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ABSTRACT
Since it was introduced, data envelopment analysis (DEA) has been
applied to many different areas and has also been extended to
numerous production contexts. In this paper, we focus our attention
on the production framework under output quotas. Many types of
markets throughout the world are subject to intervention by
government policies, with the purpose of raising the prices that
producers receive for their products through the imposition of
production quotas. In this paper, we introduce a comprehensive
approach based upon the extension of the weighted additive
model in DEA with the aim of measuring technical inefficiency of
firms producing under a quota system. Accordingly, we prove
several interesting properties of the new approach and compare it
with the conventional weighted additive model. The paper
concludes by considering a case study that analyses milk
production inefficiency in Canadian provinces, incorporating
information on the quota assigned to each of the provinces.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric method for the assessment of rela-
tive technical efficiency of a set of decision making units (DMUs) that use several inputs
to produce several outputs. Technical efficiency refers to all the sources of waste that can
be removed without worsening any input and/or output. In addition to the efficiency esti-
mation of each observed DMU, DEA also provides benchmarking information, which is
useful for improving the performance of any inefficient DMU.

Chronologically speaking, Farrell (1957) was the first in showing, for a single output
and multiple inputs, how to estimate an isoquant enveloping all the observations and how
to measure technical efficiency. Farrell inspired other authors to continue this line of
research estimating production functions that envelop all the observations of the sample,
by either a non-parametric piece-wise linear technology or a parametric function. The
first possibility was taken up by Charnes et al. (1978) and Banker et al. (1984), resulting in
the development of DEA, whereas the latter approach resulted in the development of the
deterministic and stochastic frontier models through parametric techniques.
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In contrast to the parametric literature on efficiency, where the measurement of techni-
cal efficiency in the context of multiple-outputs is based on a few measures (the Shephard
input and output distance functions and the directional distance function), the first years
of life of DEA witnessed the introduction of many different technical efficiency measures,
such as the Russell input and output measures of technical efficiency and their graph
extension, that is the Russell Graph Measure of technical efficiency (see F€are et al. 1985),
the additive model (Charnes et al. 1985), the Range-Adjusted Measure (Cooper et al.
1999) and the Enhanced Russell Graph (Pastor et al. 1999) or Slacks-Based Measure
(Tone 2001), to name but a few. One of the reasons for the introduction of many different
technical efficiency measures in DEA is the piece-wise linear nature of the boundary of
the corresponding polyhedral technology. In this context, a notion that comes into play is
Pareto-efficiency (Koopmans 1951). Pareto-efficiency, however, does not appear to be a
problem for the parametric approach, where the functional forms utilized to model the
frontier of production are generally smooth. On the contrary, it has been a recurring
theme in DEA. In particular, the additive model by Charnes et al. (1985) was the first
graph linear model which ensured that the evaluated DMU was compared exclusively
with respect to the set of Pareto-efficient points in the input–output space. From this
model, DEA researchers have introduced some modifications of the original additive
model, weighting the slacks that appear in the objective function (see, for example, Lovell
& Pastor 1995; Cooper et al. 1999, 2011), in order to measure technical inefficiency using
the strongly efficient frontier as a reference. The existence of such a wide range of tools
for estimating technical efficiency in the non-parametric world, in comparison with the
parametric one, reveals the importance in DEA in measuring efficiency with respect to
the Pareto-efficient frontier.

Since it was introduced, DEA has been applied to many different areas and has been
also extended to numerous production contexts. In this paper, we particularly focus on
the framework of production quotas. Many types of markets throughout the world are
often subject to intervention by government policies with the purpose of raising the prices
that producers receive for their products. Usually, this new price is above the equilibrium
price that would have occurred in an unregulated market, which causes an excess supply
and market forces will want to push the prices back down to the equilibrium level. There
are generally two ways that government policies work against these market forces: one
approach operates on the demand side and the other on the supply side. We will concen-
trate on the latter. Policies that operate on the supply side are called supply management
policies because they set limits on production through quotas, thereby preventing an
excess being produced. One example of this policy is the Canadian dairy industry quota
system (Bunting 2009), which will be the focus of attention in the empirical section of this
paper.

In view of these facts, the main aim of this paper is to introduce a new approach to
modelling a quota production system, in order to evaluate technical inefficiency in this
kind of regulated markets. The new approach will allow us to compare the level of techni-
cal inefficiency of each DMU under production limitations with a quota-free framework.
The new model will be an extension of the weighted additive model in DEA, which intro-
duces a comprehensive approach within a quota framework and ensures Pareto-efficiency.

In Section 2, we are going to briefly review the ‘traditional’ weighted additive model in
DEA. In Section 3, we are going to propose a new approach for dealing with output quotas
based on an extension of the weighted additive model, followed, in Section 4, by an
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empirical illustration for milk production under Canada�s dairy quota system. Section 5
concludes the paper.

2. The weighted additive model in DEA

In this section, we briefly review the definition and main properties of the weighted addi-
tive model in DEA. Nevertheless, before doing so, we need to introduce the notation fol-
lowed in the paper.

Let us consider n DMUs to be evaluated. DMUj consumes xj D ðx1j; . . . ; xmjÞ 2 RmC
amount of inputs for the production of yj D ðy1j; . . . ; ysjÞ 2 Rs

C amount of outputs. The
relative efficiency of each DMU in the sample is assessed with reference to the so-called
production possibility set, which can be non-parametrically constructed from the observa-
tions by assuming certain postulates (see Banker et al. 1984). Also, to implement the
approach, we will hereafter assume Variable Returns to Scale. In this way, the production
possibility set in DEA, T, can be mathematically characterized as follows:

T D fðx; yÞ 2 RmC s
C : x�

Xn

jD 1

λjxj; y�
Xn

jD 1

λjyj;
Xn

jD 1

λj D 1; λj � 0; jD 1; . . . ; ng: (1)

In the production literature, we can find the frontier concept linked to the notion of
technology. Specifically, the weakly efficient frontier of T is defined as
@wðTÞ :D fðx; yÞ 2 T : x̂ < x; ŷ > y ) ðx̂; ŷÞ =2 Tg, while the strongly efficient frontier of
T is @sðTÞ :D fðx; yÞ 2 T : x̂ � x; ŷ � y; ðx̂; ŷÞ 6¼ ðx; yÞ) ðx̂; ŷÞ =2 Tg, whereby the latter
is a subset of the former. In words, @sðTÞ is the set of all the non-dominated points of T in
the sense of Pareto (see Koopmans 1951).

