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Abstract 1 

Glucocorticoids (GCs) are broadly prescribed for numerous pathological 2 

conditions due to their anti-inflammatory, antiallergic and immunosuppressive effects, 3 

among other actions. Nevertheless, GCs can produce undesired diabetogenic side effects 4 

through interactions with the regulation of glucose homeostasis. Under conditions of 5 

excess and/or long-term treatment, GCs can induce peripheral insulin resistance (IR) by 6 

impairing insulin signalling, which results in reduced glucose disposal and augmented 7 

endogenous glucose production. Additionally, GCs can promote abdominal obesity, 8 

elevate plasma fatty acids and triglycerides and suppress osteocalcin synthesis in bone 9 

tissue. In response to GC-induced peripheral IR and in an attempt to maintain 10 

normoglycaemia, pancreatic beta-cells undergo several morphofunctional adaptations 11 

that result in hyperinsulinaemia. Failure of beta-cells to compensate for this situation 12 

favours glucose homeostasis disruption, which can result in hyperglycaemia, 13 

particularly in susceptible individuals. GC treatment does not only alter pancreatic beta-14 

cell function; pancreatic alpha-cells are also affected by GC actions that can lead to 15 

hyperglucagonaemia, further contributing to glucose homeostasis imbalance and 16 

hyperglycaemia. Additionally, the release of other islet hormones, such as somatostatin, 17 

amylin and ghrelin, are also affected by GC administration. These undesired GC actions 18 

merit further consideration for the design of improved GC therapies without 19 

diabetogenic effects. In summary, in this review, we consider the impact of GC 20 

treatment on peripheral IR, islet function and glucose homeostasis.  21 

 22 
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1. Introduction. 23 

Glucocorticoids (GC), such as cortisol in humans and corticosterone in rodents, 24 

are produced in the adrenal cortex and play a key role in regulating glucose homeostasis 25 

and nutrient metabolism. Synthetic GCs, which include dexamethasone and 26 

prednisolone, are used in medical practice because of their anti-inflammatory, 27 

antiallergic and immunosuppressive effects. Although synthetic GCs are broadly 28 

prescribed in numerous pathological conditions, they have important adverse metabolic 29 

effects, including peripheral insulin resistance (IR) and glucose intolerance as well as 30 

overt hyperglycaemia and diabetes. These side effects are observed particularly in 31 

susceptible individuals such as pregnant women, obese subjects, insulin-resistant 32 

individuals or first-degree relatives of diabetic patients (Van Raalte et al. 2009). The 33 

ability of GCs to produce peripheral IR is central to explain their impact on glucose 34 

homeostasis. It is well known that any reduction in peripheral insulin sensitivity, e.g., 35 

when GCs are administered, is adaptively compensated by augmented pancreatic beta-36 

cell function (Beard et al. 1984, Nicod et al. 2003, Ahrén 2008, Rafacho et al. 2008). 37 

This islet compensation meets the principle of the disposition index, the product of 38 

insulin secretion and peripheral insulin sensitivity. When beta-cells fail to adjust to the 39 

insulin demand imposed by the GC treatment, fasting and/or postprandial 40 

hyperglycaemia may arise. The severity and progression of these alterations depend on 41 

several parameters including dosage, period and previous individual susceptibility 42 

among others (Novelli et al. 1999, Rafacho et al. 2008, Jensen et al. 2012). In addition 43 

to the islet’s compensatory responses to IR, GCs directly affect beta-cell function, 44 

which may further complicate adequate glycaemia regulation. Although less explored 45 

than insulin release, these steroids also affect the secretion of other islet hormones with 46 

important roles in glucose homeostasis, such as glucagon, somatostatin and amylin. All 47 
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these alterations in islet hormonal secretion can exacerbate GCs’ diabetogenic actions. 48 

In the next sections, we review the main effects of GCs on peripheral tissues and the 49 

endocrine pancreas and also consider the risks and limitations of their therapeutic use. 50 

 51 

1.1. Cellular mechanisms of glucocorticoid action. Ninety-five percent of 52 

circulating cortisol is bound to corticosteroid-binding globulins and albumin (Andrews 53 

& Walker 1999). The plasma levels of the inactive form, cortisone, are approximately 54 

50-100 nM, and the hormone is largely unbound to plasma proteins (Walker et al. 55 

1999). Local conversion between active and inactive forms is catalysed by 11beta-56 

hydroxysteroid dehydrogenase (11beta-HSD). 11beta-HSD type 1 is a reductase that 57 

converts inactive cortisone (in humans) and 11-dehydrocorticosterone (in rodents) to 58 

active cortisol and corticosterone, respectively (Low et al. 1994, Voice et al. 1996). The 59 

type 2 isoform works as a dehydrogenase that catalyses the opposite reaction (Brown et 60 

al. 1993). The actions of 11beta-HSD1 and 11beta-HSD2 serve as a pre-receptor control 61 

of GC action and determine local GC concentrations. 62 

GC action at the site of cells is activated by the steroid hormone binding to its 63 

receptor. The classical GC receptor (GR), a ligand-regulated transcription factor that 64 

belongs to the superfamily of nuclear receptors, binds GCs and regulates transcription 65 

of target genes by activation or repression (Mangelsdorf et al. 1995). The GR is 66 

expressed in virtually all tissues; however, GR is able to regulate genes in a cell-specific 67 

manner, indicating that the response to GCs is regulated by factors beyond receptor 68 

expression. The GR is guided from the moment of synthesis to decay through signal 69 

transduction and by a variety of molecular chaperones such as HSP70 (Nelson et al. 70 

2004) and HSP90 (Pratt et al. 2006), which facilitate folding, maturation and ligand 71 

binding. In addition, GR-mediated transcriptional activation is modulated both 72 
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positively and negatively by phosphorylation (Ismaili & Garabedian 2004) performed 73 

by kinases and phosphatases. Although the activity of the GR is often thought in terms 74 

of direct gene transactivation, considerable cross-talk also occurs between the GR and a 75 

cohort of molecules to mediate their function as transcriptional factors, including 76 

octamer transcription factors Oct1 and Oct2, CREB (cAMP response element binding 77 

protein) and STAT5 (signal transducers and activators of transcription-5) (Chen et al. 78 

