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Alterations during development of metabolic key organs such as the endocrine pancreas affect the 41 

phenotype later in life. There is evidence that in utero or perinatal exposure to bisphenol-A (BPA), 42 

leads to impaired glucose metabolism during adulthood. However, how BPA exposure during 43 

pregnancy affects pancreatic β-cell growth and function in offspring during early life has not been 44 

explored. We exposed pregnant mice to either vehicle (Control) or BPA (10 and 100 µg/kg/day, 45 

BPA10 and BPA100) and examined offspring on postnatal days (P) P0, P21, P30 and P120. BPA10 46 

and BPA100 mice presented lower birth weight than Control and subsequently gained weight until 47 

day 30. At that age, concentration of plasma insulin, C-peptide and leptin were increased in BPA-48 

exposed animals in non-fasting state. Insulin secretion and content were diminished in BPA10 and 49 

maintained in BPA100 compared to Control. A global gene expression analysis indicated that genes 50 

related with cell division were increased in islets from BPA-treated animals. This was associated with 51 

an increase in pancreatic β-cell mass at P0, P21 and P30, together with increased β-cell proliferation 52 

and decreased apoptosis. On the contrary, at P120, BPA treated animals presented either equal or 53 

decreased β-cell mass compared to Control and altered fasting glucose levels. These data suggest that 54 

in utero exposure to environmentally relevant doses of BPA alters the expression of genes involved in 55 

β-cell growth regulation, incrementing β-cell mass/area and β-cell proliferation during early life. An 56 

excess of insulin signaling during early life may contribute to impaired glucose tolerance during 57 

adulthood.   58 
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INTRODUCTION 59 

Chronic diseases like diabetes and obesity are due to gene-by-environment interactions over time, 60 

starting during fetal development. The developmental origins of health and disease (DOHaD) 61 

hypothesis proposes that “an adverse environment experienced by a developing individual can 62 

increase the risk of diseases later in life” (1). This hypothesis was formulated after the work by Barker 63 

(2) based on the strong association between poor nutrition during intrauterine life and the increased 64 

incidence of metabolic disorders among the offspring. Thus, maternal nutrition during early 65 

development is considered a major intrauterine environmental factor influencing the development and 66 

progression of obesity and type 2 diabetes later in life. In addition, the metabolic conditions of the 67 

mother affect the development of the endocrine pancreas. This is extremely important since fetal life 68 

represents a critical period of time in which a correct β-cell function and an appropriate β-cell mass 69 

are set in place. A substantial number of animal models have been developed to elucidate the 70 

consequences and mechanisms in maternal overnutrition and malnutrition. The former includes 71 

animal models of obesity or high fat diet (3-5) and the later include low protein diet (6, 7) or low 72 

energy diet (8-10) as well as models of hypoxia (11), gestational diabetes (12), hyperglycaemia (13) 73 

and insulin resistance (14). In most of these models β-cell mass, β-cell function or both are altered.  74 

Exposure to EDCs during pregnancy has been recognized for decades to cause adverse outcomes in 75 

progenies, both in humans and in animal models (15, 16). One early and well-studied example was in 76 

utero exposure to diethylstilbestrol (DES), a potent non-steroidal estrogen drug designed by Dodds in 77 

1936 (17, 18) and prescribed from 1940 to 1975 as an antiabortive drug. In the 1970s it was proved 78 

that exposed daughters presented clear-cell adenocarcinomas at an early age (19, 20). Remarkably, 79 

work with animal models reproduced the effects clinically detected in humans (21). Like DES, BPA 80 

was demonstrated to have estrogenic activity at about the same time (17, 18), but because DES 81 

resulted to have stronger activity than BPA, DES was used in clinical practice. 82 

In the 1950s BPA was rediscovered as a compound that could be polymerized to make polycarbonate 83 

plastic. From that moment it has been extensively used in the plastic industry with approximately 15 84 

billion pounds per year of BPA produced annually in the world (22) 85 
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In addition to its role as the base component of polycarbonate plastic,  BPA is used to produce epoxy 86 

resins for the coating of pipes and metal equipment and the lining of food cans (23) as well as a 87 

plasticizer in the manufacture of other plastics such as PVC (24). Heat, acid or basic media have been 88 

shown to cause the leaching of the monomer to the environment (25). 89 

 90 

It was described that BPA has lower affinity than 17-β-estradiol for the nuclear  receptors ERα and 91 

ERβ  which will act as transcription factors binding to estrogen response elements in the DNA (26, 92 

27). More recently we have proposed that it can behave also as a potent estrogen (within the 93 

picoMolar-nanoMolar range) in β-cells when binding ERα and ERβ out of the nucleus. In this 94 

manner, BPA triggers the activation of different signaling pathways, involving kinases as well as the 95 

activation of other transcription factors which could explain many of the low doses effects of BPA 96 

(28-30)  97 

BPA is a widespread EDC which has been found in the urine of 93% of USA citizens (31). Its 98 

concentration ranges within the nanograms per mL reported by some authors (32-34) and the 99 

picogram per mL range reported by other authors (35). In any case, exposure of mice and rats to BPA 100 

at low doses during pregnancy, or pregnancy and lactation, produced alterations in blood glucose 101 

homeostasis and β-cell function in male adult offspring (36-40). The adult phenotype is dependent on 102 

gender, age, dose and timing of exposure; yet in the majority of reports there is insulin resistance, 103 

glucose intolerance, hyperinsulinemia and alteration in blood adipokine levels. In particular 104 

alterations in glucose homeostasis was observed in adult offspring (between 3 and 8 months of life) 105 

after BPA exposure  through gestation or gestation and lactation in OF-1 mice, CD-1 mice or  rats at 106 

doses of  3.5, 5, 10, 40, 50 or 100 µg/kg/day (36-40, 42-46). No effect on glucose metabolism was 107 

observed when exposure occurred at  lower levels 2.5 ng/kg/day (47). 108 

 109 

In the present study, we used pregnant mice exposed to environmentally relevant doses of BPA to 110 

determine how BPA exposure affects glucose homeostasis, β-cell function and β-cell mass at an early 111 

age in offspring. Based on the United States-Environmental Protection Agency (U.S.-EPA) criterion 112 



5 
 

for low-dose effects of EDCs, we considered levels below the current lowest observed effect level 113 

(LOAEL) of 50 μg/kg/day as low doses for in vivo studies. Our hypothesis is that exposure during 114 

pregnancy to BPA will alter these parameters at the beginning of life. This could be connected with 115 

the increased susceptibility to the development of type 2 diabetes observed later in life. We based our 116 

hypothesis in published results of undernutrition during pregnancy which showed altered β-cells mass 117 

and function as described in the first paragraph.  Our results demonstrate that intrauterine exposure to 118 