To estimate technical inefficiency for DMU0 with data ðx0; y0Þ, one possibility is to
solve the following weighted additive model (Lovell & Pastor 1995):

WAðx0; y0;w¡ ;wC ÞD Max
Xm

iD 1

w¡
i s¡i0 C

Xs

rD 1

wC
r sCr0

s:t:
Xn

jD 1

λj0xij D xi0¡ s¡i0 ; iD 1; . . . ;m

Xn

jD 1

λj0yrj D yr0C sCr0 ; rD 1; . . . ; s

Xn

jD 1

λj0D 1;

s¡i0 � 0; iD 1; . . . ;m

sCr0 � 0; rD 1; . . . ; s

λj0� 0; jD 1; . . . ; n

; (2)

where w¡ D ðw¡
1 ; . . . ;w¡

m Þ 2 Rm
C C and wC D ðwC

1 ; . . . ;wC
s Þ 2 Rs

C C are weights rep-
resenting the relative importance of unit inputs and unit outputs, and s¡i0 and sCr0 are the
slacks associated with input i and output r, respectively. WAðx0; y0;w¡ ;wC ÞDPm

iD 1w
¡
i s¡ �

i0 CPs
rD 1w

C
r sC �

r0 , where � denotes optimality, representing the technical
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inefficiency associated with DMU0. The weighted additive model maximizes a weighted l1
distance from DMU0 to the efficient frontier, and thereby simultaneously increases out-
puts and reduces inputs. Additionally, the targets of the evaluated unit, i.e. the coordinates
of the projection point on the frontier, are defined by x�i0 D

Pn
jD 1λ

�
j0xij, iD 1; . . . ;m, and

y�r0D
Pn

jD 1λ
�
j0yrj, rD 1; . . . ; s.

Next, we show two important properties of the weighted additive model that will be
readapted later. Proofs for these results can be found, for example, in Pastor et al. (1999).

Proposition 2.1: ðx0; y0Þ 2 @sðTÞ if and only if WAðx0; y0;w¡ ;wC ÞD 0.

Proposition 2.2: Let ðλ�0; s¡ �
0 ; sC �

0 Þ be an optimal solution of Equation (2). Then ðx�0 ; y�0Þ
belongs to @sðTÞ.

The first result shows that the weighted additive model is able to characterize the Par-
eto-efficient frontier, whereas the second result establishes that the target point deter-
mined by programme (2) is always on the strongly efficient frontier. This last feature
contrasts to the usual performance of other measures, such as those derived from the
radial models or the directional distance function.

3. A weighted additive model for dealing with production quotas

In this section, we introduce an extension of the weighted additive model in order to
incorporate production limitations linked to the existence of output quotas. To do that,
we are going to consider a real production case where one output can be bounded by the
requirement of the policy-maker. The case of multiple upper-bounded outputs can be
similarly treated. In particular, we will focus our analysis on milk production with quota
impositions in the rest of this section. First, we develop the basic model for production
under quota and then we focus our attention on the improvement of this basic model that
allows for additional properties to be satisfied.

3.1. The formulation of a basic model for production with quotas

Let us assume that each DMU (dairy farm) produces two outputs, milk and cattle, from the
consumption of several inputs. Let us assume, without loss of generality, that milk represents
the first output. In addition, let us suppose that the market regulator imposes unit-specific
milk quotas that must be taken into account. This is, for example, the case of Canada, where
milk production quotas are allocated to each dairy farm and are bought and sold on an
exchange (Bunting 2009). It is worth adding that the quota regime also existed in the dairy sec-
tor of European Union countries until very recently (2015 was the year of quota elimination).

In this context, the production possibility set for DMU0 with quota q0 is defined as

Tq0 DT \ fðx; yÞ 2 Rm C s
C : y1� q0g; (3)

which in the DEA setting would be translated into

Tq0 D fðx; yÞ 2 Rm C s
C : ðx; ¡ yÞ�

Xn

jD 1

λjðxj; ¡ yjÞ ;
Xn

jD 1

λj D 1; λj � 0; 8j; y1� q0 g: (4)
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Therefore, by definition, the bounded technology Tq0 for ðx0; y0Þ is the original
‘unbounded’ technology (1), adding a unit-specific upper bound for the milk produced.

In this quota-driven context, let us now show that if the researchers resort to a direct
preadaptation of the ‘traditional’ weighted additive model (2) in order to determine tech-
nical inefficiency, by incorporating the new constraint y1 � q0, the resulting programme
can present some weaknesses, such as identifying projections that are not Pareto-efficient.
Under these hypotheses, the ‘natural’modification of Equation (2) would be Equation (5),
where a constraint for the output projection, y�0 D

Pn
jD 1λ

�
j yj, must be added in order to

satisfy the quota constraint (5.4).

