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Abstract In for-profit organizations, efficiency and pro-
ductivity measurement with reference to the potential for
input-specific reductions is particularly important and has
been the focus of interest in the recent literature. Different
approaches can be formulated to measure and decompose
input-specific productivity change over time. In this paper,
we highlight some problems within existing approaches and
propose a new methodology based on the Principle of Least
Action. In particular, this model is operationalized in the
form of a non-radial Luenberger productivity indicator
based on the determination of the least distance to the
strongly efficient frontier of the considered production
possibility sets, which are estimated by non-parametric
techniques based upon Data Envelopment Analysis. In our
approach, overall productivity change is the sum of input-
specific productivity changes. Overall productivity change
and input-specific changes are broken up into indicators of
efficiency change and technical change. This decomposition
enables the researcher to quantify the contributions of each
production factor to productivity change and its compo-
nents. In this way, the drivers of productivity development

are revealed. For illustration purposes the new approach is
applied to a recent dataset of Polish dairy processing firms.

Keywords Data envelopment analysis ● Weighted additive
model ● Closest targets ● Input-specific productivity change

JEL codes C43 ● C61 ● Q12

1 Introduction

In for-profit organizations, productivity and efficiency ana-
lysis over time can provide important insights into the evo-
lution of firms’ performance and their degree of
competitiveness, and can therefore support better decision
making in companies and the development of firms’ strate-
gies and policy instruments. The particular case of this ana-
lysis concerns the productivity and efficiency measurement
with reference to the potential for input-specific reductions.
The need to understand the efficiency and productivity
change of firms in terms of their individual inputs employed
is clear. For example, technological growth facilitates the
substitution of relatively scarce and expensive inputs by
relatively abundant and cheap inputs, therefore having a
differential effect on input efficiency and productivity. Such
analyses are valuable for effective resource allocation and
obtaining insights into the scope for input use improvement.

The conventional approach in Data Envelopment Ana-
lysis (DEA) literature is to use productivity growth mea-
sures for all inputs simultaneously. Only recently, the
measurement of productivity change over time with regard
to the specific inputs has received an increasing interest in
DEA research. Different approaches have been developed
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to measure and decompose input-specific productivity
change over time. These can be broadly classified into two
main groups: Malmquist-type input-specific productivity
growth measures that are multiplicative in nature (Oude
Lansink and Ondersteijn 2006; Mahlberg et al. 2011) and
Luenberger-based indicators that have an additive structure
(Mahlberg and Sahoo 2011; Chang et al. 2012; Skevas and
Oude Lansink 2014; Mahlberg and Luptacik 2014; Kapelko
et al. 2015a; Luptacik and Mahlberg 2016). Compared to
the studies on input-specific productivity and efficiency
change over time, the analysis of input-specific efficiency at
a specific point in time is a subject of a longer tradition in
DEA literature (see, e.g., Färe et al. 1994; Oude Lansink
and Silva 2003; D’Haese et al. 2009).

In spite of the variety of methods being developed to
measure input-specific productivity growth, as we will show
in this paper, all of them are directly or indirectly founded
on the input-oriented weighted additive model that was first
introduced by Lovell and Pastor (1995). Moreover, several
problems can be highlighted with existing input-specific
productivity models, which motivate the need to develop a
new method. One important shortcoming of existing
approaches is related to the determination of the targets by
the furthest efficient projection to the assessed decision
making unit (DMU). Hence, the targets created by these
approaches are not easily achievable by firms. Other pro-
blems refer to the cross-period evaluations in the estimation
of productivity change in which the projections onto the
weekly efficient frontier are undertaken and the incon-
sistency occurs when the least distance to the frontier is
determined for units that remain outside the technology and
the furthest distance for units located within the technology.
In this paper we propose a new method of the measurement
of input-specific productivity change over time in the DEA
framework that overcomes the disadvantages of existing
approaches. The proposed method is based on the Principle
of Least Action (Aparicio et al. 2014) and is related to the
notion of least distance and the determination of closest
efficient targets (Briec 1998; Coelli 1998; Joro et al. 1998;
Gonzalez and Alvarez 2001; Portela et al. 2003; Aparicio
et al. 2007; Aparicio and Pastor 2013, 2014; Fukuyama
et al. 2014a, b). The general idea behind the Principle of
Least Action in efficiency analysis is that by assuming
closest targets inefficient DMUs can achieve technical
efficiency with a minimum amount of technical effort as
reflected by the change in inputs and outputs. Hence, it is
particularly useful when it is important for the DMU ana-
lyzed to achieve technical efficiency as soon as possible. In
addition, the method developed in this paper always pro-
jects to the strongly efficient frontier, hence allowing the
Pareto-efficiency (or Koopmans (1951) efficiency) to be
reached. The determination of Pareto-efficiency guarantees
that the benchmarked firms are compared with the best

performing firms. To the best of our knowledge, this article
is the first to develop and apply an input-specific pro-
ductivity change model derived from the estimation of the
shortest distance to the strongly efficient frontier. Our model
is operationalized in the form of an input-specific Luen-
berger productivity change indicator. In our approach,
input-specific productivity changes are summed up to form
an overall productivity change. Then, both input-specific
and overall productivity changes are decomposed into
indicators of efficiency change and technical change, which
allow us to discuss the sources of individual and overall
productivity changes.

As the empirical illustration of our proposed methodol-
ogy to measure input-specific productivity change, we use a
sample of dairy processing firms that operated in Poland
between 2003 and 2012. In our empirical application we
focus on one output (revenues), and three inputs (material
costs, employee costs and fixed assets) and their contribu-
tions towards overall productivity change.

The remainder of the paper proceeds as follows. Section
2 summarizes the existing approaches to the measurement
of input-specific productivity change pointing out some of
their drawbacks. Section 3 introduces our method to mea-
sure productivity change and its components with regard to
specific inputs. Section 4 presents the empirical illustration
of the method developed, including the description of the
data set and discussion of the results. Finally, Section 5
provides concluding comments.

2 Notation and review of the literature

In this section, we briefly review existing approaches where
the issue of measuring and decomposing input-specific
productivity change has been analyzed. Nevertheless, we
first need to introduce some notations.

Consider, as usual, that we have observed n decision
making units (DMUs) that use m inputs to produce
q outputs. These are denoted by (xj, yj), j= 1,…, n. It is
assumed that xj ¼ x1j; ¼ ; xmj

� � 2 Rm
þþ, j= 1,…, n, and

yj ¼ y1j; ¼ ; yqj
� � 2 Rq

þ, j= 1,…, n. The relative efficiency
of each DMU0 in the sample is assessed with reference to
the so-called production possibility set T= {(x, y)|x can
produce y}, which can be empirically constructed from
n observations by assuming several postulates (see Banker
et al. 1984). If, in particular, Constant Returns to
Scale (CRS) is assumed, then T can be characterized as
follows:

T ¼ x; yð Þ 2 Rmþs
þ xj �

Xn
j¼1

λjxj; y �
Xn
j¼1

λjyj; λj � 0; j ¼ 1;¼ ; n

( )
:

ð1Þ
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The weakly efficient frontier of T is defined as
∂w Tð Þ :¼ x; yð Þ 2 T : x̂<x; ŷ>y ) x̂; ŷð Þ =2Tf g, while the
strongly efficient frontier is defined as ∂sðTÞ :¼ ðx; yÞ2f
T : x̂ � x; ŷ � y; ðx̂; ŷÞ≠ ðx; yÞ ) ðx̂; ŷÞ =2T}. In words,
∂s(T) is the set of all the non-dominated points
of T.