2012, Ratman et al. 2013, Engblom et al. 2007). Competition for limiting transcription 79 

co-activators is an important determinant of the fate of the cross-talk between the GR 80 

and other transcription factors. In addition to these genomic GC actions, the steroid 81 

hormone can induce effects on a minute time scale, which is difficult to explain by 82 

mechanisms involving gene expression changes (Long et al. 2005). Localised cell 83 

membrane receptors with GC affinity have recently been identified (Strehl & Buttgereit, 84 

2014). 85 

 86 

1.2. Glucocorticoid therapy in clinical practice. Drugs based on GCs were 87 

introduced in the 1950s and have been an important therapeutic strategy to treat 88 

rheumatic and inflammatory diseases ever since. In this regard, the relevant properties 89 

are the immunosuppressive, anti-inflammatory and anti-allergic effects that GCs exert 90 

on primary and secondary immune cells, tissues and organs (Stahn & Buttgereit 2008). 91 

Estimates suggest that between 1 and 2% of the adult population in the Western world is 92 

receiving some form of long-term GC treatment, with a clear higher usage among the 93 

geriatric patient group (Van Staa et al. 2000). In dermatology, GCs are the most widely 94 

used therapy, for example, to treat atopic eczema. Inhaled GCs are used to treat allergic 95 

reactions in airways and to dampen bronchial hyperreactivity in asthma. Systemically, 96 
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GCs are used to combat connective tissue inflammation, rheumatoid arthritis, bowel 97 

diseases and in allotransplantation (Thiele et al. 2005). 98 

 99 

2. Diabetogenic actions of glucocorticoids in skeletal muscle and adipose, hepatic 100 

and bone tissues. There are a myriad of risks associated with excessive GC use; these 101 

risks have been recognised since GCs came into clinical use (Schäcke et al. 2002). 102 

Given GCs’ strong capacity to counteract the action exerted by insulin and raise blood 103 

sugar levels, it is not surprising that IR and glucose intolerance is a concern in patients 104 

with Cushing’s syndrome and disease (endogenous GC overproduction) and in patients 105 

prescribed GC-based therapy for immunomodulatory purposes (Raúl Ariza-Andraca et 106 

al. 1998). In addition, hypercortisolaemic conditions share many characteristics with 107 

metabolic syndrome, a cluster of abnormalities including hyperglycaemia, abdominal 108 

obesity, dyslipidaemia and hypertension (Anagnostis et al. 2009). Low-dose GC therapy 109 

is considered when the daily dose is less than 7.5 mg prednisolone or equivalent (van 110 

der Goes et al. 2010). When such a dose is administrated orally, plasma prednisolone 111 

levels peak 2-4 hours after intake at about 400-500 nM (~150-200 ng/ml) and return to 112 

baseline within 12 hours after steroid administration (Wilson et al. 1977, Tauber et al. 113 

1984). These values are in the same range as normal endogenous cortisol levels: 114 

reference values for samples taken between 4:00 am and 8:00 am are 250-750 nM and 115 

for samples taken between 8:00 pm and 12:00 pm are 50-300 nM. This indicates that 116 

the absolute cortisol values are not as important for developing adverse effects during 117 

low-dose GC therapy as is the diurnal variation. Current knowledge gives at hand that 118 

developing diabetes after starting low-dose GC treatment seems rare but progression of 119 

already impaired glucose tolerance to overt diabetes is possible (van der Goes et al. 120 

2010). Therefore, clinical recommendation states that baseline fasting glucose should be 121 
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monitored before initiating therapy and during following up according to standard 122 

patient care. Certainly, the adverse effects are more pronounced during high-dose GC 123 

therapies (>30 mg prednisolone or equivalent daily). In a retrospective study of 124 

hemoglobin A1c (HbA1c) levels in patients with rheumatic diseases subjected to 125 

prednisolone treatment, it was found that around 82% had HbA1c levels higher than 48 126 

mmol/mol (given in IFCC standard, corresponding to 6.7% in DCCT standard). Serum 127 

HbA1c levels higher than 52 mmol/mol (7.1%), were seen in 46% of the patients and 128 

23% of the patients had HbA1c levels as high as 57 mmol/mol (7.6%), which should be 129 

considered as a high risk factor for diabetes. Taken together, it was found that the 130 

cumulative prednisolone dose was the only factor significantly associated with the 131 

development of steroid-induced diabetes among rheumatic patients (Origuchi et al. 132 

2011).  133 

2.1. Adipose tissue. GCs regulate the maturation of pre-adipose cells into 134 

differentiated adipose cells as well as metabolism in adipose tissue (Rebuffé-scrive et 135 

al. 1992). Because the GR is predominantly expressed in adipose cells located in intra-136 

abdominal fat, GCs are more highly activated in these fat deposits (Pedersen et al. 137 

1994). A striking feature observed under conditions of GC excess is enhanced 138 

accumulation of visceral fat and loss of peripheral fat deposits in the arms and legs 139 

(Reynolds et al. 2012) (Figure 1). In the peripheral fat deposits, GCs promote 140 

expression of the key lipolytic enzyme hormone-sensitive lipase (Slavin et al. 1994) 141 

and, thus, acute infusion of cortisol in healthy humans induces triglyceride hydrolysis 142 

and the release of fatty acids and glycerol to the systemic circulation (Divertie et al. 143 

1991). On the contrary, it has been suggested that GCs promote increased fat mass and 144 

triglyceride synthesis in visceral fat. Hence, GCs and insulin work in concert to activate 145 

lipoprotein lipase (Ottosson et al. 1994), which leads to relocation of fat deposits from 146 
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arms and legs to abdominal sites. Furthermore, GC treatment was shown to inhibit 147 

AMPK (5' AMP-activated protein kinase) activity specifically in rat visceral but not 148 

subcutaneous adipose tissue (Christ-Crain et al. 2008), which may explain the 149 

redistribution of fat deposits that occurs during GC excess. This hypothesis remains to 150 

be proven in humans but is supported by the observation that patients with Cushing's 151 

syndrome exhibited a 70% lower AMPK activity in visceral adipose tissue (Kola et al. 152 