Max
Xm

iD 1

w¡
i0 s

¡
i0 C

Xs

rD 1

wC
r0 s

C
r0

s:t:
Xn

jD 1

λjxij D xi0 ¡ s¡i0 ; iD 1; . . . ;m ð5:1Þ

Xn

jD 1

λjyrj D yr0C sCr0 ; rD 1; . . . ; s ð5:2Þ

Xn

jD 1

λj D 1; ð5:3Þ

Xn

jD 1

λjy1j � q0; ð5:4Þ

s¡i0 � 0; iD 1; . . . ;m ð5:5Þ
sCr0 � 0; rD 1; . . . ; s ð5:6Þ
λj � 0 jD 1; . . . ; n ð5:7Þ

Unfortunately, Equation (5) can yield inconsistent results regarding the essence of the
weighted additive models, where the notion of Pareto-efficiency plays a key role. The
weighted additive model has exactly the same behaviour as the additive model: the projec-
tions are always Pareto-efficient points (see Proposition 2.2). These ideas are graphically
illustrated in Figure 1, based on a simple example with one input and one output. In this
example, unit D is technically inefficient. Indeed, it is an interior point of the technology
T . Let us assume that, for D, the output quota is qD D 1:5. Note then that if unit D is
assessed by means of model (5), with w¡

D DwC
D D 1, the optimal solution projects D onto

E, a ‘dominated’ point of TqD , represented by the shaded area in the figure. In this respect,
observe that the point ð1; 1:5Þ 2 TqD dominates E. Consequently, the a-priori ‘natural’
adaptation of the original weighted additive model to situations where output quotas are
imposed, can lead to unsatisfactory results because Pareto-optimality is not achieved.

Fortunately, we may introduce a new approach to the production system described ear-
lier and determine a suitable model for measuring technical inefficiency through a
weighted additive measure that, in particular, will yield point ð1; 1:5Þ as the target point
for unit D in Figure 1. This point is Pareto-efficient for the technology associated to point
D, TqD , although it is only weakly efficient in the original unbounded technology T.

The basic elements for building DEA models are, in general, the technology T, the cor-
responding distance function to the frontier for measuring technical inefficiency, the
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inputs and outputs of the observation being assessed ðx0; y0Þ, and finally, the projection
point ðxP0 ; yP0 Þ, i.e. the point that belongs to the frontier of the technology. In our context,
T is substituted by Tq0 , and the distance function corresponds to the weighted l1 distance
from ðx0; y0Þ to ðxP0 ; yP0 Þ. The maximization of this distance will guarantee that the final
identified projection belongs to the strongly efficient frontier of Tq0 , denoted as @sðTq0Þ, as
we will prove later. In this way, the model would be written as

Max
Xm

iD 1

w¡
i0 s

¡
i0 C

Xs

rD 1

wC
r0 s

C
r0

s:t: xPi0D xi0¡ s¡i0 ; iD 1; . . . ;m

yPr0D yr0 C sCr0 ; rD 1; . . . ; s

ðxP0 ; yP0 Þ 2 Tq0

s¡i0 � 0; iD 1; . . . ;m

sCr0 � 0; rD 1; . . . ; s

(6)

Going back to Equation (4), we can identify the particular structure of the projection
point ðxP0 ; yP0 Þ, which belongs to Tq0 , in terms of the set of sample points as follows:

xPi0D
Xn

jD 1

λj0xij C t¡
i0 ; t¡

i0 � 0; iD 1; . . . ;m; yPr0D
Xn

jD 1

λj0yrj ¡ tC
r0 ; tC

r0 � 0; rD 1; . . . ; s;

Xn

jD 1

λj0y1j ¡ tC
10 � q0;

Xn

jD 1

λj0D 1; λj0 � 0; jD 1; . . . ; n:

(7)

Figure 1. Numerical example.
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As a consequence, Equation (6) may be rewritten as

WAq0ðx0; y0;w¡ ;wC ÞD Max
Xm

iD 1

w¡
i0 s

¡
i0 C

Xs

rD 1

wC
r0 s

C
r0

s:t:
Xn

jD 1

λj0xij C t¡
i0 D xi0¡ s¡i0 ; iD 1; . . . ;m ð8:1Þ

Xn

jD 1

λj0yrj ¡ tC
r0 D yr0 C sCr0 ; rD 1; . . . ; s ð8:2Þ

Xn

jD 1

λj0y1j ¡ tC
10 � q0; ð8:3Þ

Xn

jD 1

λj0D 1; ð8:4Þ

λj0� 0; jD 1; . . . ; n ð8:5Þ
s¡i0 � 0; iD 1; . . . ;m ð8:6Þ
sCr0 � 0; rD 1; . . . ; s ð8:7Þ
t¡
i0 � 0; iD 1; . . . ;m ð8:8Þ
tC
r0 � 0; rD 1; . . . ; s ð8:9Þ

Note that the main difference between model (8) and model (5) is the incorporation of
a set of new slack-type decision variables, t¡

i0 , iD 1; . . . ;m, and tC
r0 , rD 1; . . . ; s. The new

formulation is enough to ensure that the projection points generated by the model are
always Pareto-efficient with respect to the bounded technology Tq0 , something that can-
not be claimed regarding the previous model (5). It is worth mentioning that Equation (8)
is an extension of the weighted additive model in DEA (Lovell & Pastor 1995 or Cooper
et al. 1999), which allows a quota system to be dealt with.

In the simple numerical example linked to Figure 1, D is projected onto point ð1; 1:5Þ,
as desired, through model (8) thanks to the optimal solution: λ�AD D 1, λ�BD D λ�CD D λ�DDD
λ�ED D 0, t¡ �

D D 0, tC �
D D 0:5, s¡ �

D D 1 and sC �
D D 0:5. In fact, the obtained projection is the

only strongly efficient point of Tq0 , as Figure 1 makes clear.
Although Equation (8) represents an extension of the weighted additive model, it has

important changes with respect to the conventional model (2). The most obvious difference
is, of course, the incorporation of a new constraint for limiting production (the restriction
associated with the quota). Second, the projection points for the conventional additive model
can be directly obtained from the optimal intensity variables as ðPn

jD 1λ
�
j0x1j; . . . ;Pn

jD 1λ
�
j0xmj;

Pn
jD 1λ

�
j0y1j; . . . ;

Pn
jD 1λ

�
j0ysjÞ. However, in the case of Equation (8), new deci-

sion variables must be considered: ðPn
jD 1λ

�
j0x1j C t¡ �

10 ; . . . ;
Pn

jD 1λ
�
j0xmj C t¡ �

m0 ;
Pn

jD 1λ
�
j0y1j

¡ tC �
10 ; . . . ;

Pn
jD 1λ

�
j0ysj ¡ tC �

s0 Þ. We are referring to t¡
i0 for inputs and tC

r0 for outputs.
Third, due to the addition of quota-related constraints, the optimal value of the conventional
model is greater or equal than that associated with the new model.