Regarding the measure of technical efficiency, we may
find two different approaches to assess the technical perfor-
mance of DMUs in DEA literature. On the one hand, several
measures compare the actual performance of each evaluated
DMU, (x′, y′), with respect to the points belonging to the
weakly efficient frontier (e.g., radial measures (Charnes et al.
1978; Banker et al. 1984) and directional distance functions
(Chambers et al. 1996, 1998)). In contrast, some measures
compare each unit with respect to the strongly efficient
frontier (e.g., the Range Adjusted Measure (Cooper et al.
1999) and the Enhanced Russell Graph (Pastor et al. 1999;
Tone 2001)). In this paper, we follow this second line of
research, measuring the distance from a point to the frontier
of a technology by resorting to the strongly efficient frontier
instead of the weakly efficient frontier.

Another interesting issue, when efficiency is to be mea-
sured, is orientation. In most empirical applications, tech-
nical efficiency is measured either in input- or in output-
orientation, and it has to do with the variables that are most
easily controlled and changed by the DMU. The choice
between the two also depends on the interests and objec-
tives of the decision maker. This paper focuses on input-
orientation since we are interested in estimating input-
specific productivity changes. So, the new approach will be
useful in contexts where a consistent behavior with respect
to input-orientation makes sense. In order to implement this
approach, introducing the input requirement set is useful. In
this sense, for each output vector y, let L(y) be the set of
inputs that may produce y. Formally, L(y)= {x:(x, y)∈T}. In
the same manner as for T, we can define the weakly efficient
frontier and the strongly efficient frontier in the input-
oriented framework.

∂w L yð Þð Þ :¼ x 2 L yð Þ : x̂<x ) x̂ =2 L yð Þf g: ð2Þ

∂s L yð Þð Þ :¼ x 2 L yð Þ : x̂ � x; x̂≠ x ) x̂ =2 L yð Þf g: ð3Þ

Now, we turn to the definition of the input-oriented
weighted additive model. Weighted additive models (WA)
were firstly introduced by Lovell and Pastor (1995). In
input and output oriented versions of the WA models, the
objective function is restricted in a way that only input or
output slacks are maximized. In the case of the input-
oriented weighted additive model, the corresponding mea-
sure is calculated by the following optimization

program.

WAI x0; y0ð Þ ¼ Max
Pm
i¼1

wis�i

s:t: Pn
j¼1

λjxij þ s�i � xi0; i ¼ 1; ¼ ;m

�Pn
j¼1

λjyrj � �yr0; r ¼ 1; ¼ ; q;

s�i � 0; i ¼ 1; ¼ ;m

λj � 0; j ¼ 1; ¼ ; n

ð4Þ

where w1; :::;wmð Þ 2 Rm
þþ are weights representing the

relative importance of unit inputs, (λ1,…, λn) the usual
intensity variables and s�1 ; ¼ ; s�m

� �
the input slacks.

Proposition 1 Let x0 ∈ L(y0) and let (s−*, λ*) be an optimal
solution of (4), then

Pn
j¼1 λ

�
j xij þ s��

i ¼ xi0; i= 1,…,m.

Proof Trivial. ■
In DEA, the technical inefficiency assessment of

each observed unit (x0, y0) is obtained as the result of its
comparison with a dominating projection point on the
frontier of the input requirement set. The coordinates
of this projection will be the targets for (x0, y0). Regarding
the input-oriented weighted additive model, given an
optimal solution of (4), (s−*, λ*), the targets are defined
as x�i0 ¼ xi0 � s��

i , i= 1,…,m, which coincide withPn
j¼1 λ

�
j xij for i= 1,…,m by Proposition 1. Next, we

show a property related to the targets derived from the
input-oriented weighted additive model. The following
proposition establishes that the targets generated from (4)
are always Pareto-Koopmans efficient points of L(y0).

Proposition 2 Let x0 ∈ L(y0) and let (s−*, λ*) be an optimal
solution of (4). Then x�10; ¼ ; x�m0

� � 2 ∂s L y0ð Þð Þ.
Proof See Lovell and Pastor (1995). ■

As a direct implication of Propositions 1 and 2, the input-
oriented weighted additive model, specifically expression
(4), may be equivalently rewritten through the following
‘compact’ formulation:

WAI x0; y0ð Þ ¼ Max
Pm
i¼1

wis�i : x10 � s�1 ; ¼ ; xm0 � s�m
� � 2 ∂s

�

L y0ð Þð Þ; s�i � 0; i ¼ 1; ¼ ;m

�
ð5Þ

Before going on, it is interesting to note that probably the
main property that characterizes the weighted additive models
is the ability of detecting Pareto-Koopmans efficiency, in this
case in the input space, something that does not happen with
radial measures or directional distance functions.
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Proposition 3 x0 ∈ ∂s(L(y0))⇔WAI(x0, y0)= 0.

Proof See Lovell and Pastor (1995). ■
Turning to efficiency and productivity measurement with

reference to the potential for input-specific reductions, differ-
ent approaches that can be found to measure and decompose
input-specific productivity change over time, resort to a ver-
sion of the input-oriented weighted additive model, although
the different authors invoke the name of other measures1. In
particular, Oude Lansink and Ondersteijn (2006, p. 127)
resorted to the Russell input measure (Färe et al. 1985)
in the context of two inputs (energy and other inputs) and
one output. Applying the well-known change of variables
s�i ¼ xi0 � θixi0, i= 1, 2, we get that the Russell input mea-
sure coincides with one minus the inefficiency of the input-
oriented weighted additive model with specific weights wi= 1/
2xi0, i= 1, 2. It is also worth mentioning that in the Oude
Lansink and Ondersteijn approach a Malmquist productivity
index was utilized to estimate productivity change.

On the other hand, Mahlberg and Sahoo (2011) resorted
to an input-oriented version of the directional slacks-based
measure of inefficiency by Fukuyama and Weber (2009),
also called directional Russell measure of technical ineffi-
ciency, in order to analyze the eco-productivity performance
behavior of 22 OECD countries during the period
1995–2004. However, Pastor and Aparicio (2010) had
already shown that the directional slacks-based measure is
equivalent to a weighted additive measure. Therefore, once
more model (4) applies with particular weights wi= 1/mxi0,
i= 1,…,m. Additionally, in the paper of Mahlberg and
Sahoo (2011), a Luenberger indicator and its corresponding
input-specific components were developed.

Later, Chang et al. (2012) used the following model for
disaggregating the sources of bank productivity growth in
China.

