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Visual neuroprosthesis, that provide electrical stimulation along several sites of the human visual system,
constitute a potential tool for vision restoration for the blind. Scientific and technological progress in the
fields of neural engineering and artificial vision comes with new theories and tools that, along with the
dawn of modern artificial intelligence, constitute a promising framework for the further development of
neurotechnology. In the framework of the development of a Cortical Visual Neuroprosthesis for the blind
(CORTIVIS), we are now facing the challenge of developing not only computationally powerful tools and
flexible approaches that will allow us to provide some degree of functional vision to individuals who are
profoundly blind. In this work, we propose a general neuroprosthesis framework composed of several task-
oriented and visual encoding modules. We address the development and implementation of computational
models of the firing rates of retinal ganglion cells and design a tool — Neurolight — that allows these
models to be interfaced with intracortical microelectrodes in order to create electrical stimulation patterns
that can evoke useful perceptions. In addition, the developed framework allows the deployment of a diverse
array of state-of-the-art deep-learning techniques for task-oriented and general image pre-processing, such
as semantic segmentation and object detection in our system’s pipeline. To the best of our knowledge,
this constitutes the first deep-learning-based system designed to directly interface with the visual brain
through an intracortical microelectrode array. We implement the complete pipeline, from obtaining a
video stream to developing and deploving task-oriented deep-learning models and predictive models of
retinal ganglion cells’ encoding of visual inputs under the control of a neurostimulation device able to
send electrical train pulses to a microelectrode array implanted at the visual cortex.
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1. Introduction

Restoring the ability of the human neural system
to function properly is one of the main purposes
of neural engineering. In the context of this broad
and multidisciplinary research field, encompassing
disciplines ranging from clinical neurology to com-
putational neuroscience, scientific advancement and
engineering development have brought us to today’s
achievements: EEG-based Brain Computer Inter-
faces (BCIs),! motor controlled BCIs with Utah
arrays,”? cochlear implants, retinal prostheses,”
and Deep Brain Stimulation systems.® Regarding
the recovery of visual function, several approaches
are being extensively explored such as optogenet-
ics,” biocompatible material design for neural inter-
faces,® and neuromorphic computing for neuropros-
thesis.? Specifically, several advances have been made
in retinal prostheses, with a few devices having
been already clinically tested or being currently in
use.'"1! These devices are limited to very specific
causes of blindness, where the optic nerve function is
intact. Cortical prostheses appear as a potential solu-
tion to those blindness conditions for people with a
functional visual cortex, regardless of their retinal
or optic nerve condition for a more extensive review
on the state of visual prostheses, we refer the reader
to Refs. 12-16. Several research groups around the

1721 Tny this context,

globe are pursuing this aim.
the main goal of this work is to integrate the actual
knowledge on neural function. psychophysics, signal
processing, and neural encoding modeling to build
a working pipeline which will lead us towards fur-
ther experiments and techniques that can be useful
for the development of cortical visual prostheses. A
general idea of the complete pipeline of a functional
cortical visual prosthesis is composed of a video cam-
era which receives the visual information and con-
veys it to a signal-processing device which assigns
orders to the neurostimulator that sends electrical
pulse trains to the neural tissue according to those
commands!'™!® (see Fig. 2). Despite notable efforts
2223 __ creating
potential preprocessing and /or stimulation strategies
— a step forward towards the actual implementation
of these developments must be made in the frame
of reference of today’s neurostimulation systems and
experimental clinical scenarios.

In the context of the “Development of a Cortical
Visual Neuroprosthesis for the Blind” (CORTIVIS)

that have been made in this direction

project,®! we now face the challenge of creating
not only powerful tools but also flexible approaches
that can overcome the limitations of the current
neurostimulation systems, and meet the needs of
researchers.

Therefore, inspired by the success of cochlear
implants, which greatly benefited from the develop-
ment and tuning of signal-processing models accord-
ing to psychophysics,?® we designed an end-to-end
image processing and stimulation control workflow
that aimed to constitute a useful tool for visual neu-
roprosthesis research.