2008). Additionally, GC-induced attenuation of insulin signalling in the adipose tissue 153 

has been associated with reduced glucose uptake (Ortsäter et al. 2012). In summary, 154 

GCs exposure leads to impaired insulin signalling and a systemic elevation of fatty 155 

acids and triglycerides which contributes to IR. Furthermore, GCs induce abdominal 156 

obesity. 157 

2.2. Skeletal muscle. Skeletal muscle accounts for approximately 80% of 158 

insulin-mediated glucose uptake (IMGU) and is the largest glycogen store. GCs 159 

interfere directly with insulin signalling in skeletal muscle cells. Studies have shown 160 

that administration of dexamethasone reduces expression and activity of IRS1 (insulin 161 

substrate-1) and PI3K (phosphatidylinositol-4,5-bisphosphate 3-kinase) in rodent 162 

skeletal muscle cells (Saad et al. 1993, Morgan et al. 2005), which would presumably 163 

lead to a reduction in IMGU and abrogation of glycogen synthesis (Figure 1). Indeed, in 164 

a study with healthy human volunteers, prednisolone treatment for 6 days (0.8 mg·kg-1 165 

day-1) reduced insulin-induced leg glucose uptake by 65% compared to placebo 166 

treatment (Short et al. 2009). In support, rats treated with GCs were shown to have 167 

reduced insulin-stimulated glucose uptake, caused by attenuated insulin-induced 168 

GLUT4 (glucose transporter type 4) translocation to the cell membrane in myotubes 169 

(Dimitriadis et al. 1997). The condition is worsened by the accumulation of ectopic fat 170 

deposition in skeletal muscle (Fransson et al. 2013) (Figure 1), which originates from 171 
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the systemic GC-induced fatty acid elevation as discussed above. Taken together, these 172 

data show that GCs directly interfere with insulin signalling in skeletal muscle cells 173 

leading to reduced IMGU. 174 

2.3. Hepatic tissue. Hepatic tissue plays a key role in controlling glucose and 175 

lipid homeostasis. Although insulin does not directly stimulate glucose uptake in liver 176 

cells, the hormone is responsible for hepatic glycogen synthesis and gluconeogenesis 177 

suppression. These insulin actions are mediated via insulin receptor signalling. As in 178 

skeletal muscle, GC excess also interferes with the insulin signalling cascade in hepatic 179 

tissue. In one study, dexamethasone-treated rats (1.5 mg/kg body weight for 6 180 

consecutive days) exhibited an approximately 50-70% reduction in insulin receptor 181 

binding in hepatocytes (Olefsky et al. 1975). A significant reduction in insulin receptor 182 

density was also observed in hepatocytes from rats chronically treated with 183 

dexamethasone (Caro & Amatruda 1982). Diminished tyrosine phosphorylation in 184 

either insulin receptor or IRS1 was observed in liver from rats treated with 185 

dexamethasone for 5 consecutive days (Saad et al. 1993). In addition, GCs were shown 186 

to augment endogenous glucose production in several (Rizza et al. 1982, Pagano et al. 187 

1983, Rooney et al. 1993) but not all (Wajngot et al. 1990) studies conducted in healthy 188 

humans. GC-driven glucose production may be caused by enhanced gluconeogenesis, as 189 

GCs induce rate limiting enzymes for gluconeogenesis, e.g., phosphoenolpyruvate 190 

carboxylase and glucose-6-phosphatase (Lange et al 1994, Cassuto et al. 2005) (Figure 191 

1). GC-mediated expression of gluconeogenic enzymes appears to be dependent on liver 192 

X receptor (LXR) expression (Patel et al. 2011). Indeed, mice lacking LXRbeta (but not 193 

LXRalpha) were demonstrated to be resistant to dexamethasone-induced 194 

hyperglycaemia, hyperinsulinaemia, and hepatic steatosis but remained sensitive to 195 

dexamethasone-dependent immune system repression (Patel et al. 2011). Moreover, 196 
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since GCs promote muscle wasting and lipolysis, they also increase the bioavailability 197 

of substrates for gluconeogenesis (Divertie et al. 1991, Kim et al. 2012) (Figure 1). 198 

Finally, fat accumulation leads to hepatic steatosis (Fransson et al. 2013), which, by 199 

itself, attenuates insulin sensitivity (Kim et al. 2012). To summarise, elevated GC levels 200 

promote gluconeogenesis in hepatic tissue leading to fasting hyperglycaemia. 201 

2.4. Bone tissue. Osteoporosis is a common side effect observed in patients on 202 

GC-based therapy (Hoes et al. 2010). GCs also suppress osteoblast function, including 203 

osteocalcin synthesis (Prummel et al. 1991) (Figure 1). Osteocalcin is an osteoblast-204 

specific peptide that is reported to be involved in normal murine fuel metabolism 205 

(Ferron et al. 2008). In pioneering work by Lee et al (Lee et al. 2007), it was 206 

demonstrated, both in cell culture and in mice, that osteocalcin increased pancreatic 207 

beta-cell proliferation as well as insulin expression and release, resulting in improved 208 

glucose tolerance. In addition, uncarboxylated osteocalcin increased adiponectin 209 

expression and secretion in adipose tissue, which in turn enhanced insulin sensitivity 210 

(Lee et al. 2007). In human type 2 diabetes, serum osteocalcin concentrations are 211 

positively correlated with improved glucose control (Bao et al. 2011). In another study, 212 

osteoblast-targeted disruption of GC signalling significantly attenuated the suppression 213 

of osteocalcin synthesis and prevented the development of insulin resistance, glucose 214 

intolerance, and abnormal weight gain in corticosterone-treated mice (Brennan-215 

Speranza et al. 2012). Nearly identical effects were observed in GC-treated animals 216 

following hepatic expression of both carboxylated and uncarboxylated osteocalcin. 217 

