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ABSTRACT  1 

Obesity is associated with insulin resistance and is known to be a risk factor for 2 

type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the 3 

increased insulin demand in order to maintain euglycemia. Most studies have reported 4 

that this adaptation is due to morphological changes. However, the involvement of beta-5 

cell functional adaptations in this process needs to be clarified. For this purpose, we 6 

evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact 7 

islets from female ob/ob obese mice and lean controls. Obese mice showed increased 8 

body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed 9 

hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced 10 

mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial 11 

membrane potential hyperpolarization. Perforated patch-clamp examination of beta-12 

cells within intact islets revealed several alterations in the electrical activity such as 13 

increased firing frequency and higher sensitivity to low glucose concentrations. A 14 

higher intracellular Ca2+ mobilization in response to glucose was also found in ob/ob 15 

islets. Additionally, they displayed a change in the oscillatory pattern and Ca2+ signals 16 

at low glucose levels. Capacitance experiments in intact islets revealed increased 17 

exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to 18 

increased GSIS. In contrast, we found a lack of beta-cell Ca2+ signal coupling, which 19 

could be a manifestation of early defects that lead to beta-cell malfunction in the 20 

progression to diabetes. These findings indicate that beta-cells functional adaptations 21 

are an important process in the compensatory response to obesity. 22 

 23 
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1. Introduction. 24 

Obese individuals are at increased risk for type 2 diabetes. Hyperinsulinemia 25 

along with low insulin sensitivity are frequently observed in obesity (Kahn et al., 2006). 26 

Although insulin resistance is present in most obese subjects, glucose intolerance and 27 

hyperglycemia are not necessarily found in these individuals. Indeed, compensatory 28 

adaptations in the pancreatic β-cells usually allow for higher pancreatic insulin release 29 

in order to maintain normoglycemic values (Kargar and Ktorza, 2008; Seino et al., 30 

2011). However, when β-cell compensations fail to adapt to the increasing insulin 31 

requirements imposed by insulin resistance, glucose tolerance becomes deteriorated in 32 

obese individuals and, eventually, they can develop overt hyperglycemia and type-2 33 

diabetes (Kahn et al., 2006). Several studies in animal models and humans have 34 

reported that the enhanced plasma insulin levels observed in insulin-resistant states, like 35 

in obesity, are likely related with increases in β-cell mass (Sachdeva and Stoffers, 2009; 36 

Seino et al., 2011; Saisho et al., 2013). In contrast, other studies in non-diabetic obese 37 

human subjects have shown that beta-cell mass was only moderately increased (Rahier 38 

et al., 2008) compared with controls or that there were no differences (Kou et al., 2013). 39 

However, less importance has been attributed to the involvement of the β-cell function 40 

in these compensatory responses (Hull et al., 2005). Consequently, changes in the β-cell 41 

stimulus-secretion coupling remain poorly characterized in obesity (Kargar and Ktorza, 42 

2008; Seino et al., 2011).  43 

Recently, our group reported that β-cells from high fat diet-induced obese mice 44 

display several functional adaptations. In this insulin-resistant state, β-cell 45 

compensations led to insulin hypersecretion, maintaining normal glycemia and glucose 46 

tolerance in obese mice (Gonzalez et al., 2013). However, in the progression from 47 

normoglycemia to overt diabetes, insufficient β-cell compensation to insulin resistance 48 
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can result in a prediabetic condition characterized by impaired glucose tolerance and 49 

moderate hyperglycemia (Weir and Bonner-Weir, 2004). In order to analyze this 50 

prediabetic state, here we aimed to elucidate the functional changes in the β-cell 51 

glucose-stimulated insulin secretion (GSIS) using a model of genetic obesity. The 52 

leptin-deficient ob/ob mouse is characterized by marked obesity, insulin resistance, 53 

glucose intolerance, moderate hyperglycemia and elevated plasma insulin levels, but 54 

they do not develop overt type 2 diabetes (Coleman, 1978). Given that ob/ob mice have 55 

larger islets of Langerhans (Bleisch et al., 1952; Gepts et al., 1960; Bock et al., 2003) 56 

with a higher proportion of β-cells (Baetens et al., 1978; Gepts et al., 1960; Westman, 57 

1968a; Westman, 1968b), they have been extensively used as a source of pancreatic 58 

islets. Although numerous investigations have used ob/ob islets for β-cell studies 59 

(Hellman, 1965; Hellman, 1970; Bergsten et al., 1994), a detailed analysis of the 60 

potential functional adaptations in the different steps of the stimulus-secretion coupling 61 

is still lacking. Additionally, most data about the islet function comes from isolated β-62 

cells (Ahmed and Grapengiesser, 2001; Grapengiesser et al., 1988), an experimental 63 

model that can differ from the physiological scenario, as it has been reported using 64 

intact islets (Göpel et al., 1999; Göpel et al., 2000; Göpel et al., 2004). In the current 65 

study, we show in intact pancreatic ob/ob islets that improved performance in the 66 

majority of steps involved in GSIS would account for the high insulin secretion rate 67 

characteristic of hyperinsulinemic insulin-resistant conditions, like in obesity. 68 

Additionally, the present findings further support the wide plasticity and crucial 69 

adaptation of the β-cell secretory process in the compensatory responses of the 70 

endocrine pancreas. 71 

72 
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 73 

2. Material and Methods 74 

2.1. Animals. All protocols were approved by our Animal Ethics Committee 75 

according to national regulations. Five-week-old female ob/ob mice (C57BL/6J 76 

background) were purchased from Harlan Laboratories (Barcelona, Spain) and lean 77 

female of matched age were used as controls. In electrophysiological experiments, 78 

ob/ob female animals (C57BL/6J background) were purchased from Janvier (Janvier 79 

Labs, Le Genest sur l’Isle, France). Animals were housed at 22ºC with a light cycle of 80 

12 hours (8:00 am to 8:00 pm) and had free access to water and standard chow. 81 

Experiments were performed when animals were 12 weeks old. 82 

2.2. Plasma measurements and tolerance tests. Glucose and insulin plasma levels 83 

were measured by tail bleeding in fed state and during tolerance tests (Gonzalez et al., 84 