Considering the state of affairs and the great suc-
cess of Deep Learning (DL) techniques in both indus-
trial applications and neuroscientific and biomedical
research, we propose and implement a DL frame-
work that allows the application of several state-
of-the-art image processing techniques which can
add great value to visual neuroprosthesis, poten-
tially transforming those systems into more flexible
devices capable of performing tasks which supersede
the mere direct mapping from pixels to activation
maps by being able to execute tasks such as object
detection and image segmentation.

In order to allow the designed system to incor-
porate bioinspired control capabilities of the electri-
cal stimulation parameters (amplitude of the phases,
pulse width. pulse frequency, inter-pulse, inter-phase,
inter-train; see Fig. 2), we created a neural encoding
module which makes use of the DL libraries Keras
and TensorFlow,?%27 allowing us to create and make
use of custom-defined or data-driven models of neu-
ral encoding of light patterns in order to simulate
retina-like visual processing models whose output
will be used for the stimulation control.

The possibility of reproducing neuronal activ-
ity present on the retina during natural vision has
been studied by several researchers®® with promis-
ing results. Furthermore, techniques for computing
population coding distances on retinas have been
proposed,?® along with visual perception simulation
frameworks.???? These results are encouraging, and
the new methodologies could be applied to and tested
on the visual cortex.

Moreover, diverse models of animal and human
neural visual encoding systems have been imple-
mented, targeting different processing stages, some
of them focusing on the retina,?* 3% which is the pri-
mary stage of visual processing.
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The main goals of this work are to propose a con-
ceptual view of the future direction of neuroprosthet-
ics research and the creation of an integrated tool
that can be useful for future experiments in blind
volunteers.

This work is organized as follows: first, we present
our design methodology, describing the main aspects
and structure of the complete system and then detail-
ing the development of the neural encoding mod-
els, the software and hardware modules, and the
designed stimulation strategies.

Last, we discuss the implications of this work
along with the potential outcomes and limitations
of the system and the future challenges.

2. System Overview

In this work, end-to-end DL-based visual processing
and neural encoding system together with a stimu-
lation module has been designed. integrating both
hardware and software components into a flexible
tool for visual neuroprosthesis research.

This system, schematized in Fig. 2, is composed
of several stages. First, a commercial USB camera
device mounted on a pair of glasses captures the
video signal, which is received by a computer with a
Linux operating system. We implemented the system
with both a Raspberry Pi model 3B+ in Sec. 5, Inter-
facing Computational Neural Models with the Brain:
an Artificial Retina and a Nvidia Jetson Nano in
Sec. 6, The input images can be processed by a DL
image-processing module and sent to a model’s pre-
diction module — in this work, we show the imple-
mentation of a Deep Neural Network (DNN)-based
object detection model and an artificial retina-see
Secs. 5 and 6.

Finally, the model's output is interpreted as
the main command for the neural stimulation

ﬂ__ -—‘ '__-_-’ M

Fig. 1. TIllustration of the system’s pipeline. For a more
detailed explanation of the Neural Compute Stick (NCS)
module for DL inference acceleration, we refer to the
Sec. 5.3.
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Fig. 2. Two main train modulation strategies are con-
templated: Intensity modulation (A) and Frequency
modulation (B).

(Cerestim96, Blackrock Microsystems, Inc., Salt
Lake City, Utah), which provides customized elec-
trical pulse trains to the visual cortex through intra-
cortical microelectrodes such as the Utah electrode
array.>*

In order to handle the video stream, open source
Python libraries for scientific computing have been
used: openCV scipy, and numpy,®* %7 along with
the state-of-the-art DL libraries TensorFlow and
Keras?%27 as the tools to implement the image pro-
cessing and the neural coding previous to the stimu-
lation control signals. For the implementation of the
retina model in the Raspberry Pi, we explored the
possibility of deploying the visual processing models
in a specialized DL acceleration hardware device —
the NCS*® which relies on a Vision Processing Unit
(VPU).