BPA is an important environmental factor that promotes early structural and functional changes in 119 

pancreatic β-cells.  120 

  121 
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MATERIALS AND METHODS 122 

 123 

Animals and treatment 124 

Pregnant OF-1 mice were purchased from Charles River (Barcelona, Spain) and individually housed 125 

under standard conditions. Mice were maintained on 2014 Teklad Global 14% Protein Rodent 126 

Maintenance Diet (Harlan Laboratories, Barcelona, Spain), which does not contain alfalfa or soybean 127 

meal. The composition of the diet is as follows: calories from protein, 18%; calories from fat, 11%; 128 

and calories from carbohydrate, 71%, with energy of 2.9 kcal/g. Bisphenol-A (MP Biomedicals, cat. 129 

No. 155118) and 17-β-estradiol (E2) (Sigma, cat. No. E8875) were dissolved in tocopherol-stripped 130 

corn oil (MP Biomedicals, cat. No. 901415, Illkirch, France) and administered subcutaneously on 131 

days 9–16 of gestation. The daily dose used was 10 or 100 μg/kg in a constant volume of 100µL, 132 

either to vehicle. For BPA experiments 192 pregnant mice were used in the study (control n=73; 133 

BPA10 n=63; BPA100 n=56). For E2 experiments 18 pregnant mice were used (control n=10; E10 134 

n=8). We selected litters with a number of pups between 10 and 12 only, to avoid pups/litter number 135 

as a variable. After weighting at P0, pups from the same treatment were pooled together and then 136 

placed in equal number with foster mothers of the same treatment group. The litter size was 137 

maintained constant. Animals were sexed and weaned on postnatal day 21. They were housed (7 male 138 

mice/group) from weaning through day of sacrifice. After weaning, they were maintained, ad libitum, 139 

on diet described above. Experiments were performed when mice were on postnatal days (P) P0, P21, 140 

P30 and P120.  141 

The ethical committee of Miguel Hernandez University “Comisión de Ética en la Investigación 142 

Experimental” specifically reviewed and approved this study (approvals ID: UMH-IB-AN-01-14 and 143 

IB-PAM-01-15). Animals were treated humanely and with regard to alleviate suffering. 144 

All experiments have been done in non-fasting condition. Only the group of animals used for 145 

performing the glucose tolerance test was maintained in fasted state for 12 h (n=6-14 animals from 6-146 

10 litters). In addition, a second group of animals was also fasted (12 h) for taking blood samples and 147 

measuring insulin plasma levels (n=9-14 animals from 8-14 litters). 148 



7 
 

 149 

Islet cell isolation 150 

Pancreatic islets of Langerhans were isolated by collagenase (Sigma, Madrid, Spain) digestion 151 

(modified from (48)) The solution used for the isolation of the islets of Langerhans  contained (in 152 

mmol/l): 115 NaCl, 10 NaHCO3, 5 KCl, 1.1 MgCl2, 1.2 NaH2PO4, 2.5 CaCl2, 25 HEPES, and 5 D-153 

glucose, pH 7.4, as well as 0.25% BSA. Freshly isolated islets were used for insulin secretion and 154 

content measurements after 2 hours of recovery. 155 

 156 

Glucose and insulin tolerance tests 157 

For intraperitoneal glucose tolerance tests (ipGTT), animals were fasted for 12 h, and blood samples 158 

were obtained from the tail vein. Animals were then injected intraperitoneally with 2g/kg body weight 159 

of glucose, and blood samples were taken at the indicated intervals. 160 

For intraperitoneal insulin tolerance tests (ipITT), fed animals were used. Animals were injected 161 

intraperitoneally with 0.75 IU/kg body weight of soluble insulin (Lilly), and blood samples were 162 

obtained from the tail vein. Blood glucose was measured in each sample using an Accu-check 163 

compact glucometer (Roche, Madrid, Spain). Levels of glycemia after insulin injection are expressed 164 

as % of glycemia compared to basal glycemia levels in fed state. 165 

 166 

Serum analysis 167 

Blood samples were collected for biochemical analysis at decapitation in fed or fasted (12 hours) state 168 

animals. Serum samples were obtained by centrifugation for 15 minutes at 1200 rpm at 4ºC. Samples 169 

were stored at -80ºC. The serum insulin level was analyzed by Ultra Sensitive Mouse Insulin ELISA 170 

Kit (Crystal Chem, Downers Grove, IL). C-peptide level was determined using C-peptide (mouse) 171 

ELISA (Alpco immunoassays, Salem, NH). Leptin level was analyzed by Mouse Leptin ELISA kit 172 

(Crystal Chem, Downers Grove, IL). Non-esterified fatty acids (NEFAs) were measured using a 173 

NEFA-HR(2) kit for serum determination (Wako). 174 

Triglycerides and Cholesterol levels were measured using sample provide from the tail vein and were 175 

analyzed using Accutrend Plus (Roche,  Madrid, Spain). 176 
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 177 

Insulin secretion and content. 178 

Freshly isolated islets were left to recover in the isolation medium for 2h in the incubator at 37ºC and 179 

0.5% CO2. After recovery, groups of 5 islets were transferred to 400µl of a buffer solution containing 180 

140 mM NaCl, 4.5 mM KCl, 2.5 mM CaCl2, 1 mM MgCl2, 20mM HEPES and the corresponding 181 

glucose concentration (3, 8 or 16mM) with final pH at 7.4. Afterwards, 100μl of the buffer solution 182 

with the corresponding glucose concentration with 5% BSA was added. Then, the medium was 183 

collected and insulin was measured in duplicate samples by radioimmunoassay using a Coat-a-Count 184 

kit (Siemens, Los Angeles, CA, USA). Protein concentration was measured by the Bradford dye 185 

method (49). 186 

To obtain the insulin content, groups of 5 islets had incubated overnight in an ethanol/HCl buffer (75 187 

% Ethanol (v/v); 0.4 % HCl (stock 37%) (v/v) and 24.6 % distilled water (v/v)) at 4°C. At the end of the 188 

incubation period, the buffer was removed and studied for insulin content using radioimmunoassay 189 

with a Coat-a-Count kit. Protein determination was performed using the Bradford dye method.  190 

 191 

Global gene-expression profiling.  192 

RNA from mouse pancreatic islets was hybridized onto GeneChip® Mouse Genome 430 2.0 Array 193 