2013). Plasma glucose was measured with a commercial glucometer (Accu-Chek) and 85 

plasma insulin by a commercial ELISA kit (Crystal Chemical). For the glucose 86 

tolerance test, animals were fasted for 12 hours before an intraperitoneal (i.p.) glucose 87 

injection (2g/kg). Plasma glucose was measured at 0, 15, 30, 60, 90, 120 and 180 min 88 

and plasma insulin at 0 and 30 min after the glucose challenge. For the insulin tolerance 89 

test, fed animals were subjected to an i.p. insulin injection (1UI/kg) and then, plasma 90 

glucose was measured at 0, 15, 30, 45 y 60 min. The HOMA-IR was also calculated as 91 

an indicator of insulin resistance: [fasted plasma glucose (mg/dL) * fasted plasma 92 

insulin (mU/L)] / 405 (Tripathy et al., 2010; Solomon et al., 2014). 93 

2.3. Islet isolation and cell culture. Mice were sacrificed at the age of 12 weeks by 94 

cervical dislocation. Islets were isolated by collagenase digestion as previously 95 

described (Gonzalez et al., 2013). In some experiments, islets were subjected to trypsin 96 

digestion to obtain isolated cells, and then cultured overnight at 37ºC in RPMI 1640 97 
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(Sigma, Madrid, Spain) supplemented with 10% fetal bovine serum, 100 IU/mL 98 

penicillin, 0.1 mg/mL streptomycin and 11mM D-glucose (Quesada et al., 2000).  99 

2.4. Patch-clamp recordings. Electrophysiological measurements were performed 100 

from superficial β-cells in intact islets using an EPC-10 USB patch-clamp amplifier and 101 

the Patch Master Software suite (HEKA Elektronic, Lambrecht/Pfatz, Germany). Intact 102 

islets were hold by gentle suction applied to the interior of a wide-bore holding pipette 103 

as previously reported (Göpel et al., 1999). The perforated-patch configuration was used 104 

for the membrane potential recordings (Gonzalez et al., 2013). The pipette solution 105 

contained (in mM): 76 K2SO4, 10 NaCl, 10 KCl, 1 MgCl2, 5 HEPES (pH=7.35 with 106 

KOH), and 0.24 mg/mL of the pore-forming antibiotic amphotericin B; the bath 107 

solution contained (in mM): 140 NaCl, 3.6 KCl, 1.5 CaCl2, 5 NaHCO3, 0.5 MgSO4, 0.5 108 

NaH2PO4, 10 HEPES (pH=7.4 with NaOH) and D-glucose as indicated. Exocytosis was 109 

monitored using the standard whole-cell configuration and recording cell capacitance 110 

changes through the sine +DC mode of the Lock-In amplifier included in the Patch 111 

Master software (Gonzalez et al., 2013). For these experiments, the pipette solution 112 

contained (in mM): 140 CsCl, 10 NaCl, 1 MgCl2, 0.05 EGTA, 3 Mg-ATP, 0.1 cAMP 113 

and 5 HEPES (pH=7.2 with CsOH), whereas the bath solution contained (in mM): 118 114 

NaCl, 5.6 KCl, 20 tetraethylammonium-Cl, 1.2 MgCl2, 5 CaCl2, 5 HEPES and 5 D-115 

glucose (pH=7.4 with NaOH). Only experiments with stable and low access resistance 116 

and small leak currents were used. The seal resistance was typically >3 MΩ. All 117 

experiments were carried out at physiological temperature (34-36ºC). β-cells were 118 

functionally identified by the ability to generate the characteristic oscillatory electrical 119 

activity in the presence of glucose and steady-state inactivation of Na+ currents (Göpel 120 

et al., 1999; Göpel et al., 2000; Gonzalez et al. 2013).  121 
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2.5. Intracellular Ca2+, NAD(P)H and mitochondrial membrane potential 122 

measurements. Isolated islets were allowed to recover in the isolation medium for at 123 

least 2 hours at 37ºC and 5% CO2 before experiments. For intracellular calcium 124 

([Ca2+]i) recordings, islets were incubated for 1h at room temperature with 2µM fura-2 125 

(for conventional fluorescence microscopy) or fluo-4 (for confocal microscopy). For 126 

intact islet Ca2+ signaling, recordings were performed under an inverted epifluorescence 127 

microscope (Axiovert 200; Zeiss, Jena, Germany) equipped with 360 and 380nm band-128 

pass filters. Recordings were expressed as the ratio of fluorescence at 360 and 380 129 

(F360/380). Images were taken every 3 seconds. Intracellular [Ca2+] changes in 130 

response to stimuli were analyzed as previously described (Rafacho et al., 2010). For 131 

transient changes in [Ca2+]i, the basal fluorescence (F0) was subtracted to the maximal 132 

fluorescence and expressed as ∆F (F-F0). Additionally, as a measure of global [Ca2+]i 133 

increase, the area under the curve (AUC) was calculated on the last five minutes of each 134 

glucose stimulus. Changes in NAD(P)H autofluorescence and mitochondrial membrane 135 

potential (∆Ψm) were monitored with the above-mentioned imaging system (Rafacho et 136 

al., 2010). For NAD(P)H autofluorescence, a 365nm band-pass filter was used, and 137 

emission was filtered at 445±25 nm. Images were acquired every 60 seconds. For 138 

measurement of NAD(P)H in isolated cells, cells were cultured overnight in RPMI 139 

1640. Recordings were plotted as the increase of fluorescence referred to the 140 

fluorescence in the basal condition. ∆Ψm was measured after loading fresh isolated 141 

islets for 10 minutes with 10µM rhodamine-123 (Rhod-123). Images were taken every 142 

30 seconds using conventional fluorescein filters. Recordings were plotted as the 143 

decrease of fluorescence relative to the fluorescence in the basal condition. For the 144 

analysis of β-cell synchrony, whole islets were used to monitor changes in [Ca2+]i 145 
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within individual cells using a confocal microscope (Zeiss LSM510 laser), as previously 146 

reported (Gonzalez et al., 2013; Quesada et al., 2006).   147 

2.6. Insulin secretion and content. Isolated islets recovered in the isolation medium 148 

for 2h in the incubator (37ºC; 5% CO2). After recovery, batches of 5 islets were 149 

exposed to the different glucose stimuli and allowed to secrete for 1h at 37ºC (solution 150 

composition in mM: 140 NaCl, 4.5 KCl, 2.5 CaCl2, 1 MgCl2, 20 HEPES, pH=7.4). The 151 

totality of the secretion volume (500µL) was collected and then measured by RIA, in 152 

duplicate, using a Coat-a-Count kit (Siemens, Los Angeles, California). The groups of 5 153 

islets were transferred to an ethanol/HCl buffer to promote cell lysis. After overnight 154 

incubation at 4ºC, the supernatant was used to quantify insulin content by RIA and total 155 

protein by the Bradford method. Insulin secretion was expressed normalized either by 156 

insulin content or total protein, as previously shown (Gonzalez et al., 2013). 157 