In Sec. 3, we detail the function and features of
the main blocks of the proposed system.

3. Software Interface Design: Modules
Organization

In order to provide a modular, easy-to-use, and
extendable software corpus, we organized our
Python library, named Neurolight, in the following
structure:

e Main experiment. This contains the main
thread in which the needed submodules are
imported and the camera and stimulation device
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configurations are set before launching the “exper-
iment” code.

e Experiments. Each experiment is defined as
a sequence of common steps: retrieving a new
frame from the camera, preprocessing the incom-
ing image (image normalization and resizing),
optionally updating the video buffer, performing
the model’s visual processing, which can consist of
DL model inference tasks and/or retina-like signal
encoding. adapting the predictions to create stim-
ulation commands, and sending those commands
to the stimulator. The main workflow of the exper-
iment module is detailed in Algorithm 1 (an exam-
ple of an experimental workflow is described in
Sec. 5.2).

e VisionModels. This module makes it possi-
ble to load/define Keras (TensorFlow) DL mod-
els, including object detection, face identification,
image segmentation, edge detection, and custom
retinal processing models. It also contains the
retina model’s prediction normalization functions,
which are necessary to interface the neurostimula-
tor. In addition, it wraps the NCS API functions
necessary to compile the designed Tensorflow mod-
els in order to deploy them in the VPU.

e StimAPI. This module incorporates the main
functions which build the necessary messages that
allow us to interact with the neurostimulator.
These are the basic command blocks used by
“StimControl”.

e StimControl. This is a higher level API that
performs the communication operations needed to
control the stimulator. Each StimControl function
calls StimAPT one or more times in order to create
and send functional commands.

e Utils. This contains various helper functions, such
as generating custom image filters (for example,
Gaussian filters) or mapping the desired electrodes
to the actual stimulator output channels.

4. A DL Neural Interface: The Case
for a DL Powered Visual Neural
Prosthesis

4.1. Owvercoming hardware and physical
interface design limitations

When designing a neural prosthesis, the state of
the scientific knowledge on the brain physiology
and its computational mechanisms, along with the

technological state of the art — from electronic
design and manufacturing processes to signal pro-
cessing — shapes the device design decisions.

One of the main critical factors that will have
an impact on its performance is the number of elec-
trodes inserted into the neural tissue. which ranges
from a single electrode in the case of some Deep
Brain Stimulation applications®?? to a hundred elec-
trodes contained in a Utah array in the case of
motor and visual prostheses,'®4943 although the
current technological trend is to augment the num-
ber of functional electrodes to the order of magni-
tude of thousands, such as in the system developed
by Neuralink.**

In all these cases, including the most promising
near-future forecasts, the resolution of a neural inter-
face is highly limited when compared to the speci-
ficity of the activations in a normal sighted person’s
neural population.

With this fact in mind, and following the success
of devices such as cochlear implants, which can at
least partially restore a useful sense of hearing even
with a limited number of electrodes,'®%% an opti-
mization effort in the signal-processing part of the
pipeline must be addressed in order to make the best
possible use of the current hardware. In this work,
we propose and develop a functional pipeline which
makes use of this set of DL techniques that act, when
necessary, as the signal-processing systems that map
the external environment with the electrode activa-
tions. Machine Learning techniques, and specifically
Artificial Neural Networks constitutes a powerful and

Algorithm 1. Experiments module.

Create train configurations

Select electrodes to use

Create encoding model

while processFlag do
Obtain and process frame
Update video buffer
Model processing
Stimulation command
Check exitCondition (e.g. timeout, user signal,

safety)
if not exitCondition then

processFlag «— True

end if

end while
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flexible framework for visual signal processing that
makes it possible to develop applications in a robust,
data-driven way and allows us, as researchers and
engineers, to develop and deploy such systems in
the highly demanding and dynamic clinical research
environment.