These data suggest a link between GC effects on the skeleton and the steroid hormone 218 

effects on glucose homeostasis. 219 

 220 
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3. Effects of glucocorticoid treatment on pancreatic beta-cells and insulin 221 

secretion. Pancreatic beta-cells respond to increasing plasma glucose levels by 222 

secreting insulin, which maintains glycaemia within narrow physiological ranges. This 223 

key function can be altered by GCs through direct and indirect actions and may also 224 

depend on whether GCs act as acute or chronic stimuli. In the next sections, we consider 225 

the different aspects of GCs’ effects on beta-cells. 226 

 227 

3.1. Acute effects of glucocorticoids. The direct in vitro effects of GCs on 228 

glucose-stimulated insulin secretion (GSIS) are generally inhibitory and occur within a 229 

few minutes, as demonstrated in isolated rat islets exposed to corticosterone (0.02-20 230 

mg/L) (Billaudel & Sutter 1979) (Figure 2A, left). This inhibitory action involves alpha-231 

adrenergic signalling because phentolamine (a non-selective alpha-adrenergic 232 

antagonist) blocks GCs’ effect (Barseghian & Levine 1980). This rapid impact of GCs 233 

is not reproduced by synthetic steroids. GSIS inhibition in mouse (Lambillotte et al. 234 

1997) and rat islets (Zawalich et al. 2006) is apparent only after the third hour of 235 

exposure to 1 µM dexamethasone.  236 

GCs may also exert a negative in vivo effect during acute administration. A 237 

single oral dose of prednisolone (75 mg) (van Raalte et al. 2010) or dexamethasone (1 238 

mg) (Schneiter & Tappy 1998) in healthy volunteers resulted in decreased insulin 239 

secretion and/or a reduced insulinogenic index (the ratio between ∆insulinaemia and 240 

∆glycaemia) during a meal or an oral glucose tolerance test (oGTT), respectively. In 241 

contrast, other studies did not demonstrate this acute GC effect in healthy men (Vila et 242 

al. 2010) or normal adult rats (Stojanovska et al. 1990) during an intravenous or oGTT, 243 

respectively. Similar to the in vitro observations mentioned above, increased 244 

sympathetic drive may be involved in GCs’ inhibition of in vivo insulin secretion 245 
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(Longano & Fletcher 1983). This hypothesis is based on a study conducted with adult 246 

Swiss mice treated with hydrocortisone (300 mg/kg body weight) 1 hour prior to 247 

determining fed blood glucose and plasma insulin values. The insulinogenic index was 248 

reduced 1 hour after steroid administration in fed mice but unaltered when 249 

chlorisondamine (a ganglionic blocker) or phentolamine were given 10 minutes before 250 

GC administration (Longano & Fletcher 1983) (Figure 2B, left). Overall, acute 251 

exposure or administration of GCs appears to cause a decline in the insulinogenic index 252 

in humans and rodents, and this effect may be mediated by sympathetic activation of 253 

alpha-adrenergic receptors. It is important to highlight that 24 hours after interrupting 254 

GC administration, all beta-cell function parameters return to normal values (van Raalte 255 

et al. 2010).  256 

 257 

3.2. Chronic effects of glucocorticoids. As observed in acute in vitro 258 

experiments, chronic incubation (hours to days) with synthetic GCs in in vitro 259 

conditions leads to decreased GSIS in rodent isolated islets,  dispersed beta-cells and 260 

insulin-secreting cell lines (Lambillotte et al. 1997, Zawalich et al. 2006), Shao et al. 261 

2004, Ullrich et al. 2005). GCs’ deleterious effects on GSIS involve impaired glucose 262 

oxidative metabolism (Shao et al. 2004), activation of repolarising K+ channels (Ullrich 263 

et al. 2005), generation of reactive oxygen species (Roma et al. 2011), endoplasmic 264 

reticulum dyshomeostasis (Linssen et al. 2011), activation of 11β-HSD1 (Davani et al. 265 

2000) and decreased efficiency of intracellular Ca2+ on the secretory response 266 

(Lambillotte et al. 1997, Zawalich et al. 2006, Shao et al. 2004) (Figure 2A, right). 267 

However, in contrast to the above-mentioned inhibitory effects observed in both 268 

acute and long-term GC incubation, chronic in vivo administration of these steroids 269 

leads to up-regulated beta-cell function as a result of the compensatory adaptation to 270 
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GC-induced IR. Administration of high doses of prednisolone (30 mg) or 271 

dexamethasone (2 to 15 mg) to healthy individuals for prolonged periods (up to 15 days 272 

and up to 4 days, respectively) resulted in normoglycaemia or a modest increase of 273 

fasting glycaemia (Beard et al. 1984, Schneiter & Tappy 1998, Hollindgal et al. 2002, 274 

Willi et al. 2002, Nicod et al. 2003, Ahrén 2008, van Raalte et al. 2010, Petersons et al. 275 

2013). Importantly, in most of these studies, volunteers developed hyperinsulinaemia. 276 

In fact, during glucose challenging with a hyperglycaemic-clamp (Beard et al. 1984, 277 

Nicod et al. 2003) or an oGTT (Schneiter & Tappy 1998, Hollindgal et al. 2002, Willi 278 

et al. 2002) insulin release was significantly higher in GC-treated individuals compared 279 

to control groups. Plasma C-peptide values were also elevated after prednisolone 280 

treatment in healthy men at basal conditions (Hollindgal et al. 2002) and during a meal 281 

tolerance test (van Raalte et al. 2010). This enhanced beta-cell function was also 282 

observed in adult rats treated for up to 13 consecutive days with dexamethasone (0.125-283 

2.0 mg/kg) based on basal hyperinsulinaemia (Novelli et al. 1999, Karlsson et al. 2001, 284 

Rafacho et al. 2008) or in vivo glucose challenging (Rafacho et al. 2008, 2011). This 285 

augmented beta-cell function occurred in a dose- (Rafacho et al. 2008) and time-286 

dependent manner (Rafacho et al. 2011). In normal adult mice, administration of 287 

dexamethasone for 10 days or corticosterone from the first consecutive week also 288 

resulted in basal hyperinsulinaemia (Thomas et al. 1998, Fransson et al. 2013). 289 