2.7. Quantitative real-time PCR. Total RNA from islets of Langerhans was isolated 158 

using the RNeasy Plus Mini Kit (Qiagen) and the RNA concentration was determined 159 

by spectrophotometry (NanoDrop 2000, Thermo Scientific). cDNA was synthesized 160 

from 500ng of total RNA using the High Capacity cDNA Reverse Transcription Kit 161 

(Applied Biosystems). Quantitative PCR reactions were performed using the CFX96 162 

Real Time System (Bio-Rad, Hercules, California). Reactions were carried out in a final 163 

volume of 10μL, containing 200nM of each primer, 1μL of cDNA and 1X of iQ™ 164 

SYBR®Green supermix (Bio-Rad). Samples were subjected to the following thermal 165 

cycler conditions: 10min at 95ºC, 45 cycles (10s at 95ºC, 7s at 60ºC, 15s at 72ºC) and 166 

melting curve from 65 to 95ºC with a slope of 0.1ºC/s. The gene for relative 167 

quantification was GAPDH. The resulting values were analyzed with CFX Manager 168 

version 1.6 (Bio-Rad) and values were expressed as the relative expression respect to 169 

control levels (2-ΔΔCt). Primer sequences are described in Supplemental Table 1.  170 
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2.8. Western blot. Groups of 200-300 islets were subjected to lysis in 20µL of Cell 171 

Lysis Buffer (Cell Signaling Technology, Danvers, MA). For SDS gel electrophoresis 172 

and Western blot analysis, samples were treated with a Laemmli sample buffer 173 

containing dithiothreitol. After heating at 95ºC for 5 minutes, proteins were separated 174 

by electrophoresis in a 4-20% Mini Protean Gel (Bio Rad). Prestained SDS-PAGE 175 

standards were included for molecular mass estimation. Transfer to PVDF membranes 176 

was performed in a Trans Blot Turbo transfer for 7 minutes in 25V, with TRIS/Glycine 177 

buffer (Bio Rad). After membranes were blocked with 5% non-fat dry milk buffer, they 178 

were incubated with a polyclonal antibody against Connexin36 (1:1000; Invitrogen) or 179 

β-Tubulin (1:1000; Cell Signaling). Visualization of specific protein bands was 180 

performed by incubating the membranes with appropriate secondary antibodies. Protein 181 

bands were revealed by using the Chemi Doc MP System (Bio Rad). The band 182 

intensities were quantified with the Image Lab Lale 4.1 TM Software (Bio Rad). 183 

2.9. Measurement of islet size. The pancreas was extracted and fixed in 4% 184 

paraformaldehyde. The tissue was then processed and embedded in paraffin and 185 

sections were prepared. Staining was performed as previously described (Gonzalez et 186 

al., 2013). The area of pancreatic islets was analyzed using the Metamorph Software 187 

(Molecular Devices, Sunnyvale, CA). 188 

2.10. Data analysis. Data are shown as mean ± SE unless otherwise stated. Statistical 189 

comparisons between groups were performed using the unpaired Student’s t-test, with 190 

Welch’s correction when mandatory. Differences were considered significant when p < 191 

0.05.  192 
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3. Results. 193 

3.1. Metabolic features in ob/ob mice related with glucose homeostasis. Twelve-194 

week old ob/ob mice displayed an increased body weight that was twice that of age-195 

matched CTL (controls; Fig. 1A) (40.82 ± 0.43 g vs 20.77 ± 0.15 g, respectively). 196 

Obese mice exhibited increased plasma glucose concentrations in the fed state (Fig. 1B), 197 

despite the high levels of fed plasma insulin compared with controls (Fig. 1C). 198 

Additionally, ob/ob mice were insulin resistant (Fig. 1D; Supplemental Fig. 1) and 199 

glucose intolerant (Fig. 1E). The glucose tolerance test (Fig. 1E, F) showed that fasting 200 

plasma glucose tended to be higher in ob/ob mice (although not statistically significant), 201 

and that these obese animals displayed glucose intolerance, as evidenced by the high 202 

plasma glucose levels maintained over the 3 hours subsequent to the glucose challenge. 203 

In the control group, plasma glucose clearance reached basal levels after 90-120 min, 204 

whereas in the obese group plasma glucose remained elevated even after 180 min. 205 

Finally, after an i.p. glucose load, plasma insulin levels were found higher at 0 and 30 206 

min in ob/ob mice (Fig. 1G, H). Altogether, these results indicate that, although ob/ob 207 

mice exhibit higher insulin responses to glucose changes, this adaptation would not 208 

fully compensate the requirements imposed by insulin resistance to maintain 209 

normoglycemia. Thus, since ob/ob mice represent a good model to study this 210 

prediabetic state characterized by insulin resistance and glucose intolerance, we aimed 211 

to study the different steps involved in GSIS. 212 

3.2. Enhanced mitochondrial function in ob/ob islets. Glucose metabolism yields 213 

redox power by means of nicotinamide adenine dinucleotide (NADH) and flavin 214 

adenine dinucleotide (FADH2) production (Quesada et al., 2006). This reducing power, 215 

mainly produced by the tricarboxylic acid cycle in the mitochondria, is used as a source 216 

for electron transfer in the oxidative phosphorylation required to produce ATP (Quesada 217 
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et al., 2006; Rafacho et al., 2010). In an attempt to monitor changes in the mitochondrial 218 

redox state induced by glucose metabolism, we performed NAD(P)H autofluorescence 219 

experiments in CTL and ob/ob intact islets. As shown in Figure 2A, increasing glucose 220 

concentrations produced gradual increments in NAD(P)H fluorescence in both groups. 221 

Interestingly, ob/ob islets showed an enhanced NAD(P)H production at each glucose 222 

concentration tested (Fig. 2B). When the data was normalized to calculate the glucose 223 

concentration required to reach the half maximal fluorescence, we found that the 224 

glucose dose-response curve was shifted to lower glucose concentrations in ob/ob islets 225 

