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Abstract In the early 1980’s Kopp and Diewert proposed a
popular method to decompose cost efficiency into allocative
and technical efficiency for parametric functional forms
based on the radial approach initiated by Farrell. We show
that, relying on recently proposed homogeneity and duality
results, their approach is unnecessary for self-dual homo-
thetic production functions, while it is inconsistent in the
non-homothetic case. By stressing that for homothetic
technologies the radial distance function can be correctly
interpreted as a technical efficiency measure, since alloca-
tive efficiency is independent of the output level and radial
input reductions leave it unchanged, we contend that for
non-homothetic technologies this is not the case because
optimal input demands depend on the output targeted by the
firm, as does the inequality between marginal rates of
substitution and market prices—allocative inefficiency. We
demonstrate that a correct definition of technical efficiency
corresponds to the directional distance function because
its flexibility ensures that allocative efficiency is kept
unchanged through movements in the input production
possibility set when solving technical inefficiency, and
therefore the associated cost reductions can be solely—and
rightly—ascribed to technical-engineering-improvements.
The new methodology allowing for a consistent decom-
position of cost inefficiency is illustrated resorting to simple
examples of non-homothetic production functions.
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1 Introduction

In 1982 Kopp and Diewert proposed the first methodology
based solely on duality theory to decompose cost (in)effi-
ciency into technical and allocative components for the case
of parametric specifications. Their approach did not require
resorting to the primal approach by direct or indirect esti-
mation of a production function and its associated minimum
cost share equations as previous proposals by Schmidt and
Lovell (1979) or Kopp (1981), but simply knowledge of the
cost function. A system of equations involving optimal
demands for inputs—applying Shephard’s Lemma—and
relative input quantities allowed determination of the
unknown reference technical efficient benchmark for any
firm, as well as its associated input—shadow—price vector.
Based on this solution a straightforward decomposition of
cost efficiency into allocative and technical efficiency was
possible. Kumbhakar and Lovell (2000) discuss Kopp and
Diewert’s (1982) original proposal, along with subsequent
refinements by Zieschang (1983) and Mensah (1994), who
improved the methodology by simplifying the system of
equations to be solved, resulting in less computational
requirements and numerical difficulties.

A common feature of all these and subsequent con-
tributions, including those extending the previous analytical
frameworks based on numerical solutions to an econometric
setting that allows estimation of the cost function—
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Kumbhakar (1997), is that they relied on Farrell’s (1957)
radial definition of technical efficiency, related both to the
coefficient of resource utilization by Debreu (1951) and the
inverse of Shephard’s (1953) input distance function. Using
Farrell’s approach implies that technical efficiency is mea-
sured against the reference isoquant corresponding to the
observed output level, regardless whether that output level
was the one originally intended by the firm. Once the firm is
projected onto that isoquant, and thanks to duality, alloca-
tive efficiency, defined as the difference between minimum
cost and the cost at the technically efficient projection, is
measured as a residual. As we show in this study, and
despite the fact that the previous contributions allowed for
both homothetic and non-homothetic technologies, Farrell’s
approach is only consistent for the former case, where radial
reductions of inputs can be rightly interpreted as technical—
engineering—improvements resulting in cost savings,
because whatever the allocative efficiency magnitude
resulting from the (in)equality of marginal rates of sub-
stitution with input price ratios, it does not change along the
radial contraction path represented by the input distance
function. This result stems from one remarkable technolo-
gical property normally taken for granted in the literature by
customarily assuming homotheticity, that the marginal rates
of substitution among inputs are independent of the output
level, and therefore the radial contractions of input quan-
tities leave allocative efficiency unchanged.

This would not be relevant if one is willing to accept that
the observed output level of the firm is the one targeted by
its managers, and therefore optimal input demands are
determined at that output level. However, adopting an input
orientation to measure and decompose cost efficiency does
not safeguard from the fact that the researcher does not
know what is the output level originally intended by the
firm. In the case of non-homothetic technologies, where the
optimal input demands that minimize production cost
depend on the output levels, allocative efficiency changes
with the reference output level, and its residual nature is no
longer consistent with a radial definition of technical effi-
ciency. Consequently, the definition of allocative efficiency
and its associated distance function counterpart—measuring
technical efficiency—has gained recent attention. Bogetoft
et al. (2006) were the first ones to propose a non-residual
definition of allocative efficiency separate from its technical
efficiency counterpart. They showed that under input
homotheticity, allocative efficiency is independent of output
level and that the order in which cost efficiency is decom-
posed, first technical and then allocative, or vice versa (i.e.,
the reverse approach), is irrelevant as they yield the same
results. However, they failed to fully acknowledge that for
non-homothetic technologies the radial input distance
function cannot be truly considered as a correct measure of
technical efficiency because it does not leave allocative

efficiency unchanged, as it depends on the output level that
is considered to be measured.

This has been also recently stressed by Aparicio et al.
(2015), who in a non-parametric non-homothetic Data
Envelopment Analysis framework, show that a consistent
definition of technical efficiency can only be achieved by
resorting to the directional distance function1—Chambers
et al. (1996), whose flexibility allows to measure technical
efficiency without altering allocative efficiency simulta-
neously. In short, they unveil that behind the apparently
casual residual nature of allocative efficiency, a rationale for
cost efficiency decomposition exists, and that indeed that
rationale must be extended to non-homothetic technologies
proposing a new model. Given the advantages of assuming
homotheticity as the most common functional restriction—
see Chambers and Mitchell (2001), it comes as no surprise
that it is routinely imposed by researchers without testing
for non-homotheticity, even if the latter case is the most
common situation.2

In this study we revisit the decomposition of overall cost
efficiency into technical and allocative components in the
light of the standard and reverse approaches and extend the
associated analytical framework to non-homothetic tech-
nologies. In this situation we show that the choice of
reference output level is of paramount importance as both
approaches are not equivalent, and introduce a new meth-
odology that based on the definition of the directional dis-
tance function, allows us to reconcile both approaches and
regain theoretical consistency under a general technological
specification.3 In short, this is accomplished by ensuring
that when measuring the technical efficiency of a firm
producing in the interior of the production possibility set
through movements to the frontier, allocative efficiency
does not change along the process. This constitutes the
desired condition that is unintentionally kept in the standard
Farrell approach for homothetic technologies. Knowing
that technologies will not generally exhibit the stylized
homotheticity assumption, it is mandatory that when
defining, interpreting and correctly decomposing cost effi-
ciency, a correct measure of technical efficiency must keep
constant its allocative efficiency counterpart. We introduce
the necessary theoretical results to support our new

1 See also Luenberger (1992) and his general notion of shortage
function.
2 From a parametric perspective, early confirmation of non-
homothetic technologies is given by Christensen and Greene (1976)
and Sato (1977), who show that for relevant electric utilities and
manufacturing industries, non-homothetic specifications are statisti-
cally significant. In a non-parametric context, Aparicio et al. (2015)
show that the most common DEA technologies are non-homothetic,
except for the single output and constant returns to scale model.
3 As opposed to Kopp (1981, p. 490) who state that: “we can ignore
homogeneity or homotheticity assumptions since our concern is on a
single isoquant”.
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methodology and illustrate how to solve the economic
models and calculate and decompose cost efficiency for
non-homothetic technologies. We do so analytically for
well-defined production functions within the determinist
framework initiated by Aigner and Chu (1968), who relied
in mathematical programming, and that was extended to
cost efficiency decomposition by the above mentioned
authors. In this way we give continuity and revitalize a
strand of literature that has not been revisited in the light of
recent theoretical developments.4

The paper is organized as follows. In Section 2 we recall
the standard and reverse Farrell approaches introduced by
Bogetoft et al. (2006), showing that the radial distance
function correctly characterizes technical efficiency as
radial projections of inefficient firms leave allocative (in)
efficiency unchanged, and therefore all cost savings can be
attributed to technical efficiency gains. We illustrate our
discussion with the standard Cobb-Douglas homothetic
technologies, corresponding to an example by Kopp and
Diewert (1982). Section 3 is devoted to introduce the cor-
rect decomposition of economic efficiency when the tech-
nology is non-homothetic by relying on the directional
distance function as a measure of technical efficiency, and
extends the previous rationale of ensuring that allocative
(in)efficiency is kept constant as production cost is reduced
through changes in the employed inputs quantities. We
introduce the necessary programs to calculate the direc-
tional distance function that ensures a correct decomposi-
tion of cost inefficiency, and illustrate the model making use
of non-homothetic Cobb-Douglas. Section 4 concludes.