This hyperinsulinaemia is consistent with insulin hypersecretion observed in 290 

pancreatic islets isolated from GC-treated rats (Novelli et al. 1999, Karlsson et al. 2001, 291 

Rafacho et al. 2008, 2010a, 2010b). This enhanced beta-cell secretion involves an 292 

improvement in glucose responsiveness (Karlsson et al. 2001, Rafacho et al. 2008), 293 

sensitivity (Rafacho et al. 2008) and oxidative metabolism (Rafacho et al. 2010a) as 294 

well as augmented Ca2+ handling (Rafacho et al. 2010a) and an improved response to 295 
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cholinergic signals (Angelini et al. 2010, Rafacho et al. 2010,) (Figure 2B, right). The 296 

islet compensatory response is also accompanied by structural changes. It has been 297 

demonstrated that, beta-cell mass increases in a time- (Rafacho et al. 2011) and dose-298 

dependent manner (Rafacho et al. 2009) with GC administration, according to the 299 

correspondent degree of insulin insensitivity. Taken together, these results show that 300 

when humans or animal models are exposed to prolonged steroid treatment, they 301 

develop augmented beta-cell function and mass to counteract the IR resulting from GC 302 

administration. 303 

 304 

3.3. Glucocorticoid treatment, beta-cell dysfunction and glucose intolerance. 305 

Depending on the GC regimen, glucose homeostasis is maintained at normal or near 306 

normal physiological conditions by adaptive beta-cell compensations. However, these 307 

adaptations do not always guarantee an adequate glucose homeostasis. Although insulin 308 

hypersecretion observed after prolonged steroid treatment appears to be consistent in 309 

most experiments performed with healthy volunteers (Beard et al. 1984, Schneiter & 310 

Tappy 1998, Ahrén 2008, van Raalte et al. 2010) and normal adult rats (Karlsson et al. 311 

2001, Rafacho et al. 2008, 2009, 2011), glucose intolerance is also present. In these 312 

studies, hyperinsulinaemia is normally associated with normoglycaemia or modest 313 

increases in blood glucose values, but the insulin (Rafacho et al. 2008, 2011, Schneiter 314 

& Tappy 1998) and c-peptide hypersecretion (van Raalte et al. 2010) during glucose or 315 

meal challenges, respectively, do not prevent elevation in postprandial blood glucose 316 

levels. Therefore, the insulinogenic index may not necessarily match the peripheral 317 

insulin demand imposed by GCs. 318 

 The negative impact of GCs on glucose homeostasis is more apparent in 319 

individuals with any degree of susceptibility to glucose intolerance, such as those with 320 
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low insulin sensitivity (Larsson & Ahrén 1999), low insulin response to glucose 321 

(Wajngot et al. 1992), first-degree relatives of patients with type 2 diabetes (Jensen et 322 

al. 2012), obesity (Besse et al. 2005) and those who are older (Novelli et al. 1999). In 323 

these individuals, beta-cell function does not correspond to the peripheral insulin 324 

demand, and the deregulation of glucose homeostasis becomes more pronounced, 325 

reinforcing that individual background is a critical factor. Indeed, this susceptibility to 326 

beta-cell failure after treatment with dexamethasone has also been observed in animal 327 

models with an obesity background, such as fa/fa rats (Ogawa et al. 1992) and ob/ob 328 

mice (Khan et al. 1992).  329 

In an attempt to analyse whether GCs have any direct effects on beta-cells in 330 

vivo independent of peripheral GC actions, a transgenic mouse model that specifically 331 

over-expresses GR in these cells was generated (Delaunay et al. 1997, Davani et al. 332 

2004). These mice were normoglycaemic but displayed glucose intolerance associated 333 

with reduced insulin secretion during a glucose load (Delaunay et al. 1997). When these 334 

transgenic mice aged, hyperglycaemia developed together with marked glucose 335 

intolerance and reduced in vivo and ex vivo GSIS. Remarkably, no change in beta-cell 336 

apoptosis was observed in these mice (Davani et al. 2004). This deterioration in GSIS 337 

was prevented by incubating islets with benextramine (a selective α2-adrenergic 338 

receptor antagonist), suggesting the involvement of adrenergic signals. In any case, the 339 

analysis of direct GC effects on beta-cells in vivo is difficult because the systemic 340 

metabolic consequences of GC treatment most likely mask the GC-mediated changes in 341 

beta-cell function. Of note, almost all the morphofunctional beta-cell changes elicited 342 

by GC administration are transitory and reversible after 10 days of discontinuation of 343 

steroid treatment in rats, suggesting an unacknowledged plasticity in the regulation of 344 

beta-cell function and growth (Rafacho et al. 2010b). 345 
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 346 

4. Effects of glucocorticoids on glucagon release and other islet hormones. 347 

Glucagon secretion by pancreatic alpha-cells plays a key role in glucose 348 

homeostasis. Glucagon’s release is enhanced at low plasma glucose levels but decreases 349 

under hyperglycaemic conditions (Quesada et al. 2008; Marroqui et al. 2014). Glucagon 350 

is one of the most important hyperglycaemic hormones and acts as insulin’s counterpart, 351 

opposing numerous anabolic insulin-mediated actions. The hyperglycaemic effect is 352 

mainly produced by activating hepatic glycogenolysis and gluconeogenesis, which 353 

results in the release of endogenous glucose into the bloodstream. This process restores 354 

normoglycaemia under hypoglycaemic conditions (Quesada et al. 2008; Marroqui et al. 355 

2014). Hyperglucagonaemia may be present in diabetes. Additionally, inhibition of 356 

glucagon release at high glucose levels may be impaired in this metabolic condition. 357 

This impaired alpha-cell function can lead to higher hepatic glucose output, further 358 

contributing to hyperglycaemia in diabetic patients (Quesada et al. 2008; Marroqui et 359 

al. 2014). As in the case of beta-cells, in the next section we summarise the acute and 360 

chronic effects of GCs on alpha-cell function. 361 

 362 

 4.1. Acute effects of glucocorticoids on alpha-cell function and glucagon 363 

release. One study reported that corticosterone (10-7 M) potentiated glucagon release 364 

induced by a glucose-free medium or arginine in isolated perfused rat pancreas 365 