(CTL: 8.77mM G; ob/ob: 6.77mM G) (Fig. 2C). To further confirm the increased 226 

mitochondrial activity in islets from obese mice, we monitored changes in the 227 

mitochondrial membrane potential (ψm), as this parameter depends on glucose 228 

metabolism. Increasing glucose concentrations lead to ψm hyperpolarization (Rafacho et 229 

al., 2010). To monitor ψm, we loaded islets with the lipophylic fluorescent dye 230 

rhodamine-123 (Rhod-123), which intercalates into the mitochondrial membranes in a 231 

potential-dependent manner. Figure 2D shows the typical gradual decrease in Rhod-123 232 

fluorescence, when glucose concentrations were stepwise increased. In agreement with 233 

the results obtained with NAD(P)H fluorescence, ob/ob islets exhibited a higher ψm 234 

hyperpolarization at all the glucose concentrations (Fig. 2D and E). When Rhod-123 235 

fluorescence was normalized in both groups to obtain the glucose concentration 236 

associated to the half maximal fluorescence, we did not get differences between both 237 

groups (Fig. 2F). This might probably due to the lower sensitivity of this experiment to 238 

produce glucose-mediated fluorescence compared with the NAD(P)H assays (Fig. 2A, 239 

D). Consistent with the rest of results, we also found enhanced NAD(P)H production in 240 

isolated β-cells from ob/ob mice (Fig. 2G, H). This improved glucose-induced 241 

mitochondrial response in ob/ob islets might not be associated with up-regulation of 242 
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early metabolic steps, since we found decreased glucose transporter-2 expression in 243 

ob/ob islets (~68% decrease vs CTL) and comparable levels of glucokinase gene 244 

expression in both groups (Supplemental Fig. 2). 245 

3.3. Obese mice display several alterations in the membrane potential of β-cells. 246 

The following experiments were performed using perforated-patch recordings in β-cells 247 

within intact islets to preserve the cell-to-cell environment, which is more similar to the 248 

physiological scenario (Göpel et al., 1999; Göpel et al., 2000; Göpel et al., 2004). 249 

Compared with the characteristic membrane potential oscillations in response to 11 mM 250 

glucose in controls (Fig. 3A), ob/ob β-cells displayed a different profile (Fig. 3B). In 251 

ob/ob, the firing frequency of the action potentials was slightly increased (Fig. 3C), in 252 

combination with a much longer duration of the burst (Fig. 3D) and longer silent phases 253 

between bursts (Fig. 3E). Interestingly, a more detailed analysis of the membrane 254 

potential recordings (Fig. 3F,G) showed that the burst was initiated at less negative 255 

potentials in β-cells from obese mice (CTL, -71.7 ± 1.9 mV; ob/ob, -57.2 ± 2.7 mV) 256 

(Fig. 3H). Furthermore, the action potentials of ob/ob β-cells started at a more 257 

depolarized potential (CTL, -47,5 ± 2,2 mV; ob/ob, -39,8 ± 1,8 mV) (Fig. 3I) and peaks 258 

reached less negative potentials (CTL, -24,1 ± 2,9 mV; ob/ob, -12,1 ± 2,2 mV) (Fig. 3J). 259 

As we will discuss later, this different electrical activity in ob/ob mice, particularly the 260 

higher frequency and burst duration, should have an impact on Ca2+ signaling, since 261 

action potentials in mouse β-cells are mainly mediated by Ca2+ channels (Göpel et al., 262 

1999; Rorsman and Braun, 2013). 263 

3.4. Islets from obese mice exhibit enhanced glucose-induced Ca2+ signals. Ca2+ 264 

signaling plays a key role in coupling glucose metabolism and insulin release. As a next 265 

step in the β-cell stimulus-secretion process, we analyzed intracellular Ca2+ signals in 266 

whole islets, as previously described (Rafacho et al., 2010; Gonzalez et al., 2013). 267 
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While ob/ob islets displayed an enlarged Ca2+ signal in response to 5.6 and 8 mM 268 

glucose compared with controls, no differences were found at 16 mM, when the AUC 269 

was calculated as a measure of the global Ca2+ entry (Fig. 4A-C). This analysis 270 

evidenced that the Ca2+ signal in ob/ob islets at 5.6 mM glucose was of the same 271 

magnitude than that of CTL islets at 8mM glucose. A similar equivalence was observed 272 

between the intracellular Ca2+ in ob/ob islets at 8mM glucose and CTL islets at 16mM 273 

glucose (Fig. 4C). When we analyzed the fluorescence increase (ΔF) of the first Ca2+ 274 

transient at each glucose stimulus, differences were only found at 5.6mM glucose (Fig. 275 

4D). This was related to the fact that the totality of ob/ob islets displayed Ca2+ signaling 276 

at this glucose concentration, whereas in most of the CTL islets any Ca2+ entry was 277 

detected (Fig. 4E). The oscillatory pattern was also modified in islets from obese mice. 278 

While CTL islets showed the characteristic pattern with oscillations of high frequency 279 

after the first transient at 8mM glucose, ob/ob islets showed lower frequency Ca2+ 280 

signals (Fig. 4F). We next analyzed the response to a stimulus independent of 281 

metabolism. Exposure to 75mM KCl led to a depolarization-induced Ca2+ transient (Fig. 282 

4G). The amplitude of this transient was not different between both groups (Fig. 4H), 283 

suggesting that increased Ca2+ signaling in obese mice were due to changes in glucose 284 

metabolism. The non-glucidic fuel alpha-ketoisocaproate (KIC) has been shown to 285 

produce Ca2+ oscillations in pancreatic islets (Martin et al., 1995). KIC also led to 286 

enhanced Ca2+ signaling in islets from obese mice compared with lean controls 287 

(Supplemental Fig. 3), further suggesting that metabolism is particularly affected in 288 

ob/ob animals. In summary, glucose-regulated Ca2+ signaling in ob/ob islets was mainly 289 

characterized by higher magnitude and higher sensitivity to glucose compared with 290 

controls. 291 



 

 14 

3.5. Insulin secretion and exocytosis are increased in ob/ob pancreatic islets. Insulin 292 

gene expression (Fig. 5A) as well as insulin content (Fig. 5B) were found to be 293 

increased in ob/ob islets as compared to CTL. As previously documented (Black et al., 294 