2 Technical, allocative and costs efficiency with
homothetic technologies: the standard approach

2.1 The production technology and technical efficiency

Let us consider the production possibility set
T ¼ x; yð Þ : x 2 RN

þ; y 2 RM
þ ; x can produce y

� �
. We assume

that T satisfies the customary axioms, including closedness,
Färe (1988). In this case, and for the single output case:
M= 1, the technology can be represented by a production
function f: RN

þ ! Rþ, that is defined by:

f ðxÞ ¼ max
y

y : ðx; yÞ 2 Tf g; ð1Þ

This definition stresses the envelope nature of the pro-
duction function by characterizing the maximum amount of

output that can be obtained from any combination of
inputs. The advantage of this interpretation is that it
leaves room for technical inefficiency, since under the
appropriate assumptions we can define the technology
set departing from the production function as T ¼
x; yð Þ : f xð Þ � y; x 2 RN

þ; y 2 Rþ
� �

. We assume that: (i) the
production function is well-behaved satisfying all desirable
neoclassical properties and regularity conditions, particularly
quasi-concavity, which ensures that the associated input pro-
duction possibility sets are convex, Madden (1986); and (ii) it
is continuous and twice differentiable.5 A relevant property is
that the technology is homothetic when the production
function is homogenous of degree r> 0: f(δx)= δrf(x). For r
> 1, r= 1, and r< 1, the technology exhibits increasing,
constant or decreasing returns to scale, respectively.6

Since we focus our analysis on the decomposition of
economic efficiency into technical and allocative efficiency,
it is better to represent the technology by means of the
associated distance function, which provides a straightfor-
ward measure of the former. Assuming a cost minimizing
behavior on the part of the firm, it is also convenient to
define the input requirement set as LðyÞ ¼ x : x; yð Þf
2 Tg ¼ x 2 RN

þ : f xð Þ � y
� �

—and therefore T ¼ x; yð Þ :f
x 2 L yð Þ; y 2 Rþg. We say that the technology is homo-
geneous of degree r if L(δy)= δ1/rL( y) (see Färe and
Mitchell 1993 and Boussemart et al. 2009). Additionally,
the input requirement set allows us to recall Shephard’s
input distance function as follows:

DIðx; yÞ ¼ sup
λ>0

λ : ðx=λÞ 2 LðyÞf g: ð2Þ

This function completely characterizes the technology
under weak disposability of inputs (Färe and Primont 1995),
and allows us to determine the technical efficiency of any
firm (x1, y1) as follows: Considering the observed output
level y1 as reference, we can define its associated isoquant
as Isoq L( y1)= {x : x ∈ L( y1),δx ∉ L( y1) ∀δ< 1}, y1> 0,
and it can be shown that x1 ∈ Isoq L( y1) if and only if DI(x

1,
y1)= 1. Therefore, for DI(x

1, y1)> 1 the firm is technically
inefficient, and its projection on the isoquant is denoted by
x̂1 ¼ x1=DI x1; y1ð Þ 2 Isoq L y1ð Þ.

One may also think of inefficiency from the output
perspective, and rely on the output distance function to

4 There are recent contributions that use semi-parametric and non-
parametric techniques to estimate stochastic frontier models allowing
for flexible functional forms—e.g. Delis et al. (2014), whose analytical
framework could be used to implement the ideas introduced in this
study.

5 The quasi-concavity assumption, ensuring that the input isoquants
are convex, is satisfied by the most common functional for-
ms―including those presented in subsequent sections; e.g., Cobb-
Douglas. The regularity and differentiability conditions of the pro-
duction function (1) passes on the distance functions defined below—
see Blackorby and Diewert (1979).
6 Boussemart et al. (2009) introduced a more general definition in the
literature for multi-output multi-input contexts: a production technol-
ogy T is said to be homogeneous of degree α if for all λ> 0 (x, y) ∈ T ⇒
(λx, λαy) ∈ T. In particular, if f(δx)= δrf(x) for all δ> 0 and T ¼
x; yð Þ : f xð Þ � y; x 2 RN

þ; y 2 Rþ
� �

; then T is homogeneous of degree
r following Boussemart et al.’s definition.
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equivalently determine if (x1, y1) is technically efficient or
not. Define the output distance function as:

DO x; yð Þ ¼ inf
θ>0

θ : f xð Þ � y=θÞf g; ð3Þ
then if (x1, y1) is interior to T—technically inefficient,
DO(x

1, y1)< 1, while it is efficient as long as DO(x
1, y1)= 1

and the inequality in (3) is an equality. In the event of (x1,
y1) being inefficient, its projection in the output dimension
corresponds to the following vector x1; y2ð Þ ¼ x1; y1=ð
DOðx; yÞÞ, y2> y1, showing that the observed input vector
yields a higher amount of output. In this case it can be
proved that the efficient projection belongs to the frontier of
the technology: y2= f(x1), or alternatively, the isoquant
defined as Isoq L( y2)= {x : x ∈ L( y2), ϕx ∉ L( y2) ∀ϕ< 1},
with x1 ∈ Isoq L( y2). In case that (x1, y1) were efficient,
DO(x

1, y1)=DI(x
1, y1)= 1, and therefore x1; y1ð Þ ¼ x̂1;

�
y1Þ ¼ x1; y2ð Þ. However, when the firm is technically inef-
ficient it is verified that: x1; y1ð Þ≠ x̂1; y1

� �
≠ x1; y2ð Þ.

2.2 The cost function and allocative efficiency

As previously discussed in the introduction, the implications of
the previous result regarding the two alternative orientations
that researchers use when measuring technical efficiency are
quite relevant for the decomposition of cost efficiency so as to
learn from its sources, particularly the correct definition of
technical efficiency in terms of its allocative counterpart. As a
cost minimizing firm demands input quantities taking as
reference its ex-ante intended output level, but the researcher
either observes ex-post actual production y1 or, based on the
excess of inputs consumed by the firm to produce it, can
determine the potential output level y2 that would be attain-
able, the choice of orientation is quite relevant when assessing
allocative efficiency. Therefore, when optimal input quantities
at y1 or y2 differ from those actually observed x1, or those at
the technically efficient projection x̂1, the firms incur in allo-
cative inefficiency, whose magnitude may vary at both output
levels. In this section, we recall Bogetoft et al.’s (2006) results
showing that for the case of homothetic technologies they are
the same, and therefore it does not constitute a concern for the
analyst, contrarily to the non-homothetic case that we address
in the next section.

We elaborate this issue formally by defining the cost
function—frontier—dual to the technology as Cðy;wÞ ¼
min
x

wx x 2 LðyÞjf g7, representing the minimum cost of

producing y given the vector of inputs prices w= (w1, …,
wN), and satisfying the usual properties, including con-
tinuity and second order differentiability. Among these, we
recall here that when the single output technology repre-
sented by the production function is homogenous of degree
r, the cost function is separable and can be expressed as
follows: C( y, w)= y1/rC(1,w)–Silberberg and Suen (2000,
p. 229).

