each leg of the HyReCRo biped climbing robot studied in the present thesis, is com-
posed of the serial combination of two parallel mechanisms of the type 2RPR-PR, which
is shown in Figure 3.1a. This 2RPR-PR mechanism is composed of a mobile platform
B-B1-B2 and a fixed platform A2-A1. Point B of the mobile platform is constrained to
move along a passive slider OB which forms a constant angle – with segment A2-A1.
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Figure 3.1: General (a) and analytic (b) 2RPR-PR mechanisms.

Furthermore, the mobile platform is connected to the fixed platform A2-A1 through
two linear actuators A1B1 and A2B2, whose lengths are l1 and l2, respectively. By
controlling these lengths l1 and l2, one can control the orientation „ of the mobile
platform, as well as its position y along the passive slider OB.

Actually, the parallel mechanisms that compose the legs of the HyReCRo robot
are a variant of the general 2RPR-PR mechanism shown in Figure 3.1a. Such a variant
is shown in Figure 3.1b, and is characterized by – = fi/2 rad (i.e., the passive slider
OB is perpendicular to segment A2A1) and — = fi rad (i.e., the three joints B-B1-B2
of the mobile platform are aligned). This modified 2RPR-PR mechanism is analytic,
which means that its forward kinematic problem (i.e., the problem which consists in
solving y and „ in terms of l1 and l2) can be solved analytically or in closed form.

A symmetric version (i.e., with a1 = ≠a2 and b1 = b2) of the analytic 2RPR-PR
mechanism of Figure 3.1b was studied by Ridgeway et al. [159], who combined several
mechanisms of this type in series to form a snake-like articulated robot for inspecting
nuclear facilities. Later, Kong and Gosselin [87] studied the forward kinematic problem
of the general 2RPR-PR parallel mechanism of Figure 3.1a, describing some variants (or
particular cases) of this general mechanism, for which the forward kinematic problem
becomes more simple and admits analytical solutions (among these variants was the
analytic mechanism of Figure 3.1b). Furthermore, using Sturm’s theorem, Kong and
Gosselin [87] also demonstrated that the maximum number of real solutions of the
forward kinematic problem of the analytic mechanism of Figure 3.1b is four.

Although the forward kinematic problem of the analytic parallel mechanism of
Figure 3.1b (i.e., the mechanism used in the legs of the HyReCRo robot) was already
solved by previous researchers [159, 87], this problem will be revisited in the following
subsection 3.1.1 with the purpose of studying in more depth the multiplicity of its solu-
tions, as well as the relationship between this multiplicity and the parallel (or Type-2)
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singularities (subsection 3.1.2) of this analytic mechanism. It is well known (subsec-
tion 3.2) that the solutions (of the forward kinematic problem) with multiplicity three
or more are closely related to the ability of a parallel mechanism to reconfigure itself
and perform transitions between di�erent solutions of its forward kinematic problem
without crossing undesirable singularities (nonsingular transitions), which is useful for
enlarging the workspace of the mechanism [185] without losing control of the robot.

3.1.1 Forward Kinematics
This subsection revisits the resolution of the forward kinematic problem of the analytic
mechanism of Figure 3.1b, a problem which was already solved by other researchers in
the past [159, 87]. The objective of revisiting this problem is to gain further knowledge
about the multiplicities of its solutions, as well as about the relationship between these
multiplicities and the singularities of this mechanism. Obviously, the resolution of the
forward kinematic problem of this mechanism will be also necessary for solving the
forward kinematic problem of the complete HyReCRo robot in chapter 5.

In general, for any parallel mechanism or parallel robot, the forward kinematic
problem consists in determining the pose (= position + orientation) of the mobile
platform of the mechanism in terms of its active joint coordinates (i.e., the coordinates
associated to the joints driven by actuators). In general, for fixed active joint coordi-
nates, there are di�erent valid poses for the mobile platform, i.e., the forward kinematic
problem admits several di�erent solutions. Traditionally, these di�erent solutions have
been called assembly modes.

For the analytic parallel mechanism of Figure 3.1b, the forward kinematic prob-
lem consists in determining the position y and orientation „ of the mobile platform in
terms of the lengths l1 and l2 of the linear actuators. These four variables are related
through the two following restrictions, which can be easily derived from Figure 3.1b:

(b1 cos „ ≠ a1)2 + (y + b1 sin „)2 = l2
1 (3.1)

(≠b2 cos „ ≠ a2)2 + (y ≠ b2 sin „)2 = l2
2 (3.2)

where it is assumed that the geometric parameters of the mechanism satisfy b1 >
0, b2 > 0, and a1 ”= a2. Equation (3.1) imposes the condition that the distance
between A1 and B1 must be l1, whereas (3.2) imposes the condition that the distance
between A2 and B2 must be l2. The objective of the present subsection is to obtain
solutions („, y) to the previous system of equations with multiplicity higher than two
(i.e., solution pairs („, y) which are repeated three or more times), since these solutions
may enable the phenomenon of nonsingular transitions.

Eliminating y between Equations (3.1) and (3.2) by means of resultants, one
arrives at a cubic equation in Â = cos „:

P (Â) = p3Â3 + p2Â2 + p1Â + p0 = 0 (3.3)
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Figure 3.2: Zeros of P (Â) in (≠1, 1) with di�erent multiplicities. (a) Simple zero. (b) Double
zero (singularity). (c) Triple zero (cusp point).

where the expressions of the coe�cients (p3 ... p0) are:

p3 = 8b1b2(a2 ≠ a1)(b1 + b2) (3.4)
p2 = 4

#
(b1 + b2)(b1s2 + b2s1) ≠ (a1b1 + a2b2)2$

(3.5)
p1 = 4(s1 ≠ s2)(a1b1 + a2b2) ≠ p3 (3.6)
p0 = ≠4(b1 + b2)(b1s2 + b2s1) ≠ (s1 ≠ s2)2 (3.7)

and where si = a2
i + b2

i ≠ l2
i (i = 1, 2). P (Â) is the characteristic polynomial of this

robot, and it is always cubic since b1, b2 > 0 and a1 ”= a2. Thus, Equation (3.3)
always yields three solutions for Â = cos „, two of which may be complex. After
obtaining „ from Equation (3.3), y must be computed from Equations (3.1) and (3.2),
completing the solution pair („, y). To study the possible multiplicities of a given
solution pair („, y), we will analyze how the graph of polynomial P (Â) intersects the
horizontal Â axis in [≠1, 1] (note that intersections out of this interval do not result
in real solutions, since real angles have cosines between -1 and 1). Three cases will be
considered because the equations involved are di�erent for each case.

3.1.1.1 Case 1: intersection in the open interval (≠1, 1)

The upper part of Figure 3.2 shows the graph of P (Â) intersecting the abscissa axis
at some Â0 œ (≠1, 1). Since P (Â) is cubic, three types of intersection are possible:
simple, double, or triple.

If P (Â) has a simple zero at cos „ = Â0 (Figure 3.2a), two di�erent1 solutions
are possible for „:

„+ = acos(Â0), „≠ = ≠acos(Â0) (3.8)

1Angles di�ering by an integer multiple of 2fi rad are considered equal.
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The calculation of these two solutions is shown graphically in Figure 3.2a, where a
vertical line passing through cos „ = Â0 intersects the unit circle at two points, yielding
two possible values for sin „ and hence two values for „. For each value of „, y is
computed from the following equation, which is obtained by subtracting (3.2) from
(3.1)

y = s2 ≠ s1 + 2(a1b1 + a2b2) cos „

2 sin „(b1 + b2) (3.9)

which is valid because sin „ ”= 0. Thus, a simple zero of P (Â) in (≠1, 1) gives two
di�erent real solutions to the forward kinematics: („+, y+) and („≠, y≠), where y+

and y≠ are the values obtained after substituting „+ and „≠ into Equation (3.9),
respectively.

If the intersection between the graph of P (Â) and the Â axis in (≠1, 1) is double
(Figure 3.2b), the solutions to forward kinematics are calculated as in the simple case,
obtaining („+, y+) and („≠, y≠). However, these two solutions are now double because
cos „ = Â0 is a double zero of P (Â). This case corresponds to a singularity.

Finally, P (Â) may have a triple zero at Â0 (Figure 3.2c). In that case the
two solutions („+, y+) and („≠, y≠) are obtained as in the previous cases but have
multiplicity three. To make this case possible, it is necessary to solve the unknowns
(lú

1, lú
2, Â0) that satisfy the following system (condition of triple zero of a polynomial):

P (Â) = 0, P Õ(Â) = ˆP

ˆÂ
= 0,

ˆ2P

ˆÂ2 = 0 (3.10)

with lú
1, lú

2 > 0 and Â0 œ (≠1, 1). In case such a solution exists, a trajectory enclosing
the cusp points (lú

1, lú
2) in the joint space may produce nonsingular transitions. The

triple zeros of P (Â) will be studied later for a particular geometry because it is di�cult
to solve the system (3.10) when generic design parameters are considered.

Next, it will be shown that the forward kinematics can have solutions with
multiplicity higher than two if sin „ = 0, even if P (Â) has no triple zeros.

3.1.1.2 Case 2: intersection at Â = ≠1

Figure 3.3 (left) shows the graph of P (Â) intersecting the Â axis at Â = ≠1. The
condition P (≠1) = 0 is equivalent to:

l2
1 = l2

2 + (a1 + b1)2 ≠ (a2 ≠ b2)2 (3.11)

which defines a hyperbola in the joint space (l1, l2). When the joint coordinates belong
to it, P (Â) vanishes at Â = ≠1, which yields a single solution for the orientation:
„ = fi. Thus, the curve defined by Equation (3.11) will be called hereafter the fi-
hyperbola.

For „ = fi, y cannot be computed using Equation (3.9) because sin „ = 0
(the denominator vanishes). To solve y in this case, we proceed as follows. First, we
perform the following linear combination of Equations (3.1) and (3.2):

b2 [Equation (3.1)] + b1 [Equation (3.2)] ≠æ [Equation (3.13)] (3.12)
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Figure 3.3: Simple (left) and double (right) zeros of P (Â) at Â = ≠1

note that this linear combination is never problematic because we assume that both b1
and b2 are strictly positive. The previous linear combination cancels the linear term of
y, so that the resulting equation only involves y quadratically. The resulting equation
is:

2b1b2(a2 ≠ a1) cos „ + (b1 + b2)y2 + b1s2 + b2s1 = 0 (3.13)
solving y from Equation (3.13) yields the following two solutions:

y = ±

Û
2b1b2(a1 ≠ a2) cos „ ≠ b1s2 ≠ b2s1

b1 + b2
(3.14)

Now we can obtain the solution corresponding to „ = fi rad. Inserting „ = fi into
Equation (3.14) gives:

y = y±
fi = ±

Û
2b1b2(a2 ≠ a1) ≠ b1s2 ≠ b2s1

b1 + b2
(3.15)

Hence, when P (Â) vanishes at Â = ≠1, two solutions are obtained: („ = fi, y = y+
fi )

and („ = fi, y = y≠
fi ), where y+

fi and y≠
fi denote the results of choosing the positive and

negative signs of the radical in Equation (3.15), respectively. Note that, although „ is
real, y will be imaginary if the radicand in Equation (3.15) is negative. If the radicand
is positive, these two solutions to forward kinematics are real and distinct.

If P (Â) has a double zero at Â = ≠1, the situation is the same as in Figure 3.2b
and two double solutions are obtained, as shown in Figure 3.3 (right). However, it will
be shown next that these two double solutions actually correspond to a single quadruple
solution. Since the joint coordinates belong to the fi-hyperbola, P (Â) has a zero at
Â = ≠1. To make that zero double, the derivative P Õ(Â) must also vanish at Â = ≠1,
which translates into the following condition:

3p3 ≠ 2p2 + p1 = 0 (3.16)

Substituting the value of l2
1 of Equation (3.11) into Equation (3.16) yields:

(b1 + b2)2((a2 ≠ b2)2 ≠ l2
2) = 0 (3.17)
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3.1. 2RPR-PR Parallel Mechanisms

which is satisfied only if l2 = |a2 ≠ b2|. The substitution of this value of l2 into
Equation (3.11) yields l1 = |a1 + b1|. For these values of l1 and l2, Equation (3.15)
gives y = 0. Hence: y+

fi = y≠
fi = 0, and the two double solutions of Figure 3.3 (right)

coalesce to a single quadruple solution („ = fi, y = 0). The point of the fi-hyperbola
where this quadruple solution occurs will be denoted by ⁄fi = (|a1 + b1| , |a2 ≠ b2|).

3.1.1.3 Case 3: intersection at Â = 1

This case admits the same analysis as the previous one. Imposing P (1) = 0 yields the
following equation:

l2
1 = l2

2 + (a1 ≠ b1)2 ≠ (a2 + b2)2 (3.18)
which defines another hyperbola. If the joint coordinates belong to it, P (Â) has a zero
at Â = 1, which corresponds to a unique angle: „ = 0. Hence, from now on, the
curve defined by Equation (3.18) will be called the 0-hyperbola. To compute y, we use
Equation (3.14) again since Equation (3.9) is not valid, obtaining two values:

y = y±
0 = ±

Û
2b1b2(a1 ≠ a2) ≠ b1s2 ≠ b2s1

b1 + b2
(3.19)

Again, two real and di�erent solutions („ = 0, y = y+
0 ) and („ = 0, y = y≠

0 ) will be
obtained if the radicand in Equation (3.19) is positive. Imposing P Õ(1) = 0 to make
these two solutions double:

3p3 + 2p2 + p1 = 0 (3.20)
Substituting l2

1 from Equation (3.18) into Equation (3.20) results in the following
equation:

(b1 + b2)2((a2 + b2)2 ≠ l2
2) = 0 (3.21)

The previous equation holds true only if l2 = |a2 + b2|, which substituted into Equa-
tion (3.18) gives: l1 = |a1 ≠ b1|. Finally, inserting these values of l1 and l2 into
Equation (3.19) yields y+

0 = y≠
0 = 0. Therefore, the two solutions to forward kine-

matics at Â = 1 do not become two di�erent double solutions but a single quadruple
solution („ = 0, y = 0). The point of the 0-hyperbola where this quadruple solution
occurs will be denoted by ⁄0 = (|a1 ≠ b1| , |a2 + b2|).

3.1.2 Singularities
Singularities are special configurations at which a parallel mechanism gains or loses
instantaneous degrees of freedom (DOF). Singularities of parallel mechanisms can be
classified into two main types [65]: serial (or Type-1) singularities, and parallel (or
Type-2) singularities. The e�ects of these types of singularities are:

• Loss of dexterity: Serial singularities occur when det(J
joints

) = 0, where J
joints

denotes the Jacobian matrix of partial derivatives of the kinematic restrictions of
the mechanism with respect to the active joint coordinates. At serial singularities,
the mechanism loses instantaneous degrees of freedom: velocities along some
directions are not possible.

45



Chapter 3. Parallel Modules and Nonsingular Transitions

• Loss of control: Parallel singularities occur when det(J
pose

) = 0, where J
pose

denotes the Jacobian matrix of partial derivatives of the kinematic restrictions
of the mechanism with respect to the variables that parameterize the pose of
its mobile platform. At parallel singularities, the mechanism gains instantaneous
degrees of freedom: the mobile platform of the robot may be locally movable
along some directions even if all actuators are locked (the mechanism loses its
sti�ness).

At parallel singularities, the velocity of the mobile platform of the mechanism is not
uniquely determined by the feasible velocities of the active joints, so one cannot com-
pletely control the motion of the mobile platform using the actuators. Furthermore,
when a parallel singularity is approached in the active joint space, at least two solutions
of the forward kinematic problem coalesce.

In order to take full advantage of its complete workspace, a parallel mechanism
typically needs to reconfigure itself and switch between di�erent solutions of the forward
kinematic problem since a single assembly mode cannot cover the whole workspace (see
Section 4.4.7), which may require the mechanism to cross parallel singularities. This
is complicated because, as we have just said, the motion of the mobile platform is not
completely controllable when crossing parallel singularities. However, for many parallel
mechanisms, it is also possible to switch between di�erent solutions of the forward
kinematic problem without crossing parallel singularities (i.e., keeping under control
the motion of the mobile platform at all times), as we will discuss later in Section 3.2.

In the remaining of this chapter, we will focus only on parallel singularities.
Therefore, from now on, when we speak about “singularities”, it will be understood
that we are referring to “parallel singularities”.

For now, let us analyze the singularities of the analytic 2RPR-PR mechanism
of Figure 3.1b. To obtain the singularities of this mechanism, first we compute the
Jacobian matrix of the left-hand side (LHS) of Equations (3.1) and (3.2) with respect
to the parameters that define the pose of the mobile platform, i.e., „ and y:

J
pose

=

S

U
ˆLHS of Equation (3.1)

ˆ„

ˆLHS of Equation (3.1)
ˆy

ˆLHS of Equation (3.2)
ˆ„

ˆLHS of Equation (3.2)
ˆy

T

V =

= 2
5

b1(y cos „ + a1 sin „) b1 sin „ + y
≠b2(y cos „ + a2 sin „) ≠b2 sin „ + y

6
(3.22)

Singularities occur when the determinant of the previous matrix vanishes, which yields
the following condition:

det(J
pose

) = 4[y2(b1 + b2) cos „ + b1b2(a2 ≠ a1)(sin „)2 + y(a1b1 + a2b2) sin „] = 0
(3.23)

For given design parameters (a1, a2, b1, b2), the previous equation typically defines a
set of disjoint or self-intersecting curves in the („, y) plane. These curves are the
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Figure 3.4: Joint space of an analytic 2RPR-PR robot

singularity locus, i.e., the geometric locus of all the parallel singularities of the mech-
anism. Equation (3.23) is quadratic in y and quartic in tan(„/2), which allows us
to use a simple algorithm to plot the singularity curves in the („, y) plane: one only
needs to sweep „ (or y) and compute analytically y (respectively, „) from Equation
(3.23), following a procedure similar to the one proposed in Algorithm 4 for plotting
one-dimensional self-motion manifolds. Once we have plotted the singularity curves in
the („, y) plane, we can numerically map these curves to the active joint space (l1, l2)
using Equations (3.1) and (3.2). Since parallel mechanisms are controlled in the active
joint space, it is important to know the location of parallel singularities in that space.

Let us analyze the singularity locus of an analytic 2RPR-PR parallel mechanism
with the following example geometry: a1 = 0.3, a2 = ≠0.7, b1 = 0.6, and b2 = 0.5
(arbitrary units). The singularity locus of such a mechanism is shown in Figure 3.4
in black continuous line. In this example, the singularity locus divides the joint space
into two regions with zero (white region) and four (gray region) real solutions to the
forward kinematics in each region, which agrees with [87]. The fi- and 0-hyperbolas
are represented in dotted and dashed lines, respectively, along with their points ⁄fi and
⁄0. Some trajectories are also shown, but these will be explained in the next section
3.2.

3.2 Nonsingular Transitions

It is well known that many parallel robots and mechanisms can switch between di�erent
solutions to the forward kinematics (or assembly modes) without crossing singularities,
which can be exploited to enlarge the workspace [107]. This ability was observed first in
planar 3-RPR robots [78], and it was related to the existence of points in the joint space
where three solutions to the forward kinematics coalesce [113]. These points appear
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Figure 3.5: (a) Encircling cusps of the singularity curves in the active joint space of a 2-DOF
parallel mechanism allows the mechanism to switch its assembly mode without crossing singu-
larities. This can be easily understood in a reduced configuration space of a 2-DOF mechanism,
which is the projection of the configuration space surface (which is the common solution set of all
kinematic constraints of the mechanism) on a three dimensional space (Ê1, Ê2, t), where (Ê1, Ê2)
are active joint coordinates and t is a pose parameter (i.e., a position or orientation coordinate)
of the mobile platform. (b) Similarly, encircling a so-called –-loop can also produce nonsingular
transitions.

as cusps of the singularity curves in planar slices of the joint space (see Figure 3.5a),
and encircling them in two [207] or three dimensions [186] can produce nonsingular
transitions. The ability to execute nonsingular transitions of the 3-RPR robot has been
extensively studied, see for example [206, 121, 36, 37].

Nonsingular transitions do not occur only in 3-RPR robots. They have been
observed also in spatial robots with three [77] and six [26] degrees of freedom (DOF),
and in planar 2-DOF robots with a passive leg [43]. Moreover, encircling cusps is not
the only method to achieve nonsingular transitions: for 3-RPR and 3-PRR robots these
transitions can also occur when encircling –-curves (loops of the singularity curves) in
planar sections of the joint space (see Figure 3.5b), which look like helical ramps when
visualized in the reduced configuration space [15, 108]. Normally, the –-curves appear
jointly with cusps, but [39] presents a 2-DOF robot that is able to execute nonsingular
transitions by encircling –-curves without any cusp.

Parallel robots whose characteristic polynomial is of fourth degree or less are
called analytic because their forward kinematics can be solved in closed form [87]. They
are important in robotics since their mathematical analysis is simpler, which permits
one to use them as examples or benchmarks to study concepts, test algorithms, and
solve problems di�cult to handle in the general case, providing useful information for
the later analysis of more complex robots.

The forward kinematic problem of many analytic robots is too simple to exhibit
the phenomenon of nonsingular transitions, but some examples can be found. For
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instance, the RPR-2PRR robot has been used to illustrate the analytic calculation of the
curves of cusps [72], which can be encircled in the 3D joint space to perform nonsingular
transitions. The characteristic surfaces and uniqueness domains of this robot have also
been studied [28], as well as the relationship between its design parameters and the
number of cusps [120].

Four classes of analytic 3-RPR robots were studied in [86], but it is widely
accepted that their forward kinematic problems cannot have triple solutions and, as a
consequence, that they cannot perform nonsingular transitions. This is because the
characteristic polynomial of three of these classes is quadratic. The remaining class
consists of 3-RPR robots with non-similar flat base and platform, and although its
characteristic polynomial is cubic in cos „ (being „ the orientation angle of the mobile
platform), it has been shown that it has two roots in (≠1, 1) at most [66]. On the
contrary, the analytic 3-RPR robot with congruent platform and base [196] can change
di�erent between solutions to the forward kinematics without crossing singularities.
The points of the three-dimensional joint space of this robot that can be encircled to
execute nonsingular transitions were calculated analytically in [187].

In the following subsection 3.2.1, we will demonstrate that the analytic 2RPR-
PR parallel mechanism of Figure 3.1b can perform nonsingular transitions between
di�erent assembly modes, in the apparent absence of both cusps and –-curves. As it
will be shown next, this analytic mechanism is one of the simplest and least intuitive
examples of mechanisms with the ability to perform nonsingular transtisions found in
the literature, and suggests that the assembly modes with multiplicity higher than three
should also be analyzed when assessing the ability to perform nonsingular transition in
a mechanism.

3.2.1 Nonsingular Transitions in Analytic 2RPR-PR
Mechanisms

In section 3.1.2, we have studied the singularity locus of a particular design of the
analytic 2RPR-PR mechanism of Figure 3.1b. This particular design was defined by
the following geometric parameters: a1 = 0.3, a2 = ≠0.7, b1 = 0.6, and b2 = 0.5
(arbitrary units), and the corresponding singularity locus was shown in Figure 3.4. As
this Figure 3.4 shows, the singularity curves apparently lack both the –-curves and cusp
points that make nonsingular transitions possible in other parallel mechanisms. The
absence of ordinary or generic cusps can be demonstrated more formally by showing
that the characteristic polynomial P (Â) of Equation (3.3) cannot have triple zeros, as
it will be shown next.

In order to find triple zeros of polynomial P (Â), we must solve the system of
equations (3.10). This system can be solved as follows: first, we solve Â from the
third equation of the system (3.10) (which is linear in Â), and substitute the obtained
solution into the second equation of the system (3.10). This yields the equation of a
parabola in x1 = l2

1 and x2 = l2
2:

11x2
1

18 + 22x1x2
15 + 22x2

2
25 ≠ 401x1

450 ≠ 962x2
375 + 1904263

495000 = 0 (3.24)
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This parabola can be parameterized as follows:
Y
_]

_[

x1 = ≠ 61
51

1
Ê ≠ 255

Ô
61

7442

22
≠ 326273

205700

x2 = 305
306

1
Ê + 918

Ô
61

18605

22
+ 96859

41140

, Ê œ R (3.25)

According to Equation (3.25), x1 is always strictly negative, thus no real value of
l1 = Ô

x1 satisfies Equation (3.24) and P (Â) cannot have triple zeros. Hence, the
singularity locus in the joint space will lack ordinary cusps.

In Section 3.1.1, it has been shown that the joint space of the analytic 2RPR-
PR mechanism of Figure 3.1b always has two special points ⁄fi and ⁄0, where the
forward kinematic problem admits quadruple solutions. These two special points can
be observed in Figure 3.4: the point ⁄0 lies on the singularity curve that separates the
regions with zero (white region) and four (gray region) real solutions to the forward
kinematic problem, whereas the point ⁄fi lies inside the gray region. Although we
cannot observe cusps in the singularity curves of Figure 3.4, which may suggest that
this mechanism cannot perform nonsingular transitions, it will be demonstrated next
that these transitions are indeed possible in general for this parallel mechanism by
encircling the special points ⁄fi or ⁄0.

To demonstrate that nonsingular transitions are possible in the analyzed mech-
anism, we will analyze next the evolution of the solutions to the forward kinematics
when describing some trajectories in the joint space. Given a pair (l1, l2), solving Equa-
tion (3.3) yields three values of Â, each of which results in two angles „ according to
Equation (3.8). Since Â may be outside the interval [≠1, 1] or even be complex, „ may
be complex. For a general complex Â, „ is obtained as follows (see [21], Chapter 3):

„ = acos(Â) = arg
1

Â + i


1 ≠ Â2
2

≠ i ln
---Â + i


1 ≠ Â2

--- (3.26)

where i is the imaginary unit. Since „ can be complex, it may be useful to represent the
trajectories followed by „ in the complex plane when (l1, l2) describe some trajectories
in the joint space. For example, Figure 3.6a shows the graphical representation of
di�erent values of „ in the complex plane, where the real Re(„) and imaginary Im(„)
parts of „ are represented in rectangular axes. The solution ‡1 is real, whereas ‡2 and
‡3 are complex conjugates.

According to Equation (3.26), Re(„) is the argument of a complex number, i.e.,
an angle undetermined by an integer multiple of 2fi. Thus, angles must be restricted to
an interval with length 2fi, but this produces discontinuous trajectories if a rectangular
representation of „ is used. For example, in Figure 3.6a the real part of „ is restricted
to the interval [≠fi, fi], and a trajectory connecting the solutions ‡4 and ‡5 is shown.
Note that the trajectory is discontinuous because when a point crosses the vertical line
at Re(„) = fi, it reappears at Re(„) = ≠fi since angles are wrapped to the interval
[≠fi, fi].

In what follows, it will be more convenient to use a representation that avoids
discontinuities. The solutions will be represented using modified polar coordinates, as
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Figure 3.6: Rectangular (a), polar (b), and cylindrical (c) representations of „

shown in Figure 3.6b. An arbitrary solution ‡0 will be represented as a point with
coordinates (u, v):

u = fl cos (Re(„)) , v = fl sin (Re(„)) (3.27)
where fl = fl0 + Im(„). In this representation, the circle of radius fl0 centered at the
origin represents the real solutions (e.g., ‡1). Complex solutions are radially separated
from this “real circle” a distance equal to the imaginary part, and complex conjugates
are placed symmetrically with respect to the circle (e.g., ‡2 and ‡3). Since one solution
in each conjugate pair has negative imaginary part, fl0 must be su�ciently high to
guarantee fl > 0. For all the trajectories that will be analyzed in this chapter, fl0 = 4
will su�ce.

Alternatively, we can also represent the complex solutions as points on a cylinder
with fixed radius using cylindrical coordinates (see Figure 3.6c), taking Re(„) as the
angular coordinate and Im(„) (which can be positive or negative) as the height or axial
coordinate. This representation will be used in the simulators presented in the next
chapter. However, a cylindrical representation requires three-dimensional plots and is
more suitable for interactive visualization in a 3D plotting software on a computer,
in which the user can rotate the cylinder to properly visualize all the solutions from
di�erent perspectives. For its part, the polar representation of Figure 3.6b is a two-
dimensional plot, which is more suitable for planar representations on a sheet of paper,
like the present document. Therefore, in this section, we will prefer to analyze the
trajectories using the 2D polar representation explained in Figure 3.6b, instead of the
3D cylindrical representation of Figure 3.6c.

Using the proposed polar representation, some trajectories will be analyzed next.
Figure 3.4 shows a vertical trajectory tfi approaching ⁄fi in the joint space. Figure 3.7
(top) shows three polar plots with the solutions ‡i (i = 1, . . . , 6) to the forward
kinematics at three points of tfi. To sort the solutions, the labels ‡i are assigned
arbitrarily at the beginning of the trajectory. Then, the trajectory is approximated
by a set of discrete points (lk

1 , lk
2) (k = 1, . . . , N) separated by small steps. Out of

singularities, small variations in the joint coordinates produce small variations of the
position and orientation of the platform, which in general (when complex solutions are
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Figure 3.8: Polar plots of the solutions to the forward kinematics when approaching the point
⁄0 along t0 (left). Real quadruple solution at ⁄0 (right).

obtained) can be encoded in the 4-tuple › = (u, v, Re(y), Im(y)). Thus, the rule to
sort the solutions along the trajectories consists in identifying each solution obtained
for (lk+1

1 , lk+1
2 ) with the label of the solution obtained for (lk

1 , lk
2) that has the closest

position and orientation ›, measured using the Euclidean distance.

Using this rule, Figure 3.7 (top) shows the coalescence of the four solutions
‡3, ‡4, ‡5, and ‡6 at „ = fi as the joint coordinates approach ⁄fi = (0.9, 1.2). For
(l1, l2) = ⁄fi, the forward kinematic problem has three di�erent real solutions: ‡1 and
‡2, which are simple, and ‡3, which is quadruple. Figure 3.7 (bottom) shows the
configuration of the robot for each of these solutions.

Similarly, Figure 3.8 (left) shows three polar plots of the solutions to the for-
ward kinematics at di�erent points of the vertical trajectory t0 that approaches ⁄0 =
(0.3, 0.2), shown in Figure 3.4. In this case, the coalescence of four solutions occurs
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at „ = 0, and the remaining solutions (‡5 and ‡6) are complex. The configuration of
the robot for the quadruple solution is shown in Figure 3.8 (right).

Finally, after the quadruple solutions at ⁄fi and ⁄0 have been illustrated, it will
be shown that encircling these points can produce nonsingular transitions. According
to Figure 3.4, ⁄fi can be encircled for the chosen geometry but ⁄0 lies on the limit
of the feasible region (gray area) of the joint space. Trajectories enclosing ⁄0 are not
possible in practice since they cross singularities and invade the region where the robot
cannot be assembled. This situation changes for other geometries. For example, if
the positions of A1 and A2 are swapped, ⁄0 lies inside the feasible region and can
be encircled without crossing singularities, whereas ⁄fi shifts to the boundary of this
region.

Figure 3.4 shows a circular trajectory abcdefgha that encloses ⁄fi. The trajectory
is defined by the following parametric equations:

I
l1 = 1.025 + 0.3 cos ◊

l2 = 1.075 + 0.3 sin ◊
, 0 Æ ◊ Æ 2fi (3.28)

Figure 3.9 shows some polar plots with the evolution of the six solutions to the forward
kinematics along this trajectory. Between a and b, the 0-hyperbola is crossed, which
produces the coincidence of ‡1 and ‡2 at „ = 0. Between b and c, the trajectory
crosses the fi-hyperbola, when ‡3 and ‡4 meet at „ = fi. As the trajectory evolves
from c to e, the solutions ‡5 and ‡6 approach the real circle and coincide at „ = fi for
◊ = fi, which occurs when the trajectory crosses again the fi-hyperbola at e. Although
‡5 and ‡6 share the angle „ = fi, each solution has a di�erent (imaginary) value for
y obtained from Equation (3.15). Between f and g, the 0-hyperbola is crossed once
more, with ‡1 and ‡2 meeting again at „ = 0. Finally, the trajectory continues from
g to a without crossing any hyperbola and ends at a. According to Figure 3.9, the
solutions at the beginning (◊ = 0) and at the end (◊ = 2fi) coincide, but ‡3 and
‡5 have interchanged their positions with ‡4 and ‡6, respectively. Thus, a change of
assembly mode has occurred.

It is important to remark that, although crossing the hyperbolas produces the
coincidence of solutions on the real circle, these coincidences are not singularities in
general. In these crossings, two solutions share the same „ but have di�erent sign for
y, which is computed from Equation (3.14). These crossings become singularities only
if y = 0, and this only happens at ⁄0 and ⁄fi.

Figure 3.10 shows the trajectory followed by the solution ‡4 in the reduced con-
figuration space (l1, l2, „), where the nonsingular transition can be easily understood.
The configuration surface intersects itself along the curve ÷fi, whose projection onto
the joint space is the part of the fi-hyperbola that lies to the right of ⁄fi. The projection
of the point �fi onto the joint space is ⁄fi.

Finally, Figure 3.11 shows the evolution of the configuration of the robot for
the solution ‡4 along the circular trajectory. This figure clearly shows the nonsingular
change of the solution to the forward kinematics.
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Figure 3.10: Trajectory of the solution ‡4 in the reduced configuration space

3.3 Practical Considerations and Implications for the
HyReCRo Climbing Robot

The previous section has shown that the analytic 2RPR-PR mechanism of Figure 3.1b,
which is used in the legs of the HyReCRo climbing robot studied in this thesis, can
switch between di�erent configurations of the forward kinematic problem without cross-
ing singularities. Therefore, the next question is: does this phenomenon a�ect the
operation of the studied climbing robot in any way? In this section, we will show that,
due to joint limits, both singular a nonsingular transitions will be impossible for the
HyReCRo robot, which notably simplifies its kinematic analysis and operation.

First of all, as we will see in chapter 5, the analytic 2RPR-PR parallel mechanisms
used in the HyReCRo climbing robot are symmetric, i.e.: a1 = b, a2 = ≠b, b1 = b2 = p,
where 2b is the size of the base of the mechanism, whereas 2p is the size of its mobile
platform (see Figure 3.12a). The precise design used in the prototype of the HyReCRo

54



3.3. Practical Considerations and Implications for the HyReCRo Climbing Robot

A2 A1

B1

B2

B

B

B2

B1

A1A2

B1

A1A2

B

B2

θ = π/2θ = 0 θ = π/4 θ = 3π/4 θ = π θ = 5π/4 θ = 3π/2 θ = 7π/4 θ = 2π

Figure 3.11: Configuration of the analytic 2RPR-PR robot for the solution ‡4 along the circular
trajectory abcdefgha of Figure 3.4

Figure 3.12: (a) A symmetric analytic 2RPR-PR parallel mechanism, like those used in the
legs of the HyReCRo climbing robot. (b) Active joint space of a mechanism with b = 2.5 cm and
p = 3.15 cm. J

L

is the square region inside the joint limits.

robot that will be presented in Chapter 8 is given by the following values: b = 2.5 cm
and p = 3.15 cm.

Besides, the lengths l1 and l2 (controlled variables of the mechanism) will have
to be between a minimum value fl0 and a maximum value fl0 + �fl, due to obvious
physical limitations of the linear actuators to be used in the implementation of the
mentioned prototype (the linear actuators cannot be arbitrarily short or long!). fl0 is
the length of the linear actuators when they are completely retracted, whereas �fl is
their stroke. In the prototype that will be presented in Chapter 8, we will use linear
electric actuators that have the following minimum length and stroke: fl0 = 10 cm and
�fl = 5 cm.

The active joint space (l1, l2) of a symmetric analytic 2RPR-PR mechanism
with b = 2.5 cm and p = 3.15 cm is represented in Figure 3.12b. Like in Figure 3.4,
the singularity locus divides the (l1, l2) plane into two regions: a gray region where
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the forward kinematic problem has 4 real solutions, and a white region with 0 real
solutions. Figure 3.12b also represents the special points ⁄fi and ⁄0, which, as we have
seen in the previous Section 3.2.1, can be encircled to change the assembly mode of
the mechanism without crossing singularities. Note that the singularity locus of the
mechanism of Figure 3.12b has essentially the same structure as the example of Figure
3.4. Thus, what we observed in the example of Section 3.2.1 (regarding the ability to
perform nonsingular transitions) is perfectly extensible to the mechanisms used in the
legs of the HyReCRo robot (i.e., if the mechanism encloses ⁄fi, it can switch between
di�erent assembly modes).

However, unlike in the example of Section 3.2.1, now we are considering joint
limits: Figure 3.12b represents a square JL defined as: JL = {(l1, l2) : fl0 Æ l1 Æ
fl0 + �fl, fl0 Æ l2 Æ fl0 + �fl}. Due to joint limits, the mechanism will be constrained
to move inside JL. This has two important consequences: 1) on the one hand, the
mechanism will be unable to enclose the special point ⁄fi, since it is outside JL. 2) On
the other hand, the square JL does not intersect the singularity locus, which means
that the mechanism will never encounter singularities and lose the control of its mobile
platform.

In other words: joint limits will impede both singular and nonsingular transitions
in the mechanisms of the legs of the HyReCRo robot. The mechanism will always
operate in the assembly mode in which it was originally “assembled”, without the
possibility to switch to other assembly modes. This will greatly simplify the kinematic
analysis of the complete climbing robot in the next chapters.

Next, let us analyze the reduced configuration space of the symmetric mech-
anism of Figure 3.12 considering joint limits, in order to identify more clearly the
di�erent assembly modes of this mechanism. In Section 3.2.1, we analyzed the non-
singular transitions of the analytic 2RPR-PR mechanism in the reduced configuration
space (l1, l2, Ï) (i.e., we focused on the orientation of the mobile platform). However,
in this section, it will be more convenient to analyze the reduced configuration space
(l1, l2, y) (i.e., we will focus on the position of the mobile platform) because, as we
will see next, the position y allows us to clearly distinguish and identify the di�erent
assembly modes under joint limits.

If we consider joint limits, then we only need to represent the reduced config-
uration space for values of the joint coordinates inside the square region JL, which
yields the surfaces shown in Figure 3.13. Note that, above the region JL of the (l1, l2)
plane, the reduced configuration space (l1, l2, y) is composed of four non-intersecting
surfaces or sheets, which are identified in Figure 3.13 as H+, H≠, X+, and X≠. Each
sheet corresponds to a di�erent assembly mode. As Figure 3.13 illustrates, the linear
actuators intersect for assembly modes X+ and X≠, whereas they do not intersect
for assembly modes H+ and H≠. Actually, for the HyReCRo robot, the only feasible
assembly mode is H+, since the other three assembly modes imply collisions between
di�erent parts of the robot (not necessarily between the linear actuators, which can be
easily avoided by placing these actuators in di�erent parallel planes). Therefore, the
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Figure 3.13: Reduced configuration space (l1, l2, y) of the parallel mechanism of Figure 3.12,
for values of l1 and l2 inside the square region J

L

delimited by the joint limits. Each surface
corresponds to a di�erent assembly mode. The typical posture of the mechanism in each assembly
mode is represented.

parallel mechanisms used in the legs of the HyReCRo robot will always move along
sheet H+.

Finally, to conclude this section, let us analyze the following practical problem:
for later chapters, we will need to use the solution of the forward kinematic problem of
the parallel mechanisms of Figure 3.12a. This problem has four di�erent real solutions,
but only one of them (H+) is feasible in practice, as we have just said. How can we
know which one is the right solution? Figure 3.13 provides a simple answer to this
question: the valid solution (H+) is always the one with the highest value for y (the
red sheet H+ is always above the other three sheets). Thus, after solving the forward
kinematic problem of the 2RPR-PR parallel mechanisms in later chapters, we will retain
only the solution with the highest y, discarding the other three solutions.

3.4 3RPR Parallel Robots

In this section, we will analyze the forward kinematic problem and nonsingular transi-
tions of 3RPR planar parallel robots. Figure 3.14a shows a general 3RPR robot: this
robot is composed of a fixed triangular platform (or base) ACF, and another mobile
triangular platform BDE. The geometries of the fixed and mobile platforms are de-
fined by the parameters {c2, c3, d3} and {l1, l3, —}, respectively. Both platforms are
interconnected through three legs AB, CD, and EF, whose lengths are fl1, fl2, and fl3,
respectively. By controlling these lengths, it is possible to control the position and
orientation of the mobile platform in the plane. In this section, we will parameterize
the position of the mobile platform by the Cartesian coordinates (x, y) of its joint B,
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Figure 3.14: General (a) and analytic (b) 3RPR planar parallel robots.

whereas its orientation will be parameterized by the angle „ between segments BE and
AC.

The general 3RPR planar parallel robot of Figure 3.14a is one of the most
widely studied parallel robots in the scientific literature, especially regarding its ability
to perform nonsingular transitions (see the references cited in Section 3.2). As we have
also indicated in Section 3.2, diverse analytic variants of this general robot have also
been studied [86], but earlier studies on the number of real roots of the characteristic
polynomials of these variants suggested that such analytic variants could not execute
nonsingular transitions. One of these well-known analytic variants is shown in Figure
3.14b: this variant of the 3RPR robot is characterized by the fact that both triangular
platforms have degenerated into segments: i.e., joints ACF are aligned (d3 = 0), and
joints BDE are also aligned (— = fi rad). The robot of Figure 3.14b assumes that the
mobile platform is not a scaled version of the fixed platform, i.e.: c3l2 ≠ c2l3 ”= 0. We
will also assume that l2, l3 > 0, l2 ”= l3, c2 ”= 0, c3 ”= 0, and c2 ”= c3, which means that
di�erent legs cannot be attached to the same point of the fixed or mobile platform.

Why study the 3RPR robot in this chapter? What is the importance of this
robot and how is it related to the 2RPR-PR parallel mechanism analyzed in Section
3.1? Firstly, there is an obvious relationship: the general 2RPR-PR parallel mechanism
of Figure 3.1a can be obtained by fixing the orientation angle ◊3 of leg EF of the
general 3RPR robot of Figure 3.14a, such that the length fl3 is no longer a controlled
variable but becomes a passive variable y (see Figure 3.1a), which defines the position
of the mobile platform along the passive guide OB. However, there is a more important
relationship: as we will see next, the forward kinematic problem of the analytic 3RPR
robot of Figure 3.14b is essentially the same as the forward kinematic problem of
the analytic 2RPR-PR mechanism of Figure 3.1b. Considering the results obtained in
Sections 3.1.1 and 3.2.1 relative to the 2RPR-PR mechanism, this similitude suggests
that the analytic 3RPR robot of Figure 3.14b may also be able to execute nonsingular
transitions, contrary to what earlier studies suggested.

Indeed, in the next subsections we will show that the analytic 3RPR parallel
robot of Figure 3.14b can perform nonsingular transitions in a similar way to the
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analytic 2RPR-PR mechanism of Figure 3.1b. For this purpose, first we will obtain the
solutions of its forward kinematic problem, paying special attention to the multiplicity
of these solutions.

3.4.1 Forward Kinematics of Analytic 3RPR Parallel Robots
The forward kinematic problem of the analytic 3RPR robot of Figure 3.14b was solved
in [66]. This problem consists in calculating the position and orientation („, x, y) of
the platform given the lengths fl1, fl2, fl3 > 0. Next, this problem will be analyzed again
paying special attention to the multiplicity of the solutions. The relationship between
(„, x, y) and (fl1, fl2, fl3) is:

fl2
1 = x2 + y2 (3.29)

fl2
2 = (x + l2 cos „ ≠ c2)2 + (y + l2 sin „)2 (3.30)

fl2
3 = (x + l3 cos „ ≠ c3)2 + (y + l3 sin „)2 (3.31)

which states that the distances A-B, F-E, and C-D must be fl1, fl3, and fl2, respectively.
Equations (3.30) and (3.31) can be replaced by the following linear combinations, which
are independent since l23 = l2 ≠ l3 ”= 0:

l23 [Equation (3.29)] + l3 [Equation (3.30)] ≠ l2 [Equation (3.31)] ≠æ [Equation (3.32)]
[Equation (3.30)] ≠ [Equation (3.31)] ≠æ [Equation (3.33)]

The new equations are:

(c3l2 ≠ c2l3)x + l2l3c32 cos „ = l2(s1 ≠ s3) + l3(s2 ≠ s1)
2 (3.32)

2yl23 sin „ + 2(c32 + l23 cos „)x = s2 ≠ s3 + 2(c2l2 ≠ c3l3) cos „ (3.33)

where s1 = fl2
1, si = fl2

i ≠ c2
i ≠ l2

i (i = 2, 3), and c32 = c3 ≠ c2. Solving x from
Equation (3.32) yields:

x = ≠2l2l3c32 cos „ + l2(s1 ≠ s3) + l3(s2 ≠ s1)
2(c3l2 ≠ c2l3) (3.34)

Next, y is solved from Equation (3.29), obtaining:

y = ±


s1 ≠ x2 (3.35)

Inserting this value of y into Equation (3.33) and squaring the resulting equation to
eliminate the radical yields an equation that involves x and „. In that equation, x can
be substituted by Equation (3.34), obtaining the following cubic equation in Â = cos „
after arranging the terms:

P (Â) = K3Â3 + K2Â2 + K1Â + K0 = 0 (3.36)

59



Chapter 3. Parallel Modules and Nonsingular Transitions

where the coe�cients have the following expressions:

K3 = 8c2c3l2l3c32l23 (3.37)
K2 = 4

#
c2

2c2
3l2

23 + l2
2l2

3c2
32 + (c3l2 + c2l3)c32l23s1 + (c32l2 ≠ c2l23)c3l3s2+

(l23c3 ≠ l3c32)c2l2s3]
(3.38)

K1 = 2
#
c32l23s2

1 ≠ c3l3s2
2 ≠ c2l2s2

3 + (l3c32 ≠ c3l23)s1s2+
+(c2l23 ≠ l2c32)s1s3 + (c3l2 + c2l3)s2s3 ≠ 2l23c32(c2c3 + l2l3)s1+
+2(c2

3c2l23 ≠ l2
3l2c32)s2 + 2(l2

2l3c32 ≠ c2
2c3l23)s3

$
(3.39)

K0 = (c2
32 + l2

23)s2
1 + (c2

3 + l2
3)s2

2 + (c2
2 + l2

2)s2
3 + 2(l3l23 ≠ c3c32)s1s2+

+ 2(c2c32 ≠ l2l23)s1s3 ≠ 2(c2c3 + l2l3)s2s3 ≠ 4(c3l2 ≠ c2l3)2s1
(3.40)

Since K3 ”= 0, Equation (3.36) always yields three values for Â = cos „. For each
value, the x and y coordinates must be computed, completing the solution („, x, y) to
the forward kinematics. Next, we will study the multiplicity of the solutions depending
on the type of intersection between the graph of P (Â) and the horizontal Â axis in
[≠1, 1], following the same procedure as in Section 3.1.1.

If Equation (3.36) has a solution at Â0 œ (≠1, 1), two angles „+ and „≠ are
obtained according to Equation (3.8). For each of these angles, x is computed from
Equation (3.34), whereas y is calculated from Equation (3.33), obtaining:

y = s2 ≠ s3 ≠ 2(l23x ≠ c2l2 + c3l3) cos „ ≠ 2xc32
2l23 sin „

(3.41)

which is valid because sin „ ”= 0. Thus, an intersection in (≠1, 1) yields two real
solutions to the forward kinematics: („+, x+, y+) and („≠, x≠, y≠), where (x+, y+)
and (x≠, y≠) denote the values obtained using „+ and „≠ respectively. As discussed
in Section 3.1.1, these solutions to the forward kinematics can be triple only if Â0 is a
triple zero of P (Â), which requires searching for a feasible solution to Equation (3.10),
if it exists. Solving Equation (3.10) for a general geometry is not easy, hence this case
will be studied later for a particular example geometry. Next, the solutions at Â = ±1
are analyzed.

3.4.1.1 P (Â) vanishes at ≠1

Imposing P (≠1) = 0 results in the following condition:

fl2
1(c2≠c3+l2≠l3)+fl2

2(c3+l3)≠fl2
3(c2+l2) = (c2≠c3+l2≠l3)(c3+l3)(c2+l2) (3.42)

which defines a hyperboloid in the joint space. If the joint coordinates lie on this hy-
perboloid, P (Â) vanishes at Â = ≠1, which translates into „ = fi. Hence, the surface
defined by Equation (3.42) will be called the fi-hyperboloid. For „ = fi, Equation (3.34)
is used to compute x = xfi, but y cannot be calculated using Equation (3.41) since the
denominator vanishes. Instead, y is computed from Equation (3.35), which gives two
values y+

fi and y≠
fi when picking respectively the positive and negative sign of the radical.
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If the radicand in Equation (3.35) is positive, this case yields two di�erent real solutions
to the forward kinematics: („ = fi, x = xfi, y = y+

fi ) and („ = fi, x = xfi, y = y≠
fi ). If

P (Â) is forced to have a double zero at Â = ≠1, these two solutions do not become
two di�erent double solutions but a quadruple one, as we will show next. The condition
of double zero requires P Õ(≠1) = 0:

3K3 ≠ 2K2 + K1 = 0 (3.43)

Equation (3.43) defines a surface in the joint space. The intersection of this surface
with the fi-hyperboloid gives the points of the joint space where P (Â) has a double
zero at Â = ≠1. It can be shown that the intersection of these two surfaces results in
two curves “+

fi and “≠
fi defined by the following parametric equations:

“±
fi ©

Y
_]

_[

fl1 = |c2 + l2 ± Ê|
fl2 = Ê

fl3 = |c2 ≠ c3 + l2 ≠ l3 ± Ê|
, Ê > 0 (3.44)

When the joint coordinates belong to any of these curves, the substitution of Equa-
tion (3.44) and „ = fi into Equations (3.34) and (3.35) yields: y+

fi = y≠
fi = 0. Thus,

the two double solutions become a quadruple solution.

3.4.1.2 P (Â) vanishes at 1

Imposing P (1) = 0 yields the following condition:

fl2
1(c2≠c3≠l2+l3)+fl2

2(c3≠l3)≠fl2
3(c2≠l2) = (c2≠c3≠l2+l3)(c3≠l3)(c2≠l2) (3.45)

which defines another hyperboloid in the joint space. When the joint coordinates
belong to it, Â = 1 is a zero of P (Â), which results in „ = 0. Thus, the surface
defined by Equation (3.45) will be called the 0-hyperboloid. For „ = 0, x is computed
from Equation (3.34), obtaining x = x0, and y is calculated from Equation (3.35),
obtaining two values depending on the sign of the radical: y+

0 and y≠
0 . If the radicand

in Equation (3.35) is positive, two real solutions are obtained: („ = 0, x = x0, y = y+
0 )

and („ = 0, x = x0, y = y≠
0 ). Repeating the procedure of the previous subsection,

these two solutions are forced to become double by imposing P Õ(1) = 0:

3K3 + 2K2 + K1 = 0 (3.46)

Next, the surface defined by Equation (3.46) is intersected with the 0-hyperboloid,
obtaining the locus of joint coordinates for which Â = 1 is a double zero of P (Â).
The intersection of these two surfaces leads to two curves “+

0 and “≠
0 parameterized

as follows:

“±
0 ©

Y
_]

_[

fl1 = |c2 ≠ l2 ± Ê|
fl2 = Ê

fl3 = |c2 ≠ c3 ≠ l2 + l3 ± Ê|
, Ê > 0 (3.47)

Substituting Equation (3.47) and „ = 0 into Equations (3.34) and (3.35) gives y+
0 =

y≠
0 = 0, i.e., the two double solutions become a single quadruple solution.
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3.4.2 Nonsingular Transitions
In Section 3.4.1, it has been shown that the joint space of this robot presents in general
two hyperboloids that contain four polygonal curves (the “-curves) where the forward
kinematics admits quadruple solutions. Next, we present an example where encircling
one of these curves produces a nonsingular change of assembly mode.

For the example, the following geometry will be used: c2 = 1.1, c3 = 0.3,
l2 = 0.7, and l3 = 0.4 (arbitrary units). Figure 3.15a shows the joint space for
this geometry, for fl2 Æ 1. The surface shown is the singularity locus, whose shape
resembles a hood. There are four real solutions to the forward kinematics inside this
“hood” (feasible region) and zero outside it, which agrees with [66]. To compute the
singularity surface, the determinant of the Jacobian matrix of Equations (3.29), (3.30),
and (3.31) with respect to („, x, y) has been equated to zero. The resulting equation
is linear in x, quadratic in y, and quartic in tan(„/2), so it is easy to vary two of
these variables and compute the remaining one to obtain the points that belong to the
singularity surface in the workspace. Then, these points are mapped numerically to the
joint space using Equations (3.29), (3.30), and (3.31), obtaining the surface shown in
Figure 3.15a.

To facilitate the visualization, the hyperboloids are not shown in Figure 3.15a,
but the “-curves are represented: abcd is “≠

0 , ae is “+
0 , fg is “+

fi , and fh is “≠
fi . The

points {a, f} are the origins of the “-curves and lie in the plane fl2 = 0, whereas
{d, e, g, h} are in the plane fl2 = 1. For fl2 Æ 1, the curves “+

0 , “+
fi , and “≠

fi lie along
some sharp edges of the singularity surface that delimits the feasible region, so they
cannot be encircled. The part abc of “≠

0 belongs also to the limit of the feasible region,
but the segment cd is inside it and can be encircled.

Next, a trajectory that encircles the segment cd will be analyzed. The trajectory
is given by the following parametric equations:

t0 ©

Y
_]

_[

fl1 = 0.5 + 0.8 · 0.1 cos ◊

fl2 = 0.9 ≠ 0.6 · 0.1 cos ◊

fl3 = 0.4 + 0.1 sin ◊

, 0 Æ ◊ Æ 2fi (3.48)

This trajectory, denoted by t0 in Figure 3.15a, is a circle of radius 0.1 contained in the
vertical plane 3fl1 + 4fl2 = 5.1 and centered at the point where that plane intersects
the curve “≠

0 .

Figure 3.15b shows the evolution of the six solutions to the forward kinematics
along trajectory t0. The rule described in Section 3.2.1 is used to sort the solutions
along the trajectory: the continuity of the 6-tuple › = (u, v, Re(x), Im(x), Re(y), Im(y))
is imposed for each of the six solutions.

As ◊ increases from 0 to fi/4, the solutions ‡1 and ‡2 move along the real
circle towards „ = 0. Between ◊ = fi/4 and ◊ = fi/2, these two solutions meet at
„ = 0, which corresponds to a crossing of the 0-hyperboloid in the joint space. The
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Figure 3.15: (a) Joint space of the analytic 3-RPR robot, with the singularity locus and the
“-curves. Dotted lines indicate lines hidden by the singularity surface. (b) Polar diagrams with
the evolution of the six solutions ‡

i

(i = 1, . . . , 6) to forward kinematics along the trajectory t0
that encircles the curve “≠

0 .

0-hyperboloid is crossed again between ◊ = 5fi/4 and ◊ = 3fi/2, which produces the
coincidence of the solutions ‡3 and ‡4 at „ = 0. When that crossing occurs, „ is real
for all the six solutions, but ‡3 and ‡4 are complex solutions since their y coordinate
is calculated using Equation (3.35), which gives two imaginary values. At the end of
the trajectory (◊ = 2fi), the solutions are the same as at the beginning (◊ = 0), but
a change of assembly mode has occurred since two pairs of solutions have swapped
their positions in the polar diagram: ‡1 and ‡3 occupy the original places of ‡2 and
‡4, respectively.
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Figure 3.16: Evolution of the configuration of the 3-RPR robot for the solution ‡1 along the
nonsingular assembly-mode-changing trajectory t0

As remarked for the 2RPR-PR robot in Section 3.2.1, two solutions crossing
at „ = 0 or „ = fi are not necessarily singularities, since the y coordinate for both
solutions is computed using Equation (3.35), which gives two real or pure imaginary
numbers with opposite sign.

Finally, Figure 3.16 shows the evolution of the configuration of the robot for
the solution ‡1 along the trajectory, where the nonsingular change of assembly mode
is evident.

3.4.2.1 Trajectory with constant fl2

Although Figures 3.15b and 3.16 demonstrate that this analytic 3-RPR robot can
perform nonsingular transitions, the best way to understand why such transitions are
possible is to visualize the trajectories in the reduced configuration space, as it has been
done in Figure 3.10 for the 2RPR-PR robot. However, the representation of trajectories
in the reduced configuration space requires varying only two joint coordinates, so that
an output variable (e.g., the orientation „ of the mobile platform) can be plotted versus
these joint coordinates in a 3D space. Hence, for this robot, it is necessary to fix the
value of one of the three joint coordinates in order to visualize the trajectories in the
reduced configuration space.

Next, a trajectory in which the length of the leg CD is kept constant at fl2 = 1
will be simulated. The intersection of the plane fl2 = 1 with the singularity locus of
Figure 3.15a yields the curves of Figure 3.17a, where the points d, e, g, and h are the
same as in Figure 3.15a (these points are the intersections between the “-curves and
the plane fl2 = 1). Keeping fl2 = 1 constant, the joint coordinates fl1 and fl3 will be
varied along the following circular trajectory to encircle the curve “≠

0 :
I

fl1 = 0.6 + 0.1 cos ◊

fl3 = 0.5 + 0.1 sin ◊
, 0 Æ ◊ Æ 2fi (3.49)

which is a circle of radius 0.1 centered at the point d. This trajectory is shown in
Figure 3.17a, together with the intersection between the fi- and 0-hyperboloids and
the plane fl2 = 1.

Figure 3.17b shows the polar plots with the evolution of the six solutions to
the forward kinematics along the trajectory of Equation (3.49). Since this trajectory is
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similar to the trajectory t0 of Figure 3.15a, the evolution of the solutions is very similar
to the previous example. First, for 0 Æ ◊ Æ fi/4, the solutions ‡1 and ‡2 move along
the real circle, towards „ = 0. Between ◊ = fi/4 and ◊ = fi/2, these two solutions
coincide at „ = 0 in the real circle, which occurs when the 0-hyperboloid is crossed in
the joint space. Later, between ◊ = 5fi/4 and ◊ = 3fi/2, the 0-hyperboloid is crossed
again when ‡3 and ‡4 meet in the real circle („ = 0 for both solutions). As in the
previous examples, after completing the trajectory, two pairs of solutions have swapped
their positions in the polar diagram: ‡1 and ‡3 occupy the original places of ‡2 and
‡4, respectively. Thus, a nonsingular transition has occurred.

As discussed for the previous examples, the crossings in the real circle are not
singularities in this case, because the solutions that coincide in the real circle only share
the angle „, having di�erent values for the x and y coordinates.

Figure 3.18 shows the trajectory described by the solution ‡1 in the reduced
configuration space (fl1, fl3, „) for this example. Note that the reduced configuration
space, in the neighborhood of the quadruple solution D, has the same form as in the
example shown in Figure 3.10 for the 2RPR-PR robot. In this case, the configuration
surface intersects itself along the curve ÷0, whose projection onto the (fl1, fl3) plane
yields the part of the 0-hyperboloid which lies to the right of the point d in Figure 3.17a.
The point D of Figure 3.18 yields the point d when projected onto the (fl1, fl3) plane.
As in the 2RPR-PR robot, this shape of the reduced configuration space explains why
it is possible to perform a nonsingular transition by encircling the points of the joint
space with quadruple solutions to the forward kinematics.

Finally, it is interesting to visualize the trajectory described by the robot in the
output space (i.e., the space of the x, y, and „ coordinates that define the position and
orientation of the mobile platform), along with the singularity locus, to confirm that the
trajectory followed by the robot is singularity-free. Figure 3.19 represents the singularity
locus in the output space. The singularity locus, for the ranges of the (x, y, „) variables
used in Figure 3.19, is composed of a surface and a straight line segment l defined by:
{y = 0, „ = 0}. This segment l corresponds to the part of the curve “≠

0 that can be
encircled in the joint space. The curve tc is the trajectory described by the solution
‡1 when the joint coordinates perform the trajectory of Equation (3.49). Figure 3.19
shows that the trajectory tc does not cross the singular surface. To show in the same
figure that the segment l of the singularity locus is also avoided by the trajectory tc,
this trajectory has been projected onto the plane x = ≠2, obtaining the projected
trajectory tp. This projection clearly shows that the trajectory does not intersect the
segment l, confirming that the transition is nonsingular.

3.4.2.2 Triple zero of P (Â)

Finally, Equation (3.10) will be solved for the geometry under study to check if P (Â)
can have triple zeros in [≠1, 1]. Using the geometric parameters indicated at the
beginning of Section 3.4.2, the third equation of the system (3.10) becomes:

39000x1 + 26700x2 ≠ 78925x3 + 33264Â = 40653 (3.50)
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Figure 3.17: (a) Slice of the joint space of Figure 3.15a at fl2 = 1. (b) Polar plots with the
evolution of the six solutions ‡

i

(i = 1, . . . , 6) to the forward kinematics along the circle centered
at d, shown in Figure 3.17a.

where xi = fl2
i (i = 1, 2, 3). Solving x2 from Equation (3.50) and inserting the solution

into the first and second equations of the system (3.10) yields the following pair of
equations:

308Â+317
792100 x2

1 ≠ 169Â+154
190104 x1x3 + 44352Â+59977

114062400 x2
3 + 255024Â2≠82216Â≠189883

910915000 x1

+ 3060288Â2≠2959633Â+119954
10930980000 x3 ≠ 140152320Â3≠731253600Â2+1065952516Â≠475317725

4190209000000 = 0
(3.51)
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Figure 3.18: Trajectory of the solution ‡1 in the reduced configuration space of the 3-RPR
robot, for the trajectory of Equation (3.49) and fl2 = 1

xy

ϕ
(rad)

θ = 0

θ = 2π

Projection
tp

tc

-2 2-2
2

l

-π

π

Figure 3.19: Trajectory of the solution ‡1 in the output space of the 3-RPR robot, for the
trajectory of Equation (3.49) and fl2 = 1

40733
198025 x2

1 ≠ 89401
190104 x1x3 + 40733

198025 x2
3 + 23(3060288Â+3682079)

475260000 x3+

+ 23(31878Â≠13049)
4950625 x1 + 316274112Â2≠585585000Â+267121871

1980250000 = 0 (3.52)

Equations (3.51) and (3.52) define respectively two conics C1 and C2 in the space
(x1, x3). The coe�cients of these conics depend on Â, which must be in [≠1, 1] to
obtain a triple zero of P (Â) that translates into a real angle „. The next step is to
calculate the intersection of C1 and C2 for ≠1 Æ Â Æ 1.