1986; Fournier et al., 1990), we observed that insulin secretion was enhanced in islets 295 

from obese mice (Supplemental Fig. 4). Since it has been reported that the exocytotic 296 

process measured in isolated β-cells largely differs from that measured in islets (Göpel 297 

et al., 2004), we studied exocytosis in β-cells within the pancreatic islets, which better 298 

resembles the physiological cell-to-cell interactions. When we analyzed capacitance 299 

changes in response to depolarization pulses, we found that exocytosis in ob/ob β-cells 300 

was higher than in CTL cells (Fig. 5C, D), indicating that enhanced insulin secretion in 301 

intact islets is also due to augmented exocytosis at the single cell level. 302 

3.6. β-cell coupling is altered in the islets of obese mice. Analysis of intracellular Ca2+ 303 

signals in individual β-cells within the pancreatic islets, as reported previously 304 

(Gonzalez et al. 2013), showed that cell-to-cell coupling was reduced in ob/ob β-cells 305 

compared with controls (Fig. 6A, B). When the lag time was calculated between the 306 

first and the last beta-cell responding with a Ca2+ increase to 11 mM glucose within a 307 

single islet, we observed that the average time was 58.04 ± 9.14 seconds in ob/ob islets 308 

and 4.68 ± 1.34 seconds in CTL islets (Fig. 6C), indicating a lower synchrony in the 309 

former group. While connexin36 mRNA levels were similar in both groups, the protein 310 

content was significantly reduced in ob/ob islets (Supplemental Fig. 5). Gap junctions in 311 

the mouse β-cell are mainly composed by Cx36. Additionally, we found that ob/ob β-312 

cells responded 1.35 ± 0.15 min faster to 11 mM glucose than control cells (Fig.6D), 313 

which is consistent with the higher glucose sensitivity observed in the previous 314 

experiments (Fig. 2,4). 315 

316 
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Discussion. 317 

During obesity, the endocrine pancreas undergoes several adaptations to 318 

compensate for the insulin resistance characteristic of this state. Structural adaptations, 319 

by means of an increment in the β-cell mass, have been extensively reviewed in both 320 

animals and humans (Butler et al., 2003; Sachdeva et al., 2009; Seino et al., 2011; 321 

Saisho et al. 2013). In agreement with previous reports in ob/ob mice (Bock et al., 322 

2003), we also found increased islet size (Supplemental Fig. 6). However, less is known 323 

about the β-cell functional adaptations (Kahn et al., 2006; Kargar and Ktorza, 2008; 324 

Seino et al., 2011). We have previously demonstrated in a model of high fat diet-325 

induced obesity that pancreatic β-cells exhibit an improved function in several events 326 

involved in GSIS (Gonzalez et al., 2013). These adaptations allowed for a compensation 327 

of insulin resistance, preserving normoglycemia and glucose tolerance in this model. It 328 

has been proposed that, in the progression from this normoglycemic state to overt 329 

diabetes in obese subjects, compensatory adaptations become insufficient to counteract 330 

insulin resistance, leading to an intermediate state characterized by hyperinsulinemia, 331 

moderate hyperglycemia and glucose intolerance (Weir and Bonner-Weir, 2004). 332 

However, there is no information about this prediabetic condition at the functional level. 333 

In the present study, we have taken advantage of the ob/ob mouse metabolic 334 

characteristics, which resemble this prediabetic state, to explore the β-cell function. At 335 

the age of 12 weeks, ob/ob mice exhibited glucose intolerance and insulin resistance, in 336 

agreement with previous publications (Saleh et al., 2006). Despite the high circulating 337 

insulin levels, obese mice were only able to maintain plasma glucose levels within the 338 

normoglycemic range in the fasted state but not during fed conditions or during an i.p. 339 

glucose challenge (Fig. 1). Although the hyperinsulinemic characteristic of ob/ob mice 340 

has been related with morphological adaptations (Tomita et al., 1992; Baetens et al., 341 
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1978; Gepts et al., 1960), increased GSIS has been also observed in isolated ob/ob islets 342 

(Black et al., 1986; Fournier et al., 1990. Saleh et al., 2006). In the present work, we 343 

focused on the involvement of the different functional steps participating in GSIS.  344 

In β-cells, most of the NAD(P)H synthesis derived from glucose metabolism 345 

takes place in the mitochondria (Patterson et al., 2000). We showed here an enhanced 346 

NAD(P)H production and glucose sensitivity in islets of obese mice (Fig. 2). This effect 347 

was also observed in individual β-cells, which supports that the enhanced NAD(P)H 348 

signal found in intact islets would not be due to increased β-cell number but a 349 

consequence of metabolic adaptations in individual β-cells. Additionally, ob/ob islets 350 

displayed higher glucose-induced ψm hyperpolarization, further supporting an enhanced 351 

β-cell mitochondrial performance in obese mice. All these findings are in agreement 352 

with previous reports showing similar metabolic responses in a rat model of insulin 353 

resistance (Rafacho et al., 2010). Since enhanced NAD(P)H production and Ψm 354 

hyperpolarization should be coupled to increased ATP synthesis (Quesada et al., 2006), 355 

the mitochondrial responses in ob/ob islets and their higher glucose sensitivity may 356 

explain the electrical activity at lower glucose levels compared with controls (Fig. 3). 357 

Likewise, since β-cell Ca2+ signaling is mediated by electrical activity, the intracellular 358 

Ca2+ entry observed at 5.6 mM glucose in ob/ob islets (Fig. 4) would be also associated 359 

with the improved mitochondrial activity. In addition to electrical and Ca2+ signaling 360 

effects, it has been shown that ATP and other glucose-stimulated mitochondrial factors 361 

like glutamate and, particularly, NAD(P)H can also exert a positive regulation of 362 

exocytosis and secretory granules mobilization (Maechler and Wollheim, 1999; 363 

Ivarsson et al., 2005; Reinbothe et al., 2009; MacDonald, 2011; Rorsman and Braun, 364 

2013). Thus, all these cellular events are expected to be augmented in ob/ob β-cells. 365 

Furthermore, we found reduced GLUT2 expression in ob/ob islets, while GcK 366 
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expression was not altered (Supplemental Fig. 2). Despite the decreased GLUT2 367 

expression, which has also been reported at the protein level in ob/ob islets (Jetton et al, 368 

2001), glucose metabolism is not necessarily affected by this alteration, since the 369 

limiting enzyme in the glycolytic pathway is GcK (Chen et al., 1994). Thus, the 370 

enhanced mitochondrial activity shown in ob/ob β-cells might result from alterations 371 

other than in these proteins.  372 

It has been previously reported that glucose usage is mainly glycolytic in the 373 

pancreatic beta-cell and that glucose-induced NAD(P)H fluorescence comes 374 

fundamentally from mitochondria rather than from cytosol in the pancreatic islet 375 