Given a particular vector of market prices, w, we can
recover the amount of inputs minimizing the cost of pro-
duction by way of Shephard’s Lemma, i.e.,

x�ðy;wÞ ¼ ∇wCðy;wÞ; ð4Þ
where ∇wC( y, w) ≡ [∂C( y, w)/∂w1, ..., ∂C( y, w)/∂wN]. This
vector of input demand equations solves the first order
conditions that result from the cost minimizing problem
subject to the production function constraint, which is
contingent on a particular output level y, and implying that
x*( y, w) ∈ Isoq L( y). Again, if the production function is
homogenous of degree r, the system of demand equations
can be expressed as:

x�ðy;wÞ ¼ y1=r∇wCð1;wÞ: ð5Þ
For any two inputs k and l with associated market prices

wk and wl, the first order conditions also imply that the
marginal rate of technical substitution of factor k for factor l
must be equal to the price ratios8:

MRSkl ¼ �dl=dk ¼ fkðxÞ=flðxÞ ¼ wk=wl; ð6Þ
where fk(x)= ∂f(x)/∂xk and fl(x)= ∂f(x)/∂xl are marginal
productivities. With this information we define the (input-
oriented) allocative efficiency of (x1, y1) in the following
way:

AE x1; y1;wð Þ ¼ C y1;wð Þ
wx̂1

¼ C y1;wð Þ
wx1=DI x1; y1ð Þ ¼

w∇wC y1;wð Þ
wx1=DI x1; y1ð Þ

¼ wx� y1;wð Þ
wx1=DI x1; y1ð Þ ;

ð7Þ

which under homogeneity of degree r can be expressed as
follows:

AE x1; y1;wð Þ ¼ y1ð Þ1=rCð1;wÞ
wx1=DI x1; y1ð Þ ¼

y1ð Þ1=rw∇wCð1;wÞ
wx1=DI x1; y1ð Þ

¼ y1ð Þ1=rwx�ð1;wÞ
wx1=DI x1; y1ð Þ ;

ð8Þ

As for the values of AE(x1, y1,w), if x̂1 ¼ x1=DI x1;ð
y1Þ ¼ x� y1;wð Þ the firm is allocative efficient with AE( y1,
x1, w)= 1, and the marginal rates of substitution are equal

7 Notice that L( y) is closed since we are supposing that T is closed.
However, it is not enough to assure that ‘inf’ can be substituted by

‘min’ in inf
x

wx x 2 LðyÞjf g. So, hereafter, we assume that the optimi-

zation problem associated with the calculation of the cost function C(
y, w) always attains its minimum in the set L( y). There exist several
sufficient conditions in the literature which assure such result. For
example, Shephard (1970, p. 223) assumed that the subset of Pareto-
efficient points of L( y) is bounded. Another case is when the tech-
nology is a polyhedral set (see Mangasarian 1994, p. 130).

8 We assume that given our assumptions about the production tech-
nology, the second order conditions are verified and therefore the sign
of the bordered Hessian determinant is negative.

136 J Prod Anal (2017) 48:133–146



to the input price ratios, Eq. (6). It follows immediately that
if x1/DI (x

1, y1) ≠ x*( y1, w) the firm is allocative inefficient
with AE(x1, y1, w)< 1, with the marginal rates of substitu-
tion differing from relative prices.

Following now the reverse approach proposed by
Bogetoft et al. (2006), we define the allocative efficiency
associated to the optimal input demands if the firm were to
take as reference output level y2 with x1 2 Isoq L y2ð Þ–and
therefore DI(x

1, y2)= 1 so the firm is technically efficient
and the second equality below holds. In that case:

AE x1; y2;w
� � ¼ C y2;wð Þ

wx1=DI x1; y2ð Þ ¼
w∇wC y2;wð Þ

wx1
¼ wx� y2;wð Þ

wx1
;

ð9Þ
which under degree r homogeneity can be expressed
equivalently as:

AE x1; y2;wð Þ ¼ y2ð Þ1=rCð1;wÞ
wx1=DI x1; y2ð Þ ¼

y2ð Þ1=rw∇wCð1;wÞ
wx1

¼ y2ð Þ1=rwx�ð1;wÞ
wx1

:

ð10Þ

This expression is numerically interpreted in the same way
as above.

We now recall that homogeneity allows the following
definition of the input distance function.

Lemma 1 [Färe and Mitchell 1993]. Let f be a production
function homogeneous of degree r> 0, then DI(x, y)= y−1/

rDI(x, 1).

Proof This result is a direct consequence of Proposition 1
(iii) in Färe and Mitchell (1993) when M= 1. ■

Relying on Boussemart et al. (2009), we recall that, for
homogenous technologies, the following relationship
between the input and output distance functions holds:

Proposition 1 [Boussemart et al. 2009]. Let f be a pro-
duction function homogeneous of degree r> 0, then
DI x; yð Þ ¼ 1

DO x;yð Þ1=r and DO x; yð Þ ¼ 1
DI x;yð Þr.

Proof It follows directly from Proposition 3.3(a) in
Boussemart et al. (2009). ■

We can now establish the following result relating the
values of the allocative efficiency measures AE(x1, y1, w)
and AE(x1, y2, w):

Proposition 2 Let f be a production function homo-
geneous of degree r> 0, then (i) the allocative efficiency of
a firm is the same regardless of the output level that is taken
as benchmark for its input demands: AE(x1, y1, w)= AE(x1,
y2, w), and (ii) the marginal rates of substitution are
independent of the output level and remain constant along

the ray vector associated to the input distance function:
MRSkl =−dl/dk= fk(x

1)/fl(x
1)= fk(x

1/τ)/fl(x
1/τ) for all

1 � τ � DI x1; y1ð Þ.

Proof (i) If the technology is homogeneous of degree r then
(i) AE(x1, y1, w*)= ( y1)1/rC(1, w)/wx1/DI(x

1, y1) [see (8)] and
AE(x1, y2, w)= ( y1/DO(x

1, y1))1/rC(1, w)/wx1 by (10) with y2

= y1/DO(x
1, y1) . Therefore AE(x1, y2, w)/AE(x1, y1, w)= [((

y1)1/r/DO(x
1, y1)1/r)(C(1, w)/wx1)]/[(( y1)1/rC(1, w))/(wx1/

DI(x
1, y1))]= (1/DO(x

1, y1)1/r)/DI(x
1, y1)= 1, since 1/DO(x

1,
y1)1/r=DI(x

1, y1) by Proposition 1; (ii) Making use of the
property that the first order partial derivatives of a homo-
genous production function of degree r in the input quantities
are homogenous of degree r− 1 (e.g., Silberberg and Suen
2000, p. 225), i.e., δr−1fk(x)= fk(δx), δ> 0, we observe that
MRSkl ¼ �dl=dk ¼ fk x1ð Þ=fl x1ð Þ ¼ fk x1=τð Þ=fl x1=τð Þ: ■

As a counterpart to the cost function separability under
linear homogeneity of degree r: C( y, w)= y1/rC(1, w), and
for future reference, we recall its associated input homo-
theticity counterpart in terms of the input requirement set: L
( y)= y1/rL(1) (see Färe and Mitchell 1993). Additionally,
under the hypothesis of homogeneity it is possible to prove
that two firms located on the same output isoquant for y2

share the same input-oriented technical efficiency when it is
calculated with respect to a common level y1.