Proposition 3.1: Let w¡
i0 2 RmC C , iD 1; . . . ;m, and wC

r0 2 RsC C , rD 1; . . . ; s. Then,
WAðx0; y0;w¡ ;wC Þ�WAq0ðx0; y0;w¡ ;wC Þ.
Proof: It is a consequence of the relationship Tq0�T .■

INFOR: INFORMATION SYSTEMS AND OPERATIONAL RESEARCH 7



3.2. The improvement of the basic model for production with quotas

Let us now illustrate a situation that can be of interest from a managerial point of view.
DEA models usually yield both efficiency values and benchmarking information for the
evaluated units. This last information comes from the optimal value of the intensity varia-
bles (λ�j0; jD 1; . . . n). A strictly positive value for this type of decision variables implies that
DMUj can be considered a peer or benchmark for DMU0. At this point, we would like to
explicitly make the distinction between projection point and peer in the sense that the pro-
jection generated by a DEA model is not necessarily an observation, whereas the peers are
real observed units, which also play a role of benchmarks for the assessed DMUs. So, peers
could be considered as relevant benchmarking information when the traditional DEA mod-
els are applied in practice, like for example, the weighted additive models (Lovell & Pastor
1995; Cooper et al. 1999, 2011). However, some peers determined by Equation (8) could be
dominated in the sense of Pareto, something strange if we are seeking to satisfy Pareto-effi-
ciency and the peers should make up the comparison group for the evaluated DMU. Figure 2
graphically illustrates this situation. Note that, in this figure, observation F has been incorpo-
rated to the above simple numerical example in two dimensions. In this case, if we evaluate
unit D through model (8), we can get several optimal solutions, one of them is λ�FDD 1,
λ�AD D λ�BD D λ�CDD λ�DD D λ�EDD 0, t¡ �

D D 0, tC �
D D 0:25, s¡ �

D D 1 and sC �
D D 0:5. Unfortu-

nately, unit F is not Pareto-efficient (see Figure 2), since it is dominated by unit A. So, it is
possible that the manager of the assessed firm does not understand the comparison with a
firm in the sample like F at all, since the performance of F may be enhanced. Clearly, we
need to avoid these kinds of peers when model (8) is applied. In this sense, a question arises:
Is it possible to reformulate model (8) in an equivalent way deleting units like F from the
peers set? The answer is affirmative. Nevertheless, we first need to prove Proposition 3.2.

Before doing so, let us take a deeper insight into the structure of Tq0 , which will allow
us to simplify the formulation of model (8) regarding the number of decision variables.

Figure 2. Illustration of dominated peers generated by model (8).

8 J. APARICIO ET AL.



In this respect, let E be the subset of the initial sample of n DMUs that are Pareto-efficient
for the unbounded technology, T . Then we get the following equivalence:

Proposition 3.2: Tq0 can be equivalently rewritten as

Tq0 D fðx; yÞ 2 Rm C s
C : ðx; ¡ yÞ�

X

j 2 E

λjðxj; ¡ yjÞ ;
X

j 2 E

λj D 1; λj � 0; 8j; y1 � q0 g: (9)

Proof: On the one hand, let us denote by Tq0
E the subset of RmC£RsC given on the right-

hand side of Equation (9). Since E�f1; . . . ; ng, given a set of λj � 0, j 2 E, with
P

j2Eλj D 1

such that ðx; ¡ yÞ�P
j2Eλjðxj; ¡ yjÞ , we have that λj � 0, jD 1; . . . ; n, defined as λj D λj;8j

2 E and λj D 0; 8j =2 E, satisfy
P

j2Eλjðxj; ¡ yjÞ DPn
jD 1λjðxj; ¡ yjÞ . Consequently,

Tq0
E �Tq0 . On the other hand, we need to show that Tq0

E �Tq0 . By Equation (9), 8kD 1; . . . ; n

9 dkj � 0, j 2 E, with
P

j2Ed
k
j D 1 such that ðxk; ¡ ykÞ�P

j2Ed
k
j ðxj; ¡ yjÞ since each DMUk

belongs to T . Now, for any ðx; yÞ 2 Tq0 we have that, by Equation (4), 9 λz � 0,

zD 1; . . . ; n, with
Pn

zD 1λz D 1 such that ðx; ¡ yÞ�Pn
zD 1λzðxz; ¡ yzÞ and y1� q0.

Note then that ðx; ¡ yÞ�Pn
zD 1λzðxz; ¡ yzÞ �Pn

zD 1λz
P

j2Ed
z
j ðxj; ¡ yjÞ DP

j2E ½
Pn

zD 1λzd
z
j �ðxj; ¡ yjÞ . Now, defining λj :DPn

zD 1λzd
z
j , j 2 E, we can check that λj DPn

zD 1λzd
z
j � 0 for all j 2 E and that, additionally,

P
j2Eλj D

P
j2E

Pn
zD 1λzd

z
j D

Pn
zD 1

P
j2E λzd

z
j DPn

zD 1λz
P

j2E dzj ุ
D 1 D Pn

zD 1λz D 1. In this way, ðx; yÞ 2 Tq0
E and,

therefore, Tq0
E �Tq0 .■

According to Proposition 3.2, we can refine model (8) by substituting ‘j D 1,…,n’ by
‘j 2 E’ in the sums that appear in the constraints of the model. Hence, the efficient projec-
tion of ðx0; y0Þ, ðx�0 ; y�0ÞD ðPj2Eλ

�
j0xj C t¡ �

0 ;
P

j2Eλ
�
j0yj ¡ tC �

0 Þ, will only ever consider
convex combinations of points of E together with a set of slacks. So, model (8) can be
equivalently written as Equation (10).