(Patterson et al., 2000; Quesada et al., 2006). Thus, this protocol allows for the temporal 376 

analysis of mitochondrial activity. Our results indicate a left-shift displacement in the 377 

dose-response curve of the glucose-induced NAD(P)H fluorescence (Fig. 2C), 378 

indicating a higher sensitivity for low and intermediate glucose levels in obese animals, 379 

as previously indicated (Chen et al., 1993). A similar finding was found in glucose-380 

induced Ca2+ signals (Fig. 4). The NAD(P)H results are in agreement with previous 381 

findings showing increased ATP production at low glucose concentrations in islets of 382 

ob/ob mice compared with lean controls, while no significant differences were observed 383 

at high glucose levels (Saleh et al., 2006). In this study, it was also reported that ob/ob 384 

islets express more uncoupling protein-2 (UCP2) than controls, which may contribute to 385 

GSIS impairment (Saleh et al., 2006). Given that UCP2 activation is associated with Ψm 386 

dissipation (Fink et al., 2002), our experiments (Fig. 2D-F) argue against a negative 387 

impact of this protein on beta-cell Ψm in ob/ob mice. 388 

β-cells from ob/ob mice display an electrical activity pattern that differs from 389 

that of controls, as it has been previously reported (Rosario et al., 1985). Among other 390 

features, this electrical pattern is characterized by a higher sensitivity to low glucose 391 
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concentrations. This hyper-excitability has been related to altered K+ permeabilities 392 

(Fournier et al., 1990; Rosario, 1985). These observations would be in accordance with 393 

the lower density of KATP channels in the membrane of β-cells from ob/ob mice (Park et 394 

al., 2013). Alternatively, here we show that the improved glucose-induced electrical 395 

activity in ob/ob islets may be also explained by their enhanced mitochondrial activity 396 

at lower glucose concentrations (Fig. 2), in agreement with previous works (Saleh et al., 397 

2006). Additionally, in line with other studies (Rosario et al., 1985), the firing 398 

frequency and the duration of the electrical activity bursts were increased in obese mice 399 

(Fig. 3). Both characteristics would be associated with the higher Ca2+ signals observed 400 

in ob/ob islets (Fig. 4), given that action potentials in mouse β-cells result from Ca2+ 401 

channel activity, which lead to Ca2+ entry (MacDonald, 2011). Moreover, the burst and 402 

action potential baseline were slightly depolarized compared with controls (Fig. 4), 403 

which may suggest an altered activity of Ca2+-activated K+ channels, as previously 404 

indicated (Rosario et al., 1985; Rosario, 1985; Black et al., 1988). It has been reported 405 

that higher action potentials may be associated to increased inward Ca2+ currents due to 406 

the voltage-dependence characteristics of Ca2+ channels (Gonzalez et al., 2013; 407 

Houamed et al., 2010; Jacobson et al., 2010). Thus, it is possible that the higher peak 408 

level of the ob/ob action potentials (Fig. 3J) may also contribute to the increased Ca2+ 409 

signals shown here (Fig. 4). 410 

Ca2+ signals in response to 5.6 and 8mM glucose were enhanced in islets from 411 

ob/ob mice (Fig. 4). Other studies have not reported differences, probably because 412 

ob/ob islets were stimulated by glucose concentrations (20 mM) at which β-cells were 413 

maximally depolarized (Fournier et al., 1993). In contrast to the glucose effects, no 414 

differences were found by KCl stimulation, which further supports the idea that 415 

increased Ca2+ signals in ob/ob islets may be mediated by changes in glucose 416 
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metabolism or metabolic-related factors (Ivarsson et al., 2005; MacDonald, 2011; 417 

Rorsman and Braun, 2013), particularly at low-intermediate glucose levels. The idea 418 

that metabolism could be affected in ob/ob islets was also supported by the higher 419 

response to KIC. As we have mentioned above, the enhanced Ca2+ signals would be also 420 

related to the higher action potential frequency and longer burst duration characteristic 421 

of ob/ob beta-cells. Additionally, most ob/ob islets displayed a different oscillatory 422 

pattern, characterized by the loss of high frequency oscillations (Fig. 4). This has been 423 

attributed to a reduced expression of the TRPM5 channel (Colsoul et al., 2010; Colsoul 424 

et al., 2013). Our findings in TRPM5 gene expression agree with this effect on the Ca2+ 425 

oscillatory frequency (Supplemental Fig. 2). This channel is a non-selective monovalent 426 

cation channel activated by intracellular Ca2+ that contributes to membrane 427 

depolarization during electrically silent intervals, promoting the initiation of a new burst 428 

activity. This would also explain the absence of fast membrane potential oscillations in 429 

ob/ob (Fig. 3), as described for Trpm5-/- islets (Colsoul et al., 2010). However, Colsoul 430 

et al. found no differences between controls and Trpm5-/- islets in the glucose 431 

concentration threshold that trigger [Ca2+]i
  oscillations. In ob/ob islets, this might be 432 

explained by the lower KATP density in the plasma membrane (Park et al., 2013) and an 433 

enhanced glucose metabolism, as we showed here.  434 

The increased insulin secretory capacity in ob/ob islets has been reported long 435 

time ago (Black et al., 1986; Fournier et al., 1990). Our capacitance experiments in 436 

intact islets demonstrate that this hypersecretion may be supported by an enhanced 437 

exoytotic capacity at the single cell level. Additionally, given that capacitance changes 438 

were elicited by depolarization pulses (instead of glucose stimuli), it also indicates that 439 

the exocytotic process per se is subjected to an adaptive process in ob/ob β-cells 440 

independent of glucose metabolism that would increase the secretory process. In any 441 
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case, since it has been reported that NAD(P)H can directly affect β-cell exocytosis 442 

(Ivarsson et al., 2005; Reinbothe et al., 2009), the increased NAD(P)H responses 443 

reported here might be also involved in the augmented exocytosis in ob/ob β-cells. In 444 

line with other reports (Saleh et al., 2006), we also observed enhanced insulin secretion 445 

at low glucose concentrations in ob/ob islets (Supplemental Fig. 4), although no 446 

differences were found in Ca2+ levels. This augmented basal secretion may be due to 447 

up-regulated constitutive insulin secretion or that beta-cell secretory granules contain 448 

more insulin compared with controls. However, much research would be necessary to 449 

explore these possibilities. It has been proposed that GSIS is modulated by both 450 

triggering and metabolic amplifying pathways (Henquin, 2009), that are mainly relayed 451 

by Ca2+ and metabolic factors, respectively. Although we did not perform specific 452 

experiments in the current study to understand the potential contribution of each 453 

pathway in the augmented GSIS in ob/ob islets, several findings such as the elevated 454 