4.2. On the maturity of DL
technologies

When working on image processing tasks, DL mod-
els have far outperformed traditional approaches
in most applications, yielding high accuracy and
robustness in image classification, object detec-
tion, and image/instance segmentation, among other
problems.

Remarkable efforts are being made to find model
architectures which are relatively lightweight in com-
parison with other deep networks.,'” making them
suitable for inference in computing devices with lim-
ited resources.

In addition, the rapid development of DL-specific
hardware is allowing these models to be deployed
in real-time in a progressively more energy-efficient
way.?®4% Model compression and acceleration by
using “parameter pruning and sharing, low-rank fac-
torization, transferred /compact convolutional filters,
and knowledge distillation”*? is another field which
is vielding practical results.

The research and development in DL techniques
for signal processing and pattern recognition is
being applied to commercial,®® industrial,®"%? agri-
cultural,®® and biomedical®>® fields, among oth-
ers. In addition, computational neuroscientists are
developing their own implementations and tech-
niques based on Artificial Neural Networks for dif-
ferent endeavors, for example, by using Recurrent
Neural Networks to infer underlying neural popula-
tion dynamics and predict behavioral variables in
macaque and human motor cortical datasets®® or
making use of Convolutional Neural Networks for
modeling several visual pathways.?**" %0 For a com-
prehensive work on the integration possibilities of DL
and neuroscience, see Ref. 61.

While this kind of technologies seem to be still
in a transformation process, where new architec-
tures, model optimization techniques, and associated
hardware technologies are rapidly evolving, some of
the applications are already robust, especially in
the image pre-processing related tasks, which makes

Neurolight: A DL Neural Interface for Cortical Visual Prostheses

them suitable for real-world applications. Our pro-
posal is that DNNs can be successfully applied to sev-
eral visual neuroprosthesis enhancement tasks that
will be presented here in the clinical, prototype, and
final stages, and the development of the first DL-
powered neural interface framework and prototype
is our main contribution.

4.3. A powerful, flexible framework for
visual processing and bioinspired
neural coding in basic and clinical
research

When building visual prostheses, several challenges
arise, including but not limited to the restricted elec-
trode count mentioned in Sec. 4.1. The ability to
extract the most relevant visual features from a com-
plex and dynamic visual environment and to trans-
mit them in a meaningful way to the brain, with the
aforementioned limited number of electrodes, will be
a critical factor in the success of neural prostheses.

These challenges, we claim, can be at least par-
tially tackled by the use of DL models for image
segmentation, object detection. emotion recognition,
depth estimation, artificial retinas, and the wide
range of image-processing models for cortical pros-
theses, whose limits will depend on the ability of
future researchers to figure out the correct combi-
nation of preprocessing and image-to-stimuli trans-
lation strategies. In Fig. 3, we propose a framework
with different stages where several strategies are cho-
sen or combined in order to produce a final stimulus
command aimed at generating a meaningful visual
perception. In what follows, we explain and comment
on several parts of the system.

Complex environment. Given the current state-
of-the art of neuroprosthesis technologies and the
neuroscientific knowledge at the time of this work,
the attempt to encode all the richness of a natural
image into extremely accurate, individually selected
computational neural units encoding very specific
image features is still a work in progress that faces
several limitations,%? although more selective stimu-
lation techniques are being investigated.%® This chal-
lenges blind clinical volunteers and users inde-
pendently of their implant location (retinal, lateral
geniculate nuclens LGN, visual cortex) — to make
sense of a complex and highly dynamic environment
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Fig. 3. In order to create a meaningful visual perception by electrical stimulation, we propose a two-stage image-

processing and encoding system that follows a first optional task-oriented module and a second neural encoding module.

through phosphene perceptions, this is, visual phe-
nomena experienced which is not caused by the natu-
ral processing of light by the visual system starting in
the eyes, but from activation of those visual areas by
other causes of such nature as mechanical, chemical
or electrical.'> Our goal is to elucidate image pro-
cessing approaches to generate a series of phosphene
perceptions which can maximize the usefulness of the

prosthesis.