Lemma 2 Let f be a production function homogeneous of
degree r> 0. Let x1, x2 ∈ Isoq( y2). Then, DI(x

1, y1)=DI

(x2, y1).

Proof By definition, x̂1 ¼ x1

DI x1;y1ð Þ. In this way,
x1 ¼ DI x1; y1ð Þx̂1, which implies that f x1ð Þ ¼
f DI x1; y1ð Þx̂1� � ¼ DI x1; y1ð Þrf x̂1

� �
using that f(x) is homo-

geneous. Now, applying that f(x1)= y2 and f ðx̂1Þ ¼ y1, we

have that DI x1; y1ð Þ ¼ y1

y2

� �1=r
. Finally, since x1, x2 ∈ Isoq(

y2), we obtain that DI(x
1, y1)=DI(x

2, y1). ■

As we recall later, it follows from this result that, under
the homotheticity assumption, the values of Shephard’s
input distance function for any two firms belonging to a
given isoquant Isoq L( y2) are equal when they are projected
onto the same reference isoquant Isoq L( y1)—Bogetoft
et al. (2006). From a graphical perspective the homo-
theticity relationship L( y)= y1/rL(1), implies that the inputs
sets are “parallel” along a given ray vector.

2.3 Decomposing cost efficiency into allocative and
technical terms

With this background, we define the cost efficiency of firm
(x1, y1) and decompose it into its allocative and technical
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components. The overall cost efficiency when firms demand
inputs taking as reference Isoq L( y1) is given by:

CE x1; y1;wð Þ ¼ C y1;wð Þ
wx1

¼ C y1;wð Þ
w x1i =DI x1; y1ð Þð Þ

1
DI x1; y1ð Þ

¼ AE x1; y1;wð Þ TE x1; y1ð Þ
ð11Þ

corresponding to the standard approach proposed by Farrell.
Following Bogetoft et al. (2006) we can also define the
reversed overall cost efficiency taking Isoq L( y

2

) as the
reference for the allocative efficiency evaluation–again
assuming x1 2 Isoq L y2ð Þ so the firm is technically efficient:

CER x1; y1; y2;wð Þ ¼ AER x1; y2;wð Þ � TER y1; y2;wð Þ;

AER x1; y2;wð Þ ¼ AE x1; y2;wð Þ ¼ C y2;wð Þ
wx1 ;

TER y1; y2;wð Þ ¼ 1=DI x� y2;wð Þ; y1ð Þ:

ð12Þ

In their method, they first correct for allocative efficiency
by changing the observed input bundle from x1 to x*( y2, w)
= arg min {wx : x ∈ L( y2)} on Isoq L( y2), and then remove
technical inefficiency by reducing the input quantities
radially from x*( y2, w) to x*( y2, w)λ on Isoq L( y1), where λ
=D(x*( y2, w), y1). As a result of their Proposition 1,
Bogetoft et al. (2006) show that under input homotheticity
both decompositions are equivalent; i.e., CER(x1, y1, y2, w)
= CE(x1, y1, w), AER(x1, y2, w)= AE(x1, y1, w) and TER( y1,
y2, w)= TE(x1, y1). Here we summarize this result in terms
of the input and output distance functions through the fol-
lowing result, since the equivalence of the allocative com-
ponents was stated in Proposition 2.

Proposition 3 Let f be a production function homo-
geneous of degree r> 0, then TER y1; y2;wð Þ ¼ TE x1; y1ð Þ
= 1=DI x1; y1ð Þ=DO x1; y1ð Þ1=r.

Proof It follows directly from Proposition 1 in Bogetoft
et al. (2006) and Proposition 1 above by Boussemart et al.
(2009). ■

As a result of Propositions 2 and 3 we obtain the
following:

Corollary 1 Let f be a production function homogeneous
of degree r> 0, the input distance function can be con-
sidered as a measure of technical efficiency because the
radial contraction that it brings along the ray vector (factor
beams along which factors are held in fixed proportions)
leaves the marginal rates of substitution unchanged, as they
do not depend on the output levels, and therefore the

difference between the marginal rates of substitution and
the price ratios remains constant: MRSkl x1k ; x

1
l

� �
=MRSkl x1k=DI x1; y1ð Þ; x1l =DI x1; y1ð Þ� �

⋛ wk/wl.

This implies that regardless of whether the firm is allo-
cative efficient (MRSkl ð�Þ= wk/wl) or not (MRSkl ð�Þ ≠wk/wl),
the allocative efficiency level given by (7), which is inde-
pendent of the output level or input isoquant that is chosen
as reference, is constant along the ray vector, and therefore
any cost inefficiency reduction through radial projections
can be attributed solely to technical inefficiency reductions.
That is, the input distance function can be consistently used
to determine the technical efficiency level regardless of the
intended output level that the managers of a firm might have
targeted, and therefore taken as benchmark when planning
their input demands.

2.4 Homothetic Cobb-Douglas production function: H-CD

For the purpose of illustration we revisit this classic three-
input H-CD production function: y ¼ 0:049x0:251 x0:12 x0:73 ,
which is homogeneous of degree r= 1.05 and whose
dual cost frontier is C( y,w)= y1/rC(1, w)= y1=1:05

40:4w0:238
1 w0:095

2 w0:667
3 Kopp and Diewert’s (1982). Given

the firm under evaluation (x1, y1)= x11; x
1
2; x

1
3; y

1
� �

= (500,
50, 16,2754, 1300), input prices: w1= $12,000, w2=
$20,000, w3= $65, and optimal input demands―applying
Shephard’s lemma: x�1ðy;wÞ; x�2ðy;wÞ; x�3ðy;wÞ

� �
= (290.6,

69.7, 15,0163.9), minimum cost is: C( y1, w)=
$14,641,987.2 (see Table 1). Therefore cost efficiency is CE
(x1, y1, w)= 0.8325, AE(x1, y1, w)= 0.9689, and TE(x1, y1)
= 1/DI (x

1, y1)= 0.8596. Note that thanks to Proposition 1,
since DO(x

1, y1)= 1300/1523.73= 0.8532, we can recover
DI(x

1, y1)= 1/0.85321/1.05= 1.1633, and therefore project
the evaluated firm to the isoquant y1= 1300 without solving
the system of equations proposed by Kopp and Diewert
(1982), Zieschang (1983) or Mensah (1994), thereby ren-
dering their method unnecessary for the case of homothetic
self-dual technologies; i.e., the technically efficient input
vector corresponds to x̂1; y1

� �
= x1=DI x1; y1ð Þ; y1ð Þ=

(429.8, 43.0, 13,9910.8, 1300), with an associated cost of
$15,111,724.7.9 Consequently, since the radial projections
associated to the restrictions keeping inputs’ proportions
(mix) constant are inconsistent in the case of non-
homothetic technologies―as we show in what follows,
their whole proposal to decompose cost efficiency is either
unnecessary or incorrect, and should be discarded by

9 There are numerical discrepancies for the technically efficient input
vector as a result of the iterative computational algorithm used by
Kopp and Diewert (1982), who report the following values: (423,42,
13,1839). It is however easy to check that the output value corre-
sponding to this vector given the production function is y= 1278.4,
falling short from the reference value y1= 1300.
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researchers. As for the reverse Farrell approach, and
exemplifying Proposition 2, it yields the same results for the
three firms falling short from producing y2= 1523.72. The
results for two additional sets of firms producing y3= 1750
and y4= 2000 are also presented in Table 1.