(Barseghian & Levine 1980). In contrast, incubation of mouse pancreatic islets with 366 

dexamethasone (0.5-50 nM), corticosterone (50 nM) or 11-dehydrocorticosterone (50 367 

nM) for 2 hours reduced glucagon secretion induced by low glucose levels, effects that 368 

were reversed by a GR antagonist (Swali et al. 2008). The inhibitory action of 11-369 

dehydrocorticosterone was partially reversed by a selective 11beta-HSD1 inhibitor. This 370 
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fact, along with the co-localisation of this enzyme with human and rodent islet alpha-371 

cells, indicates that this islet cell type serves an important local function in pancreatic 372 

GC metabolism (Swali et al. 2008). This situation may be different in other species, for 373 

example in rats, where this enzyme is expressed in non-alpha-cells (Rafacho et al. 374 

2014). In contrast with the above-mentioned results, prednisolone (10-5 M) failed to 375 

modify glucagon secretion in mouse pancreatic islets (Marco et al. 1976). Likewise, 376 

incubation of rat pancreatic islets with dexamethasone (1 µM) for 3 hours did not 377 

modify glucagon secretion (Rafacho et al. 2014). Thus, in vitro experiments with acute 378 

GC exposure have reported divergent effects on glucagon secretion. These divergences 379 

may depend on different factors, including the preparation and species studied as well as 380 

the specificity and potency of the different GCs used.  381 

 382 

4.2. Chronic effects of glucocorticoids on alpha-cell function and glucagon 383 

release. Alpha-cell growth regulation by long-term GC exposure has been explored 384 

during development. Alpha-cell mass was decreased in 21-day-old foetuses obtained 385 

from pregnant rats that received dexamethasone in drinking water (1µg/ml) either 386 

during the last week of pregnancy or throughout gestation (Dumortier et al. 2011). In 387 

contrast, GR inactivation in the pancreatic beta-cell (rat insulin promoter-Cre transgene) 388 

or in cells expressing pancreatic and duodenal homeobox-1 (PDX-1), which is involved 389 

in pancreas development, did not modify alpha-cell mass in adult mice (Gesina et al. 390 

2004). Adult rats treated with dexamethasone (1 mg/kg) for 5 consecutive days 391 

exhibited a 50% increase in alpha-cell mass (Rafacho et al. 2014). Similarly, 392 

administration of corticosterone to adult rats fed a high-fat diet promoted a synergistic 393 

positive effect on alpha-cell mass (Beaudry et al. 2013). In general, GC administration 394 
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in adults appears to up-regulate alpha-cell mass, while the opposite effect is observed 395 

during development.  396 

 Glucagon release is also modulated by GCs. Rats treated with dexamethasone (1 397 

mg/kg) for 5 consecutive days showed hyperglucagonaemia (Rafacho et al. 2014). In 398 

this model, isolated pancreatic islets exhibited impaired inhibition of glucagon release at 399 

high glucose levels. Similarly, dexamethasone (0.25 mg/kg) administered for 7 days in 400 

rhesus macaques induced fasting hyperglucagonaemia (Cummings et al. 2013), and 401 

prednisolone (0.2-0.3 mg daily) administered for 4 days increased basal and arginine-402 

induced glucagon secretion in isolated mouse islets (Marco et al. 1976). In contrast to 403 

the above-mentioned results obtained for in vivo GC treatment, glucagon release was 404 

suppressed in isolated rat islet cells incubated for 18 hours with dexamethasone at 10-9 405 

and 10-10 M, but was without effect at higher steroid concentrations (Papachristou et al. 406 

1994). Thus, most in vivo and ex vivo chronic studies point to enhanced alpha-cell 407 

secretion after GC administration. The resulting hyperglucagonaemia may aggravate 408 

GC-induced hyperglycaemia by stimulating hepatic glucose release and opposing 409 

insulin actions (Quesada et al. 2008) (Figure 3). 410 

 Clinical studies have also examined GCs’ effects on human alpha-cell function. 411 

Administration of prednisolone (40-100 mg daily) for up to 4 days induced fasting 412 

hyperglucagonaemia and glucagon hypersecretion in response to arginine (Marco et al. 413 

1973). Similarly, daily dexamethasone treatment (2 mg) for 3 days led to increased 414 

basal plasma glucagon levels and enhanced alanine-induced glucagon release in non-415 

obese subjects (Wise et al. 1973). Both responses were even more pronounced in obese 416 

individuals and patients with Cushing’s syndrome. Moreover, administration of 417 

dexamethasone (3 mg twice daily for 2 days) and prednisolone (30 mg for 2 consecutive 418 

weeks) led to increased fasting and postprandial glucagon levels (Beard et al. 1984, van 419 
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raalte et al. 2013). In contrast, in a few studies, fasting glucagon concentrations were 420 

found to be unchanged by dexamethasone (3 mg twice daily for 2 and ½ days) (Larsson 421 

& Ahrén 1999). Thus, the majority of clinical studies show that GC treatment may up-422 

regulate alpha-cell function, which may enhance GCs’ diabetogenic actions (Figure 3). 423 

 424 

4.3. Effects of glucocorticoids on somatostatin, amylin and ghrelin release. 425 

Pancreatic delta-cells secrete somatostatin, which indirectly affects glucose 426 

homeostasis, suppressing both insulin and glucagon release (Quesada et al. 2008). In 427 

vivo experiments showed that dexamethasone administration (0.5 mg/kg) for 3 or 8 days 428 

in rats increased somatostatin gene expression and protein content in the pancreas 429 