WAq0ðx0; y0;w¡ ;wC ÞD Max
Xm

iD 1

w¡
i0 s

¡
i0 C

Xs

rD 1

wC
r0 s

C
r0

s:t:
X

j 2 E

λj0xij C t¡
i0 D xi0¡ s¡i0 ; iD 1; . . . ;m ð10:1Þ

X

j 2 E

λj0yrj ¡ tC
r0 D yr0C sCr0 ; rD 1; . . . ; s ð10:2Þ

X

j 2 E

λj0y1j ¡ tC
10 � q0; ð10:3Þ

X

j 2 E

λj0 D 1; ð10:4Þ

λj0 � 0; j 2 E ð10:5Þ
s¡i0 � 0; iD 1; . . . ;m ð10:6Þ
sCr0 � 0; rD 1; . . . ; s ð10:7Þ
t¡
i0 � 0; iD 1; . . . ;m ð10:8Þ
tC
r0 � 0; rD 1; . . . ; s ð10:9Þ
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The use of model (10) needs a simple pre-processing stage to identify the subset E of
Pareto-efficient DMUs in the sample for the ‘unbounded’ production possibility set T .
The procedure consists in running the ‘traditional’ additive model (2) with w¡

i0 D 1,
iD 1; . . . ;m, and wC

r0 D 1, rD 1; . . . ; s, for each observation and checking the optimal
value. Only an optimal value of zero signals that we are facing a Pareto-efficient unit.

In this way, model (10) presents at least two interesting advantages in comparison with
model (8). First, it prevents dominated units like F appearing as peers of some evaluated
observations. We can ensure that all the peers will be Pareto-efficient DMUs by applying
Equation (10) instead of the original model (8). Second, from a computational point of
view, model (10) has a less number of decision variables than model (8). In particular, it
presents a saving of n¡ cardðEÞ decision variables in the model, where card ðEÞ denotes
the cardinal of set E, although, of course, the application of Equation (10) requires a pre-
processing step that Equation (8) does not need.

We now turn to the characterization of the Pareto-efficient frontier of Tq0 . For the
unbounded technology T , it is well known that a DMU is Pareto-efficient if and only if
the optimal value of the weighted additive model is zero (see Proposition 2.1). Regarding
technology based on a quota regime Tq0 , we are also able to prove an analogous result: a
DMU is Pareto-efficient if and only if the optimal value of model (10) is zero. This result
can be seen as the counterpart of Proposition 2.1 for the weighted additive model in DEA
in the context of production under output quotas.

Proposition 3.3: ðx0; y0Þ is a Pareto-efficient point of Tq0 if and only if the optimal value
of model (10) is zero.

Proof: Let ðλ�0; s¡ �
0 ; sC �

0 ; t¡ �
0 ; tC �

0 Þ be an optimal solution of model (10). We first prove
that if ðx0; y0Þ is a Pareto-efficient point of Tq0 , then

Pm
iD 1w

¡
i0 s

¡ �
i0 CPs

rD 1w
C
r0 s

C �
r0 D 0. To

this end, let us assume that this claim is false and we will arrive at a contradiction.
If

Pm
iD 1w

¡
i0 s

¡ �
i0 CPs

rD 1w
C
r0 s

C �
r0 > 0, then, by Equations (10.1) and (10.2), we

have that x�i0 :D
P

j2E λ
�
j0xij C t¡ �

i0 � xi0, 8iD 1; . . . ;m, y�r0 :D
P

j2E λ
�
j0yrj ¡ tC �

r0 � yr0,

8rD 1; . . . ; s, and such that, at least for one input i
0
or one output r

0
, the previous inequal-

ities are strict since s¡ �
i0 , 8i, sC �

r0 , 8r, cannot be all zero. Additionally, by Proposition 3.2, ðx�0 ;
y�0Þ 2 Tq0 since t¡ �

i0 � 0, 8i, and tC �
r0 � 0, 8r. Finally, point ðx0; y0Þ is strictly dominated by

point ðx�0 ; y�0Þ, thus leading to a contradiction. Let us now prove that, given
ðλ�0; s¡ �

0 ; sC �
0 ; t¡ �

0 ; tC �
0 Þ, if Pm

iD 1w
¡
i0 s

¡ �
i0 CPs

rD 1w
C
r0 s

C �
r0 D 0, then ðx0; y0Þ is a Pareto-

efficient point of Tq0 . In order to do this, let us assume that there exists a point ð~x;~yÞ 2 Tq0

with ð~x;~yÞ 6¼ ðx0; y0Þ such that ~xi� xi0, 8iD 1; . . . ;m, and ~yr � yr0, 8rD 1; . . . ; s. Then, by

Proposition 3.2, 9~λj � 0, j 2 E, with
P

j2E ~λj D 1 such that ~xi�P
j2E ~λjxij, iD 1; . . . ;m,

~yr �
P

j2E ~λjyrj, rD 1; . . . ; s, and ~y1 � q0. Now we can define ~t¡
i :D ~xi¡P

j2E ~λjxij,~s
¡
i : D

xi0¡ ~xi iD 1; . . . ;m, and ~tC
r : DP

j2E ~λjyrj ¡~yr, ~s
C
r : D~yr ¡ yr0. Then, it is easy to check

that ð~λ;~s¡ ;~sC ; ~t¡ ; ~tC Þ is a feasible solution of model (10). Also, some ~s¡i , iD 1; . . . ;m,
~sC , rD 1; . . . ; s, is strictly positive due to our hypothesis on ð~x;~yÞ.
Consequently,

Pm
iD 1w

¡
i0 ~s

¡
i CPs

rD 1w
C
r0~s

C
r >

Pm
iD 1w

¡
i0 s

¡ �
i0 CPs

rD 1w
C
r0 s

C �
r0 D 0, which is

a contradiction.■
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Next, we prove the counterpart of Proposition 2.2 in the context of producing with out-
put bounds. Proposition 3.4 establishes that the target point determined by programme
(10) is always on the strongly efficient frontier of the bounded technology.