Max 1
m

Pm
i¼1

βi

s:t: Pn
j¼1

λjxij � xi0 1� βið Þ; i ¼ 1; ¼ ;m

�Pn
j¼1

λjyrj � �yr0; r ¼ 1; ¼ ; q

βi � 0; i ¼ 1; ¼ ;m

λj � 0; j ¼ 1; ¼ ; n:

ð6Þ

where βi, i= 1,…,m, represents the proportion in which
each input must be reduced to reach the frontier of the
production possibility set.

Considering the change of variables s�i ¼ βixi0, i= 1,…,
m, we get that model (6) is equivalent to an input-oriented
weighted additive model with weights wi= 1/mxi0, i= 1,…,
m. Chang et al. (2012) also utilized a Luenberger indicator
to measure productivity change over time as Mahlberg and
Sahoo (2011).

Additionally, the works by Skevas and Oude Lansink
(2014) and Kapelko et al. (2015a) used a similar model to
(6), with the difference in the objective function (the usage
of an average versus a total) and in the presentation of the
constraint for inputs. The main difference between Skevas
and Oude Lansink (2014) and Kapelko et al. (2015a) is that
Skevas and Oude Lansink (2014) assumed weak dis-
posability of some inputs and outputs, and in Kapelko et al.
(2015a) the strong disposability assumption was main-
tained. In these two last papers, gi= xi0 for all i= 1,…,m in
their corresponding empirical applications.

As we have just shown, the approaches devoted to
decompose productivity change into its input-specific
sources were all based on an input-oriented version of the
weighted additive model. It is worth mentioning that most
of them additionally resorted to the Luenberger indicator
and an additive decomposition instead of using a Malmquist
index and a multiplicative approach.

The foregoing approaches have certain disadvantages in
a practical context which the technical inefficiency measure
we put forward in this paper overcomes. The key drawbacks
of the traditional input-oriented additive model applied to
this framework are as follows.

2.1 Furthest targets

Model (4) determines the furthest targets from the assessed
unit (x0, y0) to the strongly efficient frontier of L(y0), since the
objective function maximizes the (weighted) sum of slacksPm

i¼1 wis�i and, at the optimum, s��
i ¼ xi0 �

Pn
j¼1 λ

�
j xij ¼

xi0 � x�i0 � 0 for all i= 1,…,m by Proposition 1. In contrast,
the problem of deriving the closest projection has been one of
the relevant issues in recent DEA literature (see, e.g., Briec
1998; Joro et al. 1998; Coelli 1998; Gonzalez and Alvarez
2001; Portela et al. 2003; Aparicio et al. 2007; Cook and
Seiford 2009; Ando et al. 2012; Aparicio and Pastor 2013;
Aparicio et al. 2014; Fukuyama et al. 2014a, b, among others).

2.2 Different philosophies are applied outside and within
the technology

For the estimation of productivity change, in the case of the
cross-period evaluation when a unit xtþ1

0 ; ytþ1
0

� �
under

assessment is outside the technology set of period t models
with the non-negativity constraints for slacks s�i � 0; i= 1,
…,m, (e.g. (4)) yield no feasible solutions (see Mahlberg
and Sahoo 2011). So, it is necessary to change the non-

1 Input-oriented radial models search for equiproportional reductions
in all the inputs. In this way, these models are not prepared
to allow the decomposition of the “global” productivity change into the
different effects of inputs on this change. This is probably the reason
why the previous literature devoted to input-specific productivity did
not resort to radial models to deal with input-specific productivity
change.
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negativity constraints by s�i � 0; i= 1,…,m, as it is shown
in the following model.

WAt
I xtþ1

0 ; ytþ1
0

� � ¼ Max
Pm
i¼1

wis�i

s:t:

Pn
j¼1

λjxtij þ s�i � xtþ1
i0 ; i ¼ 1; ¼ ;m

�Pn
j¼1

λjytrj � �ytþ1
r0 ; r ¼ 1; ¼ ; q

s�i � 0; i ¼ 1; ¼ ;m

λj � 0; j ¼ 1; ¼ ; n:

ð7Þ

Note that (7) is equivalent to �Min �Pm
i¼1 wis�i

� �
sub-

ject to the same constraints as in (7). So, finally, model (7)
can be equivalently calculated by (8).

WA : It xtþ1
0 ; ytþ1

0

� � ¼ �Min
Pm
i¼1

wih�i

s:t:

Pn
j¼1

λjxtij � h�i � xtþ1
i0 ; i ¼ 1; ¼ ;m

�Pn
j¼1

λjytrj � �ytþ1
r0 ; r ¼ 1; ¼ ; q

h�i � 0; i ¼ 1; ¼ ;m

λj � 0; j ¼ 1; ¼ ; n;

ð8Þ

where h�i ¼ �s�i � 0, i= 1,…,m. Model (8) minimizesPm
i¼1 wih�i with h�i � 0; i= 1,…,m, therefore searching for

slacks as small as possible and yielding the closest targets
xtþ1�
i0 ¼ xtþ1

i0 þ h�i ; i= 1,…,m, for xtþ1
0 . Therefore, the usual

measures for estimating input-specific productivity change
resort to the determination of the least distance to the
frontier of the reference technology for units that remain
outside and the estimation of furthest targets in the case of
units located within technology, something that may be
seen as an inconsistency.

2.3 Projections onto the weakly efficient frontier

In Fig. 1, we graphically illustrate both the usual geometry of
the input requirement set and the subsets of its frontier. The
bold solid line corresponds to the strongly efficient frontier,
consisting of two segments, AB and BC. The weakly efficient
frontier corresponds to the union between the strongly effi-
cient frontier and the dashed lines that appear in the figure.

As we mentioned before, the most characteristic property
of the input-oriented weighted additive model is the possi-
bility of signaling Pareto-Koopmans efficiency in the input
space, in contrast to the input-oriented radial model or the

directional input distance function. However, when a model
of these characteristics is utilized in order to estimate pro-
ductivity change, a problem arises for the cross-period eva-
luations. In these situations, it can be shown that the subset of
the corresponding frontier used to calculate the distance
between the assessed unit and the technology no longer
matches the strongly efficient frontier ∂s L y0ð Þð Þ. We will go
on to illustrate this with a graphical example (see Fig. 1). For
this example, we assume that wi= 1/mxi0, i= 1,…,m. In
Fig. 1, if we evaluate unit A observed in period t+1, denoted
as A(t+1), with respect to the technology in t we have to solve
model (8), obtaining h��

1 ¼ 0:5 and h��
2 ¼ 0. These slacks

yield the targets 0:5þ h��
1 ¼ 0:5þ 0:5 ¼ 1 for the first input

and 5þ h��
2 ¼ 5þ 0 ¼ 5 for the second input, matching the

components of (non-observed) point D in the figure. As can
be noted, point D does not belong to the strongly efficient
frontier in period t since it is dominated by unit A(t) in the
sense of Pareto. This is an important problem in contexts
where slacks are viewed as significant in revealing the inef-
ficiency behavior of firms, since the distance to the strongly
efficient frontier could be incorrectly estimated.