To simplify the calculation, the coe�cients of the conics can be used to classify
them in terms of Â (see [175], page 43). Studying the coe�cients of C2, it can be
checked that it is a hyperbola ’Â œ R. The analysis of the coe�cients of C1 results
in more cases:

• If Â = ≠1, C1 is a double line that does not intersect C2.

• If ≠1 < Â < 0, C1 is an imaginary ellipse.
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• If Â = 0, C1 is a point that does not belong to C2.

For the previous cases, there is no real solution to Equations (3.51) and (3.52). For
0 < Â < 1, C1 is a real ellipse whose size increases with Â. C1 and C2 become closer
as Â approaches 1, but apparently they never intersect (see Figure 3.20).

Finally, for Â = 1 the conic C1 is another double line (i.e., a pair of coincident
lines) that intersects C2 at two points, which yields two solutions p+ and p≠ with the
following joint coordinates:

p± : fl1 = 323
230 ± 12

Ô
154

115 , fl2 = 83
46 ± 12

Ô
154

115 , fl3 = 30
23 ± 12

Ô
154

115

where fl2 = Ô
x2 is obtained substituting Â = 1 and the corresponding values of x1

and x3 into Equation (3.50). At the point p+, Â = 1 is a triple zero of P (Â). A zero
at Â = 1 yields a single angle „ = 0 (regarding angles di�ering by an integer multiple
of 2fi as the same angle). Equation (3.34) gives a single value for the x coordinate:
x = xp+ = ≠323/230 ≠ 12

Ô
154/115. Finally, if the radicand in Equation (3.35) was

positive, two di�erent real values would be obtained for y. In that case, the forward
kinematics would have two triple real solutions: („ = 0, x = xp+ , y =


fl2

1 ≠ x2) and
(„ = 0, x = xp+ , y = ≠


fl2

1 ≠ x2). However, the mentioned radicand is zero at p+,
which means that these two solutions become a single solution with multiplicity six.
It can be checked that this also happens at p≠. The points p+ and p≠, where the
sextuple solutions occur, belong to parts of the curve “≠

0 that lie on the singularity
surface that delimits the region of the joint space where the robot can be assembled.
Hence, these parts of “≠

0 cannot be encircled.
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3.5 Stability Analysis of Quadruple Solutions

In the previous sections, we thoroughly analyzed the solutions of the forward kinematic
problem of two analytic parallel mechanisms: the 2RPR-PR mechanism (Section 3.1.1)
and the 3RPR robot (Section 3.4.1). We demonstrated that both mechanisms are able
to perform nonsingular transitions by enclosing quadruple solutions of the forward
kinematic problem. Also, in Section 3.3 we checked that this phenomenon will not
a�ect the climbing robot studied in this thesis, since the joint limits of the linear
actuators will impede both singular and nonsingular transitions in the analytic 2RPR-
PR mechanisms used in the legs of this climbing robot.

However, although nonsingular transitions will not occur in the climbing robot
studied in this thesis, it is very important to pose the following question: how stable
is the ability to perform nonsingular transitions of the mechanisms studied in Sections
3.2.1 and 3.4.2, under perturbations in the geometric design of these mechanisms?
The analytic parallel mechanisms studied in these sections have very special geometric
designs. The analytic 2RPR-PR mechanism of Figure 3.1b is a particular case of the
general mechanism of Figure 3.1a, obtained when the mobile platform B-B1-B2 is flat
and the passive slider OB is perpendicular to the base A2-A1. Similarly, the analytic
3RPR robot of Figure 3.14b is a particular case of the general robot of Figure 3.14a,
in which both the mobile and fixed platforms are flat. When a parallel mechanism
has a special geometric design like in these two previous examples, it is said that its
geometry is non-generic, and in that case, the singularity locus may exhibit higher-order
singularities, like the isolated singularity ⁄fi of Figure 3.4.

The isolated point ⁄fi studied in previous sections is not the only higher-order
singularity. Other well-known higher-order singularities that may appear when the
geometry of a 2-DOF mechanism is non-generic are the lips, beaks, and swallowtail
singularities [182]. These singularities are illustrated in Figures 3.21b, 3.21e, and 3.21h,
assuming a 2-DOF parallel mechanism with two active joint coordinates fl1 and fl2.
Higher-order singularities are unstable, since they only exist when the geometry of
a mechanism is exactly non-generic (for example, the non-generic geometry of the
analytic 3RPR robot of Figure 3.14b requires both the mobile and flat platforms to be
exactly flat).

However, due to finite precision or tolerances in the manufacturing of real par-
allel mechanisms and robots, in practice it will be impossible to build a real mecha-
nism exactly with a non-generic geometry: there will always be small deviations from
this non-generic geometry. Since higher-order singularities are unstable and only exist
when the mechanism exactly has a non-generic geometry, a slight deviation from a
non-generic geometry will transform these singularities as depicted in Figure 3.21 and
explained next [182]. Depending on the direction of the perturbation. . .

• . . . a lips singularity (Figure 3.21b), which is an isolated point, will either disap-
pear (Figure 3.21c) or transform into a small bicuspid closed curve (Figure 3.21a).
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Figure 3.21: Higher-order unstable singularities and their perturbations.

• . . . a beaks singularity (Figure 3.21e) will transform either into a couple of smooth
curves (Figure 3.21f) or a couple of curves with one cusp each (Figure 3.21d).

• . . . a swallowtail singularity (Figure 3.21h), will transform either into a smooth
curve (Figure 3.21i) or a self-intersecting curve with two cusps (Figure 3.21g).

Accordingly, when perturbing one of these three higher-order singularities, two cusps
are either created (cases of Figures 3.21a, 3.21d, 3.21g) or destroyed (cases of Fig-
ures 3.21c, 3.21f, 3.21i). Therefore, if a non-generic mechanism has a higher-order
singularity, and its geometry is perturbed in the direction that destroys two cusps, the
mechansim will lose the ability to perform nonsingular transitions (at least locally, near
the destroyed cusps - the mechanism may still have additional cusps in other regions
of its active joint space).

Like the lips singularity, the quadruple points ⁄fi (Figure 3.4) and d (Fig-
ure 3.17a), studied previously, are also higher-order isolated singularities. As we have
just said, a lips singularity can either transform into a closed curve with two cusps, or
be destroyed (in which case, the mechanism will lose the ability to perform nonsingular
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transitions). Considering this precedent, it is important to analyze how the isolated sin-
gularities studied in Sections 3.2.1 and 3.4.2 will transform under perturbations of the
geometry, to check whether these singularities will behave similarly to lips singularities
or not.

Next, we will analyze the stability of the isolated quadruple singularities of the
analytic 3RPR robot of Figure 3.14b, whose geometry is non-generic. This analysis
will consist in perturbing numerically the geometry of the robot so that at least one
of its platforms is no longer perfectly flat (and the robot is no longer analytic and
non-generic), and observing how these isolated quadruple singularities transform under
these perturbations.

3.5.1 Another Example of Nonsingular Transitions in Analytic
3RPR Robots

In section 3.4.1, we demonstrated that the 3RPR robot with flat and non-similar fixed
and mobile platforms exhibits points in its three-dimensional active joint space at which
its forward kinematic problem admits quadruple solutions. These points lie on polygonal
curves denoted by “±

0 and “±
fi in Section 3.4.1. Some parts of these polygonal curves

can be encircled by three-dimensional trajectories in which all three joint coordinates
vary, which produces nonsingular transitions (see Section 3.4.2).

In subsection 3.4.2.1, we also analyzed this phenomenon when one of the ac-
tive joint coordinates was kept constant. In that case, the robot enclosed the isolated
quadruple singularity d obtained as the intersection of one of the aforementioned polyg-
onal curves with a plane (this point was represented in Figure 3.17a).

In this section, we will again keep constant one of the active joint coordinates
of the analytic 3RPR robot of Figure 3.14b (in this case, the length of fl3 will be
kept constant). Then, we will analyze how the isolated quadruple singularities of
this analytic robot transform when perturbing its non-generic geometry. The reason
for keeping constant one active joint coordinate of the 3RPR robot is to have a 2-
DOF mechanism, which allows us to analyze the e�ects of the perturbation in the
same context as the higher-order singularities of Figure 3.21, which assume 2-DOF
mechanisms.

Moreover, analyzing the 2-DOF mechanism obtained by keeping constant the
length fl3 of the 3RPR robot will also allow us to directly extend the results observed
in this mechanism to the quadruple singularities of the (2-DOF) analytic 2RPR-PR
mechanism of Figure 3.1b. It should be mentioned that the transformations su�ered
by the quadruple singularities ⁄0 and ⁄fi of this 2RPR-PR mechanism under geometric
perturbations were studied in [40], where these quadruple singularities were character-
ized in much greater detail than in the present chapter. In [40], these two quadruple
singularities were analyzed based on the characteristic curves and uniqueness domains
of the („, y) workspace of the 2RPR-PR parallel mechanism, and were identified with
the singularities of two complex mappings, namely: the complex square mapping and
the “quarto” mapping.

71



Chapter 3. Parallel Modules and Nonsingular Transitions

2.5

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

Singularity locus

f1

f2 f3

f4

ρ2

ρ1

0 solutions

4 solutions

2 (double) solutions

Trajectory

Initial
(and final) 
point of the
trajectory

Figure 3.22: Singularity locus of an analytic 3RPR robot with the following geometry: c2 = 1.5,
c3 = l3 = l1 = 0.5 (also, the third input is kept constant at fl3 = 1). The figure indicates the
number of di�erent real solutions to the forward kinematic problem in each region of the (fl1, fl2)
plane.

Returning to the 3RPR robot, consider an analytic 3RPR robot (i.e., a robot
satisfying d3 = 0 and — = fi rad) with the following geometric design parameters:
c2 = 1.5, c3 = l3 = l1 = 0.5. As indicated above, assume also that only the inputs
fl1 and fl2 are varied, keeping fl3 = 1. The corresponding singularity locus in the input
plane (fl1, fl2) is shown in Figure 3.22.

Similarly to the example of Figure 3.17a, the singularity locus shown in Figure
3.22 is a closed curve that divides the (fl1, fl2) plane into two regions: the region
outside the singularity curve, and the region inside it. In the outer region, the number
of real solutions to the forward kinematic problem is zero: this means that the robot
cannot be assembled for these combinations of fl1 and fl2. In the inner region, the
forward kinematic problem of the robot has four di�erent real solutions, i.e., the mobile
platform adopts four di�erent configurations for a given pair (fl1, fl2) enclosed by the
singularity curve. For the pairs (fl1, fl2) that lie exactly on the singularity curve, the
forward kinematic problem of the robot has two di�erent double solutions (two di�erent
solutions with multiplicity two each), as in the vertex of an alpha-curve (point D in
Figure 3.5b). Finally, the singularity locus also has four special points, labeled as f1,
f2, f3, and f4 in Figure 3.22 (actually, the singular point f4 is isolated, i.e., it does
not lie on the singular curve, although it is a singularity too).

The points f1, f2, f3, and f4 are the intersections of the aforementioned polyg-
onal curves (“±

0 and “±
fi ) with the plane fl3 = 1, in this example. At any of the points

{f1, f2, f3}, the forward kinematic problem of the robot has a single real solution with
multiplicity four. At the isolated point f4, the forward kinematic problem of this robot
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has three di�erent real solutions: two of them are simple (they have multiplicity one)
and the third one is quadruple (it has multiplicity four).

Next, we will illustrate another example of nonsingular transition by performing
a feasible closed trajectory in the (fl1, fl2) plane that encloses one of the mentioned
quadruple points. As Figure 3.22 shows, only the isolated point f4 can be encircled by
a closed trajectory, since any closed trajectory that encircles any of the other points
{f1, f2, f3} crosses the singularity curve and invades the outer region, in which the
robot has no real solutions to the forward kinematic problem (real robots cannot invade
the outer region because the robot cannot be assembled in these regions). It is worth to
mention that, if the mobile and fixed platforms become similar (i.e., if c3l2 = c2l3), then
the isolated point f4 shifts toward the singularity curve too (like the points {f1, f2, f3}),
which impedes the execution of closed trajectories enclosing f4. This is why the non-
similarity condition has been imposed so far in this chapter.

According to the previous paragraph, the following circular trajectory is executed,
which encloses the point f4:

I
fl1 = 1.2 + 0.3 cos Â

fl2 = 1.5 + 0.3 sin Â
, 0 Æ Â Æ 2fi (3.53)

This trajectory is shown in dashed line in Figure 3.22. The trajectories described by
the six solutions of the forward kinematic problem in the complex plane of the angle „
when the inputs perform the trajectory of (3.53) are shown in Figure 3.23 in di�erent
colors2. Actually, the trajectories followed by the solutions {1, 2, 3, 4} are completely
contained in the real axis. However, since these four trajectories overlap, the trajectories
described by the solutions 3 and 4 have been slightly displaced vertically to facilitate
the visualization of the trajectories. The trajectories described by the solutions 5 and
6 are completely contained in the imaginary axis. Similarly, since these two trajectories
overlap, they have been slightly displaced horizontally. Note that this behavior of the
trajectories (four real trajectories and two imaginary trajectories) coincides with the fact
that the trajectory described by the input variables fl1 and fl2 is completely contained
in the region of the (fl1, fl2) plane enclosed by the singularities, in which the forward
kinematic problem has four di�erent real solutions (see Figure 3.22).

In Figure 3.23, the initial point of each trajectory is represented by a cross “◊”,
whereas the final point of each trajectory is represented by a circle “¶” (this repre-
sentation is reminiscent of the well-known root locus studied in Control Engineering).
Looking at the initial and final points of each trajectory, we can see that the solutions
1 and 2 describe closed trajectories (the initial and final points coincide in each of
these trajectories). On the contrary, the solutions {3, 4, 5, 6} describe open trajectories
since their initial and final points do not coincide. Of particular interest are the open
trajectories described by the solutions 3 and 4, which are real: these trajectories corre-
spond to nonsingular changes of the assembly mode of the robot. Indeed, if the robot

2Since the trajectories described by the complex solutions of angle „ do not wrap in this
example, it is su�cient to use here the rectangular representation of Figure 3.6a, instead of the
modified polar representation used in the previous examples of this chapter.
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Figure 3.23: Trajectories described by the six solutions of the forward kinematic problem of the
analytic 3RPR robot when encircling the point f4. The trajectories of the solutions {1, 2, 3, 4}
lie on the real axis, but since they overlap, the trajectories of the solutions 3 and 4 have been
displaced vertically to facilitate the visualization. The trajectories of the solutions 5 and 6 are
contained in the imaginary axis, but they have been shifted horizontally since they also overlap.

Figure 3.24: Evolution of the configuration of the robot along the solution 4 of Figure 3.23.
The mobile platform BED begins (Â = 0) and ends (Â = 6.28 rad) the trajectory with di�erent
configurations: a nonsingular change of assembly mode occurs.

follows the trajectory described by the solution 3 (or 4), then the configuration of the
mobile platform at the beginning of the trajectory will be di�erent from the configu-
ration at the end of the trajectory (see Figure 3.24), even though the input variables
(fl1, fl2) have the same values at the beginning and at the end of such a trajectory.
Since no singularities are crossed along this trajectory, it is a nonsingular (i.e., an easily
controllable) transition.
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3.5.2 Perturbation of the Geometry of Non-generic 3RPR
Robots

As demonstrated in Section 3.4.1, the points {f1, f2, f3, f4} (at which the forward
kinematic problem of the analytic 3RPR robot has quadruple solutions) always exist,
independently of the values of the geometric design parameters {c3, c2, l3, l1}. How-
ever, this is true only if the robot remains analytic, i.e., if d3 = 0 and — = fi. In
practice, due to the geometric tolerances and the finite accuracy in the manufacturing
and mechanical assembly of the robot, it will be impossible to attain a perfect align-
ment between the revolute joints of the base or of the mobile platform, which means
that d3 and — will never be exactly equal to 0 and fi, respectively.

Although the singular points fi are stable with respect to the geometric param-
eters {c3, c2, l3, l1} (in the sense that these points do not disappear when modifying
these geometric parameters, only their position in the input plane is modified), these
points may undergo important changes when the parameters d3 or — deviate from 0
or fi, respectively, since in that case the robot is no longer analytic. For example,
consider what happens to an (isolated) lips singularity: as described at the beginning
of the present section, perturbing a geometric parameter in a robot which has a lips
singularity may lead to the transformation of the lips into a closed curve with two cusps
(Figure 3.21a), which allows the robot to perform nonsingular transitions (by encircling
any of these cusps). However, the aforementioned perturbation of a geometric param-
eter may also lead to the disappearance of the lips singularity, in which case the robot
loses the ability to perform these nonsingular transitions (see Figure 3.21c). Consider-
ing this precedent, we will next study, using the example of Figure 3.22, what happens
to the singular points fi (and especially the isolated point f4) when the geometry of
the robot is perturbed from the analytic case, i.e., when d3 and — deviate from 0 and
fi, respectively.

Keeping the four geometric parameters {c3, c2, l3, l1} constant at the values of
the previous example (c2 = 1.5, c3 = l3 = l1 = 0.5), d3 and — will be perturbed from 0
and fi next. Figures 3.25a-c show the e�ect of perturbing d3 from zero (keeping — = fi),
whereas Figures 3.25d-e show the e�ect of perturbing — from fi (keeping d3 = 0).
Figure 3.25f shows the e�ect of perturbing both variables simultaneously. As indicated
in Figure 3.25, the sign of these perturbations does not a�ect the deformation of the
singularity curves, i.e., only the absolute value of the perturbation matters (symmetric
perturbations produce the same e�ect).

Comparing Figures 3.22 and 3.25, we can see that when the geometry of the
robot is perturbed from the analytic case, the closed singularity curve of Figure 3.22
is split into two loops: an internal loop and an external loop (e.g., see Figure 3.25c).
These two loops exactly overlap when the robot tends to the analytic geometry, i.e.,
when d3 = 0 and — = fi. In other words, the two loops become more di�erent as the
magnitude of the perturbation from the analytic case increases, i.e., when increasing
|d3| or |— ≠ fi|. Regarding the three points {f1, f2, f3} of Figure 3.22, at which the
forward kinematic problem of the analytic robot has a quadruple real solution, when
the geometry of the robot is perturbed from the analytic geometry, these three points
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Figure 3.25: Deformation of the singularity locus as the geometry of the 3RPR robot is slightly
perturbed from the analytic geometry. The points {f1, f2, f3} transform into cusps. The point f4
transforms into a deltoid with three cusps. The size of the deltoid increases with the magnitude of
the perturbation from the analytic geometry. The remaining geometric parameters of the robot
are: c2 = 1.5, c3 = l3 = l1 = 0.5.

transform into three cusps of the internal loop of the singularity locus. These three
cusps are shown in detail in the zoomed areas z1, z2, and z3 of Figure 3.25a.

Regarding the isolated point f4 of Figure 3.22, at which the analytic robot
has three di�erent real solutions (two of them are simple, and the remaining one
is quadruple), Figure 3.25 shows that this point transforms into a deltoid when the
geometry of the robot deviates from the analytic geometry. This deltoid is a closed
curve with three cusps at its vertices, and its size increases with |d3| or |— ≠ fi|. In
other words, as d3 and — tend to 0 and fi, respectively, the deltoid becomes smaller,
until it shrinks to the isolated point f4 in the limit, when the robot becomes analytic
(see the zoomed area z4 in Figure 3.25a and the zoomed area in Figure 3.25d). A
similar behavior was observed in [38] for the 3RPR robot with congruent base and
mobile platform, where it was shown that the singularity locus in the input plane has
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a deltoid that shrinks to a point as the length of one of the three actuated legs tends
to infinity.

At the points enclosed by the deltoids, the forward kinematic problem of the
perturbed 3RPR robot (which is no longer analytic) has six di�erent real solutions,
instead of the quadruple solution that occurs at f4. Thus, this demonstrates that the
quadruple solutions occurring at f4 are not stable, since they cease to exist when d3
or — are not exactly equal to 0 or fi, respectively. This will be the case in practice,
since it is impossible to build a robot satisfying exactly d3 = 0 and — = fi, due to
manufacturing tolerances.

Although the quadruple solutions are not stable with respect to perturbations
in d3 or —, let us study the stability of the behavior of the robot when encircling the
deltoids. Consider a real robot manufactured so that |d3| and |— ≠fi| are small but not
necessarily equal to zero, due to limited accuracy in the manufacturing (i.e., an “almost
analytic” robot). According to the previous paragraphs, when such a robot performs
a closed trajectory in the input plane that encircles the point f4 (as in Figure 3.22),
actually the robot will be encircling a small deltoid, instead of an isolated point. Will
the robot undergo nonsingular transitions as in the analytic case, or will the robot lose
the ability to perform such transitions due to the transformation of the point f4 into
a deltoid? To answer this, consider the following geometry, which corresponds to the
singularity locus of Figure 3.25b: c2 = 1.5, c3 = l3 = l1 = 0.5, d3 = 0.1, — = fi (note
that this is an exaggerated example, since in this case d3 is not negligible compared to
the other geometric parameters of the robot). Next, we will study the evolution of the
six solutions of the forward kinematic problem of this robot when the inputs describe
the following closed trajectory in the (fl1, fl2) plane:

I
fl1 = 1.1 + 0.25 cos Â

fl2 = 1.55 + 0.25 sin Â
, 0 Æ Â Æ 2fi (3.54)

This closed trajectory is represented in Figure 3.25b. The evolution of the six solutions
to the forward kinematic problem along this trajectory is represented in Figure 3.26,
in the complex plane of the angle „. As in the analytic case (see Figure 3.23), four
solutions (solutions 1, 2, 3, and 4) describe trajectories that are contained in the real
axis. Since these four trajectories overlap again, the trajectories of the solutions 3 and
4 have been vertically displaced from the real axis to facilitate their visualization in
Figure 3.26. As Figure 3.26 shows, the remaining two solutions (solutions 5 and 6)
describe complex (= non-real) trajectories, but unlike in the analytic case (see Figure
3.23), the trajectories described by these two solutions are no longer contained in the
imaginary axis.

Comparing Figures 3.23 and 3.26, it can be observed that the behavior of the
six solutions when encircling the deltoid is very similar to the behavior observed when
the isolated point f4 is encircled in the analytic case. First, there are two solutions
that describe closed trajectories in the real axis (solutions 1 and 2). For these two
solutions, the mobile platform of the robot begins and ends the trajectory with the same
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Figure 3.26: Trajectories described by the six solutions to the forward kinematic problem of an
“almost analytic” 3RPR robot when encircling the deltoid of Figure 3.25b. The trajectories of
the solutions {1, 2, 3, 4} are contained in the real axis, but since they overlap, the trajectories of
the solutions 3 and 4 have been shifted vertically to facilitate the visualization.

Figure 3.27: Evolution of the configuration of the robot along the solution 4 of Figure 3.26.
The mobile platform BED begins (Â = 0) and ends (Â = 6.28 rad) the trajectory with di�erent
configurations: a nonsingular change of assembly mode occurs.

configuration, therefore these two solutions do not experience a change of assembly
mode. The solutions 5 and 6 describe non-real open trajectories. Finally, the solutions
3 and 4 describe real open trajectories that correspond to nonsingular changes of
assembly mode: the configuration of the mobile platform at the beginning of the
trajectory described by the solution 3 (or 4) is di�erent from the configuration at the
end of the same trajectory (see Figure 3.27).

Therefore, although the singular isolated point f4 (at which the analytic robot
has a quadruple solution to its forward kinematic problem) is not stable since it trans-
forms into a deltoid when the geometry of the robot is perturbed from the analytic
case, we can conclude that the behavior of the robot when encircling the point f4 is
stable. This is because the solutions of the forward kinematic problem evolve similarly
when encircling the point f4 (in the analytic case) as when encircling the deltoid (in
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the non-analytic case, obtained perturbing the analytic case). In particular, and in
contrast to what happens to lips singularities (see Figures 3.21a,b,c), we have shown
that the ability of the robot to perform nonsingular transitions by encircling the point
f4 is conserved, even when this point transforms into a small deltoid.

3.6 Second-order Taylor Stability Analysis of Isolated
Singularities

In the previous section, we have demonstrated that the isolated quadruple singulari-
ties of the 3RPR analytic robot transform into small deltoids when at least one of its
platforms is no longer flat. When encircling this deltoid, the solutions of the forward
kinematic problem evolve similar to when encircling the isolated singularity in the ana-
lytic case (including the occurrence of nonsingular transitions). Unlike in isolated lips
singularities, the experiments shown in Figure 3.25 seem to indicate that the isolated
quadruple singularity f4 cannot be destroyed by small geometric perturbations (i.e., it
cannot be made to disappear, it only can be transformed into a deltoid). Therefore, it
seems that the analytic 3RPR robot will never lose the ability to perform nonsingular
transitions due to small perturbations.

However, the analysis performed in the previous section was not exhaustive,
because it only analyzed a finite number of perturbations: the examples of Figure 3.25
do not constitute a formal proof that the isolated point f4 can never be destroyed.
How do we know there is not a particular perturbation of d3 or — that does destroy the
singularity f4? Maybe such a “destructive” perturbation exists, but we simply missed
it when doing the experiments of Figure 3.25.

This section presents a more rigorous and formal method for determining how
isolated singularities of parallel mechanisms transform when perturbing the geometry
of the mechanism. This method is based on second-order Taylor expansions and is
valid for isolated singularities (excluding some special exceptions discussed in Section
3.6.4), including lips singularities and isolated quadruple singularities, like the point f4
of the 3RPR robot or the point ⁄fi of the 2RPR-PR mechanism. Using the method
proposed in this section, it will be possible to predict how isolated singularities will
transform under any perturbation of the geometric parameters of the mechanism (i.e.,
not only under a finite number of perturbations, as we did in Figure 3.25). In particular,
it will allow us to demonstrate that, indeed, it is impossible to find perturbations of
the parameters d3 or — which can destroy the isolated singularity f4 analyzed in the
previous section. This means that this singularity will always transform into a deltoid
when perturbing the geometry of the robot, i.e., it will never disappear (unlike lips
singularities).

3.6.1 Formulation of the Method
Consider a parallel mechanism with 2 degrees of freedom, with inputs x = [x1, x2]T
and outputs y = [y1, y2]T . The inputs are two actuated joint coordinates, whereas
the outputs are two parameters that define the position and/or orientation of the
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mobile platform of the mechanism. Let g = [g1, . . . , gd]T be the vector of all geomet-
ric design parameters of the mechanism. Inputs, outputs, and geometric parameters
are related through a system of two simultaneous scalar equations that represent the
kinematic/assembly constraints of the mechanism:

f1(x, y, g) = 0 AND f2(x, y, g) = 0 (3.55)

where f1 and f2 are constraint functions. The forward kinematic problem consists in
solving y from the system (3.55) for given x and g. For example: in the analytic
2RPR-PR parallel mechanism of Figure 3.1b, the inputs are x1 = l1 and x2 = l2, the
outputs are y1 = „ and y2 = y, the geometric parameters are g = [a1, a2, b1, b2]T ,
and the scalar equations that relate all these variables are Equations (3.1) and (3.2).

As we have previously seen in Section 3.1.2, the parallel singularity locus is the
set of configurations at which the output velocities ẏ = [ẏ1, ẏ2]T are not uniquely
determined by the feasible input velocities ẋ = [ẋ1, ẋ2]T . Assume that this singularity
locus is defined in the output plane (y1, y2) by the following equation:

S(y, g) = 0 (3.56)

where:

S(y, g) := det
C

ˆf1
ˆy1

ˆf1
ˆy2

ˆf2
ˆy1

ˆf2
ˆy2

D
= ˆf1

ˆy1

ˆf2
ˆy2

≠ ˆf1
ˆy2

ˆf2
ˆy1

(3.57)

For a given geometry g of the mechanism, Equation (3.56) defines a set of singularity
curves in the (y1, y2) plane. The concrete shape of these curves depends on the
geometry g. Assume that, for a given non-generic geometry g0, the singularity curves
exhibit an isolated point at y0. Next, S will be approximated by its second-order Taylor
expansion about (y0, g0):

S(y, g) ¥ S(y0, g0) +
5

ˆS

ˆy (y0, g0)
6

�y+

+
5

ˆS

ˆg (y0, g0)
6

�g +
#
�yT , �gT

$ H(y0, g0)
2

5
�y
�g

6
(3.58)

where H is the (symmetric) Hessian matrix of S with respect to y and g, �y = y≠y0
and �g = g ≠ g0. Note that S(y0, g0) = 0 because the point y0 belongs to the
singularity curves corresponding to the geometry g0. Moreover, since y0 is an isolated
point (thus, a critical or special point) of these curves, then:

ˆS

ˆy (y0, g0) = [0, 0] (3.59)

which justifies the need for a second-order expansion [otherwise, the following Equa-
tion (3.60) would not define a curve in the output plane]. Substituting (3.58) into
Equation (3.56) yields the equation defining the singularity locus near the isolated
singular point y0 and near g0:

Sg�g +
#
�yT , �gT

$ H(y0, g0)
2

5
�y
�g

6
= 0 (3.60)
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where Sg = ˆS
ˆg (y0, g0). Next, the Hessian H is partitioned as follows:

H =
5

H11 H12
HT

12 H22

6
(3.61)

where the sizes of H11, H12 and H22 are 2 ◊ 2, 2 ◊ d and d ◊ d, respectively. Using
this partition of H, Equation (3.60) can be rewritten as follows:

#
�yT , 1

$ 5
H11/2 K

KT u

6

¸ ˚˙ ˝
C

5
�y
1

6
= 0 (3.62)

where:
K = H12�g

2 and u =
3

�gT H22
2 + Sg

4
�g (3.63)

Equation (3.62) defines a conic in the output plane (y1, y2). The type of conic defined
depends on the coe�cient matrix C [175]. Note that C depends on the perturbation
�g from the non-generic geometry g0. Thus, to study how the perturbations in the
geometry of the mechanism a�ect the stability of the isolated singularity y0, we only
need to study and classify the type of conic defined by C in terms of �g.

In the next sections, we will illustrate this method with di�erent isolated singu-
larities of parallel mechanisms.

3.6.2 Example 1: Lips Singularity
Before using the proposed method to analyze more formally the stability of the isolated
quadruple singularity f4 studied in Section 3.5.1, in this first example we will illustrate
the application of the proposed Taylor-based method to analyze the stability of an
isolated lips singularity of the 3RPR robot. In this way, we will be able to compare
later the results obtained by our method for lips singularities and quadruple singularities.

Before we begin, let us parameterize here the position of the mobile platform of
the 3RPR robot using parameters di�erent from those used in Section 3.4.1. In Section
3.4.1, we parameterized the position of the mobile platform of the 3RPR robot using
the (x, y) coordinates of joint B (see Figure 3.14a). However, in this section it will be
much more convenient to parameterize the position of the mobile platform using the
polar coordinates (fl3, ◊3) of its joint E (see Figure 3.14a). This is because, for the
reasons explained in Section 3.5, it is necessary to keep constant one joint coordinate
in order to work with a 2-degrees-of-freedom parallel mechanism. Since we will keep
constant the length fl3 (as we have done in Section 3.5), the mathematical analysis
of this example will be simpler if we parameterize the position of the mobile platform
using the polar coordinates (fl3, ◊3) (similarly, if we kept constant fl1 or fl2 instead of
fl3, it would be more convenient to parameterize the position of the mobile platform
using the polar coordinates of joints B or D, respectively). As in Section 3.4.1, we will
still parameterize the orientation of the mobile platform by angle „.
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If we assume that fl3 is kept constant, then we get a 2-DOF parallel mech-
anism with inputs x = [fl1, fl2]T , outputs y = [◊3, „]T and geometric parameters
g = [c2, c3, d3, l1, l3, —, fl3]T (fl3 can be considered as a geometric parameter since it
is kept constant in this example). Next, we will obtain the two scalar equations of the
general formulation [system (3.55)] that relate x, y, and g. To this end, we write the
following vector loop equations (based on Figure 3.14a):

AB = AF + FE + EB =
5

c3 + fl3 cos ◊3 ≠ l3 cos „
d3 + fl3 sin ◊3 ≠ l3 sin „

6
(3.64)

CD = CF + FE + ED =
5

c3 ≠ c2 + fl3 cos ◊3 + l1 cos(„ + fi ≠ —)
d3 + fl3 sin ◊3 + l1 sin(„ + fi ≠ —)

6
(3.65)

Next, we impose the condition that the lengths of the previous vectors AB and CD
must be fl1 and fl2, respectively. This yields the following equations:

....

5
c3 + fl3 cos ◊3 ≠ l3 cos „
d3 + fl3 sin ◊3 ≠ l3 sin „

6....
2

≠ fl2
1 = 0 (3.66)

....

5
c3 ≠ c2 + fl3 cos ◊3 + l1 cos(„ + fi ≠ —)

d3 + fl3 sin ◊3 + l1 sin(„ + fi ≠ —)

6....
2

≠ fl2
2 = 0 (3.67)

The left-hand sides of Equations (3.66) and (3.67) are the constraint functions f1
and f2 in this example. If we had parameterized the position of the mobile platform
using the (x, y) coordinates of joint B (as we did in Section 3.4.1) instead of the
polar coordinates of joint E, then x and y would become dependent when keeping
constant fl3, and we would need to manipulate Equations (3.29)-(3.31) in order to
simultaneously eliminate one of these equations and x (or y). On the contrary, by
parameterizing the position of the mobile platform using the polar coordinates (fl3, ◊3)
of joint E (and considering that fl3 is constant), we obtain directly the two constraint
equations (3.66) and (3.67) without having to eliminate any equation or variable. This
convenient polar parameterization of the position of the mobile platform of the 3RPR
parallel robot was proposed in [206].

The singularity locus in the (◊3, „) plane of this mechanism is defined by the
following equation:

S(y, g) = ˆf1
ˆ◊3

ˆf2
ˆ„

≠ ˆf1
ˆ„

ˆf2
ˆ◊3

= 0 (3.68)

The concrete shape of the singularity locus defined by Equation (3.68) will depend on
the value of the geometric parameters g. Next, we will analyze the singularity locus for
the following non-generic geometry: g0 = [1.4, 2, ≠1.5, 1.06, 1.1, 5.65 rad, 2.800304375]T .
This geometry is non-generic since it corresponds with a singularity locus that exhibits
the following isolated point: y0 = [1.953791747, 1.571336043]T rad (see Figure 3.28).
This isolated point is a higher-order lips singularity (see Section 3.5), which is unstable
because, when perturbing the geometry of the mechanism away from its non-generic
design g0, it either transforms into a bicuspid closed curve in the input plane or is
destroyed (depending on the direction of such perturbation). As discussed in Section
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Figure 3.28: Representation of the singularity locus in the (◊3, „) plane of a 3RPR parallel
robot with non-generic geometry.

3.5, this destruction implies the loss of two cusps and, as a consequence, the local
loss of the ability to perform nonsingular transitions. Next, we will apply the method
described in subsection 3.6.1 in order to determine how the isolated singularity y0
transforms depending on how the geometry of the mechanism deviates from g0.

Next, assume that all geometric parameters su�er a small perturbation �g =
[�c2, �c3, �d3, �l1, �l3, �—, �fl3]T which deviate them from the non-generic geome-
try g0 indicated in the previous paragraph. Substituting y0 and g0 into Equation (3.62),
we obtain the equation of a conic curve which is an approximation of the perturbed
singularity locus in the (◊3, „) plane, where:

H11
2 =

5
≠11.8582 0.6271

0.6271 ≠2.2934

6
(3.69)

K =

S

WWWWWWWWU

1.9288 ≠4.4937
≠2.6264 4.4935
14.9892 ≠6.2409
8.8979 0.0256

≠22.3009 8.0256
≠3.0089 0.0440
14.3325 ≠7.4679

T

XXXXXXXXV

T

�g (3.70)
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u = ≠2.5537�c2�c3 + 3.5688�c2�d3

+ 7.9784�c2�l1 ≠ 13.481�c2�l3 + 6.2140�c2�—

+ 3.3911�c2�fl3 ≠ 2.4456�c2 + 2.5536�c2
3

≠ 5.4854�c3�d3 ≠ 7.9347�c3�l1 + 16.382�c3�l3

≠ 6.2154�c3�— ≠ 6.1244�c3�fl3 + 2.4422�c3

≠ 2.6245�d2
3 ≠ 7.0749�d3�l1 + 6.6182�d3�l3

+ 13.546�d3�— ≠ 3.9281�d3�fl3 ≠ 3.1068�d3

+ 3.8633�l1�l3 ≠ 0.013636�l1�— ≠ 3.5808�l1�fl3

+ 0.044585�l1 ≠ 16.061�l3�— + 1.4638�l3�fl3

+ 4.0521�l3 ≠ 0.023632�—2 + 14.882�—�fl3

≠ 0.014455�— ≠ 1.3549�fl2
3 ≠ 3.7941�fl3 (3.71)

The type of conic defined by Equation (3.62) depends on H11, K, and u [175]. Firstly,
since det(H11) > 0, then the perturbed singularity locus is a (real or imaginary)
ellipse. The type of ellipse defined by Equation (3.62) will depend on the sign of
Ê = c11det(C), where c11 is the first element of the first row of C: if Ê > 0, then
Equation (3.62) defines an imaginary ellipse, whereas this ellipse is real if Ê < 0. If
Ê = 0, this ellipse degenerates into a single isolated point. The perturbation �g of
the geometric parameters will determine the sign of Ê and, therefore, will determine
the type of ellipse into which the isolated point y0 transforms when the geometry of
the mechanism slightly deviates from g0.

3.6.2.1 Perturbation of a single geometric parameter

For simplicity, consider first that we only perturb parameter fl3, i.e., �g = [0, 0, 0, 0,
0, 0, �fl3]T . In that case:

Ê = (1206.22 ≠ 11406.38�fl3)�fl3 (3.72)

If we plot Equation (3.72) in Figure 3.29, we can identify three cases for su�ciently
small perturbations �fl3:

• If �fl3 < 0, then Ê < 0 æ the singularity locus is a real ellipse.

• If �fl3 > 0, then Ê > 0 æ the singularity locus is an imaginary ellipse.

• If �fl3 = 0, then Ê = 0 æ the singularity locus is a real ellipse that has
degenerated into point y0.

Therefore, if we depart from the non-generic value of fl3 and slightly decrease it, the
isolated singularity y0 will transform into a small ellipse Er in the (◊3, „) plane. If we
depart from �fl3 < 0 and we continuously increase fl3 so that �fl3 tends to zero from
the left, the size of Er continuously decreases, until this small real ellipse degenerates
again into point y0. If the perturbation �fl3 is further increased and becomes positive,
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Figure 3.30: When fl3 decreases slightly, the isolated point y0 transforms into a closed curve
which can be approximated by an ellipse.

then point y0 transforms into an imaginary ellipse, i.e., y0 disappears from plane
(◊3, „).

Figure 3.30a illustrates the transformation of y0 into an approximately elliptic
closed curve Er for the perturbation �fl3 = ≠0.00001: the ellipse defined by Equa-
tion (3.62) is represented in red dotted line, whereas the exact singularity locus [i.e.,
the curve defined by Equation (3.68)] is represented in continuous blue line. Note
that Equation (3.62) is an accurate approximation of the exact singularity locus for
su�ciently small perturbations, whereas this approximation is not good for large per-
turbations (for example, see Figure 3.30b, where �fl3 = ≠0.005).

By solving the inverse kinematics of this mechanism [i.e., solving fl1 and fl2
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Figure 3.31: Singularity locus of a perturbed 3RPR robot with �fl3 = ≠0.00001. The figure
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of Figure
3.30a in (fl1, fl2) plane.

from Equations (3.66) and (3.67) for given ◊3 and „], it is possible to transform the
real ellipse Er to the input plane (fl1, fl2). The image of ellipse Er in the input plane
is a small closed curve with two cusps (see Figure 3.31). As described in Section
3.2, these cusps allow the mechanism to reconfigure itself between di�erent assembly
modes without crossing singularities. Therefore, the destruction of the real ellipse Er

(when Ê > 0) implies the destruction of these cusps, and the mechanism loses this
ability (reconfiguring without crossing singularities) in the region of the (fl1, fl2) plane
near the closed bicuspid curve of Figure 3.31. (However, as it can be observed in this
figure, the singularity locus of this mechanism exhibits other additional cusps which are
not destroyed along with Er; these additional cusps still enable nonsingular transitions
after Er vanishes.)

Note that, according to Figure 3.29, Ê becomes again negative for �fl3 >
0.1057, which implies that the real ellipse Er defined by Equation (3.62) reappears
again for �fl3 > 0.1057. This may erroneously suggest that the exact singularity lo-
cus [defined by Equation (3.68)] should also exhibit a small (approximately elliptic)
closed curve in plane (◊3, „) for �fl3 > 0.1057, due to the reappearance of real ellipse
Er. However, this is not true since perturbation �fl3 = 0.1057 is too large for Equa-
tion (3.62) to be a valid approximation of the exact singularity locus. Therefore, the
analysis of the sign of Ê in Equation (3.72) is only valid for su�ciently small values of
|�fl3|.

3.6.2.2 Perturbation of two geometric parameters

Next, assume that both fl3 and c2 are perturbed, i.e.: �g = [�c2, 0, 0, 0, 0, 0, �fl3]T .
In that case, the expression of Ê is:

Ê = ≠2811.780�c2
2 ≠ 10847.38�c2�fl3

+ 777.4378�c2 ≠ 11406.38�fl2
3 + 1206.22�fl3 (3.73)
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Figure 3.32: Variation of the sign of Ê in terms of perturbations �fl3 and �c2.

Figure 3.32 shows the variation of the sign of Ê in terms of the perturbations
�fl3 and �c2. The condition Ê = 0 defines an ellipse that divides the (�fl3, �c2) plane
into two regions: region R1 interior to this ellipse, and region R2 exterior to this ellipse.
Since Ê < 0 in region R2, Equation (3.62) defines a real ellipse for perturbations falling
in this exterior region. I.e., for (�fl3, �c2) œ R2, the isolated point y0 deforms into
a closed curve with an approximately elliptic shape, which in turn transforms into a
bicuspid curve when mapped to the (fl1, fl2) plane.

For perturbations belonging to region R1 we have Ê > 0, which means that
Equation (3.62) defines an imaginary ellipse. This means that point y0 disappears,
and the robot loses the ability to reconfigure between di�erent solutions of the forward
kinematic problem without crossing singularities. This ability is lost only locally be-
cause, as shown in Figure 3.31, the singularity locus of this robot exhibits other cusps
that are not destroyed along with y0.

Finally, it is important to emphasize again that the behavior of the exact singu-
larity locus [defined by Equation (3.68)] under large perturbations cannot be predicted
by analyzing the transformations su�ered by the ellipse defined by Equation (3.62).
For example, if we depart from the non-generic geometry g0 (i.e., from the origin
�fl3 = �c2 = 0) and we perturb these two geometric parameters along segment b
(see Figure 3.32), when crossing point c (i.e., when passing from region R1 to region
R2) we will not observe the appearance of any (approximately elliptic) closed curve in
the exact singularity locus, despite the fact that the ellipse defined by Equation (3.62)
switches from imaginary to real. This is because crossing point c requires perturbations
so large that render the quadratic approximation of Equation (3.62) invalid.
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Figure 3.33: Singularity locus of a 3RPR robot with flat non-similar platforms.

3.6.3 Example 2: Isolated Quadruple Singularity
After using the proposed method to analyze the transformations su�ered by a lips sin-
gularity under perturbations of the geometry of the 3RPR robot, in this second example
we will apply this method to analyze more formally the stability of the isolated quadru-
ple singularity f4 that was analyzed in Section 3.5. As in Section 3.5.1, we will assume
that the robot has the non-generic geometry g0 = [1.5, 0.5, 0, 0.5, 0.5, fi rad, 1]T (i.e.,
both platforms are exactly flat and non-similar, and the length fl3 is kept constant
and set to fl3 = 1). The singularity locus in the (◊3, „) plane corresponding to this
non-generic geometry is represented in Figure 3.33. This singularity locus exhibits an
isolated point at y0 = [fi, 0] rad. Note that the image of y0 in the plane of inputs
(fl1, fl2) is the isolated point f4 analyzed in Section 3.5.1.

Next, we will apply the proposed Taylor-based method to analyze the stability of
this isolated singularity. Consider that all geometric parameters su�er a small deviation
from g0, i.e.: �g = [�c2, �c3, �d3, �l1, �l3, �—, �fl3]T . Substituting y0 and g0 into
Equation (3.62), which approximates the singularity locus in the output plane near y0,
yields:

H11
2 =

5
1 ≠0.25

≠0.25 1.5

6
(3.74)

K = [1.5�d3 ≠ 0.5�—, ≠2.5�d3 ≠ 0.75�—]T (3.75)

u = 5�d3�— ≠ 4�d2
3 (3.76)

Although all the geometric parameters are perturbed, according to Equations (3.75)
and (3.76), the transformation of y0 depends only on the perturbations of d3 and —,
which are precisely the only two geometric parameters that determine whether g0 is a
generic geometry or not (since these two parameters determine if the fixed and mobile
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Figure 3.34: (a) (Approximately elliptic) singularity locus near y0 when the non-generic ge-
ometry of a 3RPR robot with flat platforms is slightly perturbed (�d3 = 0.01, �— = ≠0.01).
(b) The image of this ellipse in the input plane is a deltoid ”, with cusps: k1 ¥ (0.9995, 1.5014),
k2 ¥ (0.9999, 1.4999) and k3 ¥ (1.0009, 1.4999).

platforms are perfectly flat). In contrast to this, in the previous example we observed
that the transformation of the isolated lips singularity depended on the perturbations
of all geometric parameters [see Equations (3.70) and (3.71)].

Since det(H11) > 0, Equation (3.62) defines a real or imaginary ellipse, depend-
ing on the sign of Ê = c11det(C):

Ê = ≠1.125(12�d2
3 ≠ 5�d3�— + �—2) (3.77)

Ê in Equation (3.77) is a negative definite quadratic form, i.e., Ê < 0 ’(�d3, �—) ”=
(0, 0). Therefore, if any of the two geometric parameters {d3, —} deviates from its
non-generic value, then Equation (3.62) defines a real ellipse in the output plane,
independently of the direction of these perturbations. This means that the isolated
point y0 of the exact singularity locus always deforms into a small loop that can be
approximated by an ellipse if the perturbations are su�ciently small. If this ellipse is
mapped to the input plane (fl1, fl2), then it transforms into a deltoid ” (see the example
of Figure 3.34), which is the small deltoid that was observed in Figure 3.25.

In this way, the proposed method based on second-order Taylor expansions com-
pletes the analysis started in Section 3.5.2, and demonstrates more formally that, unlike
a lips singularity, the deltoid ” cannot be destroyed by any combination of perturbations
from the non-generic geometry g0: in the analyzed 3RPR robot, these perturbations
always transform the isolated point y0 into a real ellipse, and the image of this real
ellipse in the input plane is the deltoid ”.

3.6.4 Example 3: Exceptions of the Method
It is important to emphasize that the proposed Taylor-based method is only valid if
the perturbed singularity locus in the output plane (y1, y2) near the isolated singularity
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Figure 3.35: A 2UPS-U parallel robot.

y0 can be approximated by a small ellipse. In that case, the proposed method can
be used for studying how the corresponding isolated singularity x0 in the input plane
(x1, x2) (which is the preimage of y0 under the forward kinematics) transforms into
a small multi-cusped closed curve under perturbations, as previous examples have
demonstrated.

However, it may occur that a parallel robot has an isolated singularity x0 in the
input plane (which transforms into a multi-cusped closed curve under perturbations)
which is not the preimage of an isolated singularity y0 in the output plane (and,
therefore, it does not transform into a small ellipse under perturbations), being instead
the preimage of a curve. In that case, the proposed Taylor-based method cannot be
used.

For example, consider a 2UPS-U parallel robot as the one shown in Figure 3.35.
This robot has mobile and fixed platforms connected through a universal passive joint,
as well as two UPS legs with controllable lengths (d1 and d2). The inputs of this robot
are these lengths (d1, d2), whereas its outputs are angles (–, —) associated to the passive
universal joint that directly connects both platforms, as depicted in Figure 3.35.

When both universal joints A1 and A2 of the UPS legs of this robot belong
to axis X, then the singularity locus in the input plane (d1, d2) exhibits two isolated
singularities, which are indicated in Figure 3.36a. When the design of the robot is
slightly perturbed so that A1 and A2 do not belong to axis X simultaneously, then these
two isolated singularities transform into small “diamonds” (see Figure 3.36b), which are
closed curves that have four cusps each [38]. According to some experiments performed
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Figure 3.36: Special singularities of a non-generic 2UPS-U robot. The details of this example
(e.g., numerical values of the geometric parameters of the robot) are omitted here, but can be
found in [130].

with the simulator presented in [130], this perturbation seems stable, in the sense that
perturbing A1 or A2 in any direction (so that these two joints do not simultaneously
lie on axis X) always transforms these two isolated singularities into small diamonds,
never destroying them.

As we did in previous examples, we might try to apply the proposed Taylor-
based method to rigorously study this apparent stability observed experimentally, for
any possible perturbation. However, this will not be possible in this example, because
these isolated singularities are not preimages of isolated singularities of the output
plane (–, —). Figure 3.36c represents the parallel singularities of this robot in plane
(–, —), which shows four disjoint curves (two non-straight and two horizontal straight
curves). The preimage of each of the non-straight curves of Figure 3.36c is the complete
boundary indicated in Figure 3.36a, which encloses both isolated singularities. The
preimage of each of the horizontal straight singular curves of Figure 3.36c is one of the
isolated singularities of Figure 3.36a.

This is a well-known special finite-motion singularity also observed in other
robots [27], in which the inputs are locked but the mobile platform is free to perform
finite displacements (in this example, these finite displacements correspond to complete
revolutions of the mobile platform about axis X [130]). In the next chapter, we will
return to this special singularity.

Note that, since the images of these “point diamonds” (i.e., diamonds shrunk
to points) in the output plane (–, —) are not points but horizontal straight lines, the
Taylor-based method proposed in this section cannot be used for studying their stability.

3.7 Conclusions

In this chapter, we have thoroughly analyzed the kinematics of two classes of analytic
parallel mechanisms of types 2RPR-PR and 3RPR, and we have demonstrated that they
are able to perform nonsingular transitions by describing closed trajectories that enclose
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isolated singularities at which the forward kinematic problem of these mechanisms
admits quadruple solutions (Sections 3.1, 3.2, and 3.4). This may seem counter-
intuitive at first since the singularity loci of these mechanisms apparently lack cusps
and –-curves (the only two generic singularities that are known to enable nonsingular
transitions), although it was later demonstrated in [40] that there are indeed “hidden
cusps” in this case: these isolated quadruple singularities actually are small deltoids
(i.e., closed curves with three cusps) degenerated into points. Thus, encircling the
isolated quadruple singularity actually means encircling three “hidden” coinciding cusps.
This deltoid emerges when the geometry of the mechanism is slightly perturbed away
from the special design that gives rise to isolated quadruple singularities, and we have
demonstrated that encircling the deltoid has practically the same e�ect as encircling
the isolated quadruple singularities, regarding the occurrence of nonsingular transitions
(Section 3.5.2). Finally, in Section 3.6 we have presented a method based on second-
order Taylor expansions to predict how isolated singularities of parallel mechanisms will
transform under any perturbation in their geometric design, and we have illustrated
this method with two types of isolated singularities: lips and quadruple singularities.

3.8 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• A. Peidró, J.M. Marín, A. Gil, and O. Reinoso. Performing nonsingular transitions
between assembly modes in analytic parallel manipulators by enclosing quadruple
solutions. ASME Journal of Mechanical Design, 137(12):122302, 2015 [140]
(SCI-JCR Impact Factor: 1.444, Q2).

– This paper presents the forward kinematic analysis of analytic 2RPR-PR
and 3RPR-PR robots presented in Sections 3.1, 3.2, and 3.4. In this paper,
the special quadruple singularities of these two analytic parallel robots were
identified, and it was demonstrated that encircling them in the actuated
joint space produces nonsingular transitions.

• A. Peidró, A. Gil, J.M. Marín, L. Payá, and Ó. Reinoso. On the stability of the
quadruple solutions of the forward kinematic problem in analytic parallel robots.
Journal of Intelligent & Robotic Systems, 86(3):381–396, 2017 [135] (SCI-JCR
Impact Factor: 1.583, Q3).

– This paper presents the stability analysis of quadruple singularities presented
in Section 3.5 for the 3RPR robot, in which it was found that nonsingular
transitions are still produced when encircling a small deltoid instead of an
isolated quadruple singularity f4.

• A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá, and Y. Berenguer. Second-
order Taylor stability analysis of isolated kinematic singularities of closed-chain
mechanisms. In Proceedings of the 14th International Conference on Informatics
in Control, Automation and Robotics - Volume 2, pages 351–358. INSTICC,
SciTePress, 2017 [148].
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– This paper presents the Taylor-based method presented in Section 3.6 for
predicting how isolated singularities of parallel mechanisms transform under
perturbations of their design.
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4 PaRoLa: a Virtual Laboratory for
Simulating Parallel Robots

In parallel to the development of this thesis, a virtual and remote laboratory called
PaRoLa (Parallel Robotics Laboratory) has been developed. This laboratory consists
of a collection of simulators and graphical interfaces that allow the user to experiment
with several simulated or real parallel robots (remotely), with the purpose of under-
standing and learning about di�erent kinematic and dynamic notions of these robots.
The original objective of developing this virtual and remote laboratory was to build
simulation tools for supporting many of the analyses performed during the present the-
sis: from the kinematic analyses presented in the previous chapter to the analyses that
will be presented in later chapters. After developing these tools, we decided to freely
publish them on the Internet, so that any user interested in parallel robots can use
them either for learning or research purposes.

This chapter is organized as follows. Section 4.1 briefly introduces Easy Java
Simulations, which is the authoring tool that has been used in this thesis to develop
PaRoLa. Section 4.2 introduces the virtual and remote laboratory PaRoLa. Then,
Section 4.3 describes the virtual and remote robots available in this virtual laboratory.
Finally, Section 4.4 describes the functionalities of this virtual laboratory, hinting some
of their possible applications through several examples.

4.1 Easy Java Simulations

The simulators described in this chapter were developed by means of the authoring
tool Easy Java Simulations [54]. Easy Java Simulations (EJS) is an authoring tool
for developing graphical interactive simulations in Java, mainly with educational pur-
poses. The main advantage of Easy Java Simulations is evident from its name: easy
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means that EJS greatly simplifies the development of graphical simulators, reducing
the programming e�ort of the author of the simulations. EJS abstracts the process
of programming graphical user interfaces, such that the author can focus on program-
ming the behavior of the simulated system (in our case, the kinematics and dynamics
of parallel robots) instead of “getting lost” with low-level implementation details of the
graphical interface. EJS accomplishes this by means of a very intuitive graphical user
interface divided mainly into two parts: view and model (see Figure 4.1).

Figure 4.1: (a) Model and (b) view parts of Easy Java Simulations.

The model part contains most of the “logic” that models the behavior of the
simulation. The model part comprises the following sections or tabs (see Figure 4.1a):

• Variables tab: consists of several tables where the user defines the global vari-
ables of the simulation. These variables will be accessible and manipulable from
any other part of the simulation. For each global variable, the user specifies its
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name, initial value, type of variable (which can be any Java primitive type such
as int, double, or Boolean, but it can be also a predefined or user-defined Java
class), and its size (for variables which are multidimensional arrays).

• Initialization tab: contains the code that is run when initiating or resetting the
simulation.

• Evolution tab: contains code which is run cyclically, as long as the simula-
tion is in “running” state. This section can contain di�erential equations which
model the dynamics of a system (EJS automatically integrates these equations
numerically, using Runge-Kutta or other methods). Also, this section can contain
plain text Java code pages that are sequentially executed. If the simulator is in
“pause” state, the code pages under this tab are ignored. However, this does not
mean that the simulator is doing nothing: even when the simulator is paused, it
responds to user interaction.

• Fixed relations tab: contains code which is continuously executed if the state
of the simulation is “running” instead of “paused”. If the simulation is paused, all
code under this tab is executed whenever the user interacts with the simulation
(e.g., when clicking a graphical window of the simulation, or when rotating a
camera or pressing a button, etc.). Since it is not possible to accurately control
when the code under this tab is executed, it is advisable to move all this code to
user-defined functions under the “Custom” tab, calling these functions whenever
these are necessary (e.g., whenever the user presses a button).

• Custom tab: under this tab, the user can define general-purpose custom func-
tions to model the behavior of the simulation. For example: in the context of
parallel robots, here we could define a function which would be summoned when
dragging the end-e�ector of the robot, and this function would solve the inverse
kinematic problem. All functions defined under this tab are globally accessible
from any other part of the code of the simulation.

• Elements tab: this is a library of external or accessory elements to enrich or
augment the simulation. For example, under this tab we find blocks for inter-
facing our simulation with Arduino. Actually, this tab has not been necessary
during the development of this thesis.

As for the view part, it contains two parts (see Figure 4.1b): a white panel on
the left and three palettes on the right. These palettes contain several elements which
can be used to build the graphical user interface of the simulation, such as windows,
panels, buttons, 2D- or 3D-plots, geometric shapes, etc. The user can drag and drop
these elements from the palettes into the white panel on the left, in order to build the
interface hierarchically, following a tree-like structure. For example (see Figure 4.1b):
first, one would define a window, which would be divided into several panels. Then,
each panel would contain a di�erent thing: one of them would contain a 2D plot to
visualize the robot, other panel would contain buttons and sliders for modifying the
joint coordinates of the robot, etc. By means of these palettes and the drag-and-drop
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philosophy, EJS greatly facilitates the task of building the graphical user interface of
the simulation.

After defining hierarchically the graphical user interface of our simulation, EJS
allows us to configure the elements of our interface, defining their position/orientation,
their size and color, their interaction capabilities (e.g., the code that should be executed
when clicking on some part of the robot), etc. Moreover, all elements available on the
view part of the simulation are completely linked to the model part. This means that,
for example, we can associate the position of a geometric shape (of the view part)
with a variable defined in the model part. Or it is possible to call functions defined
under the “Custom” tab of the model part when interacting with some element of the
view part. This interconnection between both parts of the simulation (model and view)
allows the user to build fairly sophisticated interactive simulations with relatively little
programming e�ort, which is the main advantage of Easy Java Simulations.

This chapter will not explain further details on how to implement simulations in
EJS, for two reasons. Firstly, there already exist some tutorials of EJS [53]. Secondly,
we consider that EJS is so intuitive that the user can autonomously master it after
using it for just a few hours or days: the learning curve of EJS is really smooth.

As explained above, EJS comprises two parts (model and view) which are inti-
mately intertwined. This means that, when building a simulation, the graphical user
interface with which the user interacts can be entirely developed using the elements of
the view part, whereas all variables and functions necessary to “animate” the graphi-
cal elements of the interface can be entirely defined using the di�erent tabs under the
model part. However, from our experience, EJS seems to “slow down” when the model
part is overloaded (e.g., when we write too much code under the “Custom” tab), which
may end up hindering the development of the simulation.

To avoid this, during the development of PaRoLa, we have been progressively
migrating most of the code from the model part of our simulations to external Java
libraries. In this way, EJS can be used to define the graphical/interactive part of the
simulation (which is the part at which EJS is really powerful), summoning most of the
functions and code from linked Java libraries which contain custom-made functions for
simulating the kinematics or dynamics of parallel robots. This alleviates a great deal
of workload from EJS, avoiding undesirable lags or malfunctioning of this tool.

Note that this solution (migrating most of the code to external Java libraries)
also favors a more e�cient and modular way of programming simulators, since many
of the parallel robots implemented in PaRoLa share many problems and calculations
that can be solved by a single routine available in an external Java library (instead
of implementing repeatedly the same calculations once and again for di�erent robots,
which is not e�cient). A clear example of this can be found in the inverse kinematics of
the 5R and 3RRR robots (these robots will be introduced later, in Section 4.3.1): the
inverse kinematic problem for the legs of both these robots is identical. Thus, instead
of programming several times the resolution of these problems (once per each leg of
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these robots), it is more e�cient to program a general solver routine in an external
library and then summon this solver from each individual robot.

Finally, everything said above is only valid for the Java flavour of EJS. Originally,
EJS was aimed at developing simulations in Java, since these simulations were very
common in the Internet in the past, in the form of educational applets embedded
in webpages. However, during the recent years, most popular web browsers have
been progressively abandoning their support to Java applets, due to security issues.
Therefore, nowadays it is impossible to execute Java applets in webpages: it is necessary
to download these simulators (in the form of .jar packages) into a computer with
Java installed and run them. To solve this, since its version 5.0, Easy Java Simulations
(now called Easy Java/Javascript Simulations) can be used to develop simulations
both in Java and Javascript programming languages. The advantage of simulators
based on Javascript is that they can be run on any current web browser, both on
desktop computers and on mobile devices (such as tablets and smartphones). Most of
the simulation tools presented in this chapter have been developed in Java, although
recently we have also started to migrate these simulations to Javascript, as explained
in next section.

4.2 PaRoLa

By using EJS, a virtual and remote laboratory called PaRoLa has been developed in
this thesis for studying parallel robots (as well as other serial and hybrid robots, like the
HyReCRo robot studied in this thesis), with educational and research purposes. PaRoLa
can be accessed at http://arvc.umh.es/parola, which lands on the website shown
in Figure 4.2. In this website, the user can download the .jar files of the available
robots, which can be run on any desktop computer with Java installed (it works on
Mac, Windows, and Linux). In the next sections, we will describe the robots currently
available in PaRoLa, as well as the functionalities and applications o�ered by this tool.