Proposition 3.4: Let w¡
i0 2 RmC C , iD 1; . . . ;m, and wC

r0 2 RsC C , rD 1; . . . ; s, and let ðλ�0;
s¡ �
0 ; sC �

0 ; t¡ �
0 ; tC �

0 Þ be an optimal solution of Equation (10). Then ðx�0 ; y�0Þ :D ðPj2E λ�j0xj
C t¡ �

0 ;
P

j2Eλ
�
j0yj ¡ tC �

0 Þ belongs to @sðTq0Þ.
Proof: Let ðλ�0; s¡ �

0 ; sC �
0 ; t¡ �

0 ; tC �
0 Þ be an optimal solution of model (10). Then, it is

obvious that ðx�0 ; y�0Þ 2 Tq0 . Let us assume that there exists a point ð~x;~yÞ 2 Tq0 with ð~x;~yÞ
6¼ ðx�0 ; y�0Þ such that ~xi� x�i0, 8iD 1; . . . ;m, and ~yr � y�r0, 8rD 1; . . . ; s. Then, by Proposi-

tion 3.2, 9~λj � 0, j 2 E, with
P

j2E ~λj D 1 such that ~xi�P
j2E ~λjxij, iD 1; . . . ;m,

~yr �
P

j2E ~λjyrj, rD 1; . . . ; s, and ~y1� q0. Now we can define ~t¡
i :D ~xi¡P

j2E ~λjxij, ~s
¡
i :

D xi0 ¡ ðPj2E ~λjxij C ~t¡
i ÞD xi0¡ ~xi� xi0¡ x�i0 D s¡ �

i0 � 0, iD 1; . . . ;m, and

~tC
r :DP

j2E ~λjyrj ¡~yr , ~sCr :D ðPj2E ~λjyrj ¡~tC
r Þ¡ yr0D~yr ¡ yr0 � y�r0 ¡ yr0D sC �

r0 � 0,

rD 1; . . . ; s. Then, it is easy to check that ð~λ;~s¡ ;~sC ;~t¡ ; ~tC Þ is a feasible solution of
model (10). Also, regarding the objective function,

Pm
iD 1w

¡
i0 ~s

¡
i CPs

rD 1w
C
r0~s

C
r >Pm

iD 1w
¡
i0 s

¡ �
i0 CPs

rD 1w
C
r0 s

C �
r0 since ð~x;~yÞ 6¼ ðx�0 ; y�0Þ. This last result is in contradiction

to the fact that ðλ�0; s¡ �
0 ; sC �

0 ; t¡ �
0 ; tC �

0 Þ is an optimal solution of model (10).■
In the next section, we show how model (10) performs in comparison with

the unbounded framework, resorting to a real data-set consisting of Canadian
provinces and milk production. Additionally, we show that the decision variable tC

0 is
needed in order to correctly measure technical inefficiency under an additive-type
approach.

4. An application of the new approach: milk production under a quota
regime in Canada

4.1. Data-set

This study uses data from Canadian dairy farms at the level of 10 Canadian provinces in
the year 2009. According to the Canadian Dairy Commission in 2015 about 82% of Cana-
da’s dairy farms were in Ontario and Quebec, 13% in the Western provinces (that is in
Manitoba, Saskatchewan, Alberta and British Columbia) and 5% in Atlantic provinces
(that is in New Brunswick, Prince Edward Island, Nova Scotia and Newfoundland and
Labrador). The data applied in this study are provided by two sources: the Canadian Dairy
Information Centre and Statistics Canada.

Dairy farms combine the production of milk with the production of meat (beef and
veal). Therefore, the production model is specified in two outputs: milk production at the
farm (expressed in hectolitres) and cattle revenues (in Canadian dollars). The first variable
was supported by the Canadian Dairy Information Centre, while the second by Statistics
Canada. Milk output is restricted by the quota system and the values of quotas (in hecto-
litres) were obtained from the Canadian Dairy Information Centre. It is worth noticing
that the data on quota is reported in million kg of butterfat, and therefore it was necessary
to recalculate and convert it into hectolitres.
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There is a variety of inputs that could be considered to model dairy production that
were used in previous studies, such as number of cows, labour, fixed assets, agricultural
area, material and energy-related costs, and expenditure on feed (Mbaga et al. 2003;
Emvalomatis et al. 2011). Due to the availability of data, as well as to obtain certain accu-
racy in our estimations (using too many inputs could render too many efficient observa-
tions given a relatively small sample size), two main inputs are considered in the
application: number of cows (in thousands) and total operating costs (in Canadian dol-
lars), both taken from Statistics Canada. Total aggregate operating costs, among others,
feed expenses, machinery expenses and salaries.