3 A new version of the input-oriented weighted
additive model based on the principle of least action

In this section, we introduce a new version of the traditional
input-oriented weighted additive measure in order to avoid
some drawbacks, highlighted above, of the existing
approaches to estimate input-specific productivity changes.
To do that, we base our model on the Principle of Least
Action (Aparicio et al. 2014), which is intimately related to
the notion of least distance. The model also allows for the

Fig. 1 Example for the input-oriented weighted additive model not
reaching strongly efficient frontier for cross-period evaluations
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determination of strongly efficient targets. Following the
literature, the new model will use wi= 1/mxi0, i= 1,…,m as
input weights, being xi0 the input i of the assessed unit.
Additionally, we will develop all the necessary theory under
the assumption of using one output and several inputs (e.g.
operating revenues vs. capital, labor and materials). In fact,
this was the framework adopted by most published appli-
cations, see, e.g., Oude Lansink and Ondersteijn (2006),
Mahlberg and Sahoo (2011)2, Skevas and Oude Lansink
(2014) and Kapelko et al. (2015a).

Now, we turn to the presentation of main results and
models. First of all, let us rewrite model (4) under the
hypothesis of q= 1 (one output) and wi= 1/mxi0, ∀i= 1,…,
m. This will be model (9). Moreover, let us show the dual
linear program of (9). By duality, we know that the optimal
values of both models are the same.

WAI x0; y0ð Þ ¼ Max
Pm
i¼1

s�i
mxi0

s:t:Pn
j¼1

λjxij þ s�i � xi0; i ¼ 1; ¼ ;m

�Pn
j¼1

λjyj � �y0;

s�i � 0; i ¼ 1; ¼ ;m

λj � 0; j ¼ 1; ¼ ; n;

ð9Þ

WAI x0; y0ð Þ ¼ Min
Pm
i¼1

νixi0 � μy0

s:t:

Pm
i¼1

νixij � μyj � 0; j ¼ 1; ¼ ; n

νi � 1
mxi0

; i ¼ 1; ¼ ;m

νi � 0; i ¼ 1; ¼ ;m

μ � 0;

ð10Þ

where νi, i= 1,…,m, and μ are the multipliers of the
model.

Before going on, we need to prove that for any optimal
solution of (9), we have that the inequality constraint
�Pn

j¼1 λjyj � �y0 is binding.

Proposition 4 Let y0> 0 and let (s−*, λ*) be an optimal
solution of (9), then �Pn

j¼1 λ
�
j yj ¼ �y0:

Proof Let us assume that �Pn
j¼1 λ

�
j yj<� y0. Let us define

y�0 :¼
Pn

j¼1 λ
�
j yj. In this way, y�0>y0 , y0=y�0<1. Under

the assumption of CRS, see expression (1), y0
y�0

x�0; y
�
0

� � 2 T
since x�0; y

�
0

� � 2 T , where x�0 ¼ x�10; ¼ ; x�m0
� �

with

x�i0 ¼ xi0 � s��
i ¼Pn

j¼1 λ
�
j xij, i= 1,…,m, by Proposition 1.

By the definition of L(y), we have that y0y�0
x�0 2 L y0ð Þ. On the

other hand, if x�i0 ≠ 0 then y0
y�0
x�i0< x�i0 and, otherwise,

y0
y�0
x�i0 ¼ x�i0. Nevertheless, ∃i′= 1,…,m such that x�i00 ≠ 0. If

not, λ�j ¼ 0 for all j= 1,…, n since we assumed that xij > 0,
∀i, j. And then y�0 ¼

Pn
j¼1 λ

�
j yj ¼ 0. However, y�0>y0 >0 by

hypothesis. In this manner, x�0 is strictly dominated by y0
y�0
x�0,

which is a contradiction by Proposition 2. ■
Next we establish the main result of the paper. In parti-

cular, Theorem 1 characterizes the points belonging to the
strongly efficient frontier of L(y).

Theorem 1 Let y0> 0. The strongly efficient frontier of
L(y0) can be characterized as follows.

∂s L y0ð Þð Þ ¼ x 2 Rm :

xi ¼
Pn
j¼1

λjxij; i ¼ 1; ¼ ;m ð11:1Þ

Pn
j¼1

λjyj ¼ y0; ð11:2Þ

Pm
i¼1

νixij � μyj � dj ¼ 0; j ¼ 1; ¼ ; n ð11:3Þ

νi>0; i ¼ 1; ¼ ;m ð11:4Þ

λjdj ¼ 0; j ¼ 1; ¼ ; n ð11:5Þ

λj � 0; j ¼ 1; ¼ ; n ð11:6Þ

μ � 0; ð11:7Þ

dj � 0; j ¼ 1; ¼ ; n ð11:8Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð11Þ

Proof (i) Let λ; ν; μ; d
� �

be a vector that satisfies con-
straints 11.2–11.8. From this solution, it is possible to
generate x as xi :¼

Pn
j¼1 λjxij and y as y :¼Pn

j¼1 λjyj ¼ y0,
where the last equality is true by (11.2). Let us note that, by
(1), x; yð Þ 2 T and, consequently, x 2 L y0ð Þ. Let us now
assume that ∃x′ ∈ L(y0) such that x0 � x with x0 ≠ x. We want
to arrive at a contradiction. By (11.3) and (11.8), we have
that

Pm
i¼1 νixij � μyj � 0 for all j= 1,…, n. And, by the

definition of T in (1), we know that
Pm

i¼1 νixi � μy � 0 for
all (x, y) ∈ T. This implies that

Pm
i¼1 νixi � μy0 � 0 for all

(x, y0)∈T. In this way,
Pm

i¼1 νix′i � μy0 � 0 since (x′, y0) ∈ T

because x′∈ L(y0). On the other hand,
Pm

i¼1 νixi � μy0 ¼Pm
i¼1 νixi � μ y ¼Pm

i¼1 νi
Pn

j¼1 λjxij
� 	

� μ
Pn

j¼1 λjyj
� 	

¼

Pn
j¼1 λj

Xm
i¼1

νixij � μyj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼dj ½by ð11:3Þ�

¼Pn
j¼1λjdj ¼ 0 by (11.5).

Finally, we have that
Pm

i¼1 νix′i � μy0<
Pm

i¼1 νixi � μy0 ¼
0 since νi> 0 (11.4) and x0 � x with x0 ≠ x. However, we
proved that, on the one hand,

Pm
i¼1 νix′i � μy0 � 0 and, on

the other hand,
Pm

i¼1 νixi � μy0<0. This is the contradiction
that we were seeking. Therefore, x 2 ∂s L y0ð Þð Þ.