(Affymetrix). Expression data were normalized with RMA, and the LIMMA package was used for 194 

statistical analysis to identify differentially expressed genes, as described elsewhere (50). To generate 195 

gene cluster representations, expression levels of each gene were normalized across all samples 196 

analyzed and then clustered based on their similarity according to the Euclidian distance using 197 

Cluster3.0. Clusters were represented using Treeview1.1.1. Data have been deposited in Gene 198 

Expression Omnibus (51), accession number GSE82175. The DAVID Functional Annotation Tool 199 

(52) was used to identify enriched functional categories in differentially expressed genes. 200 

 201 

Real-time PCR 202 

Quantitative PCR assays were performed using CFX96 Real Time System (Bio-Rad, Hercules, CA) 203 

and 7500 Real Time PCR System (Applied Biosystems, Foster City, CA). Groups from 150 isolated 204 
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islets were used for RNA extraction. RNA extraction was made with RNeasy Micro Kit (Qiagen, 205 

USA), and 0.5µg of RNA was used for retrotranscription reaction (HighCapacity cDNA Reverse 206 

transcription, Applied Biosystems). Reactions were carried out in a final volume of 10 μl, containing 207 

200 nM of each primer, 1 μl of cDNA, and 1× IQ SYBR Green Supermix (Bio-Rad). Samples were 208 

subjected to the following conditions: 10 min at 95ºC, 40 cycles (10 s at 95ºC, 7 s at 60ºC, and 12 s at 209 

72º C), and a melting curve of 63–95ºC with a slope of 0.1 C/s. Expression levels were normalized to 210 

the expression of Hprt1. The resulting values were analyzed with CFX Manager Version 1.6 (Bio-211 

Rad), and values were expressed as the relative expression respect to control levels (2−ΔΔCT) (53). 212 

Analysis of relative gene expression data using real‐time quantitative PCR and the 2 (‐Delta Delta 213 

C(T)). Primer sequences are listed in supplementary material (Table 1).  214 

 215 

Immunohistochemistry and β-cell mass 216 

Pancreas samples from 5-8 different mice per experimental condition from 5-8 different litters (see 217 

figure legend), were removed and fixed overnight in 4% paraformaldehyde. Subsequently, pancreatic 218 

tissue was embedded in paraffin and sections were prepared. After dehydration, sections were heated 219 

to 100°C in the presence of citrate buffer (10 mM; pH 6.0) for 20 min. Endogenous peroxidase was 220 

blocked by incubation for 30 min with a solution of 3% hydrogen peroxidase in 50% methanol. To 221 

block nonspecific binding, sections were incubated in 3% BSA in PBS for 1 h at room temperature. 222 

Tissue sections were then stained for β-cells with a rabbit antihuman insulin antibody (1:100; Santa 223 

Cruz Biotechnology, Inc., Santa Cruz, CA) (table 1), overnight at 4°C. After washing, sections were 224 

incubated with the secondary antibody biotinylated anti-rabbit IgG (H+L) (Vector laboratories, CA) 225 

for 1 h at room temperature. The Vectastain ABC kit (Vector Laboratories, CA) was used for the 226 

avidin-biotin complex (ABC) method according the manufacturer′s instructions. Peroxidase activity 227 

was visualized with 3, 3′-diaminobenzidine (DAKO, CA). The sections were lightly counterstained 228 

with hematoxylin, dehydrated through an ethanol series to xylene, and mounted. For morphometric 229 

analysis, 2-4 sections of each pancreas per animal, separated by 200 μm, were completely covered 230 

systematically by capturing images from non-overlapping fields with a digital camera (Kappa ACC1). 231 

The islet cross-sectional area and total pancreatic area were measured using the analysis program 232 
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Metamorph Software. Beta cell mass (mg per pancreas) was calculated by multiplying relative 233 

insulin-positive area (the ratio of insulin positive area over total pancreas area) by pancreas weight. 234 

For quantification of the number of islets per area, only islets with more than 5 positive-stained cells 235 

were scored.  236 

 237 

β-cell replication and apoptosis 238 

The same mice used for pancreatic β-cell area (5-8 different mice per experimental condition from 5-8 239 

different litters (see figure legend)), were given intraperitoneal injections of BrdU (100 µg/g) 6 hr 240 

before sacrifice. Pancreatic tissue was collected, fixed, and processed as described above. After 241 

dehydration, sections were heated to 100°C in the presence of citrate buffer (10 mM) for 20 min and 242 

immersed in 2 N HCl for 5 min, followed by incubation in a 0.1 M borax solution for 10 min at RT 243 

and washed with phosphate-buffered saline. Slides were then blocked by incubating for 1h in 3% 244 

bovine serum albumin in phosphate-buffered saline. Samples were then incubated with antibodies for 245 

insulin (1:100, rabbit polyclonal; Santa Cruz Biotechnology, Madrid, Spain) (table 1) and BrdU 246 

(1:100, mono-clonal; DAKO, Barcelona, Spain) (table 1) overnight at 4°C. After incubation with 247 

secondary anti-bodies (Alexa Fluor, Molecular Probes, Barcelona, Spain), sections were incubated 248 

with Hoechst 33342 (Alexa Fluor, Molecular Probes, Barcelona, Spain) and then mounted using 249 

ProLong Gold Antifade Reagent (Invitrogen, Barcelona, Spain). Images were acquired for triple-250 

stained sections. BrdU-positive nuclei were scored only in cells that were also positive for insulin. At 251 

least 1200 cells per pancreas were counted. To identify apoptosis, TUNEL was performed by using an 252 

in situ cell death detection kit (Roche, Madrid, Spain) according to the manufacturer's specifications 253 

for paraffin-embedded tissues. Sections were then washed and stained for insulin as previously 254 

described. 255 

 256 

Statistical analysis 257 

SigmaStat 3.1 software (Systat Software, Inc., Chicago, IL, USA) was used for all statistical analyses. 258 

To assess differences between treatment groups for each exposure paradigm, we used the one-way 259 

analysis of variance (ANOVA). We used a post hoc test only when ANOVA gave a statistically 260 
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significant difference. When data did not pass the parametric test, we used Kruskal-Wallis ANOVA 261 

on ranks followed by Dunn’s test. We used student t- test when comparing two groups. Results were 262 

considered significant at p < 0.05. Data are shown as mean ± SEM.  We specified statistic tests used 263 

in each experiment in figure legends. 264 

 265 

 266 

 267 

 268 

 269 

 270 

  271 
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RESULTS 272 

To examine the effects of BPA on the glucose metabolism of offspring, we treated pregnant mice with 273 

either vehicle or BPA at doses of 10 or 100 µg/kg/day on GD9–GD16.  In total, we had 3 different 274 

groups that have been represented in the figures in the following manner: vehicle treated animals 275 