As explained above, considering that Java applets are no longer supported by
web browsers, recently we have started to migrate PaRoLa to a Javascript-based ver-
sion, by means of the latest versions of EJS (version 5.0 and above). The objective will
be to “translate” the Java simulations currently available in PaRoLa into Javascript
versions. However, this translation is not straightforward, since it requires practically re-
making the complete simulation from scratch. In [153], we presented m-PaRoLa, which
is the beginning of a Javascript version of PaRoLa. The name “m-PaRoLa” is due to
the fact that, since the simulators are based on Javascript, they can be run on any web
browser, including those present in mobile devices such as smartphones or tablets. This
allows for the use of these simulations in mobile learning (m-learning) methodologies.
Currently, m-PaRoLa only allows the user to simulate the forward/inverse kinematic
problems of 5R and 3RRR robots, as well as visualize their singularities and workspace.

To avoid having to remake all simulators from scratch, and with the purpose of
recycling most of the code written for the Java simulators of PaRoLa, in the future
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Figure 4.2: Website of the virtual laboratory PaRoLa.

we will also explore the solution proposed by Saenz et al. [164], who propose using a
client-server architecture in which the client is the Javascript simulator of the robot,
whereas the server contains the Java code already developed for the Java version of
PaRoLa.

4.3 Robots Available in PaRoLa

PaRoLa mainly includes parallel robots, although it also includes hybrid robots (such
as the HyReCRo robot) and other climbing robots (like the 3DCLIMBER robot [178]).
Moreover, it comprises both simulated robots and real remote robots, which can be
remotely controlled over the Internet (these remote robots are installed in the labora-
tories of the Automation, Robotics and Computer Vision research group of the Miguel
Hernández University in Elche, Spain). Despite this, in this chapter we will especially
focus on the simulators of the parallel robots, since they are more important for previous
and later chapters of this thesis.

4.3.1 Parallel Robots Implemented
Currently, the following parallel robots can be simulated in PaRoLa. These robots,
shown in Figure 4.3, are sorted in increasing number of degrees of freedom (DOF):

• Four-bar mechanism (Figure 4.3a): strictly speaking, this is not a parallel
robot, but it is the simplest closed-chain mechanism possible. The main interest
of studying and incorporating this robot to PaRoLa is twofold:

– On the one hand, the position problem of this mechanism (which consists
in solving all three angles ◊1, ◊2, and ◊3 of Figure 4.3a given one of these
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Figure 4.3: Simulated parallel robots implemented in PaRoLa.

angles) appears in the forward and inverse kinematic analyses of many other
parallel robots which are more complicated.

– On the other hand, since this mechanism only has three variables (angles ◊1,
◊2, and ◊3), we can represent its complete configuration space in a three-
dimensional space (the configuration space is the set of triplets [◊1, ◊2, ◊3]
that result in feasible assemblies of the mechanism). Robots with two or
more degrees of freedom (like the rest of the robots implemented in PaRoLa)
have more than three kinematic variables, so it is not possible to represent
all their kinematic variables in three dimensions (for example: a 5R robot
has two input variables and two output variables, which would require a
four-dimensional space to represent their assemblable 4-tuples). Therefore,
for other robots it is necessary to project these configuration spaces into
three-dimensional spaces, obtaining reduced configuration spaces like those
studied in Figures 3.10, 3.13 and 3.18 of the previous chapter.

• 5R robot (Figure 4.3b): this is a five-bar mechanism with two degrees of free-
dom, in which angles ◊1 and ◊2 are controlled with the purpose of controlling
the planar position of point P, which is the end-e�ector of this robot.

• 2RPR-PR robot (Figure 4.3c): these are the two-DOF parallel mechanisms used
in the legs of the HyReCRo robot, and they have been comprehensively analyzed
in the previous chapter.

• 2UPS-U mechanism (Figure 4.3d): this is a two-DOF mechanism composed
of two bodies (one fixed and another mobile) interconnected through a passive
universal joint (which constrains the relative motion between these two bodies)
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and two legs of type UPS (which do not constrain their relative motion). The
objective of this mechanism is to control the relative orientation between these
two bodies by regulating the length of the UPS legs. This robot appeared in
Section 3.6.4 of the previous chapter, which analyzed an exception to the Taylor-
based method presented in Section 3.6.

• Delta robot (Figure 4.3e): this is the well-known parallel robot used for pick-
and-place tasks in industry. This robot can be regarded as a three-dimensional
version of the 5R robot. In the Delta robot, we control the spatial position of
the end-e�ector by means of angles ◊1, ◊2, and ◊3.

• 3RPR and 3RRR robots (Figure 4.3f): these are three-DOF planar parallel
robots in which three identical legs are used for positioning and orienting a
triangular mobile body in the plane. In the 3RPR robot, these legs are of type
RPR and have variable length (its inputs are the lengths fl1, fl2, and fl3). In the
3RRR robot, these legs are of type RRR and the inputs are the angles {◊1, ◊2,
◊3}, which are the orientations of the links connected to the fixed ground. The
3RPR robot has been comprehensively studied in the previous chapter, with the
purpose of analyzing its special quadruple singularities. As for the 3RRR robot,
this robot has been studied in this thesis mainly with the purpose of analyzing
the interior barriers of its workspace, in chapter 7.

• 3UPS-PU robot (Figure 4.3g): this is a 3-DOF parallel robot which is part of
the well-known serial-parallel robot Tricept used for machining [124]. Moreover,
it can be regarded as a three-dimensional generalization of the 2RPR-PR parallel
module studied in the previous chapter, and therefore, it exhibits eightfold special
singularities which are analogous to the singularities ⁄0 and ⁄fi studied in the
previous chapter [141].

• Stewart platform, or 6UPS robot (Figure 4.3h): this is a 6-DOF parallel robot
in which a mobile platform is connected to a fixed platform through six UPS
legs, whose lengths are controlled by means of linear actuators. By regulating
the lengths of these six legs, it is possible to control the position and orientation
of the mobile platform in three-dimensional space. In this thesis, this robot has
been mainly used for analyzing the interior barriers of its workspace, in chapter
7.

Note that this collection of parallel robots is not arbitrary. It includes three important
families of parallel robots used in industry: the Delta robot of Figure 4.3e (and its
“planar version”, which is the 5R robot of Figure 4.3b), the Tricept robot of Figure
4.3g (and its planar version, which is the 2RPR-PR robot of Figure 4.3c), and the
Stewart platform of Figure 4.3h (and its planar version, which is the 3RPR robot of
Figure 4.3f).
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4.3.2 Other Robots Available in PaRoLa
In addition to the simulators of parallel robots described in the previous subsection,
PaRoLa also houses simulators of climbing robots and remote prototypes of parallel
robots:

Figure 4.4: Other remote and simulated robots implemented in PaRoLa.

• Remote 5R robot (Figure 4.4a): PaRoLa allows the user to remotely control
a real five-bar parallel robot. The user can visualize the motion of the robot in
streaming through a webcam, while experimenting with trajectory planning and
the Proportional-Integral-Derivative control of this robot.

• Remote 3RRR robot (Figure 4.4b): the objective of this prototype will be to
study nonsingular transitions (by enclosing cusps) and singular transitions (by
crossing singularities) with a real parallel robot, neglecting the e�ects of gravity
(since the robot will move in a horizontal plane).
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• Remote Delta robot (Figure 4.4c): this prototype will be used to study singular
transitions (which are the only possible transitions between assembly modes in
the Delta robot) considering the e�ects of gravity.

• Simulator of the HyReCRo robot (Figure 4.4d): during this thesis, a simulator
of the HyReCRo robot has been developed with the purpose of studying the
kinematics and workspace of this climbing robot. This simulator was developed
as a support tool to aid in the analysis and study of this robot. Also, this tool can
act as a graphical user interface for controlling the prototype of the HyReCRo
robot, which will be described in chapter 8. The simulator of the HyReCRo robot
will not be analyzed in this chapter, but it will be described in later chapters of
this thesis, in which the kinematics and workspace of the HyReCRo robot will
be analyzed (it is necessary to explain the kinematic problems of the HyReCRo
robot before introducing the tool developed for simulating these problems).

• Simulator of the 3DCLIMBER robot (Figure 4.4e): PaRoLa also includes a
simulator of the 3DCLIMBER climbing robot [178]. This simulator was devel-
oped with the purpose of facilitating the analysis of adhesion forces and torques
required in the grippers of climbing robots [138].

• Simulator of the ROMA robot (Figure 4.4f): finally, PaRoLa also houses a
simulator of the ROMA climbing robot [14]. The objective of developing this
simulator was to compare this climbing robot with other similar climbing robots,
in terms of workspace.

4.4 Functionalities of PaRoLa

This section describes the main functionalities of the virtual laboratory PaRoLa. Al-
though this virtual laboratory also includes remote robots, as well as climbing robots,
in the remaining of this chapter we will focus only on the simulators of parallel robots.
The main functionalities of PaRoLa are described in next subsections, illustrating these
functionalities with examples.

4.4.1 Simulation of the Inverse Kinematics
The inverse kinematics consists in specifying the desired position and/or orientation
for the end-e�ector of a parallel robot, and computing the values of the actuated joint
coordinates necessary for attaining the desired position/orientation. The simulators
of PaRoLa allow the user to specify the desired pose (position and orientation) for
any parallel robot, obtaining as a result the required values of the actuated joint
coordinates. The desired pose can be specified numerically or by means of sliders, or
by directly clicking and dragging the end-e�ector of the robot in the simulator (Figure
4.5a).

In general, the inverse kinematic problem of parallel robots has several possible
solutions (known as working modes): di�erent values of the actuated joint coordinates
that place the end-e�ector at the desired position and with the desired orientation.
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In this aspect, PaRoLa allows the user to compare the di�erent possible solutions
for a desired pose of the end-e�ector, comparing the posture of the robot for di�erent
solutions (Figure 4.5b). To switch between di�erent solutions of the inverse kinematics,
the user must click the small circle placed on the center of the actuated links of the
robots.

Figure 4.5: Simulating the inverse kinematics in PaRoLa. (a) Dragging the end-e�ector. (b)
Switching between di�erent solutions of the inverse kinematic problem.

4.4.2 Simulation of the Forward Kinematics
The forward kinematic problem consists in determining the position and orientation of
the end-e�ector of a parallel robot for given values of its actuated joint coordinates.
PaRoLa also allows the user to “move” the robot under “forward kinematics mode”,
where the user moves and drags the actuated joints of the robot, and the robot moves as
a consequence (see Figure 4.6a). It is also possible to simulate the forward kinematics
of the robots by dragging their actuated joint coordinates in the actuated joint space
(e.g., see Figure 4.10d for the Delta Robot), or by introducing the values of the actuated
joint coordinates by means of sliders and numeric boxes.

Also, recall from the previous chapter that the forward kinematic problem has
several solutions, which are called assembly modes. All these assembly modes can be
visualized for each parallel robot in PaRoLa (see Figure 4.6b). The di�erent solutions
can be visualized using two possible representations, as explained in the next subsection.

4.4.3 Multiple Visualizations of the Solutions of the Forward
Kinematics

As illustrated in Figure 4.6, PaRoLa allows the user to visualize the complete posture of
the robot for each of the solutions of the forward kinematics. PaRoLa uses two di�erent
representations to represent the solutions of the forward kinematics: the complex
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Figure 4.6: Simulating the forward kinematics in PaRoLa. (a) Dragging the actuated joints.
(b) Switching between di�erent solutions of the forward kinematic problem.

plane and the real plane. These representations are especially useful for analyzing
how the di�erent solutions of the forward kinematics evolve when varying the actuated
joint coordinates, and this can be used for analyzing nonsingular transitions, as it
has been done in the previous chapter. The two representations used in PaRoLa are
explained next.

4.4.3.1 Visualizing solutions in the complex plane

All solutions are represented as colored points in the complex domain. For example:
Figure 4.6b represents the solutions of the forward kinematics of the 3RRR robot
projected to complex plane (Re(„), Im(„)), where „ is the orientation angle of the
triangular end-e�ector. When varying the actuated joint coordinates of the robot,
these solutions describe trajectories in this complex plane. As explained in the previous
chapter, “complex angles” can also be represented using modified polar coordinates or
cylindrical coordinates (Figure 3.6). As explained also in the previous chapter, these
two representations (cylindrical and modified-polar) are better than the rectangular
representation for representing “complex angles”, since they avoid the discontinuity
due to the wrapping of the real part of the angle. In PaRoLa, the user can click on
each solution in the complex domain, and then the simulator represents the posture of
the clicked solution. Obviously, clicking on solutions with non-zero imaginary part will
result in a wrong representation of the posture of the robot, since imaginary assembly
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modes have no physical meaning.

4.4.3.2 Visualizing solutions in the real plane

The second representation used in PaRoLa is valid only for robots with two degrees of
freedom. In 2-DOF parallel robots, we have two inputs (two actuated joint coordinates)
and two outputs (two variables that parameterize the position and/or orientation of
the mobile platform). These inputs and outputs are related through two scalar equa-
tions, which encode the kinematic restrictions imposed by the robot. These two scalar
equations can be regarded as defining two curves in the plane of outputs. Therefore,
the real solutions of the forward kinematics are obtained as the intersections between
these two planar curves.

Let us explain this representation with a concrete example. For example, for the
2RPR-PR parallel robot analyzed in the previous chapter, the inputs are the lengths
{l1, l2}, the outputs are {„, y}, and the two scalar equations are {Equation (3.1),
Equation (3.2)}, which are repeated next:

(b1 cos „ ≠ a1)2 + (y + b1 sin „)2 = l2
1 (4.1)

(≠b2 cos „ ≠ a2)2 + (y ≠ b2 sin „)2 = l2
2 (4.2)

For given values of the geometric design parameters (a1, a2, b1, and b2), and for given
values of the inputs (lenghts l1 and l2), the previous equations define two curves in
plane („, y), as shown in Figure 4.7. The intersection points of these curves yield
the real solutions of the forward kinematics (in this case, there are four di�erent real
solutions, which are denoted as in the previous chapter: ‡1, ‡2, ‡3, and ‡4). If we
continuously modify the values of the inputs (l1, l2), these two curves are continuously
deformed, and their intersection points vary as a consequence (the solutions of the
forward kinematics move, as shown in Figures 4.7 and 4.8).

Like the representation in the complex plane, this representation of solutions
as intersection points of curves in the real plane can be used for studying nonsingular
transitions and special singularities. For example:

• Analyzing nonsingular transitions: Figure 4.7 represents the evolution of
curves (4.1) and (4.2) when the actuated joint coordinates l1 and l2 describe
the circular trajectory of Figure 3.4. As analyzed in the previous chapter, this
circular trajectory encloses a special singularity ⁄fi of the 2RPR-PR robot, which
produces nonsingular transitions between solutions of the forward kinematics.
This can be observed in Figure 4.7: solutions ‡3 and ‡4 swap their positions in
the output plane after completing one turn around ⁄fi.

• Analyzing special singularities: Figure 4.8 represents the evolution of curves
(4.1) and (4.2) when the actuated joint coordinates l1 and l2 approach the special
singularity ⁄fi of the 2RPR-PR robot through the vertical trajectory tfi shown
in Figure 3.4. We observe that, when this special singularity is approached,
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Figure 4.7: Evolution of the kinematic constraints defined by Equations (4.1) (red curve) and
(4.2) (blue curve), when describing the circular trajectory shown in Figure 3.4. Solutions of
the forward kinematics, which are the intersection points between the red and blue curves, are
enclosed by magenta circles. Solutions ‡3 and ‡4 swap their positions along this trajectory,
resulting in a nonsingular transition (see Section 3.2.1).

these curves have a special intersection: each curve self-intersects at („ = fi,
y = 0), where each curve also meets the other curve (see Figure 4.8). Thus, this
special intersection corresponds to a higher-multiplicity solution of the forward
kinematics.

What is the point in representing the solutions of the forward kinematics as the intersec-
tion of two planar curves? There are two advantages in graphically solving the forward
kinematics. Firstly, plotting these curves is very easy and straightforward, using any
mathematical package or software able to plot implicit curves (e.g.: “ezplot” function
in Matlab), whereas numerically solving the forward kinematics can be quite tedious for
many 2-DOF robots. For example: consider a general 3RRR robot in which one of the
input angles has been locked, so that the robot becomes a 2-DOF mechanism. Solving
the forward kinematics of this robot by elimination leads to a sixth-degree polynomial
whose coe�cients are so lengthy that this approach may become impractical. On
the contrary, plotting the curves whose intersections are the solutions of the forward
kinematics is straightforward.

Nevertheless, the true reason for considering this representation of the solutions
of the forward kinematics is that it allows one to analyze degenerate singular cases for
which the first representation (solutions projected to the complex plane) fails. Typically,
for parallel robots the forward kinematic problem has a zero-dimensional solution set,
i.e., the solutions are a finite number of isolated discrete points in the complex domain.
In that case, the representation based on projecting the solutions to the complex plane
is valid. However, in some special cases, there exist also positive-dimensional solution
sets (e.g., curves) in addition to these isolated solutions. In those cases, representing
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Figure 4.8: Evolution of the kinematic constraints defined by Equations (4.1) (red curve) and
(4.2) (blue curve), when approaching singularity ⁄

fi

shown in Figure 3.4.

the solutions as a set of points in the complex domain obviously misses information.
This will be better illustrated through the following example, which was presented in
[130].

Consider again the 2UPS-U robot analyzed in Section 3.6.4 of the previous
chapter. In this robot, the inputs are the lengths d1 and d2 of the UPS legs, whereas
the outputs are the angles – and — that parameterize the relative orientation between
the mobile and fixed platforms. As studied in Section 3.6.4, when both universal joints
A1 and A2 of the UPS legs tend to the X axis (Figure 4.9a), two diamond-like closed
curves of the singularity locus shrink to points in plane (d1, d2) (Figures 4.9b-d).
Considering the analyses presented in the previous chatper, in which we analyzed the
evolution of the assembly modes when approaching deltoids degenerated into points,
one may wish to investigate how the solutions of the forward kinematics evolve when
the joint coordinates approach the degenerate point diamonds of Figure 4.9d, e.g.,
through the vertical trajectory “ depicted in Figure 4.9d.

If one visualizes the evolution of the solutions in the complex plane of variable —
(Figure 4.9e), then one observes that, apparently, four solutions seem to converge when
approaching the point-diamond singularity (actually, there seem to be six converging
solutions, since each of the U-shaped trajectories shown in Figure 4.9e is double, i.e.,
it is described by two coinciding complex solutions). However, if one observes the
evolution of the solutions in the complex plane of – (not shown here), these solutions
seem to move erratically, not converging at all. This apparently strange behavior can
be understood if we visualize the solutions of the forward kinematics as the intersection
of two curves in real plane (–, —), as Figures 4.9f-h show (these curves represent the
kinematic restrictions of the 2UPS-U robot [130]).

Figures 4.9f-h show the evolution of these curves as the joint coordinates ap-
proach the studied isolated singularity through vertical trajectory “ . Since this trajec-
tory is vertical, d1 is kept constant and the red curve, which only depends on d1, does
not change along the trajectory. This red curve consists of two intersecting portions:
a horizontal segment and an (approximately) sinusoid portion (Figure 4.9f).

On the other hand, the blue curves, which only depend on d2, are two loops.
During the execution of trajectory “, the red and blue curves intersect at four di�erent
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points (and all four intersections are simple). However, as Figures 4.9f-h show, the blue
curves deform and adopt a similar shape to the red curves as the isolated singularity is
approached in plane (d1, d2). In the limit, when the isolated singularity is approached,
the blue curves consist also of two intersecting portions, like the red curves: a horizontal
segment and another (approximately) sinusoid portion. And this is where the previous
apparently strange behavior of the complex solutions can be understood, as explained
next.

The sinusoid portions of the red and blue curves of Figure 4.9h intersect at two
points (and these intersections are simple). These are the simple isolated solutions
properly represented in Figure 4.9e. However, the horizontal portions of these curves
are coincident, i.e., these portions have infinitely many di�erent intersection points.
This means that, in addition to the two mentioned simple solutions, this degenerate
mechanism admits infinitely many solutions with — = ≠fi/2, with angle – being free:
the mechanism can freely rotate about axis X, without control [130]. This is a special
self-motion parallel singularity, in which the linear actuators are locked (lengths d1 and
d2 are constant) but the mechanism admits finite uncontrolled motions.

This example demonstrates the usefulness and importance of visualizing the
solutions of the forward kinematic problem as the intersections of planar curves in the
output plane. Although visualizing the solutions in the complex domain is useful to
understand how di�erent real and complex solutions coalesce at singularities (as we
have seen in the previous chapter), this representation is only valid when all solutions
to the forward kinematic problem are isolated. In degenerate cases like the one studied
here, it is necessary to visualize the forward kinematic problem from a more global
perspective, such as the intersection of the planar curves that represent the kinematic
restrictions of the mechanism. In these cases, representations of discrete solutions miss
important information and solutions, as we have seen in Figure 4.9e.

4.4.4 Visualization of the Workspace and Singularities
PaRoLa represents the workspace and parallel singularities of parallel robots in the
Cartesian and joint spaces, respectively. For robots in which the degrees of freedom of
the end-e�ector involve both position and orientation coordinates, e.g. like the 3RRR
robot, PaRoLa allows the user to visualize two types of workspaces:

• Constant orientation workspace, in which the orientation of the end-e�ector re-
mains constant (Figure 4.10a)

• Reachable workspace, which are the positions reachable with at least one orien-
tation (Figure 4.10b).

As for the representation of parallel singularities in the actuated joint space: if the
robot has more than two degrees of freedom, e.g. like the Delta robot, PaRoLa repre-
sents planar slices of the singularity locus in the coordinate planes of the joint space,
considering that all joint coordinates but two remain fixed (Figure 4.10c). This is
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Figure 4.9: (a): a non-generic 2UPS-U parallel robot with aligned universal joints. (b-d): two
diamonds degenerate into points for this non-generic robot. (e): evolution of the solutions in the
complex plane when approaching one of the point diamonds. (f-h): evolution of the solutions in
the real plane when approaching one of the point diamonds.

because the surfaces of parallel singularities in the actuated joint space usually have
complex shapes which are di�cult to visualize in three dimensions, whereas the singu-
larity curves resulting from planar slices of these singularity surfaces are much easier
to visualize.

4.4.5 Modification of the Geometry of Parallel Robots

This is one of the most powerful features of PaRoLa: with this tool, the user can
modify the geometric parameters of parallel robots, i.e., one can modify the linear
and angular dimensions that define the design of a robot. This is especially useful for
studying how the design of the robot a�ects its kinematic capabilities. By modifying
the design parameters in PaRoLa, we can study how the workspace of a parallel robot
transforms as a consequence. For example, Figure 4.11a shows how the workspace of a
5R robot transforms when its proximal links are made shorter. Initially, as Figure 4.11a
shows, all four links have the same length, and the resulting workspace is lens-shaped
and contains parallel singularities (blue closed curve wrapped along the horizontal axis
in Figure 4.11a-right). As the proximal links are made shorter in PaRoLa, this lens-
shaped workspace becomes smaller and smaller at the same time that two circular voids
appear around the fixed supports of the robot. Then, when the proximal links are made
su�ciently short, the workspace splits into two disconnected components, as shown in
Figure 4.11b. As this Figure 4.11b also shows, this design is singularity-free, but the
robot will be restricted to work only in one of the two components of the workspace,
without being able to move to the other component. In this aspect, PaRoLa is useful
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Figure 4.10: (a) Representation of the constant-orientation workspace in PaRoLa. (b) Reach-
able workspace. (c) Planar slices of the singularity locus in the joint space. (d) The forward
kinematics can also be simulated by dragging the actuated joint coordinates in the actuated joint
space.

for analyzing how di�erent designs yield larger or smaller workspaces, with more or less
singularities (or without singularities at all).

This functionality is also useful for analyzing how parallel singularities transform
under changes in the design of the robot. For example: Figure 4.11c shows a 3RPR
robot, whereas Figures 4.11d-g illustrate how the singularity locus of this robot is
deformed when joint F of the robot is shifted to the left using PaRoLa. Initially
(Figure 4.11d), the singularity locus contains several cusps, although we will focus this
analysis on the two cusps indicated by red arrows in Figure 4.11d. When joint F of the
robot is shifted to the left, these two cusps come closer to each other (Figure 4.11e)
until they cross a swallowtail singularity (indicated in Figure 4.11f by a red arrow) and
vanish. Thus, the robot would lose the ability to perform nonsingular transitions in the
vicinity of this swallowtail singularity due to the vanishing of two cusps. In this aspect,
PaRoLa can be used to analyze how parallel robots gain or lose the ability to perform
nonsingular transitions by studying how cusps are created or vanish when changing the
design of the robot.

4.4.6 Path Planning
PaRoLa allows the user to compare di�erent trajectory planners, to understand the
importance of singularities in path planning. The user can select initial and final points
of the workspace, and the simulator plans a trajectory between these points taking
into account di�erent criteria and restrictions. For example: Figure 4.12 compares
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Figure 4.11: PaRoLa is useful for analyzing how the workspace and singularities transform
under changes in the design of parallel robots.

two trajectories between two points (Start and Goal points) of the workspace of the
5R robot. In the first trajectory (Figure 4.12a-g), the robot is “broken” during a part
of the trajectory (Figures 4.12c-d), which means that this trajectory is not feasible
in practice. In the second trajectory (Figures 4.12h-n), the trajectory is satisfactorily
executed. In the first case, a “naive” algorithm planned a straight line trajectory
between the preimages of the start and goal points in the joint space (green trajectory
shown in Figure 4.13-left), and this straight trajectory crosses the forbidden area of the
joint space in which all solutions of the forward kinematics are non-real: for all joint
angles in this forbidden region, the robot cannot be assembled.

On the contrary, the trajectory of Figure 4.12h-n was planned by an “intelligent”
algorithm that searches the active joint space through the Aú algorithm, and builds a
joint-space trajectory connecting the preimages of the start and goal points without
invading the forbidden area at which the robot cannot be assembled (green trajectory
in Figure 4.13-right).

This functionality is useful for understanding the problem of planning trajectories
in parallel robots, a problem which can become complex due to parallel singularities
and the non-uniqueness of the solutions of the forward and inverse kinematic problems
(i.e., both the inverse and forward kinematic problems generally yield several possible
solutions for parallel robots).
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Figure 4.12: Trajectories of a 5R robot simulated in PaRoLa. (a-g): an unfeasible trajectory.
(h-n): a feasible trajectory.

4.4.7 Dynamics and Control Simulation

To conclude, PaRoLa allows the user to simulate the closed-loop control of parallel
robots, with the main purpose of analyzing singular transitions between di�erent as-
sembly modes (i.e., transitions by crossing singularities). These transitions cannot be
properly reproduced by a purely kinematic simulation, i.e., the dynamics must be imple-
mented too. This is because two or more di�erent assembly modes coalesce at parallel
singularities, and it is not possible to decide which assembly mode will be adopted
by the robot when leaving a singularity if we simulate its motion based solely on the

114



4.4. Functionalities of PaRoLa

Figure 4.13: Joint space of the 5R robot, in which trajectories are planned. Left: the “naive”
planner does not take into account singularities, and plans straight trajectories that may contain
unfeasible values of the joint coordinates. Right: the “intelligent planner” avoids unfeasible
configurations of the joint coordinates, finding a feasible joint trajectory.

forward kinematics: the robot should carry momentum when simulating a singularity
crossing to decide which assembly mode will be adopted after this crossing, and this
requires performing a dynamic simulation.

To facilitate the simulation of singularity crossings, PaRoLa allows the user to
simulate the PID control of parallel robots [143]. Each actuated joint coordinate of the
robot is controlled by an independent PID controller, in which the user can manually
tune the Proportional, Integral and Derivative gains. Although this is not the best
controller available for parallel robots, it su�ces for the purposes of this functionality,
since the only objective of these controllers is to drive the robot to the joint space
points specified by the user while simulating the dynamics of the robot. In other
words: thanks to these PID controllers, PaRoLa allows the user to simulate some sort
of “forward kinematics” that takes into account the dynamics of the robot, in which the
user specifies step references to be followed by the actuated joint coordinates, instead
of specifying directly the actual values for these joint coordinates (as one does while
simulating the forward kinematics, as described in Section 4.4.2). Thus, the mission
of the PID controllers is to try to move the actual joint coordinates to these references
specified by the user.

By using this functionality of PaRoLa, singular transitions between di�erent
assembly modes can be simulated as explained through the following example.

Consider a 5R robot which is initially assembled as shown in Figure 4.14a. With
this initial assembly mode, the points of the region R at the top part of its workspace
cannot be attained. To reach these points, the robot must cross a singularity and
change its configuration to adopt the assembly mode indicated in dashed line in Figure
4.14a, for which region R can be accessed. This requires performing a trajectory in
the joint space which is reflected at the singularity locus [195], in order to produce a
change of assembly mode. Next, we will use the simulator to analyze di�erent simple
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strategies that may be used to change the assembly mode by crossing a singularity in
the 5R robot.

Figure 4.14: Simulating singular transitions in PaRoLa.

First, it can be checked that it is very easy to perform this change manually in
the simulator, following the steps described next. Beginning at the initial configuration
(◊1 = 0, ◊2 = fi), a point outside the region of the joint plane enclosed by the
singularities (point F of Figure 4.14b) is set as reference for the joint coordinates of
the robot. As in Figure 4.13, the points outside the region enclosed by singularities
correspond to forbidden configurations because the robot cannot be assembled at them.
In this way, the controller will try to drive the robot toward a forbidden configuration.
When the trajectory of the robot arrives at the singularities, it will su�er a reflection
that corresponds to a change of assembly mode. After detecting visually the first
reflection (change of assembly mode), the user must set a point inside the region
enclosed by singularities (e.g. the point G of Figure 4.14b) as a new reference for the
controllers. Finally the initial point (◊1 = 0, ◊2 = fi) must be introduced as the new
reference to reach the dashed configuration of Figure 4.14a, leaving the robot at a
configuration where it can access region R without crossing more singularities.

If the user does not command a point G inside the region enclosed by singu-
larities after the first reflection at the singularities has occurred, then the controller
will continue trying to bring the robot to the forbidden point F, and this will produce
more impacts and reflections at the singularities, as shown in Figure 4.14c (and each
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reflection will produce a change of assembly mode of the robot). Depending on the
used controller, these reflections will decrease in amplitude until the controller stabilizes
the robot at a singularity, as shown in Figure 4.14c. In this stabilized situation, the
actuators are pushing the robot and trying to drive it to the forbidden region outside
the singularities, a dangerous situation that may end up overheating and damaging the
DC motors in a real robot.

The previous strategy for performing a singular change of assembly mode is
manual: the user detects that the robot has changed the configuration after the re-
flection at the singularity occurs, and then she/he commands another point inside the
region enclosed by singularities to avoid more reflections that produce more changes of
assembly mode. This detection may be automated by introducing a sensor that detects
the first singularity crossing (for example, detecting that the angle between the distal
links crosses fi rad, which is the singularity condition for this robot).

Alternatively, this may also be achieved by commanding as a control reference
a point inside the region enclosed by singularities and close to them, instead of com-
manding a point outside this region. Then, the ratio proportional gain/derivative gain
of the controller can be increased so that the trajectory presents some overshoot that
exceeds the target point, touching the singularities and being reflected at them, pro-
ducing a change of assembly mode (see Figure 4.14d). However, this solution is not
robust or predictable (especially in a real robot), since sometimes the response may
lack the necessary overshoot (not producing the change of assembly mode), or the
trajectory may su�er successive oscillations and reflections that may produce several
undesired changes of assembly mode, as in Figure 4.14c.

Summing up, PaRoLa can be used to get a glimpse of the complexity of per-
forming singular transitions in real parallel robots. Actually, in practice, instead of using
the simple strategies described above, one should use Computed Torque control laws
guaranteeing the non-degeneracy of the dynamic model of the robot [127] for robustly
and e�ectively crossing parallel singularities in real parallel robots.

4.5 Conclusions

In this chapter, we have presented PaRoLa, a virtual laboratory developed to aid in the
kinematic analysis of parallel robots. This virtual laboratory consists of a collection of
Java applets which allow the user to simulate the kinematics and dynamics of several
parallel robots, which include well-known industrial robots such as the Stewart platform
and the Delta and Tricept robots, as well as other robots which can be regarded as their
planar versions. These simulators were developed using Easy Java Simulations, they
are graphical and very intuitive, and require no installation. The functionalities o�ered
by these simulators are: simulation of the inverse and forward kinematic problems
of parallel robots, visualization of all the solutions in the complex and real domains,
visualization of the workspace and singularities of these robots, possibility of changing
the design of the robot in order to study how the workspace and singularities deform
as a consequence, simulation of path planning, and simulation of the control of parallel
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robots to study singular transitions. In the present thesis, the developed simulations
have been especially useful for analyzing the kinematics and singularities of the 2RPR-
PR parallel mechanisms that make up the legs of the HyReCRo robot. A simulator of
the complete HyReCRo robot is also included in the developed virtual laboratory, but
this simulator will be described in the next chapters.

4.6 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• A. Peidró, A. Gil, J.M. Marín, and Ó. Reinoso. A web-based tool to analyze the
kinematics and singularities of parallel robots. Journal of Intelligent & Robotic
Systems, 81(1):145–163, 2016 [137] (SCI-JCR Impact Factor: 1.512, Q3).

– This paper presents the virtual laboratory PaRoLa, with several examples
illustrating how to use this tool to simulate the forward and inverse kine-
matics of 5R, 3RRR, and Delta parallel robots, as well as visualize their
singularities and workspace.

• A. Peidró, C. Tendero, J.M. Marín, A. Gil, L. Payá, and Ó. Reinoso. m-PaRoLa:
a mobile virtual laboratory for studying the kinematics of five-bar and 3RRR
planar parallel robots. IFAC-PapersOnLine, 51(4):178 – 183, 2018. 3rd IFAC
Conference on Advances in Proportional-Integral-Derivative Control (PID 2018)
[153].

– This paper presents the first version of m-PaRoLa, the Javascript version
of PaRoLa, which can be run on web browsers of desktop computers and
mobile devices.

• A. Peidró, O. Reinoso, A. Gil, J.M. Marín, and L. Payá. A virtual laboratory
to simulate the control of parallel robots. IFAC-PapersOnLine, 48(29):19 – 24,
2015 [143].

– This paper presents the functionality to simulate the control of parallel
robots in PaRoLa, for the 5R and 3RRR robots, with the purpose of simu-
lating singular transitions as explained in Section 4.4.7.

• A. Peidró, Ó. Reinoso, A. Gil J.M. Marín, and L. Payá. A simulation tool to study
the kinematics and control of 2RPR-PR parallel robots. IFAC-PapersOnLine,
49(6):268–273, 2016. 11th IFAC Symposium on Advances in Control Education
(ACE 2016) [149].

– This paper presents a tool for simulating 2RPR-PR parallel robots, which
is included in PaRoLa.

• A. Peidró, Ó. Reinoso, J.M. Marín, A. Gil, L. Payá, and Y. Berenguer. A simula-
tion tool for visualizing the assembly modes and singularity locus of 3RPR planar
parallel robots. In Anibal Ollero, Alberto Sanfeliu, Luis Montano, Nuno Lau,
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and Carlos Cardeira, editors, ROBOT 2017: Third Iberian Robotics Conference:
Volume 1, pages 516–528. Springer International Publishing, 2018 [150].

– This paper presents a tool for simulating 3RPR parallel robots, which is
included in PaRoLa.

• A. Peidró, A. Belando, D. Valiente, O. Reinoso, and L. Payá. A multi-perspective
simulator for visualizing and analyzing the kinematics and singularities of 2UPS/U
parallel mechanisms. In INTED2018 Proceedings, 12th International Technology,
Education and Development Conference, pages 3785–3793. IATED, 2018 [130].

– This paper presents a tool for simulating 2UPS-U parallel robots, which is
included in PaRoLa.
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5 Kinematics of the HyReCRo Robot

This chapter presents the kinematic analysis of the HyReCRo climbing robot. First,
section 5.1 describes in detail the hybrid serial-parallel architecture of the HyReCRo
robot. Next, section 5.2 presents the solution of its forward kinematic problem, which
consists in computing the relative position and orientation between the feet of the robot
for given values of its ten active joint coordinates. Following, section 5.3 analyzes the
inverse kinematics and workspace for a subset of planar and symmetric postures of this
robot, which are useful for planning basic movements that are necessary for exploring
three-dimensional structures. Section 5.4 solves the general inverse kinematic problem,
which consists in determining the necessary values of the ten active joint coordinates
of this robot in order to reach a desired general three-dimensional relative position and
orientation between its feet. Finally, Section 5.5 presents an interactive simulation tool
for simulating the forward and inverse kinematic problems of the HyReCRo robot, and
for studying graphically the solutions of these problems.

5.1 Description of the HyReCRo Robot

Figure 5.1a shows a 3D CAD model of the HyReCRo biped climbing robot. The
robot has two identical legs (A and B) connected to the hip through revolute joints
driven by motors (angles ◊A and ◊B). Each leg has three links: a core link and two
platforms. The lower platform is the foot of the leg and carries the magnetic gripper
that fixes the robot to the structure (the grippers are not considered in the kinematic
analysis presented in this chapter: they will be analyzed and designed in Chapter 8).
The upper platform is connected to the hip through the aforementioned revolute joint.
Each platform is connected to the core link by means of two prismatic (or linear)
actuators in parallel and a passive slider.
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Figure 5.1: (a) 3D model of the climbing robot. (b) A symmetric 2RPR-PR parallel mechanism
used in the legs of the HyReCRo robot.

The mechanism composed of the core link, one platform, and the two prismatic
actuators that connect these two elements, is a 2RPR-PR parallel mechanism like
those studied in chapter 3, but with symmetric design (i.e., with a1 = ≠a2 = b
and b1 = b2 = p). These symmetric parallel mechanisms, which will be referred to as
“parallel modules” in this chapter, are represented schematically in Figure 5.1b. Hence,
each leg is the serial combination of parallel module 1 (which is connected to the foot)
and 2 (which is connected to the hip). The prismatic actuators of each parallel module
lie in opposite sides of plane �j , which is one of the planes of symmetry of the core
link of leg j (see the side view in Figure 5.1a). This is indicated with dashed lines in
Figure 5.2.

Figure 5.1a also shows some reference frames attached to di�erent parts of the
robot (the origins of all these frames belong to plane �j). In this chapter, the X, Y ,
and Z axes of reference frames will be represented in red, green, and blue, respectively.
Frames HA and HB are fixed to the hip of the robot, whereas frames A and B are
respectively attached to the feet of legs A and B.

This biped climbing robot has ten degrees of freedom: two rotation angles ◊A

and ◊B in the hip, and four linear actuators in each leg. Since ten degrees of freedom
are used for positioning and orienting one foot of this robot with respect to the other
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(and this relative position/orientation has six degrees of freedom), the HyReCRo robot
is kinematically redundant. This kinematic redundancy means that its inverse kinematic
problem will admit infinitely many possible solutions, as detailed in sections 5.3 and
5.4. Actually, it has been shown that a climbing robot needs only 4 DOF to explore
3D structures [181, 178]. Thus, the HyReCRo robot has 6 redundant DOF to perform
this task. It is important to remark that this redundancy was not a design criterion to
be fulfilled when designing the robot, but rather a consequence of the original proposal
for this robot, in which the robot would attain all postures necessary for performing
plane transitions using purely binary actuation.

Kinematic redundancy o�ers some advantages for climbing 3D structures. A
higher number of DOF allows a robot to travel from one point of the structure to
another point using fewer and simpler movements than another robot with fewer DOF
[62]. Moreover, the kinematic redundancy can be exploited to execute other secondary
tasks in addition to the primary task of exploring the structure. For example, the
redundancy can be used to avoid the singularities that di�cult the movements of
climbing robots [165], or to avoid joint limits and obstacles present in the workspace of
the robot (e.g., other beams of the explored structure). The redundancy can also be
used to minimize the torques in the actuators, or the energy consumption of the robot,
which is useful to increase the autonomy of climbing robots powered by batteries [14].
Also, a kinematically redundant design allows for the use of closed-loop techniques
to perform the kinematic callibration of the robot [63], which avoid the measurement
of the relative pose between the feet of the robot. Robot calibration is necessary to
increase the precision of climbing robots and guarantee that they can properly grasp
the structure [179]. Other advantages of kinematic redundancy can be found in [32].

The geometric design of the HyReCRo robot is defined by the following six
parameters: {b, p} (which are dimensions of the 2RPR-PR parallel mechanisms that
compose the legs of the robot, as indicated in Figure 5.1b), {fl0, �fl} (which are the
joint limits [fl0, fl0 + �fl] to which the linear actuators of the robot are subject, as
defined in Section 3.3), distance t (which is the distance between the parallel axes
of the rotations of the hip, as shown in Figure 5.1a), and h (which is the length of
the core links of the legs, as indicated in Figure 5.2). All these six parameters, which
influence the shape of the workspace of the robot, will be introduced in more detail
during the next sections of this chapter.

In next sections, we will analyze and solve the forward and inverse kinematic
problems of the HyReCRo climbing robot, as well as present a simulation tool developed
for graphically studying these problems.

5.2 Forward Kinematic Problem (FKP)

In this section, the forward kinematic problem (FKP) of the HyReCRo robot is solved.
The problem considered here consists in calculating the position and orientation of
one foot with respect to the other foot when all ten joint coordinates are known:
angles ◊A and ◊B and lengths (l

ij

, r
ij

) of the linear actuators of the parallel modules
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(i œ {1, 2}, j œ {A, B}). First, the forward kinematics of the symmetric 2RPR-PR
parallel mechanisms of the legs is analyzed.

5.2.1 FKP of the Parallel Modules
Figure 5.1b shows the i-th parallel module of leg j (i œ {1, 2}, j œ {A, B}), which
is a 2RPR-PR parallel mechanism like those studied in chapter 3. The main novelty
here with respect to the analysis of chapter 3 is the fact that now these parallel
mechanisms are symmetric, i.e., with: a1 = ≠a2 = b and b1 = b2 = p. The forward
kinematic analysis of section 3.1.1 is completely valid for the symmetric 2RPR-PR
parallel mechanisms analyzed in this chapter. However, next it will be convenient
to solve again the forward kinematic problem of the 2RPR-PR mechanisms for the
particular case of symmetric mechanisms, since we will obtain simpler equations that
will allow us to identify a subset of planar symmetric postures of the robot, which are
useful for performing several movements on a structure by solving a simplified version
of the general inverse kinematic problem.

Recall from section 3.1.1 that the forward kinematic problem of the i-th 2RPR-
PR parallel mechanism of leg j consists in calculating the position y

ij

and the orien-
tation Ï

ij

of the mobile platform for given lengths {l
ij

, r
ij

} of the linear actuators.
According to Figure 5.1b, (l

ij

, r
ij

) and (y
ij

, Ï
ij

) are related through the following two
equations:

(p cos Ï
ij

≠ b)2 + (y
ij

+ p sin Ï
ij

)2 = r2
ij

(5.1)
(p cos Ï

ij

≠ b)2 + (y
ij

≠ p sin Ï
ij

)2 = l2
ij

(5.2)

These equations can be combined to obtain an equivalent system. Adding together
Equations (5.1) and (5.2) yields Equation (5.3), whereas subtracting Equation (5.2)
from Equation (5.1) results in Equation (5.4):

4bp cos Ï
ij

= 2y2
ij

+ 2b2 + 2p2 ≠ l2
ij

≠ r2
ij

(5.3)
4y

ij

p sin Ï
ij

= r2
ij

≠ l2
ij

(5.4)

Solving cos Ï
ij

from Equation (5.3) gives:

cos Ï
ij

=
2y2

ij

+ 2b2 + 2p2 ≠ l2
ij

≠ r2
ij

4bp
(5.5)

Squaring Equation (5.4):

16y2
ij

p2(1 ≠ cos2 Ï
ij

) = (r2
ij

≠ l2
ij

)2 (5.6)

Finally, substituting Equation (5.5) into Equation (5.6) yields a cubic equation in
�

ij

= y2
ij

:
�3

ij

+ kij

2 �2
ij

+ kij

1 �
ij

+ kij

0 = 0 (5.7)
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where:

kij

2 = 2b2 + 2p2 ≠ l2
ij

≠ r2
ij

(5.8)

kij

1 =
C

(b + p)2 ≠
l2
ij

+ r2
ij

2

D C
(b ≠ p)2 ≠

l2
ij

+ r2
ij

2

D
(5.9)

kij

0 = b2(l
ij

+ r
ij

)2(l
ij

≠ r
ij

)2/4 (5.10)

Equation (5.7) always has three roots, two of which may be complex. For a given strictly
positive root �

ij

of Equation (5.7), two solutions are obtained for y
ij

= ±


�
ij

. For
each of these two values of y

ij

, cos Ï
ij

is calculated from Equation (5.5), whereas
sin Ï

ij

is obtained from Equation (5.4):

sin Ï
ij

=
r2

ij

≠ l2
ij

4y
ij

p
(5.11)

Once cos Ï
ij

and sin Ï
ij

are known, Ï
ij

is unequivocally determined in (≠fi, fi]. If
�

ij

= 0, then y
ij

= 0 and cos Ï
ij

is calculated using Equation (5.5). However, sin Ï
ij

cannot be calculated from Equation (5.11) since y
ij

= 0. Instead, sin Ï
ij

is calculated
as follows:

sin Ï
ij

= ±
Ò

1 ≠ cos2 Ï
ij

(5.12)

obtaining again two solutions. Recall from section 3.1.2 that the forward kinematic
problem of the 2RPR-PR parallel mechanism has four di�erent real solutions: for a
given pair (l

ij

, r
ij

), the previous equations yield four di�erent real pairs (y
ij

, Ï
ij

). This
is because Equation (5.7) can only have two non-negative roots [87] and, according to
the previous equations, each of these non-negative roots results in two di�erent pairs
(y

ij

, Ï
ij

).

Note that swapping the values of r
ij

and l
ij

neither a�ects Equation (5.7) nor
Equation (5.5), but this changes the sign of sin Ï

ij

in Equation (5.11). Hence, swapping
r

ij

and l
ij

changes the sign of Ï
ij

, leaving y
ij

unchanged. This can also be deduced from
Figure 5.1b, where swapping r

ij

and l
ij

is equivalent to rotating this figure fi rad about
the vertical Y axis. This fact will be exploited in Section 5.3 to analyze a simplified
(yet useful) case of the inverse kinematics of the complete HyReCRo climbing robot.

5.2.2 FKP of the Complete Robot
The forward kinematics of the complete robot consists in calculating the position and
orientation of one foot with respect to the other foot when all ten joint coordinates
are known. This problem will be solved using Homogeneous Transformation Matrices
(HTMs). An HTM has the following form [12]:

Tm/n =
5

Rm/n tm/n

01◊3 1

6
(5.13)

where 01◊3 = [0, 0, 0]. The matrix Tm/n encodes the position and orientation of a
frame m with respect to another frame n. Indeed, Rm/n œ R3◊3 is a rotation matrix
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Figure 5.2: Kinematics of a generic leg j œ {A, B}.

whose columns are the vectors of frame m expressed in the basis formed by the vectors
of frame n, whereas tm/n œ R3◊1 is the position of the origin of frame m in coordinates
of frame n.

The forward kinematics of one leg can be easily solved using HTMs. Figure 5.2
represents a generic leg j œ {A, B}. Each leg has two parallel modules whose bases
are attached to the core link. The platform of parallel module 1 is the foot of the leg,
whereas the platform of parallel module 2 is connected to the hip of the robot by means
of a revolute joint. Variables (y1j , Ï1j , y2j , Ï2j) are obtained from (l1j , r1j , l2j , r2j) as
explained in Section 5.2.1 (i.e., solving the forward kinematics of the symmetric 2RPR-
PR parallel mechanisms). All reference frames of Figure 5.2 are contained in plane �j ,
which is one of the planes of symmetry of the core link of leg j (see Figure 5.1a). The
transformation between frame j (fixed to the foot) and frame Fj (fixed to the core
link) is:

TFj/j =

S

WWU

cos Ï1j sin Ï1j 0 y1j sin Ï1j

≠ sin Ï1j cos Ï1j 0 y1j cos Ï1j

0 0 1 0
0 0 0 1

T

XXV (5.14)

Similarly, the transformation between frame Gj (attached to the platform of parallel
module 2) and frame Fj is:

TGj/Fj
=

S

WWU

cos Ï2j ≠ sin Ï2j 0 0
sin Ï2j cos Ï2j 0 y2j ≠ h

0 0 1 0
0 0 0 1

T

XXV (5.15)

where h is a geometric constant (= the length of the core link, as indicated in Figure
5.2). Finally, a rotation ◊j about the Y axis of frame Gj transforms it into frame Hj ,
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which is attached to the hip:

THj/Gj
=

S

WWU

cos ◊j 0 sin ◊j 0
0 1 0 0

≠ sin ◊j 0 cos ◊j 0
0 0 0 1

T

XXV (5.16)

The position and orientation of frame Hj with respect to frame j is obtained as follows:

THj/j = TFj/jTGj/Fj
THj/Gj

(5.17)

which completes the solution of the FKP of any generic leg j. Once the forward
kinematics of each leg is solved, it is straightforward to calculate the position and
orientation of the foot of one leg k œ {A, B} \ {j} with respect to the foot of the
other leg j:

Tk/j = THj/jTHk/Hj
Tk/Hk

(5.18)

where Tk/Hk
=

!
THk/k

"≠1 and THk/Hj
is the HTM that encodes the position and

orientation of frame Hk with respect to frame Hj :

THk/Hj
=

5
I tHk/Hj

01◊3 1

6
(5.19)

which is constant because both frames are attached to the same rigid body (the hip). I
is the 3◊3 identity matrix. Moreover, according to Figure 5.1a: tHB/HA

= [t, 0, 0]T =
≠tHA/HB

, where t is the distance between the parallel axes of the revolute actuators
of the hip.

Note that, in theory, there are 44 = 256 di�erent solutions to the FKP of the
complete robot. This is because the kinematic chain between the feet has four parallel
modules connected in series and the FKP of each module has four real solutions at
most. However, as discussed in section 3.3, only one of the four real solutions of each
2RPR-PR parallel mechanism will be physically possible in practice, since the other
three solutions imply some kind of collision between di�erent parts of the robot (the
only valid solution for each 2RPR-PR parallel mechanism was denoted by H+ in section
3.3). Thus, if we consider that each parallel mechanism can only have one valid solution
to its forward kinematic problem, then the forward kinematics of the complete HyReCRo
robot (i.e., the robot composed of four 2RPR-PR parallel mechanisms connected in
series) will only have one valid solution, instead of 256.

5.3 Planar Symmetric Postures

In the previous section, we have solved the forward kinematic problem of the complete
HyReCRo robot. This problem is relatively easy: given all ten joint coordinates ◊j ,
lij , rij (i = 1, 2, j = A, B), one only needs to solve the forward kinematics of all
four symmetric 2RPR-PR parallel mechanisms, and then concatenate in series the
solutions obtained for these mechanisms, obtaining matrix Tk/j , which represents the
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position and orientation of one foot k of the robot with respect to the other foot j
[Equation (5.18)].

Conversely, the Inverse Kinematic Problem (IKP) can be formulated in the fol-
lowing way: given matrix Tk/j , which codifies the desired relative position and orienta-
tion between the feet, one must compute all ten joint coordinates ◊j , lij , rij necessary
to attain the desired pose Tk/j . Solving the inverse kinematic problem is very useful
and necessary for planning the movements of the robot, since it allows us to know the
necessary values of all joint coordinates to place one foot of the robot at the position
and orientation necessary for exploring a three dimensional structure. However, due
to the kinematic redundancy of the HyReCRo robot (ten joint coordinates are used to
place and orient a foot in space, which is a rigid body with only six degrees of freedom),
the general inverse kinematic analysis of the HyReCRo robot is not easy and will be
presented in section 5.4.

Instead of solving the general IKP of the HyReCRo robot, in this section we will
focus on analyzing and solving the inverse kinematics and workspace of a subset of
planar and symmetric postures of this robot, which are easier to analyze (from the per-
spective of the inverse kinematics) than general arbitrarily complex three-dimensional
postures. In this section, we will refer to these planar and symmetric postures by the
acronym “PSIK”, which stands for “Planar Symmetric Inverse Kinematics”. As we will
see later, PSIK postures, in spite of their simplicity, are very useful since the basic
movements necessary for exploring three dimensional structures (namely: longitudi-
nal advancement along a beam, convex/exterior transition to change between adjacent
faces of the same beam, and concave/interior transition to change between di�erent ad-
jacent beams) can be executed by means of planar and symmetric postures. Therefore,
solving the inverse kinematics for PSIK postures can be very useful for easily planning
planar and symmetric movements that allow the robot to explore three-dimensional
structures. Moreover, as we will see later in this section, when analyzing the range of
attainable planar and symmetric postures (i.e., the PSIK workspace), we will obtain
very useful information concerning the optimal design of the robot, i.e., we will discover
how the reach of the robot will be a�ected by its geometric design parameters.

5.3.1 Planar Symmetric Inverse Kinematic (PSIK) Problem
The planar and symmetric postures considered in this section are represented by Fig-
ure 5.3, where we assume that foot j is fixed to the structure and foot k is mobile
(j, k œ {A, B}, j ”= k). It is assumed that the Z axes of the frames attached to both
feet are parallel and point in the same direction. Moreover, the origin of the frame
attached to foot k is contained in the XY plane of the frame attached to foot j.
In this situation, any variation in the length of the prismatic actuators of the parallel
modules only produces planar motions of frame k in the XY plane of frame j. In that
case, the position and orientation of frame k relative to frame j can be calculated as
follows:

Tk/j = TGj/j

5
I [t, 0, 0]T

01◊3 1

6 !
TGk/k

"≠1 (5.20)
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Figure 5.3: The Planar Symmetric Inverse Kinematic (PSIK) problem.

where TGj/j = TFj/jTGj/Fj
. Moreover, it is assumed that the joint coordinates of

the parallel modules of the two legs are related as follows:

l
ik

= r
ij

, r
ik

= l
ij

(i = 1, 2) (5.21)

This means that the joint coordinates of parallel module i of legs k and j are swapped.
According to Section 5.2.1, this translates into:

y
ik

= y
ij

, Ï
ik

= ≠Ï
ij

(i = 1, 2) (5.22)

It can be graphically checked that Equation (5.22) implies that legs k and j are sym-
metric with respect to line L, which is the axis of symmetry of the hip of the robot.
Substituting Equation (5.22) into Equation (5.20), matrix Tk/j can be written in terms
of only the variables of leg j and has the following expression:

Tk/j =

S

WWU

≠ cos(2Ê) ≠ sin(2Ê) 0 µ (1 ≠ cos(2Ê))
sin(2Ê) ≠ cos(2Ê) 0 µ · sin(2Ê)

0 0 1 0
0 0 0 1

T

XXV (5.23)

where:

µ = [t ≠ 2(h ≠ y1j ≠ y2j) sin Ï2j ] / [2 cos(Ï1j ≠ Ï2j)] (5.24)
Ê = Ï1j ≠ Ï2j + fi/2 (5.25)

Thus, under the condition of planar and symmetric motion, the position and orientation
of foot k relative to foot j can be completely defined by only two parameters (µ, Ê),
which are indicated in Figure 5.3. We define the Planar Symmetric Inverse Kinematic
(PSIK) problem, which consists in calculating the joint coordinates (l1j , r1j , l2j , r2j)
needed to achieve a desired position and orientation (µ, Ê). Since the joint coordinates
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do not appear explicitly in Equations (5.24)-(5.25), the kinematic equations of the
parallel modules of leg j must be included:

(p cos Ï1j ≠ b)2 + (y1j + p sin Ï1j)2 = r2
1j (5.26)

(p cos Ï1j ≠ b)2 + (y1j ≠ p sin Ï1j)2 = l2
1j (5.27)

(p cos Ï2j ≠ b)2 + (y2j + p sin Ï2j)2 = r2
2j (5.28)

(p cos Ï2j ≠ b)2 + (y2j ≠ p sin Ï2j)2 = l2
2j (5.29)

Hence, the PSIK problem requires calculating (l1j , r1j , l2j , r2j , y1j , Ï1j , y2j , Ï2j) from
Equations (5.24)-(5.29). Like the general inverse kinematic problem, the PSIK problem
is underconstrained since eight unknowns must be obtained from six equations (the
solution sets of this problem are two-dimensional). However, the PSIK problem involves
less variables and simpler equations than the general inverse kinematic problem, so it
is easier to solve. Next, we will illustrate through a representative and useful example
how to solve the PSIK problem, assuming that the lengths of the prismatic actuators of
the parallel modules have upper and lower limits: l

ij

and r
ij

must be in [fl0, fl0 + �fl],
where fl0 > 0 is the minimum length of the actuators and �fl > 0 is their stroke.

5.3.1.1 Example: performing a concave transition

Consider a HyReCRo robot with the following parameters: b = p = 4, fl0 = 19,
�fl = 6, t = 15.6, and h = 16 (all values in cm). The robot, whose foot B is fixed,
has to perform a concave transition between two perpendicular beams {b1, b2} of a
structure, as shown in Figure 5.4a. Assume that we wish to perform this concave
transition using a PSIK posture. When using planar and symmetric postures, it is
evident that orthogonal concave transitions are defined by Ê = fi/4 (see Figure 5.4a),
whereas length µ depends on the distance between the fixed foot and the vertical beam
to which we wish to attach the free foot. Assume that µ = 27.4 cm in this example.
Next, we will show how to solve the PSIK problem in order to achieve the desired
concave transition in this example.

First, we substitute all numerical values given in the previous paragraph into
Equations (5.24)-(5.29) particularized for j = B (since B is the fixed foot), obtaining
the following system of six equations in eight unknowns (l1B , r1B , l2B , r2B , y1B , Ï1B ,
y2B , Ï2B):

15.6 ≠ 2(16 ≠ y1B ≠ y2B) sin Ï2B

2 cos(Ï1B ≠ Ï2B) = 27.4 (5.30)

Ï2B ≠ fi/4 = Ï1B (5.31)
(4 cos Ï1B ≠ 4)2 + (y1B + 4 sin Ï1B)2 = r2

1B (5.32)
(4 cos Ï1B ≠ 4)2 + (y1B ≠ 4 sin Ï1B)2 = l2

1B (5.33)
(4 cos Ï2B ≠ 4)2 + (y2B + 4 sin Ï2B)2 = r2

2B (5.34)
(4 cos Ï2B ≠ 4)2 + (y2B ≠ 4 sin Ï2B)2 = l2

2B (5.35)
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Figure 5.4: (a) Executing a concave transition using a planar and symmetric posture. (b)
Two-dimensional solution set R of the PSIK problem.

Since we have two more unknowns than the number of equations, the system is un-
derdetermined and, in principle, we should expect a two-dimensional set of infinitely
many possible solutions. The objective will be to manipulate the previous equations
to obtain this two-dimensional solution set. First, Equation (5.31) is used to eliminate
Ï1B from Equation (5.30). Then, Ï2B is solved from the resulting equation:

Ï2B = sin≠1
3

13.7
Ô

2 ≠ 7.8
y1B + y2B ≠ 16

4
(5.36)

This solution can be substituted into Equations (5.31)-(5.35) to express joint coor-
dinates {l1B , r1B , l2B , r2B} in terms of {y1B , y2B}. In that case, we can plot the
region R of plane (y1B , y2B) for which joint coordinates {l1B , r1B , l2B , r2B} satisfy
the joint limits (i.e., liB , riB œ [19, 25] for i = 1, 2). Figure 5.4b represents this
(shaded) region R of pairs (y1B , y2B) that satisfy the joint limits, so any point in-
side this region is a valid solution to the PSIK problem. For example, picking the
solution y1B = y2B = 22 cm yields the following lengths for the linear actuators:
r1B ¥ 20.595, l1B ¥ 23.407, r2B ¥ 23.656, and l2B ¥ 20.349 (all values in cm). This
solution precisely corresponds with the posture shown in Figure 5.4a.

Note that the procedure followed in this example is general and valid for any
other values of (Ê, µ) or for HyReCRo robots with other geometric parameters. For
example, this procedure was also followed in [133] to solve the PSIK problem for
executing a convex transition between di�erent faces of the same beam.
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Figure 5.5: PSIK postures for (a) longitudinally advancing along a beam, and (b) performing
convex transitions between adjacent faces of the same beam.

5.3.2 Workspace for PSIK Postures: Sensitivity Analysis
As we have just seen in the example of previous section 5.3.1.1, we can solve the PSIK
problem to determine planar and symmetric postures that allow the robot to perform
concave transitions (Ê = fi/4) between di�erent orthogonal beams of a structure. In
general, PSIK postures are also useful for other basic movements and, in particular,
they allow us to solve postures necessary for advancing longitudinally along a beam
(Ê = fi/2, see Figure 5.5a) or for performing convex transitions between di�erent
faces of the same beam (Ê = 3fi/4, see Figure 5.5b). By combining these three basic
movements (longitudinal movement, concave transition, and convex transition) with
the rotations of the hip, it is possible to completely explore three-dimensional structures
using PSIK postures.

In this section, we will study the PSIK workspace, i.e., the set of pairs (Ê, µ)
reachable by the robot when it adopts planar and symmetric postures. Studying such a
workspace will allow us to find the reach µ for each of the three basic movements: lon-
gitudinal movement (Ê = fi/2), concave transitions (Ê = fi/4), and convex transitions
(Ê = 3fi/4). Also, we will be able to determine how the reach µ varies when varying
each of the six geometric design parameters of the robot (b, p, t, h, fl0, �fl). In this
way, we will be able to determine which design parameters have a greater influence on
the reach of the robot, and this information will be very useful for optimally designing
and building a prototype of the HyReCRo robot in later chapters of this thesis.