2 These authors really use one good output and one bad output.
Nevertheless, they mathematically deal with the bad output as an input
in their approach.
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(ii) Let x 2 ∂s L y0ð Þð Þ with y0> 0. Then x 2 Rm
þþ by (1),

the definition of L(y0), xij> 0, ∀i, j and yj> 0, ∀j. Then we
can solve (9) for x0 ¼ x and, by Proposition 3, we know that
WAI x; y0ð Þ ¼ 0. Therefore, an optimal solution s�; λ

� �
with

s� ¼ 0 for (9) exists that satisfies, in particular, the
constraints

Pn
j¼1 λjxij þ s�i � xi; i= 1,…,m, and

�Pn
j¼1 λjyj � �y0. By Proposition 1 and s� ¼ 0, we have

that xi ¼
Pn

j¼1 λjxij [(11.1)]. Moreover, λj � 0; 8j [(11.6)].
Additionally, by Proposition 4,

Pn
j¼1 λjyj ¼ y0 [(11.2)]. By

duality, there exists an optimal solution for (10) ν; μð Þ 2
Rm
þ ´Rþ [(11.7)] such that

Pm
i¼1 νixij � μyj � 0; j= 1,…, n,

and νi � 1=mxi0; i= 1,…,m [(11.4)]. Defining
dj :¼

Pm
i¼1 νixij � μyj � 0, j= 1,…, n, (11.3) and (11.8)]

are satisfied. Finally, regarding (11.5), by the Complemen-
tarity Theorem in Linear Programming we have that λjdj ¼
0; j= 1,…, n, i.e. (11.5) holds. Therefore, all the constraints
in (11) are satisfied. ■

Once the strongly efficient frontier of the input require-
ment set has been characterized, the introduction of the new
version of the input-oriented weighted additive model is
possible. It will be based on the Principle of Least Action
(PLA). Additionally, we wish to slightly change the nota-
tion used in order to accommodate the possibility of cross-
evaluation. In this sense, the compact format of the new
measure will be as follows.

WAPLA
I;t xtþ1

0 ; ytþ1
0

� � ¼
Min

Pm
i¼1

s�ij j
mxtþ1

i0
: xtþ1

10 � s�1 ; ¼ ; xtþ1
m0 � s�m

� � 2 ∂s Lt ytþ1
0

� �� �� �
:

ð12Þ

If we compare (12) vs. (5), some significant differences
can be found. First, “Max” has been substituted by ‘Min’.
Second, the slacks are free variables in (12) and non-negative
in (5). Third, the objective function uses the absolute value
function to aggregate slacks. Obviously, WAPLA

I x0; y0ð Þ � 0,
being equal to zero if and only if x0 ∈ ∂s(L(y0)).

It is worth mentioning that our approach does not suffer
from infeasibilities since it is based on calculating a math-
ematical distance (a weighted ‘1 distance) to the strongly
efficient frontier (a non-empty set). Therefore, our model
always reaches a feasible solution in contrast to the more
usual approaches: radial and directional models (Briec and
Kerstens 2009).

Nevertheless, (12) is not a standard mathematical pro-
gram, making its implementation difficult in practice. In this
sense, the first step to write an equivalent standard “linear”
program consists of applying Theorem 1. Additionally, and
before applying this result, note that constraint (11.5),
λjdj= 0 for all j= 1,…, n, can be rewritten as dj ≤Mbj,
j= 1,…, n, λj ≤M(1−bj), j= 1,…, n, and bj ∈ {0,1},
j= 1,…, n, with M being a large enough positive number
(see, e.g., Aparicio et al. 2007). Moreover, following the
proof of Theorem 1 and assuming that the evaluated input
vector has strictly positive components, we may change

constraint (11.4) by νi ≥ 1/mxi0, i= 1,…,m. In this manner,
(12) can be rewritten as program (13)3.

WAPLA
I;t xtþ1

i0 ; ytþ1
0

� � ¼ Min
Pm
i¼1

s�ij j
mxtþ1

i0
ð13:1Þ

s:t: Pn
j¼1

λjxtij þ s�i ¼ xtþ1
i0 ; i ¼ 1; ¼ ;m ð13:2Þ

Pn
j¼1

λjytj ¼ ytþ1
0 ; ð13:3Þ

Pm
i¼1

νixtij � μytj � dj ¼ 0; j ¼ 1; ¼ ; n ð13:4Þ

νi � 1=mxtþ1
i0 ; i ¼ 1; ¼ ;m ð13:5Þ

dj � Mbj; j ¼ 1; ¼ ; n ð13:6Þ
λj � M 1� bj

� �
; j ¼ 1; ¼ ; n ð13:7Þ

bj 2 0; 1f g; j ¼ 1; ¼ ; n ð13:8Þ
λj; νi; dj � 0; 8i; j ð13:9Þ
μ � 0 ð13:10Þ

ð13Þ

where dj is the slack associated with the inequalityPm
i¼1 νix

t
ij � μytj � 0 and bj is a binary variable that relates

dj and λj.
The aim of constraints (13.6) and (13.7) is to force that dj

and λj do not take strictly positive values simultaneously for
every j= 1,…, n. These expressions involve a big positive
M, and it is known that it could produce numeric problems
of computing in some cases, especially when the value of
the big M is a priori difficult to be fixed. To avoid this
potential problem, in the computational part of this paper,
we have implemented these expressions using a Special
Ordered Set (SOS). SOS is a way to specify the number of
nonzero solution values among a set of variables without
the need of resorting to fixing a big M. The optimizers

3 Model (13) assumes the production of just one output under
Constant Returns to Scale. In practice, this is not a great limitation
since, on the one hand, most applications devoted to input-specific
productivity change utilized only one output and, on the other hand,
Constant Returns to Scale is the correct assumption for determining
productivity regardless of the actual returns to scale (see, e.g., Kapelko
et al. 2015a). However, any deviation of these assumptions implies
that our approach, based on the models by Aparicio et al. (2007), does
not work correctly. Aparicio et al. (2016) have studied in detail least
distance models for oriented frameworks, proposing an innovative and
general methodology that always correctly performs based upon Bi-
Level Linear Programming and moving away, therefore, from the
well-known Aparicio et al. (2007) approach. Moreover, our model is
in line with the original idea of input-specific productivity change that
is rooted in the growth accounting literature (cf. Solow 1957). Growth
accounting measures the contribution of different production factors
(such as capital, labor and materials) to the growth of total output and
indirectly computes the change of total factor productivity (or
technical progress). It is based on the traditional production function
relating the production of a single output to multiple inputs assuming
Constant Returns to Scale.
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usually achieve it by using special branching strategies.
Traditionally, SOS was used with discrete and integer
variables, but modern optimizers like CPLEX have also
extended it to continuous variables. Thus, the goals marked
by constraints (13.6) and (13.7) are guaranteed.

Additionally, program (13) determines the least distance
between xtþ1

i0 and ∂s Lt ytþ1
0

� �� �
. However, it cannot be

considered a distance function, as for example the direc-
tional input distance function because the optimal value of
the objective function is always non-negative regardless of
whether the assessed unit is inside or outside the reference
technology. To define a suitable distance function from
model (13), we first need to resort to the Shephard input
distance function or the input directional distance function,
in order to determine whether xtþ1

i0 belongs to Lt ytþ1
0

� �
or

not. In this way, from the optimal value and an optimal
solution of (13) we can derive the following additive-type
distance function.

Using a different notation, the distance function
in (14) may be expressed as DI;t x

tþ1
i0 ; ytþ1

0

� � ¼Pm
i¼1 δi;t

xtþ1
i0 ; ytþ1

0

� �
, where δi;t xtþ1

i0 ; ytþ1
0

� �
equals

s��
ij j

mxtþ1
i0
, ∀i= 1,…,m,

or � s��
ij j

mxtþ1
i0
, ∀i= 1,…,m, depending if xtþ1

i0 2 Lt ytþ1
0

� �
, or not.