Processing stage 1 (task-oriented module). In
order to preprocess the visual information in an intel-
ligent way. extracting the most relevant visual fea-
tures for specific user needs like navigation in dif-
ferent contexts (e.g. city streets or inside home).
detecting and recognizing the identity of the people
in a room, and so on, existing advanced computer
vision models or custom adaptations of them could
be used. Some of the possibilities that DL offers for
task-oriented image preprocessing are.

Object detection. Visual entities are localized in
space and classified in an image/video by object-
detection models, which provides a bounding box
and a label for multiple objects in parallel. In this

way, a blind user with just a few electrodes and a
well-defined phosphene map could potentially iden-
tify and track specific objects in a room, let’s say. to
know how many people are present at the time and
where are they moving towards.

These models are frequently created with real-
time performance in mind and are trained on
standardized datasets with a variety of environ-
ments.%4% Besides, they can be easily retrained to
adapt their functioning to new classes/deployment
environments. Some of the most successful models
at present time are YOLOv3% and variants of the
SSD.57

Edge detection. Although traditional computer
vision edge detection techniques are ubiquitous.
the parameters of the image-processing algorithm
must be properly tuned for the specific applica-
tion and environmental conditions in which they are
going to be applied. However, Convolutional Neu-
ral Network-based models, such as the one proposed
in Holistically-Nested Edge Detection,%® are able to
perform multiscale and multilevel feature learning
and to “approach the human ability to resolve the

2050045-6



challenging ambiguity in edge and object boundary
detection”. These DL models are able to work in a
robust way under difficult light conditions and ambi-
guity and to discard irrelevant information present
in the image (e.g. to extract the main contours of a
human face, a dog’s silhouette, or an open door with-
out adding unnecessary details such as hair texture),
significantly reducing the number of electrodes to be
activated in the prosthesis, resulting in less injected
current, fewer inter-electrode interactions, and a sim-
plified phosphene generation that would make more
sense to a blind person, since the model will gener-
ate shapes that are comparable to the edges that a
human being has previously annotated when gener-
ating the model’s training dataset.

Semantic/instance segmentation. Semantic seg-
mentation is the ability to classify meaningful — cat-
egorical — visual entities at the pixel level. It goes
beyond edge detection in the sense that the outputs
of these segmentation models contain the edges of
a selection of conceptually well-defined objects —
for example, a car, door, or person — and thus, in
the context of a visual prosthesis for the blind, it is
especially relevant with both advantages and disad-
vantages (see Sec. 7). Instance segmentation models
such as Mask R-CNN% go one step further and dif-
ferentiate instances of individual objects at the pixel
level; that is, the classified pixels can be grouped into
objects in a coherent way.

Face detection and identification. Face detec-
tion and face identification models are potentially
useful applications for visual prostheses. They have
been proven to be fast and accurate, with some
of the developments achieving impressive inference
time and accuracy results (18 ms while running on a
mobile device).” Some of the frameworks with devel-
oped real-time mobile applications, such as open-
Face,”" which uses FaceNet™ for feature extraction
and a triplet loss function for face identification, are
open and designed to be easy to use and retrain for
custom applications.

The output of these and other task-oriented mod-
els can be deployed in parallel in a sufficiently capa-
ble vet light computer device and combined in a
logical way, for example, performing both seman-
tic segmentation and depth estimation™7* or salient
object detection™ and thus encoding semantic cate-
gories and depth, information that will be carried

Neurolight: A DL Neural Interface for Cortical Visual Prostheses

and transformed into electrical pulses in the next
processing phase described below.