Figures 5.6a-f show the PSIK workspaces for di�erent choices of the geometric
design parameters of the robot, obtained using a Monte Carlo algorithm [6]. Each
subfigure of Figure 5.6 shows di�erent PSIK workspaces that are obtained when the
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Figure 5.6: PSIK workspaces for di�erent values of the geometric design parameters of the
robot. In the axes, µ is in cm and Ê is in rad.

corresponding geometric parameter of the robot is varied, keeping the remaining param-
eters at the default values used in the example of section 5.3.1.1, which are: b = p = 4,
t = 15.6, h = 16, �fl = 6, and fl0 = 19 (all in cm). Curves having the same color
in each subfigure of Figure 5.6 enclose the PSIK workspace corresponding to each
geometry, i.e., these curves are the boundaries of the workspaces. This is illustrated
in Figure 5.6a, where the PSIK workspace for the default geometry, denoted by WSd

and enclosed by red curves, has been shaded. It is evident from Figure 5.6 that the
shape of the PSIK workspace is most sensitive to parameters p and �fl, whereas the
shape changes little with b. As we will show in the next chapter, this observation
about sensitivities of di�erent parameters is not only valid for PSIK postures, but also
for general three-dimensional postures.

Figures 5.6a-f also show three vertical lines at Ê = fi/4, Ê = fi/2, and
Ê = 3fi/4. As explained earlier, lines Ê = fi/4 and Ê = 3fi/4 represent concave
(Figure 5.4b) and convex (Figure 5.5b) transitions, respectively. Line Ê = fi/2 repre-
sents a posture that can be used to move the robot along a beam like an inchworm,
extending and retracting the legs as shown in Figure 5.7. Alternatively, the robot may
move along a beam following the gait shown in Figure 5.8, which uses the rotations
of the hip (◊A and ◊B). The segment of these three vertical lines that lies within the
PSIK workspace of a given geometry is the set of lengths µ that can be achieved for
the corresponding value of Ê. For example, for the default workspace WSd in Fig-
ure 5.6a and Ê = fi/4, µ must be between µ1 and µ2. Next, we will analyze Figure 5.6
to discuss if the robot can perform convex and concave transitions using planar and
symmetric postures in three scenarios.
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5.3.2.1 Scenario 1: the geometry of the robot is modified.

Can the robot perform convex and concave transitions if its geometry is di�erent from
the default one? As Figure 5.6 shows, vertical lines Ê = fi/4 and Ê = 3fi/4 (which
represent concave and convex transitions, respectively) intersect the PSIK workspace
for most of the geometries, which means that both transitions are possible. However,
for some designs obtained by increasing p or decreasing �fl, the workspace is too small
and does not intersect these vertical lines. Thus, these designs should be avoided.

5.3.2.2 Scenario 2: the initial position of the robot is modified.

Even if the PSIK workspace intersects vertical line Ê = fi/4, the robot may be unable
to perform a concave transition between two beams (e.g. to climb to beam b2 in the
example of Figure 5.4a) if the distance between the robot and the beam to be climbed
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is not adequate. This is because, according to Figure 5.6, for most of the geometries
the feasible concave transitions (those obtained intersecting the PSIK workspace and
line Ê = fi/4) require µ to be between a minimum value µ1 and a maximum value µ2
(e.g. see the default PSIK workspace WSd in Figure 5.6a). As a result, if the robot is
too close (µ < µ1) or too far (µ > µ2) from beam b2, the concave transition will be
impossible (in that case, region R of solutions depicted in Figure 5.4b will be empty).

This can be a problem if the distance between the robot and the beam to be
climbed cannot be adjusted continuously, but only by means of discrete increments,
like when using purely binary actuators or the gait shown in Figure 5.8. With this gait,
which uses the rotations {◊A, ◊B} of the hip, the robot can only travel a distance equal
to an integer multiple of the distance t between the rotation axes of the hip. Thus,
depending on the initial position of the robot, approaching beam b2 using this gait
may eventually place the robot at a point too close or too far from the beam, without
the possibility to finely adjust its position to make possible the execution of a concave
transition.

Nevertheless, this can be avoided if the inchworm-like gait of Figure 5.7 is used
to approach beam b2. With Ê = fi/2, the robot travels a distance equal to 2µ, where
µ can take any value from line Ê = fi/2 lying inside the PSIK workspace for the
considered geometry. Thus, the use of this gait permits the robot to continuously
adjust its position along beam b1 to place itself at a proper distance from beam b2 to
climb it performing a concave transition, as in Figure 5.4a.

5.3.2.3 Scenario 3: the width of the beams is modified.

Even if the PSIK workspace intersects vertical line Ê = 3fi/4, the robot may be unable
to perform a convex transition between di�erent faces of a beam if the distance µ
necessary to execute this transition (shown in Figure 5.5b) is too large, since the point
representing this transition in the (Ê, µ) plane may lie outside the PSIK workspace of
the considered geometry. For example, the convex transition of Figure 5.5b, which is
represented by point P in Figure 5.6d, can be performed using the default geometry
because P lies inside the default PSIK workspace, but if the stroke of the linear actuators
is decreased to �fl = 5 cm, P will lie outside the workspace and this transition will be
impossible.

As Figure 5.5b shows, the distance µ necessary to perform a convex transition
equals the sum of the size f of the foot (indicated both in Figure 5.1a and Figure 5.7-
left) and 0.5 times the width of the cross section of the beam. This assumes that the
fixed foot of the robot is placed at the middle of the cross section of the beam, which
will be the most typical case. Thus, if f is too large, and/or the beam is su�ciently
wide, the robot may be unable to perform a transition between di�erent faces of a
beam.

In case the beams of a given structure are too wide to allow the robot to execute
convex transitions between di�erent faces of the beams, the design of the robot should
be modified. One possibility is to reduce the size f of the feet, which will depend
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on the type of adhesion device used for climbing (these devices will be discussed and
designed for the HyReCRo robot in Chapter 8). Another possibility is to modify some
of the design parameters of Figure 5.6 to increase the maximum value of µ that can be
attained with Ê = 3fi/4. Note that this maximum value changes little with parameters
{b, fl0, h}, whereas it increases when increasing {t, �fl} or decreasing p.

To sum up, the analysis presented in this section reveals that by choosing an
appropriate design for the robot, the planar and symmetric postures of the PSIK prob-
lem provide a relatively high flexibility to explore 3D structures using the three basic
movements defined in this section. This is partly thanks to the possibility of precisely
adjusting the position of the robot along a beam by means of the inchworm-like gait
of Figure 5.7. This result suggests that the architecture of the HyReCRo robot may
be modified to design a simpler robot based on the PSIK problem, with an actuation
scheme in which a single actuator may simultaneously drive various joints, producing
symmetric movements. This symmetry in the movements was previously identified by
Balaguer et al. [13] as one of the key criteria for designing climbing robots, since this
symmetry reduces the number of actuators and hence the overall weight of the robot.
However, these simplifications/variations of the HyReCRo robot will be studied in the
future, and are beyond the scope of this thesis.

5.4 General Inverse Kinematic Problem

As we have seen in the previous section, solving the PSIK problem is very useful
for determining planar and symmetric postures of the HyReCRo robot, which can be
used for performing the basic movements necessary for exploring three-dimensional
structures. However, in practice we will need to solve the inverse kinematics for planar
and not necessarily symmetric postures. Furthermore, in general we will need to solve
the inverse kinematic problem to achieve a desired arbitrary three-dimensional relative
posture between the feet of the robot. Thus, although useful, the PSIK problem has
a limited scope, and it is necessary to solve the general inverse kinematic problem of
the HyReCRo robot, which consists in determining all ten active joint coordinates to
achieve a desired 3D relative pose (position and orientation) between the feet.

In this section, we will solve the general inverse kinematic problem of the HyRe-
CRo robot, without limiting our analysis to planar or symmetric postures. To this end,
it will be convenient to begin by studying the workspace of the symmetric 2RPR-PR
parallel modules that compose the legs of the HyReCro robot.

5.4.1 Workspace of Symmetric 2RPR-PR Parallel Mechanisms
This section analyzes the inverse kinematics and workspace of the symmetric 2RPR-PR
parallel mechanisms that compose the legs of the climbing robot. Figure 5.9a (repeated
from Figure 5.1b) shows the i-th parallel mechanism of leg j (i œ {1, 2}, j œ {A, B}).
The forward kinematics of this mechanism, which was analyzed in subsection 5.2.1,
consists in determining the position yij and orientation Ïij of the mobile platform
in terms of the lengths {lij , rij} of the two linear actuators. Conversely, the inverse
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Figure 5.9: (a) Symmetric 2RPR-PR parallel modules and (b) their equivalent serial mecha-
nisms.

kinematic problem consists in calculating the values of joint coordinates lij and rij that
yield a desired position y

ij

and orientation Ï
ij

. The solution to the inverse problem
can be easily obtained from Equations (5.1)-(5.2):

lij =
Ò

(p cos Ï
ij

≠ b)2 + (y
ij

≠ p sin Ï
ij

)2 (5.37)

rij =
Ò

(p cos Ï
ij

≠ b)2 + (y
ij

+ p sin Ï
ij

)2 (5.38)

As stated earlier, in practice, joint coordinates have limits: both lij and rij must be in
[fl0, fl0 + �fl], where fl0 > 0 is the minimum length of the linear actuators and �fl > 0
is their stroke. Thus, the workspace of 2RPR-PR parallel mechanisms can be defined
as the set of pairs (Ï

ij

, y
ij

) for which the right-hand side of both Equations (5.37)
and (5.38) is between fl0 and fl0 + �fl.

For example, Figure 5.10 shows the workspace of a symmetric 2RPR-PR parallel
mechanism for the following parameters: b = p = 4 cm, fl0 = 19 cm, and �fl = 6
cm, which are the same values used in the example of subsection 5.3.1.1. For this
geometry, the workspace is divided into four diamond-shaped regions R1, R2, R3, and
R4, which are enclosed by the curves in which the joint coordinates equal either fl0 or
fl0 + �fl.

Any point of these four regions satisfies the joint limits. However, not all these
regions contain feasible configurations. It turns out that each one of these regions
corresponds to one of the four assembly modes identified in section 3.3 for symmetric
2RPR-PR mechanisms. In that section, assembly modes were identified by the fol-
lowing labels: {H+, X+, H≠, X≠}, which indicate the relative position of the linear
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Figure 5.10: Workspace of symmetric 2RPR-PR parallel modules.

actuators (“H” means actuators almost parallel, “X” means actuators crossing) and
the sign of y

ij

(“+” means y
ij

> 0, “≠” means y
ij

< 0). These four assembly modes
are associated with regions R1, R2, R3, and R4 of Figure 5.10, respectively. As ex-
plained in section 3.3, assembly modes {X+, H≠, X≠} are not feasible in practice
due to mechanical interferences between di�erent parts of the robot. For this reason,
workspace regions {R2, R3, R4} will be discarded and, from now on, we will consider
that the workspace WS

pm

of symmetric 2RPR-PR parallel modules consists only of
region R1 of Figure 5.10, which can be described as follows:

WS

pm

=
Ó

(Ïij , yij) : Ï
min

Æ Ïij Æ Ï
max

, yij(Ïij) Æ yij Æ yij(Ïij)
Ô

(5.39)

where yij(Ïú) and yij(Ïú) are the lower and upper bounds of the variable yij for
Ïij = Ïú, respectively (see Figure 5.10). In the following, it will be assumed that the
valid combinations of variables Ïij and yij of the parallel mechanisms lie in regions
defined by Equation (5.39). Note that, although Equation (5.39) has been introduced
using the example region R1 of Figure 5.10, it defines a more general region in R2.
In particular, Equation (5.39) will still be a valid definition of the feasible workspace
of the parallel mechanisms if the geometric parameters are perturbed from the values
used in the previous example, provided that these perturbations are su�ciently small.

What is the point in analyzing the workspace of the 2RPR-PR parallel modules
for solving the inverse kinematic problem of the complete HyReCRo robot? The answer
is: to simplify. Note that, after studying the workspace of these parallel modules, we
can omit the parallel architecture of these modules and study them as if they were
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serial mechanisms with PR architecture (see Figure 5.9b), with the restriction that
(Ïij , yij) œ WS

pm

. In this way, we will be able to solve the inverse kinematic problem
of the complete HyReCRo robot without having to involve lengths (lij , rij) (and their
joint limits) in the calculations, since this information is implicitly contained in region
WS

pm

defined in Equation (5.39). This will allow us to analyze and solve the inverse
kinematics of the complete HyReCRo robot (which has a serial-parallel architecture)
as if it was a serial robot.

5.4.2 Intermediate Joint Coordinates
The inverse kinematics of the complete HyReCRo robot can be defined as the problem
of finding the values of all ten actuated joint coordinates {l1A, r1A, l2A, r2A, l1B ,
r1B , l2B , r2B , ◊A, ◊B} which are necessary to achieve a desired relative position and
orientation between the feet of the robot.

However, as argued in the previous subsection, instead of directly calculating
the lengths of the linear actuators of the parallel modules (variables lij and rij), it will
be more convenient to regard the HyReCRo robot as an equivalent serial robot and to
consider the following variables as the unknowns of the problem, which will be called
intermediate joint coordinates: {Ï1A, Ï2A, Ï1B , Ï2B , y1A, yA, y1B , yB , ◊A, ◊B}. As
discussed in the previous subsection, most of these unknowns are positions (yij) and
orientations (Ïij) of the mobile platforms of the parallel mechanisms. However, two
new variables have appeared among the intermediate joint coordinates: yA and yB .
These new variables are defined as follows:

yj = y1j + y2j ≠ h, j œ {A, B} (5.40)

Variable yj can be seen as the length of leg j (i.e., the distance between the origins
of frames j and Gj , see Figure 5.2). Note that, for the purpose of solving the inverse
kinematics, solving intermediate joint coordinates is equivalent to solving the actuated
joint coordinates. Indeed, if we can calculate all intermediate joint coordinates, we can
use Equation (5.40) to compute y2j . In this way, positions and orientations {yij , Ïij}
are known for all parallel modules. Then, using the solutions of the inverse kinemat-
ics of parallel modules [Equations (5.37) and (5.38)], we can compute {lij , rij} from
{yij , Ïij}, obtaining a unique solution. This is because a set of intermediate joint
coordinates yields a unique set of actuated joint coordinates, since the inverse kine-
matic problem of each parallel module has a single solution given by Equations (5.37)
and (5.38) (as opposed to their forward kinematic problem, which has four solutions
as explained in Section 5.2.1).

5.4.3 Solving the Inverse Kinematics
As stated in the previous subsection, the inverse kinematics of the HyReCRo robot can
be defined as the problem consisting in computing the intermediate joint coordinates
that yield a desired relative position and orientation between the feet of the robot.
The desired relative position and orientation between the feet of the robot can be
defined by the homogeneous transformation matrix TB/A, which encodes the position
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and orientation of foot B relative to foot A. Assume that the input of the inverse
kinematic problem is the desired matrix TB/A, with the following form:

TB/A =

S

WWU

R11 R12 R13 px

R21 R22 R23 py

R31 R32 R33 pz

0 0 0 1

T

XXV (5.41)

where Rmn are the entries of the rotation matrix encoding the orientation of foot B
relative to foot A, whereas [px, py, pz] are the position coordinates of foot B relative to
foot A. Note that, if the input of the inverse kinematics was TA/B (i.e., the position
and orientation of foot A relative to foot B) instead of TB/A, one only needs to invert
TA/B to obtain TB/A = (TA/B)≠1, and proceed normally with the calculations as
explained next.

If TB/A is given, the inverse kinematics boils down to solving the intermediate
joint coordinates from Equation (5.18), which is repeated next:

TB/A = THA/ATHB/HA
(THB/B)≠1 (5.42)

The left-hand side of Equation (5.42), which is known when solving the inverse kine-
matics, has the expression given in Equation (5.41). In regard to the right-hand side
of Equation (5.42), the expression of matrix THB/HA

was given in Equation (5.19),
whereas the expression of THj/j (j = A, B) can be obtained by multiplying the three
matrices on the right-hand side of Equation (5.17), which yields:

THj/j =

S

WWU

c◊j cj sj s◊j cj yjsÏ1j

≠c◊j sj cj ≠s◊j sj yjcÏ1j

≠s◊j 0 c◊j 0
0 0 0 1

T

XXV (5.43)

where yj was defined in Equation (5.40) and the following variables have been defined
to abbreviate the trigonometric terms: s◊j = sin ◊j , c◊j = cos ◊j , sÏ1j = sin Ï1j ,
cÏ1j = cos Ï1j , sj = sin(Ï1j ≠ Ï2j), cj = cos(Ï1j ≠ Ï2j).

According to Equation (5.43), the right-hand side of Equation (5.42) contains
the unknown intermediate joint coordinates that must be solved. Trying to solve
Equation (5.42) directly can be di�cult because all unknowns are coupled on its right-
hand side, and the resulting equations are quite large and di�cult to handle. However,
if Equation (5.42) is postmultiplied by THB/B , it becomes:

TB/ATHB/B¸ ˚˙ ˝
B

= THA/ATHB/HA¸ ˚˙ ˝
A

(5.44)

In this way, the problem becomes easier since all unknowns associated with each leg
have been decoupled and appear on di�erent sides of the equation. Indeed, the ma-
trix on the left-hand side of Equation (5.44) only depends on the variables of leg B
{yB , Ï1B , Ï2B , ◊B}, whereas the right-hand side only depends on the variables of leg
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A {yA, Ï1A, Ï2A, ◊A}. In what follows, the left-hand side of Equation (5.44) will be
denoted by B, whereas the right-hand side will be denoted by A. The expressions of
these matrices, which involve much simpler terms than the right-hand side of Equa-
tion (5.42), can be found in Equations (5.45) and (5.46):

A =

S

WWU

c◊AcA sA s◊AcA yAsÏ1A + tc◊AcA

≠c◊AsA cA ≠s◊AsA yAcÏ1A ≠ tc◊AsA

≠s◊A 0 c◊A ≠ts◊A

0 0 0 1

T

XXV (5.45)

B =

S

WWU

c◊B (cBR11 ≠ sBR12) ≠ R13s◊B sBR11 + cBR12
c◊B (cBR21 ≠ sBR22) ≠ R23s◊B sBR21 + cBR22
c◊B (cBR31 ≠ sBR32) ≠ R33s◊B sBR31 + cBR32

0 0

· · ·

· · ·

s◊B (cBR11 ≠ sBR12) + R13c◊B R11yBsÏ1B + R12yBcÏ1B + px

s◊B (cBR21 ≠ sBR22) + R23c◊B R21yBsÏ1B + R22yBcÏ1B + py

s◊B (cBR31 ≠ sBR32) + R33c◊B R31yBsÏ1B + R32yBcÏ1B + pz

0 1

T

XXV (5.46)

To solve the inverse kinematics, we must solve the equations that are obtained when
all elements of matrix A are equated to the respective elements of matrix B. Equating
elements (1, 4), (2, 4), and (3, 4) of both matrices yields the following equations:

yAsÏ1A + tc◊AcA = R11yBsÏ1B + R12yBcÏ1B + px (5.47)
yAcÏ1A ≠ tc◊AsA = R21yBsÏ1B + R22yBcÏ1B + py (5.48)

≠ts◊A = R31yBsÏ1B + R32yBcÏ1B + pz (5.49)

Equating elements (1, 2), (2, 2), (3, 1), (3, 3), and (3, 2) gives the following equations:

sA = sBR11 + cBR12 (5.50)
cA = sBR21 + cBR22 (5.51)

s◊A = R33s◊B ≠ c◊B (cBR31 ≠ sBR32) (5.52)
c◊A = R33c◊B + s◊B (cBR31 ≠ sBR32) (5.53)

0 = sBR31 + cBR32 (5.54)

It can be shown [136] that, if Equations (5.50) to (5.54) are satisfied, then elements
(1, 1), (1, 3), (2, 1), and (2, 3) of A and B are equal. Hence, the equations that are
obtained when equating these elements of both matrices must not be included since
they depend on Equations (5.50) to (5.54), and we only need to solve Equations (5.47)
to (5.54). These equations are solved next, distinguishing two cases.
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5.4.3.1 Case 1: (R31, R32) ”= (0, 0)

In this case, R2
31 + R2

32 ”= 0 and Equation (5.54) can be solved together with the
condition s2

B + c2
B = 1, obtaining two solutions for sB and cB :

sB = sin(Ï1B ≠ Ï2B) = ‡1
R32

R2
31 + R2

32
(5.55)

cB = cos(Ï1B ≠ Ï2B) = ‡1
≠R31

R2
31 + R2

32
(5.56)

where ‡1 œ {≠1, 1}. Once sB and cB are known, the di�erence Ï1B ≠ Ï2B can be
calculated as follows:

Ï1B ≠ Ï2B = atan2(sB , cB) (5.57)
where atan2 is the well-known inverse tangent function that considers the signs of the
sine and the cosine and computes the angle in the correct quadrant. Equation (5.57)
gives Ï2B in terms of Ï1B . After calculating sB and cB , sA and cA are calculated from
Equations (5.50) and (5.51), respectively. Then, the di�erence Ï1A ≠ Ï2A is obtained
as follows:

Ï1A ≠ Ï2A = atan2 (sA, cA) (5.58)
which provides Ï2A in terms of Ï1A. Once sA and cA are known, Equations (5.47)
to (5.49) constitute a system of three equations in five unknowns: {Ï1B , Ï1A, yB , yA, ◊A}.
Hence, three unknowns must be solved in terms of the other two, which must be as-
sumed to be known. From the form of these equations, it is evident that the solution is
straightforward if yB and Ï1B are chosen as the known variables, since in that case the
right-hand side of the equations is known. Particularly, Equation (5.49) yields sin ◊A:

s◊A = ≠R31yBsÏ1B + R32yBcÏ1B + pz

t
(5.59)

Note that the right-hand side of Equation (5.59) must be in [≠1, 1] in order to obtain
a real value for ◊A. Knowing the value of s◊A , two solutions are obtained for cos ◊A:

c◊A = ‡2

Ò
1 ≠ s2

◊A
(5.60)

where ‡2 œ {≠1, 1}. Once s◊A and c◊A are known, s◊B and c◊B are calculated inverting
Equations (5.52) and (5.53), which can always be inverted [136]. The solution for s◊B

and c◊B is:

s◊B = R33s◊A + c◊A(cBR31 ≠ sBR32) (5.61)
c◊B = R33c◊A ≠ s◊A(cBR31 ≠ sBR32) (5.62)

Then, ◊A and ◊B are obtained as follows:

◊j = atan2
!
s◊j , c◊j

"
, j œ {A, B} (5.63)

After c◊A has been calculated, Equations (5.47) and (5.48) can be rewritten as follows:

yAsÏ1A = �x (5.64)
yAcÏ1A = �y (5.65)
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where the terms �x and �y, on the right-hand side of the equations, are known
quantities:

�x = R11yBsÏ1B + R12yBcÏ1B + px ≠ tc◊AcA (5.66)
�y = R21yBsÏ1B + R22yBcÏ1B + py + tc◊AsA (5.67)

Squaring Equations (5.64) and (5.65) and adding them together eliminates Ï1A and
yields the following solution for yA:

yA = ±
Ò

�2
x + �2

y (5.68)

After calculating yA, Ï1A is obtained as follows:

Ï1A = atan2 (�x/yA, �y/yA) (5.69)

which is valid only if yA ”= 0. Note, however, that the case yA Æ 0 will be impossible
in practice due to mechanical interference between di�erent links of leg A. Hence, we
will be interested only in strictly positive solutions of yA, given by the positive sign in
Equation (5.68). In that case, yA can be removed from Equation (5.69) because an
angle is not a�ected if its sine and cosine are multiplied by the same positive constant
(whereas multiplying them by a negative constant is equivalent to adding fi rad to the
angle). Hence, Ï1A can be directly obtained as follows:

Ï1A = atan2 (�x, �y) (5.70)

With the obtained value of Ï1A, Ï2A is calculated using Equation (5.58). Finally, Ï2B

is calculated from Ï1B (which is assumed to be known) using Equation (5.57).

Note that intermediate joint coordinates y1A and y1B remain undetermined after
solving all the equations. Hence, the values of these variables must also be fixed in
order to complete the solution to the inverse kinematics. Assuming that the values of
these variables are known, the solution to the inverse kinematics can be summarized
as follows:

{yA, Ï1A, Ï2A, Ï2B , ◊A, ◊B} = f1 (Ï1B , yB) (5.71)
{Ï1B , yB , y1A, y1B} = free parameters

where the symbol f1 indicates that the variables on the left-hand side of Equation (5.71)
are obtained from {Ï1B , yB} as described in this section.

5.4.3.2 Case 2: R31 = R32 = 0

Since R2
31 + R2

32 + R2
33 = 1, the condition R31 = R32 = 0 is equivalent to R2

33 =
1, which means that the Z axes of the coordinate frames attached to the feet are
parallel. This situation appears in many simple movements of the robot when exploring
a structure, such as in concave and convex transitions between di�erent planes (e.g.,
see Figures 5.4 and 5.5).
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This case admits a similar analysis to the previous one: some unknowns must
be solved in terms of the others and, in particular, we can choose to solve all unknowns
in terms of variables Ï1B and yB to deal with simpler equations. However, since
R31 = R32 = 0, a restriction is lost because Equation (5.54) is identically satisfied.
Thus, the di�erence Ï1B ≠ Ï2B is no longer fixed and can adopt any value, which
means that the value of variable Ï2B must also be decided. Except for this di�erence,
the resolution procedure is exactly as described in the previous section: we fix the
values of {yB , Ï1B , Ï2B}, compute sB = sin(Ï1B ≠ Ï2B) and cB = cos(Ï1B ≠ Ï2B),
and use Equations (5.58) to (5.70) to calculate the rest of the variables.

As in Case 1, the values of variables y1A and y1B must also be fixed since they
remain undetermined after solving the equations. Thus, in this case, the solution to
the inverse kinematics can be summarized as follows:

{yA, Ï1A, Ï2A, ◊A, ◊B} = f2 (Ï1B , Ï2B , yB) (5.72)
{Ï1B , Ï2B , yB , y1A, y1B} = free parameters

where the symbol f2 indicates that the variables on the left-hand side of Equation (5.72)
are obtained from {Ï1B , Ï2B , yB} as described in this section.

5.4.4 Geometric Interpretation: Self-motion Manifolds
For non-redundant robots, the solution to the inverse kinematics for a desired position
and orientation is a finite set of isolated points in the space of joint coordinates (joint
space). However, for redundant robots (like the HyReCRo robot studied in this thesis),
the values of the joint coordinates that permit the robot to reach a desired position
and orientation lie on positive-dimensional manifolds (curves, surfaces, etc.) in the
joint space. These are the so-called self-motion manifolds, because varying the joint
coordinates along them modifies the posture of the robot without a�ecting the position
and orientation of its end-e�ector, which remains motionless [22].

For this robot, the solutions to the inverse kinematics can be interpreted as self-
motion manifolds in the ten-dimensional space of intermediate joint coordinates. In
Case 1, the solutions lie on four-dimensional manifolds because the solution is param-
eterized in terms of four parameters, and Equation (5.71) provides a possible parame-
terization of these 4D self-motion manifolds. In Case 2, the dimension of self-motion
manifolds is five, since five parameters must be fixed in order to determine all interme-
diate joint coordinates. In this case, a possible parametrization of these 5D self-motion
manifolds is given by Equation (5.72).

Note that Equations (5.71) and (5.72) are not the only valid parametrizations
of self-motion manifolds. There are many other parametrizations depending on the
redundant variables that are assumed to be known when solving the equations of the
inverse kinematics. For example, instead of choosing {yB , Ï1B}, we could have chosen
{Ï1A, Ï1B} or {yA, yB} as the known variables when solving three unknowns from
Equations (5.47) to (5.49). In these cases, however, it is evident that the solution to
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these equations is not as straightforward as it is when {yB , Ï1B} are chosen as the
known variables.

Although self-motion manifolds encode all the information regarding the solution
to the inverse kinematics of redundant robots, the self-motion manifolds obtained for
this robot are not practical due to their high dimension. Next, we propose a more
useful representation of the solutions to the inverse kinematics of the HyReCRo robot.

5.4.5 Regions of Feasible Solutions
In previous subsections, it has been shown that the solution to the inverse kinematics
can be written in terms of some free parameters or decision variables whose values
must be decided: {Ï1B , yB , y1A, y1B} (and also Ï2B , when R2

33 = 1). This section
discusses how to choose appropriate values for these decision variables.

First, note that the chosen values should satisfy the joint limits of the parallel
modules. As shown in Section 5.4.1, these joint limits impose restrictions on vari-
ables (Ïij , yij) of the parallel modules. In this aspect, it will be assumed that the
valid pairs (Ïij , yij) of each parallel module belong to regions WS

pm

of the form of
Equation (5.39).

Taking the joint limits into consideration, the best representation of the solutions
to the inverse kinematics of this robot would be the combinations of the decision
variables {Ï1B , yB , y1A, y1B} (and also Ï2B , if R2

33 = 1) that yield a desired position
and orientation between the feet while satisfying the joint limits of parallel modules.
This representation would consist of regions of feasible combinations of these variables
in a four or five-dimensional space. However, as we will show next, it is possible to
encode the most relevant information of these feasible regions using projections on only
two or three dimensions.

Note that the posture of the robot is not a�ected equally by all decision variables.
According to Equations (5.71) and (5.72), fixing all decision variables except {y1A, y1B}
fixes the remaining intermediate joint coordinates, which determine the posture of the
robot. Once yj has been fixed, varying y1j only modifies the position of the core link
of leg j along this leg, without a�ecting the posture of the robot. This is because
a variation in y1j will be compensated by the opposite variation in variable y2j to
conserve the value of yj , which has already been fixed (see Figure 5.2).

Since variables {y1A, y1B} do not a�ect the overall posture of the robot (except
for the position of the core links along the legs), their concrete values are not important,
as long as they satisfy the joint limits of the parallel modules. Thus, it is su�cient
to focus only on the decision variables {Ï1B , Ï2B , yB}, which determine the overall
posture of the robot and are important for planning its movements (e.g., for choosing
the postures that yield a desired position and orientation avoiding some collisions).

For Case 1 (R2
33 ”= 1), we are interested in the regions (areas) Rf of plane

(Ï1B , yB) for which we can find values for the other decision variables (y1A and y1B)
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that permit the robot to reach a desired position and orientation satisfying the joint
limits. A discrete approximation of these areas can be obtained using Algorithm 1.
This algorithm picks Np random points in plane (Ï1B , yB), computes the intermediate
joint coordinates {yA, Ï1A, Ï2A, Ï2B , ◊A, ◊B} for each point using the equations of
Section 5.4.3.1, and discards all points for which the intermediate joint coordinates do
not satisfy the joint limits of the parallel modules. According to Section 5.4.1, it is
necessary that angles {Ï1B , Ï2B , Ï1A, Ï2A} be in [Ï

min

, Ï
max

] for a point to satisfy
the joint limits. Moreover, yj (j œ {A, B}) must be in [yj , yj ], where the bounds yj

and yj are calculated using Equation (5.40) together with the bounds of the variables
y1j and y2j , which depend on Ï1j and Ï2j , respectively.

Algorithm 1 Algorithm to compute the set Rf of feasible solutions to the inverse
kinematics, which satisfy the joint limits of the parallel modules.

1: Rf = ÿ (empty set)
2: for k = 1 to Np do
3: Sample Ï1B uniformly on [Ï

min

, Ï
max

]
4: Compute Ï2B using Equation (5.57)
5: if Ï2B œ [Ï

min

, Ï
max

] then
6: yB = y1B(Ï1B) + y2B(Ï2B) ≠ h
7: yB = y1B(Ï1B) + y2B(Ï2B) ≠ h
8: Sample yB uniformly on [yB , yB ]
9: Compute Ï1A using Equation (5.70)

10: if Ï1A œ [Ï
min

, Ï
max

] then
11: Compute Ï2A using Equation (5.58)
12: if Ï2A œ [Ï

min

, Ï
max

] then
13: Compute yA using Equation (5.68)
14: yA = y1A(Ï1A) + y2A(Ï2A) ≠ h
15: yA = y1A(Ï1A) + y2A(Ï2A) ≠ h
16: if yA œ [yA, yA] then
17: Store the point (Ï1B , yB) in Rf

For Case 2 (R2
33 = 1), we are interested in the regions (volumes) Rf of space

(Ï1B , Ï2B , yB) for which we can find values of the decision variables {y1A, y1B} that
permit the robot to reach a desired position and orientation satisfying the joint limits.
Algorithm 1 can also be used to compute a discrete approximation of these volumes.
The only di�erence is in line 4 of the algorithm: instead of calculating Ï2B from
Equation (5.57), the value of Ï2B must be sampled uniformly on [Ï

min

, Ï
max

], because
Ï2B cannot be calculated in terms of Ï1B in Case 2. Moreover, the points that are
stored in Rf in line 17 have three coordinates, instead of two: (Ï1B , Ï2B , yB).

Note that the solution to the inverse kinematics in Case 1 involves two binary
variables ‡1, ‡2 œ {≠1, 1}. The solution in Case 2 involves only the binary variable ‡2.
Thus, regions Rf computed by Algorithm 1 will be di�erent for di�erent choices of
these binary variables. In both Cases 1 and 2, it is necessary to execute the algorithm
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for all combinations of the binary variables to avoid missing feasible solutions of the
inverse kinematics.

All points calculated by Algorithm 1 guarantee the existence of values for the
decision variables y1A and y1B that satisfy the joint limits, as demonstrated in the next
subsection 5.4.5.1.

As an alternative to the numerical algorithm presented in this section, one may
try to compute the regions Rf or redundant solutions analytically. To obtain analytic
representations of these regions, it su�ces to obtain analytically the curves (or surfaces,
in Case 2) that enclose these regions. This can be done solving Equations (5.58)
to (5.70) to find analytic expressions of all intermediate joint coordinates in terms
of Ï1B and yB (and also Ï2B , in Case 2). Then, equating each intermediate joint
coordinate to either its upper or lower limit yields an equation that defines a curve
in plane (Ï1B , yB), or a surface in space (Ï1B , Ï2B , yB), and these curves/surfaces
constitute the boundaries of regions Rf . Note that the lower and upper limits of Ï

ij

are constants: Ï
min

and Ï
max

, respectively. However, according to Algorithm 1, the
bounds of yj depend on Ï

ij

, which, in turn, must be written in terms of {Ï1B , Ï2B , yB}.

Unfortunately, obtaining analytically all intermediate joint coordinates and the
bounds of yj in terms of {Ï1B , Ï2B , yB} can be very di�cult or even unfeasible, even
using computer algebra systems, due to the large size and complexity of the analytic
expressions that must be handled in the calculations. For instance, Figure 5.12 shows
an example of region Rf computed using Algorithm 1, and it also exhibits some of the
curves that delimit this region. Only the boundaries that could be obtained analytically
are shown; the analytic expressions of the remaining boundaries of Rf could not be
obtained due to the complexity and large size of the terms involved in their calculation.
Thus, for this robot, an analytic approach to compute the sets of redundant solutions
of the inverse kinematics is intractable, and a numerical algorithm like the one proposed
in this section stands as the best choice.

5.4.5.1 Choosing feasible values of y1A and y1B

The regions Rf of feasible solutions computed by Algorithm 1 only reflect the valid
combinations of variables Ï1B and yB (and also Ï2B , in Case 2). However, the values
of variables y1A and y1B must also be decided in order to complete the solution of the
inverse kinematics.

As discussed in the previous section, since variables {y1A, y1B} do not a�ect
the posture of the robot once {yA, yB} are fixed, their values are not crucial as long
as they satisfy the joint limits. Next, it will be shown that, for every point in Rf , we
can always find non-empty intervals of possible values for variables y1A and y1B that
satisfy the joint limits of the parallel modules. This will be demonstrated for a generic
leg y1j (j œ {A, B}).

According to Equation (5.39), for a given Ï1j œ [Ï
min

, Ï
max

], y1j must be in
[y1j(Ï1j), y1j(Ï1j)]. Additionally, y1j must also satisfy Eq (5.40):

y2j = yj + h ≠ y1j (5.73)
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Similarly, for a given Ï2j œ [Ï
min

, Ï
max

], y2j must satisfy:

y2j(Ï2j) Æ y2j Æ y2j(Ï2j) (5.74)

Combining the conditions given in Equations (5.73) and (5.74) yields the following
additional bounds for y1j :

yj + h ≠ y2j(Ï2j) Æ y1j Æ yj + h ≠ y2j(Ï2j) (5.75)

Hence, the valid values of y1j lie in the intersection of two intervals I1 = [y1j(Ï1j),
y1j(Ï1j)] and I2 = [yj + h ≠ y2j(Ï2j), yj + h ≠ y2j(Ï2j)]. Denoting the limits of these
intervals by I1 = [a0, a1] and I2 = [b0, b1], their intersection will be empty if and only
if [129]:

b1 ≠ a0 < 0 OR b0 ≠ a1 > 0 (5.76)
Then, applying De Morgan’s laws to the previous condition, we have that the intersec-
tion I1 fl I2 will be non-empty i�:

b1 ≠ a0 Ø 0 AND b0 ≠ a1 Æ 0 (5.77)

First, we check the first condition of Equation (5.77):

b1 ≠ a0 = yj + h ≠ y2j(Ï2j) ≠ y1j(Ï1j) Ø (5.78)
y1j(Ï1j) + y2j(Ï2j) ≠ h + h ≠ y2j(Ï2j) ≠ y1j(Ï1j) = 0

where it has been considered that yj Ø y1j(Ï1j) + y2j(Ï2j) ≠ h, which is guaranteed
by Algorithm 1. Next, we check the second condition of Equation (5.77):

b0 ≠ a1 = yj + h ≠ y2j(Ï2j) ≠ y1j(Ï1j) Æ (5.79)
y1j(Ï1j) + y2j(Ï2j) ≠ h + h ≠ y2j(Ï2j) ≠ y1j(Ï1j) = 0

where it has been considered that yj Æ y1j(Ï1j)+y2j(Ï2j)≠h, which is also guaranteed
by Algorithm 1. Thus, it is guaranteed that, for every point of sets Rf computed by
the proposed algorithm, we can always find ranges of the variables y1A and y1B that
satisfy the joint limits of the parallel modules, completing the solution of the inverse
kinematics of the HyReCRo robot.

5.4.6 Examples
This section presents some examples of the application of Algorithm 1 to obtain the
region Rf of valid solutions of the inverse kinematics. Algorithm 1 was implemented
in Matlab R2011b, and the examples were tested on a laptop Acer Travelmate 5720,
with an Intel(R) Core(TM)2 Duo T7300 CPU @ 2 GHz, 2 GB in RAM, and a 32-bit
Operating System (Windows 7 Professional).

For the geometric parameters of the parallel modules {b, p, fl0, �fl}, the values
indicated in Section 5.4.1 were used. For the parameters {h, t}, the following values
were used: h = 16 cm and t = 15.6 cm.
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5.4.6.1 Example 1

It is assumed that foot A is fixed, and the following position and orientation is desired
for foot B:

TB/A =

S

WWU

0 0 ≠1 ≠20 cm
sin(fi/3) cos(fi/3) 0 5 cm
cos(fi/3) ≠ sin(fi/3) 0 30 cm

0 0 0 1

T

XXV (5.80)

This example is represented in Figure 5.11a. Since (R31, R32) ”= (0, 0), two binary
variables ‡1, ‡2 œ {≠1, 1} are involved in the calculation of the intermediate joint
coordinates, as explained in Section 5.4.3.1. Hence, in order to obtain all feasible
solutions, Algorithm 1 must be executed four times, once for each combination of
these binary variables. The set Rf of feasible solutions depends on the choice of the
binary variables.

For this example, Algorithm 1 was run using Np = 104 and Np = 5 ·104 random
points. In the first case, the average time of execution of the algorithm was 0.455 s,
with a standard deviation (SD) of 0.022 s. For Np = 5 · 104, the average execution
time was 2.35 s, with a SD of 0.12 s. In both cases, 20 experiments were performed.

In both cases, these are the times necessary for running the algorithm four times,
once for each combination of ‡1 and ‡2. The only combination of ‡1 and ‡2 that yields
a non-empty set of feasible solutions for this example is ‡1 = ‡2 = ≠1. The set Rf

corresponding to this combination is shown in Figure 5.12. Figure 5.12 represents only
the solution obtained for Np = 5 · 104 since the density of points is higher, providing
a better approximation of the shape of the region of feasible solutions.

Foot A 
(fixed)

Foot B 
(mobile)

Desired
position and
orientation

π/3 
rad

Foot A 
(fixed)

Foot B 
(mobile)

(b)(a)

Figure 5.11: Desired position and orientation in Example 1.
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Figure 5.12: Discrete approximation of the set R
f

of feasible solutions to inverse kinematics in
Example 1, for N

p

= 5 · 104 points.

As shown in the previous section, any point of region Rf guarantees the existence
of ranges for y1A and y1B that allow the robot to reach the position and orientation
of Equation (5.80) satisfying the joint limits of the parallel modules. For example,
point P1 = (0.2, 27.75) indicated in Figure 5.12 yields ◊A = ≠2.51 rad and ◊B =
≠0.94 rad. For this point, the valid ranges of y1A and y1B are [20.21, 20.31] cm
and [21.79, 21.80] cm, respectively (the values are rounded to two decimal places).
These ranges are very narrow because P1 is close to the boundary of Rf . Choosing
y1A = 20.21 cm and y1B = 21.79 cm gives the following values for the actuated joint
coordinates of the parallel modules:

l1A = 21.42, r1A = 19.00, l2A = 21.52, r2A = 19.10
l1B = 21.00, r1B = 22.59, l2B = 24.99, r2B = 19.01 (5.81)

where the values are in cm and rounded to two decimal places. Note that some lengths
are close to the joint limits (19 and 25 cm), which agrees with the fact that P1 is close
to the boundary of Rf . This solution yields the posture shown in Figure 5.11b.

5.4.6.2 Example 2

In this case, foot B is fixed and foot A must reach the following position and orientation
to perform a convex transition between two adjacent faces of the same beam (see
Figure 5.13):

TA/B =

S

WWU

0 ≠1 0 ≠11
1 0 0 ≠11
0 0 1 0
0 0 0 1

T

XXV æ TB/A =

S

WWU

0 1 0 11
≠1 0 0 ≠11
0 0 1 0
0 0 0 1

T

XXV (5.82)
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where the position is given in cm. First, matrix TA/B must be inverted to obtain TB/A,
which is the input to the inverse kinematic problem as formulated in Section 5.4.3.

According to Section 5.4.3.2, since R31 = R32 = 0 in this example, only the
binary variable ‡2 is involved in the calculation of the intermediate joint coordinates.
Thus, Algorithm 1 must be executed twice to obtain all the feasible solutions, once for
each value of ‡2 œ {≠1, 1}.

In this example, the algorithm was tested for Np = 104 and Np = 5·104 random
points, obtaining the following respective average execution times for 20 experiments
in each case: 0.919 s (SD = 0.003 s) and 4.47 s (SD = 0.20 s). These are the times
necessary for running the algorithm twice: for ‡2 = ≠1 and ‡2 = 1. In this example,
only ‡2 = 1 yields a non-empty set of feasible solutions, which is shown in Figure 5.14
for Np = 5 ·104 points. The projections of the 3D solution set on the coordinate planes
are also shown in Figure 5.14 to facilitate the 3D visualization of the shape of Rf .

(b)

Desired position
and orientation

Foot A 
(mobile)

Foot B 
(fixed)

Foot A 
(mobile) Foot B 

(fixed)

(a)

Figure 5.13: Desired position and orientation in Example 2, where the robot performs a convex
transition between two planes.

For example, choosing point P3 = (≠0.8, ≠0.2, 26) shown in Figure 5.14, yields
the following ranges for y1A and y1B : [21.78, 22.16] cm and [21.84, 22.10] cm, respec-
tively. Choosing y1A = y1B = 22 cm gives the following lengths:

l1A = 19.22, r1A = 24.84, l2A = 23.63, r2A = 22.11
l1B = 24.90, r1B = 19.17, l2B = 20.80, r2B = 19.21 (5.83)

where the values are in cm. For this solution, the robot adopts the posture shown in
Figure 5.13b. For this example, the rotations of the hip are: ◊A = ◊B = 0. Note that
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points.

the rotations of the hip do not depend on the decision variables when R31 = R32 = 0,
as it can be observed in Equations (5.59) to (5.62).

5.5 A Simulator of the HyReCRo Robot

In order to facilitate the kinematic analysis of the HyReCRo robot, a graphical simulator
has been developed using Easy Java Simulations. This simulator is part of the PaRoLa
virtual laboratory presented in the previous chapter, and is accessible at http://arvc.

umh.es/parola. In this chapter, we will demonstrate how the developed simulator
can be used for simulating the forward and inverse kinematic problems of the HyReCRo
robot, whereas in the next chapters we will demonstrate how to use this simulator for
analyzing its workspace.

The developed simulator is shown in Figure 5.15. This simulator has a main
window, which includes a schematic three-dimensional representation of the HyReCRo
robot on a three-dimensional structure. The upper part of this window has a “view”
menu, by means of which the user can activate or deactivate several other windows
which can be used for performing some kinematic analyses of this robot. In the next
subsections, we will focus on the use of this simulator for simulating the forward and
inverse kinematics.
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Figure 5.15: Simulator developed for studying the forward and inverse kinematic problems of
the HyReCRo robot.

5.5.1 Simulating the Forward Kinematics
As Figure 5.15 shows, the simulator of the HyReCRo robot has a window for simulating
its forward kinematics. This window has sliders and numeric boxes for modifying the
values of the ten actuated joint coordinates of the robot: lengths lij and rij of the
parallel modules, and rotations ◊j of the hip (i œ {1, 2}, j œ {A, B}). When modifying
any of these actuated joint coordinates, the simulator solves the forward kinematics as
described in Section 5.2, and the robot moves as a consequence.

When varying the lengths of the linear actuators of the parallel modules (vari-
ables lij and rij), the simulator solves the forward kinematics of these modules as
explained in Section 5.2.1. As explained in Section 3.3, these parallel modules have
four real solutions to their forward kinematic problem, but only one of them is feasible
for the HyReCRo robot (the other three solutions imply some type of collision): the
only valid solution is the one with highest value for yij . Accordingly, when the simu-
lator solves the forward kinematics of the parallel modules (this problem is solved via
elimination) and obtains the four real solutions, only the solution with highest yij is
used. In this way, the simulator shows only one solution for the forward kinematics of
the complete HyReCRo robot, which is the solution shown in the main window of the
simulator.

At all times, one of the feet of the robot is attached to the structure: the
fixed foot is indicated in orange color (see Figure 5.15). When simulating the forward
kinematics, the robot moves considering that this foot is fixed. The user can switch
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the fixed foot by clicking on the button “Switch foot” in the window for simulating the
forward kinematics (top-right window of Figure 5.15). When pressing this button, the
fixed and free feet swap their roles. In this way, by simulating the forward kinematics
and switching the adhesion of the feet to the structure, it is possible to simulate the
motion of the robot along the structure, as explained in [133].

It should be mentioned that, in the current version of the simulator, it is possible
for the HyReCRo robot to “walk on the air”, i.e.: the simulator does not implement
the restriction that the feet should be in contact with the structure in order to adhere
them to it. In the future, this will be corrected and the dynamics will also be included
(e�ects of gravity), in order to provide more realistic simulations.

5.5.2 Simulating the Inverse Kinematics
Using the developed simulator, it is also possible to simulate the inverse kinematics.
To that end, one must specify the desired position and orientation (pose) for the free
foot of the robot. The desired pose must be specified with respect to a world reference
frame which is attached to the structure, instead of referring the desired pose with
respect to the fixed foot. This is because the pose of the fixed foot will vary as the
robot moves along the structure, so it is simpler to always specify the desired pose
using absolute coordinates. When specifying the desired absolute pose for the free
foot, the simulator automatically computes the matrix TB/A that encodes the desired
relative pose between the feet, which is the input of the inverse kinematic problem as
formulated in Section 5.4.3. The desired absolute pose for the free foot is specified in
the inverse kinematics window of the simulator (bottom-right window in Figure 5.15).
The orientation must be indicated as a triplet of Z1X2Z3 Euler angles.

After introducing the desired absolute pose for the free foot, the simulator solves
the inverse kinematics as explained in Section 5.4.3. As a result, the simulator displays
the feasible regions Rf defined in Section 5.4.5. The displayed regions will be planar or
three-dimensional volumes, depending whether the desired relative orientation between
the feet satisfies R2

33 ”= 1 or not, respectively. The user can enable the visualization
of these feasible regions using the “view” menu at the top of the main window, as
indicated in Figure 5.15. When doing this, a window with two panels pops-up: the
left panel shows plane (Ï1B , yB), whereas the right panel shows the (Ï1B , Ï2B , yB)
space (see Figure 5.16a).

When simulating the inverse kinematics, Algorithm 1 is executed for computing
these feasible regions, which are displayed in only one of these panels, depending on the
considered case of the inverse kinematics (Case 1 or 2). Moreover, recall from Section
5.4.3 that two binary variables (‡1, ‡2 œ {≠1, 1}) intervene in the computation of
these feasible regions, such that the shape of these regions will vary for di�erent values
of these binary variables. The user can change the values of these binary variables in
the panel shown in Figure 5.16b, which also displays the workspaces of the four parallel
modules of the HyReCRo robot, so that the user can confirm that these workspaces
have the diamond-like shapes assumed throughout Section 5.4 (i.e., that they have the
form of Equation 5.39, as required by Algorithm 1). When varying the value of these
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Figure 5.16: (a) Representation of the feasible regions R
f

in the simulator. (b) Performing
self-motions in the simulator.

binary variables, the feasible regions shown in the panels of Figure 5.16a will change
(and in some cases, they will be empty).

Using the windows shown in Figure 5.16, it is also possible to simulate self-
motions. For example: in the window shown in Figure 5.16b, the user can modify
the values of parameters {Ï1B , yB , y1A, y1B} (and also Ï2B , in Case 2) by means of
sliders and numeric boxes: as explained in Section 5.4.4, these are the parameters
used in this thesis for parameterizing the self-motion manifolds of the HyReCRo robot.
When varying these parameters, the robot performs self-motions: the posture of the
robot changes, but the relative position and orientation between its feet always remains
constant. It is also possible to simulate self-motions by dragging the coordinates of
{Ï1B , yB} (and also Ï2B , in Case 2) in the panel shown in Figure 5.16a: in that
case, the values of the remaining parameters {y1A, y1B} are automatically chosen by
the simulator, which chooses the minimum allowed values for these parameters (recall
from Section 5.4.5.1 that, for both these parameters, we can always find intervals of
allowed values).

The simulation of the inverse kinematics is very useful for determining if some
poses will be reachable for a given geometric design of the robot. For example, we
may be interested in knowing if a given design of the HyReCRo robot will be able to
perform convex transitions between adjacent faces of a beam, as in Figure 5.13b. To
that end, one only needs to introduce the pose corresponding to this convex transition,
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and solve the inverse kinematics in the simulator, obtaining the feasible regions. If
these feasible regions are empty, then this means that the robot cannot perform such
transitions and it is necessary to modify the geometric parameters of the robot until
these regions are not empty, as in Figure 5.14. For example, according to the analysis
presented in Section 5.3.2, it would be a good idea to vary parameter p of the parallel
modules, since the shape of the workspace seems to be very sensitive to variations in
this parameter.

In essence, this is what was done in this thesis for determining appropriate values
for the geometric design parameters of the prototype presented in Chapter 8, so that
this prototype can perform convex transitions. This analysis, based on the inverse
kinematics, can be completed with a workspace analysis, which provides more global
information. As we will see in next chapter, a workspace analysis not only allows us to
determine if a concrete individual pose is attainable (which is the information provided
by an inverse kinematic analysis), but also allows us to know if complete regions of the
workspace of the robot will be reachable.

5.6 Conclusions

In this chapter, we have solved the forward and inverse kinematic problems of the
HyReCRo robot. First, the forward problem has been solved (Section 5.2), departing
from the solution of the forward kinematics of the 2RPR-PR parallel modules that
make up the legs of this robot (Section 5.2.1). A total of 256 solutions have been
identified for the forward kinematic problem of the HyReCRo robot, but only one of
them is valid in practice due to collision constraints.

After this, the inverse kinematic problem has been addressed, solving first a
simplified version of this problem which considers only planar and symmetric postures
(Section 5.3.1). This problem is easier to solve than the general inverse kinematics
and can be useful for planning many of the movements necessary for performing plane
transitions in structures. The PSIK workspace, i.e., the workspace composed of planar
and symmetric postures, has also been investigated in order to determine the sensitivity
of this workspace with respect to the geometric design parameters of the robot (Section
5.3.2). From this sensitivity analysis, it has been found that the shape and size of the
PSIK workspace are most sensitive to the width p of the feet of the robot and the
stroke �fl of the linear actuators that drive the parallel modules.

After solving the simplified PSIK problem, the general inverse kinematic problem
of the HyReCRo robot has been addressed (Section 5.4). In order to facilitate the
resolution of this problem, some intermediate joint coordinates have been defined,
which allow us to study the HyReCRo robot as an equivalent serial robot. When solving
these intermediate joint coordinates from the loop-closure equations of this robot, two
cases have been identified: in Case 1, in which the feet of the robot are not parallel,
the self-motion manifolds of this kinematically-redundant robot are four-dimensional.
In Case 2, which is a singular and frequent situation in which the feet of the robot are
parallel, these manifolds are five-dimensional. In both cases, simple parameterizations
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of these manifolds have been obtained, such that all intermediate joint coordinates can
be easily solved in terms four (or five, in Case 2) of them. Then, in order to graphically
visualize such high-dimensional manifolds, they have been projected to two- and three-
dimensional subspaces, obtaining the so-called feasible regions Rf that constitute a
compact and simple graphical representation of the solutions of the inverse kinematics
of the HyReCRo robot.

Finally, a graphical simulator of the HyReCRo robot has also been developed,
which implements the solutions of the forward and inverse kinematic problems as solved
in this chapter.

5.7 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• A. Peidró, A. Gil, J.M. Marín, Y. Berenguer, and Ó. Reinoso. Kinematic analysis
and simulation of a hybrid biped climbing robot. In 2015 12th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO), volume 2,
pages 24–34, 2015 [132].

– This paper presents the solution of the forward kinematics of the complete
HyReCRo robot, as well as the resolution of the Planar Symmetric Inverse
Kinematic problem. Also, this paper presents the first version of the simu-
lator of the HyReCRo robot, presented in Section 5.5.

• A. Peidró, A. Gil, J.M. Marín, Y. Berenguer, and Ó. Reinoso. Kinematics, sim-
ulation, and analysis of the planar and symmetric postures of a serial-parallel
climbing robot. In Joaquim Filipe, Kurosh Madani, Oleg Gusikhin, and Jurek
Sasiadek, editors, Informatics in Control, Automation and Robotics 12th Inter-
national Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised
Selected Papers, pages 115–135. Springer International Publishing, 2016 [133].

– This paper is a revised and extended version of the previous one, which
was selected among some of the best papers presented in the ICINCO 2015
international conference. This paper studies the sensitivity of the PSIK
workspace of the HyReCRo robot with respect to the geometric design
parameters of this robot (Section 5.3.2).

• A. Peidro, A. Gil, J.M. Marin, and O. Reinoso. Inverse kinematic analysis of
a redundant hybrid climbing robot. International Journal of Advanced Robotic
Systems, 12(11):163, 2015 [136] (SCI-JCR Impact Factor: 0.615, Q4).

– This paper presents the solution of the general inverse kinematic problem
of the complete HyReCRo robot (Section 5.4).
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6 Boundaries of the Workspace

This chapter analyzes the workspace of the HyReCRo robot. First, section 6.1 presents
a literature review of methods for computing workspaces of robot manipulators, in order
to choose the most suitable method for the HyReCRo robot. Considering the complex-
ity of this robot (redundancy and serial-parallel architecture), Monte Carlo methods
turn out to be the most appropriate ones for computing its workspace. Classical Monte
Carlo methods are reviewed in section 6.2, where they are used for performing some
preliminary computations and analyses of the workspace of the HyReCRo robot. Then,
section 6.3 analyzes the accuracy problems of classical Monte Carlo methods, demon-
strating that they generally yield inaccurate boundaries of the workspace (even when
sampling very large amounts of points). Then, section 6.4 proposes a new improved
Monte Carlo method, which makes use of normal distributions for e�ciently “grow-
ing” and generating workspaces. Through several examples based on the HyReCRo
robot, section 6.5 compares the proposed method with classical Monte Carlo methods,
demonstrating that the proposed method can obtain workspace boundaries much more
accurately than classical methods, requiring the same or less computation time, which
demonstrates its higher e�ciency.

6.1 Review of Methods for Computing Workspaces

The workspace of a robot manipulator can be defined as the set of poses (posi-
tions and/or orientations) that its end-e�ector can reach, subject to the loop-closure
constraints imposed by the architecture of the robot (as well as to other additional
kinematic constraints, such as joint limits or avoidance of collisions). Knowing the
workspace is very important for designing robot manipulators, as well as for planning
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their motion. Thus, calculating the workspace has been the objective of much research
work during the last decades, which has resulted in the development of many methods
for computing robot workspaces. Most of the existing methods can be classified into
one of three main classes [116]: geometrical methods, singularity-based methods, and
sampling methods.

Geometrical methods are exact and very fast, but their scope is limited since
they are tailored to specific classes of robots. These methods usually rely on Computer
Aided Design tools and can be used to compute constant-orientation workspaces of
parallel robots as the intersection of the workspaces of all limbs of the robot [9], which
are simple geometric shapes such as solid tori [96], annuli [118, 18], or spherical shells
[64]. Geometric constructions have also been used to obtain analytic descriptions of
the boundaries of reachable and other workspaces of parallel robots [4, 118], as well
as maximal singularity-free areas [79]. Geometrical methods can handle kinematic
constraints such as joint limits and even self-collisions, but only in relatively simple
cases [115].

Singularity-based methods directly obtain the boundaries of the workspace, both
for redundant and non-redundant robots. At these boundaries, �z becomes rank-
deficient, where �z is a Jacobian matrix of derivatives of all kinematic constraints with
respect to all variables involved in the problem (excluding the variables that parame-
terize the pose of the end-e�ector). The condition of �z being rank-deficient yields a
system S of equations whose solution set contains the boundaries of the workspace.
System S may be analytically solved in some cases [1, 2], but in general it must be
solved numerically [71, 19]. In [71], S is solved via continuation, obtaining planar
slices of workspace boundaries. Bohigas et al. [19] identified problematic situations in
which continuation methods fail, such as degenerate boundaries and multicomponent
workspaces. Alternatively, Bohigas et al. [19] manage to rewrite S as a quadratic sys-
tem and solve it using a linear relaxation method which is robust to the aforementioned
problematic situations. An important limitation of singularity-based methods is that all
kinematic constraints must be written as equalities, which is not always possible. For
example, joint limits (which are usually modeled as inequalities) can be easily rewritten
as equalities [71], even as quadratic equations [19], by introducing auxiliary variables.
But this is not easy in general for more complex constraints, like the prohibition of
mechanical interferences (collisions).

Sampling methods generate many configurations of the robot, and check if each
configuration belongs to the workspace satisfying all kinematic constraints. Thus, these
methods are very flexible and can easily handle complex kinematic constraints, because
one simply needs to check if all constraints are satisfied for each concrete configuration
after generating it [10]. Configurations are typically generated by sampling points
from the joint or task1 spaces, following regular or random patterns (Monte Carlo
methods [68, 10]). For serial robots, configurations are usually generated by sampling
points from the joint space and solving afterwards the Forward Kinematics (FK-based
methods [156, 24]), which is simpler than the Inverse Kinematics (IK) for these robots.

1The task space (or Cartesian space) is the space of poses of the end-e�ector.
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Conversely, for parallel robots the IK is simpler than the FK. Thus, their configurations
are often generated by sampling points from the task space and solving the IK for
each point (IK-based methods [106, 45, 174]). When using IK-based methods with
redundant robots, since their inverse kinematic problem admits infinitely many solutions
for a given task point, it is su�cient to find only one solution satisfying all constraints
to guarantee that the considered task point belongs to the workspace [147].

Considering the limitations and characteristics of the previously exposed meth-
ods, it is evident that the most suitable methods for computing the workspace of the
HyReCRo robot are sampling methods. More specifically, we will use a FK-based Monte
Carlo method, in which the actuated joint coordinates will be randomly sampled and
the forward kinematic problem of the HyReCRo robot will be solved in order to obtain
workspace points. This decision is based on the following reasons:

• The HyReCRo robot is too complex to use a geometrical method for computing
its workspace. Geometrical methods are appropriate for far simpler robots than
the HyReCRo robot.

• Although singularity-based methods are general and, in principle, should be able
to obtain the boundaries of the workspace of the HyReCRo robot, this robot
involves so many variables and kinematic constraints that it would take too long
to compute its workspace using a method of this type.

• Moreover, these methods (geometrical and singularity-based) cannot easily han-
dle no-collision constraints (i.e., the constraint that there should not exist me-
chanical interferences between di�erent parts of the robot, or between the robot
and obstacles of the environment in which it moves). On the contrary, sam-
pling methods are very flexible and can easily accommodate the restriction that
mechanical interferences should be prohibited, since one only needs to sample
a configuration, check if it produces mechanical interferences, and discard it in
that case.

For these reasons, we consider that it is more appropriate to use a sampling method
to calculate the workspace of the HyReCRo robot. Of all sampling methods, it seems
evident that, for the HyReCRo robot, a method based on the forward kinematics is
more convenient than a method based on the inverse kinematics, due to the kinematic
redundancy of this robot (as we have demonstrated in the previous chapter, the forward
kinematic problem of the HyReCRo robot is far simpler than its inverse kinematic
problem).

Finally, of all FK-based sampling methods for computing the workspace, we
believe that it is more convenient to sample joint coordinates by following random
patterns (i.e., Monte Carlo methods) instead of regular patterns (i.e., a regular grid
in the joint space). This is because random patterns (distributions) are more general
than regular patterns, which can be approximated by uniform random distributions.
In fact, as we will demonstrate later in this chapter, sampling joint coordinates from
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uniform patterns is computationally ine�cient, in the sense that increasing the number
of samples does not translate into a significant improvement of the precision of the
computed workspace.