(Control, white bars), animals exposed to 10 µg/kg/day of BPA (BPA10, grey bars) and animals 276 

exposed to 100 µg/kg/day of BPA (BPA100, black bars). 277 

 278 

Low birth weight and weight changes during P0 and P30 279 

Body weights (BWs) from the different groups were measured periodically starting on postnatal day 0 280 

(P0). Pups born from BPA10 and BPA100 mothers presented a reduced weight compared to Control 281 

(control: 1.76±0.02g; BPA10: 1.47±0.03g; BPA100: 1.59±0.04g) (Figure 1A).  The BPA10 offspring 282 

rapidly gained weight to the same levels as Control, while BPA100 maintained a reduced weight until 283 

weaning (P21) (Figure 1A). Remarkably, those in the BPA100 group started to gain weight during the 284 

period between P21 and P30, reaching a higher body weight than control and BPA10 at P30 (control: 285 

22.9±0.5g; BPA10: 23.3±0.6g; BPA100: 25.5±0.9g) (Figure 1B).  286 

 287 

Insulinemia, glucose tolerance and insulin sensitivity  288 

To evaluate the effect of BPA exposure on glucose homeostasis at P30, intraperitoneal glucose 289 

tolerance and insulin tolerance tests were performed. In both BPA10 and BPA100 glucose tolerance 290 

and insulin sensitivity were similar to Control (Figure 1C,D). Plasma insulin and glucose levels in the 291 

fasted state were not significantly changed (Table 2). Contrarily, plasma insulin in non-fasting state 292 

was significantly elevated in BPA10 and BPA100 compared to control (Table2). To determine 293 

whether the increase in plasma insulin was a consequence of enhanced insulin release we measured 294 

plasma C-peptide levels which is a manner of evaluating pancreatic β-cell insulin secretion (54). C-295 

peptide levels were significantly higher in both cases BPA10 and BPA100 indicating that insulin 296 

release is increased in BPA exposed animal compared to Control (table2).  297 
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Leptin plasma levels, which are a marker of adiposity, were elevated more than two fold in BPA 298 

animals vs control (table2); particularly in BPA100 mice which presented the highest weight (Figure 299 

1B). Levels of cholesterol, triglycerides and NEFA were not significantly changed (Table2). 300 

 301 

Insulin release and insulin content in isolated islets 302 

To determine whether the hyperinsulinemia in the non-fasting state was because an enhanced glucose 303 

stimulated insulin secretion (GSIS), we isolated whole islet of Langerhans from Control, BPA10 and 304 

BPA100 treated mice and we exposed them to increasing glucose concentrations. Figure 1E shows 305 

that GSIS was decreased in BPA10 and unchanged in BPA100 compared to Control. Pancreatic 306 

insulin content followed the same pattern, it decreased in BPA10 and was similar in BPA100 307 

compared to Control  (Figure 1F). These experiments suggest that hyperinsulinemia in non-fasting 308 

state must be related to factors other than enhanced GSIS. 309 

 310 

Microarray analysis reveals differences in mRNA expression patterns between Control and BPA 311 

groups 312 

BPA exposure during pregnancy may modify the gene expression profile of the islet of Langerhans 313 

and, as a consequence, pancreatic β-cell function and/or mass. In order to test this hypothesis, we 314 

performed a microarray analysis to compare the transcriptional profiles of islets of Langerhans from 315 

control, BPA10 and BPA100 mice.  Hierarchical clustering analysis of differentially expressed genes 316 

in islets of Langerhans at P30 shows a clear separation between Control and BPA-exposed mice 317 

(Figure 2).  Down regulated genes (~330 genes) were especially abundant in the BPA10 group and 318 

were related to different functional categories. Among the ~325 genes that were upregulated, gene 319 

ontology analysis revealed that the most enriched categories were those related with cell cycle, 320 

mitosis and, in general, with cell division. These changes were more prominent in islets from the 321 

BPA10 group and, although to a lower extent, were also observed in the BPA100 group (Figure 2). 322 

Interestingly, the two most upregulated genes in BPA10 islets, Prss3 (also known as Mesotrypsin) 323 

and Agr2, although not directly involved in the cell cycle machinery, have been described to act as 324 

potent inducers of cell proliferation and tumor progression in several types of cells and cancers 325 
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(PRSS3 promotes tumor growth and metastasis of human pancreatic cancer) (55). The 326 

adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular 327 

transformation (56). 328 

 329 

Differential expression of genes identified from the microarray data (Figure 2) was validated by qPCR 330 

using RNA samples from Control, BPA10 and BPA100 islets at P30. This analysis confirmed that 331 

BPA treatment increased the expression of Ccnb1, Cdk1, Mt1, Procr and Idi1, (Figure 3A-E).  332 

Although no significant differences for Mt2, Spa17 and Birc5 were found when performing an 333 

ANOVA test, these genes were significantly deregulated in BPA10 samples compared to Control by 334 

Student’s t-test (Figure 3F-H). Expression of Pdx-1 was significantly increased in BPA10 by qPCR 335 

analysis, although significant changes were not observed in the microarray  (Figure 3I).  336 

 337 

BPA treatment increases β-cell mass at P0, P21 and P30 and decreases β-cell mass in P120 offspring  338 

Because the expression of many genes involved in cell cycle was increased in P30 islets after BPA 339 

exposure, we decided to examine pancreatic β-cell mass at P30. We found an increase in the 340 

percentage of β-cell area relative to the total pancreas area which was significant in the case of BPA10  341 

(Figure 4A), according to the microarray data. Pancreatic β-cell mass was also increased in BPA10 342 

and BPA100 (Figure 4B). To know whether the increase in β-cell mass was an effect caused during 343 

fetal development, lactation or the post-weaning week, we decided to measure β-cell mass at P0 and 344 

P21. Notably, both BPA10 and BPA100 offspring at P0 presented a higher relative β-cell mass 345 

compared to Control (Figure 4C). Increased β-cell mass was also observed at the day of weaning 346 

(P21) (Figure 4D). 347 

To assess whether the augmented β-cell mass was maintained during adult life, we analyzed the 348 

pancreas from mice at four months of age (P120). BPA 100 mice showed a decrease in pancreatic β-349 

cell mass that was statistically significant when comparing to control by Student’s t-test but not 350 

significant using ANOVA (Figure 4E). Moreover, these animals presented a higher fasted glucose and 351 
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a tendency to be glucose intolerant (Figure 4F). Genes upregulated at P30 were equally expressed 352 

than Controls at P120 (Supplemental Material Figure 1). 353 

 354 

BPA treatment increases β-cell proliferation and decreases β-cell apoptosis at P30 355 