3 Technical, allocative and cost efficiency with non-
homothetic technologies: the generalized approach

In this section we show that when the technology is non-
homothetic, using the observed output level as reference
benchmark to assess allocative efficiency as implied by the
standard Farrell approach results in a wrong decomposition
of cost efficiency if the firm had targeted an alternative
output level. We show that the previous results summarized
in Propositions 2 and 3 do not hold and therefore the
standard and reverse Farrell approaches to evaluate the
sources of cost inefficiency do not coincide, so a new
general approach to decompose cost efficiency is intro-
duced. First, we illustrate the inconsistency of the standard
decomposition empirically by relaying on a non-homothetic
version of the previous example and, secondly, we intro-
duce the theoretical results on which the new generalized
approach is based.

To ease the illustration we rely on a non–homothetic
version of the standard Cobb-Douglas specification. Parti-
cularly, since we have to decide on a specific functional
form, we rely on Sato (1977) and adopt the following
specification:

f ðx; yÞ ¼
YN

k¼1
xckðyÞk ; ð13Þ

which can be expressed more conveniently by taking
logarithms and normalizing by ck( y) as f ðx; yÞ ¼ ln xkþ

PN�1
l¼1 clðyÞln xl � hðyÞ ¼ 0, or, equivalently—see Sato

(1975):

hðyÞ ¼ ln xk þ
XN�1

l¼1
clðyÞln xl: ð14Þ

Relevant for our analysis are the marginal rate of sub-
stitutions associated with (14), which for any two inputs k
and l is:

MRSkl ¼ �dl=dk ¼ fk x1
� �

=fl x
1

� � ¼ x1l =x
1
k

� �
gðyÞ; ð15Þ

As opposed to the H-CD, the marginal rates of sub-
stitution for the NH-CD specification are variable at a
constant factor ratio by depending on the output level,
whose functional specification g( y) is to be defined. Parti-
cularly, we assume the simplest specification for the output
level function:cl( y)= δy, where δ represents the non-
homotheticity parameter. Assuming this specification we
relate it to h( y) in Eq. (14) so as to explicitly express y as a
function of the inputs.10 To make the argument concrete we
adopt the following formulation: h( y)= 2y−1, c( y)= 0.5y,
and consider the simplest non-homothetic extension of the
two-inputs Cobb-Douglas specification found in any text-
book, e.g., Silberberg and Suen (2000). With these func-
tions the non-homothetic Cobb-Douglas NH-CD
specification becomes 2y�1 ¼ x0:51 x0:5y2 , while Eq. (14) is
ðy� 1Þln 2= 0:5 ln x1 þ 0:5y ln x2. We can recover analy-
tically the explicit expression for y:

y ¼ ln 2þ 0:5ln x1
ln 2 � 0:5ln x2

; ð16Þ

and the marginal rate of substitution corresponds to
MRS12 ¼ x12=x

1
1y. Therefore g( y)= 1/y, and as production

Table 1 Cost efficiency decomposition with a H-CD technology: y ¼ 0:049x0:251 x0:12 x0:73

Input x1 Input x2 Input x3 Cost efficiency
(CE)

Allocative
efficiency (AE)

Technical
efficiency (TE)

x̂1 x̂2 x̂3

LH(y2= 1523.72)
C(y2, w)= 17,032,589

500.00 50.00 162,754.00 0.8329 0.9689 0.8596 429.82 42.98 139,910.73

338.00 81.12 174,681.36 0.8596 1.0000 0.8596 290.56 69.73 150,164.03

716.14 20.04 163,130.12 0.7471 0.8691 0.8596 615.63 17.23 140,234.14

LH(y3= 1750.00)
C(y3, w)= 19,433,343

570.48 57.05 185,694.32 0.7300 0.9689 0.7534 429.82 42.98 139,910.76

385.64 92.55 199,302.80 0.7534 1.0000 0.7534 290.56 69.73 150,164.03

817.08 22.86 186,123.51 0.6548 0.8691 0.7534 615.63 17.23 140,234.14

LH(y4= 2000.00)
C(y4, w)= 22,068,761

647.84 64.78 210,876.94 0.6428 0.9689 0.6635 429.82 42.98 139,910.77

437.94 105.10 226,330.90 0.6635 1.0000 0.6635 290.56 69.73 150,164.03

927.89 25.96 211,364.24 0.5766 0.8691 0.6635 615.63 17.23 140,234.14

Selected firms targeting different output levels larger than L(y1= 1300). C(y1, w)= 14,641,987.26, KD (1982)

10 As cl( y)and h( y)are arbitrary functions on a priori basis, the non-
homothetic expression of the production function is implicit generally.
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varies along a given ray vector x12=x
1
1 , so does the MRS

at the rate specified by ∂MRS12=∂y ¼ ∂gðyÞ=∂y ¼ �1=y2.
The—non-separable—dual cost frontier is

Cðy;wÞ ¼ w1
2y�1w2

0:5y

w1
0:5yy0:5y

� �1=0:5þ0:5y
þ w2

2y�1w1
0:5y0:5

w2
0:5

� �1=0:5þ0:5y
,

where x�1ðy;wÞ; x�2ðy;wÞ
� �

= 2y�1w2
0:5y

w1
0:5yy0:5y

� �1=0:5þ0:5y
;

�
2y�1w1

0:5y0:5

w2
0:5

� �1=0:5þ0:5y
	

are the input demand equations that

can be obtained, once again, applying Shephard’s lemma.
From the former conditions the expansion path for the NH-
CD is x�2 ¼ w1=w2ð Þx�1y.

In Fig. 1 we represent the map of isoquants for NH-CD
along with the isocost function C ¼ w1x1 þ w2x2, and
input prices w1=w2= 1. Considering initially (x1, y1)
= x11; x

1
2; y

1
� �

= (4,1,1)as the evaluated firm, and the cost
minimizing inputs’ quantities for the observed output level
y1= 1, (x*, y1)= x�1; x

�
2; y

1
� �

= (1, 1, 1), we see that from
(11) CE(x1, y1, w*)= 2/5= 0.4, AE(x1, y1, w*)= 2/2.5=
0.8, and TE(x1, y1)= 1/DI (x

1, y1)= 1/2= 0.5, where
DI (x

1, y1)= x0:51 x0:5y2 =2y�1. Consequently, the technically
efficient projection of the evaluated firm is: x̂11; x̂

1
2; y

1
� �

=
x11=DI x1; y1ð Þ; x12=DI x1; y1ð Þ; y1� �

= (2, 0.5, 1), whose MRS12
x11=DI x1; y1ð Þ; x12=DI x1; y1ð Þ� �

= x12=DI x1; y1ð Þ=x11=DI x1; y1ð Þ
= 0.5/2= 0.25 differs from the price ratio w1/w2= 1,
and does not belong to the expansion path x�2 ¼ w1=ð
w2Þx�1y.

However, let us now consider the cost efficiency
decomposition with respect to the isoquant Isoq LNH y2 ¼ð
y1=DO x1; y1ð Þ ¼ 2Þ with DO(x

1, y1)= 0.5, taking as a
reference Eq. (12). Assuming that the firm falls short of the
intended output, (x1, y2)= x11; x

1
2; y

2
� �

= (2, 2, 2), its costs
efficiency if we were to consider Isoq LNH( y1= 1) as
reference would still be CE(x1, y1, w)= 2/5= 0.4, but its
allocative efficiency is now AE(x1, y2, w)= 3/5= 0.6, while
its technical efficiency based on Shephard’s input distance
function is TER y1; y2;wð Þ ¼ TE x1; y1ð Þ= 1/DI(x

1, y1)= 1/2
= 0.5. Consequently, opposed to the case of homothetic
technologies, unknowing whether the firm’s targets output
or inputs so as to minimize production costs when the
technology is non-homothetic results in an inconsistent
decomposition of cost efficiency into the allocative and
technical terms. Clearly, as AE(x1, y2, w)= 0.6< AE(x1, y1,
w)= 0.8, CE(x1, y1, w) ≠ AER(x1, y2, w) ⋅ TER( y1, y2, w);
i.e., Proposition 2 does not hold, and bridging the gap
requires the introdu1ction of an additional term that Boge-
toft et al. (2006) named “second order” allocative efficiency,
AAE(x1, y2, w). This term emerges unnaturally as a con-
sequence of relying on Shephard’s radial distance function
as definition of technical efficiency. As a result, for non-
homothetic technologies, these authors propose the fol-
lowing decomposition of the reverse Farrell’s approach
taking Isoq LNH( y= 2) as reference for the allocative

efficiency evaluation.