(Papachristou et al. 1994). However, plasma somatostatin levels were not measured in 430 

these conditions. In in vitro experiments, incubation of isolated islet-cells with 431 

dexamethasone for 18 hours produced a biphasic effect: while low doses (10-10 M) 432 

stimulated the somatostatin gene and protein expression, high doses (10-8-10-5 M) 433 

produced the opposite effect (Papachristou et al. 1994). At this chronic exposure, the 434 

high doses reduced somatostatin release into the medium. When foetal pancreatic islets 435 

were cultured for 8 days with corticosterone (0.1 µg/ml), both the somatostatin 436 

concentration in the medium and the islet somatostatin content were increased (McEvoy 437 

et al. 1981). Thus, few experiments indicate that GC may regulate directly or indirectly 438 

delta-cell function (Figure 3). Elevation in plasma somatostatin concentrations should 439 

inhibit alpha and beta-cell function under normal physiological conditions. However, 440 

this appears not to be the case during GC administration, given that GC treatment 441 

results in hyperglucagonaemia and hyperinsulinaemia. 442 

The islet amyloid polypeptide (IAPP), also called amylin, is co-secreted with 443 

insulin by pancreatic beta-cells in response to food intake, most likely via the same 444 
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mechanisms that allow for insulin release. This hormone decreases postprandial 445 

glycaemia by inhibiting gastric emptying and suppressing glucagon secretion 446 

(Westermark et al. 2011). However, type 2 diabetes has also been related to the 447 

formation of toxic amyloid aggregates that can induce beta-cell apoptosis (Westermark 448 

et al. 2011). This aggregation might be associated with IR and insulin (and amylin) 449 

hypersecretion (Westermark et al. 2011), which also result from GC treatment. With 450 

this enhanced hormonal release, impaired intracellular IAPP processing may initiate the 451 

amyloid aggregation process. For instance, dexamethasone treatment for up to 12 days 452 

led to increased levels of both proinsulin and IAPP mRNA in rat islets (Bretherton-Watt 453 

et al. 1989, Koranyi et al. 1992). Similarly, both enhanced plasma amylin levels and 454 

amylin secretion from isolated pancreata were found in dexamethasone-induced insulin-455 

resistant rats (Pieber et al. 1993, Mulder et al. 1995). Similar findings in amylin 456 

changes have been reported in humans after dexamethasone treatment (Ludvik et al. 457 

1993), indicating that GC administration may enhance IAPP release (Figure 3). 458 

Ghrelin is released by P/D1 cells from the stomach but also by epsilon-cells 459 

from the pancreas (Wierup et al. 2013). Only few epsilon-cells are present in each islet. 460 

Ghrelin inhibits insulin and somatostatin secretion but increases glucagon release 461 

(Chuang et al. 2011, Wierup et al. 2013). Additionally, this hormone potently stimulates 462 

growth hormone release from the anterior pituitary gland and stimulates appetite (Malik 463 

et al. 2008). In hypercortisolemic patients with Cushing's disease, plasma ghrelin 464 

concentrations increased after successful surgery, while prednisolone administration (30 465 

mg/day) for five days decreased plasma ghrelin levels in healthy individuals (Otto et al. 466 

2004). However, no changes were observed in response to a unique bolus of 467 

hydrocortisone (0.6 mg/kg) in healthy men (Vila et al. 2010). In a neonatal rat model, 468 

dexamethasone (0.5-0.05 mg/kg) administrated for four consecutive days led to 469 
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augmented plasma ghrelin levels in newborns (Bruder et al. 2005). However, any of the 470 

above-mentioned studies discriminated the ghrelin source, either the stomach or the 471 

pancreas. Thus, much research is necessary to address whether GCs can affect the 472 

function of epsilon islet-cells. 473 

 474 

5. Conclusions and future perspectives. 475 

The diabetogenic effects of GCs are a limiting factor to their clinical use, 476 

particularly in individuals with diabetes risk factors. These side effects include 477 

unfavourable actions on peripheral tissues, such as skeletal muscle, liver, bone and 478 

adipose tissue, which mainly result, among other effects, in decreased insulin 479 

sensitivity, augmenting insulin needs. In response to this GC-induced IR, the endocrine 480 

pancreas undergoes compensatory beta-cell changes in function and mass, which lead to 481 

hyperinsulinaemia and enhanced stimulated insulin release, to maintain 482 

normoglycaemia. Despite the fact that most of these adaptations are observed in healthy 483 

subjects and animal models under GC treatment, the adaptations do not necessarily 484 

guarantee an adequate insulinogenic index to prevent glucose intolerance. These beta-485 

cell adaptations are less efficient in susceptible individuals, increasing the risk of 486 

impaired glucose homeostasis during GC treatment. Up-regulated beta-cell function 487 

resulting from steroid treatment contrasts with the direct inhibitory actions observed in 488 

both acute and long-term in vitro GC exposure. Thus, the effects derived from in vivo 489 

GC treatment may prevail over the potential direct GC actions on beta-cells. In any 490 

case, further research is necessary to unravel the molecular mechanisms of both direct 491 

and indirect GC actions on the endocrine pancreas. 492 

Several studies have also documented acute and chronic GC effects on non-beta 493 

pancreatic cells. The mechanisms implicated are not clear but may involve multiple 494 
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factors, including direct actions on islet cells as well as effects derived from adaptations 495 

to IR, hyperglycaemia, hyperinsulinaemia or other conditions. Remarkably, the majority 496 

of in vivo animal studies and clinical reports show that, in addition to 497 

hyperinsulinaemia, GC treatment induces higher plasma levels of glucagon and amylin 498 

and may probably affect somatostatin. The increased plasma amylin levels might also 499 

be considered diabetogenic because enhanced IAPP concentrations may lead to 500 

increased rates of toxic amylin aggregation (Couce et al. 1996). Additionally, the 501 

hyperglucagonaemia observed with GC treatment opposes insulin actions and may 502 

aggravate steroid-induced hyperglycaemia by increasing hepatic glucose output, as 503 

indicated in diabetes (Quesada et al. 2008). Thus, the impaired release of the different 504 

islet hormones may increase the diabetogenic effects of GCs. 505 

The majority of studies about GC actions involve the use of murine models, and 506 

thus, prudence is required when translating this experimental data to humans. However, 507 

it is also important to mention that the prolonged duration of several GC therapies in 508 

clinical practice may exceed the safe period proposed in experimental approaches in 509 

human studies, which generally do not surpass 2-15 days of GC treatment (van Raalte et 510 

al. 2009). Thus, experimental data from human, although of great relevance, fail to 511 

totally mimic the conditions of clinical practice (i.e. duration). Elaboration of protocols 512 

to investigate GC actions in human volunteers is not feasible, considering the risk of 513 

irreversible negative effects, ethical issues, as well as the nature of ex vivo and in vitro 514 

techniques available for the mechanistic studies (van Raalte et al. 2009). In this regard, 515 

animal models are valuable tools, since part of the above-mentioned limitations can be 516 

resolved. 517 

 Improved knowledge of GCs’ intracellular signalling mechanisms and effects 518 

will help to design better GC therapies. In this regard, it has been suggested that gene 519 
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transrepression accounts for the majority of therapeutic GC effects, while 520 

transactivation of metabolic target genes is mainly responsible for the side effects 521 