To study the contribution of β-cell proliferation in the observed increase in pancreatic β-cell mass, we 356 

measured incorporation of BrdU as an indicator of cell proliferation.  The percentage of BrdU positive 357 

nuclei augmented in BPA10 and BPA100 (Figure 5A and B), indicating that under this conditions cell 358 

proliferation was increased. Apoptosis is another important factor in determining β-cell mass. In 359 

BPA10 and BPA100 apoptosis measured by TUNEL staining decreased when compared to Control 360 

(Figure 5C). These experiments indicate that the elevated β-cell mass in BPA treated animals maybe a 361 

consequence of increased β-cell division and decreased apoptosis.  362 

 363 

E2 treatment partially imitates BPA action on β-cell mass at P30  364 

BPA can exert its effects through different modes of action, although it is mainly considered a 365 

xenoestrogen (57). Therefore, we thought in a possible mimetic action of the natural hormone, 17-β 366 

estradiol (E2). To evaluate this possibility, we treated pregnant dams with 10µg/kg/day E2 and 367 

pancreas were analyzed to analyze β-cell mass, β-cell division and apoptosis. When animals were 368 

treated with a higher concentration of E2 (100 µg/kg/day), the offspring died during gestation.  369 

At P30, the offspring of E2-treated mice presented increased β-cell mass compared to control (Figure 370 

6 A,B), yet nuclei labeled with BrdU (Figure 6C) was not different. In addition, the gene profile 371 

observed in E2 treated animals indicated that only some of the genes, increased by BPA (Cdc20 and 372 

Ube2c) was elevated by E2 (Supplemental Material Figure 2). Apoptosis, however, was highly 373 

reduced by E2 exposure (Figure 6D). These experiments suggest that BPA partially imitates E2 action 374 

under these experimental conditions.  375 
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DISCUSSION 376 

Exposure to EDCs is now considered a risk factor for type-2 diabetes, obesity and other metabolic 377 

disorders (1, 58, 59). Bisphenol-A is one of the most studied EDCs, including its link with T2D and 378 

obesity in animal models and humans (41, 60, 61). Here we have treated pregnant mice from days 9 to 379 

16 of gestation with BPA at doses of, 10 and 100 µg/kg/day. We focused our study on male offspring 380 

at P0, P21, P30 and P120. We only studied males because in a previous study from our group, using 381 

the same treatment, we did not find any change in female phenotype (36). As explained in the 382 

Introduction, we considered that the dose of 10 µg/kg/day was low because it is below the current 383 

lowest observed effect level (LOAEL) (50µg/kg/day) established by the U.S.-EPA, and similar to the 384 

temporary tolerable daily intake by the European Food and Safety Authority (4µg/kg/day).  In any 385 

case, it must be noted that this study was designed to test a mechanistically-driven hypothesis not to 386 

specifically address human risk.  At P30, microarray analysis showed that a large amount of genes 387 

related to cell division were upregulated in pancreatic islets from offspring mice indicating that 388 

pancreatic β-cell mass could be affected by BPA exposure during pregnancy. Accordingly, pancreatic 389 

β-cell mass was increased in the offspring of pregnant females exposed to BPA, even in response to 390 

the lowest exposure dose of 10 µg/kg/day. This augmented β-cell mass was likely because a rise in 391 

cell division, as manifested by BrdU incorporation, together with a decrease in apoptosis.  392 

Analysis of blood parameters showed hyperinsulinemia but equal glucose levels together with 393 

hyperleptinemia in the non-fasting state (eating ad libitum). Hyperinsulinemia means excessive 394 

insulin secretion, which is manifested in this study by an increase in plasma C-peptide in BPA treated 395 

animals. Because GSIS measured ex vivo was either decreased (BPA10) or unchanged (BPA100), it is 396 

plausible that the hyperinsulinemia detected in the non-fasting state was due to the incremented β-cell 397 

mass. This hyperinsulinemic state may be a reaction to counteract insulin resistance or a direct action 398 

of BPA on pancreas growth. Unaffected glucose tolerance and insulin sensitivity indicate that the 399 

increase in β-cell mass was unlikely a consequence of any of these two factors. Remarkably, the fact 400 

that β-cell mass was already increased at birth it is inconsistent with an adaptive response to decreased 401 

insulin sensitivity. In rodents, the fastest expansion of β-cell mass occurs during late fetal gestation, 402 

increasing at a rate of 100% per day (62). An 80% or more is attributed to neogenesis while a 20% or 403 
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less to cell division (63). Pancreas development in mice stars about embryonic days E9 and E10, with 404 

the formation of pancreatic buds. Endocrine cells appear between days E10 and E13.5, but it is mostly 405 

at 13.5 when all hormone secreting cells are apparent and at E15 cells are differentiated into exocrine 406 

and endocrine cells. By E18 pancreatic islet cells are already visible (64, 65). Based in the 407 

experiments showed here we propose that BPA exposure between E9 and E16, altered β-cell mass 408 

during fetal development. During the neonatal period there is still growth of β-cell mass but at a lower 409 

rate than during late fetal growth. Neogenesis is still occurring during the first week of age yet, after 410 

that period, the β-cell mass expands by replication (66). The results showed here, demonstrate that β-411 

cell replication is increased at weaning and P30 and consequently, it suggests that β-cell mass is 412 

augmented by β-cell division. This may occur as a consequence of the overexpression of genes related 413 

to cell division as demonstrated in the microarray’s data.  414 

About the time of weaning a “wave” of apoptosis occurs, decreasing the growth of β-cell mass (67, 415 

68). The fact that apoptosis is highly decreased in BPA10 and BPA100 animals compared to Control 416 

indicates that BPA exposure increased β-cell mass not only by incrementing cell division, but by 417 

diminishing apoptosis as well.   418 

During life, it is essential to regulate β-cell mass growth in response to different physiological 419 

circumstances, including increased body mass and pregnancy (69-72). In addition, metabolic stress 420 

during pregnancy such as intrauterine growth restriction disrupts pancreatic β-cell mass growth as 421 

well as β-cell function, producing serious consequences in offspring later in life (73, 74). It is 422 

plausible that the changes in β-cell mass from birth to the first month of life described in this work 423 

affect the phenotype later in life. Studies using mice treated with BPA during the same window of 424 

time as here, show a phenotype of altered glucose and lipid homeostasis later in life (from 3 to 6 425 

months old). The phenotype includes: glucose intolerance, altered insulin sensitivity, 426 

hyperinsulinemia, increase in body weight, adiposity, alterations in adipokines, NEFA and 427 

triglyceride levels in blood as well as triglyceride accumulation in the liver (36, 39, 40).  Here, the 428 

augmented growth of β-cell mass observed during the first month of age it is not maintained. 429 