Having said that, in the next section we will compute the workspace of the
HyReCRo robot using a simple sampling FK-based Monte Carlo method. Later, we
will improve this initial method in order to greatly and e�ciently increase its accuracy,
without increasing its computation time.

6.2 Computing the Workspace of the HyReCRo Robot via
Classical Monte Carlo Methods

In this section, we will review the “classical” or “standard” Monte Carlo method for
obtaining the workspace of robot manipulators, and then we will use this method to
compute some workspaces of the HyReCRo robot.

Let q = [q1, . . . , qd]T denote the vector of joint coordinates of a robot with
d degrees of freedom (DOF). Vector q may contain actuated joint coordinates or
“intermediate” (not necessarily actuated) joint coordinates like those defined in section
5.4.2 for the HyReCRo robot. The Monte Carlo method consists in generating a large
number of random vectors q and, for each of them, solving the forward kinematic
problem to obtain the position X œ R3 of the end-e�ector of the robot (in the case of
the HyReCRo robot, the end-e�ector is its free foot). The components of each random
vector q are randomly generated as follows:

qk = qmin

k + (qmax

k ≠ qmin

k )rk, k = 1, . . . , d (6.1)

where
)

qmin

k , qmax

k

*
are the joint limits of joint coordinate qk and rk is a random

variable in (0, 1). After generating each random position of the robot, one should check
if it satisfies other additional constraints that may exist (for example, di�erent parts of
the robot should not interfere, or the end-e�ector should have a desired orientation).
If all constraints are satisfied, the generated point X is stored as a workspace point,
and the set of all stored points constitutes a discrete approximation of the workspace
of the manipulator.

The workspace generated in this way is a point cloud in R3 that can be rep-
resented graphically. However, for the practical use of the workspace (e.g. for path
planning), it is necessary to build a database of the workspace using the generated
random points [68]. To build this database, the Cartesian space is discretized with
desired resolution, obtaining a set of cells in this space. Then, all cells which contain
at least one workspace point are classified as “reachable”, whereas the remaining cells
are considered “unreachable” (see Figure 6.1a). The boundaries of the workspace can
be approximated by the set of reachable cells which have at least one neighboring
unreachable cell. In this chapter, and in the next chapter, the neighbors that will be
considered in 3D are the 26-neighbors, whereas in 2D the 8-neighbors will be considered
(see Figure 6.1b).
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= 5 and n
z

= 3). (b) Illustration of the neighbors
of a cell C considered in this chapter, in three and two dimensions.

The Monte Carlo method is a simple and widely used method especially suitable
for computing the workspace of complex robots subject to complicated constraints,
which have many degrees of freedom or are even kinematically redundant, like humanoid
robots [68, 10, 24, 156, 6, 23, 191]. Next, we will use this method to compute the
reachable and constant-orientation workspaces of the HyReCRo robot. For now, and
for the sake of simplicity, we will only consider joint limits {qmin

k , qmax

k }. Collision
constraints will be taken into account later in this chapter.

6.2.1 Reachable Workspace of the HyReCRo Robot
To generate the reachable workspace of the HyReCRo robot, we need the solution of its
forward kinematic problem, which consists in computing the position and orientation of
one foot of the robot with respect to the other, in terms of the actuated or intermediate
joint coordinates. This problem was solved in section 5.2.2, and its solution is repeated
next. From Equation (5.18), we obtain that the position [px, py, pz] of foot B relative
to foot A has the following expression:

S

U
px

py

pz

T

V = yA

S

U
sÏ1A

cÏ1A

0

T

V+yB

S

U
≠c�c�AsÏ2B ≠ s�AcÏ2B

c�s�AsÏ2B ≠ c�AcÏ2B

s�sÏ2B

T

V+t

S

U
c◊Ac�A

≠c◊As�A

≠s◊A

T

V (6.2)

where �j = Ï1j ≠ Ï2j . Similarly, from Equation (5.18) we also obtain the rotation
matrix encoding the orientation of foot B relative to foot A:

RB/A =

S

U
s�As�B + c�c�Ac�B s�Ac�B ≠ c�c�As�B s�c�A

c�As�B ≠ c�s�Ac�B c�Ac�B + c�s�As�B ≠s�s�A

≠s�c�B s�s�B c�

T

V (6.3)

where � = ◊A ≠ ◊B . According to the previous equations, the position and orientation
of foot B relative to foot A depend on the following eight intermediate joint coordinates,
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which were introduced in section 5.4.2: {Ï1A, Ï2A, Ï1B , Ï2B , yA, yB , ◊A, ◊B}. Thus,
if we want to compute the reachable workspace of the HyReCRo robot, we only need
to randomly sample all these eight variables and generate three-dimensional points
[px, py, pz] using Equation (6.2). These three-dimensional points form a 3D point
cloud in space that constitutes a discrete approximation of the workspace, which is a
volume. For visualizing the obtained workspace, it is su�cient to visualize the boundary
surfaces that delimit this volume workspace. To extract these boundary surfaces, we
proceed as follows [6]: first, we define a 3D grid composed of nx, ny, and nz cells
along the X, Y, and Z axes, respectively (see Figure 6.1a). The cells that contain
workspace points (i.e., reachable cells) are marked with “1”, whereas the remaining
cells are marked with “0”. Then, the workspace boundary is composed of cells that are
marked with “1” and have at least one neighboring cell marked with “0”.

Before applying the Monte Carlo method, it is necessary to define the joint limits
{qmin

k , qmax

k } used in Equation (6.1) for each intermediate joint coordinate. Also, it is
necessary to specify the random distribution from which rk in Equation (6.1) will be
sampled, for each intermediate joint coordinate.

6.2.1.1 Joint limits and random distribution for angles ◊j

We will assume that the legs of the HyReCRo robot can perform complete revolutions
about the revolute axes of the hip. This means that the joint limits for angles ◊A and
◊B will be qmin

k = ≠fi rad and qmax

k = fi rad. Moreover, these angles will be uniformly
sampled, i.e., rk in Equation (6.1) will be a uniform number in (0, 1). This choice of
a uniform distribution for these angles will be better justified later in this chapter, but
this is the main idea: if angle ◊j has no joint limits, then it can take any value from
the interval [≠fi, fi] rad (one complete revolution). However, ≠fi and fi are not true
joint limits, since they correspond to the same angle. In other words, the limits of the
interval [≠fi, fi] are “glued”, so that ◊j actually takes values from the unit circle S1

which, unlike an interval, has no limits (it is a closed curve).

6.2.1.2 Joint limits and random distribution for Ïij and yj

As in the previous chapter, we will assume that, due to joint limits, variables Ïij and
yij of the 2RPR-PR parallel modules of the HyReCRo robot belong to diamond-shaped
regions WS

pm

like those defined in section 5.4.1. These regions were defined as follows:

WS

pm

=
Ó

(Ïij , yij) : Ï
min

Æ Ïij Æ Ï
max

, yij(Ïij) Æ yij Æ yij(Ïij)
Ô

(6.4)

According to Equation (6.4), the joint limits for angles Ïij will be: qmin

k = Ï
min

and
qmax

k = Ï
max

. To determine the joint limits of yj , recall from the previous chapter
(section 5.4.2) that for each leg j we have yj = y1j + y2j ≠ h. If Ï

ij

œ [Ï
min

, Ï
max

]
(i œ {1, 2}), then according to Equation (6.4), y

ij

must satisfy:

y
ij

(Ï
ij

) Æ y
ij

Æ y
ij

(Ï
ij

) (6.5)
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Since yj = y1j + y2j ≠ h, then variables yj must verify:

y1j(Ï1j) + y2j(Ï2j) ≠ h Æ yj Æ y1j(Ï1j) + y2j(Ï2j) ≠ h (6.6)

which provides the joint limits for these intermediate joint coordinates.

Finally, after all joint limits necessary for the Monte Carlo computation of the
workspace have been determined, it is necessary to specify the random distribution
from which rk will be sampled for variables yj and Ïij . These variables will be sampled
from U-shaped beta distributions [24]. This is because the joint limits of these variables
define the boundaries of the workspace, and sampling them from U-shaped distributions
favors the generation of random points close to the boundaries of the workspace, which
results in a better definition of these boundaries. Later in this chapter, it will become
evident that sampling bounded joint coordinates (i.e., joint coordinates with true joint
limits) from U-shaped beta distributions generally yields better results than sampling
from uniform distributions.

6.2.1.3 Example: sensitivity analysis

After all joint limits and random distributions have been defined, the Monte Carlo
calculation of the reachable workspace can be summarized in Algorithm 2. In this
algorithm, Nr is the number of randomly sampled points.

Algorithm 2 Monte-Carlo calculation of the reachable workspace
1: WS = ÿ æ The reachable workspace is initialized as an empty set.
2: for k = 1 to Nr do
3: Sample ◊A and ◊B uniformly from [≠fi, fi]
4: Sample Ï1A, Ï2A, Ï1B , and Ï2B from [Ï

min

, Ï
max

] (U-shaped — distr.)
5: Compute the lower and upper limits for yj (j œ {A, B}):
6: yj = y1j(Ï1j) + y2j(Ï2j) ≠ h

7: yj = y1j(Ï1j) + y2j(Ï2j) ≠ h
8: Randomly sample yj in [yj , yj ] (j œ {A, B}) (U-shaped — distr.)
9: Compute the position P = [px, py, pz]T of the free foot using Equation (6.2)

10: Add point P to WS

As explained previously, after sampling all workspace points and obtaining the
3D point cloud, we can extract its boundaries as the set of cells of the Cartesian
space that contain workspace points and have neighboring cells that do not contain
workspace points.

Next, we will use Algorithm 2 to perform a sensitivity analysis similar to the one
performed in section 5.3.2 of the previous chapter, i.e., we will vary all six geometric
design parameters of the robot and we will study how the shape and size of the reachable
workspace varies when changing the design of the robot. In all examples, we will
generate Nr = 2 · 106 random workspace points and we will extract the boundaries by
discretizing the Cartesian space into nx = ny = nz = 50 cells along each axis.
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Consider a HyReCRo robot with the following default geometry: fl0 = 19.5,
�fl = 5, b = p = 4, t = 15.6, h = 16 (all values in cm). The boundary of the
reachable workspace for this geometry is shown in Figure 6.2 (center), which shows
that the points above the fixed foot A cannot be reached by foot B. Next, we will
vary the design parameters (one at a time, keeping the rest at their default values) to
obtain a larger workspace in which the region above foot A is accessible.

Figure 6.2 shows that increasing h reduces the size of the reachable workspace,
leaving its shape practically una�ected. If parameters t and fl0 are respectively varied
in the intervals [10, 20] cm and [15, 25] cm, it can be checked that the size of the
workspace increases with these parameters, but its shape hardly varies with them.
Also, it can be checked that varying b in (0, 10] cm hardly a�ects the shape or size of
the reachable workspace. Thus, varying these four parameters generates workspaces
where the points above foot A are still inaccessible. However, varying parameter p
modifies noticeably the shape of the workspace, as shown in Figure 6.3. This figure
shows that the reachable workspace opens as p increases. Thus, it is convenient to
reduce p as shown in Figure 6.3(left) in order to eliminate the inaccessible region above
foot A. It can be checked that varying �fl in [3, 6] cm produces a similar e�ect in the
opposite direction: the workspace opens as �fl decreases.

The previous analysis coincides with the results observed in the sensitivity anal-
ysis of the PSIK workspace analyzed in section 5.3.2 of the previous chapter, where we
demonstrated that the shape of the PSIK workspace is most sensitive to parameters
�fl and p. Thus, these two parameters seem to be the most critical ones for designing
the HyReCRo robot, since varying them can produce important changes in the shape
of the workspace. Varying b alters little both the shape and size of the workspace.
Finally, varying {h, t, fl0} a�ects the size of the worksapce, leaving its shape almost
unchanged.

Of the two critical design parameters �fl and p, �fl is the stroke of the linear
actuators, and is therefore fixed and determined by the manufacturer of each actuator.
This means that, in practice, we are only free to vary p if we want to produce important
changes on the shape of the workspace (assuming that {b, t, h, fl0} have little e�ect on
this shape).

As we will see in the next example, for a given geometric design of the HyReCRo
robot, the region of its workspace that allows it to perform concave transitions is
generally larger than the region that allows it to perform convex transitions. For this
reason, the ability to perform convex transitions is more critical when designing the
HyReCRo robot, and p will need to be carefully chosen so that the robot has this
ability.

6.2.2 Constant-orientation Workspace of the HyReCRo Robot
The constant-orientation workspace is the set of points that can be reached with a
desired relative orientation between feet A and B. As in the previous chapter, the
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h = 10 cm h = 16 cm (default geometry) h = 20 cm 
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Figure 6.2: Variation of the reachable workspace when h is modified.

p = 3 cm p = 4 cm (default geometry) p = 6 cm 

Workspace opens 

foot A foot B foot A foot B foot A foot B 

Figure 6.3: Variation of the reachable workspace when p is modified.

desired orientation can be specified as a known rotation matrix:

RB/A =

S

U
R11 R12 R13
R21 R22 R23
R31 R32 R33

T

V (6.7)

where R
ij

are known quantities. Algorithm 2 can still be used to generate random
points in the constant-orientation workspace. However, unlike in Algorithm 2, not all
angles {Ï

ij

, ◊j} can be sampled independently now: these angles must satisfy certain
relations to guarantee that the generated random points have the desired orientation.
As in section 5.4.3 (solution of the inverse kinematics of the HyReCRo robot), we must
distinguish two cases:

6.2.2.1 Case 1: R2
33 ”= 1.

Equating element (3,3) of matrices (6.3) and (6.7) permits computing angle � as
follows:

c� = R33 ≠æ s� = ‡
Ò

1 ≠ R2
33 ≠æ � = ◊A ≠ ◊B = atan2(s�, c�) (6.8)
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where ‡ œ {≠1, 1}. Once s� is known, Equating elements (1,3), (2,3), (3,1) and (3,2)
of Equations (6.3) and (6.7) allows for the calculation of �A and �B :

c�A = R13/s�, s�A = ≠R23/s� ≠æ �A = Ï1A ≠ Ï2A = atan2(s�A , c�A) (6.9)

c�B = ≠R31/s�, s�B = R32/s� ≠æ �B = Ï1B ≠Ï2B = atan2(s�B , c�B ) (6.10)

Note that Equations (6.8), (6.9), and (6.10) fix the di�erences ◊A ≠ ◊B , Ï1A ≠ Ï2A,
and Ï1B ≠ Ï2B , respectively. Thus, we cannot give random values to the six angles
{Ï1A, Ï2A, Ï1B , Ï2B , ◊A, ◊B} simultaneously. Instead, we can give values to angles
{◊B , Ï2A, Ï2B} and compute the other three angles using the previous equations to
guarantee that the generated points have the desired orientation. Note that, after
calculating {Ï1A, Ï1B}, these angles may not be in [Ï

min

, Ï
max

], in which case the
point must be discarded since it does not satisfy the joint limits.

6.2.2.2 Case 2: R2
33 = 1.

In this case, � can be calculated from Equation (6.8), but �A and �B cannot be
computed from Equations (6.9) and (6.10) since s� = 0. To compute these angles,
we substitute c� = R33 into elements (1,2) and (2,2) of Equation (6.3) and equate
these elements to R12 and R22:

5
R12
R22

6
=

5
s�Ac�B ≠ R33c�As�B

c�Ac�B + R33s�As�B

6
=

5
sin(�A ≠ R33�B)
cos(�A ≠ R33�B)

6
(6.11)

where the last equality is true because R33 = 1 or R33 = ≠1. In this case, Algorithm 2
can also be used with the following modification: {Ï1B , Ï2B , Ï2A} are randomly sam-
pled, whereas Ï1A is computed as Ï1A = Ï2A + R33�B + atan2(R12, R22), discarding
the point if Ï1A /œ [Ï

min

, Ï
max

].

6.2.2.3 Example: constant-orientation workspace for concave and
convex transitions

In this example, we assume that all design parameters are fixed at the default values
used in the example of section 6.2.1.3, except for �fl, whose value must be chosen so
as to allow the robot to perform a convex transition between di�erent faces of a beam,
as shown in Figure 6.4a. According to this figure, the desired position and orientation
for foot B relative to the fixed foot A are given by the following matrices:

RB/A =

S

U
0 ≠1 0
1 0 0
0 0 1

T

V ,

S

U
px

py

pz

T

V =

S

U
≠11
≠11

0

T

V cm (6.12)

Doing the calculations explained above for this rotation matrix, and using �fl = 5 cm
(default stroke for the linear actuators) yields the constant-orientation workspace of
Figure 6.4b. As in section 6.2.1.3, here we have sampled Nr = 2 · 106 random points
and, in order to extract the boundaries, we have discretized the Cartesian space into
nx = ny = nz = 50 cells along each axis. Note that, for the default stroke, the

168



6.2. Computing the Workspace of the HyReCRo Robot via Classical Monte Carlo Methods

EA

EB
11

 c
m

11 cm

foot A

foot B

foot B
Desired position 
and orientation

Desired position 
and orientation

foot B

Constant-orientation 
workspace for ∆ρ = 5 cm

Constant-orientation 
workspace for ∆ρ = 6 cm

foot A

foot A
Desired position 
and orientation

Constant-orientation 
workspace for ∆ρ = 5 cm

(a) (b)

(c) (d)

foot A

foot B

Column

Figure 6.4: (a) Desired position and orientation to change between di�erent faces of a beam. For
�fl = 5 cm (b), the constant-orientation workspace for the desired orientation does not contain
the desired point, but it contains the point for �fl = 6 cm (c). (d) Performing transitions between
di�erent beams using the default geometry.

desired point cannot be attained with the desired orientation because it lies outside the
computed constant-orientation workspace. However, if the workspace is recalculated
for �fl = 6 cm, we obtain the workspace of Figure 6.4c, which does contain the desired
point. Thus, choosing a linear actuator with a stroke of 6 cm would permit the robot
to change between di�erent faces of the beam in this example.

Note that the orientation defined in Equation (6.12) is also necessary for at-
taching foot B to the right column by performing a concave transition, as indicated in
Figure 6.4d. As shown in this figure, the constant-orientation workspace for �fl = 5 cm
contains points that are near the left face of the column. Thus, it is possible to attach
foot B to the column using the default geometry.

Note that, in the examples of Figures 6.2-6.4, one can approximately distinguish
the boundaries of the workspace, but not very accurately. In fact, the obtained bound-
aries are quite noisy, so that it is di�cult to exactly tell where is the real boundary
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(a) (b)

True workspace

boundaries

High-probability

regions

True workspace
Low-probability regions

Figure 6.5: Comparison between the workspace obtained sampling the joint coordinates from
uniform distributions (a) and the true workspace (b) of the HyReCRo robot. The workspace
in (b) has been obtained using the new method proposed in Section 6.4. The time required to
compute the workspaces (a) and (b) is the same.

of the workspace. This imprecision is even worse if all joint coordinates are sampled
from uniform distributions, as we will demonstrate later. This is a drawback of classi-
cal Monte Carlo methods, a drawback that cannot be solved by simply increasing the
number of randomly sampled points. We will analyze next this imprecision problem in
more detail, and later we will propose an improved Monte Carlo method that solves
it, being able to obtain more accurate workspaces without increasing the computation
time.

6.3 Accuracy Problems of Classical Monte Carlo Methods

In the previous section, we have used a typical or “classical” Monte Carlo method for
computing some workspaces of the HyReCRo robot. However, we have observed that
the accuracy of the so obtained workspaces was not very good, in the sense that the
boundaries of these workspaces were noisy and not very well defined. This section
analyzes this accuracy problem in more detail.

Usually, variable rk used in Equation (6.1) is a uniform random number in
(0, 1). However, as pointed out by Cao et al. [24], sampling from uniform distributions
generally yields inaccurate and nonuniform workspaces, in which some regions are very
dense and well-defined (regions populated by many workspace points) whereas other
regions, especially those near the boundaries of the workspace, are too sparse (regions
with comparatively much fewer points) and make it di�cult to figure out the true shape
of the workspace. For example, Figure 6.5a shows another example of the workspace of
a HyReCRo robot, composed of 9 ·106 random workspace points obtained by sampling
all joint coordinates from uniform distributions. Note that the true workspace of the
robot, shown in Figure 6.5b, is bigger and has much better defined boundaries than
the workspace obtained by sampling from uniform distributions, which has noisy and
irregular boundaries.
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The reason for this nonuniform density of the workspace is the nonlinearity
of the forward kinematics transformation, which transforms joint coordinates q into
position coordinates X of the end-e�ector. Although joint coordinates are distributed
uniformly, this uniformity is not conserved by the nonlinearity of the transformation
q æ X. As a result, X is distributed according to a nonuniform distribution, which
has high-probability regions (regions in which workspace points are generated more
often, like the internal regions indicated in Figure 6.5a) and regions of low probability
(sparse regions in which points are hardly generated, like the workspace boundaries
in Figure 6.5a). It should be noted that, although this nonuniform density may be
undesirable for obtaining accurate workspaces, it is useful as a measure of the degree
of redundancy of the robot across its workspace [23]. Indeed, the denser a region of
the workspace is, the higher the redundancy is, because it means that the end-e�ector
can be placed in that region with a wider variety of configurations.

To correct this accuracy problem and increase the density of points in sparse
regions, one may try to increase the number of randomly generated points, increasing
in this way also the computation time. However, this is not an e�cient solution since
most points still fall in high-probability regions [24]. Alternatively, to solve this problem
and achieve higher accuracy (especially near workspace boundaries), Cao et al. [24]
proposed using symmetric U-shaped beta distributions to sample the joint coordinates,
instead of using uniform distributions. In that case, rk in Equation (6.1) is a random
variable with the following probability density function:

f(rk, —k) = K [rk (1 ≠ rk)]—k≠1 (6.13)

where 0 < rk < 1, 0 < —k Æ 1 and K is a normalization constant such thats 1
0 f(rk, —k) drk = 1. This U-shaped distribution, shown in Figure 6.6 for di�erent

values of —k, diverges to infinity at rk = 0 and rk = 1, and it is symmetric with
respect to rk = 0.5, where the minimum probability occurs. Parameter —k determines
the shape of the distribution: the smaller —k is, the less probable the values around
rk = 0.5 are, and the more probable the values near the limits (rk = 0 and rk = 1)
are. As —k increases, the distribution adopts a more horizontal shape, and all values of
rk œ (0, 1) acquire a more similar probability. The uniform distribution is a particular
case of the beta distribution when —k tends to 1 (see the case —k = 0.99 in Figure 6.6).

As demonstrated in [24], using the beta distribution of Equation (6.13) to ran-
domly sample the joint coordinates may yield more uniform workspaces, and with better
defined boundaries, than using uniform distributions (generating in both cases the same
number of random points). This is because, in many cases, the boundaries are typically
attained when some joint coordinates reach their joint limits. If the beta distribution
of Equation (6.13) is used, values of rk near 0 and 1 will be generated more often than
other values. Thus, according to Equation (6.1), more vectors of joint coordinates q
will be generated near the joint limits. When transforming these vectors into workspace
points, more points will be generated near the boundaries and, as a consequence, these
boundaries will be better defined. For this reason, some intermediate joint coordinates
were sampled from beta distributions in the examples of sections 6.2.1 and 6.2.2.
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Figure 6.6: Symmetric U-shaped beta distribution.

Although using beta distributions may yield more accurate workspaces than uni-
form distributions, we have shown in sections 6.2.1 and 6.2.2 (and it will become even
more evident after studying some more examples later) that this higher accuracy may
still be insu�cient. In the next section, we propose a new Monte Carlo method based
on normal distributions to compute the workspace of robot manipulators. This new
method will be compared with classical methods that use uniform or beta distributions,
and we will demonstrate that the proposed method is able to obtain much more accu-
racy than previous Monte Carlo methods, requiring the same or less computation time
than these methods.

6.4 An Improved Monte Carlo Method Based on Gaussian
Growth

A drawback of classical Monte Carlo methods, in which joint coordinates are sampled
from some random distribution (e.g., from uniform or beta distributions), is the fact
that the random workspace points generated by these methods are distributed nonuni-
formly throughout the workspace. Thus, some regions are very dense and accurately
defined whereas other regions are sparse and poorly defined. To densify these sparse
regions and improve the accuracy of the workspace, it is necessary to increase the
number of randomly generated points. However, that solution is not e�cient because
most of the newly generated points still fall in high-probability regions, i.e., much of
the e�ort made to densify sparse regions is wasted in populating areas of the workspace
that are already su�ciently populated.

Instead of using previous brute-force methods, in which more and more random
points are generated in the whole workspace only to densify sparse regions, it would be
more e�cient to directly focus on densifying low-density regions until a uniform density
is achieved throughout the workspace. In that case, all regions of the workspace would
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be equally well defined, including the boundaries. This is the objective of the method
proposed in this section. Basically, the proposed method consists in generating an
initial or seed imprecise workspace using a classical Monte Carlo method, and then
growing and densifying low-density regions of this seed workspace using Gaussian (or
normal) distributions. The method is divided into two stages, which are described next.

6.4.1 Stage 1: Generating a Seed Workspace
First, a classical Monte Carlo method is used for generating Ns workspace points,
where Ns is much smaller than the number of points that will constitute the final
dense workspace that will be obtained after both stages of the method have been
completed. The objective at this point is to quickly generate, with little e�ort, an
initial imprecise approximation of the workspace, whose points will be used as seeds
around which an accurate and dense approximation of the workspace will be grown
during the second stage of the method. Seed points can be generated sampling the
joint coordinates from any random distribution, e.g., from uniform or beta distributions.
Appropriate choices for this initial distribution will be briefly discussed in section 6.5.

To identify the regions of the workspace that have low density of points and
need to be densified, it is necessary to discretize the 3D space into a set of cells with
desired resolution along each dimension, and count the number of workspace points
inside each cell. To this end, a box B = [x

min

, x
max

] ◊ [y
min

, y
max

] ◊ [z
min

, z
max

] is
first defined, which will enclose the densified workspace. Next, this box B is discretized
into smaller cells, dividing its X, Y , and Z dimensions into nx, ny, and nz equal parts,
respectively (see Figure 6.1a).

Next, a database of cells is created, and the Ns seed points are stored in the
corresponding cells of this database, storing up to Nc points in each cell (if the method
attempts to store a point in a cell which already has Nc points, then that point
is discarded). When storing each workspace point Xm in the cell in which it falls
(m = 1, . . . , Ns), we also store the vector of joint coordinates qm that generated Xm

(see Figure 6.7c). This is because qm will be used in the second stage of the method
to densify and grow the workspace. This step is illustrated in Figure 6.7 for the 2D
case, for the sake of clarity.

After finishing the previous step, the cells containing Nc points are considered
to be su�ciently dense, and the second stage of the method will not try to densify
them. On the contrary, non-empty cells containing less than Nc points are included in
a list PC of “pending cells”, which is the set of cells that will be densified during the
second stage of the method, since it is considered that they do not contain enough
points to accurately define a workspace region.

6.4.2 Stage 2: Densifying and Growing the Seed Workspace
Upon the completion of the first stage, we have a list PC of non-empty cells which
should be densified since they contain less than Nc workspace points. The second
stage of the proposed method focuses on densifying all pending cells until PC is
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Figure 6.7: A 2D example of the first stage of the proposed GG method. (a) First, N
s

= 17 seed
joint coordinate vectors are randomly sampled in the joint space. (b) These vectors are mapped
to the workspace solving the forward kinematic problem. The workspace is enclosed by a box B,
which is discretized into n

x

= 4 and n
y

= 3 cells along the X and Y axes, respectively. (c) A
database of cells is created, and up to N

c

= 3 points are stored in each cell. Cells {#2, #3, #12}
are empty, cells {#1, #4, #6, #7, #9, #10, #11} are pending cells, and cells {#5, #8} are full.
Although cell #5 contains four points, only the first three points {X1, X5, X8} are stored in the
database since N

c

= 3.

empty, growing also the workspace during this densification process. The steps of this
stage are summarized in Algorihtm 3. Next, these steps will be detailed, omitting first
some lines of Algorithm 3 for ease of exposition. The omitted lines will be described
later.

The second stage of the method will not stop until list PC is empty (line 1 of
Algorithm 3), i.e., until all pending cells have been densified. For each cell C œ PC,
the algorithm will try to generate new random workspace points in C, until C contains
Nc points (line 5). To generate a new point in C, one of the workspace points already
stored in C is selected randomly (line 12). This randomly chosen workspace point of
C is denoted by X0, and the vector of joint coordinates that generated X0 is denoted
by q0 (line 13). Note that q0 is known because it was stored in the database created
in the first stage, together with X0. Then, a new vector of joint coordinates qú can
be generated in the neighborhood of q0 using a multivariate normal distribution with
mean q0 and appropriate covariance matrix. Alternatively, instead of sampling from a
multivariate normal distribution, it may be simpler and su�cient to sample each joint
coordinate qú

k of qú independently from a univariate normal distribution with mean q0
k

and standard deviation ‡k (k = 1, . . . , d), as shown in line 14.

If the newly generated vector of joint coordinates qú satisfies the joint limits,
the forward kinematic problem is solved to obtain the position Xú of the end-e�ector
(lines 15 and 16). Next, it is checked if the generated position satisfies other additional
constraints that may be considered, such as a desired orientation for the end-e�ector,
or the absence of mechanical self-interferences or interferences with obstacles of the
environment (line 17). If all constraints are satisfied, we proceed to the following steps.

Following, if point Xú is inside box B, both Xú and qú are stored in the cell Cú

of B in which Xú falls, provided that Cú is not full (lines 18 to 25). Note that if Xú is
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the first point stored in cell Cú (i.e., the cell was empty prior to storing Xú in it), this
cell is included in the list PC of pending cells which require densification (lines 21 and
22). Similarly, if Xú is the point that fills cell Cú (i.e. Xú is the Nc-th point stored in
Cú), this cell is removed from the list of pending cells (lines 24 and 25).

Note that the cell Cú in which the generated point Xú falls may not be the
current cell C that we are trying to densify, especially if the standard deviations used to
generate Xú are too large (i.e., qú is generated too far from q0). Thus, it may take too
long to fill each pending cell C if the algorithm finds it di�cult to generate points inside
C. To avoid this, variable standard deviations are used instead of constant deviations.
When beginning to densify each cell C, the standard deviations used to sample random
joint coordinates from normal distributions are initialized to desired values ‡ini

k (line 3).
Then, if the algorithm fails too often to generate points in C (because most randomly
generated workspace points fall in cells other than C), the standard deviations are
decreased so that the normal distributions centered at q0 become narrower and the
probability of generating a point close to q0 (which does generate a point in C)
increases.

The decrease of standard deviations is implemented as follows. Every time the
algorithm fails to generate a point in current cell C, a counter variable nf (which
counts the number of successive failed attempts to generate a point in C) is increased
by one unit (line 11). When nf exceeds a threshold nmax

f , nf is reset and each standard
deviation ‡k is decreased dividing it by Êk > 1 (lines 8 to 10). Whenever the algorithm
manages to generate a point in C, counter nf is reset (lines 26 and 27).

The proposed method not only guarantees a uniform densification of the work-
space, it also guarantees the growth of the workspace beyond the initial seed workspace
obtained during the first stage of the method. When attempting to generate more
points in each pending cell C, some of the generated points will fall in nearby cells due
to the shape of the normal distribution (which has a decreasing but non-zero probability
density as we move away from the mean). This means that, when trying to densify
each cell C, the algorithm will also densify nearby cells, and in particular it will store
points in nearby cells that were previously empty. These cells will be included in the
list of pending cells, and when the algorithm tries to densify them the process will
repeat: new cells around these will be populated, and this process will continue until
the boundaries of the workspace are attained.

Finally, it should be noted that the algorithm does not necessarily have to com-
pletely densify all workspace cells to obtain an accurate workspace, i.e., it is not nec-
essary to store exactly Nc points inside each cell, as justified next. When trying to
densify an arbitrary pending cell C, if all its neighboring cells contain points, then we
can conclude that C is not a boundary cell and we can guarantee that both C and its
neighbors can be attained by the robot. Thus, there is no need to continue generat-
ing more points in C, which can be removed from list PC (lines 6 and 7). If C has
empty neighboring cells, C may be a boundary cell and the algorithm should continue
densifying C and trying to populate its neighbors, to ascertain whether the workspace
has a boundary at C or, on the contrary, the workspace can be grown further beyond
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C. Avoiding the complete densification of non-boundary cells saves computation time
without a�ecting the accuracy of the final result.

After the second stage of the method has finished, the workspace is made up
of all points that have been stored in cells of box B, and the boundaries can be
approximated by the set of non-empty cells that have empty neighboring cells.

Next, the performance of the method proposed in this section will be compared
with classical Monte Carlo methods. The comparisons will be performed using the
HyReCRo robot as a case study.

Algorithm 3 Gaussian densification and growth of the seed workspace
1: while list PC of pending cells is not empty do
2: C Ω first pending cell of list PC
3: Initialize standard deviations: ‡k Ω ‡ini

k (k = 1, . . . , d)
4: nf Ω 0
5: while C contains less than Nc points do
6: if All neighboring cells of C contain points then
7: Remove C from PC and go back to line 1
8: if nf > nmax

f then
9: nf Ω 0

10: Decrease standard deviations: ‡k Ω ‡k/Êk (k = 1, . . . , d)
11: nf Ω nf + 1
12: X0 Ω workspace point randomly picked among those in C
13: q0 Ω vector of joint coordinates that generated X0

14: Sample qú around q0: qú
k Ω Normal(q0

k, ‡k) (k = 1, . . . , d)
15: if qú satisfies joint limits then
16: Solve the forward kinematic problem, obtaining Xú from qú

17: if Xú satisfies additional constraints then
18: if Xú œ B then
19: Find the cell Cú of B in which Xú falls
20: if Cú has less than Nc points then
21: if Cú is empty then
22: Add Cú to list PC
23: Store Xú (and also qú) in cell Cú of the database
24: if Cú contains Nc points then
25: Remove Cú from list PC
26: if Cú = C then
27: nf Ω 0

6.5 Examples, Comparative Analysis, and Discussion

In this section, we will apply the proposed Monte Carlo method based on Gaussian
Growth (which we will denote by GG hereafter) to obtain some example workspaces of
the HyReCRo robot, demonstrating the advantages of the proposed GG method.
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In section 6.2, we found it more convenient to obtain the workspace of the HyRe-
CRo robot by randomly sampling its intermediate joint coordinates, since this avoids
having to solve the forward kinematics of the 2RPR-PR parallel modules. However, in
this section we will randomly sample the active joint coordinates (i.e., lengths lij and
rij , as well as rotations ◊j) instead of the intermediate ones. This is because, for other
general robots, “intermediate joint coordinates” analogous to those of the HyReCRo
robot may not be always defined, whereas active/actuated joint coordinates are always
defined for any robot manipulator, independently of its architecture (serial, parallel, hy-
brid...). Thus, in order to illustrate the proposed GG method with an example that can
be representative, meaningful, and extrapolable to other robots (for which active joint
coordinates are always well defined), in this section we will randomly sample the active
joint coordinates of this robot, and vector q involved in the calculations described in
previous section 6.4 will be: q = [l1A, r1A, l2A, r2A, l1B , r1B , l2B , r2B , ◊A, ◊B ]T .

Note that, since we have decided to sample the active joint coordinates of the
HyReCRo robot, we have to solve the forward kinematics of the 2RPR-PR parallel
modules that make up its legs, and this problem has four possible solutions for each
parallel module. However, recall from the previous chapter that only one of these
four solutions is valid for the HyReCRo robot: the one with highest value for yij (the
remaining three solutions imply some mechanical interferences between di�erent parts
of the robot). Thus, when solving the forward kinematics of the parallel modules in
the next examples, we will always use this only valid solution.

In the next examples, we will compute the reachable and constant orientation
workspaces of the HyReCRo robot. To this end, and as we have done in section 6.2,
we will compute positions of foot B relative to foot A using Equation (6.2). Also,
we will use Equation (6.3) for computing constant orientation workspaces. For joint
coordinates lij and rij , we will consider the following joint limits: qmin

k = fl0 and
qmax

k = fl0 + �fl (recall that fl0 is the minimum length of the linear actuators, whereas
�fl is their stroke).

For joint coordinates {◊A, ◊B}, as argued in section 6.2.1.1, it will be assumed
that they do not have joint limits, i.e., the legs can rotate freely with respect to the
hip. However, since the configuration of the robot will not be a�ected if an integer
multiple of 2fi rad is added to angles {◊A, ◊B}, we will restrict these angles to interval
[0, 2fi]. Although {◊A, ◊B} are restricted to this interval, since 0 and 2fi are not true
joint limits of these joint coordinates, the beta distribution should not be used to
sample them. (Recall that the objective of using the beta distribution is to favor the
generation of joint coordinates near their joint limits, since these generate workspace
points that typically are near the boundaries of the workspace, which helps to better
define these boundaries.) Therefore, when using classical Monte Carlo methods in the
following examples, angles {◊A, ◊B} will always be uniformly sampled in [0, 2fi], even
if the remaining joint coordinates (lengths {l

ij

, r
ij

} of the eight linear actuators) are
sampled from beta distributions.

To calculate the workspace of the HyReCRo robot in the next examples, the
following values will be used for the design parameters: b = p = 4, h = 16, t = 15.6,
fl0 = 19, and �fl = 6 (all values are in cm).
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Also, it should be remarked that, in all the examples that follow, we will impose
the additional condition that the legs of the robot should not collide. To check if legs
collide, each leg is approximated by the union of two cuboids (one for the foot and
another for the mechanism that connects the foot to the hip). Then, the Separating
Axis Theorem [52] is used for checking if any cuboid of one leg intersects any cuboid
of the other leg.

In the next subsections, we will present a comparison of di�erent Monte Carlo
methods to compute the workspace of the HyReCRo robot. The new Gaussian Growth
(GG) method proposed in Section 6.4 will be compared with classical Monte Carlo
methods (whose accuracy problems were discussed in Section 6.3). When using clas-
sical Monte Carlo methods, joint coordinates will be sampled from uniform or beta
distributions. As explained above, when sampling from beta distributions, only the
joint coordinates with true joint limits (i.e., lengths {l

ij

, r
ij

} of the linear actuators)
will be sampled from beta distributions; the rotations of the hip (◊A and ◊B) will be
uniformly sampled in [0, 2fi].

All examples shown in this section have been implemented in Java programming
language and have been tested on a Mac Pro with a 3 GHz 8-Core Intel Xeon E5
processor and 16 GB RAM. Normally distributed random numbers were generated from
uniformly distributed random numbers in (0, 1) using Box-Muller’s method (see [49],
p. 235). Similarly, beta random numbers were generated from uniform random numbers
in (0, 1) using Johnk’s method (see [49], p. 432), which is a fast method when the
shape parameter — satisfies 0 < — < 1 (which is our case).

In all the examples that follow, the seed workspace of the new proposed GG
method will be generated by sampling the joint coordinates with joint limits from the
beta distribution with — = 0.1 (◊A and ◊B will be uniformly sampled). This choice
is motivated by two facts that will be observed in the following experiments. In the
first place, when generating the same number of workspace points using di�erent
values of —, computation time usually decreases with —. In the second place, when
generating the same number of workspace points, these points are more diverse when
— is smaller, whereas using a higher value of — (or a uniform distribution, in the limit
— æ 1) generates points that are more similar, which is not good for the growing
stage of the GG method. To begin growing the workspace in the GG method, it is
more convenient to start from diverse and scattered seed points, than from very similar
points concentrated in few regions.

6.5.1 Example 1: Reachable Workspace
In this example, we compute the reachable workspace, which is the set of points that
can be reached by foot B with at least one orientation, i.e., we are not concerned about
the orientation of foot B. To obtain this workspace, we only need to randomly sample
the joint coordinates and solve the forward kinematic problem to obtain the position
X of foot B [Equation (6.2)], checking for the absence of collisions between the legs
of the robot.
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First, the proposed GG method is used to calculate the workspace. A seed
workspace of Ns = 10, 000 points is generated by sampling all joint coordinates from
beta distributions with — = 0.1, except for rotations ◊A and ◊B , which are uniformly
sampled in [0, 2fi]. Next, the second stage of the method is executed to grow and
densify this seed workspace, defining the following box to enclose the workspace: B =
[≠70, 70]◊ [≠30, 70]◊ [≠45, 45] (all dimensions are in cm). This box is discretized into
100 cells along each axis, i.e., nx = ny = nz = 100. The number of desired points in
each cell is Nc = 10. The maximum number of consecutive failed attempts when trying
to generate a point in each cell is nmax

f = 10. Whenever this maximum is exceeded,
all standard deviations are divided by Êk = 1.01. The initial standard deviations of
the joint coordinates when beginning to densify each cell are: ‡ini

k = �qk/6, where
�qk = �fl for the lengths {l

ij

, r
ij

} of the linear actuators, and �qk = 2fi rad for
{◊A, ◊B}.

Executing the GG method with the previous parameters, it takes 17.76 minutes
to generate a workspace of 3,527,664 points. This is the time necessary to execute the
second stage of the method (densification and growth); the time required to generate
the seed workspace is only about 0.04 minutes, which makes it negligible. Next, these
points are assigned to the corresponding cells of box B and the boundary cells are
extracted. Figure 6.8a shows the boundary surface of the calculated workspace, which
is approximated by the centers of all boundary cells. The intersection between this
boundary and the plane z = 0.45 cm is shown in Figure 6.9a. As these figures show,
the reachable workspace has a single large connected component with a lens-shaped
void inside. This internal void encloses foot A, and it originates from the condition of
no-interference between the legs of the robot.

Next, classical Monte Carlo methods are used for calculating the workspace,
generating the same number of points as the GG method (3,527,664 points). The
boundaries of the workspaces obtained with classical Monte Carlo methods are shown
in Figures 6.8b to 6.8f. Figure 6.8f shows the boundaries obtained when all joint
coordinates are uniformly sampled, whereas Figures 6.8b to 6.8e show the boundaries
obtained when sampling all joint coordinates from beta distributions with the indicated
values of — (except for {◊A, ◊B}, which are uniformly sampled in all these cases).

To facilitate the assessment of the precision of the obtained workspaces, Fig-
ure 6.9 shows the intersections of the boundaries of Figure 6.8 with the plane z = 0.45
cm. As these figures show, for the same number of random points, the proposed GG
method generates a much more precise workspace than classical Monte Carlo methods,
which yield noisy, thick and inaccurately defined workspace boundaries in all cases. The
second best result after the GG method is obtained for — = 0.1. Note that the shape of
the workspace becomes more distorted as — increases, and for — Ø 0.5 (approximately)
the region above the internal void seems unreachable, which is false. The workspace
obtained when sampling uniformly all joint coordinates is worthy of special mention,
since it is the least accurate one (Figures 6.8f and 6.9f).

Figure 6.10 shows the time (in minutes) taken by each method to generate
3,527,664 random points. Note that the proposed GG method takes about 2.5 times
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Figure 6.8: Boundaries of the reachable workspace, obtained with di�erent Monte Carlo meth-
ods. The shown boundaries have been extracted from workspaces composed of 3,527,664 points
each.

more time than the other methods, which is not surprising due to its higher precision.
The question that arises now is: can the other methods generate as accurate workspaces
as the GG method if the number of random points is increased until their computation
times equal the time of the GG method? To answer this, the number of random points
is increased for classical Monte Carlo methods, until their computation times equal
approximately 17.76 minutes. Figures 6.11b to 6.11f show the intersections of the
resulting workspace boundaries with the plane z = 0.45 cm, along with the number of
random points and the actual computation time in each case.

As Figure 6.11 shows, the GG method is still much more accurate than the
other methods for the same computation time. Note that, although the precision of
the other methods has improved slightly, they generate boundaries that are still too
noisy and inaccurately defined. This supports the idea that increasing the number
of random workspace points is not an e�cient solution for improving the accuracy of
classical Monte Carlo methods [24].

6.5.2 Example 2: Workspace with Equality Constraints
In this example, we are interested in calculating a constant-orientation workspace, i.e.
the set of points that can be attained with a desired orientation of foot B. The desired
orientation is defined by the following rotation matrix, which is a rotation of fi/2 rad
about the Z axis:

Rdesired =

S

U
0 ≠1 0
1 0 0
0 0 1

T

V (6.14)
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Figure 6.9: Intersections between the boundaries of Figure 6.8 and the plane z = 0.45 cm.
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Figure 6.10: Time required to generate 3,527,664 workspace points with di�erent Monte Carlo
methods.

As in section 6.2.2.3, this orientation is necessary for performing concave or convex
plane transitions in 3D structures. Furthermore, we are interested only in the intersec-
tion of this constant-orientation workspace with the plane z = 0, since the motions
necessary for performing these transitions are planar. Equating the rotation matrices
of Equations (6.3) and (6.14) yields the following two equations:

cos(◊A ≠ ◊B) = 1 and sin(�A ≠ �B) = ≠1 (6.15)

The previous two equations, together with the condition z = 0, impose three additional
equality constraints to the problem of calculating the workspace. Next, these equality
constraints will be handled following two di�erent approaches.
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Figure 6.11: Slices at z = 0.45 cm of the workspaces obtained using di�erent Monte Carlo
methods (the time is the same in all cases). The number of points of the complete workspace
(i.e., not only of the shown planar boundaries) is indicated in each case.

6.5.2.1 First approach: approximating equalities by inequalities

The constant-orientation workspace can be calculated following the same procedure
followed to calculate the reachable workspace in the previous example, using any Monte
Carlo method described in this chapter. The only di�erence is that, in addition to
checking the condition of avoiding self-interferences, one should also check that the
three aforementioned equality constraints are satisfied for each randomly generated
workspace point. However, due to the numerical and random nature of Monte Carlo
methods, it is practically impossible that a randomly generated workspace point satisfies
exactly all three equalities simultaneously. Thus, it is necessary to transform the
equalities into inequalities [68], which are easier to satisfy. In this example, the three
equality constraints can be approximated by the following inequalities:

|z| < ‘1, | cos(◊A ≠ ◊B) ≠ 1| < ‘2, | sin(�A ≠ �B) + 1| < ‘3 (6.16)

where ‘i are su�ciently small. Evidently, the approximation will be better when ‘i are
smaller, but it will also be more di�cult to satisfy these inequalities and the compu-
tation time will increase (more random points will need to be sampled until we obtain
a su�ciently high number of points that satisfy all these narrow inequalities). Next,
we will compute the constant-orientation workspace using di�erent Monte Carlo meth-
ods, including the inequality restrictions of Equation (6.16) in the calculation with the
following thresholds: ‘1 = 0.5 cm, ‘2 = 0.05, and ‘3 = 0.001.

First, the GG method is used. A seed workspace of 1,000 points is generated
by sampling all joint coordinates from beta distributions with — = 0.1, except for
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Box B

X

Y Approximate workspace
obtained with the GG method

True workspace

Figure 6.12: Planar constant-orientation workspace, obtained approximating all equality con-
straints by narrow inequalities.

{◊A, ◊B}, which are uniformly sampled in [0, 2fi]. The time required for generating
the seed workspace in this case is 10.42 minutes. This increase in time with respect
to the previous example is due to the fact that the workspace points must satisfy
the narrow inequalities of Equation (6.16) in addition to the condition of avoiding
self-interferences. After generating the seed workspace, the densification and growth
stage of the GG method is executed. To enclose the workspace, the following box is
defined: B = [≠25, 65]◊ [≠20, 60]◊ [≠0.5, 0.5] (values in cm). This box is divided into
nx = 200, ny = 200, and nz = 1 cells along the X, Y , and Z axes, respectively (since
the workspace is planar, the box is not discretized along the Z axis). The number of
desired points in each cell is Nc = 50, and the maximum number of successive failed
attempts is nmax

f = 100. Whenever this maximum is exceeded, all standard deviations
are divided by Êk = 1.01, and the initial standard deviations of the joint coordinates
when beginning to densify each cell are again: ‡ini

k = �qk/6.

Running the second stage of the GG method with the previous parameters, it
takes 4.01 minutes to densify and grow the seed workspace. The workspace obtained
after the second stage has finished is composed of 352,330 points. Thus, the net time
necessary to execute the GG method in this example is 14.43 minutes, which is the sum
of the time necessary for generating the seed workspace (10.42 minutes, not negligible
in this case) and the time necessary for growing and densifying the seed workspace (4.01
minutes). The boundaries of the resulting planar workspace are shown in Figure 6.12,
along with the true boundaries, which are shown in continuous line. Note that the
obtained workspace does not exactly coincide with the true one. This is because the
equality constraints have been approximated by the inequalities of Equation (6.16).

If we tried to generate the workspace with the same number of points (352,330)
using classical Monte Carlo methods, the computation time would increase notice-
ably. For example, as shown immediately above, it takes 10.42 minutes to generate
1,000 seed points when sampling the joint coordinates from beta distributions with
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— = 0.1 (except {◊A, ◊B}, which are uniformly sampled). If all joint coordinates are
sampled from uniform distributions, the time necessary to generate 1,000 workspace
points increases to 39.47 minutes. Extrapolating, it is easy to conclude that the time
necessary to generate 352,330 points using classical methods would be several hours
(or even days), whereas the GG method only needs about 15 minutes to create the
seed workspace and grow/densify it.

This example demonstrates that the proposed GG method is advantageous over
classical Monte Carlo methods when narrow constraints are present, such as those
obtained when approximating equalities by inequalities. This is because classical Monte
Carlo methods generate points in the whole workspace without restriction or guidance,
which makes it di�cult to generate points that satisfy all narrow inequalities. On the
contrary, the GG method focuses on generating points near those that already satisfy
the narrow inequalities, i.e., it is a more directed search.

6.5.2.2 Second approach: solving the equality constraints

Although the first approach is simple, the drawback of approximating equality con-
straints by narrow inequalities is that the computation time can be high since it is
di�cult to generate points that satisfy all narrow inequalities, and the result is always
approximate (see Figure 6.12). Wang et al. [191] proposed an alternative way of
dealing with equality constraints in Monte Carlo methods, which is explained next.

First, the joint coordinates q are divided into two classes: independent joint
coordinates qind and dependent joint coordinates qdep. Next, only the independent
joint coordinates are randomly sampled, whereas the dependent joint coordinates are
solved from the equality constraints in terms of qind . Then, if qdep satisfies the joint
limits, the method continues as usual: the forward kinematic problem is solved and
X is obtained. Since the dependent joint coordinates satisfy the equality constraints,
this guarantees that vector X also satisfies these constraints exactly. In essence, this
is the same strategy that we followed in section 6.2.2, in which some intermediate
joint coordinates were solved from the constant-orientation equations in terms of other
intermediate joint coordinates.

This approach is faster and more accurate than the one of Section 6.5.2.1. How-
ever, it is only feasible if the dependent joint coordinates qdep can be easily solved from
the constraints, preferably if we can obtain qdep analytically in terms of qind . In the
example studied in this section, it can be shown that, if the joint coordinates are par-
titioned as qind = [l1A, l2A, r2A, l1B , r1B , l2B , r2B ]T and qdep = [◊A, ◊B , r1A]T , then
it is possible to solve analytically qdep in terms of qind from the equality constraints.
Thus, the method described in [191] can be used in this example.

Once the joint coordinates have been divided into independent and dependent
joint coordinates, both the classical and GG Monte Carlo methods described in this
chapter can be applied with only two modifications. In the first place, instead of ran-
domly sampling the vector of all joint coordinates q from some random distribution
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(uniform, beta, or normal) in any of the previous methods, only the vector of inde-
pendent joint coordinates qind must be sampled (similarly, qind instead of q must
be stored in the cell database in the GG method). In the second place, after ran-
domly sampling qind , qdep must be solved from the equality constraints and it must
be checked if qdep satisfies the joint limits.

Next, the GG method will be used with the modifications described in the
previous paragraphs to compute the planar constant-orientation workspace solving the
three aforementioned equality constraints. The parameters of the densification and
growth stage of the GG method have the same values as in Section 6.5.2.1. First, a
seed workspace of 1,000 points is generated sampling the independent joint coordinates
qind = [l1A, l2A, r2A, l1B , r1B , l2B , r2B ]T from beta distributions with — = 0.1, which
takes about 0.02 minutes. Then, the densification and growth stage of the GG method
is executed, which takes 2.95 minutes and generates a planar constant-orientation
workspace consisting of 521,212 points. The boundaries of the resulting workspace,
which has two connected components, are shown in Figure 6.13a. In this case, the
time necessary for generating the seed workspace is negligible compared to the time of
the densification and growth stage.

Next, classical Monte Carlo methods are used for generating 521,212 workspace
points, sampling all independent joint coordinates from uniform or beta distributions,
and solving the dependent joint coordinates qdep = [◊A, ◊B , r1A]T from the equality
constraints. The boundaries of the obtained workspaces are shown in Figure 6.13b-
f, and the times required for generating 521,212 points in each case are shown in
Figure 6.14.

As Figure 6.13 shows, the most accurate workspace is obtained using the GG
method, while the other methods produce noisy and inaccurate boundaries. Again,
the worst results are obtained when sampling from uniform distributions, and smaller
values of — yield better results than higher values.

Moreover, Figure 6.14 shows that, in this example, the GG method is the fastest
method for generating the same number of random workspace points (521,212), unlike
in the example of Section 6.5.1. Thus, we can conclude that the GG method can
obtain more precise workspaces than classical Monte Carlo methods even requiring less
computation time, as this example shows.

6.5.3 Discussion
The previous experiments demonstrate that the GG method can calculate more ac-
curate workspaces than previous classical Monte Carlo methods (which use uniform
and/or beta distributions) requiring the same calculation time. Moreover, if additional
constraints are imposed to the calculation of the workspace (e.g., a desired orientation
for the end-e�ector), the GG method may even require less time than previous Monte
Carlo methods, attaining also higher accuracy.

These experiments have also confirmed two features of classical Monte Carlo
methods observed previously by Cao et al. [24], namely: using beta distributions may
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(a) GG (b) β = 0.1 (c) β = 0.3

(e) β = 0.7 (f) Uniform(d) β = 0.5

Box B
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Y

Figure 6.13: Boundaries of the planar constant-orientation workspace, obtained with di�erent
Monte Carlo methods. The shown boundaries have been extracted from workspaces composed of
521,212 points each.

yield better results than using uniform distributions, and increasing the number of ran-
dom points is not an e�cient solution for improving the accuracy. Besides, although
the uniform distribution is the most widely used one for calculating the workspace of
robots using Monte Carlo methods, the performed experiments discourage using this
distribution since it yields poor results when compared with other methods. Still, al-
though not detailed in this chapter, we have identified some cases in which uniform
distributions may perform quite well. For example, comparing the GG and uniform
sampling methods in robots containing only unbounded revolute joints (i.e., without
joint limits), like a general 7R serial arm, reveals that sampling from uniform distribu-
tions might generate workspaces that are almost as accurate as those obtained with
the proposed GG method, requiring the same computation time. Nevertheless, when
joint limits are imposed to these revolute robots, the GG method outperforms again
both beta and uniform sampling methods, obtaining higher accuracy requiring the same
computation time.

Finally, it may be possible that the proposed method misses some small com-
ponents of the workspace when it is composed of some disjoint components, as in the
example of Figure 6.13. Since the GG method is based on the growth of workspace
regions from the seed workspace, if the first stage of the method does not generate
at least one seed point in a given component of the workspace, then the method may
not grow and densify that component. There are several solutions to this problem,
which may also be combined. For example, the simplest solution consists in increasing
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Figure 6.14: Time required to generate 521,212 workspace points with di�erent Monte Carlo
methods, when solving the equality constraints.

the number Ns of seeds generated during the first stage of the algorithm, with the
purpose of increasing the probability of generating at least one seed in every compo-
nent. Note that, in the example of Section 6.5.2.2, a densified workspace of 521,212
final points was grown from a seed workspace of 1,000 points, which constitutes less
than 0.2% of the number of final points. Such a negligible ratio suggests that we may
increase Ns by at least one order of magnitude to try to generate seeds in all com-
ponents of the workspace, without practically a�ecting the overall performance of the
method. Another solution may consist in choosing an appropriate distribution for the
generation of the seed workspace, a distribution that favors the creation of diverse and
scattered points in all components of the workspace. As discussed at the beginning
of the present section 6.5, beta distributions may be useful for this purpose, but other
random distributions may also be explored.

6.6 GG Method in the Simulator of the HyReCRo Robot

The simulator of the HyReCRo robot presented in Section 5.5 can also be used for
studying the workspace of this robot using the GG method developed in this chapter.
To that end, the user must activate the workspace window through the “view” menu
at the top of the main window of the simulator, as illustrated in Figure 6.15a. When
doing this, the window shown in Figure 6.15b pops up. This window has two tabs:
“GG method” and “IK method”. The second tab will be analyzed in the next chapter.

As for the content of the first tab “GG method” shown in Figure 6.15b: in
this tab, the user can configure the GG method proposed in this chapter in order to
obtain the workspace of the HyReCRo robot. To that end, first the user must generate
the seed workspace (Figure 6.15c), indicating the number Ns of seed points to be
randomly generated, as well as the distribution from which the actuated joint coordi-
nates {lij , rij} of the parallel modules should be sampled for generating these random
points. These joint coordinates can be sampled from uniform or beta distributions,
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Figure 6.15: Computing the workspace of the HyReCRo robot using the GG method in the
developed simulator.

whereas ◊A and ◊B are always sampled from uniform distributions when generating
seed workspaces, due to the reasons exposed earlier in this chapter. After this, pressing
the button “Compute seed workspace” will generate the initial seed workspace from
which the GG method will grow a more precise workspace.

Following, the second stage of the method (densifying and growing) must be
executed. First, the user must define the box B that will enclose the workspace (Figure
6.15d), indicating the minimum and maximum coordinates of this box along each axis
(x

min

, x
max

, y
min

, y
max

, z
min

, z
max

) and the number of cells into which each axis
of this box will be discretized (nx, ny, nz). The visualization of this box in the main
window (Figure 6.15a) can be enabled or disabled by means of the tick-box entitled
“Show box” in Figure 6.15d (it is advisable to disable the visualization of this box
when finely discretizing it; otherwise, this box will have too many lines and it will be
impossible to distinguish the robot or the workspace in the simulator). After defining
box B in panel of Figure 6.15d, it is necessary to assign the seed workspace points to
the cells of this box by pressing the button “Assign to cells”, which initializes the cell
database illustrated in Figure 6.7c.

Next, the user must tune the parameters of the proposed GG method, which
can be done in the panel shown in Figure 6.15e. In this panel, the user must specify
the value of the initial standard deviations (actually, the user specifies a factor that,
multiplied by �qk/3, gives the initial standard deviations), the divider factor Êk > 1,
the number nmax

f of maximum consecutive failures when attempting to generate points
in each cell, and the number Nc of points to house in each cell.

After this, the user must click the button “Gaussian Growth” so that the method
proposed in this chapter starts running. After some time computing (which depends
on the configuration parameters of the method), the method finishes and shows the
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densified workspace in the main window of the simulator, together with the robot (as
in Figure 6.15a). Note that in the concrete example of Figure 6.15a the obtained
workspace is not very accurate, this is because a coarse discretization of box B was
used on purpose, in order to better illustrate this functionality of the developed sim-
ulator. Actually, the proposed GG method is able to compute workspaces much more
accurately, as we have demonstrated through the examples of Section 6.5.

Finally, in the simulator it is also possible to modify the geometric design pa-
rameters {b, p, t, h, fl0, �fl} of the HyReCRo robot. This can be done in the window
that appears when activating the button “View geometry window” in the “view” menu
at the top of the main window (Figure 6.15a). This is useful for studying how the
workspace is modified when varying the values of the geometric parameters of this
robot, as we have done in Section 6.2.1.3.

6.7 Conclusions

In this chapter, the boundaries of the workspace of the HyReCRo robot have been an-
alyzed. First, methods for computing workspaces have been reviewed in Section 6.1, in
order to choose suitable methods for computing the workspace of the HyReCRo robot.
Due to the complexity of this robot, which is serial-parallel and kinematically redun-
dant, it has been concluded that Monte Carlo methods seem the most suitable ones.
Accordingly, classical Monte Carlo methods have been used for computing reachable
and constant-orientation workspaces of the HyReCRo robot (Section 6.2). The sensi-
tivity of these workspaces with respect to the geometric design parameters of the robot
has been investigated, obtaining that these workspaces are most sensitive to variations
in the width p of the feet of the robot and in the stroke �fl of the linear actuators.
This coincides with the sensitivity analysis of the PSIK-workspace, performed in the
previous chapter.

After this preliminary analysis of the workspace of the HyReCRo robot, based
on classical Monte Carlo methods, the shortcomings of these methods have been dis-
cussed in Section 6.3, highlighting the low accuracy of the workspace boundaries ob-
tained by these methods. This accuracy problem cannot be e�ciently solved by simply
increasing the number of randomly sampled points. Thus, an improved Monte Carlo
has been proposed in Section 6.4 in order to alleviate this accuracy problem of clas-
sical Monte Carlo methods. The proposed method initially generates an imprecise
workspace using classical Monte Carlo methods, and then grows uniformly this initial
imprecise workspace using Guassian distributions, until the boundaries of the workspace
are reached. Through several experiments presented in Section 6.5, it has been demon-
strated that the proposed improved method can obtain much more accurate workspaces
than classical Monte Carlo methods, requiring the same or less computation time than
them. The proposed method has been implemented in the developed simulator of the
HyReCRo robot (Section 6.6).
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6.8 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• A. Peidró, A. Gil, J.M. Marín, Y. Berenguer, L. Payá, and O. Reinoso. Monte-
carlo workspace calculation of a serial-parallel biped robot. In Luís Paulo
Reis, António Paulo Moreira, Pedro U. Lima, Luis Montano, and Victor Muñoz-
Martinez, editors, Robot 2015: Second Iberian Robotics Conference, pages 157–
169, 2016. Springer International Publishing [131].