Processing stage II (encoding module).
One of the main challenges that visual-prosthesis
researchers face is the encoding problem: how do
we map the desired visual features into stimulation
patterns that will generate meaningful perception?
While an accurate solution is still lacking, researchers
will benefit from having a set of tools that will allow
them to hypothesize and test in a clinically relevant
environment in a highly flexible way. Several possible
approaches for the encoding module are as follows.

Direct mapping. The most straightforward way of
performing stimulation is to match the preprocessed
(and normalized) image to electrical pulse trains,
mapping the intensity (brightness) of the desired
image to different levels of pulse amplitude or train
frequency (see Fig. 1 for stimulus modulation strate-
gies). Even in this simpler case, a previous electrode
remapping procedure will be necessary (see Fig. 6 for
remapping).

Psychophysics model. “Simple” models of phos-
phene brightness/size/persistence are created by per-
forming a set of psychophysical experiments. Psy-
chophysics makes it possible to define a relationship
between physical stimulus variables — such as fre-
quency, train duration, and pulse amplitude — and
subjective, phenomenological perception. If we can
create a sufficiently accurate psychophysical model
which takes into account enough perception phe-
nomena (e.g. phosphene brightness and shape, flick-
ering, phosphene fusion, spatiotemporal perceptive
interactions due to activation of simultaneous elec-
trodes), a direct mapping between stimuli and per-
ception will be possible. An alternative to the tra-
ditional psychophysics models could be the creation
of a pulse2percept-like*® model for a cortical pros-
thesis. This model would map electrical stimuli to
spatiotemporal phosphene patterns experienced by
the neuroprosthesis user. In order to convert the
desired perceptions (coming from the task-oriented
module or directly from the camera input after sim-
ple preprocessing) into the desired electrical stim-
ulation commands, an inverse pulse2percept which
maps desired perceptions to necessary stimulator
commands model should be developed.
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Retinal encoding. One of the proposed solutions to
the encoding problem is the creation of a bioinspired
artificial retina which will tackle both the feature
extraction and the electrical stimulus modulation
task.!” The hypothesis holds that neural plasticity
will allow the brain to adapt to the incoming sig-
nal in a more natural way if this signal is streamed
into the brain in a biomimetic way. It is to notice
that, when sufficiently understood, other models of
visual encoding, including lateral geniculate nucleus
and visual cortex computational models can be inter-
faced with the proposed functional pipeline archi-
tecture described in this work. This can be done
by simply replacing the retinal encoder described in
the following section, which we use as a descriptive
demonstration of our interface as done in Refs. 76-
78. In any case, the suitability of visual encoding
models with any level of complexity, must be assessed
functionally in clinical trials.

In the following sections, we describe two of the
developed implementations of our proposed frame-
work for visual neural interfaces that incorporates a
neural encoding module (Sec. 5): an artificial retina
and a task-oriented DNN (Sec. 6): object detection.

5. Interfacing Computational Neural
Models with the Brain: An Artificial
Retina

In this section. we will describe the ability of Neuro-
light to be deployved as a neural interface by creating
a functional stimulation pipeline which incorporates
a biological data-driven retinal ganglion cell model
as a retinal image encoder. This model processes the
image stream coming from a commercial camera and
predicts neural firing rates, which will drive the con-
figuration of the electrical pulse trains sent through
the Utah array to the cortical neural tissue.

5.1. Computational neural models

Neurolight’s Vision Models module makes it possi-
ble to define simple and complex retina-like visual
preprocessing models, which are defined as Keras
Sequential models or TensorFlow Graphs. These
models can be deployed using a CPU, GPU, or spe-
cialized architectures such as FPGAs. In this first
design version, we prepared two modalities: spa-
tial processing models and spatiotemporal process-
ing models, where the defined filters are 2D and 3D,

Spatial filter Temporal filter

T
Nl - 1AW

Time (bin = 10ms)

1016

Fig. 4. (Color online) Spatiotemporal filters can be
defined and used as part of the pipeline. In the image,
a selection of four of the linear part of the LN models
after a rank-one decomposition performed with pyret,™
with the colored box representing the retrieved normal-
ized center-surround spatial filter profiles and the plot
traces corresponding to the temporal profiles. The gan-
glion cell’s retinal recordings were performed as men-
tioned in Ref. 30.

respectively see Fig. 4 for a spatiotemporal visual-
ization of several instances.