(Strehl & Buttgereit 2013). Using this concept, several GR agonists dissociating 522 

transrepression from transactivation were developed (Löwenberg et al. 2008). Some of 523 

these agonists have proven useful for maintaining GCs’ anti-inflammatory and 524 

immunosuppressive effects, while reducing side effects like hyperglycaemia. However, 525 

the above-mentioned concept may be over-simplistic, and side effects may not only be 526 

explained by transactivation but also by non-genomic actions (Vandevyver et al. 2013). 527 

Thus, a great deal of research is still necessary to develop GR agonists with reduced 528 

drawbacks for glucose homeostasis. Moreover, the combination of GC-based therapies 529 

with glucose-lowering drugs could also be an interesting alternative to explore to 530 

minimise the disadvantages of GC treatment. 531 
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FIGURE LEGENDS 1 

Figure 1. Effects of glucocorticoids on peripheral tissues involved in the control of 2 

glucose homeostasis. Excess or prolonged GC treatment may disrupt glucose 3 

homeostasis by interfering with several metabolic-related tissues. In visceral adipose 4 

tissue, GCs elevate LPL activity, leading to fat accumulation at this fat site. Fat in the 5 

limbs appears to respond to GCs with increased HSL activity, resulting in increased 6 

lipid (FFA and glycerol) release, supplying substrates for hepatic TG synthesis and 7 

gluconeogenesis, and also in intramuscular fat accumulation. These steroids may also 8 

affect insulin signalling in adipose tissue. GCs impair insulin-stimulated glucose uptake 9 

in skeletal muscles and induce muscle wasting, which, in turn, provides 10 

gluconeogenesis substrates. In the liver, GCs have a negative effect on rate-limiting 11 

enzymes controlled by insulin. Finally, GC in excess may also alter osteocalcin 12 

synthesis in osteoblast cells leading to reduced osteocalcinaemia. Abbreviations: FFA, 13 

free fatty acids; GCs, glucocorticoids; G6Pase, glucose-6-phospatase; HSL, hormone-14 

sensitive lipase; LPL, lipoprotein lipase; PEPCK, phophoenolpyruvate carboxykinase; 15 

TG, triacylglycerol. 16 

 17 

Figure 2. Sites of the insulin secretory process affected by in vitro or in vivo (ex 18 

vivo) exposure to glucocorticoids. In (A), the known components involved in the acute 19 

or chronic in vitro effects of GCs on the beta-cell insulin secretory process are 20 

highlighted with a positive signal (indicates GCs stimulate/increase that action/function) 21 

or a negative signal (indicates GCs inhibit/diminish that action/function). Most notably, 22 

GCs impair beta-cell glucose metabolism, favour repolarising Kv
+ currents, decrease 23 

PKA and PKC activation, induce ER dyshomeostasis, increase 11beta-HSD1 activity 24 

and ROS generation and impair calcium handling. Together, these effects inhibit insulin 25 
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secretion. In (B), the known components involved in beta-cell function which are 26 

affected by acute or long-term in vivo GC treatment are highlighted with a positive 27 

signal, which indicates increased content or activity. Most notably, augmented glucose 28 

metabolism and cholinergic pathway activity cause increased calcium influx and insulin 29 

secretion. In this context, a positive GC effect on K+ and VDCC channels could not be 30 

excluded. Abbreviations: AC, adenylyl cyclase; Ach, acetylcholine; alphaAR, alpha 31 

adrenergic receptor; cAMP, cyclic adenosine monophosphate; DAG, diacylglycerol; 32 

ER, endoplasmic reticulum; Gi, G-coupled inhibitory protein; GLUT2, glucose 33 

transporter 2; IP3, inositol triphosphate; K+, ATP-dependent K+ channel; Kv
+, voltage-34 

dependent K+ channel; M3R, muscarinic receptor type 3; PIP2, phosphatidylinositol 35 

bisphosphate; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; 36 

ROS, reactive oxygen species; VDCC, voltage-dependent Ca2+ channel; 11beta-HSD-1, 37 

11beta-hydroxysteroid dehydrogenase type 1. 38 
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Figure 3. Diabetogenic effects of GC treatment: implication of islet hormones. GC 40 

treatment can induce IR in peripheral tissues. As a compensatory adaptive process, the 41 

endocrine pancreas increases insulin release, leading to hyperinsulinaemia. An adequate 42 

compensatory response to the insulin requirements imposed by IR allows for 43 

normoglycaemia. However, an insufficient beta-cell response could lead to impaired 44 

glucose tolerance, which can progress to overt hyperglycaemia and type 2 diabetes. GC 45 

treatment also induces high plasma levels of glucagon and amylin, and may affect 46 

somatostatin concentrations. Although somatostatin inhibits alpha and beta-cells, the 47 

potential changes in this hormone induced by GCs do not appear to produce a 48 

significant negative effect in these conditions. Hyperglucagonaemia increases hepatic 49 

glucose output, which exacerbates hyperglycaemia and glucose intolerance and further 50 
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opposes insulin action, decreasing the insulin effect. High amylin levels have been 51 

related to increased predisposition to amyloid formation in decreased insulin sensitivity 52 

conditions, like those generated by GCs. Amyloid aggregation is related to increased 53 

beta-cell death and malfunction. The molecular mechanisms underlying the high plasma 54 

levels of glucagon and amylin induced by GC treatment are still unknown.  55 
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