– This paper presents the computation of the workspace of the HyReCRo
robot using classical Monte Carlo methods, in order to determine the sensi-
tivity of the shape and size of the workspace with respect to the geometric
design parameters of this robot.

• A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, and L. Payá. An improved Monte
Carlo method based on Gaussian growth to calculate the workspace of robots.
Engineering Applications of Artificial Intelligence, 64:197 – 207, 2017 [145] (SCI-
JCR Impact Factor: 2.819, Q1).

– This paper presents the improved Monte Carlo method proposed in Section
6.4, which obtains more accurate workspaces than previous Monte Carlo
methods requiring at most the same computation time as them.
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7 Interior Barriers of the Workspace

In the previous chapter, we have computed and analyzed the workspace of the HyRe-
CRo robot, using di�erent Monte Carlo algorithms. However, in the previous chapter
we have focused only on the outermost boundaries of the workspace, omitting impor-
tant information about its internal structure, which includes interior barriers of the
workspace that cannot be crossed by the robot. In contrast, this chapter analyzes the
internal structure of the workspace of redundant robot manipulators. After reviewing
methods for computing the interior barriers of the workspace under di�erent condi-
tions (section 7.1), section 7.2 presents a new sampling method for obtaining these
barriers under joint limits and general collision constraints (previously existing meth-
ods for obtaining these interior barriers cannot easily accommodate general collision
constraints). The proposed method is based on the property that, when self-motion
manifolds of redundant robots vanish, then interior barriers occur (Section 7.1.1). After
demonstrating the capabilities and usefulness of the proposed method through several
examples of redundant parallel robots in section 7.3, section 7.4 proposes a variant of
this method that may be applied to the HyReCRo robot.

7.1 Interior Barriers of the Workspace

In the previous chapter, we have presented a new Monte Carlo method based on
Gaussian Growth which is able to obtain the workspace of robot manipulators more
accurately than previously existing Monte Carlo methods, requiring the same or less
computation time than them. In order to compare the accuracy attained by di�erent
Monte Carlo methods, in the previous chapter we obtained and compared the bound-
aries of the workspace obtained by di�erent methods. However, once we obtain the
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boundaries of the workspace, it does not mean that we have obtained all the infor-
mation regarding the workspace. These boundaries only provide information about
the external shape and volume of the workspace, but they omit important information
regarding its internal structure.

Usually, most of the methods reviewed in section 6.1 for obtaining the workspace
only obtain its boundaries, omitting highly valuable information about its internal struc-
ture. It is well known that inside the boundaries of the workspace there may exist in-
terior barriers (see Figure 7.1) which imply motion impediments for the robot [19, 1].
Knowing the distribution of such barriers inside the workspace is necessary for e�ec-
tively planning trajectories in the task space, since a given trajectory that crosses one
of these barriers may be unfeasible, depending on the values of the joint coordinates
when approaching the barrier (see next section 7.1.1).

Figure 7.1: Workspace of a redundant 3R serial robot with l1 = 17.3, l2 = 7.8 and l3 = 4.5.
The first joint angle is subject to joint limits ◊1 œ [15, 165]¶; the second and third joints can freely
rotate. This example is very similar to an example presented in [19].

Like the boundaries of the workspace, the interior barriers depend on the con-
sidered kinematic constraints, which typically are joint limits and collision constraints.
While existing methods can easily handle joint limits, collision constraints are gener-
ally very di�cult to model and accommodate by existing methods. However, collision
constraints are important for the HyReCRo robot, which must not collide with itself
or with the structure when climbing and exploring it. Therefore, the main objective of
the present chapter will be to find a way to obtain interior barriers under collision con-
straints e�ectively, for redundant robots. To that end, we will begin by analyzing how
we can obtain these interior barriers using the di�erent families of methods reviewed in
section 6.1, with the purpose of identifying the best strategy to attack this problem.

Singularity-based methods [19] naturally obtain the interior barriers among the
solutions of system S mentioned in section 6.1. Geometrical methods may also be able
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to identify such interior barriers in simple cases [see the comments about reference
[118] at the end of section 7.1.1 of the present chapter]. However, as argued in section
6.1, both these methods have the limitation that they cannot easily handle excessively
complex (yet common) kinematic constraints, such as the prohibition of collisions.

In this context, interval analysis has proven useful for checking collisions [117]
and obtaining collision-free generalized aspects [25] and workspaces [80] of non-redun-
dant parallel robots. However, to the best of our knowledge, these methods have not
been used for obtaining interior barriers in redundant robots under complex collision
constraints.

In contrast to the previous methods, sampling methods seem promising for ob-
taining the interior barriers of the workspace under complex collision constraints, due to
their ability to easily handle these constraints: one simply has to sample configurations
of the robot, and discard all configurations that do not satisfy collision constraints.
FK-based sampling methods might reveal the interior barriers in simple cases if joint
coordinates are sampled from appropriate random distributions [156]. For example: in
Figure 7.1, one can check that, if ◊1 is sampled from a U-shaped beta distribution
[Equation (6.13)] in [15¶, 165¶] and {◊2, ◊3} are uniformly sampled in [0, 360¶], then
the density of randomly generated task points will be higher near the interior barriers,
revealing them. However, this method is not completely robust nor predictable, and
not easy to generalize.

Therefore, the last available option is to detect interior barriers using IK-based
sampling methods. In non-redundant robots, the solutions of the inverse kinematics for
a given task-space point generically are a finite number of isolated points of the joint
space. Thus, in non-redundant robots, interior barriers can be easily found at those
task-space points where the number of di�erent inverse kinematic solutions changes. In
redundant robots, like the HyReCRo robot, the solutions of the inverse kinematics for
a given task-space point generically are a finite number of disjoint positive-dimensional
manifolds in the joint space (self-motion manifolds). One may try to identify interior
barriers with task-space points at which the number of such manifolds changes, but in
general (as we show in this chapter) this does not necessarily imply the occurrence of
interior barriers.

This chapter elaborates on the previous ideas and presents an IK-based sampling
method to obtain the boundaries and interior barriers of the workspace of redundant
robots, considering joint limits and collision constraints. The proposed method identi-
fies the barriers of the workspace (both interior barriers and external boundaries) with
the vanishing of self-motion manifolds, and consists of three stages: sampling, cluster-
ing, and matching. Firstly, self-motion manifolds are densely sampled by solving the
equations of the inverse kinematics, discarding the samples that do not satisfy joint
limits or collision constraints. Secondly, the obtained samples are clustered to identify
disjoint self-motion manifolds. Then, a third matching stage monitors the transforma-
tions su�ered by each identified manifold as a result of perturbing the task variables,
to determine if any of these manifolds vanishes when varying the task variables. If
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the vanishing of manifolds is detected when the task variables move between two suf-
ficiently close task points, this means that there exists a barrier between these two
points.

In this chapter, we will assume the following conditions and notation: consider
a redundant robot under joint limits and/or collision constraints. Assume that the
kinematic chain of the robot (which can be serial, parallel, or hybrid, as in the HyReCRo
robot) has n degrees of freedom (DOF) and the dimension of its task space is m < n.
This means that n actuated joint coordinates ◊ = [◊1, . . . , ◊n] are used to control m
task variables t = [t1, . . . , tm]. Typically, ◊j denote the lengths of linear actuators or the
rotated angles of revolute actuators, whereas ti define the position and/or orientation
of some output link of the robot which is of interest for a given task. The workspace
can be defined as the set of values that vector t can attain subject to the kinematics of
the robot (i.e., the mathematical relationship between ◊ and t) and to other kinematic
constraints (e.g., joint limits or avoidance of collisions).

Note that the analysis presented in this chapter is valuable not only for studying
purely redundant robots (like the HyReCRo robot), but also when analyzing certain
workspaces of non-redundant robots. For example, the workspace of a (not neces-
sarily redundant) 6-DOF robot is the 6D set of spatial translations and orientations
attainable by its end-e�ector. Since 6D sets cannot be represented, other 3D repre-
sentations are necessary for visually analyzing the workspace. One may fix the orien-
tation of the end-e�ector and represent only the attainable translations, obtaining the
constant-orientation workspace (see section 6.2.2). Alternatively, one may project the
6D workspace to the 3D subspace of translations, obtaining the reachable workspace
(i.e., the set of positions attainable by the end-e�ector with at least one orientation, see
section 6.2.1.3). Reachable workspaces, which are widely studied, are examples of “re-
dundant workspaces”, because they only retain information related to the translation
of the end-e�ector, omitting its orientation.

Next, before describing the proposed method in detail, we will analyze the re-
lationship between barriers (either interior barriers or boundaries) of the workspace of
redundant robot manipulators and their self-motion manifolds, in order to demonstrate
that, when connected components of these manifolds vanish, then such barriers occur.
This is the key property exploited by the method proposed in Section 7.2 for calculating
the workspace barriers induced by collision constraints.

7.1.1 Relationship Between Self-motion Manifolds and Interior
Barriers

In redundant robots, the inverse kinematic problem has infinitely many di�erent solu-
tions for a given task-space point. Generically, these solutions lie on a finite number of
disjoint positive-dimensional manifolds in the n-dimensional joint space. These mani-
folds are called self-motion manifolds because moving the robot along them modifies
the joint configuration ◊ of the robot without a�ecting the values of the task variables
t.
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Self-motion manifolds were introduced by Burdick [22], together with some
topological notions which are of paramount importance for the global kinematics of
redundant manipulators. These notions are: c-bundles, w-sheets, Jacobian surfaces,
and co-regular surfaces. Although these notions were originally introduced for robots
with serial architecture, the concept of self-motion manifold as the solution of the
inverse kinematic problem can be naturally extended to redundant manipulators with
other architectures (i.e., parallel or hybrid, like the HyReCRo robot) [123]. Next, we
will introduce these notions with an example.

Consider a hypothetical redundant robot with joint coordinates (◊1, ◊2) and
task variable t1. Therefore, its degree of redundancy is 1, which means that its self-
motion manifolds are curves. Assume that its configuration space (i.e., the set of
triplets [t1, ◊1, ◊2] that satisfy the kinematic constraints of the robot) is the surface
represented in Figure 7.2a. Seven task-space points {a, b, c, d, e, f, g} are identified in
this figure.

Figure 7.2: (a) Self-motion manifolds for task points {e, f, g} (in blue). (b) Singularities (in
red). (c) C-bundles (in yellow), co-regular “surfaces” (in red), Jacobian “surfaces” (in green), and
w-sheets (in magenta). Note: in this example, Jacobian and co-regular “surfaces” actually are
points and curves.

Let Me denote the curve obtained when intersecting the configuration space
with plane t1 = e (with a < e < b, Figure 7.2a). Me is a 1-dimensional (self-motion)
manifold such that all its points are mapped to e when projected to the task space (e is
the image of Me under this projection map). Therefore, Me is the preimage or solution
of the inverse kinematic problem for task point e. Similarly, the intersection between the
configuration space and plane t1 = f (with b < f < c) has two connected components
M1

f and M2
f , which are the preimage manifolds for task point f . Usually, self-motion

manifolds are projected to and visualized in the joint space of ◊ coordinates, but for
the following analysis it will be more convenient to visualize them on the configuration
space, as in Figure 7.2.

Let J denote the Jacobian matrix that maps joint velocities to task velocities
(i.e., ṫ = J◊̇). The points of the configuration space at which J is not full rank
are singularities. In the example of Figure 7.2b, singularities are the points {A, B,
C, D} at which the plane tangent to the configuration space is perpendicular to axis
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t1. The projections of singularities on the task space are Jacobian surfaces, which
divide the workspace into disjoint regions called w-sheets. In the example of Figure
7.2c, the workspace is segment ad (i.e., the projection of the whole configuration space
on the task space), which is divided into three w-sheets by points {a, b, c, d} (which
are Jacobian “surfaces” in this example). The preimages of Jacobian surfaces are co-
regular surfaces, which divide the configuration space into disjoint components called
c-bundles, such that all self-motion manifolds on a given c-bundle share the same
topology.

Jacobian surfaces, which divide the workspace into several w-sheets, can be
either motion barriers or traversable singularities [19]. At the same time, barriers
can be (exterior) boundaries or interior barriers of the workspace. Unlike traversable
singularities, barriers may impede the motion of the robot across them, depending on
the configuration of the robot when approaching the barriers. To determine whether a
Jacobian surface is a traversable singularity or a barrier, one can analyze the changes
in the topology of self-motion manifolds when crossing it, and this will be the essence
of the method proposed in this chapter to determine the barriers induced by collision
constraints and joint limits.

Next, in order to illustrate the idea behind the proposed method, the Jacobian
surfaces of the example of Figure 7.2 will be classified into barriers or traversable
singularities based on the analysis of the changes of topology of self-motion manifolds.
Assume first that the task coordinates of the robot lie at task point e between a and b.
The concrete configuration of the robot will lie somewhere on the self-motion manifold
Me corresponding to task point e. When task coordinate t1 crosses point b while
traveling from e to f , self-motion manifold Me splits into two manifolds M1

f and M2
f

after crossing the (8-shaped) co-regular surface which is the preimage of task point
b. Note that, regardless of where the concrete configuration of the robot lies before
crossing b, the robot will successfully cross point b since its configuration will lie on
any of the two manifolds M1

f or M2
f into which Me splits after crossing this Jacobian

surface. Therefore, b is a traversable singularity.

Now imagine that the robot, starting at task point f , tries to cross Jacobian
surface c to reach point g. If the configuration of the robot lies on manifold M1

f when
approaching c, the robot will successfully cross this Jacobian surface since manifold M1

f

will continuously deform until it transforms into Mg, which is the preimage manifold of
task point g. However, the robot will be unable to cross c if its configuration originally
lies on manifold M2

f , since this manifold progressively reduces its size when approaching
task point c, until it eventually shrinks to singularity C and then vanishes. Thus, c is
an interior barrier of the workspace, which will impede the motion of the robot if its
configuration lies on the c-bundle adjacent to singularity C (see Figure 7.2c).

A similar analysis can be repeated when trying to cross task points a and d in
the negative and positive directions of axis t1, respectively. In these cases, self-motion
manifolds become progressively smaller until they degenerate into singularities A and
D, and eventually vanish.
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These examples illustrate the key property that will be exploited in this chapter
to obtain the barriers of the workspace of redundant robots under joint limits and col-
lision constraints: when self-motion manifolds vanish, workspace barriers occur (either
boundaries or interior barriers).

Note that, in the previous example, all self-motion manifolds vanish after degen-
erating into point singularities. However, it is possible to find examples of barriers at
which a positive-dimensional (everywhere singular) manifold suddenly vanishes without
shrinking to a point first. This is what occurs at the boundary of the workspace of the
positioning arm of the 8-DOF AAI robot studied in [100].

Finally, it is also important to note that the relationship between workspace bar-
riers and vanishing self-motion manifolds can be indirectly identified in earlier research
works. In particular, Merlet et al. [118] proposed a geometrical method to obtain
the reachable workspace of the planar 3RPR parallel robot. Studying the reachable
workspace of this robot is equivalent to regarding the robot as a redundant manipula-
tor, since this workspace contains the planar positions (m = 2 task variables) that can
be attained by the end-e�ector, which is controlled by n = 3 linear actuators. At each
point of this workspace, the admissible values for the orientation „ of the end-e�ector
lie in a finite number of disjoint intervals in [0, 2fi]. In some cases, the aforemen-
tioned geometrical method yields arcs of sextic curves (called separating arcs) inside
the workspace. Merlet et al. [118] noted that, when crossing such arcs, one of the
mentioned disjoint intervals for angle „ vanishes, and the robot cannot cross these arcs
if its orientation belongs to the vanishing interval. Actually, these separating arcs are
interior barriers of the workspace, and the vanishing of these disjoint intervals implies
the vanishing of self-motion manifolds. This is so because the orientation „ can be
used to parameterize the self-motion manifolds of the 3RPR robot, which are curves
in the joint space of that robot.

7.1.2 Introducing Kinematic Constraints
The only kinematic constraints that we have considered in the previous subsection are
those that constrain joint and task coordinates to lie on the configuration space of the
robot (i.e., the surface represented in Figure 7.2). In the present subsection, we will
analyze what happens when introducing additional kinematic constraints that can be
modeled as forbidden regions of the configuration space. Typical examples of these
constraints are joint limits and the prohibition of collisions.

Lück and Lee [100] studied how the global kinematics of redundant robots is
altered when introducing kinematic constraints that can be modeled as forbidden re-
gions K of the configuration space. Tangency points between the boundaries ˆK of
these regions and self-motion manifolds are semi-singularities [102], which are unidi-
rectional singularities at which the robot is unable to generate task velocities in some
direction, being able to generate them in the opposite direction. Like singularities,
semi-singularities generate new Jacobian and co-regular surfaces, which can drasti-
cally modify the distribution of w-sheets and c-bundles. Likewise, Jacobian surfaces
generated by semi-singularities can be traversable singularities, boundaries, or interior
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barriers of the workspace. If we can find semi-singularities, then we can obtain the
Jacobian surfaces generated by them, and classify these surfaces in a similar way to
the example of Figure 7.2.

There are two approaches to finding semi-singularities [101]: the tangency ap-
proach (which exploits the fact that semi-singularities occur when self-motion man-
ifolds and ˆK are tangent) and the Jacobian column approach (which analyzes the
range space of a linear mapping with constrained domain). Both approaches require
searching for semi-singularities along the boundaries ˆK of the kinematic constraints,
for example, via steepest descent [101]. Although this search is feasible when the
kinematic constraints are joint limits (in that case ˆK consists of known planes in the
configuration space), in the case of more complex kinematic constraints (e.g., colli-
sions between arbitrarily-shaped bodies with arbitrary relative pose) the boundary ˆK
is not known in advance, it has a much more complicated shape, and lacks an analytic
description that can be used in the computations. Thus, the search along ˆK under
these conditions is unfeasible, and it is necessary to find an alternative approach able to
take into account such complex kinematic constraints in the calculation of workspace
barriers. As argued at the beginning of the present section 7.1, the best way to cope
with complex kinematic constraints is using a sampling method, since in that case one
only needs to check whether the sampled configurations satisfy the constraints or not,
after sampling them.

In this context, it is worth mentioning the sampling method proposed by DeMers
and Kreutz-Delgado [47] to identify w-sheets and c-bundles in serial redundant robots.
Their method begins by randomly and densely sampling joint coordinate points ◊i

from the joint space, generating the corresponding task positions ti by solving the
forward kinematics for each ◊i. Then, the task space is swept following some pattern,
testing some task query points tq. For each query point tq, its preimage self-motion
manifolds are approximated by the set M(tq) of all sampled joint coordinate points
◊i that have generated task positions ti near tq when solving the forward kinematics
during the previous randomly-sampling stage. Then, all joint samples contained in
M(tq) are clustered by solving a Minimum Spanning Tree problem [46], which allows
for the identification of disjoint self-motion manifolds. DeMers [48] used this method
to identify the Jacobian surfaces that separate neighboring w-sheets in the workspace
of serial 3R redundant robots, in the absence of kinematic constraints (although the
method may easily accommodate such constraints since it is a sampling method). To
this end, radial coordinate fl (Figure 7.1) was swept and self-motion manifolds were
estimated at some discrete values of fl, following the procedure described above. Then,
Jacobian surfaces were identified with the values of fl at which the number of disjoint
self-motion manifolds identified by the clustering method changed.

In the absence of kinematic constraints, the changes in the number of disjoint
self-motion manifolds can be used to reliably identify Jacobian surfaces [22]. However,
the focus of the present chapter is on barriers, and the changes in the number of
manifolds when moving along the task space do not necessarily imply the vanishing of
manifolds (i.e., the existence of barriers). For example, the number of disjoint manifolds
can decrease due to fusions between some of them, without any manifold necessarily
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vanishing (e.g., this happens when crossing point b in the negative direction of axis
t1 in Figure 7.2). Or, on the contrary, some manifolds may vanish (which decreases
the number of manifolds) at the same time that other manifolds split (which increases
the number of manifolds), in which case the net change in the number of disjoint
manifolds may not reflect the vanishing of manifolds, which would mask the occurrence
of barriers (see the example of Figure 7.4, discussed in subsection 7.2.3). Hence,
workspace barriers cannot be reliably detected by identifying changes in the number of
disjoint self-motion manifolds; it is necessary to robustly identify the vanishing of these
manifolds. To this end, in the next section we propose a new sampling method that
monitors the transformations su�ered by self-motion manifolds when moving along the
task space, with the purpose of detecting when any of such manifolds vanishes.

7.2 A Method for Obtaining Interior Barriers Under
Collision Constraints

This section proposes a new sampling method to obtain the barriers (both interior
barriers and external boundaries) of the workspace of redundant robot manipulators,
considering joint limits and collision constraints (prohibition of self-collisions or colli-
sions with obstacles of the environment). The method presented here is similar to the
aforementioned method proposed by DeMers and Kreutz-Delgado [47], in the sense
that our method also involves sampling and clustering joint coordinate points ◊i in the
joint space. However, there are three main di�erences between the previous method
[47] and our proposed method:

1. Di�erent sampling approach: instead of approximating the set M(tq) (set of
joint coordinate vectors that place the task variables at a given task point tq)
by a collection of randomly sampled joint vectors that map (under the forward
kinematics) su�ciently near tq, our proposed method directly solves the inverse
kinematics to densely sample the self-motion manifolds at tq.

2. Di�erent clustering approach: instead of clustering the points of the set M(tq)
by solving a Minimum Spanning Tree in a graph, our method clusters these points
using kd-trees, identifying in this way the disjoint components of the self-motion
manifolds.

3. Additional matching stage: our method includes an additional third stage, which
consists in matching neighboring self-motion manifolds to identify how manifolds
transform when varying the task variables, and detect in this way the vanishing
(or creation) of self-motion manifolds. This matching takes advantage of the
very kd-trees used in the previous clustering stage, “recycling” in this way the
previous calculations.

The following subsections 7.2.1, 7.2.2 and 7.2.3 describe in detail the three main stages
of our method: sampling, clustering and matching. Then, subsection 7.2.4 describes
the complete method, which combines these three stages.
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7.2.1 Sampling Self-motion Manifolds
The first step to determine how self-motion manifolds transform when varying the
task variables along the task space, consists in calculating such manifolds at each
task point t. This subsection presents a method to densely sample the self-motion
manifolds at a given task point, such that su�ciently dense discrete approximations
of these manifolds can be computed, to e�ectively use them in the following stages of
the proposed method (clustering and matching).

First, consider a hypothetical redundant robot with two joint coordinates (◊1, ◊2)
and task variable t1. The degree of redundancy is one; therefore, its self-motion
manifolds are curves in plane (◊1, ◊2). Assume that, for a given value of t1, these
1-dimensional self-motion manifolds are defined as the solution sets of the following
scalar equation (see Figure 7.3a):

f(◊1, ◊2, t1) = 0 (7.1)

which does not include additional kinematic constraints like joint limits or prohibition
of collisions. Algorithm 4 proposes a simple procedure (called Sweep_theta1) to
sample the self-motion manifolds and obtain a discrete approximation M(t1) of these
manifolds at task point t1.

Algorithm 4 Sampling the manifolds defined by Equation (7.1)
1: procedure Sweep_theta1(◊lim, Ns)

Inputs:
• ◊lim = {◊min

1 , ◊max

1 , ◊min

2 , ◊max

2 } // joint limits
• Ns // number of discrete values for ◊1

Output:
• M(t1) // Discrete approximation of self-motion
manifolds at task point t1

2: M(t1) Ω ÿ // initialized as the empty set
3: �◊1 Ω ◊max

1 ≠◊min

1
Ns≠1 // step along ◊1 axis

4: for k = 0, . . . , Ns ≠ 1 do
5: ◊k

1 Ω ◊min

1 + �◊1 · k
6: ◊1 Ω ◊k

1
7: Solve ◊2 from Equation (7.1), obtaining a finite set

of solutions: {◊k,1
2 , ◊k,2

2 , . . .}
8: for all solutions ◊k,l

2 do
9: if ◊min

2 Æ ◊k,l
2 Æ ◊max

2 AND (◊k
1 , ◊k,l

2 , t1)
satisfies collision constraints then

10: Add point (◊k
1 , ◊k,l

2 ) to M(t1)
11: return M(t1)

Algorithm 4 is illustrated in Figure 7.3b, and it proceeds as follows. First, the
interval [◊min

1 , ◊max

1 ] between the joint limits is discretized into a grid of Ns points.
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Figure 7.3: A method to densely sample one-dimensional self-motion manifolds, considering
joint limits and collision constraints. In this example, the forbidden shaded region shown in (b)
and (c) may represent configurations for which collisions occur.

For each point ◊k
1 of this grid, ◊2 is solved from Equation (7.1), obtaining a finite set

of di�erent solutions: {◊k,1
2 , ◊k,2

2 , . . .}. These solutions correspond to the intersection
points between the curves defined by Equation (7.1) and the vertical line ◊1 = ◊k

1 (see
Figure 7.3b). Next (line 9 of Algorithm 4), it is checked if each obtained intersection
point ◊k,l

2 satisfies both the joint limits for ◊2 and collision constraints (if any). If
that is the case, then point (◊k

1 , ◊k,l
2 ) is accepted and added to the set M(t1), which

constitutes a discrete approximation of the self-motion manifolds at task point t1.

After Algorithm 4 finishes, the set M(t1) can be viewed as a point cloud in the
joint space, which approximates the self-motion manifolds at t1. For subsequent stages
of the proposed method, we need this point cloud to be su�ciently dense. However,
in general this is not guaranteed by Algorithm 4: indeed, as Figure 7.3b shows, the
density of sampled points is lower near the points where the self-motion manifolds
have vertical tangent. These are the singular points of the parameterization of the
self-motion manifolds which uses the coordinate ◊1 as parameter. Due to these low-
density regions, a clustering method may erroneously identify two disjoint self-motion
manifolds m1 and m2 (see Figure 7.3b) where there is actually a single connected
self-motion manifold M1 (see Figure 7.3d).

Note that the problematic low-density regions shown in Figure 7.3b can be
sampled more densely if we sweep the angle ◊2 and compute ◊1 (instead of sweeping
◊1 and computing ◊2), which consists in parameterizing the self-motion manifolds via
the coordinate ◊2. This can be achieved by swapping the roles of ◊1 and ◊2 in Algorithm
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4, and the result is equivalent to intersecting the self-motion manifolds with a bundle
of horizontal lines (see Figure 7.3c). By doing this, the poorly-defined low-density
regions obtained previously (when sweeping ◊1) appear now more dense and better
defined (Figure 7.3c). However, this improvement is at the expense of the density
of samples near the points where the self-motion manifolds have horizontal tangent,
which are now poorly defined. It is clear that none of these two parameterizations can
be used alone to compute dense discrete approximations of the self-motion manifolds.
Nevertheless, if the point clouds of Figures 7.3b and 7.3c are combined, we obtain a
dense discretization of the self-motion manifolds in plane (◊1, ◊2), which has no poorly-
defined regions, since the areas where one parameterization fails are properly covered
by the other parameterization (see Figure 7.3d). Note that, in the dense point cloud of
Figure 7.3d, any appropriate clustering method would correctly identify three disjoint
self-motion manifolds M1, M2 and M3.

The previous example considered one-dimensional self-motion manifolds in a
two-dimensional joint space. In the general case, the dimensions of the task space,
joint space and self-motion manifolds are m, n and r, respectively (with n > m and
r > 0)1. Let ◊ = [◊1, . . . , ◊n]T and t = [t1, . . . , tm]T denote the vectors of actuated
joint coordinates and task variables, respectively. Also, let Â = [Â1, . . . , Âr]T denote
a vector of r passive variables which are neither classified as joint coordinates nor as
task variables. Assume that, for a given task point t, the self-motion manifolds at
t are defined as the sets of values of ◊ that satisfy the following system of n scalar
equations for some value of Â:

f(◊, t, Â) = 0n◊1 (7.2)

where f = [f1(◊, t, Â), . . . , fn(◊, t, Â)]T . It is assumed that Equation (7.2) does
not include kinematic constraints of inequality type (e.g., joint limits or mechanical
interferences).

Let us generalize now the method illustrated in Figure 7.3 to the general case.
To densely sample r-dimensional self-motion manifolds in an n-dimensional ambient
(joint) space, we should solve Equation (7.2) when sweeping each of the

!
n
r

"
di�erent

combinations of the n joint coordinates taken r at a time. In other words, we should
generate or “plot” the self-motion manifolds by sweeping all their possible parameter-
izations that use as parameters r of the n coordinates of the ambient joint space in
which these manifolds “live”. By sweeping all these possible parameterizations, the
self-motion manifolds can be approximated by su�ciently dense point clouds in the
joint space. Such point clouds are free from the undesirable low-density regions be-
cause the regions where one particular parameterization is almost singular (which yields
low-density regions) can be properly covered by other parameterizations.

Algorithm 5 summarizes this procedure. First, the interval between the joint
limits of each joint coordinate ◊j is discretized and approximated by a set Ij of N j

s

1Usually, we have r = n ≠ m. However, this is not true if additional equality constraints
are considered. For example, this happens when computing planar slices of higher-dimensional
workspaces (see the examples of Section 7.3).
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equally spaced points (j = 1, . . . , n) (lines 4-6). Then, for each possible combination
p of r di�erent joint coordinates (line 7), the following operations are performed. A
regular grid G is defined in the r-dimensional subspace of the joint coordinates ◊j œ p.
This grid is obtained as the Cartesian product of the sets Ij , for ◊j œ p (line 9). Next,
for each point g of the grid G, Equation (7.2) is solved to obtain Â and the remaining
n ≠ r joint coordinates (i.e., those ◊j /œ p). Generally, solving Equation (7.2) will yield
several solutions. For each of these solutions, it is checked if all kinematic constraints
are satisfied (e.g., joint limits, avoidance of self-collisions, etc.). If that is the case,
then all the joint coordinates ◊j of that solution (j = 1, . . . , n) are grouped in the n-
dimensional vector ◊, which is added to the set M(t). After Algorithm 5 finishes, M(t)
represents a point cloud in the n-dimensional joint space, which densely approximates
the self-motion manifolds at task point t.

Algorithm 5 A combinatorial sweeping procedure to densely sample the manifolds
described by Equation (7.2)

1: procedure Combinatorial_sweeping(◊lim, Ns)
Inputs:

• ◊lim = {◊min

1 , ◊max

1 , ..., ◊min

n , ◊max

n } // joint limits
• Ns = {N1

s , ..., Nn
s } // No. of points for each axis ◊j

Output:
• M(t) // Discrete and dense approximation of
self-motion manifolds at task point t

2: M(t) Ω ÿ // initialized as the empty set
3: Q Ω {◊1, . . . , ◊n} // set of all the n joint coordinates
4: for j = 1, . . . , n do
5: �◊j Ω ◊max

j ≠◊min

j

Nj
s ≠1 // step along ◊j axis

6: Ij Ω { ◊k
j : ◊k

j = ◊min

j + �◊j · k,

k = 0, . . . , N j
s ≠ 1}

7: for each subset p µ Q such that |p| = r do
8: q Ω Q \ p
9: G Ω

r
◊jœp Ij

10: for each point g œ G do
11: Solve Â and ◊j œ q from Equation (7.2)
12: for each obtained solution do
13: if all kinematic constraints are satisfied then
14: Add ◊ to M(t)
15: return M(t)

The number of calculations to be performed in Algorithm 5 grows linearly with
the number

!
n
r

"
of combinations, and exponentially with the dimension r of the self-

motion manifolds (due to the r-dimensional grid G obtained as a Cartesian product in
line 9). Hence, if the dimension r of the self-motion manifolds is too large, the time
necessary to execute Algorithm 5 may be prohibitive, depending on the number N j

s of
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points used to discretize each axis of the joint space. However, for the most typical
situations (excluding hyper-redundant manipulators [10]), the degree of redundancy is
usually not too high: in practice, r usually equals 1 or 2, or at most 3. When r = 1,
Algorithm 5 reduces to sweeping a 1-dimensional regular grid along each coordinate
axis of the joint space, as in Figure 7.3. When r = 2, Algorithm 5 consists in sweeping
a 2-dimensional regular grid along each coordinate plane of the joint space. As we will
show throughout the examples of Section 7.3, in these cases of 1- and 2-dimensional
self-motion manifolds, Algorithm 5 can be executed in quite reasonable times obtaining
su�ciently accurate results.

The proposed Algorithm 5 requires solving Equation (7.2) for Â and n ≠ r
unknown joint coordinates. In essence, solving Equation (7.2) consists in solving the
inverse kinematic problem of the redundant robot, assuming that r joint coordinates
are known (so that the problem is no longer underdetermined and yields a finite set
of solutions). For this reason, it would be convenient if the inverse kinematic problem
could be solved relatively easily, preferably in closed form. Since the inverse kinematic
problem is easier to solve for parallel robots (because each scalar equation typically in-
volves only one unknown joint coordinate, which can be obtained by solving a quadratic
equation - see the examples of Section 7.3), the proposed method is more suitable for
manipulators with parallel architecture. However, in principle it can be applied to
robots with any architecture, as long as Equation (7.2) can be easily solved. Note
that parallel robots are precisely the type of robots that can benefit the most from the
proposed method, since it is precisely this kind of robots that su�er the most from col-
lision constraints due to their closed-chain architecture, which often results in di�erent
potentially-colliding links moving very closely to each other.

As we will explain in the examples of Section 7.3, in these examples Equation
(7.2) will be solved via elimination, which reduces the system to a univariate polyno-
mial equation that can be solved using root-finding techniques. Elimination methods
are the preferred ones in the context of Algorithm 5 since they are simple, very fast
[note that Equation (7.2) must be solved many times during the execution of this
algorithm], and find all solutions (although complex and spurious solutions must be
discarded). However, elimination methods are not always feasible or practical, espe-
cially when the degree of the mentioned univariate polynomial grows too large (e.g.,
a few tens). In these cases, it may be more convenient to solve Equation (7.2) us-
ing other general techniques for position analysis of manipulators, such as polynomial
continuation [17] or branch-and-prune methods [154], although these techniques may
increase the computation time of Algorithm 5.

7.2.2 Clustering Self-motion Manifolds
After the previous stage has finished, we have obtained a set M(t) of unordered points
which constitutes a dense point cloud that approximates the self-motion manifolds in
the joint space. The next step consists in clustering these points to identify the di�erent
disjoint self-motion manifolds at task point t (e.g., identifying the three manifolds M1,
M2 and M3 in Figure 7.3d). The outcomes of this clustering will be the number N (t)
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of identified disjoint self-motion manifolds and, for each point ◊ œ M(t), an integer
B(◊, t) œ {0, . . . , N (t) ≠ 1} that identifies the manifold to which ◊ belongs.

To cluster the self-motion manifolds, a kd-tree T (t) is constructed first from
the point cloud M(t). A kd-tree is a data structure useful to partition and organize
point clouds in any dimension. The reader is referred to [155] for further information
about the construction and use of kd-trees. Constructing a kd-tree from a point cloud
permits performing very e�ciently and quickly some operations, such as obtaining
which points of the point cloud are closest to another query point, even if the query
point does not belong to the constructed kd-tree. Next, this property of kd-trees will
be used for identifying the disjoint self-motion manifolds. In the following subsection
7.2.3, we will use this property to determine how each self-motion manifold transforms
when slightly varying the task variables.

Procedure Cluster of Algorithm 6 clusters all points of the set M(t) into
disjoint self-motion manifolds. First, a set P of pending points is defined, which
contains the points of the set M(t) that still have to be classified into some self-
motion manifold. Initially, P coincides with the whole set M(t) (line 2). Next, an
integer variable k is set to zero (line 3). k equals the number of disjoint self-motion
manifolds identified by the algorithm at each iteration. Then, the recursive procedure
described next is repeated until there are no more points to classify, i.e., until P is
empty (line 4).

First, the first point ◊ of the set P is selected (line 5), and it is passed to the
sub-routine Classify(·) (line 6), whose definition starts at line 10. Inside this sub-
routine, the current point (denoted by x inside the sub-routine) is classified into the
disjoint manifold identified by the current value of the integer k, and x is removed from
the set P of points to be classified (lines 11 and 12). Then, the kd-tree is searched to
obtain the set U(x) of points su�ciently close to the current point x (line 13). Next,
the unclassified neighbors of x are passed to the function Classify(·) (lines 14-16),
to classify them into the same manifold as the current point (it is assumed that they
should belong to the same manifold due to proximity). Note that this is a recursive
algorithm: when passing each neighbor y œ U(x) to the sub-routine Classify(·), the
set U(y) of neighbors of y will also be classified into the same manifold. This recursive
process will repeat until it completely covers the connected manifold to which the
original point ◊ belongs, i.e., until all the neighboring points of each point of the
considered manifold are assigned the same label k.

After classifying all points of the current connected manifold, k is increased
by one unit, indicating that a connected self-motion manifold has been completely
identified (line 7). Then, the previous procedure is repeated until all points of M(t)
have been classified into any of the disjoint self-motion manifolds, and no new manifolds
are identified. Upon the complete execution of Algorithm 6, N (t) stores the number
of identified disjoint manifolds (line 8), and B(◊, t) stores an integer that identifies the
manifold to which ◊ belongs, ’◊ œ M(t).

In Algorithm 6, we classify the set U(x) of points su�ciently close to a given
point x into the same manifold to which x belongs. By su�ciently close points, we
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Algorithm 6 Identifying disjoint self-motion manifolds
1: procedure Cluster(M(t), T (t))

Inputs:
• M(t) // point cloud to be clustered
• T (t) // kd-tree of M(t)

Outputs:
• N (t) // number of identified disjoint manifolds
• B(◊, t) // integer identifier of the disjoint manifold
to which each ◊ belongs, ’◊ œ M(t)

2: P Ω M(t) // Initialize the set of points to be classified
3: k Ω 0 // Initialize the label that identifies each manifold
4: while P is not empty do
5: ◊ Ω first point of the set P
6: Classify(◊)
7: k Ω k + 1
8: N (t) Ω k
9: return N (t), B(·, t)

10: procedure Classify(x)
Input:

• x œ M(t) // joint-space point to be classified
into a disjoint self-motion manifold

Output:
• Classifies x and its neighbors into one of the
identified disjoint self-motion manifolds

11: B(x, t) Ω k
12: Remove x from P
13: U(x) Ω set of points of T (t) su�ciently close to x
14: for all y œ U(x) do
15: if y œ P then
16: Classify(y)
17: return
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mean the points of the set M(t) which fall inside an n-dimensional box Lc centered
at x, with its main axes aligned with the coordinate axes of the joint space, and with
appropriate size sc

j along each axis ◊j (j = 1, . . . , n) (see Figure 7.3d for an example
with n = 2). Obtaining the points of the point cloud M(t) that fall inside such a box
is a task that can be performed very e�ciently by searching the previously constructed
kd-tree T (t).

The outcome of the clustering will depend on the choice of the size of the box
Lc. On the one hand, if the box is too small, Algorithm 6 may erroneously identify
di�erent parts of the same connected manifold as di�erent disjoint manifolds (in the
limit, a zero-size box would identify each individual point of M(t) as a di�erent self-
motion manifold). On the other hand, too large a box may erroneously identify as a
single connected manifold di�erent manifolds which actually are disjoint. Moreover, if
the sampling of the self-motion manifolds is not su�ciently dense, we will have low-
density regions in a single manifold that may be erroneously detected as separations
between di�erent disjoint manifolds (e.g., manifolds m1 and m2 in Figure 7.3b), but
this can be avoided if Algorithm 5 presented in previous subsection 7.2.1 is used to
densely sample the self-motion manifolds.

If the self-motion manifolds have been densely sampled using Algorithm 5, then
a good choice for the size of the box along each axis is sc

j = ‡c ·2 ·�◊j (j = 1, . . . , n),
where �◊j is the step used to discretize the ◊j axis (line 5 of Algorithm 5). This is
because the distance along the ◊j axis between two neighboring samples will be �◊j

at most. The coe�cient ‡c Ø 1 is the clustering factor, and its purpose is to increase
the size of box Lc.

7.2.3 Matching Self-motion Manifolds
This subsection presents a method to determine how self-motion manifolds transform
when the task coordinates move from a point ta to another su�ciently near neigh-
boring point tb. It is assumed that, for both task points, self-motion manifolds have
been densely sampled according to Algorithm 5, obtaining non-empty point clouds
M(ta) and M(tb). It is also assumed that two kd-trees T (ta) and T (tb) have been
constructed from these point clouds, and that the clustering Algorithm 6 has been
applied. Therefore, at each task point ti (i œ {a, b}), we know the number N (ti) of
disjoint self-motion manifolds and the integer index B(◊, ti) of the manifold to which
each ◊ œ M(ti) belongs.

Using the previous information, Algorithm 7 matches the self-motion manifolds
at ta with the manifolds at tb, to determine how the self-motion manifolds at ta

transform into the manifolds at tb. First, for each disjoint self-motion manifold ma at
ta (ma = 0, . . . , N (ta) ≠ 1), we define �(ma) as the subset of the manifolds at tb

into which ma transforms when the task variables move from ta to tb. The set �(ma)
is initialized as the empty set, ’ma (lines 2-3). Next, for each x œ M(ta), the kd-
tree T (tb) is searched to e�ciently obtain the set U(x) of points of M(tb) which are
su�ciently close to x. Then, due to proximity, it can be assumed that the self-motion
manifold B(x, ta) to which x belongs transforms into the manifolds B(y, tb) to which
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each y œ U(x) belongs (lines 6-8). Note that this matching Algorithm 7 reuses the
very same kd-trees that were constructed and utilized in the clustering Algorithm 6,
i.e., it is not necessary to perform new calculations to generate new information to
match the self-motion manifolds.

Algorithm 7 Matching self-motion manifolds at two neighboring task points ta

and tb

1: procedure Match(N (ta), M(ta), T (tb), B(·, ta), B(·, tb))
Inputs:

• N (ta) // number of manifolds at task point ta

• M(ta) // dense point cloud approximating
the self-motion manifolds at task point ta

• T (tb) // kd-tree of point cloud M(tb)
• B(◊, ti) // integer index of the manifold at ti to
which each ◊ œ M(ti) belongs (i œ {a, b})

Output:
• �(ma) // integer identifiers of the disjoint
manifolds at tb into which each manifold
ma at ta transforms

2: for ma = 0, . . . , N (ta) ≠ 1 do
3: �(ma) Ω ÿ
4: for all x œ M(ta) do
5: U(x) Ω set of points of T (tb) su�ciently close to x
6: for all y œ U(x) do
7: if B(y, tb) /œ �(B(x, ta)) then
8: Add B(y, tb) to �(B(x, ta))
9: return �(·)

Figure 7.4 shows an example to illustrate the application of Algorithm 7. In this
example, the self-motion manifolds at task point ta are approximated by a cloud of
filled circles, whereas the self-motion manifolds at task point tb (which is su�ciently
near to ta) are approximated by a cloud of empty circles. These dense point clouds
have been obtained applying Algorithm 5. Assume that the clustering Algorithm 6
has identified two disjoint self-motion manifolds {0a, 1a} at ta, and other two disjoint
self-motion manifolds {0b, 1b} at tb. Assuming that the task coordinates move from
ta to tb, Algorithm 7 would identify the following matching:

�(0a) = ÿ (empty set), �(1a) = {0b, 1b} (7.3)

which means that manifold 0a vanishes (since it does not transform into any manifold
at tb), whereas manifold 1a is split into manifolds 0b and 1b. If the task coordinates
move backwards from tb to ta, then swapping ta and tb in Algorithm 7 would yield
the following matching:

�(0b) = {1a}, �(1b) = {1a} (7.4)
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Figure 7.4: Matching self-motion manifolds {0
a

, 1
a

} at t
a

with self-motion manifolds {0
b

, 1
b

}
at t

b

.

which means that both manifolds 0b and 1b merge into manifold 1a.

The previous example shows how Algorithm 7 can be used to identify the van-
ishing of self-motion manifolds when moving the task coordinates from an initial point
ta to a final point tb: a self-motion manifold vanishes if at least one of the sets �(ma)
is empty, for some disjoint manifold ma at the initial point ta [see the example in
Equation (7.3)].

Note that the creation of self-motion manifolds when moving the task coordi-
nates from an initial point tb to a final point ta implies the vanishing of the same
manifolds when reversing the trajectory (from ta to tb). Thus, the creation of self-
motion manifolds also implies the existence of barriers somewhere between ta and tb.
The creation of self-motion manifolds when moving from an initial point tb to a final
point ta can also be inferred from the matching obtained by Algorithm 7: in this case,
the creation of manifolds can be identified by the fact that at least one manifold ma

(at final point ta) does not belong to any set �(mb), for all manifolds mb at initial
point tb (i.e., no manifold at tb transforms into the newly created manifolds at ta).
This is what occurs in the example of Equation (7.4): manifold 0a cannot be found
among the manifolds that are obtained by transforming any of the manifolds at tb

(manifolds 0b and 1b).

The example of Figure 7.4 also shows that, in general, a change in the number
of disjoint self-motion manifolds is not related to the vanishing/creation of manifolds.
In Figure 7.4, the number of self-motion manifolds is the same for both task points
ta and tb. In this case, although manifold 0a vanishes when moving from ta to tb,
manifold 1a also splits into two disjoint manifolds 0b and 1b, so the net change in the
number of disjoint self-motion manifolds between both task points is zero.

Once again, it is necessary to precisely define the meaning of “su�ciently close”
in line 5 of Algorithm 7. As in Algorithm 6, we define U(x) for the matching Algorithm
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7 (line 5) as the set of points of M(tb) which fall inside an n-dimensional box Lm

centered at x, with its main axes parallel to the coordinate axes of the joint space and
with appropriate size sm

j along each axis (j = 1, . . . , n). Next, we will describe how to
obtain possible appropriate values for the sizes sm

j . Instead of using a fixed-size box
(as in the clustering Algorithm 6) for all x œ M(ta), the size of the box Lm used in
the matching algorithm will generally depend on x.

First, Equation (7.2) is approximated by its first-order Taylor expansion about
◊ = x œ M(ta) (i.e., the center of the box Lm), t = ta and Â = Â0, where Â0 is
the (known) value of Â that satisfies Equation (7.2) for ◊ = x and t = ta. (Recall
that passive variables Â are obtained for each ◊ when densely sampling the self-motion
manifolds; see line 11 of Algorithm 5.) This first-order expansion yields the following
linear system:

ˆf
ˆ◊

”◊ + ˆf
ˆt”t + ˆf

ˆÂ
”Â = 0n◊1 (7.5)

where ”◊ = ◊ ≠ x, ”t = t ≠ ta and ”Â = Â ≠ Â0. The Jacobian matrices ˆf
ˆ◊ , ˆf

ˆt and
ˆf
ˆÂ (with sizes n ◊ n, n ◊ m and n ◊ r, respectively) are evaluated at (◊ = x, t =
ta, Â = Â0). Next, any appropriate subset of r equations of the linear system (7.5)
are utilized to eliminate ”Â, obtaining the following reduced linear system:

J◊”◊ = Jt”t (7.6)

In this way, passive variables ”Â are eliminated, obtaining the input-output relationship
(7.6), which yields the change ”◊ in the joint coordinates due to the change in the
task variables when moving from ta to tb, i.e., ”t = tb ≠ ta.

The sizes of J◊ and Jt are (n ≠ r) ◊ n and (n ≠ r) ◊ m, respectively. Thus,
system (7.6) contains n unknowns ”◊ = [”◊1, . . . , ”◊n]T to be solved from (n ≠ r)
equations, which yields infinitely many di�erent solutions due to the redundancy. Of
all these possible solutions, it is reasonable to choose the solution with minimum norm,
since Equation (7.6) is a linear approximation only valid if variations ”◊ and ”t are
su�ciently small. Thus, choosing the minimum-norm solution yields:

”◊ = JT
◊ (J◊JT

◊ )≠1Jt”t (7.7)

Once ”◊j has been obtained (j = 1, . . . , n), an appropriate value for the size sm
j of

the matching box Lm (centered at x) along the ◊j axis is: sm
j = ‡m · 2 · |”◊j |, where

‡m Ø 1 is the matching factor, whose purpose is to increase the size of the box Lm,
if necessary.

7.2.4 Obtaining Workspace Barriers
After describing in the previous subsection a method to determine how self-motion
manifolds transform when moving between two neighboring task points, this subsec-
tion presents a method to estimate the boundaries and interior barriers of the workspace
inside a prescribed region T of the m-dimensional task space. This method is summa-
rized in Algorithm 8 and explained next.
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Algorithm 8 Obtaining the boundaries and interior barriers of the workspace in
a region T of the task space

1: procedure Find_barriers(T , NT )
Inputs:

• T = [tmin

1 , tmax

1 ] ◊ ... ◊ [tmin

m , tmax

m ] // region of interest
• NT = {Nt1 , ..., Ntm} // No. of points for each axis ti

Outputs:
• B // boundaries of the workspace inside T
• BI // interior barriers of the workspace inside T

2: for i = 1, . . . , m do
3: �ti Ω tmax

i ≠tmin

i
Nti ≠1 // step along ti axis

4: Ii Ω { tk
i : tk

i = tmin

i + �ti · k,
k = 0, . . . , Nti ≠ 1}

5: G Ω I1 ◊ I2 ◊ . . . ◊ Im // Cartesian product
6: for each node g œ G do
7: Obtain M(g) (Algorithm 5)
8: Cluster M(g) (Algorithm 6)
9: B Ω ÿ // initialized as the empty set

10: BI Ω ÿ // initialized as the empty set
11: Mp Ω ÿ // initialized as the empty set
12: for each node g œ G do
13: U(g) Ω set of neighboring nodes of node g
14: for each h œ U(g) do
15: if {g, h} /œ Mp then
16: Add {g, h} to Mp

17: if M(g) = ÿ XOR M(h) = ÿ then
18: Add (g + h)/2 to B
19: else if M(g) ”= ÿ AND M(h) ”= ÿ then
20: Match M(g) and M(h) (Algorithm 7)
21: if manifolds are created OR vanish then
22: Add (g + h)/2 to BI

23: return B, BI
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First, an m-dimensional box T is defined as T = [tmin

1 , tmax

1 ]◊. . .◊[tmin

m , tmax

m ],
which encloses the region of interest of the task space, in which we wish to estimate
the workspace barriers. Next, the main axes of T are discretized into Nti equally
spaced points along each task axis ti, approximating T by a regular m-dimensional
grid G (lines 2-5). For each task node g œ G, the self-motion manifolds are densely
sampled, and the disjoint manifolds are identified (lines 6-8). Next, two sets B and
BI are defined (lines 9-10). Upon the complete execution of the algorithm, the sets B
and BI will contain task points that approximate the boundaries and interior barriers
inside region T , respectively. Also, a set Mp is defined as the set of (unordered) pairs
of neighboring nodes {g, h} between which the algorithm has already checked whether
there exist barriers or not (line 11).

Next, for each node g œ G, the set U(g) µ G of neighboring nodes of g is
obtained. For example, in a two-dimensional task space, U(g) can be defined as the
set of 8 nodes (of the grid G) surrounding the center node g, as in Figure 6.1b. Then,
the self-motion manifolds at node g are compared (matched) to the manifolds at each
neighboring node h œ U(g), to check if there exist barriers between both nodes g and h.
If one (and only one) of these two nodes yields empty self-motion manifolds, then that
node is outside the workspace, whereas the other node belongs to the workspace. In
that case, a workspace boundary exists somewhere between both nodes. For simplicity,
it is assumed that the boundary occurs at the midpoint between these nodes, which is
added to the set B (lines 17-18).

If both neighboring nodes g and h yield non-empty self-motion manifolds, then
both nodes belong to the workspace and it is necessary to check if interior barriers exist
between these nodes. To this end, the manifolds at g and h are matched as described
in subsection 7.2.3 (line 20). If the matching algorithm identifies the vanishing and/or
creation of disjoint self-motion manifolds when moving from node g to node h, then
an interior barrier exists between both nodes, which, for simplicity, can be located at
the midpoint of these nodes (lines 21-22).

Note that, both for the identified boundaries and interior barriers, it is possible
to know the forbidden direction of the barrier (i.e., the direction in which the motion
of the robot is impeded) at each point of these barriers: the motion is always impeded
in the direction in which self-motion manifolds vanish (or the opposite of the direction
in which manifolds are created). Depending on the kinematics of the robot and on the
complexity of the kinematic constraints, bidirectional barriers may be obtained, i.e.,
barriers where some disjoint self-motion manifolds are created while other manifolds
vanish.

Finally, note that Algorithm 8 can be easily parallelized. For example, the m-
dimensional grid G can be divided into Np parts, with each part having the same
number of nodes. Then, each of these Np parts can be processed by an individual
processor dedicated to search barriers among its nodes, following Algorithm 8.
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7.2.5 Elusive Barriers
Obviously, when decreasing steps �◊j (used for sampling self-motion manifolds, line
5 of Algorithm 5) and �ti (used for discretizing the task space, line 3 of Algorithm
8), the proposed method will estimate the workspace barriers more accurately (at the
expense of higher computation times). However, the proposed method may be unable
to detect some elusive barriers independently of how small �◊j and �ti are. Next,
we will analyze the mechanisms shown in Figure 7.5 to illustrate two types of elusive
barriers that the proposed method may fail to detect.
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1
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Q = (t1, t2)1
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d

θ3

(a) (b)

Figure 7.5: (a) Two-DOF and (b) three-DOF mechanisms used for illustrating elusive barriers.
Links OP and P Q have unitary length: OP = P Q = 1.

7.2.5.1 Manifolds existing only at bidirectional elusive barriers

The first type of elusive barriers that we will analyze are generated by self-motion
manifolds that only exist when the task coordinates are placed exactly on these barriers,
such that these manifolds vanish when perturbing the task coordinates away from
these barriers. In order to illustrate this situation, consider the 2-DOF mechanism
of Figure 7.5a, which can be considered as a redundant robot with joint coordinates
(◊1, ◊2) (position of joint Q) and task variable t1 (orientation of link OP ). For a given
t1, the self-motion manifold of this robot in plane (◊1, ◊2) is a circle C centered at
P = (cos t1, sin t1) and with radius 1. In the absence of additional constraints, C
has constant topology ’t1. Thus, the workspace of task variable t1 is the unit circle,
without interior barriers or singularities.

Assume now that, in order to avoid collisions, point Q cannot be in the horizontal
region H of plane (◊1, ◊2) defined by: 1 < ◊2 < 2 (strict inequalities). In that case,
the workspace of t1 is still the unit circle, but it contains singularities now (see Figure
7.6a): two traversable singularities T ± at cos t1 = ±1, and a bidirectional barrier B
at sin t1 = 1. For t1 in the lower semicircle (sin t1 < 0), there is a single self-motion
manifold which is the circle C defined in previous paragraph (Figure 7.6d). For t1 in
the two upper quadrants defined by {sin t1 > 0 AND cos t1 ”= 0}, there is a single
self-motion manifold which is the part of circle C not falling in region H (Figure
7.6c). Traversable singularities T ± are generated by the change of topology of C when
invading region H, where circle C (Figure 7.6d) becomes an open arc of circle (Figure
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7.6c). Finally, at the bidirectional barrier B, there are two disjoint manifolds (Figure
7.6b): a semicircle and isolated point V = (0, 2) (which is out of the forbidden region
H).
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Figure 7.6: (a) Workspace of the robot of Figure 7.5a. Self-motion manifolds at di�erent regions
of this workspace are shown in (b), (c), and (d), in blue continuous line. The perturbation of
elusive barrier B is shown in (e).

Note that manifold V only exists at sin t1 = 1: when task variable t1 is slightly
perturbed in any direction, V vanishes and a bidirectional barrier occurs at B. This
is an example of elusive barrier that the proposed method would miss with probability
one, independently of how small the discretization steps �◊j and �ti are. Indeed,
independently of how small �t1 is, if task point B is not exactly one of the nodes of
the grid G defined in line 5 of Algorithm 8 (in this example, grid G may be a regular
discretization of interval [≠fi/2, 3fi/2]), then Algorithm 8 will not be able to detect the
vanishing of manifold V when matching self-motion manifolds between two neighboring
nodes of this grid, since V only exists at B.

Elusive barriers of this type are unstable under small perturbations of the con-
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straints or of the geometry of the robot, since in that case these barriers disappear or
become detectable by the proposed method. For example, barrier B disappears when
redefining region H as {1 < ◊2 Æ 2} (H now includes line ◊2 = 2), since in this case
V œ H, and the only manifold for sin t1 = 1 would be the semicircle shown in Figure
7.6b. On the contrary, if H is redefined as {1 < ◊2 < 1.99}, then barrier B is split
into two unidirectional barriers B1 and B2 that enclose the arc B1B2 of the unit circle
for which sin t1 > 0.99 (see Figure 7.6e). For t1 inside this arc, there exist two disjoint
self-motion manifolds, which are the parts of circle C outside H. Elusive barrier B is
the limit of arc B1B2 degenerating into a point. The perturbed barriers B1 and B2
would be detectable by the proposed method using a su�ciently small step �t1, since
the arc enclosed by them has non-zero length and will contain nodes of grid G.

7.2.5.2 Elusive barriers not generated by vanishing manifolds

In order to illustrate another type of elusive barrier, consider the mechanism of Figure
7.5b, which is obtained from the mechanism of Figure 7.5a by adding another link
of length d between joint Q and the vertical prismatic leg of length |◊2|. This new
mechanism has three DOF, and it can be considered as a redundant robot with joint
coordinates (◊1, ◊2, ◊3) and task variables (t1, t2) (position coordinates of joint Q rel-
ative to fixed joint O). The orientation angle „ of link d is a passive variable. For
a given task point Q = (t1, t2) ”= (0, 0) = O, the self-motion manifolds in the 3D
joint space (◊1, ◊2, ◊3) are two circles obtained as the intersection between cylinder
{(◊1 ≠ t1)2 + (◊2 ≠ t2)2 = d2} and two planes {◊3 = K1} and {◊3 = K2}, where K1
and K2 are the two solutions of ◊3 in [≠fi, fi] that satisfy the following equation:

(t1 ≠ cos ◊3)2 + (t2 ≠ sin ◊3)2 = 1 (7.8)

Fixed joint O = (0, 0) in this example is an interior barrier of the workspace, as justified
next. Assume that joint Q coincides with O, as illustrated in Figure 7.7a. In that case,
the robot can only generate task velocities in the direction perpendicular to link OP .
If one wishes to move joint Q along the direction L of link OP (for describing a linear
trajectory across O, for example), links OP and PQ must be rotated first an angle
of 90¶, so that they remain perpendicular to L (Figure 7.7b). After that, velocities or
displacements along L can be generated (Figure 7.7c).
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Figure 7.7: Maneuvering for traversing a point elusive barrier.
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This occurs for any orientation ◊3 of link OP , since when Q coincides with O,
link OP can freely rotate without modifying the position of Q (this is because links
OP and PQ have the same length). This can also be observed in Equation (7.8),
which is satisfied ’◊3 when Q = (t1, t2) = (0, 0) = O. Since ◊3 is not constrained,
the self-motion manifolds at O are not two circles but a single cylinder defined by
{◊2

1 + ◊2
2 = d2}. Note that self-motion manifolds do not vanish at this special barrier,

but their dimension instantaneously changes: two circles, which are one-dimensional
manifolds obtained by intersecting a cylinder with two planes, transform into the com-
plete cylinder, which is a two-dimensional manifold.

Note also that barrier O in this example, which is an isolated point barrier, is
another elusive barrier that the proposed method cannot detect for two reasons. Firstly:
in order for Algorithm 8 to detect point barrier O, this point should coincide exactly
with one of the nodes of the planar grid G used for scanning the task plane (t1, t2) in
this example (and this occurs in general with zero probability, as argued for the elusive
barrier B of Figure 7.6a). Secondly, and more importantly: the proposed method
identifies barriers with the vanishing of self-motion manifolds, but these manifolds do
not vanish at O (they experience a change in their dimension).

Finally, like the elusive barrier B of Figure 7.6a, the elusive barrier O of this
example is also unstable: when slightly perturbing the geometry of the robot (so that
links OP and PQ do not have exactly the same length), point barrier O transforms
into a circular barrier centered at O and with radius |OP ≠ PQ|. This perturbed
circular barrier can be detected by the proposed method if su�ciently small steps �t1
and �t2 are used, since self-motion manifolds vanish inside this circular barrier (the
region enclosed by this circular barrier is not reachable).

7.3 Examples

This section presents some illustrative and meaningful examples to demonstrate the
viability and usefulness of the method proposed in Section 7.2. All examples shown in
this section have been implemented in Java and have been tested on a computer with a
3 GHz 8-Core Intel Xeon E5 processor and with 16 GB of RAM memory. All examples
shown in this section have been obtained by parallelizing the calculations over 8 cores
as suggested at the end of subsection 7.2.4, using MPJ Express for the parallelization
[170].

Table 7.1 summarizes the main data of the examples detailed in this section,
including the CPU time required to obtain all barriers in each example and the numbers
of the figures in which the computed barriers can be found. According to Table 7.1,
CPU times vary between 10 minutes and almost 2 hours, depending on the degree of
redundancy r (dimension of self-motion manifolds) or the considered constraints (colli-
sions checked or omitted), among other parameters. These CPU times are reasonable
considering the attained precision (see next examples) and the amount of information
obtained (interior barriers are also computed, not only workspace boundaries). Also,
these CPU times are similar to those required by other methods that obtain workspace
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Table 7.1: Summary of the six experiments performed, indicating the dimensions of the task
space (m), joint space (n), and self-motion manifolds (r).

Experiment number 1 2 3 4 5 6
Robot Stewart platform 3RRR
(m, n, r) (2, 6, 1) (2, 6, 2) (2, 6, 1)
(Nti , N j

s , ‡c, ‡m) (400, 400, 1.5, 15) (160, 60, 1.5, 15) (200, 200, 1.5, 2)
Collisions checked no yes no yes no yes
CPU time (minutes) 9.5 10.1 116 110 27 17
Figure No. 7.9 7.10 7.11 7.12 7.14 7.15

barriers, like the times reported in [19] (although this is only an orientative comparison
since both methods were not tested on the same computer, and considered di�er-
ent constraints and robots). Anyway, the CPU times reported in Table 7.1 suggest
that our method is more suitable for o�ine computations: workspace barriers can be
pre-computed o�ine first, and then used later with design or o�ine path planning
objectives.