Now, we are able to measure productivity change by
defining a Luenberger-type productivity indicator4 and
decompose it into its input-specific components. The i-th
productivity change for unit 0 is measured by means of:

TFPCHi0 t; t þ 1ð Þ ¼

1
2 δi;t xti0; y

t
0

� �� δi;t x
tþ1
i0 ; ytþ1

0

� �� ��
þ δi;tþ1 xti0; y

t
0

� �� δi;tþ1 xtþ1
i0 ; ytþ1

0

� �� ��
:

ð15Þ

This input-specific Luenberger indicator may then be
decomposed into the input-specific technical efficiency

change (EFFCH) and the input-specific frontier shift
(TECHCH).

EFFCHi0 t; t þ 1ð Þ ¼ δi;t xti0; y
t
0

� �� δi;tþ1 xtþ1
i0 ; ytþ1

0

� �
;

TECHCHi0 t; t þ 1ð Þ ¼ 1
2 δi;tþ1 xtþ1

i0 ; ytþ1
0

� �� δi;t xtþ1
i0 ; ytþ1

0

� �� ��
þ δi;tþ1 xti0; y

t
0

� �� δi;t xti0; y
t
0

� �� ��
:

ð16Þ

Finally, we introduce the expressions associated with
overall productivity change and its components:

TFPCH0 t; t þ 1ð Þ ¼ Pm
i¼1

TFPCHi0 t; t þ 1ð Þ;

EFFCH0 t; t þ 1ð Þ ¼Pm
i¼1

EFFCHi0 t; t þ 1ð Þ;

TECHCH0 t; t þ 1ð Þ ¼Pm
i¼1

TECHCHi0 t; t þ 1ð Þ:

ð17Þ

The following simple illustrative example shows how the
new approach based on PLA works. The example dataset
presented in Table 1 consists of the three units A, B, and C
observed in the periods t and t+1.

For illustrative purposes, we compare the results from
our approach with the model from Mahlberg and Sahoo
(2011) which we consider as traditional. We explain the
difference between the outcomes of both models by taking
the example of unit C as presented in Fig. 2 and Fig. 3.

Both figures show the input requirement sets. The input
levels are normalized by the output levels meaning that the
presented data are equivalent to the inverted partial pro-
ductivities of the two inputs. The bold solid lines A(t) to B
(t) and A(t+1) to C(t+1) correspond to the strongly efficient
frontiers in t and t+1, respectively. Relative to the frontier in

DI;t x
tþ1
i0 ; ytþ1

0

� �

¼

Pm
i¼1

s��
ij j

mxtþ1
i0

¼ s��
1j j

mxtþ1
10

þ ¼ þ s��
mj j

mxtþ1
m0

; if xtþ1
i0 2 Lt ytþ1

0

� �
:

�Pm
i¼1

s��
ij j

mxtþ1
i0

¼ � s��
1j j

mxtþ1
10

� �
þ ¼ þ � s��

mj j
mxtþ1

m0

� �
; Otherwise

8>>><
>>>:

ð14Þ

Table 1 Illustrative example

Period t Period t+1

Unit x1 x2 y x1 x2 y

A 5 13 12 9 9 22

B 17 15 26 15 14 20

C 16 26 26 8 23 26
4 The Luenberger indicator utilized in this section is not the standard
indicator but an input-specific version that depends on δi;h x p

i0; y
p
0

� �
.
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t unit C(t) is inefficient and unit C(t+1) super-efficient, and
relative to frontier in t+1 unit C(t) is inefficient and unit
C(t+1) efficient. Hence, we observe a clear efficiency pro-
gress. Moreover, the frontier shifts to the left and down-
wards indicating a clear technical progress. Finally, unit
C(t+1) is clearly in the west of and slightly in the south of
C(t). Based on this, we expect productivity gain in terms of
both inputs where the gain with respect to input 1 clearly
exceeds that with respect to input 2. For producing one unit
of output a much lesser amount of input 1 is used than of
input 2 in period 2 compared to period 1.

The traditional approach projects unit C(t) strictly verti-
cally to the point C*(t) on the frontier in t as Fig. 2 shows.
Moreover, it combines horizontal and vertical directions
and projects unit C(t) to A(t+1) on the frontier in t+1 which
is the furthest point. Finally, this approach projects unit

C(t+1) to A(t) on the frontier in t which is the furthest point,
again. As opposed to the traditional model, the new
approach based on PLA projects unit C(t) horizontally to
the point C*(t) on the frontier in t as Fig. 3 shows. Fur-
thermore, it projects the unit C(t) to the point C(t+1) on the
frontier in t+1. Lastly, this approach projects C(t+1) to the
point A(t) at the frontier in t.

Obviously, the projections are quite diverse which results
in different scores for productivity change and its compo-
nents as can be seen in Table 2. The last column shows the
productivity change scores. According to the traditional
approach, the progress with respect to input 1 is smaller
than with respect to input 2 which is contrary to what we
expect based on the foregoing discussion. Contrary, the
results from the new approach clearly show greater progress
in terms of input 1 than in terms of input 2 which is in line
with our above discussion and much more plausible. The
overall productivity progress is greater according to the
traditional approach which might indicate an over-
estimation. For technical change we observe a similar
situation which is reflected by the results in Table 2.

4 An empirical application

In this section, we describe how our model can be used to
estimate productivity growth in the manufacturing sector of
dairy products in Poland, to illustrate the applicability of our
proposed approach. We use our model to estimate drivers of
productivity growth in this sector over the 2003–2012 period.

4.1 The data

The data used in this study are drawn from the AMADEUS
database, which is a dataset containing financial accounts of
European companies. The sample includes firms belonging
to the dairy processing industry (NACE Rev. 2 code 10.5).

Fig. 2 Projections of the approach by Mahlberg and Sahoo (2011)

Fig. 3 Projections based on the principle of least action

Table 2 Input-specific productivity change for unit C of the
illustrative example dataset

Efficiency
change

Technical
change

Productivity
change

Input-specific productivity change based on Mahlberg and Sahoo
(2011)

Input 1 0.000 0.172 0.172

Input 2 0.171 0.119 0.290

Overall 0.171 0.291 0.462

Input-specific productivity change based on the Principle of Least
Action

Input 1 0.130 0.149 0.279

Input 2 0.000 0.085 0.085

Overall 0.130 0.234 0.364
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The dataset used for analysis is obtained by first removing
any firms with missing observations and then by removing
any outliers. To detect outliers, we follow Simar’s (2003)
proposal which is based on the application of the order-m
efficiencies of Cazals et al. (2002). The final data set is
unbalanced and consists of 1134 observations of dairy
processing firms in Poland for the 2003–2012 period.

One output and three inputs are distinguished in the
computation of input-specific productivity growth. Output
is proxied by the firms’ revenues taken directly from the
AMADEUS database. This variable is deflated to 2003
constant prices using the producer price index for the food
manufacturing industry. Inputs consist of employee costs,
material costs and fixed assets5, extracted directly from the
AMADEUS database, and further deflated using the labor
cost index in industry, the producer price index for non-
durable consumer goods and the producer price index for
investment goods, respectively.6 All aforementioned price
indices used to deflate the inputs and the output are sup-
ported by the Eurostat (2014) database. The inputs and
output are all measured in millions of Polish Zloty (PLN).
Table 3 provides the descriptive statistics of the data used in
the application for the studied period (2003–2012).