CE x1; y1;wð Þ ¼ C y1;wð Þ
wx1

¼ C y2;wð Þ
wx1

1
DI x� y2;wð Þ; y1ð Þ

wx� y1;wð Þ
wx� y2;wð Þ=DI x� y2;wð Þ; y1ð Þ

¼ AER x1; y2;wð Þ TER y1; y2;wð ÞAAE x1; y2;wð Þ:
ð17Þ

The definition of AAE(x1, y2, w*) as a residual closing the
decomposition led Bogetoft et al. (2006) to conclude that
homotheticity is required so as to get consistent measures of
the allocative and technical efficiency terms; i.e., the cri-
terion by which the standard and reverse Farrell’s approa-
ches coincide as summarized in Proposition 2 and Corollary
1. However, this did not prompted them to drop Shephard’s
input distance function and look for an alternative. This
shows how embedded is the radial definition of technical
efficiency after 50 years under Farrell’s (1957) classic
paradigm. The need for that second term residual, incon-
sistent with duality theory, exemplifies why a general
approach based on the flexible directional distance function
is required.11

3.1 The directional distance function as efficiency
measure for non-homothetic technologies

We rely on Chambers et al. (1996) to show that a complete
and consistent decomposition of the standard and reverse
approaches for non-homothetic technologies can be
obtained without resorting to ad-hoc closing terms such as
AAE(x1, y2, w) in (17). As it is well-known, the directional
input distance function generalizes Shephard’s input radial
distance function while preserving the desirable duality with
the support cost function that enables a consistent decom-
position into the usual technical and allocative components.

11 There is yet a more drastic approach to this issue that considers the
decomposition of technical and allocative efficiency essentially sub-
jective. Zofio et al. (2013) discuss the flexibility of the directional
distance function as a measure of technical efficiency in an exogen-
ously pre-specified direction, and the arbitrary decomposition of cost
efficiency into technical and allocative terms in which it results, as the
former would change in value at the researcher’s will, depending on
the choice of direction. Consequently, being the allocative efficiency a
residual, its value will also change accordingly. Their conclusion is
that the use of flexible directional distance functions renders the cost
efficiency decomposition exercise meaningless, as technical efficiency
depends on the choice of the directional vector, unless a criterion is
imposed; i.e., in the case of homothetic technologies radial contrac-
tions do keep allocative efficiency unchanged, so Shephard’s distance
function can be rightly considered as a measure of technical efficiency.
For non-homothetic technologies, we use the same criterion of keeping
allocative efficiency constant in the standard and reverse approaches,
resulting in the same technical inefficiency values between isoquants.
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Let g= {g1, ..., gN} be a vector such that g ≠ 0m, then
the directional input distance function defines as ~DI x;ð
y; gÞ ¼ sup β : x� βg 2 L yð Þf g. It can be proved that if
g= x1 then ~DI(x

1, y1; x1)= 1− 1/DI (x
1, y1)—e.g., Bous-

semart et al. (2010). We define cost inefficiency as

CI x1; y1;w; gð Þ ¼ wx1�C y1;wð Þ
wg , and considering ~DI(x

1, y1;g)

as the associated of technical inefficiency, the following

Mahler inequality based on the dual relationship holds (see
Färe and Grosskopf 1997 and Chambers et al. 1998):

wx1 � C y1;wð Þ
wg|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Cost

InefficiencyðCIÞ

� ~DI x1; y1; g
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Technical

InefficiencyðTIÞ

:
ð18Þ

From the standard (Farrell) approach perspective, allo-
cative inefficiency may be computed from (18) as a resi-
dual: AI(x1, y1, w;g)=CI(x1, y1, w;g)− TI(x1, y1;g). Note
that (i) the decomposition is additive instead of multi-
plicative given the nature of each directional and radial
distance functions12, and (ii) the change in denomination
from efficiency to inefficiency as a result of the change in
the efficient values: one for the radial distance function and
zero for the directional distance function—the higher the
value the better in the former, and the worse in the latter.

It can be remarked that although (18) offers flexibility in
measuring cost and technical inefficiency through a wide
array of reference vectors g, most practitioners resort to
g= x1 as their only choice. The reason is that when g= x1

the overall additive cost inefficiency decomposition (18) is
equivalent to the multiplicative setting based on the Shep-
hard’s input distance function and, therefore, the technical
inefficiency values can be readily converted in equipro-
portional reductions in inputs, collapsing into the prevailing
Farrell paradigm; i.e., the flexibility of g is not exploited.
However, we have exemplified that this latter measure is
inadequate to characterize technical efficiency in a non-

homothetic setting as the allocative (in)efficiency of an
evaluated firm is not preserved through radial contractions.
This limitation can be precisely overcome thanks to the
flexibility of the directional distance function as long as we
can consistently extend the notion of cost efficiency
decomposition to non-homothetic technologies and, in
doing so, provide a first theoretical extension to parametric
models used empirically.

Once the definition of the standard overall economic
efficiency decomposition in terms of the directional distance
function has been presented, we extend Bogetoft et al.’s
(2006) reverse approach to the case of the directional input
distance function. As already presented, these authors
introduced a way to estimate the “starting” allocative effi-
ciency of (x1, y1), which does not need the initial projection
of this vector to the input requirement set defined by the
observed output vector y1, Isoq L( y1). We contend that if
one is interested in measuring the technical efficiency cor-
responding to x1 in the input space by means of movements
to the frontier associated with the production of y1, then one
would ideally make sure that the allocative efficiency does
not change along this process, as illustrated with the NH-
CD case. Otherwise, one may not be sure that the cost
savings derived from these input adjustments are con-
sequence of exclusively technical—engineering—issues not
related to allocative efficiency; i.e., changes in the inputs’
proportions (mix) in the homothetic case.

The first step to obtain an input directional distance
function requires the explicit definition of allocative effi-
ciency with respect to Isoq L( y2) as the normalized differ-
ence between the minimum cost of producing y2 given input
prices w, and the observed cost for x1:

AI x1; y2;w; gð Þ ¼ w x1 � ~DI x1; y2; gð Þg� �� C y2;wð Þ
wg

¼ wx1 � C y2;wð Þ
wg

;

ð19Þ

Fig. 1 Cost efficiency
decomposition with non-
homothetic technologies:
hðyÞ ¼ ðx0:51 xcðyÞ2 Þ; 2y�1 ¼ x0:51
x0:5y2 (NH-CD)

12 See Aparicio et al. (2017).
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where the second equality in (19) holds as long as ~DI(x
1, y2;

g)= 0 given that x1 ∈ Isoq L( y2).
We can now retake the idea of correctly interpreting and

measuring technical efficiency with non-homothetic technol-
ogies, so as to keep allocative efficiency constant along pro-
jections of the observed input vector x1. Then the following
question arises: Is there a reference vector g so the input
directional distance function actually measures technical inef-
ficiency by leaving allocative efficiency unchanged? The
answer is yes. Under the assumption of input homotheticity,
the directional input distance function with reference vector g
= x1, always satisfies that the “starting” allocative inefficiency,
measured with respect to Isoq L( y2); i.e., before projecting the
original input vector x1 to the isoquant of y1, and the “final”
allocative inefficiency, after projecting the original input vec-
tor, are the same (see Aparicio et al. 2015, p. 886). Being
allocative efficiency constant regardless the choice of
decomposition, several remarks are in order: (1) The sig-
nificance of Propositions 2 and 3 is that the true technical
efficiency can be computed from the observed quantity data
using the directional input distance with g= x1, even without
knowing actual input prices; (2) it turns out that the unrealized
—but actually planned—output level y2 that the inefficient
firm might had targeted from an engineering perspective, does
not need to be known by the researcher when determining the
allocative efficiency, as its value is the same regardless that
output level; (3) Moreover, as presented in Lemma 2 these
distance functions have the same value for all firms belonging
to the same output isoquant.