Summary statistics of input–output variables and quota for all provinces and per prov-
ince group (Quebec and Ontario, Western provinces and Atlantic provinces) in 2009
appear in Table 1. These data show some variability in the sample, as shown by the values
of standard deviations relative to their respective means. The highest variation is exhibited
by milk production, number of cows and quota. Furthermore, it is worth noticing that the
province of Newfoundland and Labrador is the one that exhibits the smallest values in the
number of cows, milk production and consequently the quota; however, it incurs the larg-
est total costs. The lowest values of total costs are incurred in Quebec, but at the same
time, this province has the highest values in the number of cows, milk production and
quota. The second output, cattle revenues, is the largest for Alberta, and the lowest for
Quebec. Hence, the data show that in 2009, Quebec is the Canadian province with the
largest number of dairy farms and produces the largest amount of milk, but at the same
time it seems to neglect the second output of cattle. On the contrary, the Atlantic province

Table 1. Descriptive statistics of input/output data and quota for Canadian provinces, year 2009.
Variable Mean Standard deviation Minimum Maximum

Outputs
Milk production
All provinces 7,662,781.7 10,306,796.7 484,092.0 28,457,600.0
Quebec and Ontario 26,740,131.5 2,428,867.2 25,022,663.0 28,457,600.0
Western provinces 4,644,078.5 2,233,641.8 2,307,076.0 6,609,935.0
Atlantic provinces 1,142,810.0 523,676.1 484,092.0 1,714,545.0

Cattle revenues
All provinces 55,097.0 57,913.3 15,343.0 204,636.0
Quebec and Ontario 20,174.5 6,832.8 15,343.0 25,006.0
Western provinces 100,617.5 72,589.2 40,977.0 204,636.0
Atlantic provinces 27,037.8 12,307.6 15,438.0 44,250.0

Inputs
Number of cows
All provinces 96.4 130.9 6.4 361.9
Quebec and Ontario 339.7 31.5 317.4 361.9
Western provinces 56.2 24.8 28.2 80.7
Atlantic provinces 15.1 6.9 6.4 21.8

Total costs
All provinces 618,874.5 342,626.2 315,922.0 1,391,508.0
Quebec and Ontario 336,126.0 28,572.8 315,922.0 356,330.0
Western provinces 733,229.8 176,710.8 517,140.0 949,252.0
Atlantic provinces 645,893.5 498,970.9 347,893.0 1,391,508.0

Quota
All provinces 8,264,241.0 11,294,166.4 507,841.1 31,440,124.4
Quebec and Ontario 29,179,820.4 3,196,552.6 26,919,516.4 31,440,124.4
Western provinces 4,863,155.9 2,344,636.0 2,387,894.4 6,881,523.6
Atlantic provinces 1,207,536.4 557,702.2 507,841.1 1,823,487.5

Note: Milk production and quota are expressed in hectolitres. The number of cows is in thousands. Cattle revenues and
total costs are in Canadian dollars (CAD). Western provinces – Manitoba, Saskatchewan, Alberta and British Columbia;
Atlantic provinces – New Brunswick, Prince Edward Island, Nova Scotia and Newfoundland and Labrador.
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of Newfoundland and Labrador is characterized by the smallest milk production, while
the Western province of Alberta seems to focus on the second output of cattle, reaching
the largest values in cattle revenues. These observations are further strengthened by the
results of descriptive statistics per type of province which show that Quebec and Ontario,
on average, have the largest values in milk production, but the smallest of cattle revenues,
while Atlantic provinces produce the lowest values of milk and Western provinces obtain
the largest values of revenues from cattle, on average.

4.2. Results

In the empirical application of model (10) with quota and the unbounded model without
the quota restriction (2), the following weights were applied: w¡

i0 D 1
xi0
, iD 1; . . . ;m

(inputs), wC
r0 D 1

yr0
, rD 1; . . . ; s (outputs). The usage of such weights yields that the models

coincide with the Measure of Inefficiency Proportions (MIP) (see Cooper et al. 1999) that
measures the aggregation of inefficiency proportions due to the excessive input usage and
shortfalls in output production. Worthy of note is that MIP is not bounded by 1 as in
radial inefficiency measures. The full efficiency is attained with MIP D 0.

Table 2 reports the inefficiency results of the model that takes into account quota, and
the unbounded model without quota considerations for each of the Canadian provinces
separately and on average for the year 2009. The table also summarizes the results for
each province group (Quebec and Ontario, Western provinces and Atlantic provinces). In
addition, the table also contains the results of slack-type decision variable tC

0 for the out-
put for which a quota is imposed, that is, for milk production.

Several observations can be made based on the results in Table 2. First, on average,
‘inefficient’ Canadian provinces with regard to milk production are (slightly) more ineffi-
cient when quota is not taken into account than when the inefficiency model considers
quota restriction (inefficiency value of 1.0629 versus 1.0388, respectively). When consider-
ing all provinces in the sample, the inefficiency without quota is equal to 0.4252, while
subject to quota it equals 0.4155. Hence, more inefficiency is found in the model without

Table 2. Inefficiency results for the model, with and without quota restrictions for Canadian provinces,
year 2009.
Province Inefficiency with quota Inefficiency without quota tC

r0 for output with quota

British Columbia 0.0000 0.0000 0.0000
Alberta 0.0000 0.0000 0.0000
Saskatchewan 0.1174 0.1174 0.0000
Manitoba 1.5720 1.6051 1.0460 £ 105

Ontario 0.0000 0.0000 0.0000
Quebec 0.0000 0.0000 0.0000
New Brunswick 1.5781 1.6417 0.8630¢£ 105

Nova Scotia 0.8876 0.8876 0.0000
Prince Edward Island 0.0000 0.0000 0.0000
Newfoundland and Labrador 0.0000 0.0000 0.0000
Mean (all units) 0.4155 0.4252 0.1909¢£ 105

Mean (inefficient units) 1.0388 1.0629 0.9545¢£ 105

Ontario and Quebec 0.0000 0.0000 0.0000
Western provinces 0.4224 0.4306 0.2620¢£ 105

Atlantic provinces 0.6164 0.6323 0.2160¢£ 105

Note: Western provinces – Manitoba, Saskatchewan, Alberta and British Columbia; Atlantic provinces – New Brunswick,
Prince Edward Island, Nova Scotia and Newfoundland and Labrador.
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quota consideration. From a conceptual model point of view, this result may not seem so
surprising since in the model with quota, the bounds are set to the technology that results
in units being closer to the frontier (that is, being more efficient) than in the model with-
out quota consideration. From an empirical perspective, this result is significant since it
might imply that quota imposition by a market regulator can render greater efficiency in
firms� production processes. That finding can imply that quota exchanges ensure that
quota transfers to the most efficient producers. Hence, the arguments that criticize quota
system claiming that such a system shields producers from competition, can be con-
fronted with the results of our study that provide arguments for supporters of the quota
system. That finding can have implications for policy-makers in defining policy instru-
ments that enhance the efficiency of economic sectors, providing arguments in favour of
quota system.