In the context of online path planning, for example, it may be necessary to know
if the robot will get blocked at workspace barriers (e.g., due to collisions) when following
the current trajectory. In that case, it is not necessary to do the time-consuming task
of computing all barriers in a given region of the task space, but it would be more
useful to know if some self-motion manifold will vanish when moving from current
task point tk to the next one tk+1. The proposed method may still be useful for this
purpose, since sampling/clustering the manifolds at only two task points and matching
them is relatively fast (e.g., about 0.25 seconds when considering collisions in the
3RRR example of Table 7.1). Although these times may still be too large for real-time
control (they can always be reduced by decreasing N j

s ), they may allow for collision
control algorithms during online path planning. However, the detailed analysis of this
application is beyond the scope of the present chapter.

7.3.1 Stewart Platform with 1D Self-motion Manifolds
In this section, we will use the proposed method to analyze the workspace of the
Stewart platform, considering that the degree of redundancy is r = 1. Consider a
Stewart platform as shown in Figure 7.8, used for machining (assume that the Z axis
is a tool, e.g. a drill). In this robot, six linear actuators or legs of type UPS are used
to control the position and orientation of a frame � attached to the mobile platform.
The position and orientation of frame � with respect to the base frame W is defined
by the (x, y, z) coordinates of point P of the mobile platform and by the XYZ Euler
angles (–, —, “).

Note that, in machining applications, the rotation “ of the mobile platform
about the tool axis (which coincides with the Z axis of frame �) is not relevant, since
the tool is continuously rotating about its own axis. Therefore, if “ is not relevant,
then we can consider the robot of Figure 7.8 as a redundant robot in which 6 linear
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Figure 7.8: Stewart platform and associated notation.

actuators are used to control 5 task variables: the position (x, y, z) and angles (–, —).
The degree of redundancy is therefore r = 1, so self-motion manifolds are curves in
the six-dimensional joint space (which is the space of lengths ◊j of the linear actuators,
j = 1, . . . , 6).

In this example, the task space is 5-dimensional. Although Algorithm 8 can be
applied in principle to obtain the barriers in task spaces with any dimension m, since the
number of calculations of this algorithm grows exponentially with the dimension of the
task space, the computation times would become prohibitive for m = 5. Therefore,
to illustrate the proposed algorithm, we will analyze the 2-dimensional (y, z) task
subspace, keeping constant the values of the remaining task variables (x, –, —). This
is equivalent to analyzing a planar slice of such a 5-dimensional workspace.

Next, we will describe how Algorithm 8 can be particularized to obtain the
barriers of the workspace in a specified region of the task plane (y, z) in this example,
considering the following kinematic constraints:

• The length ◊j of each linear actuator should be between a minimum length
◊min

j > 0 and a maximum length ◊max

j > ◊min

j (j = 1, . . . , 6).

• Di�erent links/bodies of the robot should not collide. Eight links are considered:
the six linear actuators, the base, and the mobile platform. These eight links will
be modeled as cylinders, as explained later in more detail.

In this example, the joint coordinates are the lengths ◊j of the six linear actu-
ators: ◊ = [◊1, . . . , ◊6]T (n = 6). The task variables are t = [y, z]T (m = 2). The
only passive variable in this example is Â = [“]T (r = 1). Note that, since (x, –, —)
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have been fixed in order to analyze a 2-dimensional slice of the task space, these three
variables can be considered as geometric parameters of the robot in our formulation.
For each linear actuator j œ {1, . . . , 6}, we impose the condition that its length must
equal ◊j : ..R–xR—yR“zbj + [x, y, z]T ≠ aj

..2 ≠ ◊2
j = 0 (7.9)

where (see Figure 7.8): bj are the coordinates of the centers Bj of the spherical joints
S referred to frame �, aj are the coordinates of the centers Aj of the universal joints
U referred to frame W, and Rvw denotes a 3 ◊ 3 rotation matrix of angle v about
axis w. If the left-hand side of Equation (7.9) is denoted by fj , then particularizing j
for {1, . . . , 6} yields the constraint function f = [f1, . . . , f6]T of Equation (7.2), which
defines the self-motion manifolds in this example.

To densely sample the self-motion manifolds at each task point t = [y, z]T
following Algorithm 5, we proceed as follows. First, since the degree of redundancy is
r = 1, Algorithm 5 reduces to sweeping each joint coordinate axis ◊j independently
(j = 1 . . . , 6), between ◊min

j and ◊max

j . As each axis ◊j is swept, both “ (the passive
variable) and the remaining unknown joint coordinates ◊k (k ”= j) are calculated in
terms of ◊j as explained next.

Given ◊j (i.e., the joint coordinate that is being swept) and t = [y, z]T (i.e.,
the task point at which self-motion manifolds are being densely sampled) the only
unknown in Equation (7.9) is the passive angle “, which can be easily solved from
Equation (7.9) since this equation has the following form: C · cos “ + S · sin “ + I = 0,
where {C, S, I} are known constants [using Weierstrass substitution, this reduces to a
quadratic equation in tan(“/2)]. After computing “, Equation (7.9) is particularized
for each of the remaining unknown joint coordinates ◊k (k ”= j), which are obtained
as follows:

◊k =
..R–xR—yR“zbk + [x, y, z]T ≠ ak

.. (7.10)

Note that the right-hand side of Equation (7.10) is now completely known because “
has already been solved from Equation (7.9) particularized for the joint coordinate that
is swept.

To illustrate the proposed method with 1-dimensional self-motion manifolds in
the Stewart platform, the following parameters are used: x = 0.3, – = 0.63 rad,
— = 0. The minimum and maximum lengths of linear actuators are: ◊min

j = 0.55 and
◊max

j = 1 (j = 1, . . . , 6). For the geometry of the robot (positions {aj , bj} of joints),
the double-ring design shown in Table 7.2 is chosen, since this arrangement of joints
is known to imply some risks of interference between di�erent legs [115].

The existence of mechanical interferences between di�erent links is checked
using the SOLID library [188] through Java Native Interface. Eight links Lj are con-
sidered: the six legs, the base, and the mobile platform. All these eight links are
modeled as cylinders, as detailed next. Each leg Lj (j = 1, . . . , 6) is modeled as a
cylinder with radius 0.025 and axis AjBj , where Aj and Bj (i.e., the centers of the
universal and spherical joints) are the centers of its top and bottom sections (see Figure
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Table 7.2: Geometry of a double-ring Stewart platform.

j aj bj

1

S

U
0.6 cos(0)
0.6 sin(0)

0.05

T

V

S

U
0.34 cos(0)
0.34 sin(0)

≠0.05

T

V

2

S

U
0.36 cos(0)
0.36 sin(0)

0.05

T

V

S

U
0.17 cos(180¶)
0.17 sin(180¶)

≠0.05

T

V

3

S

U
0.6 cos(120¶)
0.6 sin(120¶)

0.05

T

V

S

U
0.34 cos(120¶)
0.34 sin(120¶)

≠0.05

T

V

4

S

U
0.36 cos(120¶)
0.36 sin(120¶)

0.05

T

V

S

U
0.17 cos(300¶)
0.17 sin(300¶)

≠0.05

T

V

5

S

U
0.6 cos(≠120¶)
0.6 sin(≠120¶)

0.05

T

V

S

U
0.34 cos(≠120¶)
0.34 sin(≠120¶)

≠0.05

T

V

6

S

U
0.36 cos(≠120¶)
0.36 sin(≠120¶)

0.05

T

V

S

U
0.17 cos(≠300¶)
0.17 sin(≠300¶)

≠0.05

T

V

7.8). The fixed base L0 is also modeled as a cylinder centered at the origin of frame
W, with its axis coincident with the Z axis of frame W, with radius 0.65 and height
0.025. Similarly, the mobile platform L7 is modeled as a cylinder centered at the origin
of frame �, with its axis coincident with the Z axis of frame �, with radius 0.4 and
height 0.025. The geometry described in this paragraph and in the previous one is
precisely the geometry that can be observed in Figure 7.8.

To apply the method described in Section 7.2 and obtain the workspace interior
barriers and boundaries in a region of the task plane (y, z), the following parameters are
used. Barriers and boundaries are searched in task box T = [≠0.41, 0.15]◊ [0.41, 0.81].
Each axis of this box is discretized into Nti = 400 equally spaced points. Therefore, box
T is approximated by a regular grid G of 1.6 · 105 task nodes in which to compute the
1-dimensional self-motion manifolds. The task of computing, clustering, and matching
manifolds in all these nodes is distributed over Np = 8 processors working in parallel
(the distribution of the workload is done partitioning the y axis, as indicated in Figure
7.9). To densely sample the self-motion manifolds according to Algorithm 5, each
joint axis ◊j is discretized into N j

s = 400 equally spaced points. Finally, the chosen
clustering and matching factors are: ‡c = 1.5 and ‡m = 15.

The precision of the result depends on factors ‡c and ‡m. Our tests suggest
that acceptable results are usually obtained if both factors are between 1 and 2. If these
factors are too small (i.e., they take values too close to 1), the results may become too
noisy. On the contrary, if these factors are too large, then the results may be erroneous
due to the identification of disjoint manifolds as the same connected manifold. In this
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example, acceptable results can be obtained using ‡c = ‡m = 1.5, although in that
case the rightmost boundary BN of Figure 7.9 becomes too noisy (in the sense that
some of its parts are erroneously identified as bidirectional barriers). Increasing ‡m to
15 greatly reduces the noise of boundary BN without a�ecting the remaining barriers.

Figure 7.9 shows the obtained barriers (both boundaries and interior barriers)
for the example described in the previous paragraphs. In the following figures, we will
represent workspace barriers following a convention similar to the one used in [19]. We
will represent barriers in blue continuous line, and we will draw at each point of the
barriers a small red vector, indicating that the robot cannot trespass the barriers toward
the side where the red vector lies/points, due to the vanishing of self-motion manifolds.
The direction of these vectors is obtained as follows: when Algorithm 8 (lines 17-22)
detects that self-motion manifolds vanish (or are created) when moving from a given
task node g to one of its neighbors h, the represented barrier vector points from g to
h (or from h to g, respectively). For 2-dimensional task spaces such as the examples
shown in the following figures, g and h are nodes of a planar grid, with h being one
of the 8-neighbors of g (as explained in subsection 7.2.4). In that case, the red barrier
vectors can only have eight possible orientations: those of the vectors connecting a
node g to each of its 8-neighbors (and these orientations will be integer multiples of
45¶ if the grid has the same step along both axes). Although this representation is not
as accurate as the ones used in [71] and [19] (where these vectors are drawn orthogonal
to the barriers), it is su�cient for easily visualizing which side of each barrier will be
forbidden.

The workspace shown in Figure 7.9 is obtained omitting collisions between dif-
ferent links, i.e., di�erent links are allowed to mechanically interfere. The result shown
in Figure 7.9 is obtained in about 9.5 minutes using the computer described at the be-
ginning of Section 7.3. As Figure 7.9 shows, some of the identified barriers/boundaries
have noisy regions, but these can be reduced by modifying the parameters of the
proposed method (e.g., increasing the matching factor ‡m).

Note that the boundaries and barriers of the workspace are composed of the
union of smooth arcs, which are joined at non-smooth sharp points. Figure 7.9 indi-
cates the conditions that generate each of these smooth arcs: at each arc, two joint
coordinates simultaneously reach either their minimum or maximum joint limits. These
conditions have been obtained by simulating and analyzing the complete configuration
of the robot when placing its point P at the di�erent identified arcs.

Next, to analyze the e�ect of collisions between di�erent links on the bound-
aries and barriers of the workspace, the example of Figure 7.9 is re-computed again,
but considering the additional kinematic constraint that di�erent links cannot interfere,
as described in previous paragraphs. If di�erent links are not allowed to interfere, then
the boundaries and barriers of Figure 7.9 transform into the ones shown in Figure 7.10
(in this case, Algorithm 8 takes about 10.1 minutes). When comparing Figures 7.9
and 7.10, it can be observed that the no-collision restriction alters both the outermost
boundaries of the workspace (i.e., its shape) and the interior barriers. Some bound-
ary/barrier arcs of the original workspace of Figure 7.9 are maintained when forbidding
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Figure 7.9: Workspace barriers of a Stewart platform with 1-dimensional self-motion manifolds
(‡

m

= 15). Mechanical interferences between di�erent links are allowed.

collisions, but other new arcs are generated due to the prohibition of collisions. Other
interior barriers of Figure 7.9, such as those defined by (◊max

3 , ◊max

6 ) and (◊min

1 , ◊max

6 ),
counterintuitively disappear when considering collisions: this is because these barriers
were generated by the vanishing of disjoint self-motion manifolds that do not even exist
when forbidding collisions. Figure 7.10 indicates the conditions that give rise to some
arcs. In all cases, each arc is still defined by two simultaneous kinematic constraints:
some joint coordinate reaches a joint limit and/or di�erent links are about to collide
(if two links Lj and Lk collide, this is indicated in Figure 7.10 as “LjLk”).

7.3.2 Stewart Platform with 2D Manifolds

Next, the method proposed in Section 7.2 will be applied to an example where the
degree of redundancy is r = 2, to demonstrate the feasibility of the proposed method
with redundant robots in which self-motion manifolds are surfaces in the joint space.
Also, comparing this example with the previous one will allow us to observe how the
workspace of a redundant robot is modified when increasing the degree of redundancy.

To this end, consider the example of the redundant Stewart platform analyzed in
previous subsection 7.3.1 (where rotation “ was considered irrelevant), but assume now
that the Euler angle — (rotation about the mobile Y axis) is also irrelevant for the task
to be performed. In that case, the joint and task coordinates still are ◊ = [◊1, . . . , ◊6]T
and t = [y, z]T , respectively, but now there are r = 2 passive variables: Â = [—, “]T .
Therefore, to densely sample the self-motion manifolds at each task point according to
Algorithm 5, we must sweep all the

!6
2
"

= 15 coordinate planes of the 6-dimensional
joint space.
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Figure 7.10: Barriers obtained when forbidding mechanical interferences between di�erent links
in the example of Figure 7.9.

When sweeping any two joint coordinates (◊j1 , ◊j2) as required by Algorithm 5
for r = 2, the two (unknown) passive variables (—, “) and the remaining four (unknown)
joint coordinates must be solved from Equation (7.2). All these six unknowns can be
solved in terms of (◊j1 , ◊j2) following the elimination procedure explained next. Since
the swept joint coordinates (◊j1 , ◊j2) are known, then particularizing Equation (7.9) for
these two joint coordinates yields the following system of two trigonometric equations
(7.11)-(7.12), in which the only unknowns are angles — and “:

..R–xR—yR“zbj1 + [x, y, z]T ≠ aj1

..2 ≠ ◊2
j1 = 0 (7.11)

..R–xR—yR“zbj2 + [x, y, z]T ≠ aj2

..2 ≠ ◊2
j2 = 0 (7.12)

To solve (—, “) from system (7.11)-(7.12), the Weierstrass substitution is used to
transform these two trigonometric equations into two polynomial equations of degree
two in the unknowns tan(—/2) and tan(“/2). Using resultants, these two equations can
be reduced to a single univariate polynomial equation of degree eight in tan(—/2) [or
in tan(“/2)], which can be easily solved using root finding techniques. After solving
— and “ from system (7.11)-(7.12), these two passive variables can be substituted
into Equation (7.10) particularized for the four unknown joint coordinates ◊k (where
◊k ”= ◊j1 and ◊k ”= ◊j2), to obtain the values of these unknown joint coordinates.

After describing how to apply Algorithm 5 to densely sample the 2-dimensional
self-motion manifolds in this case, the proposed method will be applied to a concrete
example next. For the following example, workspace boundaries and barriers will be
obtained in the region of the task space inside box T = [≠0.46, 0.38] ◊ [0.28, 0.83].
Each axis of this box is discretized into Nti = 160 equally spaced points, thus dis-
cretizing box T into a planar regular grid G consisting of 25600 nodes. The task of
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sampling, clustering, and matching the self-motion manifolds at all these nodes is again
distributed over Np = 8 processors along the horizontal y axis, as indicated in Figure
7.9. Each joint axis is discretized into N j

s = 60 equally spaced points. The clustering
and matching factors are again: ‡c = 1.5 and ‡m = 15. The remaining parameters
have the same values as in subsection 7.3.1: x = 0.3, – = 0.63 rad, the joint limits
are ◊min

j = 0.55 and ◊max

j = 1, and the geometric design of the robot is given in Table
7.2. Unlike in subsection 7.3.1, now — is not fixed but a passive variable.

Figure 7.11 shows the barriers and boundaries obtained using the proposed
method with the previous parameters. The barriers shown in Figure 7.11 omit collisions
between di�erent links, i.e., di�erent links are allowed to mechanically interfere. In
this case, since self-motion manifolds are 2-dimensional, there is a significant increase
in the time required to execute Algorithm 8 with respect to the previous case of 1-
dimensional manifolds: running on the computer described at the beginning of this
section, Algorithm 8 takes about 116 minutes to obtain the barriers presented in Figure
7.11. As in Figures 7.9 and 7.10, Figure 7.11 indicates the conditions that give rise
to some of the identified barriers. In this case, as Figure 7.11 shows, barriers occur
when three joint coordinates simultaneously reach their minimum or maximum joint
limits. The occurrence of joint limits at barriers is abbreviately denoted in Figure 7.11
as follows: ◊min

j © j, ◊max

j © j.

y

z

( 1 , 2 , 6 )

( 1 , 2 , 5 )
( 1 , 2 , 3 )

( 1 , 3 , 4 )

( 1 , 3 , 5 )

( 3 , 4 , 6 ) ( 3 , 5 , 6 )

Task box T

Figure 7.11: Workspace barriers of a Stewart platform with 2-dimensional self-motion manifolds.
Mechanical interferences are allowed.

If we repeat the calculation but considering the additional constraint that dif-
ferent links cannot interfere, then we obtain the result shown in Figure 7.12 (in this
case, Algorithm 8 takes about 110 minutes). When comparing Figures 7.11 and 7.12,
it can be observed that including the condition of no-interference between di�erent
links can importantly alter both the boundaries and interior barriers of the workspace,
although some boundaries are conserved. Following the same notation used in Figure
7.10 to indicate imminent collisions, Figure 7.12 indicates the conditions that give rise
to some of the identified barriers: in all the indicated cases, the barrier is originated
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by three kinematic constraints occurring simultaneously (joint limits and/or imminent
collisions between di�erent links). The noise indicated in Figure 7.12 can be reduced
by increasing N j

s (i.e., sampling more finely the 2-dimensional self-motion manifolds),
but this increases the computation time. Alternatively, increasing ‡m reduces this noise
without increasing the computation time, but this degrades some parts of the barriers,
which “lose” density (e.g., part V in Figure 7.12) and may erroneously vanish.

y

z

Noise

Part V
Task box T

( 1 , 2 , L4L6 )

( 1 , 3 , 5 )

( 1 , 2 , L1L7 )

( 2 , 6 , L1L7 )

( 6 , L2L4 , L4L6 )

Figure 7.12: Barriers obtained when forbidding collisions in the example of Figure 7.11.

In the examples shown in present subsection 7.3.2 and in previous subsection
7.3.1, both the interior barriers and the external boundaries obtained when omitting
collisions are altered when forbidding these collisions between di�erent links. In the
following subsection, we will show an example where forbidding collisions does not
a�ect the external boundaries of the workspace (i.e., the shape of the workspace), but
drastically modifies its interior barriers (i.e., its internal structure).

7.3.3 3RRR Parallel Robot with 1D Manifolds
In this subsection, the proposed method will be applied to obtain the barriers of the
reachable workspace of the planar 3RRR parallel robot shown in Figure 7.13. This robot
can be considered as a redundant robot if we actuate angles (–1, –2, –3) to control
the position (x, y) of the center of the end-e�ector (which is an equilateral triangle
B1B2B3 of side h), without caring about its orientation „. In that case, self-motion
manifolds are curves in the 3-dimensional joint space of actuated angles (–1, –2, –3).

However, the method proposed in Section 7.2 cannot be directly applied to
angular joint coordinates. This is because angles undergo wrapping (i.e., two angles
di�ering by an integer multiple of 2fi rad can be considered as the same angle if there are
not joint limits [100]), which impedes clustering (Section 7.2.2) and matching (Section
7.2.3) self-motion manifolds using kd-trees. Kd-trees require arranging and sorting the
coordinates of points along intervals [155], but due to wrapping, angular coordinates
cannot be arranged along intervals but along circles. However, the wrapping problem of
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angles –i can be easily avoided if we define the joint coordinates as the sines and cosines
of these angles, i.e., we will consider that, in this robot, there are six “augmented”
joint coordinates ◊ = [◊1, . . . , ◊6]T defined as follows:

◊1 = cos –1 ◊3 = cos –2 ◊5 = cos –3 (7.13)
◊2 = sin –1 ◊4 = sin –2 ◊6 = sin –3

These “augmented” joint coordinates will be subject to the following additional con-
straints:

◊2
1 + ◊2

2 ≠ 1 = 0 (7.14)
◊2

3 + ◊2
4 ≠ 1 = 0 (7.15)

◊2
5 + ◊2

6 ≠ 1 = 0 (7.16)

In this way, we have doubled the dimension of the original joint space (which is now
6-dimensional), but the wrapping problem is now avoided and the proposed method
can be applied exactly as described in Section 7.2. In this case, self-motion manifolds
are curves in the 6-dimensional joint space (◊1, . . . , ◊6). The task variables are the
position coordinates t = [x, y]T of the end-e�ector, and the passive variable is angle
Â = [„]T . The following restrictions can be derived from Figure 7.13:
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where aj are the lengths of proximal links OjAj , bj are the lengths of distal links AjBj ,
and {c2x, c3x, c3y} determine the positions of joints O2 and O3 as illustrated in Figure
7.13. Equations (7.14)-(7.19) constitute the system (7.2) defining the self-motion
manifolds in this particular example.

Since in this example self-motion manifolds are 1-dimensional, Algorithm 5 re-
duces to sweeping each of the six axes ◊j of the joint space independently, and calcu-
lating all five unknown joint coordinates (and passive angle „) in terms of the swept
joint coordinate in each case. Note that joint coordinates in this example must be
swept between ◊min

j = ≠1 and ◊max

j = 1, since the “augmented” joint coordinates are
sines or cosines. Next, we will describe how to solve all five unknown joint coordinates
and „ from Equations (7.14)-(7.19) in terms of the joint coordinate that is swept in
each iteration of Algorithm 5 (line 7), for given values of the task variables (x, y).

Consider first the case when ◊1 (or ◊2) is swept. If ◊1 (or ◊2) is known, we can
easily solve ◊2 (respectively, ◊1) from Equation (7.14). Then, since we know the values
of (◊1, ◊2), the only unknown in Equation (7.17) is the passive angle „. Equation
(7.17) has the following form: C · cos „ + S · sin „ + I = 0, which can be easily solved
by transforming it into a quadratic equation in tan(„/2), as explained earlier in this
section. After solving „ from this quadratic equation, the positions of joints B2 and
B3 are known. This allows us to solve analytically the (well-known) inverse kinematic
problem of the non-redundant 2-DOF serial revolute chains O2A2B2 and O3A3B3,
obtaining angles –2 and –3. Knowing (–2, –3), the remaining four unknown joint
coordinates (◊3, ◊4, ◊5, ◊6) can be directly computed using Equation (7.13). Following
this procedure, „ and all joint coordinates are obtained in terms of the swept joint
coordinate (◊1 or ◊2).

Since all three legs of the 3RRR robot have the same topology, it is straightfor-
ward to extend the procedure described in the previous paragraph to the cases where
other joint coordinates are swept. For example, when sweeping ◊3 (or ◊4), ◊4 (resp.
◊3) is solved from Equation (7.15). Then, „ is solved from Equation (7.18), which is
quadratic. Next, the IK problems of serial chains O1A1B1 and O3A3B3 are solved,
obtaining (–1, –3). Finally, (◊1, ◊2, ◊5, ◊6) are computed from Equation (7.13). It is
easy to extend this procedure to the cases where ◊5 or ◊6 are swept.

For the examples that will be illustrated next, we will consider that there are not
joint limits and that distal links A1B1, A2B2, and A3B3 move in the same plane and,
therefore, their mechanical interference should be forbidden. For collision testing, we
will consider that distal links have rectangular shape with the dimensions indicated in
Figure 7.13: their length is (bj + 2⁄), and their width is w. The collision test between
a pair of distal links (rectangles) can be easily performed using the Separating Axis
Theorem.

Next, we will apply the proposed method to an example of a 3RRR robot with
the following parameters: aj = 0.18, bj = 0.22, h = 0.15, c2x = 0.5, c3x = c3y =
0.3, 2⁄ = w = 0.035 (this geometry precisely corresponds to the robot depicted in
Figure 7.13). The method described in Section 7.2 is applied to obtain the barriers
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of the reachable workspace of this robot in the following box of the task space: T =
[0, 0.5] ◊ [≠0.19, 0.41]. The following parameters are used to execute the proposed
method: N j

s = Nti = 200, ‡c = 1.5, ‡m = 2. The calculation of barriers in this
example is again distributed over Np = 8 processes working in parallel. In this case,
box T is divided into eight equal parts along the vertical y axis (as indicated in Figure
7.14), such that each part is assigned to a di�erent process.

Figure 7.14 shows the boundaries and barriers of the reachable workspace for the
considered example, when omitting collisions between distal links (i.e., when allowing
their mechanical interference). Algorithm 8 takes about 27 minutes to obtain the result
shown in Figure 7.14. As it can be observed in Figure 7.14, if collisions between distal
links are omitted, then there are eight disjoint interior barriers inside the reachable
workspace. At these interior barriers, two serial limbs OjAjBj are simultaneously
completely stretched or folded, as indicated in Figure 7.14.
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L2 folded

L1 and L3
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L2 and L3
stretched

L1 folded
L2 stretched

L1 stretched
L3 folded

L2 stretched
L3 folded

Pa
rt

iti
on

of
 th

e
y

ax
is 

fo
rt

he
pa

ra
lle

lc
om

pu
ta

tio
n

Ta
sk

bo
x 
T

Figure 7.14: Reachable workspace of a 3RRR parallel robot, including interior barriers, when
omitting collisions. Fixed joints of the robot are represented for reference. Each serial limb
O

j

A
j

B
j

is denoted by L
j

.

Next, the computation is repeated but forbidding mechanical interferences be-
tween all three distal links. In that case, Algorithm 8 requires about 17 minutes to
obtain the result shown in Figure 7.15. As Figure 7.15 shows, in this example forbid-
ding the collisions between distal links does not a�ect the boundaries of the reachable
workspace, but interior barriers change drastically. When allowing distal links to in-
terfere, there are only a few small interior barriers (Figure 7.14). However, forbidding
their interference generates many large and intricate interior barriers (Figure 7.15).

This example reveals an interesting problem related to the measurement of
the “e�ciency” of a workspace when considering collisions (e.g., with the purpose of
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Figure 7.15: When forbidding collisions between distal links, interior barriers of the reachable
workspace shown in Figure 7.14 change drastically.

comparing di�erent robot designs). One possible way to measure the e�ciency ÷ of a
workspace involving collisions consists in dividing the area Ac of the workspace obtained
when considering collisions over the area At of the theoretical workspace obtained when
omitting collisions, i.e.: ÷ = Ac/At [45], where 0 Æ ÷ Æ 1. Since in this example the
boundary (shape) of the workspace is not a�ected when considering collisions (and the
collision workspace of Figure 7.15 contains no holes inside its boundaries), we obtain
÷ = 1. This may erroneously suggest that the workspace of the design analyzed in
this section is not a�ected by collisions between distal links, but this is because the
previous metric ignores the internal structure of the workspace. In this case, a more
sophisticated metric should be defined, a metric which takes into account not only the
area of the workspace but also the distribution of its interior barriers. However, the
definition of such a metric is left for future research.

7.4 A First Approach to the Interior Barriers of the
HyReCRo Robot

As previous examples have demonstrated, the computation time of the proposed method
drastically increases when increasing the dimension of self-motion manifolds. For ex-
ample: according to table 7.1, the computation of the barriers of the Stewart platform
with 2D self-motion manifolds is ten times higher than the necessary time to com-
pute the barriers when having 1D manifolds. This means that the method presented
in previous sections is not suitable for the HyReCRo robot, since this robot has 4D
manifolds in a 10D ambient space of active joint coordinates (see section 5.4.4): in
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that case, in order to densely sample these 4D manifolds, Algorithm 5 would need to
sweep four-dimensional grids for

!10
4

"
=210 di�erent parameterizations, which clearly

implies a huge amount of calculations.
Although the method presented in previous sections is not suitable for obtaining

the interior barriers of the HyReCRo robot, we still can devise an alternative algo-
rithm to obtain a first approximation of the interior barriers of the HyReCRo robot, as
explained next. The method presented in previous sections identifies interior barriers
with the vanishing of self-motion manifolds. Recall from chapter 5 that we can obtain
and represent the solutions of the inverse kinematics of the HyReCRo robot as feasible
regions Rf in two- or three-dimensional spaces. Actually, these regions Rf are projec-
tions of the self-motion manifolds of the HyReCRo robot on lower-dimensional spaces.
Thus, we can still identify some interior barriers with the vanishing of some of these
projections Rf .

Note that this alternative method (based on studying the lower-dimensional
projections of self-motion manifolds) is not completely rigorous, since we may lose
information when projecting self-motion manifolds on lower-dimensional spaces (e.g.,
the projections of large manifolds may mask the projections of smaller manifolds whose
vanishing may not be detected due to this masking). Nevertheless, in this section we
will admit this possible loss of information in exchange of obtaining a first approximation
of the interior barriers of the HyReCRo robot.

7.4.1 Workspace Barriers and Empty Feasible Regions Rf

In this section, we will describe how the solution of the inverse kinematic problem,
described in section 5.4, can be used to obtain the workspace of the HyReCRo robot,
including its external boundaries and interior barriers. In addition to joint limits (which
are automatically taken into account in the algorithm presented in section 5.4.5 for
computing the feasible regions Rf ), we will also impose the condition that mechanical
interferences between the legs of the robot should be forbidden. As in the previous
chapter, we will check the occurrence of mechanical interferences between the legs of
the HyReCRo robot using the Separating Axis Theorem.

According to section 5.4, the solution of the inverse kinematic problem of the
HyReCRo robot can be summarized as follows. Given a desired relative position and
orientation between the feet of the robot, encoded by the homogeneous transformation
matrix TB/A defined in Equation (5.41), the solution of the inverse kinematics depends
on R33, which is the third element of the third row of TB/A:

• If the desired relative orientation satisfies R2
33 ”= 1, then the solution to the

inverse kinematics can be represented by a 2D feasible region Rf in plane
(Ï1B , yB), such that any point of this region corresponds to a posture that
allows the robot to attain the desired position and orientation TB/A satisfying
the joint limits of the linear actuators and guaranteeing that the legs of the
robot do not interfere. Moreover, there exist four di�erent branches for the so-
lution, i.e. four di�erent feasible regions Rf corresponding to the four possible
combinations of binary variables ‡1 and ‡2 (section 5.4.3.1).
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• If the desired relative orientation satisfies R2
33 = 1, the solution to the inverse

kinematics can be represented by a 3D feasible region Rf in space (Ï1B , Ï2B , yB),
such that any point of Rf yields a posture that allows the robot to attain the
desired position and orientation TB/A satisfying the joint limits of the linear
actuators and guaranteeing that the legs of the robot do not interfere. In this
case, there exist two di�erent branches for the solution, i.e. two di�erent feasible
regions Rf , one region per each value of the binary variable ‡2 (section 5.4.3.2).

Once the solution to the inverse kinematics is available (including all branches
of this solution), the workspace boundaries and barriers can be obtained using a dis-
cretization algorithm explained next, which is a (very) simplified version of Algorithm
8.

The workspace of the HyReCRo robot can be defined as the set of positions and
orientations that foot B can attain with respect to foot A. Such a workspace is a six-
dimensional set, since the position and orientation of foot B relative to foot A can be
represented by three translations p = [px, py, pz]T and three rotations r = [–, —, “]T
(where –, — and “ are Euler angles). To calculate the workspace, the six-dimensional
space of variables {px, py, pz, –, —, “} is discretized into a regular grid of nodes. For
example, we may approximate each axis of this six-dimensional space by nd nodes
regularly distributed between two limits, which yields an overall grid of n6

d nodes.
Then, for each node of this grid, the inverse kinematic problem is solved to check if
the node is attainable by each branch of the solution of the inverse kinematics.

For each branch i of the solution to the inverse kinematics, we create a list WS i

of the nodes that can be reached using that branch. After the algorithm has checked
all the nodes of the grid, the list WS i is an approximation of the workspace associated
to branch i, since it contains all positions and orientations that can be reached with
that branch. Then, the boundaries of the workspace associated to the i-th branch can
be approximated by the nodes contained in WS i which have at least one unreachable
neighboring node (i.e., a neighboring node not contained in WS i). After obtaining
the boundaries of the workspaces associated to the di�erent branches, the boundaries
of all branches can be joined to obtain the boundaries and barriers of the complete
workspace.

To determine if an arbitrary node of the grid is attainable using a given branch i
of the inverse kinematics, the feasible region Rf associated to that branch is calculated
using the Monte Carlo Algorithm 1 described in section 5.4.5. If the region Rf is empty,
then it is considered that the node is not attainable by the i-th branch, and the node
is not included in list WS i (see Figure 7.16). Algorithm 1 generates the region Rf by
randomly sampling points in plane (Ï1B , yB) [or in space (Ï1B , Ï2B , yB), if R2

33 = 1].
If the posture generated by each randomly sampled point satisfies the joint limits of
the linear actuators, and if the legs do not interfere, then that point is stored as a
point of feasible region Rf . In this way, a discrete approximation of the region Rf

can be obtained by sampling a large number of points in plane (Ï1B , yB) [or in space
(Ï1B , Ï2B , yB)].
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Branch: σ1 = 1, σ2 = 1
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Branch: σ1 = 1, σ2 = -1
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Branch: σ1 = -1, σ2 = 1
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Figure 7.16: A 2D example that illustrates the process to determine whether a given node k
of the potential workspace is reachable or not. For a given node k, the feasible regions R

f

are
calculated using all branches of the solution of the inverse kinematic problem. In this case, the
node k belongs only to the workspaces of branches (‡1 = 1, ‡2 = 1) and (‡1 = ≠1, ‡2 = ≠1)
since these are the only branches leading to non-empty feasible regions R

f

.

Note that it is su�cient to find a single point belonging to Rf to guarantee
that Rf is not empty and classify the corresponding node of the workspace as attain-
able. However, checking if Rf is empty (and classifying the corresponding node as
unattainable by the i-th branch of the inverse kinematics) is not that easy, since one
would need to explore exhaustively plane (Ï1B , yB) [or space (Ï1B , Ï2B , yB)] in order
to guarantee that this plane (space) does not have points satisfying all constraints (i.e.,
to guarantee that Rf is empty). Since it is not feasible to perform such an exhaustive
search to check if Rf is empty, this problem is practically solved by establishing a max-
imum number na of attempts to generate a point in Rf . Then, Algorithm 1 begins to
randomly sample points in plane (Ï1B , yB) [or in space (Ï1B , Ï2B , yB), if R2

33 = 1]. If
it finds a point that satisfies all constraints (joint limits and no-interference), Algorithm
1 stops: the region Rf is not empty (it contains at least one point) and the node is
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classified as attainable. If, on the contrary, Algorithm 1 has sampled na random points
and none of them satisfies the constraints, it is considered that Rf is empty, which
means that the corresponding node cannot be attained by the considered branch of the
inverse kinematics. Obviously, this method will be more accurate when na increases,
but the computation will also take more time, so a compromise between precision and
computational cost is necessary.

It should be remarked that the method described in this section to compute
the workspace of the HyReCRo robot is very computer-intensive if we try to discretize
and compute the six-dimensional workspace of variables {px, py, pz, –, —, “}, since the
number of nodes to check is n6

d (and, for each node, the feasible regions Rf must
be obtained for the di�erent branches of the inverse kinematics). Moreover, a six-
dimensional workspace cannot be represented graphically. For these reasons, and to
decrease the computational cost, we will fix some of these six variables to obtain
lower-dimensional workspaces that can be represented graphically and are more easy
to understand, such as the constant-orientation workspace. In the following section,
we will illustrate the algorithm described in the present section using some examples.

7.4.2 Examples
This section presents some examples of the application of the method described above
to compute di�erent workspaces of the HyReCRo robot, including some interior bar-
riers. For the next examples, the geometric design parameters of the robot are:
b = p = 4, h = 16, t = 15.6, fl0 = 19, and �fl = 7.5 (all in cm). In all exam-
ples of this section, we will discretize the workspace into nd = 200 points along each
axis. Moreover, we will sample a maximum of na = 5000 random points before de-
ciding that the feasible region Rf (of valid postures that yield a given position and
orientation between the feet) is empty. In all examples, we will assume that foot A is
firmly attached to the structure, and we will compute the set of positions that foot B
(which is free to move) can reach.

7.4.2.1 Example 1

In this example, we are interested in obtaining a constant-orientation workspace, i.e.
the set of attainable points by foot B when the relative orientation between the feet
is constant. More specifically, we will study the workspace obtained when both feet
have the same orientation, which means that the rotation submatrix of TB/A is the
identity matrix. Furthermore, we will be interested only in the intersection of such
constant-orientation workspace with plane pz = 0, to study the planar motions of the
robot inside this constant-orientation workspace. Note that the robot needs to perform
motions of this type to travel along a beam of a structure, as shown in Figure 7.17.
The desired position and orientation will have the following form for this example:

TB/A =

S

WWU

1 0 0 px

0 1 0 py

0 0 1 0
0 0 0 1

T

XXV (7.20)
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To apply the algorithm described in the previous section, we will define a box B that
encloses the workspace in plane (px, py), and we will discretize this box into a grid
of 40000 nodes regularly distributed (200 nodes per each axis). Then, for each node,
we will solve the inverse kinematic problem using the matrix of Equation (7.20) as
the input, to check if each node is attainable by the di�erent branches of the inverse
kinematics. The chosen box for this example is B = {(px, py) : ≠80 cm Æ px Æ
80 cm, ≠50 cm Æ py Æ 50 cm}. Running the algorithm described in the previous
section for these parameters, the workspace shown in Figure 7.17 is obtained. Note
that, since in this case R2

33 = 1, according to section 5.4.3 the solution to the inverse
kinematic problem in this case has two branches: one for ‡2 = 1 and other for ‡2 = ≠1.
The workspaces associated to these branches are shown in Figure 7.17 with di�erent
colors.

px

py

-80 80
-50

50

Beam

Branch σ2 = -1 

Branch σ2 = 1 

Foot A

Foot B

Figure 7.17: Planar constant-orientation workspace that provides the points at which foot B
can be placed with the same orientation as foot A. This constant-orientation workspace is useful
for planing longitudinal movements along the direction of the beam. The workspaces associated
with the branches ‡2 = ≠1 and ‡2 = 1 are represented in red and blue colors, respectively.

Note that this workspace is split into the components associated with the two
branches of the solution to the inverse kinematic problem. The complete workspace
(i.e. the union of the two components) has a void around foot A, which is neces-
sary for avoiding interferences between the legs. According to Figure 7.17, the robot
cannot move the foot B from one side of the workspace (e.g. the right half of the
workspace, associated with branch ‡2 = 1) to the other side (e.g. the left half, asso-
ciated with branch ‡2 = ≠1) keeping constant the orientation between the feet, since
the workspaces associated with both branches have boundaries in the middle of the
workspace, both above and below foot A. This is illustrated in Figure 7.18, where
the robot starts at an initial point in the workspace associated with branch ‡2 = 1,
and tries to describe a trajectory towards the left half of the workspace (see Figure
7.18a). However, the trajectory cannot be completed because the robot cannot cross
the boundaries of the component of the workspace in which it moves. This boundary
is originated from the fact that the legs cannot interfere: as Figure 7.18b shows, when
foot B is close to the mentioned boundary, both legs are about to collide.
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(a)

(b)

Initial positionFinal position

Trajectory

Foot A

Foot B

Central body
of the leg A

Central body of 
the leg B

Figure 7.18: (a) A trajectory between both components of the workspace. (b) The robot cannot
reach the left component because it cannot cross a boundary of the component in which it moves
(the right component). When approaching the boundary, the legs are about to collide: foot B is
almost touching the central body of leg A. To cross the boundary, an interference between these
two bodies would be necessary.

As in the previous chapter, the Separating Axis Theorem [52] is used for checking
the interference between the legs of the HyReCRo robot. Each leg can be approximated
by the union of two cuboids (also known as rectangular parallelepipeds): one cuboid
encloses the foot, and the other cuboid encloses the central body of the leg, including
the linear actuators (these cuboids are represented in magenta in Figure 7.18b). Then,
the two legs will interfere if one of the cuboids of one leg intersects one of the cuboids
of the other leg. Since the cuboids are convex shapes, the Separating Axis Theorem
can easily be used to check if they intersect.
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7.4.2.2 Example 2

In this example, the objective is to find the planar constant-orientation workspace
defined by the following homogeneous transformation matrix between the feet of the
robot:

TB/A =

S

WWU

0 ≠1 0 px

1 0 0 py

0 0 1 0
0 0 0 1

T

XXV (7.21)

This orientation is a rotation of 90¶ about the Z axis, which is necessary for performing
a transition between two perpendicular beams in a structure, as shown in Figure 7.19.
Again, we are interested only in the intersection of this constant-orientation workspace
with the plane pz = 0, since the motion necessary to perform such a transition is
planar.

Next, the algorithm described in Section 7.4.1 is applied, discretizing the follow-
ing box B into a grid of 40000 nodes (200 nodes per axis): B = {(px, py) : ≠40 cm Æ
px Æ 80 cm, ≠40 cm Æ py Æ 80 cm}. The resulting workspace is shown in Figure
7.19. Again, since the desired orientation satisfies R2

33 = 1, the solution to the inverse
kinematic problem has two branches, one for ‡2 = 1 (shown in blue in Figure 7.19)
and other for ‡2 = ≠1 (shown in red in Figure 7.19).

py

-40
-40

80

80px

Foot A
Foot B

Beam 1

Beam 2

Branch σ2 = -1

Branch σ2 = 1 Branch σ2 = -1

Figure 7.19: Planar constant-orientation workspace containing all the points of the plane p
z

= 0
that can be reached with foot B rotated 90¶ about the Z axis with respect to foot A.

In this case, the workspace attainable using the branch ‡2 = ≠1 of the solution
to the inverse kinematic problem is smaller than the workspace associated with branch
‡2 = 1. Note that the workspace associated with branch ‡2 = ≠1 has two components:
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a big one, which is close to foot A in Figure 7.19, and a smaller one, which is close to
beam 2 in the same figure. Actually, the shape of the smaller component cannot be
appreciated very well in Figure 7.19. However, a more precise approximation of that
component can be obtained if the algorithm described in Section 7.4.1 is executed again
discretizing a smaller box B that encloses only the area around the mentioned small
component of the workspace, instead of using a big box that contains all components
as shown in Figure 7.19.

The posture of the robot shown in Figure 7.19, with foot B placed on beam 2, is
obtained using the branch ‡2 = 1 of the solution to the inverse kinematics. However,
according to the same figure, it would be also possible to place foot B on beam 2
using branch ‡2 = ≠1, since this branch yields a small component of the workspace
near beam 2 (i.e., the small component described in the previous paragraph). This
is checked in Figure 7.20, which shows a posture of the robot that places foot B
at a point of the smallest of the two workspace components associated with branch
‡2 = ≠1. As this figure shows, using branch ‡2 = ≠1, foot B can also be e�ectively
placed on beam 2 with the desired orientation. However, in this posture, the hip of the
robot intersects the beams, so this would not be a feasible solution in practice. This
unfeasibility can be easily detected by the presented method if we include the condition
that no part of the robot should intersect the obstacles of the environment, using a
similar procedure to the method used for checking if di�erent legs intersect, described
in subsection 7.4.2.1.

Collisions with the
beams of the structure

Beam 2

Beam 1

Figure 7.20: A posture which places foot B on beam 2 with the desired orientation, using
branch ‡2 = ≠1. In this posture, the robot collides with the structure.
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Figure 7.21: Computing the workspace of the HyReCRo robot in the developed simulator, using
the method proposed in Section 7.4.

7.5 Simulator of the HyReCRo Robot: Interior Barriers

The simulator presented in Section 5.5 can also be used for obtaining the workspace
of the HyReCRo robot using the method described in Section 7.4. To that end, the
user must click the “View workspace window” option in the “view” menu at the top
of the main window of the simulator (see Figure 7.21a). When doing this, the window
shown in Figure 7.21b pops up. This window has two tabs: “GG method” (which was
analyzed in Section 6.6) and “IK method”. In this section, we will focus on the content
of the second tab.

By means of the window shown in Figure 7.21b, the user can compute and
visualize the workspace of the HyReCRo robot using the method presented in Section
7.4. When applying this method in the simulator, it is assumed that the robot adopts
planar postures with the relative orientation between its feet satisfying R2

33 = 1, i.e.,
Case 2 of the inverse kinematic problem of this robot is considered. This is because
many of the important postures necessary for exploring structures (i.e., those postures
required for performing plane transitions) are planar postures satisfying R2

33 = 1, as
we have observed during the previous chapters of this thesis. Moreover, the computed
workspaces are constant-orientation workspaces, considering that the orientation � of
the free foot is constant (angle � is indicated in Figure 7.21a).

For computing the constant-orientation workspace according to the method
described in Section 7.4, the user must first define the box B in which the workspace
will be computed. This box is defined in tab “GG method”, as described in Section
6.6. Note that, since in the present section we are dealing with planar workspaces,
the algorithm will only consider the dimensions of box B along axes X and Y. Next,
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the user must define the number nd of nodes into which the X and Y axes of box
B will be discretized, as well as the maximum number na of points which Algorithm
1 will attempt to generate before considering that the feasible region Rf at a given
workspace point is empty. nd and na are introduced by the user as indicated in Figure
7.21c.

After this, the user specifies the desired orientation � (in rad) for the free foot,
as indicated in Figure 7.21d. Next, pressing the button “Compute WS” will launch the
execution of the method described in Section 7.4, which will represent in Figure 7.21a
the computed workspaces after some time (typically, some minutes, depending on the
values chosen for nd and na). Since the computed constant-orientation workspaces
consider that the orientation between the feet satisfy the condition R2

33 = 1 (Case 2
of the inverse kinematics, which has two solution branches due to the binary variable
‡2 œ {≠1, 1}), we will obtain two workspaces, one for ‡2 = 1 (in blue) and another for
‡2 = ≠1 (in red). Using the tick-boxes shown in Figure 7.21e, the user can activate
or deactivate the visualization of these two workspaces.

7.6 Conclusions

This chapter has investigated the interior barriers of the workspaces of redundant
manipulators, like the HyReCRo robot. These barriers imply motion impediments for
the robot and depend on the considered kinematic constraints, such as joint limits or
collision constraints. Collision constraints are important for the HyReCRo robot, since
this robot should not collide with itself or with the beams of a structure when climbing
it. After reviewing previously existing methods for computing the interior barriers of
redundant robots (Section 7.1), it has been concluded that existing methods cannot
easily accommodate collision constraints, and a need for designing a new method able
to easily handle such constraints has been identified. In order to design this new
method, the relationship between self-motion manifolds and interior barriers has been
investigated, concluding that, when disjoint components of these manifolds vanish, the
robot encounters interior barriers.

Based on this property (manifold vanishes ∆ workspace barrier occurs), a new
method has been proposed in Section 7.2 for obtaining the interior barriers of the
workspace of redundant robots under arbitrarily complex collision constraints. This
method consists of three stages: first, manifolds are densely sampled, discarding sam-
ples that do not satisfy collision constraints. Then, non-discarded samples are clustered
using kd-trees, in order to identify disjoint self-motion manifolds. Finally, disjoint mani-
folds identified at neighboring workspace points are compared and matched, in order to
detect if some manifold vanishes when traveling between these two workspace points,
in which case a workspace barrier is identified between these points. As the tests con-
ducted in Section 7.3 have demonstrated, the proposed method is feasible for robots
whose self-motion manifolds are one- and two-dimensional, and collision constraints
alter drastically the distribution of interior barriers inside the workspace. However,
the proposed method is not completely appropriate for robots with higher-dimensional
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manifolds, like the HyReCRo robot, since in those cases the execution of the method
is very computer-intensive and may take prohibitive computation times.

In order to try to extend the proposed method to the HyReCRo robot, whose self-
motion manifolds are four- or five-dimensional (depending on the relative orientation
between the feet), an approximate variant of the previous method has been proposed
in Section 7.4, which consists in analyzing lower-dimensional projections of these self-
motion manifolds (these projections are the feasible regions Rf defined in Section
5.4.5). These lower-dimensional projections allow for the computation of some interior
barriers of the workspace of the HyReCRo robot, although it is not guaranteed that all
interior barriers of this robot are detected using this method. Thus, this method based
on lower-dimensional projections of self-motion manifolds will have to be refined in the
future, in order to avoid missing barriers.

Finally, the approximate method proposed in Section 7.4 has been implemented
in the simulator of the HyReCRo robot (Section 7.5).

7.7 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, and L. Payá. A method based on the
vanishing of self-motion manifolds to determine the collision-free workspace of
redundant robots. Mechanism and Machine Theory, 128:84 – 109, 2018 [146]
(SCI-JCR Impact Factor: 2.796, Q1).

– This paper presents the method proposed in Section 7.2 for obtaining the
interior barriers of the workspace of redundant manipulators under collision
constraints.

• A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá, and Y. Berenguer. Calculation
of the boundaries and barriers of the workspace of a redundant serial-parallel
robot using the inverse kinematics. In Proceedings of the 13th International
Conference on Informatics in Control, Automation and Robotics, volume 2, pages
412–420, 2016 [147].

– This paper presents the method proposed in Section 7.4, which constitutes
a first approach to the computation of the interior barriers of the HyReCRo
robot.
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8 Development of a Prototype with
Magnetic Grippers

The design of a climbing robot comprises two main parts: design of the grippers with
which the robot adheres to the climbed structure, and design of the kinematic chain or
manipulator that connects these grippers and moves them to the di�erent attachment
points of the structure. The manipulator of the HyReCRo robot has been thoroughly
analyzed during the previous chapters of this thesis. Therefore, in this chapter we will
focus on the design of the grippers of the HyReCRo robot.

This chapter begins by presenting a functional prototype of the HyReCRo robot,
which is able to perform the basic movements necessary for exploring three-dimensional
steel structures (Section 8.1). The objective of this chapter is to design magnetic
grippers for this prototype, so that it can adhere to steel structures and climb them.
The magnetic grippers to be designed will be based on the technology of switchable
magnets (SM), which is introduced in Section 8.2. Next, Section 8.3 reviews the basic
movements necessary for climbing and exploring three-dimensional structures, and from
these basic movements we derive the postures that will be used for designing the
grippers. Later, Section 8.4 presents a conceptual design of these grippers, identifying
their main design parameters.

This is followed by the design process of the grippers, which considers two
criteria to guarantee the stability of the adhesion and avoid the fall of the robot:

• On the one hand, the notion of Zero Moment Point (ZMP) is used to guarantee
that the grippers will not detach from the structure, which would produce the
tip-over and fall of the robot (Sections 8.5 and 8.6).
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• On the other hand, even if the grippers never detach from the structure, they
may slip due to insu�cient friction. Therefore, Section 8.7 presents a static
friction analysis of the grippers, in order to determine the necessary static friction
coe�cient for avoiding slippage.

Finally, Section 8.8 presents some experiments performed with the prototype of the
HyReCRo robot including the developed grippers. These experiments, in which the
robot climbs a real steel structure, show that the developed grippers o�er a stable
adhesion even in the worst design postures.

8.1 A Prototype of the HyReCRo Robot

In previous chapters, we have performed the kinematic and workspace analyses of the
HyReCRo robot. The next step in this thesis is to use these analyses to design and
develop a functional prototype of the HyReCRo robot. To that end, the first step is
to design the geometry of the prototype, i.e., to determine the necessary values of the
six geometric design parameters of the robot (b, p, h, t, fl0, �fl) so that the prototype
can perform the necessary movements for exploring structures.

After a trial-and-error process aided by the developed simulator of the HyReCRo
robot, described at the end of Chapters 5-7, the following geometric design was chosen:
b = 25, p = 31.5, t = 110, h = 70, fl0 = 100, �fl = 50 (values in mm).

The chosen design allows the robot to perform concave transitions between
di�erent beams, as well as convex transitions between di�erent faces of the same
beam. By combining these two movements with the longitudinal advance along a
beam, and with the two rotations of the hip (◊A and ◊B), the HyReCRo robot can
completely explore three-dimensional structures (see Section 8.3).

A prototype, shown in Figure 8.1, was developed with these geometric design
parameters. The main characteristics of this prototype are listed next:

• The dimensions of the robot at its home configuration are: 250 ◊ 500 ◊ 120
(dimensions in mm).

• Its weight, excluding the magnetic grippers to be designed in this chapter, is
mM = 1.55 kg.

• Most parts of the robot are PLA 3D-printed parts, including also a few parts
made of aluminum.

• Linear actuators used in the 2RPR-PR parallel mechanisms of the legs are from
manufacturer Actuonix [3] (model no. L12-50-210-12-P).

• DC Motors used in the hip are from manufacturer Maxon [112] (model A-max
22 with 590:1 gear box). These motors control rotations ◊A and ◊B , as indicated
in Figure 8.1.
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Figure 8.1: Prototype of the HyReCRo robot.

• The robot is controlled through a control unit mounted on the hip, which in-
cludes an Arduino Mega 2560 board and a custom-made amplification and fil-
tering board interfacing between the Arduino board and all actuators. This
custom-made board is powered at ±12 V through a cable (currently, the robot
is umbilical, without batteries).

• Currently, the robot is tele-operated through a gamepad. Through this gamepad,
the user inputs desired incremental changes �t of the position and/or orientation
of the free gripper of the robot, and the necessary increments of the actuated
joint coordinates (�q) are solved from the Jacobian relationship: �t = J�q,
which is solved through a pseudo-inverse solution since J is not square (the robot
is redundant). The necessary increments �q are passed to Proportional-Integral-
Derivative (PID) control loops that control each actuator.

• Alternatively, the simulator of the HyReCRo robot described in previous chapters
can also be used to control the prototype of the HyReCRo robot. For example,
from this simulator it is possible to tune the gains of the PID controllers or set
desired lengths for the linear actuators, as well as specify Cartesian trajectories
for the free gripper of the prototype. However, this functionality of the developed
simulator (trajectory planning) still needs to be polished, and the experiments at
the end of this chapter will be conducted by directly moving the free gripper of
the prototype with the gamepad.
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To complete this prototype, the last step is to develop its magnetic grippers, which will
be attached to the feet of the robot and will allow it to adhere to real steel structures
and climb them. The objective of the present chapter is to design such magnetic
grippers, which will be based on the technology of switchable magnets.

8.2 Switchable Magnets in Robotics

As explained in chapter 2, step-by-step structure-climbing robots like the HyReCRo
robot (and general multi-legged climbing robots) must alternate the role of their grip-
pers as they explore structures: during some phases of their motion, one of the grippers
must be firmly attached to the structure, whereas the other gripper, which is moved
by the manipulator to the next attachment point, must be free. Then, in other phases
of the motion these roles are inverted and the previously free gripper is attached to
the structure, whereas the previously attached gripper must be released in order to
move it to the next anchor point of the environment. Therefore, it is necessary to use
grippers with the ability to activate and deactivate their adhesion to the environment
as required during each motion phase.

Traditionally, many climbing robots have relied on coils and electromagnets for
activating and deactivating adhesion forces when climbing ferromagnetic structures
[8, 89, 5, 97]. However, during the last years, an increasing number of climbing robots
have been substituting electromagnets by switchable magnets, due to their advantages.
Generally, a switchable magnet device is a magnetic circuit that includes permanent
magnets such that, by moving some part of the circuit or these permanent magnets,
it is possible to redirect the magnetic flux so that most of it either traverses the
ferromagnetic substrate or is internally recirculated through the device. In the first case,
it is said that the state of the switchable magnet is ON, and the switchable magnet
strongly adheres to the ferromagnetic substrate. In the second case, the switchable
magnet is OFF and the adhesion force to the ferromagnetic structure is negligible.

Under this working principle, it is possible to devise many typologies of switch-
able magnets [161], although some of the most widely used types are the so-called
H-type SM devices, like the one illustrated in Figure 8.2a. The switchable magnet
of Figure 8.2a is composed of a ferromagnetic housing and two cylindrical permanent
magnets with diametrical magnetization. The lower magnet is firmly attached to the
ferromagnetic housing (with its poles oriented along the principal axis of the housing),
whereas the upper magnet can rotate with respect to the lower one. When the poles
of the upper magnet are oriented anti-parallel to the poles of the lower magnet, the
magnetic field is mainly closed between the two magnets, through the ferromagnetic
housing (Figure 8.2c), and little magnetic flux circulates through the ferromagnetic
substrate. In that case, the adhesion force between the ferromagnetic substrate and
the switchable magnet is negligible and the device is at OFF state. When rotating the
upper magnet by 180¶, the poles of both magnets coincide and most of the magnetic
flux circulates through the ferromagnetic substrate (Figure 8.2d), so the switchable
magnet adheres to it (ON state).
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8.2. Switchable Magnets in Robotics

Figure 8.2: (a) Parts of a switchable magnet. (b) Flat faces reduce flux leakage. (c) Switchable
magnet at OFF state. (d) Switchable magnet at ON state.

The adhesion force between the switchable magnet and the ferromagnetic sub-
strate depends on many factors, such as [180]: the material of the permanent magnets,
the air gap between the housing and the substrate, the thickness e of the substrate (the
adhesion force increases with e), the material and shape of the ferromagnetic housing,
etc. Regarding the influence of the shape of the housings on the adhesion force, as it
can be observed in Figure 8.2b, housings are usually manufactured with two flat faces
instead of having a cylindrical shape. The purpose of these faces is to minimize the
magnetic flux leakage through the housing during the ON state, which would reduce
the adhesion force (Figure 8.2b), enforcing most of the magnetic flux to traverse the
substrate [180].

Switchable magnets have traditionally been used as holding devices in machining
workshops and industries. In that case, the upper magnet of Figure 8.2a can be
manually rotated by means of a knob. If this knob is substituted by a small servomotor,
then one can automate the rotation of the upper magnet, which allows for the use of
switchable magnets as variable adhesion devices in robotics, as many researchers have
done during the recent years.

Schempf et al. [167] used a switchable magnet to allow the Neptune robot to
climb and inspect storage tanks. The biped robot MagGIE [55] also uses SM to climb
steel structures. Gilpin et al. [61] presented the Miche robots, which are identical
robotic modules that can assemble by means of SM, forming arbitrary shapes. The
Hand-Bot [20] climbs vertical structures by combining grippers with a rope which is
anchored to the ceiling through a switchable magnet. Reference [70] presents the in-
novative design of a permanent-magnet wheel for a wall climbing robot; the magnetic
flux can be conducted through the wheel or the ferromagnetic wall by inserting or
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removing an induction pin. Yao and Li [201] optimized the design of H-type switch-
able magnets, attaining high adhesion forces and ratios between adhesion forces at ON
and OFF states. The inchworm robot Tubulo II [162] also uses SM to adhere to the
inner walls of boiler tubes, in order to explore and visually inspect them. Rochat et
al. [160] also present the TREMO robot, a modular inchworm robot which makes use
of anchors having three SM symmetrically placed 120¶ apart. Magnenat et al. [109]
present the marXbot, a mobile robot with an SM-based gripper to grasp ferromagnetic
objects. Chen et al. [29, 31] designed and optimized a switchable magnetic device
based on the linear Halbach array, and used it on a wheeled robot for climbing ferro-
magnetic walls [30]. Romão et al. [163] designed the InchwormClimber, a lightweight
1-degree-of-freedom climbing robot whose adhesion relied on switchable magnets com-
bined with static (non-switchable) permanent magnets for increased safety. Finally, the
omnidirectional climbing robot OmniClimber [177] uses SM in order to adhere to steel
structures and perform transitions between di�erent working planes with the help of
an articulated arm.

Switchable magnets present several advantages over electromagnets used in
climbing robots, namely [180]: they o�er higher adhesion force per unit mass, lower
power consumption (SM only consume power when rotating the mobile magnet for
switching between the ON/OFF states), they are simpler to manufacture, and o�er
higher safety (in the event of power loss, adhesion will not be lost and the robot will not
fall). Considering these advantages, in this chapter we will design magnetic grippers
based on SM for the HyReCRo climbing robot. Before proceeding with the design, in
next section we will recall the basic postures and movements which are necessary for
exploring three-dimensional structures, which were introduced in previous chapters of
this thesis.

8.3 Basic Movements for Exploring Structures

This section reviews the basic movements necessary for exploring three-dimensional
structures. From these basic movements, we derive the postures that will be used for
designing the magnetic grippers in later sections.

A three-dimensional metallic structure can be defined as a network of intercon-
nected bars or beams. In order to navigate a structure, a climbing robot needs to
perform three basic movements, which will be denoted by {L, E, I} in this chapter:

• L: Longitudinal displacement along a beam.

• E: Exterior1 (or convex) transition between two adjacent faces of the same
beam.

1Note that, in previous chapters, “exterior” and “interior” transitions were called “convex”
and “concave” transitions, respectively. However, in this chapter we will prefer to use the terms
“exterior” and “interior” transitions (which are used by some researchers as synonyms of convex
and concave transitions [44]) since they can be abbreviately and intuitively denoted by di�erent
letters (E, I), whereas both terms “convex” and “concave” begin with the same letter (C).
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Figure 8.3: Basic movements to explore structures: longitudinal displacement along a beam
(a), exterior transition between faces of a beam (b), and interior transition between beams (c).