From Table 3 it can be seen that, on average, among
inputs, material costs have the largest values, followed by
fixed assets and employee costs. In addition, the standard
deviations of variables relative to their respective means are
relatively high, indicating that the firms in our sample differ
considerably in terms of size. This is especially the case for
fixed assets, for which standard deviation is approximately
four times larger than the mean.

4.2 Results

The computations of input-specific productivity changes
and their decomposition are undertaken for firms in the

sample for each pair of two consecutive years in the
2003–2012 period7, and then using these results we calcu-
late the arithmetic mean over the entire study period.
Table 4 presents these means when both the input-specific
Luenberger indicator proposed in this paper and the tradi-
tional input-specific Luenberger indicator of Mahlberg and
Sahoo (2011) (with directional vector for inputs equal to
actual values of inputs) are applied. The second and the
third column show efficiency change and technical change,
respectively. The last column presents productivity change,
which is equal to efficiency change plus technical change.
Hence, the values in the last column are the sums of the
respective rows. The rows show the input-specific effi-
ciency changes, input-specific technical changes, and input-
specific productivity changes. The values in the bottom row
indicate overall efficiency change, technical change and
productivity change (i.e., the respective column sums). For
productivity changes as well as efficiency changes and
technical changes, positive figures indicate progress and
negative regress, while a value equal to zero indicates that
there has been no effect. The last four rows in Table 4 report
the results of the Simar and Zelenyuk (2006) test (denoted
further as S-Z test) that assesses the differences between
indicators computed using both approaches. In addition,
Table 5 shows the correlations between both approaches.

Our analysis in Table 4 shows that for both approaches,
on average, the overall productivity growth rate is negative,
indicating productivity regress for Polish dairy manu-
facturing firms of −1.5% for the traditional approach and
−0.4% for the new approach. Furthermore, the results
for three inputs show that the decline in productivity is
attributed to less productive utilization of labor and fixed
assets in the case of the traditional approach, and of

Table 3 Descriptive statistics of the data of Polish dairy processing
firms, 2003–2012 (million PLN of 2003)

Variable Mean Standard
deviation

Minimum Maximum

Inputs

Employee costs 7.721 11.871 0.104 79.063

Material costs 138.790 244.815 6.268 2033.740

Fixed assets 56.266 227.777 1.168 3220.815

Outputs

Revenues 173.565 306.714 6.085 2195.317

5 Regarding fixed assets, model (13) may be adapted to short run
situations where some inputs cannot be altered by the decision maker
and, therefore, must be assumed fixed. To do this, it is enough to
remove the respective input slack from the objective function of (13).
Nevertheless, in our empirical application, we assume a long run
production function, where fixed inputs can be also modified. In fact,
in most studies on input-specific efficiency and productivity, fixed
inputs are considered as one of the inputs in empirical applications for
which efficiency and productivity are calculated (see, e.g., Chang et al.
2012; Skevas and Oude Lansink 2014).
6 In the related literature on efficiency and productivity in the food
manufacturing industry, it is common to use inputs and outputs
measured in monetary values as quantity data are often not available
(see, e.g., Doucouliagos and Hone 2001; Soboh et al. 2012; Kapelko
et al. 2015b, 2016). In our empirical application, we deflated the inputs
and the output in order to convert the nominal values to real input and
output measures. In this way, we avoided a bias due to inflation and
generated implicit quantity indexes as the ratio of the value to price
index.

7 The computation times of the new approach varied between 3 seconds
(for 2004/2005) and 12 seconds (for 2010/2011). The computations
were undertaken with a PC with an Intel Xeon Dual Core processor of
2.33 GHz, with 8.5 GB of RAM. The optimization software package
CPLEX v11.0 was used in computations. Additionally, the code can
be downloaded at http://deacode.blogspot.com.es/.
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materials and fixed assets for the new approach. The results
point also to positive input-specific productivity change for
labor as revealed by the new approach and no change in
productivity for materials as indicated by the traditional
approach.

Table 4 shows also that according to both approaches, on
average, the main driver of the decline in overall pro-
ductivity is an overall technical regress of Polish dairy firms
that amounts to −0.4% in the case of the new approach and
to −0.9% as revealed by the traditional approach. Therefore,
the performance of the best performers deteriorate, meaning
that the production frontier shifts downwards. This dete-
rioration comes from a clear technical regress in the use of
material in the case of the new approach, and in the use of
fixed assets in the case of the traditional method. In terms of
labor employment, both approaches report technical pro-
gress. In addition, the traditional approach finds no techni-
cal change for materials, and the new approach reports
slight technical progress for fixed assets. Interestingly, in
the case of traditional approach we find, on average, an
overall efficiency decrease of −0.6%, showing that the
underperformers do not get closer to the best performers,
while new approach indicates no change in efficiency. The
employment of labor is responsible for overall efficiency
decrease in the traditional approach. But the new approach

reveals that labor and fixed assets contributed negatively to
overall efficiency, while materials did so positively.

Overall, the results in Table 4 suggest that the magnitude
of change in indicators regarding all three inputs and overall
is very small. It also shows that there are significant dif-
ferences in results reported in both approaches as indicated
by the S-Z test. Moreover, while the average results of
overall indicators tell a similar story in both the traditional
and new approaches, the conclusions regarding the con-
tributions of individual inputs differ considerably between
both. It is further confirmed by the results of correlations in
Table 5 that highlight very low correlations between input-
specific productivity change, efficiency change and techni-
cal change of the two models used, but much larger between
overall indicators. This discrepancy of findings in the two
approaches arise from, among others: (1) the differences in
the philosophy followed to project units onto the frontier
(closest vs. furthest targets), and (2) the monotonicity with
respect to the projection of the assessed unit (the new
approach does not seek that the projection point dominates
the evaluated unit in the sense of Pareto).

In order to provide some interpretations of the findings
from the context of the dairy manufacturing industry in
Poland, we next analyze the input-specific and overall
productivity growth and its decomposition for the new
approach for different time periods. Figure 4 shows the
development of indicators for each pair of consecutive years
in the 2003–2012 period.

The figure shows that the magnitudes of changes of
indicators are similar for each input across all periods. It
also demonstrates with regard to overall indicators that the
beginning of the period analyzed (2003–2007) is char-
acterized by technical progress and productivity growth,
despite efficiency decline, while the second part of the
period analyzed (2008–2012) shows the general trends of
negative technical change and productivity change, and
positive efficiency change.8 It is worth noting that similar
findings regarding productivity change are reported, e.g., in
Jansik et al. (2014).