Moreover, at P120 mice presented a great tendency to a decreased β-cell mass together with altered 430 

glucose tolerance, particularly in BPA100. In the present work, increased β-cell mass at P30 is 431 



18 
 

associated with hyperinsulinemia in at libitum fed animals, which is the regular situation in mice. As a 432 

consequence, they will have a constant hyperinsulinemia compared with vehicle treated animals. 433 

Could this excess of insulin signaling disrupt glucose homeostasis later in life? It is widely accepted 434 

that hyperinsulinemia is simply a compensatory mechanism to counteract insulin resistance. However, 435 

hyperinsulinemia may precede insulin resistance in T2D (75-78) and it has been demonstrated that it 436 

may contribute to obesity and insulin resistance in ob/ob mice (79). Hyperinsulinemia drives to 437 

obesity in genetically designed mice, in which it is possible to control the amount of insulin available 438 

(80). In adult mice, it was proposed that EDCs, including BPA, induce insulin resistance and 439 

hyperinsulinemia in the non-fasting state (81, 82). It has been demonstrated ex vivo and in vitro that 440 

pollutants, including EDCs, directly stimulate insulin secretion and/or insulin content generating an 441 

increase in β cell function in response to nutrients (28, 78, 83). This hyperinsulinemia may be, at least 442 

in part, responsible of the insulin resistance caused by some EDCs such as Bisphenol-A (78, 83). 443 

It is always difficult to demonstrate whether hyperinsulinemia is a consequence of insulin resistance 444 

or the opposite. We propose that alterations in β-cell mass at birth and early life provokes an 445 

hyperinsulimemia in the non-fasting state that may influence the phenotype later in life favoring 446 

insulin resistance, hyperinsulinemia, hyperleptinemia, increase in body weight and other factors 447 

related to metabolic syndrome (36, 37, 39, 40).  448 

  449 

BPA passes the placental barrier (84) and therefore it may act directly in the fetus. It is known that 450 

BPA acts as a potent xenoestrogen in β-cells via binding to extranuclearly located estrogen receptor 451 

ERα and ERβ (29, 30), yet it is a weak estrogen when acting via the classical ERs pathways working 452 

as transcription factors (26). In addition, BPA may act trough other mechanisms of action (57). Here 453 

we show that the natural hormone E2 partially mimicked BPA actions at 1 month of age. Both, 454 

BPA10 and E10 increased β-cell mass at P30 and decreased apoptosis, however, BrdU incorporation 455 

only augmented in BPA treated mice and gene related to cell cycle were activated to a less extent in 456 

E10 than BPA10 mice. Therefore, it is possible that BPA acts as a potent xenoestrogen for some of 457 

the effects seeing here such as β-cell mass regulation but we cannot discard the involvement of 458 

mechanisms other than a direct action in fetal cell mediated by estrogen receptors. In addition to the 459 
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effect that BPA exposure in utero exerts in offspring, BPA exposure during days 9 to 16 of pregnancy 460 

alters blood glucose homeostasis in the mothers at the end of pregnancy. These alterations include: 461 

glucose intolerance, insulin resistance, hyperinsulinemia and hyperleptinemia, higher levels of 462 

triglycerides and glycerol compared to Controls (36). Therefore, the final phenotype of offspring may 463 

not only be influenced by a direct action of BPA on fetal development but also by the abnormal 464 

glucose homeostasis of the mothers, as it occurs in the LIRKO mouse model of insulin resistance 465 

(14). In the later model, nonetheless, the effect of maternal hyperinsulinemia and transient 466 

hyperglycemia decreases β-cell proliferation and islet number.  467 

In the present study, we evaluated the early effects of maternal exposure to BPA on glucose 468 

homeostasis, pancreatic β-cell mass and function. We found that offspring mice presented an 469 

augmented β-cell mass associated with hyperinsulinemia in the absence of insulin resistance and 470 

insulin oversecretion. The change in β-cell mass was associated with an increase in the expression of 471 

genes related to cell division and cell cycle regulation. In addition, BPA treated animals presented 472 

elevated β-cell division and decreased apoptosis. This early changes may affect the phenotype later in 473 

life and may be responsible of the alterations in glucose homeostasis already described.  474 

Further research is needed to fully understand the mechanisms underlying the increase in β-cell mass 475 

and β-cell proliferation at birth and during the first weeks of life, and whether this predisposes to type 476 

2 diabetes with aging in animal models and humans. 477 
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FIGURE LEGENDS 504 

 505 

FIGURE 1. A) Body weight evolution from P0 to P21 (body weight data on P0: ANOVA followed by 506 

Holm-Sidak post hoc test, P (maternal treatment), P (Control vs. BPA10) < 0.001; P (Control vs. BPA 507 

100) < 0.001; P (BPA10 vs. BPA100) < 0.01; body weight data on P5: ANOVA followed by Holm-508 

Sidak post hoc test, P (maternal treatment), P (Control vs. BPA10) < 0.01; P (BPA10 vs. BPA100) < 509 

0.05); body weight data on P12: Kruskal-Wallis ANOVA on ranks followed by Dunn´s post hoc test, 510 

P (maternal treatment), P (Control vs. BPA100)  < 0.05, P (BPA10 vs. BPA100) < 0.05); body weight 511 

data on P16: (Kruskal-Wallis ANOVA on ranks followed by Dunn´s post hoc test, P (maternal 512 

treatment), P (Control vs. BPA100)  < 0.05, P (BPA10 vs. BPA100) < 0.05) (n = 42-77 animals from 513 

10-12 litters). B) Weight comparison at P30. BPA100 was significantly different compared to Control 514 

and BPA10. ANOVA followed by Holm-Sidak post hoc test, P (maternal treatment), P (Control vs. 515 

BPA100) < 0.05, P (BPA10 vs. BPA100) < 0.05) (n=32-43 animals from 7-10 litters). C) 516 

Intraperitoneal glucose tolerance test were performed on the three groups at P30 (n=6-14 animals 517 

from 6-10 litters). D) Intraperitoneal insulin tolerance test were performed on the three groups at P30 518 