These results simplify the evaluation process of the firms
in terms of the information required to correctly decompose
cost inefficiency, as knowledge of the input prices, and the
actually planned output level are unnecessary to correctly
estimate technical efficiency (market prices are nevertheless
needed to calculate cost efficiency).

3.2 Solving for the directional vector in the case of
parametric non-homothetic technologies

Once the criterion of constant allocative efficiency for a
correct measurement of technical efficiency with non-
homothetic technologies has been established, which results
in the determination of a directional vector g for which this
condition holds, we can make use of the normalization
constraint to comply with the desirable property of
uniqueness of the technical efficiency value for all firms
belonging to an output isoquant when projected onto the
same benchmark isoquant, Lemma 2. It is possible to
achieve these conditions imposing as normalizing constraint
wg= 1, which results in yet another desirable by-product:
The interpretation of the inefficiency value in terms of a
monetary metric, as presented in Zofio et al. (2013). Indeed,
it is easy to see that if the unitary normalization constraint

holds in (18), then cost, allocative and technical inefficiency
are measured in monetary values.

Let x1 ∈ L( y1) ∩ IsoqL( y2). Determining the value of the
reversed directional distance function along with the
directional vector g with the normalization constraint
wg= 1 for x1 implies solving the following non-linear
optimization program:

~D
R
x1; y1; y2;wð Þ ¼ Max

β;g
β

s:t:

y1 ¼ f ðx1 � βgÞ;
w x1�βgð Þ�C y1;wð Þ

wg ¼ wx1�C y2;wð Þ
wg ;

wg ¼ 1;

β � 0;

ð20Þ

where the first constraint ensures that the projected vector
belongs to the observed output level —i.e.,Isoq L( y1), the
second one keeps constant the allocative inefficiency value
measured at Isoq L( y2) on the firm’s projection on Isoq
L( y1), and the final constraint imposes the desired nor-
malizing constraint that makes technical efficiency equal for
all firms belonging to Isoq L( y2) and projected onto IsoqL(
y1), while measuring cost inefficiency in monetary values.13

The next proposition states that technical inefficiency is
the same for firms located on the same output isoquant,
extending the property summarized in Lemma 2 to the non-
homothetic case.

Proposition 4 Let f be a production function. Let x1,x2 ∈
IsoqL( y2). Then, ~DR(x1, y1, y2, w)=~DR(x2, y1, y2, w).

Proof By the second constraint in (20), w x1 � βgð Þ�
C y1;wð Þ ¼ wx1 � C y2;wð Þ, which is equivalent to β= C(
y2,w)− C( y1,w) since w x1 � βgð Þ ¼ wx1 � βwg ¼

wg¼1
wx1

�β. In this way, ~DR(x1, y1, y2, w)=~DR(x2, y1, y2, w) for any
x1, x2 ∈ IsoqL( y2). ■

Finally, we are able to prove that cost inefficiency can be
decomposed in a reverse way without resorting to incon-
sistent second-order residual terms as AAE x1; y2;wð Þ in
Eq. (17).

Proposition 5. Let f be a production function. Let x1 ∈ L( y1)
∩ IsoqL( y2) and let (β*, g*) an optimal solution of (20).
Then,

CI x1; y1;w; g�ð Þ ¼ wx1 � C y1;wð Þ
wg�

¼ AI x1; y2;w; g�ð Þ þ ~DR x1; y1; y2;wð Þ:
13 Given the normalizing constraint, the second restriction can be
simplified as follows: C( y2,w) − C( y1,w)= β. We thank one of the
referees for this suggestion.
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Proof ~DR(x1, y1, y2, w)= β*, which is equal to C( y2, w)−
C( y1, w) by the first part of the proof of Proposition 4. On
the other hand, AI(x1, y2, w;g*)= (wx1−C( y2, w))/(wg*) by
(19), which coincides with wx1− C( y2, w) since wg*= 1.
Finally, summing AI(x1, y2, w;g*) and ~DR(x1, y1, y2, w) we
get wx1− C( y2,w)+C( y2, w)−C( y1,w)=wx1− C( y1,
w), which is equivalent to

wx1�C y1;wð Þ
wg� ¼ CI x1; y1;w; g�ð Þ.

3.3 Examples with non-homothetic Cobb-Douglas
production functions: NH-CD

Example 1 We now retake our non-homothetic Cobb-
Douglas technology 2y�1 ¼ x0:51 x0:5y2 illustrated in Fig. 1 and
solve problem (20) for a set of firms producing different
output levels. Results are reported in Table 2. Considering
once again (x1, y1)= x11; x

1
2; y

1
� �

= (4, 1, 1) as the evaluated
firm, and the optimal cost minimizing input quantities for
the observed output level y1= 1, (x*, y1)= x�1; x

�
2; y

1
� �

=
(1, 1, 1), we firstly solve model (20), determining in this
way technical inefficiency ~DR(x1, y1, y2, w)= 1$ and g� ¼
g�x1 ; g

�
x2

� �
= (0.2679, 0.7321). Additionally, to obtain a

value for the allocative inefficiency of this firm, we resort to
the final expression in (19), with AI(x1, y2, w;g*)= $2.
Finally, by Proposition 5, CI(x1, y1, w;g*)= $2+ $1= $3.
Using model (20) to decompose cost inefficiency
ensures that solving technical inefficiency keeps allocative
inefficiency constant when measured at LNH( y1= 1)
and LNH( y2= 2). Moreover ~DR(x1, y1, y2, w)= $1 repre-
senting technical inefficiency is measured in the reference
direction g� ¼ g�x1 ; g

�
x2

� �
= (0.2679, 0.7321), with the

projected technical efficient input quantities on Isoq L( y1)
corresponding to x̂1 = (x11 � ~DR x1; y1; y2;wð Þgx1 ,x12 � ~DR

x1; y1; y2;wð Þgx2 )= (3.7321, 0.2679).14

Table 2 presents the same analysis for two more firms,
x21; x

2
2; y

1
� �

= (1, 2, 1) and x31; x
3
2; y

1
� �

= (0.25, 4, 1), once
again targeting output level y1= 1 but employing more
inputs than those required to be technically efficient, or
targeting y2= 2 but yielding y1= 1 only. While both firms
exhibit equal technical inefficiency ~DR(x2, y1, y2, w)=~DR

(x3, y1, y2, w)= $1, by belonging to the same isoquant LNH(
y2= 2) and taking as reference to measure technical effi-
ciency LNH( y1= 1), x21; x

2
2; y

1
� �

= (1, 2, 1) is allocative
efficient at LNH( y2= 2), which is not the case for
x31; x

3
2; y

1
� �

= (1, 4,1). Taking advantage of Fig. 1, we
confirm that the second firm belongs to the expansion path,
thereby satisfying x�2 ¼ w1=w2ð Þx�1y. This is not the case for
the third firm with AI(x3, y3, w;g)= 1.125> 0. Table 2 also
presents results for two more sets of firms targeting larger

outputs LNH( y3= 3) and LNH( y4= 4). All firms present the
same technical inefficiency scores, either 0.7534 or 0.6635,
with their associated individual directional values g, and
different allocative efficiency values so as to totalize the
observed cost inefficiency. As intended, the generalized
approach yields a unique technical inefficiency value for all
these firms, while ensuring that their allocative efficiency is
kept constant.