Second, looking at the results for individual provinces, it can be concluded that the dif-
ferences in average results for both models originate in different inefficiency outcomes for
two provinces: Manitoba and New Brunswick. In particular, Manitoba is found to be
more efficient by 2% and New Brunswick by 4% in the model with quota than that with-
out quota. The inefficiency of Manitoba at 1.5720 in the model with quota implies that
dairy farms in this province should reduce, on average, the usage of inputs by 39% and
increase the production of outputs by 39% [1.5720 (inefficiency)/4 (number of inputs and
outputs in the model)].

Third, the results per province group show that the provinces with the largest number
of dairy farms in Canada (Ontario and Quebec) are also the provinces that are efficient
(that is have inefficiency values equal to 0) according to both models, with and without
quota consideration. Western provinces, which are the second largest in terms of the size
of dairy industry in Canada, also hit the second with regard to their average inefficiency
values (0.4224 in the model with quota and 0.4306 in the model without quota). Finally,
Atlantic provinces, which represent the smallest share of the dairy industry in Canada,
are found to be the most inefficient group with an average inefficiency of 0.6164 and
0.6323 in the model with quota and without quota, respectively.

Table 3. Targets and peers for the model with quota restrictions for Canadian provinces, year 2009.
Targets

Outputs Inputs

Province Milk production Cattle revenues Number of cows Total expenses Peers

(1) British Columbia 6,609,935.0 93,362.0 72.9 949,252.0 1
(2) Alberta 6,498,846.0 204,636.0 80.7 720,620.0 2
(3) Saskatchewan 2,307,095.8 63,495.1 28.2 658,331.5 1, 2, 9, 10

(0.00%) (0.00%) (0.00%) (¡11.74%)
(4) Manitoba 3,332,791.2 102,799.7 42.9 512,507.9 2, 9

(5.45%) (150.87%) (0.00%) (¡0.90%)
(5) Ontario 25,022,663.0 25,006.0 317.4 356,330.0 5
(6) Quebec 28,457,600.0 15,343.0 361.9 315,922.0 6
(7) New Brunswick 1,423,528.8 38,681.2 19.1 381,475.7 2, 9

(4.92%) (150.56%) (0.00%) (¡2.32%)
(8) Nova Scotia 1,728,547.2 45,956.6 21.8 396,343.8 2, 9

(0.82%) (75.31%) (0.00%) (¡12.63%)
(9) Prince Edward Island 1,015,807.0 22,248.0 13.0 347,893.0 9
(10) Newfoundland and Labrador 484,092.0 44,250.0 6.4 1,391,508.0 10
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Fourth, the results of the slack-type decision variable tC
r0 for the output of milk produc-

tion reveal that precisely for these provinces for which the differences in models with
quota and without quota are observed (Manitoba and New Brunswick), this variable has
values different from 0. This finding shows, in the context of the weighted additive model,
the relevance of using the new model (10) with the slack-type decision variables rather
than model (5).

We further analyse the empirical results for the model with quota more thoroughly.
Table 3 shows the targets and peers for each of the Canadian provinces for the year 2009 with
regard to this model. Targets represent the target values for inputs and outputs (which for
efficient provinces obviously correspond to actual values for inputs used and outputs pro-
duced by these provinces), while peers indicate the provinces that should serve as bench-
marks. As for the targets for inefficient provinces, the percentages of improvement in each
variable that are needed to achieve the efficiency are also reported between parentheses.

The first result to note from Table 3 is that the efficient provinces of Alberta and Prince
Edward Island serve as a reference benchmark for the greatest number of provinces. Turn-
ing to the results for targets, the upshot of the table indicates that in order to reach effi-
ciency, the province of Saskatchewan should focus exclusively on the reduction of the
input of total costs through a decrease in its value by almost 12%. The results also suggest
the need for substantial improvements in almost all variables for the provinces of Mani-
toba and New Brunswick, which were found to be the most inefficient. It can also be
appreciated from the table that the output of cattle revenues is the variable that requires
the largest improvements across all inefficient provinces. On the contrary, the results
show that the input of number of cows does not require any improvement at all. It is
important to remember that the application of model (10) guarantees that computed tar-
gets are always on the strongly efficient frontier and that yielded peers are always non-
dominated in the sense of Pareto.

5. Conclusions

In this paper, an extension of the weighted additive model in DEA has been introduced for
evaluating technical inefficiency of units that operate in regulated markets under produc-
tion quotas. The adaptation of the traditional weighted additive model to these types of sit-
uations can be useful, from the point of view of practice, to managers and policy-makers in
their decision-making, by providing both performance and benchmarking information,
while ensuring the measurement of technical efficiency satisfying Pareto-efficiency.

The model of production under a quota regime has been empirically applied in this
paper to determine the technical inefficiency of Canadian provinces with regard to milk
produced by dairy farms in the year 2009, and it has been compared with a conventional
model in which output is not bounded by any quota. The results have shown smaller inef-
ficiency outcomes in Canadian provinces under models governed by quotas than those
without quota impositions, on average. The bounds of technology due to quota can there-
fore have some implications for policy-makers who plan interventions in economic sec-
tors in an attempt to improve their performance and competitiveness. Nevertheless, this
paper has shown only slight differences in inefficiency between models with and without
quota, and future research studies could analyse these issues using larger data-sets and
other contexts to possibly depict more significant heterogeneities in results.
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