(n=15-17 animals 15-17 litters). E) Insulin secretion from islets exposed to 3, 8 and 16 mM glucose 519 

for 1 hour, in animals from the three different groups at P30. Kruskal-Wallis ANOVA on Ranks  520 

followed by Dunn´s  post hoc test, P (maternal treatment) P (Control vs. BPA10) <0.05 (n=10-15 521 

groups of five islets per condition from 6-8 animals from 6-7 litters) F) Insulin content from isolated 522 

islets at P30 ANOVA followed by Holm-Sidak´s  post hoc test, P (maternal treatment), P (Control vs. 523 

BPA10) <0.05 (n=31-35 groups of five islets per condition from 6-8 animals from 6-7 litters).  524 

Data are expressed as mean ± SEM.; *Control vs. BPA10 or BPA 100; *, P < 0.05, **, P < 0.01, ***, 525 

P < 0.001; # BPA10 vs. BPA100, #,  P < 0.05, ##, P < 0.01. 526 

 527 

FIGURE 2. BPA treatment of pregnant females affects the transcriptome of the offspring’s pancreatic 528 

islets. The gene cluster representations illustrate the changes in gene expression in pancreatic islets 529 

from control, BPA10 and BPA100 mice (intense blue indicates the lowest expression, and intense red, 530 

the highest expression). Genes were clustered according to their pattern of expression across the 531 
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different samples analyzed. The arrows indicate if genes were upregulated (up) or downregulated 532 

(down) in the BPA10 and BPA100 samples respect to the control ones. 533 

 534 

FIGURE 3. mRNA gene expression assessed by real-time RT-PCR of representative genes that 535 

increased expression in the microarray analysis. Data are expressed as mean± SEM.; *Control vs. 536 

BPA10 or BPA 100; *, P < 0.05; $, P < 0.05, Student´s t-test compared to Control. N=4-6 from 15 537 

mice/group from 6-9 litters.  Details on statistics used: Ccnb1 (Kruskal-Wallis ANOVA on Ranks 538 

followed by Dunn´s  post hoc test, P (maternal treatment), P (Control vs. BPA100) <0.05). Cdk1 539 

(ANOVA followed by Dunnett´s  post hoc test, P (maternal treatment), P (Control vs. BPA100) < 540 

0.05). Mt1 (Kruskal-Wallis ANOVA on Ranks followed by Dunn´s  post hoc test, P (maternal 541 

treatment), P (Control vs. BPA100) <0.05).  Procr (ANOVA followed by Dunnet´s  post hoc test, P 542 

(maternal treatment), P (Control vs. BPA10) <0.05; P (Control vs. BPA 100) < 0.05). Idi1 (ANOVA 543 

followed by Dunnet´s  post hoc test, P (maternal treatment), P (Control vs. BPA10) <0.05; (n=4-6 544 

samples from 15 mice/group from 6-7 litters)). Pdx-1, ANOVA followed by Dunnet´s post hoc test, P 545 

(maternal treatment), P (Control vs. BPA10) <0.05; (n=4-6 samples from 15 mice/group from 6-9 546 

litters). Mt2, Spa17 and Birc5 were not statistically significant by ANOVA, yet these genes were 547 

significantly down-regulated in BPA10 samples compared to Control by Student’s t-test (P (maternal 548 

treatment), P (Control vs. BPA10) <0.05; (n=4-6 samples from 15 mice/group from 6-7 litters)). 549 

 550 

FIGURE 4. A) Relative β-cell mass calculated as the percentage of the insulin-positive area over the 551 

total pancreas area. Pancreas were obtained from P30 animals. ANOVA followed by Holm-Sidak´s  552 

post hoc test, P (maternal treatment), P (Control vs. BPA10) <0.05; (n=5 mice/group from 5 litters). 553 

B) Analysis of pancreatic β-cell mass (milligrams per pancreas), calculated as the ratio of the insulin-554 

positive area over the total pancreas area, multiplied by pancreas weight at the same age as in A. 555 

ANOVA followed by Holm-Sidak´s  post hoc test, P (maternal treatment), P (Control vs. BPA10) 556 

<0.05, P (Control vs. BPA100) <0.05; (n=5 mice/group from 5 litters). C) Relative β-cell mass 557 

calculated as the percentage of the insulin-positive area over the total pancreas area. Pancreas were 558 

obtained from P0 animals. Kruskal-Wallis ANOVA on Ranks followed by Dunn´s  post hoc test, P 559 
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(maternal treatment) P (Control vs. BPA10) <0.05; P (Control vs. BPA100) <0.05; (n=8 mice/group 560 

from 7-8 litters). D) β-cell mass calculated as the ratio of the insulin-positive area over the total 561 

pancreas area multiplied by pancreas weight. Pancreas were obtained from P21 animals. ANOVA 562 

followed by Dunnett´s  post hoc test, P (maternal treatment) P (Control vs. BPA10) <0.01; P (Control 563 

vs. BPA100) <0.001; (n=8 mice/group from 7-8 litters).  E) β-cell mass calculated as the ratio of the 564 

insulin-positive area over the total pancreas area multiplied by pancreas weight. Pancreas were 565 

obtained from P120 animals. Significant using Student’s t-test (P (maternal treatment), P (Control vs. 566 

BPA100) <0.05. No statistically significant by ANOVA (n= 5 mice/group from 5 litters). F) 567 

Intraperitoneal glucose tolerance test performed in the three groups. Open circles for Control, filled 568 

circles for BPA10, filled squares for BPA100 (n= 5 mice/group from 5 litters). Data are expressed as 569 

the mean ± SEM. *Control vs. BPA10 or BPA 100, # BPA10 vs. BPA100;  *, P <0.05, **, P <0.01, 570 

***, P < 0.001.  $, P <0.05, Student´s t-test compared to Control.  571 

 572 

FIGURE 5. A) Representative images of pancreas sections stained with antibodies against BrdU 573 

(green) and insulin (red) and counterstained with Hoechst (blue). Scale bar, 25 μm. White arrows 574 

indicate some positive BrdU cells. B) Percentage of BrdU-positive β-cells in control, BPA10, and 575 

BPA100 mice at P30.. ANOVA followed by Holm-Sidak´s post hoc test, P (maternal treatment) P 576 

(Control vs. BPA10) <0.05, P (Control vs. BPA100) <0.05; (n=5 mice/group from 5 litters). C) 577 

Analysis of apoptotic β-cells quantified in pancreas sections using a fluorescein in situ cell death 578 

detection assay (TUNEL) at P30. Kruskal-Wallis ANOVA on Ranks followed by Dunn´s  post hoc 579 

test, P (maternal treatment), P (Control vs. BPA10) <0.05, P (Control vs. BPA100) <0.05; (n=5 580 

mice/group from 5 litters). Data are expressed as the mean ± SEM. *Control vs. BPA10 or BPA 100; 581 