Ca2+ levels and mitochondrial function suggest that both pathways might be involved.  455 

Cell-to-cell coupling among β-cells allows electrical and Ca2+ signaling 456 

synchrony within the islet (Nadal et al., 1999; Quesada et al., 2006). This coupling is 457 

necessary to maintain a proper insulin secretion and alterations in this coordination are 458 

detrimental for this process (Vozzi et al., 1995; Charollais et al., 2000). We observed 459 

decreased Ca2+ signal coupling among β-cells of ob/ob islets in agreement with previous 460 

studies (Ravier et al., 2002). Connexin36, which is the main connexin type expressed in 461 

mouse islets, was reduced at the protein level in ob/ob islets compared with controls. 462 

Thus, this protein reduction may contribute to the deficient coupling observed in obese 463 

islets. Additionally, given that electrical and Ca2+ signal transmission within the islet 464 

decay with the intercellular distance (Andreu et al., 1997; Quesada et al., 2003), it is 465 

plausible that the decreased coupling in ob/ob islets are also associated with their larger 466 
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size compared with controls (Gepts et al., 1960; Baetens et al., 1978; Tomita et al., 467 

1992), as it has been previously suggested (Ravier et al., 2002). This possibility would 468 

require further investigation. Thus, among the different events studied in the present 469 

work, Ca2+ signal coupling was the only one to be decreased. Since we have previously 470 

observed normal coupling in islets of obese normoglycemic mice (Gonzalez et al., 471 

2013), it is tempting to speculate that this could be an early defect in the prediabetic 472 

state that takes place in the progression to diabetes in obese individuals.  473 

In summary, while the islet compensatory response to obesity and insulin 474 

resistant states has been mainly related to morphological changes, here we show that β-475 

cell functional adaptations have also a key role in this process. Additionally, we also 476 

demonstrated that almost all the events implicated in GSIS are augmented in magnitude 477 

and/or glucose sensitivity, indicating a significant plasticity in β-cell function in non-478 

physiological and pathological conditions. Finally, we also detected a lack of β-cell 479 

coordination in obese prediabetic mice that could be an early manifestation of functional 480 

defects that lead to GSIS failure and diabetes. All these adaptations may offer a broad 481 

spectrum of possibilities for the design of therapeutic approaches that may slow down 482 

the progression to diabetic states in obese individuals. 483 
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 679 
FIGURE LEGENDS. 680 

Figure 1. Metabolic features in control and ob/ob mice. A, Body weight (n=35 and 681 

n=28 for control and ob/ob mice, respectively). B, Plasma glucose in the fed state in 682 

CTL (n=26) and ob/ob mice (n=23). C, Plasma insulin in the fed state in CTL (n=13) 683 

and ob/ob mice (n=11). D, Insulin resistance calculated by HOMA-IR in CTL (n=8) and 684 

ob/ob mice (n=6). E, Glucose tolerance test (n=8 for CTL and n=7 for ob/ob mice). F, 685 

Area under the curve from experiment in E. G and H, Plasma glucose (G) and insulin 686 

(H) measured in CTL (n=8) and ob/ob (n=6) just before an i.p. glucose load and 30 min 687 

after. Statistical significance is indicated: *, p≤0.05; **, p≤0.01; ***, p≤0.001; ns, non-688 

significant. 689 

Figure 2. NAD(P)H generation and mitochondrial membrane potential (Δψm) 690 

changes in intact control and ob/ob islets. A, Changes in NAD(P)H autofluorescence 691 

at increasing glucose concentrations (percentage referred to the signal in the basal 692 

condition: 0.5mM glucose). The trace represents the average of 6 different experiments 693 

per group. B, The graph represents the mean ± SEM of the maximal NAD(P)H 694 

autofluorescence values at the end of each glucose stimulus shown in A. C, Mean ± 695 

SEM of the maximal NAD(P)H autofluorescence values at each glucose concentration, 696 

normalized in each group from 0 to 100%. The value of the glucose concentration to 697 

reach half the maximal fluorescence in each group is indicated in the graph. D, Changes 698 

in Rhod123 fluorescence at increasing glucose concentrations. The trace represents the 699 

average of 8 and 9 different experiments in CTL and ob/ob, respectively. E, Mean ± 700 

SEM of the minimal Rhod123 fluorescence values at the end of each glucose stimulus. 701 

F, Mean ± SEM of the minimal Rhod123 fluorescence values at each glucose 702 

concentration, normalized in each group from 0 to 100%. G, Changes in NAD(P)H 703 

autofluorescence at increasing glucose concentrations in CTL (n=20) and ob/ob (n=66) 704 
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isolated cells. H, Mean ± SEM of the maximal NAD(P)H autofluorescence values at the 705 

end of each glucose stimulus from experiment in G. Statistical significance is indicated: 706 

*, p≤0.05; **, p≤0.01; ***, p≤0.001; ns, non-significant.    707 

Figure 3. Electrical activity in control and ob/ob β-cells. A and B, Representative 708 

examples of membrane potential changes in response to 11mM glucose in CTL (A; 709 

n=6) and ob/ob (B; n=6) β-cells. Recordings were performed in beta-cells within intact 710 

islets. C, D and E, Firing frequency (C), burst duration (D) and interburst duration (E) 711 

from experiments shown in A and B. F and G, Detail of figures A and B, respectively, 712 

at expanded temporal scale. H, I, J, Burst baseline (H), action potential baseline (I) and 713 

mean peak voltage of the action potentials (J) from recordings shown in F and G (n=5 714 

for CTL and n=6 for ob/ob). Statistical significance is indicated: *, p≤0.05; **, p≤0.01. 715 

Figure 4. Glucose-induced Ca2+ signaling in β-cells of control and ob/ob mice. A, 716 

Representative intracellular Ca2+ signals measured in intact CTL (n=8) and ob/ob (n=6) 717 

islets by fluorescence microscopy and fura-2 in response to 8mM and 16mM glucose. 718 