Example 2 Building upon the previous H-CD example by
Kopp and Diewert (1982), we modify it so as to observe the
non-homothetic specification presented in Eq. (14) with
h( y)= 4468.507y−1 and c( y)= 0.7y, resulting in the fol-
lowing function: 4; 468:507y�1 ¼ 0:049x0:251 x0:12 x0:7y3 .15 This
formulation ensures that the original input vector under
evaluation (x1, y1)= x11; x

1
2; x

1
3; y

1
� �

= (500, 50, 162754,
1300) yields the intended but unrealized output target y2=
1523.72, as in the H-CD case. Table 3 presents the results
for three sets of firms targeting successive output levels
LNH( y2= 1523.72), LNH( y3= 1750) and LNH( y4= 2000),
while the reference isoquant for the standard decomposition
corresponds to Isoq L( y1= 1300). Solving Eq. (20) for the
firms targeting LNH( y2= 1523.72) results in the same value
of technical inefficiency~DR(x1, y1, y2, w)= $7423.93 with
different directional vectors g= (gx1 ,gx2 ,gx3 )–in the case of
the first firm g1= (g1x1 ,g

2
x1
,g3x1 )= (0.0003, 0.0002, −0.0260).

This firm presents a rather large individual allocative inef-
ficiency AI(x1, y2, w;g)= $6,968,669.17, with respect to the
minimum cost of producing y2= 1,523.72, which is in
sharp contrast to the second firm x21; x

2
2; x

2
3; y

1
� �

= (0.05,
0.05, 16,3211.40, 1300) that is the one allocative efficient at
Isoq L( y2= 1523.72)—note how the non-homothetic spe-
cification results in a drastic reduction of the optimal input
demands for the first two inputs, along with a huge drop in
the difference between minimum production costs for
alternative isoquants, as they that get much closer together
in the input space when compared to the homothetic spe-
cification. A similar scheme is obtained for the two addi-
tional sets of three firms producing LNH( y3= 1750) and
LNH( y4= 2000).

4 Conclusions

The decomposition of cost efficiency a la Farrell in a
parametric context, following the seminal work by Kopp
and Diewert (1982) and subsequent refinements, for the
case of non-homothetic technologies, calls for its

14 Note that for some firms it is necessary to increase the quantity of
some inputs to realize their technically efficient amount; a result that
stems from the flexibility of the directional distance function, and that
could not be achieved with radial measures.

15 Kopp and Diewert (1982) further illustrate their model with an
additional four-input non homothetic, non-neutral technical change
translog frontier cost function, which also results in an inconsistent
decomposition of cost inefficiency under the new approach, since their
method keeps inputs’ proportions (mix) fixed, as required by the radial
approach.
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reexamination in the light of recent developments
in economic theory–Bogetoft et al. (2006), Aparicio et al.
(2015). Contrarily to the case of homothetic techno-
logies, defining technical efficiency by way of the radial
input distance function is incorrect if the actual output
level targeted by the firm, constituting the reference for
allocative efficiency measurement, does not correspond to
that observed—as in the standard approach. This is because
the radial contraction of inputs resulting in cost savings
cannot be surely ascribed to technical improvements,
as demand for inputs, which under non-homotheticity
depends on the intended output levels, varies along the
projection path, and therefore allocative efficiency—defined
as the deviation of marginal rates of substitution from
relative inputs prices—changes over the input production
possibility set.

From the perspective of the cost efficiency decomposi-
tion, this result invalids the residual nature of allocative
efficiency, which is brought to the forefront of the analysis
requiring further attention. Taking as departing point the
standard decomposition proposed by Farrell (1957), and
relying on Bogetofts et al.’s (2006) results, we emphasize
that for homothetic technologies the radial distance function
characterizes technical efficiency in a consistent way by
leaving the allocative inefficiency counterpart unchanged,
and based on the same criterion, we show that for non-
homothetic technologies an equivalent definition of tech-
nical efficiency can be proposed in terms of the directional
distance function.

The consistency of the new approach is based on the so
called reversed cost efficiency decomposition, which is
equivalent to the Farrell approach in the homothetic case,
but yields alternative technical and allocative values when

non-homothetic technologies are involved. We prove sev-
eral results that are needed to implement the new metho-
dology, ensuring that once a given output level is
considered for the reverse approach, allocative efficiency is
first determined, and its technical efficiency counterpart
rather than being still associated to the radial input measure,
can be rightly determined by calculating the directional
vector associated to the directional distance function. The
new decomposition for non-homothetic technologies mir-
rors the properties of the standard approach, including that
the technical efficiency for firms situating in a given iso-
quant is the same when projected onto the same reference
isoquant, thanks to a suitable normalization condition. An
additional property of our choice of normalization con-
straint is that inefficiencies are measured in monetary
values.

We introduce the necessary optimization programs that
are needed to implement the model empirically in a para-
metric setting, allowing us to calculate the directional dis-
tance function and its associated directional vectors, and
illustrate the new methodology with Cobb-Douglas speci-
fications. However, our theoretical model is presented in
general terms, and therefore can be implemented also within
semi-parametric or non-parametric frameworks; in this latter
case using mathematical programming techniques. Since
the approximations of the production technology that these
techniques yield are generally non-homothetic, our results
are as relevant for practitioners as those presented for the
parametric case. They should be kept in mind by researchers
concerned with the homotheticity properties of their pro-
duction and distance function specifications, so as to cor-
rectly decompose overall efficiency into its technical and
allocative components.

Table 2 Reversed cost efficiency decomposition with a NH-CD technology: 2y�1 ¼ x0:51 x0:5y2

Input x1 Input x2 Cost inefficiency
(CI)

Allocative
inefficiency (AI)

Technical
inefficiency (TI)

gx1 gx2 x̂1 x̂2

LNH(y2= 2)
C(y2, w)= 3

4.0000 1.0000 3.0000 2.0000 1.0000 0.2679 0.7321 3.7321 0.2679

1.0000 2.0000 1.0000 0.0000 1.0000 0.0000 1.000 1.0000 1.0000

0.2500 4.0000 2.2500 1.2500 1.0000 −0.0941 1.0941 0.3441 2.9059

LNH(y3= 3)
C(y3, w)= 3.5095

4.0000 1.5874 3.5874 2.0779 1.5095 0.1220 0.8780 3.8158 0.2621

0.8774 2.6321 1.5095 0.0000 1.5095 −0.0812 1.0812 1.0000 1.0000

0.2500 4.0000 2.25 0.7404 1.5095 −0.1215 1.1215 0.4334 2.3070

LNH(y4= 4)
C(y4, w)= 3.7893

4.0000 2.0000 4.0000 2.2107 1.7890 0.0234 0.9766 3.9581 0.2526

0.7579 3.0314 1.7893 0.0000 1.7890 −0.1353 1.1353 1.0000 1.0000

0.2500 4.0000 2.2500 0.4607 1.7890 −0.1473 1.1473 0.2129 3.9629

Selected firms targeting different output levels larger than L(y1= 1), C(y1, w)= 2
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