*, P < 0.05 582 

 583 

FIGURE 6. A) Relative β-cell mass calculated as the percentage of the insulin-positive area over the 584 

total pancreas area. Pancreas were obtained from P30 animals treated in utero with vehicle (Control) 585 

or E210µg/kg/day (E10). B) Analysis of pancreatic β-cell mass (milligrams per pancreas), calculated 586 

as the ratio of the insulin-positive area over the total pancreas area, multiplied by pancreas weight in 587 
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the same conditions as in A (n=8 mice/group from 8 litters). C) Percentage of BrdU-positive β-cells in 588 

control and E2 mice at P30 (n = 6 mice/group from 6 litters). B) Analysis of apoptotic β-cells 589 

quantified in pancreas sections using a fluorescein in situ cell death detection assay (TUNEL) in 590 

control and E10 (n=7-8 mice/group from 7 litters). Data are expressed as the mean ± SEM, and 591 

statistical significance was determined using Student´s t-test compared to Control. *Control vs. 592 

BPA10 or BPA 100; *,  P < 0.05. 593 

 594 

Table 2. Serum hormone and metabolite levels in animals exposed to BPA in utero. n= insulin 595 

fasted state 9-14 animals from 8-14 litters; insulin non-fasting state 41-51 animals from 39-51 litters; 596 

c-peptide  20-24 animals from 20-24 litters; leptin 18-24 animals from 18-23 litters; cholesterol 12-22 597 

animals from 8-22 litters; triglyceride 9-11 animals from 8-9 litters and NEFA 15 animals from 8-9 598 

litters.  Data are expressed as mean±SEM. Significance was determined using ANOVA one way 599 

followed by Holm-Sidak post hoc test. When data did not pass the parametric test, we used Kruskal-600 

Wallis ANOVA on ranks followed by Dunn’s test. See below for further details.  *Control vs. BPA10 601 

or BPA 100; *, P < 0.05; # BPA10 vs. BPA100, #,  P < 0.05. Insulin non-fasting, Kruskal-Wallis 602 

ANOVA on ranks followed by Dunn´s method, P (maternal treatment), P (Control vs. BPA10)  < 603 

0.05, P (Control vs. BPA100) < 0.05; (n=41-51 animals from 39-51 litters).  C-Peptide, ANOVA 604 

followed by Holm-Sidak post hoc test, P(maternal treatment), P (Control vs. BPA10) < 0.05, P 605 

(Control vs. BPA100) < 0.05; (n=20-24 animals from 20-24 litters. Leptin, Kruskal-Wallis ANOVA 606 

on ranks followed by Dunn´s post hoc test, P (maternal treatment), P (Control vs. BPA10) < 0.05, P 607 

(Control vs. BPA100) < 0.05, P (BPA10 vs. BPA100) < 0.05; (n=18-24 animals from 18-23 litters). 608 

e,  609 

 610 

  611 
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Gen NM Forward (5´-3´) Reverse (5´-3´) 
Ccnb1 172301 GTGCGCCTGCAGAAGAGTAT TGCTCTTCCTCCAGTTGTCGG 
Cdk1 7659 ACACGAGGTAGTGACGCTG CTCTGAGTCGCCGTGGAAAA 
Mt1 013602.3 CAGGCTGTCCTCTAAGCGTC AGGAGCAGCAGCTCTTCTTG 
Mt2 008630.2 TGCAAGAAAAGCTGCTGCTCC GTGGAGAACGAGTCAGGGTTG 
Procr 11171 ACGCAAAACATGAAAGGGAGC ATTAGCAACGCCGTCCACTT 
Idi1 145360.2 GCTAGATTGGCAATTGGCTGG TAGAACACAGAGATTCCGGC 
Spa17 011449.2 CGGTTACCCAGCAACGAGAT TGCCTATATGGTACCTCTTCTTTCT 
Birc5 1012273 TGACGCCATCATGGGAGC AAGGTGGCGATGCGGTAGT 
Pdx-1 8814.3 AAGGTGGCGATGCGGTAGT AAGGTGGCGATGCGGTAGT 
Pbk 23209 AGAAGCTTGGCTTTGGGACTG GGAGAATGAGACAACCCTCTTGG 
Cenpa 7681 AGCTCCAGTGTAGGCTCTCA CACCACGGCTGAACTTCTCA 
Cdc20 23223 GCCCACCAAAAAGGAGCATC ATTCTGAGGTTTGCCGCTGA 
Ube2c 26785 GTTCCTCACACCCTGCTACC CGATGTTGGGTTCTCCTAGC 
Hprt 013556.2 GGTTAAGCAGTACAGCCCCA TCCAACACTTCGAGAGGTCC 

 

 

Table 1. Quantitative Real-Time PCR primers. 

 



 
 

 Control BPA10 BPA100 
Insulin Fasted 

(ng/mL) 0.17 ± 0.01 0.17 ± 0.02 0.19 ± 0.02 

Insulin Fed 
(ng/mL) 0.58 ± 0.08 1.17 ± 0.21* 1.35 ± 0.1* 

C-peptide Fed 
(pM) 923 ± 139 1497 ± 171* 1837 ± 178* 

Leptin Fed 
(ng/mL) 1.8 ± 0.3 4.0 ± 0.6* 6.9 ± 0.7*# 

Chol Fed (mg/dL) 167 ± 1.7 168 ± 1.4 171 ± 2.7 

Tg Fed (mg/dL) 190 ± 18 178 ± 12 148 ± 11 

Nefa Fed (mg/dL) 10.2 ± 1.3 7.0 ±1.0 10.3 ± 1.2 

 
 



Peptide/protein target Antigen sequence (if known) Name of 
Antibody

Manufacturer, catalog #, 
and/or name of individual 
providing the antibody

Species raised in; monoclonal or 
polyclonal Dilution used

Insulin Insulin antibody Santa Cruz Biotechnology Rabbit; Polyclonal 1:100
BrdU BrdU antibody DAKO Mouse;Monoclonal 1:100



Supplemental Figure 1. mRNA gene expression assessed by real-time RT-PCR of the same 

genes as in Figure 3 but from islets obtained from P120 mice (n=4-5 from 11-15 mice/group). 

Data are expressed as mean±SEM. 

 

Supplemental Figure 2. mRNA gene expression assessed by real-time RT-PCR of  the same 

genes as in Figure 3 but in the P30 offspring of mothers treated with vehicle (Control) or E2 10 

µg/kg/day (E10) (n=4-5 from 12 mice/group 8-10 litters). Data are expressed as mean±SEM and 

statistical significance was determined by Student t-test compared to Control;*p<0.05.   
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