B, Representative intracellular Ca2+ signals measured in intact CTL (n=9) and ob/ob 719 

(n=8) islets in response to 5.6mM and 8mM glucose. C, Analysis of the area under the 720 

curve on the last five minutes of each glucose stimulus from experiments shown in A 721 

and B. D, Analysis of the fluorescence increase (ΔF) of the first Ca2+ transient in 722 

response to each glucose challenge from experiments shown in A and B. E, Percentage 723 

of responsive islets to 5.6mM glucose (n=9 for CTL; n=8 for ob/ob). All the islets from 724 

both groups responded to 8 and 16mM glucose. F, Oscillations per minute in CTL and 725 

ob/ob islets at 8 and 16mM glucose. G, Representative intracellular Ca2+ signals in 726 

response to depolarization induced by a short pulse of KCl (75mM; n=10 for CTL; n=6 727 

for ob/ob). H, Analysis of the fluorescence increases (ΔF) shown in G. Statistical 728 

significance is indicated: *, p≤0.05; **, p≤0.01; ***, p≤0.001; ns, non-significant. 729 
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Figure 5. Insulin secretion and exocytosis. A, Insulin gene expression in islets from 730 

CTL and ob/ob (n=5). B, Insulin content normalized to total protein in CTL (n=16) and 731 

ob/ob (n=15) islets. C, Representative capacitance responses to ten 500-millisecond 732 

depolarizing pulses (from -70 to 0 mV) in CTL and ob/ob β-cells. Recordings were 733 

performed in beta-cells within intact islets. D, Membrane capacitance at the end of the 734 

depolarizing protocol normalized by cell size (n=10 for CTL; n=45 for ob/ob). 735 

Statistical significance is indicated: *, p≤0.05; **, p≤0.01; ***, p≤0.001; ns, non-736 

significant.  737 

Figure 6. β-cell coupling in ob/ob islets. A and B, Representative Ca2+ signals in 738 

several individual β-cells within a CTL (A) or an ob/ob islet (B). C, Mean time delay 739 

between the first cell that responds to 11 mM glucose and the rest of β-cells within an 740 

islet was calculated to measure the degree of Ca2+ signaling synchrony. In each 741 

experimental group, the time at which the first cell responded to high glucose was set as 742 

t=0, and then, the delay of the response of the rest of cells of the same islet was 743 

determined. D, Temporal delays in the β-cell Ca2+ response to glucose. The mean time 744 

of the response to 11 mM glucose in CTL β-cells was set as t=0, and then, the 745 

anticipation or delay of the response of ob/ob β-cells was calculated. Statistical 746 

significance is indicated: ***, p≤0.001. 747 
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 1 
Supplemental Table 1: Sequences of the primer-pairs used for gene expression 2 

analysis. 3 

 4 

 Forward 5’-3’ Reverse 5’-3’ 
GAPDH CCTGCACCACCAACTGCTTAG GCCCCACGGCCATCACGCCA 
Insulin AGCAGGAAGGTTATTGTTTC ACATGGGTGTGTAGAAGAAG 
GLUT2 GGAAGAGGCATCGACTGAGCAG GCCTTCTCCACAAGCAGCACAG 
Glucokinase GAAGCACACTCAGGTCTTGCTC AAAACAGCCAGGTCTGGGCAGC 
Connexin36 ACCATCTTGGAGAGGCTGCTGGA ATCTTCTCGTTTGCTCCCTCCGC 
TRPM5 CAAATCCCTCTGGATGAAATTGATG CCAGCCAGTTGGCATAGA 

 5 

 6 

 7 



Supplemental Figure 1. 

Supplemental Figure 1. Insulin sensitivity. A, Insulin tolerance test in CTL and ob/ob mice 
(n=8 for each group). B, Plasma glucose values during an insulin tolerance test, expressed as the 
percentage of change of the initial value.  C and D, area under the curve of A and B, 
respectively. E, Plasma glucose before the insulin injection. Statistical significance is indicated: 
**, p≤0.01; ***, p≤0.001;  
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Supplemental Figure 2. 

Supplemental Figure 2. Gene expression analysis by qPCR. Relative gene 
expression of GLUT2 (A), Glucokinase (B) and TRPM5 (C) in islets from CTL 
and ob/ob mice (n=5 for each group). Statistical significance is indicated: **, 
p≤0.01 

CTL ob/ob
0.0

0.5

1.0

1.5

**

G
LU

T2
 g

en
e 

ex
pr

es
si

on

CTL ob/ob
0.0

0.5

1.0

1.5
G

cK
 g

en
e 

ex
pr

es
si

on

CTL ob/ob
0.0

0.5

1.0

1.5

**

TR
PM

5 
ge

ne
 e

xp
re

ss
io

n

A B C



0.9

1.1

1.3

1.5

1.7

CTL
ob/ob

5min

0 mM Glucose
5 mM KIC

F3
60

/F
38

0

CTL ob/ob
0.0

0.2

0.4

0.6

0.8

1.0

*

AU
C

 (a
.u

.)

A B

Supplemental Figure 3. 

Supplemental Figure 3. Ca2+ signaling induced by the non-glucidic fuel α-ketoisocaproate 
(KIC). A, Representative intracellular Ca2+ signals measured in intact CTL and ob/ob islets in 
response to 5 mM KIC (n=6 for each group). B, Area under the curve on the last five minutes of 
the KIC stimulus from experiment in A. Statistical significance is indicated: *, p≤0.05. 
  



Supplemental Figure 4. 
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Supplemental Figure 4. Ex vivo insulin secretion from CTL and ob/ob islets. Insulin 
secretion (A), insulin content (B) and insulin secretion normalized by insulin content (C) in 
islets from CTL and ob/ob mice (n=8 for each group). Statistical significance is indicated: *, 
p≤0.05; **, p≤0.01; ***, p≤0.001; ns, non-significant.  



Supplemental Figure 5. 

Supplemental Figure 5. Connexin36 expression. A, Connexin36 gene expression in islets of 
CTL and ob/ob mice (n=5 for each group). B, Connexin36 protein expression in islets of CTL 
(n=4) and ob/ob (n=3) mice. C, Representative blots from B. Statistical significance is indicated: 
*, p≤0.05. 
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Supplemental Figure 6. 

Supplemental Figure 6. Islet size. Thus graph shows the average islet size for CTL (n=316 
islets) and ob/ob (n=454 islets). Statistical significance is indicated: **, p≤0.01 
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