• I: Interior (or concave) transition between two di�erent adjacent beams.

As demonstrated in [132], by combining the three basic movements {L, E, I} with
the two rotations of the hip {◊A, ◊B}, the HyReCRo robot can completely explore
three-dimensional structures.

Figure 8.3 illustrates the HyReCRo robot performing these three basic move-
ments. The longitudinal displacement along a beam can be accomplished by di�erent
gaits [67], although in this chapter we will prefer to use an inchworm-like gait, in which
the robot alternatively extends or retracts its legs while adhering and releasing its grip-
pers as required (see Figure 5.7). This gait is simpler to execute with the HyReCRo
robot, and may be more energy-e�cient than other gaits [14].

Figures 8.3b and 8.3c illustrate the HyReCRo robot performing exterior and
interior transitions, respectively. For simplicity, in this chapter we will consider that
exterior and interior transitions are orthogonal, i.e., we will consider transitions between
planes that meet at ±90¶. As demonstrated in earlier chapters, the motion capabilities
of the HyReCRo robot are not limited to these two cases only, but it can attain a wider
range of orientations between its grippers. However, in this chapter we will simplify our
analysis to the three cases of Figure 8.3, in which the relative orientation – between
the grippers is either 0¶ (Figure 8.3a), ≠90¶ (Figure 8.3b), or +90¶ (Figure 8.3c). In
real structures, planes may meet at arbitrary angles – other than these three, but even
in that case, – will lie between these three extreme cases or near them. Therefore, it
is reasonable to assume that, if the grippers are designed to resist the basic extreme
cases of Figure 8.3, then they will resist any other intermediate posture.

For the design of magnetic grippers in next sections, we will consider 18 scenarios
or design cases, which are derived from the three basic postures of Figure 8.3: for each
posture, we consider that gravity can act along the two possible directions (positive
and negative directions) of each coordinate axis (coordinate axes are represented in
Figure 8.3). We will identify each case by a string of three characters “UV W”, where
U œ {L, E, I} denotes each posture of Figure 8.3, V œ {X, Y, Z} denotes the axis
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along which gravity acts, and W œ {+, ≠} denotes the sign of gravity along this axis.
Using this notation, for example, “LZ≠” identifies the scenario in which the robot is
advancing longitudinally along a beam (L) with gravity acting along the negative (≠)
direction of Z axis. In this way, the enumeration of all 18 cases is as follows: LX+,
LX≠, LY +, LY ≠, LZ+, LZ≠, EX+, EX≠, EY +, EY ≠, EZ+, EZ≠, IX+,
IX≠, IY +, IY ≠, IZ+, IZ≠.

Note that these 18 cases include the most typical situations found when climbing
and exploring three-dimensional structures. For example:

• Cases “LX±” correspond to the situations in which the robot is climbing up or
down a vertical beam, with gravity acting along the direction of the beam.

• Case “LY +” corresponds to the scenario in which the robot is hanging from the
ceiling upside down, with gravity trying to directly detach the robot from the
ceiling.

• Case “IX≠” corresponds to the scenario in which the robot is performing a plane
transition from wall to ceiling.

Similarly, other cases can be identified with other typical movements performed while
climbing structures.

8.4 Conceptual Design of Magnetic Grippers

This section describes the basic structure and geometry of the magnetic grippers that
will be designed in this chapter in order to firmly attach the HyReCRo robot to ferro-
magnetic structures in all design cases described in the previous section.

The first parameter to decide in the design of the grippers is the number of
switchable magnets that each gripper should carry. If we equip each gripper with only
one or two switchable magnets, both the net adhesion force of the gripper and the
convex hull of the contact areas of these magnets will be small, which will compromise
the stability of the adhesion (the robot will tip-over more easily). On the contrary, if
we equip each gripper with many switchable magnets, then both the overall adhesion
force and contact area will increase, which will improve the stability of the adhesion.
However, a higher number of SM will also increase the weight of the gripper (especially
due to the ferromagnetic housings), which will induce a higher detaching torque on the
fixed gripper when the robot extends and the free gripper is far from the fixed gripper,
as in the postures of Figures 8.3a,c. This increased detaching torque will require more
and stronger switchable magnets, which in turn will increase again the weight of the
gripper.

Thus, it is necessary to reach a balance between stability of the adhesion (given
by the adhesion force and contact area) and the weight of the gripper. Therefore, and
as Figure 8.4 depicts, the gripper to be designed will carry three switchable magnets
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Figure 8.4: Geometry of the grippers to be designed. The XY Z axes shown in this figure are
parallel to the same axes depicted in Figures 8.3a,b,c.

{sm1, sm2, sm3} evenly distributed on a circle of radius a, placed 120¶ apart, as in
[160]. With three magnets distributed in this way, the gripper will be able to better
resist three-dimensional external forces and torques like those occurring in the 18 design
cases defined in the previous subsection.

For all calculations performed in this chapter, we will consider a reference frame
OXY Z centered at the base of the gripper, where plane OXZ is the plane of contact
between the gripper and the ferromagnetic structure to which the robot must be at-
tached (see Figure 8.4). The projections of the centers of the three switchable magnets
on plane OXZ are defined by the following three vectors ai:

a1 = a

S

U
sin(≠60¶)

0
cos(≠60¶)

T

V , a2 = a

S

U
sin(60¶)

0
cos(60¶)

T

V , a3 =

S

U
0
0

≠a

T

V (8.1)

The adhesion force between each switchable magnet and the ferromagnetic substrate
will be denoted by A, which will be measured in kg for later convenience (defining A in
kg will allow us to drop the gravity acceleration later, to directly compare the adhesion
force and the mass of the robot). Accordingly, due to magnetic adhesion, the gripper
will be subject to three forces A · g [N] acting along the negative direction of Y axis,
as depicted in Figure 8.4 (g = 9.81m/s2 is the acceleration of gravity).

Other parameters of importance for the design of the grippers, besides the
adhesion force A, are the following:

• mG: mass of each gripper.

• fc: distance between the base of the gripper and the center of mass cG of the
gripper.
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• f : distance between the base of the gripper and the point OM at which the
gripper is connected to the manipulator.

The objective of next sections will be to determine the conditions that the design
parameters {A, mG, fc, f} must satisfy in order for the grippers to keep the robot
firmly attached to the ferromagnetic structure in all 18 design cases identified in the
previous subsection. In order to obtain these design conditions, we will analyze the
statics of the complete robot (i.e., the manipulator equipped with both grippers) in
all 18 design cases, considering the two possible failure modes a�ecting climbing and
walking robots [208]:

• Tip-over: the gripper detaches when contact between some of the switchable
magnets and the ferromagnetic structure is lost, and the robot falls.

• Slippage: contact between the gripper and the ferromagnetic structure is not
lost, but the robot slips down due to insu�cient friction at the contact.

The design of the grippers based on the statics rather than the dynamic analysis of
the robot is justified for two reasons. Firstly, like most step-by-step climbing robots,
the motion of the HyReCRo robot is slow, with low velocities and accelerations that
allow us to consider quasi-static scenarios. Secondly, analyzing the statics instead of
the dynamics will allow us to work with simpler symbolic design equations involving
explicitly all unknown design parameters, which will also facilitate the identification of
the worst-case design scenarios. If a dynamic analysis was performed instead of a static
one, then trajectories of the robot should be simulated (instead of static postures), and
this would require iterating numerical values of the design parameters until a feasible
solution was found.

8.5 Preventing Tip-over

In this section, the concept of Zero Moment Point [190] will be used to obtain the
design conditions that the magnetic gripper must satisfy in order to prevent the robot
from tipping-over. According to this concept, the gripper will not detach (and the
robot will not tip-over) if the position p of the Zero Moment Point, which can be
computed from Equation (8.2), lies within the convex hull of the contact area between
the gripper and the structure.

p = n ◊ ·

n • f (8.2)

where n is the normal unit vector to the contact plane (n = [0, 1, 0]T according to
Figure 8.4), f is the net external force acting on the robot, and · is the net external
torque acting on the robot with respect to origin O indicated in Figure 8.4. Symbols
“◊” and “•” denote the cross and dot products, respectively. In our analysis, f and ·
are due to gravity and adhesion forces, excluding contact wrenches. The external force
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f is the sum of the magnetic adhesion forces (indicated in Figure 8.4) and the weights
of the manipulator and grippers:

f =

S

U
0

≠3 A g
0

T

V + (mM + 2 mG) g ug (8.3)

where mM = 1.55 kg is the mass of the manipulator (excluding grippers), mG is the
mass of each gripper (which is a design parameter), and ug is the unit vector of gravity
(which will vary for the 18 considered cases). Similarly, · can be derived from Figures
8.4 and 8.5 as follows:
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where (xM , yM ) are the coordinates of the center of mass cM of the manipulator,
whereas (xG, yG) are the coordinates of the center of mass cG of the free gripper
(see Figure 8.5). The positions of these centers of mass depend on the posture of
the manipulator and on design parameters f and fc, as observed in Figure 8.5. Note
that the last sum in Equation (8.4) vanishes since the three switchable magnets are
symmetrically distributed along a circle: a1 + a2 + a3 = 0. Thus, the adhesion forces
exert no net moment with respect to O.

Substituting Equations (8.3) and (8.4) into (8.2) yields:

p =

S

U
0
1
0

T

V ◊

Y
]

[

Q

amG

S

U
0
fc

0

T

V + mM

S

U
xM

yM

0

T

V + mG

S

U
xG

yG

0

T

V

R

b ◊ ug

Z
^

\
S

U
0
1
0

T

V •

Y
]

[

S

U
0

≠3 A
0

T

V + (mM + 2 mG) ug

Z
^

\

(8.5)

where the acceleration of gravity g has been canceled between numerator and denom-
inator (this is possible because the adhesion force A was defined in [kg] in Section
8.4).

According to Equation (8.5), the position p of the ZMP will depend on the
posture of the robot (which a�ects {xM , yM , xG, yG}) and on the direction ug of
gravity, and these parameters will be di�erent for each of the 18 cases considered.
In order for the gripper to remain attached to the ferromagnetic structure, p should
belong to the convex hull of the contact area of the gripper. The contact area will
depend on radius a (Figure 8.4) and the shape of the housings of the switchable
magnets, whose footprints approximately are circles with two flat faces, as in Figure

251



Chapter 8. Development of a Prototype with Magnetic Grippers

Figure 8.5: Positions of the centers of mass of the grippers (c
G

) and manipulator (c
M

) in general
and for the three basic postures.

8.2b(left). Independently of the concrete shape of this convex hull, it is evident from
Figure 8.4 that it will be an approximately triangular shape centered at O. Thus, it
will be convenient that |p| is as small as possible to guarantee that the ZMP is within
the convex hull. For this reason, next we will study which cases (out of the 18 design
cases identified in Section 8.3) yield higher values of |p|, since these worst cases will
impose the most restrictive conditions on the design of the grippers.

8.5.1 Gravity Along Axes X or Z

First, consider the case when gravity is directed along axes X (ug = [±1, 0, 0]T ) or Z
(ug = [0, 0, ±1]T ). In that case: n • ug = 0, and Equation (8.5) becomes:

p = mGfc + mM yM + mGyG

3 A
ug (8.6)

Note that |p| will be larger when the yM and yG coordinates of the centers of mass of
both the manipulator and free gripper are larger, which clearly occurs for the posture
of Figure 8.5d. Thus, the cases when the robot is performing interior transitions
between two beams with gravity directed along the X or Z axes will be among the
worst scenarios. Notably, this includes one of the most typical climbing movements,
which consists in performing plane transitions between a vertical wall and a ceiling/floor
(cases IX±).
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8.5.2 Gravity Along Axis Y
Consider now that gravity acts along axis Y , i.e.: ug = ‡[0, 1, 0]T , where ‡ = ±1. In
that case, Equation (8.5) becomes:

p = ‡
mM xM + mGxG

‡(mM + 2mG) ≠ 3 A
[1, 0, 0]T (8.7)

According to Equation (8.7), |p| will be higher when ‡ = 1, since in that case the
denominator will have a smaller absolute value. This means that the gripper will be
more prone to detach while the robot is hanging (i.e., when gravity acts in the positive
direction of axis Y ) than while resting on a beam (i.e., when gravity acts along Y ≠),
which is reasonable. Moreover, |p| will be larger when the robot is completely stretched
while advancing longitudinally along a beam, as in Figure 8.5b, since in that case both
xM and xG are larger. Therefore, the situation in which the robot is hanging and
advancing longitudinally along the lower face of a beam will be among some of the
worst-case scenarios for the design (case LY +).

Note that, in principle, it is not possible to predict which of the worst cases
identified until now will be more demanding for the grippers (i.e., which case will yield
a higher magnitude |p|). This is because the worst cases of Equation (8.6) involve
y-coordinates of centers of mass, whereas the worst case of Equation (8.7) involves
their x-coordinates, which cannot be easily compared with y-coordinates in Figure 8.5
(furthermore, the denominators in these two equations are di�erent). Thus, the worst
scenario will be identified only after concrete numerical values are substituted for these
x- and y-coordinates, which will be done in the next section.

8.6 Developed Magnetic Gripper

This section presents the development of magnetic grippers which guarantee that the
ZMP remains in the convex hull of the contact area of the gripper for all 18 design
cases, including the worst cases identified in the previous section. Each magnetic
gripper carries three switchable magnets.

Figure 8.6 shows a detailed exploded view of the developed gripper, which is
composed of two 3D-printed PLA plates (upper and lower plates) that are rigidly
connected. The upper plate is directly connected to the manipulator through three
revolute joints, and it carries three Pololu 12V DC motors (gear ratio 1000:1). Each
of these motors switches the state of one switchable magnet. The lower plate is
rigidly connected to the housings of the three switchable magnets. The weight of each
gripper is mG = 0.32 kg. Thus, the mass of the complete prototype (manipulator
+ two grippers) is 2.19 kg. The dimensions of the gripper along the XYZ axes are:
92 ◊ 60 ◊ 90 mm.

As Figure 8.6 illustrates, the gap between both plates houses the mechanism
that switches the state of the switchable magnets. Each SM is independently actuated
by one of such mechanisms, which consists of a cam driven by each Pololu motor, and
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Figure 8.6: Exploded view of the developed gripper. The electric circuit is not represented. The
figure only illustrates the switching mechanism for one of the switchable magnets; this mechanism
is repeated for the other two switchable magnets.

a normally-closed switch. The objective of the cam is to detect the change of state of
the switchable magnet, i.e., detect when the magnet rotates by 180¶.

This is achieved by means of the electric circuit shown in Figure 8.7: according
to this circuit, when a short 12V pulse is received from the Arduino board (through
a relay), all three motors simultaneously begin to rotate. After each motor starts to
rotate, the corresponding switch remains closed because the cam no longer presses it,
and the motor continues rotating since it is connected to a 12V source. Then, after
completing half a turn, the cam presses again the switch, which opens the circuit of
its corresponding motor and interrupts its rotation. In this way, although all motors
simultaneously start to rotate when commanded to do so, the rest of the rotation
occurs independently for each motor, until it completes exactly half a revolution.

The adhesion force of each individual switchable magnet is 16 kg at 3mm-thick
steel plates (which is the thickness that will be assumed for the rest of the chapter),
although this force decreases to 11 kg per switchable magnet when all three SM are
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Figure 8.7: Electric circuit of each gripper.

Table 8.1: Specifications of the cylindrical permanent magnets used.

Material NdFeB
Magnetization Diametral
Diameter ◊ height 20 mm ◊ 5 mm
Material/grade N48
Coating Nickel
Max. operation temperature 80¶

Flux density inside magnet 1.3799 Tesla
Holding force on a steel plate (unspecified thickness) 15.89 Newton
Weight which the magnet can lift: 1.62 kg
Dead weight: 11.72 g

mounted on the gripper and simultaneously turned ON (i.e., the individual force of each
SM decreases due to the proximity and interaction with the magnetic fields generated
by the other two SM). Therefore, the e�ective value of A to be used in all calculations
in the remaining of this chapter is A = 11 kg.

The dimensions of the housings are detailed in Figure 8.8a, whereas the used
permanent magnets are cylindrical with height 5 mm and diameter 20 mm. These are
grade N48 NdFeB magnets from HKCM manufacturer [75] (see their specifications as
provided by the manufacturer in Table 8.1), whereas housings are made of AISI 1018
steel. Instead of using glue, the lower magnet is firmly immobilized to the housing
by means of a small headless screw (see Figure 8.8b), which facilitates the assembly
and dis-assembly of switchable magnets (one may need to occasionally dis-assemble a
switchable magnet in order to clean it and remove iron shavings that may hinder the
rotation of the cylindrical permanent magnets).

As detailed in Figure 8.8a, the housings of the switchable magnets have 5◊6
mm notches, whose objective is to reduce lateral magnetic shortcircuits and minimize
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Figure 8.8: Dimensions and details of the housings.

the internal leakage of magnetic flux through the housing when the SM are ON (Figure
8.2b). When the SM are ON, it is desirable that most of the magnetic flux traverses
the ferromagnetic substrate to which the SM should adhere, in order to increase the
adhesion force.

These notches were made to the housings in order to increase the adhesion force
and the stability of the designed magnetic grippers. This is because we developed first a
preliminary functional design of the grippers which used housings without these notches
(as in Figure 8.2a), but they were on the verge of detaching for some extreme postures
of the HyReCRo robot (due to insu�cient adhesion force). The adhesion force of each
individual switchable magnet before realizing these notches was 10 kg (at 3mm-thick
steel plates), whereas this individual force increases to 16 kg when realizing the notches
(as reported above in this section). Thus, realizing the notches to reduce magnetic
shortcircuits increases the adhesion force by a factor of 1.6.

However, this increase of adhesion force comes at the expense of a higher torque
necessary for rotating the upper permanent magnet inside the housing, due to an
increase of the magnetic repulsion when trying to align the poles of both magnets
to turn ON the switchable magnet. To overcome this higher repulsion, the rotation
of each switchable magnet must be done by an independent Pololu DC motor (as
in Figure 8.6), since a single motor is unable to rotate all three switchable magnets
simultaneously (as our preliminary design of the grippers did). One may think that
the addition of more DC motors for rotating the switchable magnets may imply an
undesirable increase of the overall mass of the grippers, but such an increase of mass
is negligible since the used Pololu DC motors are very lightweight: each motor weighs
only 10.5 g, which is small compared to the mass mG = 320 g of each gripper (also,
one should take into account the reduction of mass of the housings when removing
some steel to realize the notches). Therefore, the overall e�ect of realizing the notches
is positive, since the adhesion force increases by a factor of 1.6 without practically
increasing the mass of the whole gripper.

Regarding the remaining design parameters f and fc, their values for the devel-
oped grippers are: f = 39 mm and fc = 17.7 mm. Inserting these values into Equation
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Table 8.2: Positions of the centers of mass of the manipulator and free gripper, in mm.

Posture xM yM xG yG

Longitudinal 190.0 166.0 380.0 17.7
Exterior transition 179.4 107.4 88.7 -71.0
Interior transition 48.5 281.4 311.3 329.0

Figure 8.9: Positions of the ZMP for all design cases considered.

(8.5), together with mG = 0.32 kg, A = 11 kg, and the positions of the centers of
mass shown in Table 8.2, allows us to compute the positions of the ZMP for all 18
design cases. The positions of the ZMP are represented for all 18 design cases in Figure
8.9, which also represents the six U-shaped contact areas of the switchable magnets
(in shaded) and the boundary of the convex hull of these contact areas (in continuous
line). As this figure shows, the position of the ZMP is in the convex hull and quite far
from its boundaries for all 18 design cases, which suggests a stable adhesion. Figure
8.9 also confirms that the worst design cases coincide with the candidates identified
in Section 8.5: the distance |p| between the center of the gripper and the ZMP is
maximal for cases IX± and IZ±. The other candidate to worst case identified in
Section 8.5 was LY +, and it presents the second higher distance to the center of the
gripper, as it can be observed in Figure 8.9.

The grippers developed in this section were connected to both feet of the pro-
totype of the HyReCRo robot and were tested for all 18 design cases on a real steel
structure that will be described in Section 8.8. In these preliminary tests, it was found
that the fixed gripper firmly adhered to the structure, so that strong forces were re-
quired in order to detach it in all cases. However, although the gripper never detached
from the structure, the adhesion was not stable in all cases due to insu�cient friction.
In the cases when gravity acted along axis Z, gravity exerted too high torsional mo-
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Figure 8.10: Slippage of the fixed gripper due to insu�cient friction.

ments about the Y axis perpendicular to the contact surface, which resulted in the
fixed gripper slipping down as illustrated in Figure 8.10. Therefore, it was necessary to
slightly modify the developed grippers in order to increase friction and prevent slippage,
as explained in the next section.

8.7 Preventing Slippage

In the previous section, we have presented the developed magnetic grippers, which
prevent the robot from tipping-over, guaranteeing that the base of the gripper and
the ferromagnetic structure are always in contact. However, after performing some
preliminary experiments, it was found that the grippers slipped for some postures, due
to insu�cient friction. To avoid this, it is necessary to increase friction between the
developed grippers and the structure to which the robot is attached.

In this section, we will modify the developed gripers by adding a removable
friction accessory that fills the gaps between the switchable magnets, as illustrated in
Figure 8.11a. As this figure shows, this friction accessory consists of a 3D-printed part
shaped like a fidget spinner toy, with three friction pads uniformly distributed along a
circle (i.e., placed 120¶ apart). These friction pads are made of rubber and provide a
higher friction coe�cient between the grippers and the ferromagnetic structure. Since
the friction accessory will be very lightweight, we assume that its mass is negligible
compared to the mass of the gripper, so that the calculations of previous sections are
not a�ected by the incorporation of this accessory. The objective of the present section
is to determine the necessary static friction coe�cient µ of the friction pads so that
the grippers will not slip as in Figure 8.10.

When adding the friction accessories to the grippers, it is important to be able
to finely adjust the separation ‘ between the base of the lower plate of the gripper and
the friction accessory. In order to finely adjust this separation, three screws were added
to the grippers, as illustrated in Figure 8.11b (one screw for each friction pad). If ‘ is
too small, the friction pads will not make contact with the structure (Figure 8.11b1)
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Figure 8.11: (a) Removable friction accessory to prevent slippage. (b) Adjusting the position
of the friction accessory. (c) Photographies of the developed accessory.

and friction will still be too low, so the robot will continue slipping as in Figure 8.10.
On the contrary, if ‘ is too large, then an air gap will appear between the structure and
the switchable magnets (Figure 8.11b2), which will produce an undesirable decrease of
the magnetic adhesion force [171] that may compromise the stability of the adhesion,
leading to the fall of the robot. Using these screws, ‘ can be finely adjusted so that
the air gap is practically zero (so that adhesion forces A do not decrease) at the
same time that we guarantee that the grippers make contact with the ferromagnetic
structure through the rubber pads, instead of through the switchable magnets (i.e.,
both undesirable situations of Figures 8.11b1 and b2 are avoided).

Through this fine adjustment, we can consider that the gripper makes contact
with the ferromagnetic structure only through the three friction pads. The true area
of contact will be unknown and will depend on the deformation of the rubber pads
due to the pressing of the fine-adjustment screws. For simplicity, we will assume that
the contacts between these rubber pads and the ferromagnetic structure are punctual,
at the positions where the fine-adjustment screws press the friction pads against the
structure. In this way, we can consider that now the contact between the gripper
and the structure is through three punctual supports {fp1, fp2, fp3} symmetrically
distributed along a circle of radius b = 42.5 mm, as illustrated in Figure 8.12 (b is the
distance between the center of the gripper and the axes of the fine-adjustment screws).
This approximation will simplify the following friction calculations, which would yield
much more complex expressions if positive-dimensional contact areas were considered,
instead of point contacts [41].

The objective of next subsections will be to determine the necessary static fric-
tion coe�cient µ between the rubber friction pads and the ferromagnetic structure to
prevent the slippage depicted in Figure 8.10. To that end, we will analyze all cases in
which slippage may occur (of all 18 design cases considered in this chapter).
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8.7.1 Purely Translational Slippage
According to Figure 8.5, when gravity acts along axis X, the whole robot will tend to
slip along that axis as if it was a point mass. In that case, the gripper will not slip if
µ satisfies:

mM + 2mG Æ µ · 3A (8.8)

substituting mM = 1.55 kg, mG = 0.32 kg, and A = 11 kg, Equation (8.8) yields:
µ Ø 0.066. We measured the static friction coe�cient between the steel structure and
the steel housings of the switchable magnets and obtained µ = 0.15, which is greater
than the minimal required value (0.066). This explains why the grippers did not slip
when gravity acted along axis X during the preliminary experiments described in the
previous section, in which the friction accessory was not needed.

8.7.2 Mixed Roto-translational Slippage
When gravity acts along the Z axis, the whole robot tends to both translate along this
axis and rotate about axis Y , due to the torsional torque exerted by gravity, which is
parallel to Y . Thus, the robot cannot be treated as a point mass as in Equation (8.8),
but it is necessary to analyze it as a rigid body tending to roto-translate in the XZ
plane, which complicates the static friction analysis.

For the following static analysis, consider the free-body diagram of Figure 8.12,
which represents schematically the fixed gripper adhered to the ferromagnetic structure.
The fixed gripper is subject to the three adhesion forces A·g of the switchable magnets,
as well as to the normal Ni and friction Ri reaction forces acting at the friction pads
fpi. Also, the fixed gripper is subject to its own weight (mG·g), the weight of the free
gripper (mG·g), and the weight of the manipulator (mM ·g). As indicated in Figure
8.12, the e�ects of these three weights can be reduced to a force F along axis Z+, a
detaching torque D along axis X+, and a torsional torque T along axis Y ≠ (all three
passing through origin O). The expressions of {F , D, T} in terms of the weights of
the manipulator and grippers can be easily derived from Figure 8.5 considering that
gravity acts along the Z axis:

F = ‡(mM + 2mG)g (8.9)

D = ‡(fcmG + yM mM + yGmG)g (8.10)

T = ‡(xM mM + xGmG)g (8.11)

where ‡ = 1 if gravity acts along the positive direction of the Z axis, whereas ‡ = ≠1
if gravity acts along the negative direction.

Dahmen et al. [42] analyzed the static equilibrium of a very similar problem to
the one illustrated in Figure 8.12 (but without adhesion forces), and determined the
critical combinations of F and T for which the gripper starts to slip (assuming that
D = F ·h, for a constant distance h). In our case, we will follow the approach of [42],
but we will solve the opposite problem: for given {F , D, T}, we will determine the
critical static friction coe�cient µ for which the gripper starts to slip.
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Figure 8.12: Free-body diagram of the fixed gripper when gravity acts along axis Z. Torques
are represented by double-headed arrows.

To that end, let us assume that the friction forces at all three friction pads have
reached their maximum value (Ri = µ·Ni for i = 1, 2, 3) and the gripper is about
to slip along plane XZ as a rigid body [42]. It is well known that planar rigid body
motions can be instantaneously considered as pure rotations about a point known as
Instantaneous Center of Rotation (ICR). Let us denote the coordinates of the ICR by
c = [cx, 0, cz]T (where cx and cz are unknowns to be determined). Then, as indicated
in Figure 8.13, when the gripper starts to slip, it performs an infinitesimal rotation ”Ê
about the ICR, which induces an infinitesimal displacement di in each friction pad fpi

[42]:

di =

S

U
0

”Ê
0

T

V ◊ (bi ≠ c) (8.12)

where bi are the positions of the friction pads (see Figure 8.12):

b1 =

S

U
0
0
b

T

V , b2 = b

S

U
sin(120¶)

0
cos(120¶)

T

V , b3 = b

S

U
sin(≠120¶)

0
cos(≠120¶)

T

V (8.13)

The vector Ri of the friction force at each friction pad will be [42]:

Ri = ≠µ Ni
di

|di|
(8.14)

where the negative sign “≠” is due to the fact that static friction forces oppose to the
impending motion. Let us operate Equation (8.12) and rewrite di as follows:

di = ”Ê · [biz ≠ cz, 0, cx ≠ bix]T (8.15)
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Figure 8.13: When the gripper starts to slip, it rotates about the ICR.

where bix and biz denote the x- and z-coordinates of bi, whose values are given in
Equation (8.13). The magnitude of di can be written as |di| = |”Ê| ·di, where di

depends on the coordinates of the ICR, which are unknown:

di = di (cx, cz) =


(biz ≠ cz)2 + (cx ≠ bix)2 (8.16)

Therefore, the normalization of di in Equation (8.14) yields:

di

|di|
= ”Ê·[biz ≠ cz, 0, cx ≠ bix]T

|”Ê| ·di (cx, cz) = sign(”Ê)
di (cx, cz)

S

U
biz ≠ cz

0
cx ≠ bix

T

V (8.17)

where sign(”Ê) = 1 if ”Ê > 0, and sign(”Ê) = ≠1 if ”Ê < 0. Thus, as one should
expect, the value of the infinitesimal rotation ”Ê is irrelevant for the analysis, only
its sign is important. The sign of ”Ê must be assumed, trying to guess the direction
in which the gripper will rotate when starting to slip: this is equivalent to guessing
the direction of the impending motion in undergraduate statics problems involving
pulleys and blocks resting on ramps with friction. However, by comparing Figures
8.12 and 8.13, in our case it will be easy to pick the correct sign for ”Ê as follows:
sign(”Ê) = ≠sign(T ) = ≠‡. Anyway, if one failed to guess the correct sign of ”Ê, the
obtained friction coe�cient µ would be negative, so one would simply invert the sign
of µ. This is because, according to Equations (8.14) and (8.17), µ and sign(”Ê) will
always appear as the product “µ·sign(”Ê)”.

After deriving the expression of friction forces, we must write the equilibrium
equations of forces and moments, and solve µ (and other unknowns) from these equa-
tions. According to Figure 8.12, the equilibrium of forces translates into the following
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equation:
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The equilibrium of moments about the origin O of Figure 8.12 yields:
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The moments of the adhesion forces do not appear in Equation (8.19) since their net
moment with respect to O is zero due to symmetry, as in Equation (8.4).

Vector equations (8.18) and (8.19) constitute a system of six scalar equations
in six unknowns: the three normal forces (N1, N2, N3), the two coordinates (cx, cz)
of the ICR in plane XZ, and the static friction coe�cient µ. These equations can be
solved by following the process described next, which is similar to the steps described in
[42]. First, we pick the second scalar component of Equation (8.18), together with the
first and third components of Equation (8.19). These are the equilibrium conditions of
forces along axis Y , moments along axis X, and moments along axis Z, respectively,
and they constitute a linear system which only involves the three normal forces {N1,
N2, N3} as unknowns:

N1 + N2 + N3 = 3·A·g (8.20)
b1zN1 + b2zN2 + b3zN3 = D (8.21)
b1xN1 + b2xN2 + b3xN3 = 0 (8.22)

Therefore, the normal forces can be easily solved from this linear system. When solving
it, one should obtain Ni > 0; otherwise, the gripper would detach from the structure
since normal forces cannot be negative (the structure cannot pull from the gripper,
only push). After solving the normal forces from these equations, the obtained values
are substituted into the three remaining scalar components of Equations (8.18) and
(8.19), which are the equilibrium conditions of forces along axis X, forces along Z,
and moments along Y , respectively:

A 3ÿ

i=1

Ni · (biz ≠ cz)
di (cx, cz)

B
µ·sign(”Ê) = 0 (8.23)

≠
A 3ÿ

i=1

Ni · (bix ≠ cx)
di (cx, cz)

B
µ·sign(”Ê) = F (8.24)

≠
A 3ÿ

i=1

Ni · (b2
ix + b2

iz ≠ bixcx ≠ bizcz)
di (cx, cz)

B
µ·sign(”Ê) = T (8.25)

These three equations, in which Ni are already known, only involve three unknowns:
the friction coe�cient µ and the coordinates (cx, cz) of the ICR. These three remaining
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unknowns can be solved as described next (this is where our resolution process mainly
di�ers from the one described in [42], where {F, T} were solved instead of {cx, cz}).

Firstly, note that, since µ·sign(”Ê) ”= 0, Equation (8.23) can only be satisfied if
the first factor (which only involves cx and cz) is zero:

3ÿ

i=1

Ni · (biz ≠ cz)
di (cx, cz) = 0 (8.26)

Moreover, the factor “µ·sign(”Ê)” can be easily eliminated between Equations (8.24)
and (8.25), obtaining the following equation, which only involves cx and cz:

A 3ÿ

i=1

Ni · (b2
ix + b2

iz ≠ bixcx ≠ bizcz)
di (cx, cz)

B
F =

A 3ÿ

i=1

Ni · (bix ≠ cx)
di (cx, cz)

B
T (8.27)

The only unknowns in Equations (8.26) and (8.27) are cx and cz, and these two
equations can be graphically interpreted as defining two curves in plane (cx, cz). Thus,
by plotting these curves in plane (cx, cz) and finding their point of intersection, we can
graphically solve Equations (8.26) and (8.27) and obtain the coordinates of the ICR.

After obtaining graphically the coordinates of the ICR, the static friction co-
e�cient µ can be solved either from Equation (8.24) or (8.25). For example, using
Equation (8.24) yields:

µ = ≠ F

sign(”Ê)

A 3ÿ

i=1

Ni · (bix ≠ cx)
di (cx, cz)

B≠1

(8.28)

where the right-hand side is now completely known since cx and cz are already known.
The value of µ computed from (8.28) will be the minimum required static friction
coe�cient to prevent slippage.

Until now, we have assumed that all three friction pads are about to slip, i.e.,
the ICR does not coincide with any of these friction pads. However, it may occur that,
when graphically solving the coordinates of the ICR from Equations (8.26) and (8.27),
the ICR coincided with, say, the k-th friction pad (k œ {1, 2, 3}), i.e.: c = bk. In that
case, the analysis presented in this section would not be valid since the infinitesimal
displacement vector dk of the friction pad coinciding with the ICR would be null.
Therefore, the friction force Rk at the k-th pad cannot be computed as in Equation
(8.14) since the normalization dk/ |dk| would result in the indetermination 0/0. This
special case will be addressed next.

8.7.2.1 The ICR coincides with a friction pad

If the k-th friction pad fpk (k œ {1, 2, 3}) coincides with the ICR, this means that fpk is
not about to slide, unlike the other two friction pads (which are on the verge of rotating
about fpk). If fpk is not about to slide, then the friction force Rk at fpk is still below
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its maximum value (µ·Nk) and should not be computed as in Equation (8.14). In that
case, the friction force Rk is unknown both in magnitude and direction, and this force
must be treated as an unknown Rk = [Rkx, 0, Rkz]T in Equations (8.18) and (8.19).
Friction forces at the other two friction pads, which are about to slide, must still be
computed using Equation (8.14). Note that, since the position of the ICR is known
in this case (it coincides with the k-th friction pad), the directions di/ |di| of friction
forces at the other two pads are known, which results in much simpler equations. Let
us rewrite Equations (8.18) and (8.19) so as to clearly separate the friction force at
the k-th friction pad from the friction forces at the other pads:
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where the Ri appearing inside the sums are the friction forces at the two pads which
are about to slip and, therefore, must be computed using Equation (8.14). Equations
(8.29) and (8.30) constitute again a system of six scalar equations in six unknowns,
which are: µ, N1, N2, N3, Rkx, and Rkz. However, these equations are much easier
to solve now. First, one picks the second scalar component of (8.29), as well as
the first and third components of (8.30). This results again in the linear system
composed of Equations (8.20) to (8.22), from which the three normal forces are solved
in a straightforward manner. Then, one substitutes these normal forces into the three
remaining scalar components of (8.29) and (8.30), which make up another linear system
in the remaining unknowns (µ, Rkx, Rkz):

Rkx ≠

Q
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ÿ
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(8.33)
Finally, µ, Rkx, and Rkz are solved from this linear system, which completes the
calculation of the minimum friction coe�cient necessary for avoiding slippage. After
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Figure 8.14: Graphical calculation of the ICR as the intersection of the curves defined by
Equations (8.26) (red dashed curve) and (8.27) (blue continuous curve), for case LZ+ of Table
8.3.

this, one should check that the magnitude of Rk is smaller than the maximum available
static friction force (


R2

kx + R2
kz < µ·Nk), since the k-th friction pad is not about to

slip.

8.7.3 Determining the Necessary Friction Coe�cient
Next, the resolution process described in the previous subsection will be applied to
the six design cases in which gravity acts along the Z axis, in order to determine
the necessary friction coe�cient to prevent slippage. The cases to be considered are:
LZ±, EZ±, and IZ±.

The results of applying the previous procedure to these six cases are summarized
in Table 8.3, which shows the normal forces resulting in each case (all of them are
positive, as expected), together with the positions of the ICR and the resulting static
friction coe�cient µ. The position (cx, cz) of the ICR has been computed graphically,
as previously explained. For example, Figure 8.14 illustrates the graphical computation
of the ICR for case LZ+, in which the position of the ICR is computed as the intersection
of the curves defined by Equations (8.26) and (8.27) in plane (cx, cz). According to
Table 8.3, for cases LZ+ and EZ+, the ICR does not coincide with any of the friction
pads. However, for the other four cases the ICR does coincide with one of the friction
pads: for case IZ+ the ICR coincides with friction pad fp1, whereas for cases {LZ-,
EZ-, IZ-} the ICR coincides with friction pad fp3. For these last four cases, it can be
checked from Table 8.3 that the magnitude of the friction force at the ICR is smaller
than µ·Nk, as one should expect since the friction pad coinciding with the ICR is not
about to slip.
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Table 8.3: Summary of the static friction analysis for all cases for which gravity acts along axis
Z. In all cases: N2 = N3.

Case LZ+ EZ+ IZ+
F (N) 21.5 21.5 21.5

D (N·m) 2.6352 1.4658 5.3672
T (N·m) 4.0819 3.0063 1.7147
sign(”Ê) -1 -1 -1

(N1, N2 = N3) (N) (149.25, 87.24) (130.90, 96.41) (192.10, 65.81)
ICR (cx, cz) (mm) (-6.286, 26.783) (-19.586, 3.193) ICR © fp1

(Rkx, Rkz) (N) — — (20.173, -21.5)
µ 0.3214 0.2354 0.1769

Case LZ- EZ- IZ-
F (N) -21.5 -21.5 -21.5

D (N·m) -2.6352 -1.4658 -5.3672
T (N·m) -4.0819 -3.0063 -1.7147
sign(”Ê) +1 +1 +1

(N1, N2 = N3) (N) (66.57, 128.58) (84.92, 119.41) (23.72, 150.01)
ICR (cx, cz) (mm) ICR © fp3 ICR © fp3 ICR © fp3

(Rkx, Rkz) (N) (19.558, -33.409) (18.568, -19.369) (4.025, -10.219)
µ 0.3392 0.2525 0.1959

Table 8.3 provides the minimum friction coe�cient necessary to prevent slippage
in each case. We observe that the highest friction coe�cients are obtained for cases
LZ±, which is reasonable since, for these cases, the robot is completely extended and
this generates a higher torsional moment T that tries to rotate the robot. According to
Table 8.3, the static friction coe�cient must be higher than 0.3392 in order to prevent
slippage in all cases. In order to provide su�cient friction, the friction pads were made
of Vytaflex R� 30 rubber, which provides a measured static friction coe�cient of 0.438
in contact with steel. These Vytaflex pads were glued to the friction accessory, which
is shown in the photography of Figure 8.11c. This friction accessory weighs 15 g,
which is negligible compared to the weight of the gripper (320 g). Thus, adding the
friction accessory does not invalidate the previous calculations, in which the weight of
the friction accessory was omitted since it was unknown.

With this removable friction accessory, which can be easily added to the gripper
or removed as required, the gripper remains static in all cases, including those in which
gravity acts along axis Z. This will be demonstrated through some experiments in the
next section.

8.8 Experiments

This section presents three experiments performed with the prototype of the HyReCRo
robot carrying the developed grippers. These experiments demonstrate the stability of
these grippers in di�erent situations that include the worst scenarios identified in all
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Figure 8.15: Video frames of the robot performing a concave plane transition and climbing up
a beam.

previous sections, regarding both failure modes: tip-over/detaching and slippage. All
experiments have been performed on a steel structure made of square tubular beams
with 100 ◊ 100 mm cross section and 3 mm-thick walls.

8.8.1 1st Experiment: Performing an Interior Transition and
Climbing Up a Vertical Beam

In the first experiment, which is illustrated in Figure 8.15, the robot is initially resting
on a horizontal beam, with its right gripper attached to it (Figure 8.15a). The objective
is to perform an interior transition from the horizontal beam to a vertical one, and then
climb up the vertical beam, overcoming gravity. Firstly, the robot is extended in order
to place its left gripper on the vertical beam (Figure 8.15b), and then the left gripper
is attached to this beam (Figure 8.15c). Following, the right gripper is detached from
the horizontal beam (Figure 8.15d), and it is placed and adhered also to the vertical
beam (Figures 8.15e and f). Note that this sequence of movements includes one of
the worst design scenarios identified in Section 8.5, namely, case IX+: this case occurs
between Figures 8.15c and d, when the left gripper is attached to the vertical beam
and the robot performs an interior transition from the horizontal beam to the vertical
one.

Once both grippers are attached to the vertical beam (Figure 8.15f), the robot
proceeds to climb up this beam. To this end, the upper gripper must be released first
in order to move it upward. When suddenly releasing the upper gripper, it falls and hits
the lower gripper (compare Figures 8.15f and g) due to joint clearances present in the
manipulator. However, despite this impact, the lower gripper remains firmly attached
to the vertical beam. Next, the upper gripper is moved upward and is attached again to
the vertical beam (Figures 8.15h and i). Following, it is necessary to release the lower
gripper in order to lift it and continue climbing the beam. When the lower gripper is
suddenly released, this gripper suddenly falls again due to clearances, and the robot is
shaken as a consequence. However, the upper gripper remains firmly attached despite
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Figure 8.16: Video frames of the robot slipping due to insu�cient friction when gravity acts
along axis Z.

this shake. This falling of the released lower gripper due to clearances is highlighted
by a horizontal red line spanning across Figures 8.15i and j.

Finally, after releasing the lower gripper, the robot lifts it and attaches it again
to the vertical beam (Figures 8.15k and l). By repeating this inchworm-like gait, the
robot would continue climbing up the vertical beam.

8.8.2 2nd Experiment: Slipping Due to Gravity Acting Along Z

In the second experiment, illustrated in Figure 8.16, the grippers do not carry the
friction accessories. Thus, all friction is directly between the steel housings of the
switchable magnets and the steel beam. Initially, the robot has one of its grippers
attached to one of the vertical faces of a horizontal beam (Figure 8.16a), such that
gravity acts along the negative direction of axis Z, perpendicular to the plane of mo-
tion of the robot. The objective is that the robot advances longitudinally along this
horizontal beam, which requires extending the robot (Figure 8.16b). At the initial
posture (Figure 8.16a), the net torsional moment T exerted by gravity is so small that
the static friction between the housings and the beam is su�cient to prevent slippage.
However, as the robot is extended (Figure 8.16b), T increases more and more until
this steel-to-steel friction is insu�cient and the fixed gripper rotates without detaching
from the beam (Figure 8.16c), and the robot ends up at the oblique posture shown
in Figure 8.16d, which prevents it from continuing to advance along the beam. Note
that, according to Section 8.7, this is the worst scenario regarding the failure mode
due to slippage. This can be avoided by incorporating the friction accessories to the
grippers, as next experiment demonstrates.

8.8.3 3rd Experiment: Preventing Slippage with Friction
Accessories

In the last experiment, illustrated in Figure 8.17, the robot must advance longitudinally
along the vertical face of a horizontal beam and perform an interior transition between
two orthogonal horizontal beams, with gravity being always perpendicular to the plane
of motion of the robot. In this case, both grippers carry the friction accessories.
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Figure 8.17: Video frames of the robot successfully performing a plane transition with gravity
acting along axis Z. Slippage is avoided thanks to friction accessories.

The first part of the experiment (longitudinal advance along a horizontal beam)
is the same as in the previous experiment. First, the robot extends completely and
adheres its left gripper to the beam (Figures 8.17a and b). During this extension,
and unlike in the previous experiment, the fixed gripper does not slip at all thanks to
the friction accessories. Next, the right gripper is suddenly released, which shakes the
robot as in the first experiment. In this case, due to this shake, the (left) fixed gripper
slips slightly despite carrying the friction accessory. This slight slippage of the fixed
gripper occurs between Figures 8.17b and c. Anyway, this slippage is small and can
be corrected by detaching more smoothly the right gripper, instead of detaching it so
abruptly (one of the advantages of switchable magnets is that their adhesion force can
be varied smoothly by varying the relative angle between the two cylindrical permanent
magnets [180]). After this, the robot retracts and the right gripper is attached again
to the horizontal beam (Figure 8.17d).

Following, the robot must perform an interior transition between two horizontal
beams, as illustrated in Figures 8.17e to h. This transition includes another of the
worst scenarios identified in Section 8.5, which is the case when the robot performs
an interior transition between two orthogonal beams with gravity acting along axis
Z (Figure 8.17e). Also, this transition includes a couple of detachings of one of the
grippers: one when performing the movement between Figures 8.17d and e, and another
when performing the movement between Figures 8.17e and f. Both these detachings
shake the robot, but none of them causes the fall of the robot or the slippage of the
fixed gripper. Finally, the robot completes the interior transition, and both grippers
remain attached to the new horizontal beam (Figure 8.17h).

8.9 Conclusions

In this chapter, we have presented a prototype of the HyReCRo robot, which is com-
pletely functional as it can climb real steel structures. The design of this prototype is

270



8.9. Conclusions

based on the kinematic analyses and simulation tools presented in all previous chapters
of this thesis: these analyses and tools have been used for determining appropriate
values of the geometric design parameters of this robot in order to allow it to perform
convex and concave plane transitions. This prototype weighs 2.19 kg (including its
magnetic grippers), it is driven by DC motors and linear actuators, is controlled by an
Arduino and a custom-made power board, and is teleoperated by means of a gamepad.

The design of the magnetic grippers of this prototype has been the main focus of
the present chapter. The developed grippers are based on the technology of switchable
magnets, which is safer and more energy-e�cient than traditional electromagnets, since
they only require power in order to switch their adhesion state (Section 8.2).

Based on the notion of the Zero Moment Point, we have derived the design
conditions for preventing the detachment of the grippers and the fall of the robot
while climbing structures (Section 8.5). These conditions have also revealed the worst
scenarios occurring when climbing structures, which are those situations in which the
grippers are more prone to detach. These worst scenarios occur when the robot is
performing a concave plane transition between a vertical wall and a ceiling or a floor
(cases IX±), and also when performing concave transitions between two vertical walls,
with gravity acting along the direction perpendicular to the plane of motion of the robot
(cases IZ±).

In order to remain attached to steel structures in these worst scenarios, two
identical magnetic grippers, with three switchable magnets per gripper, have been
developed (Section 8.6). Each developed magnetic gripper o�ers an adhesion force
of 33 kg on 3mm-thick steel plates. The housings of the switchable magnets have
notches, which reduce magnetic flux leakages and increase the adhesion force by a
factor of 1.6.

Then, after guaranteeing that the developed grippers will not detach, a static
friction analysis has been performed in order to determine the minimum static friction
coe�cient necessary to prevent slippage of the grippers, which is likely to occur when
gravity acts along the direction perpendicular to the plane of movement of the robot.
Departing from the resolution steps described by Dahmen et al. [42], a procedure
has been proposed in Section 8.7 for graphically obtaining the coordinates of the In-
stantaneous Center of Rotation, about which the gripper will rotate when starting to
slip. This procedure also yields the minimum static friction coe�cient necessary for
preventing slippage. Based on this static friction analysis, a friction accessory for the
developed grippers has been designed, which consists of three friction pads made of
rubber. This friction accessory increases the friction coe�cient between the grippers
and the steel structure, preventing slippage.

Finally, the experiments described in Section 8.8 have validated the developed
grippers, which allow the robot to firmly adhere to real steel structures and climb
them, even in the worst design scenarios identified above. The developed grippers
have compact dimensions, which makes them especially suitable for climbing steel
structures, since the beams of these structures usually are very narrow and impede
using bulky magnetic grippers.
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9 Conclusions and Future Work

After detailing in the previous chapters all the research work conducted under the
framework of the present thesis, this final chapter summarizes the main contributions
of this work. Also, Section 9.2 hints possible extensions and future work that can be
derived from the di�erent research lines presented in this document.

9.1 Contributions

This thesis has presented a comprehensive kinematic analysis of the HyReCRo robot, a
serial-parallel and redundant robot for climbing and exploring three-dimensional metallic
structures. This analysis has consisted in the forward and singularity analyses of the
parallel modules that compose the legs of this robot, as well as the forward and inverse
kinematic analyses of the complete HyReCRo robot. The presented analysis has been
supported by specifically developed graphical tools for simulating parallel and other
robots. Also, the workspace of the HyReCRo robot has been analyzed, both at external
and internal levels. Finally, a prototype of the robot with magnetic grippers has been
developed, for adhering to real steel structures and climb them. Next, all achievements
and contributions of this thesis are summarized.

Chapter 3

• It has been demonstrated for the first time that 2RPR-PR analytic parallel mech-
anisms with flat mobile platform and perpendicular passive slider always have
special singularities which are fourfold solutions of the forward kinematic prob-
lem of these mechanisms. Also, it has been shown that these special singularities
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can be encircled in the actuated joint space in order to produce nonsingular
transitions between di�erent solutions of the forward kinematic problem of these
analytic mechanisms.

• This phenomenon (nonsingular transitions when encircling special singularities
which are fourfold solutions of the forward kinematics) has also been demon-
strated in analytic 3RPR planar parallel robots with non-similar and flat plat-
forms.

• It has been shown that the behavior of the robot when encircling these fourfold
singularities is conserved when slightly perturbing the geometry of the robot, in
which case the special fourfold singularities transform into small deltoids.

• A method for predicting how isolated singularities (which include some of the
fourfold singularities mentioned above) transform under perturbations of the geo-
metric design of the robot has been proposed. This method is based on quadratic
Taylor expansions.

Chapter 4

• A web-based virtual laboratory of parallel robots has been developed, with the
purpose of facilitating the kinematic analysis of parallel and other robots, like
the HyReCRo robot. This virtual laboratory consists of several Java applets
that allow the user to simulate the forward and inverse kinematic problems of
several parallel robots, as well as to visualize their workspace and singularities
and analyze how these deform under changes in the design of these robots.

Chapter 5

• The forward kinematic problem of the complete HyReCRo robot has been solved,
identifying the only feasible solution to this problem (all other 255 solutions are
unfeasible due to collision constraints).

• A special and simplified case of the inverse kinematic problem which considers
planar and symmetric postures has been solved. The workspace reachable using
only these planar and symmetric postures has been investigated, in order to
determine the relationship between the design parameters of the HyReCRo robot
and the shape of this workspace.

• The general inverse kinematic problem of the complete HyReCRo robot has
been solved, identifying the self-motion manifolds of this redundant robot. It has
been found that these self-motion manifolds generically are four-dimensional, but
they become five-dimensional in a special singular (and quite frequent) case in
which the feet of the robot remain parallel. Simple parameterizations of these
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self-motion manifolds have been built. A method for obtaining two- and three-
dimensional projections of these self-motion manifolds has been proposed. These
projections, which are called “feasible regions” (denoted by Rf ) in this thesis,
provide compact and intuitive graphical representations of the solutions of the
inverse kinematic problem of the HyReCRo robot. Also, these projections do
not miss relevant information regarding the overall posture of the robot, which
makes them useful for identifying postures that are collision-free.

Chapter 6

• Classical Monte Carlo methods have been used for performing a preliminary
workspace analysis of the HyReCRo robot, identifying the influence of the design
parameters of this robot on the shape and size of its workspace. It is found
that the workspace is most sensitive to the stroke of the linear actuators and the
width of the feet of this robot.

• A new improved Monte Carlo method for obtaining the boundaries of the work-
space of complex robot manipulators has been proposed. This method is more
e�cient than previously existing Monte Carlo methods, since it can attain much
higher accuracy than previous methods requiring the same or less computation
time than them. The proposed method consists in uniformly “growing” an initial
imprecise workspace by means of normal distributions, until the boundaries of
the workspace are reached.

Chapter 7

• A method for e�ectively obtaining the boundaries and interior barriers of the
workspace of redundant robots under collision constraints has been proposed.
Previously existing methods find di�culties to compute interior barriers induced
by arbitrarily complex collision constraints, since it is very di�cult to model
these constraints as equalities. The proposed method identifies the occurrence
of interior barriers with the vanishing of disjoint components of the self-motion
manifolds of the robot. To that end, self-motion manifolds are first densely
sampled, discarding samples that do not satisfy collision constraints. Then, the
samples are clustered using kd-trees in order to identify disjoint components
of the self-motion manifolds. Finally, the self-motion manifolds at neighboring
points of the workspace are compared and matched in order to determine if any
disjoint self-motion manifold vanishes when moving between these neighboring
workspace points, in which case an interior barrier is identified between these two
points. Experiments with the proposed method demonstrate that this method
is feasible for redundant robots whose self-motion manifolds are one- and two-
dimensional; for higher dimensions, the method is too computer-intensive. These
experiments also demonstrate that collision constraints can drastically alter the
distribution of interior barriers inside the workspace.
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• A variant of the previous method, which analyzes lower-dimensional projections
of such self-motion manifolds, has also been sketched for dealing with robots with
higher-dimensional manifolds, like the HyReCRo robot (whose manifolds are four-
and five-dimensional). This variant still needs to be improved in order to avoid
losing relevant information when projecting the manifolds on lower-dimensional
subspaces, since some barriers may be missed due to this loss of information.

Chapter 8

• A completely functional prototype of the HyReCRo robot has been developed.
This prototype weighs 2.19 kg (including two magnetic grippers) and is manually
teleoperated.

• Novel magnetic grippers for this prototype have been developed. These grippers
o�er an adhesion force of 33 kg on 3mm-thick steel plates, providing a stable
adhesion on real steel structures. They are based on the technology of switchable
magnets, and include rubber pads for increasing friction and preventing slippage.
The housings of these switchable magnets include notches that reduce magnetic
short-circuits and increase adhesion force by a factor of 1.6.

• A study of the worst design scenarios for preventing the detaching of the magnetic
grippers while climbing has been presented, based on the notion of Zero Moment
Point. The worst situation turns out to be when the robot is performing a concave
(or interior) transition between two orthogonal planes, with gravity acting along
the direction perpendicular to the new plane to which the free gripper must be
attached, e.g., when performing transitions between floor and wall, or between
wall and ceiling.

• An algebraic-graphical procedure for determining the coordinates of the Instan-
taneous Center of Rotation about which the gripper will rotate when starting to
slip due to insu�cient friction has been presented. This procedure also yields the
minimum static friction coe�cient necessary for preventing slippage.

9.2 Future Work

The next list suggests some future research works that may be derived from some of
the research lines and results presented in the previous chapters of this thesis.

• Mixed binary-continuous actuation of the HyReCRo robot. The original
purpose of the HyReCRo robot was to be a purely binary robot, in order to
greatly simplify the control and motion planning of this robot when climbing
and exploring structures. However, as argued at the beginning of this thesis,
a purely binary climbing robot would be unable to completely explore a three
dimensional structure, since it can only attain a finite set of discrete poses, none
of which may finely place the grippers of the robot at the surface to be climbed.

276



9.2. Future Work

After solving the kinematic problems and workspace of this robot considering
continuous actuation in this thesis, a mixed binary-continuous actuation strategy
may be adopted, which may be a way of returning to the original proposal of the
HyReCRo robot. According to this strategy, the motion of the robot along the
structure may follow steps similar to those sketched next:

– First step: coarse binary motion. Firstly, the robot would try to reach
the desired position using purely binary actuation. Since the robot has so
many degrees of freedom, it can attain a large number of discrete postures
even if all actuators are binary, so one of these discrete postures may be
close enough to the required pose for performing a plane transition in the
structure. In that case, the motion planning of the robot would not be
necessary, since a binary posture would su�ce.

– Second step: fine continuous motion. Secondly, in case a purely binary
posture does not place the gripper of the robot at the required pose for
performing a plane transition, then some actuators of the robot would be
continuously actuated progressively, until the desired pose was attainable.
For example: imagine that a binary posture of the robot places its free
gripper close to the desired pose, but not close enough to perform a plane
transition. Then, one would “relax” the binary actuation condition of only
one of the two linear actuators directly connected to the free gripper, actu-
ating it continuously, in order to try to attain the desired pose in this way.
If relaxing only one actuator was not enough, then the adjacent linear ac-
tuator would also be relaxed, in order to try to finely place the free gripper
at the desired pose. If relaxing two linear actuators was still not enough,
then one would continue this procedure, releasing linear actuators one at
a time, from the free gripper to the fixed gripper, until the desired pose
could be reached. Note that it would be reasonable to relax and actuate
continuously first the linear actuators that are closest to the free gripper,
since they are easier to control because they support smaller payloads than
those near the fixed gripper of the robot. However, one should explore all
possibilities, since it may occur that, in order to finely reach a desired pose,
one only needed to relax the binary actuation of one of the linear actuators
placed near the fixed gripper instead of many of the actuators near the
free gripper (usually, in serial robots the actuators near the fixed base of
the robot have a greater influence on the motion of the end-e�ector due
to the higher distance between the rotation axis of the actuator and the
end-e�ector).

In order to perform fine continuous motions during the second step of the previous
strategy, the kinematic analyses performed in the present thesis can be used at
all required levels. For example, if one only needs to continuously actuate one of
the linear actuators or parallel modules of the robot, then one would follow the
kinematic analysis presented in Chapter 3. If a whole leg of the robot should be
continuously actuated, then one would follow the analysis presented in Section
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5.2.2. Finally, if one needs to continuously actuate the whole robot, then the
analyses presented in all previous chapters can be used.

• Trajectory planning. After the kinematics of the HyReCRo robot has been
thoroughly analyzed and a functional prototype of this robot has been built and
teleoperated on a real steel structure, one of the next steps will be to solve
its trajectory planning problem. This problem will consist in determining the
sequence of movements to be performed to move the robot from one starting
point of the structure to another goal point. This problem encompasses two sub-
problems: trajectory planning of the manipulator as a conventional manipulator
(i.e., when one of the grippers is fixed to the structure and the free gripper must
be moved to the next attachment point of the structure) and trajectory planning
of the whole climbing robot as a mobile robot moving along the structure, in
order to visit all the parts that need to be inspected. The first sub-problem can
be certainly simplified if the mixed binary-continuous strategy sketched above is
used, since in that case one would only need to plan trajectories in the continuous
subspace of the actuators whose binary actuation has been relaxed, which will
typically be a lower-dimensional subspace. In that case, instead of searching a
ten-dimensional space of ten continuously-actuated joint coordinates, one would
only need to search the continuous space of the two or three actuated joint
coordinates that are continuously actuated; the remaining coordinates would still
be binarily actuated.

• Interior barriers of the workspace of highly-redundant robots. The method
presented in Section 7.2 for obtaining the interior barriers of redundant manip-
ulators under collision constraints is very computer-intensive, and is therefore
feasible only for robots whose self-motion manifolds are one- or two-dimensional,
as the experiments in Section 7.3 have demonstrated. Although an attempt
was made in Section 7.4 to extend this method to the HyReCRo robot, whose
self-motion manifolds are four- and five-dimensional, the approximate method
presented in Section 7.4 omitted information since it obtained barriers by an-
alyzing only lower-dimensional projections of such self-motion manifolds. As a
result of this loss of information during the projection, the approximate method
presented in Section 7.4 will certainly miss some barriers. In order to e�ec-
tively extend the method presented in Section 7.2 to robots with higher degree
of redundancy, it will be necessary to find some lower-dimensional projection of
self-motion manifolds that does not lose information relevant to the computa-
tion of interior barriers. For example, for robots with a single working mode in
the non-redundant case, like the Stewart platform, the complete configuration
of the robot is uniquely defined by the pose of its mobile platform. This means
that, for this robot, it is not necessary to analyze the self-motion manifolds in
its six-dimensional actuated joint space. Instead, it is su�cient to analyze the
projections of these manifolds on the lower-dimensional subspace of redundant
pose variables [space of vector Â defined in the paragraph above Equation (7.2)],
since any configuration in this subspace results in a unique configuration in its
actuated joint space [space of vector ◊ defined in the paragraph above Equation
(7.2)]. However, this is not true for robots with several working modes (like the
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3RRR robot studied in Section 7.3.3), since in that case any configuration in the
subspace of redundant pose variables yields several possible configurations in the
actuated joint space.

• Autonomous inspection of structures. Currently, the HyReCRo robot is tele-
operated. However, in the future, the HyReCRo robot will be equipped with
an omnidirectional camera in order to autonomously explore and inspect three-
dimensional structures. By means of this camera, the robot will perform Simul-
taneous Localization and Mapping (SLAM) on the structure.
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A Appendix: Set of Publications

The major contributions made in the present thesis are supported by two papers pub-
lished in journals ranked in JCR (Science Edition). The metadata of these journal
papers are presented next:

Journal Paper 1

An improved Monte Carlo method based on Gaussian growth to calculate the workspace
of robots. [145]
A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá
Eng. Appl. of Artificial Intelligence. Vol 64, pp. 197-207 (2017)
ISSN: 0952-1976. Ed. Elsevier.
JCR-SCI Impact Factor: 2.819, Quartile Q1
Web: https://doi.org/10.1016/j.engappai.2017.06.009

DOI: 10.1016/j.engappai.2017.06.009

Journal Paper 2

A method based on the vanishing of self-motion manifolds to determine the collision-
free workspace of redundant robots. [146]
A. Peidró, Ó. Reinoso, A. Gil, J.M. Marín, L. Payá
Mechanism and Machine Theory. Vol 128, pp. 84-109 (2018)
ISSN: 0094-114X. Ed. Elsevier.
JCR-SCI Impact Factor: 2.796, Quartile Q1
Web: https://doi.org/10.1016/j.mechmachtheory.2018.05.013

DOI: 10.1016/j.mechmachtheory.2018.05.013

Preprints of these publications are appended next.
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