The beginning of this period is related to the Polish pre-
accession and accession to the European Union (EU). After
meeting the initial EU requirements, the sector experienced
substantial growth resulting from a broad stream of sub-
sidies, growth in exports, and inflow of foreign investments
as a significant source of innovations (Polish Information
and Foreign Investment Agency 2013). Therefore, it is not
surprising that dairy manufacturing firms in Poland made
advances regarding technology, as confirmed by our results
on technical progress. However, our findings for this period
also indicate the growth of the gap between efficient and

Table 4 Productivity change of three inputs and overall in the Polish
dairy processing firms (arithmetic means across periods 2003/
2004–2011/2012)

Efficiency
change

Technical
change

Productivity
change

Input-specific productivity change based on Mahlberg and Sahoo
(2011)

Employee costs −0.007 0.004 −0.003
Material costs 0.000 0.000 0.000

Fixed assets 0.001 −0.013 −0.012
Overall −0.006 −0.009 −0.015
Input-specific productivity change based on the principle of least
action

Employee costs −0.002 0.004 0.002

Material costs 0.005 −0.009 −0.004
Fixed assets −0.003 0.001 −0.002
Overall 0.000 −0.004 −0.004
S-Z statistics

Employee costs 122.685*** 78.811*** 57.626***

Material costs 190.516*** 192.642*** 152.802***

Fixed assets 101.177*** 140.586*** 94.595***

Overall 34.991*** 40.735*** 49.573***

***denotes significant differences between indicators based on
Mahlberg and Sahoo (2011) and on the Principle of Least Action at
the critical 1% level

8 In fact, when we compute average values of indicators for these two
sub-periods, we would find these trends exactly as described.
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Fig. 4 Evolution of productivity change of three inputs and overall in the Polish dairy processing firms based on the Principle of Least Action, for
consecutive periods 2003/2004–2011/2012

Table 5 Correlations between
indicators (across all periods
2003/2004–2011/2012)

Mahlberg and Sahoo (2011) Principle of least action

Efficiency change

Employee costs

Mahlberg and Sahoo (2011) 1.000 0.199

Principle of Least Action 0.199 1.000

Material costs

Mahlberg and Sahoo (2011) 1.000 0.112

Principle of Least Action 0.112 1.000

Fixed assets

Mahlberg and Sahoo (2011) 1.000 0.284

Principle of Least Action 0.284 1.000

Overall

Mahlberg and Sahoo (2011) 1.000 0.589

Principle of Least Action 0.589 1.000

Technical change

Employee costs

Mahlberg and Sahoo (2011) 1.000 0.493

Principle of Least Action 0.493 1.000

Material costs

Mahlberg and Sahoo (2011) 1.000 0.397

Principle of Least Action 0.397 1.000

Fixed assets

Mahlberg and Sahoo (2011) 1.000 0.316

Principle of Least Action 0.316 1.000

Overall

Mahlberg and Sahoo (2011) 1.000 0.622

Principle of Least Action 0.622 1.000

Productivity change

Employee costs

Mahlberg and Sahoo (2011) 1.000 0.460

Principle of Least Action 0.460 1.000

Material costs

Mahlberg and Sahoo (2011) 1.000 0.404

Principle of Least Action 0.404 1.000

Fixed assets

Mahlberg and Sahoo (2011) 1.000 0.461

Principle of Least Action 0.461 1.000

Overall

Mahlberg and Sahoo (2011) 1.000 0.793

Principle of Least Action 0.793 1.000
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inefficient firms as revealed by negative efficiency change.
This could indicate that the technical efficiency change of
most firms is slower than that of the frontier technology
advancement, that is, few dairy firms in our sample were
innovators, while many other firms failed to adapt to tech-
nological improvements that has shown as efficiency
decrease.

The findings for the second period covered in this study
can reflect the negative impact of the volatility of prices
experienced by the dairy manufacturing sector from 2008
till the end of 2010, when prices and producers’ incomes
decreased (European Commission 2012), as well as the
influence of the 2008 economic crisis. Although the sector
is known for being fairly insensitive to business fluctua-
tions, still the slight slowdown of production and decreased
turnover was observed for its constituting firms due to
economic crisis (Polish Information and Foreign Investment
Agency 2013). In addition, this period is characterized by a
certain switch in the demand towards ecofoods and pro-
health foods observed in Poland (Wrzesińska-Kowal and
Drabarczyk 2014). In particular, this last change could
cause the situations of some productive options (technolo-
gies) being no longer available for firms to exploit, which
could produce the results of technical regress observed in
this study9. We can expect that when dairy firms adjust to
new realities of consumer demand and make investments in
new technologies, technological progress should occur in
future periods. At the same time, however, our results for
this period show efficiency increase (with the exception of
2011/2012), therefore it is possible that the volatility of this
period has worked as a disciplining factor for firms that
allocated resources more efficiently and adjusted the usage
of inputs quickly enough. Finally, the decrease of efficiency
in 2011/2012 could be related to the decrease in the con-
sumption of food products along with milk and dairy pro-
ducts that was observed in 2011 and 2012 in Poland (Polish
Central Statistical Office 2013; Drożdż et al. 2014).

5 Conclusions

This study introduces a new input-oriented weighted addi-
tive model for estimating technical inefficiency based on the
Principle of Least Action, which is intimately related to the
notion of least distance. In addition, the model determines
strongly efficient targets. Using this model we develop a
Luenberger-type indicator of input-specific productivity
change and its decomposition into input-specific efficiency

change and input-specific technical change. The proposed
indicator has two advantages over existing input-specific
productivity measures. First, our model projects inefficient
firms to the strongly efficient frontier and therefore esti-
mates Pareto-Koopmans efficiency. Second, our model
suggests directions of efficiency and productivity
improvements that may be implemented within an organi-
zation with least effort.

We apply the new approach to data for Polish dairy
processing firms for the 2003–2012 period, and compare the
results with the existing input-specific productivity change
indicator. The study distinguishes three groups of inputs,
namely employment costs, material costs, and fixed assets,
and takes revenue as the only output. Our analysis reveals
that this sector went through a period of overall productivity
regress during the last decade, which was mainly caused by
overall technical regress. Nevertheless, the changes
observed are relatively low. While both the new approach
and the existing approach show similar findings regarding
overall productivity change and its components, consider-
able differences are found regarding contributions of spe-
cific inputs towards overall changes.

Based on these findings, the advantages of our proposed
method are obvious. Our approach provides insights about
the sources of productivity decline from the individual
inputs that cannot be offered by standard productivity
measures that capture productivity change for all inputs
simultaneously. It makes information about the potentials
for input-specific reduction available. In this way, it pro-
vides concrete hints to decision-makers on how to improve
competitiveness with least effort. Moreover, our approach
incorporates slacks that are not taken into account in stan-
dard productivity measures of all inputs simultaneously, and
by projecting towards the strongly efficient frontier, it
allows for firms under evaluation to be compared with the
best firms.

Currently, the model developed in this study is restricted
to one output and Constant Returns to Scale. Future
research efforts should focus on the development of a model
without these limitations based on Bi-level Linear Pro-
gramming (see Aparicio et al. 2016). In the first case, it will
allow us to deal with multiple outputs and multiple inputs in
the input-oriented context while, in the second case, the
application of this kind of technique will permit us to
decompose the efficiency change into pure efficiency
change and scale efficiency change. Furthermore, the
application of the model developed in the paper to other
real-life datasets, for example to model eco-efficiency and
inclusion of undesirable outputs, is another interesting line
of future research.
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