Linear-Nonlinear (LN) 2D/3D filters can either
be custom-defined filters e.g. spatiotemporal center-
surround receptive fields or Gabor-based models
or created using data-driven machine-learning tech-
niques. An LN model is equivalent to a l-layered
Convolutional Neural Network (see Fig. 5) and, in
a simplistic view, CNNs can be seen as a hierarchi-
cal stack of LN models of variable complexity.

In order to demonstrate the naturalistic stimula-
tion control capability of the system, we fitted sev-
eral ganglion cells’ firing responses to light patterns

Spatiotemporal filter

To stimulator

Fig. 5. [Illustration of a spatiotemporal filter (LN
model) applied to a video stream. The output of the
model is an array of activation values that can be mapped
to the stimulator’s electrodes, after a proper normaliza-
tion and matching with the pre-configured stimulus con-
figuration values.
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of different types full-field light flashes, checkerboard
patterns, moving bars, and natural scenes, following
procedures similar to those described in Ref. 30. The
images of natural scenes were obtained from **Ref.
80 and the rest of the stimuli were created by code
seripts.

The ganglion cell's firing rates were fitted by
means of a two-stage iterative process in which each
single neuron is modeled by means of an L2 regular-
ized spatiotemporal LN process,®! whose parameters
are obtained with the Adam optimizer,®? which is a
variant of Gradient Descent optimization. The loss
function utilized was a weighted sum of the mean
squared error and the cross entropy between the bio-
logical retina’s responses and the model’s output.

In the first modeling stage, the input of the model
consists of the flattened spatiotemporal visual stimu-
lus that is projected into the retina during each time
bin, and the output is the smoothed firing rate of
the neuron as a response to the input.? The discrete
time binning is 10 ms.

Due to the high dimensionality of the input
(50 pixelsx 50 pixelsx 30 frames), the LN models cre-
ated struggle to converge and are usually suboptimal.
In order to tackle this, in the first stage, we used a
high regularization factor. This will help the model’s
parameters to tend to zero in the spatial pixels which
are outside the ganglion cell’s receptive field, which
is convenient in order to figure out which parts of the
image are being encoded by the neuron. In the sec-
ond modeling stage, we centered the model’s target
around the most relevant 15 x 15 x 30 spatiotem-
poral pixels for each neuron found by the model
(higher nonzero parameter density), thus decreasing
the number of parameters from 75,000 to 6750, this
is, 11 times fewer parameters, leading the model to
a more robust and faster convergence.

Omnce the LN models of the neurons are created,
they can be loaded as the weights of a one-layer
Convolutional Neural Network into either a Keras
sequential model (for quick deployment in the work-
ing pipeline) or a TensorFlow graph, which will make
it possible to compile them into a specific graph for-
mat to be used by a NCS (see Sec. 5.3).

Both the Keras and TensorFlow libraries allow for
application-specific customization by selecting the
convolution stride or making spatial or spatiotem-
poral predictions over batches of images.

Neurolight: A DL Neural Interface for Cortical Visual Prostheses

5.2. Neurostimulator control and
stimulation strategy

We developed and implemented a Python version
of the Blackrock Microsystems™ API for the control
of the CereStim96 neurostimulation device (briefly
described in Sec. 3.1). This device allows for 16
simultaneous active channels and 15 different pulse
train configurations, which can be pre-configured or
dynamically created (by overriding previous configu-
rations on demand). After checking the correct oper-
ation of the device's current modules, a base pulse
train configuration is defined. Then, modified ver-
sions of the base pulse trains are created. with dif-
ferent values of pulse intensity, train frequency, and
pulse width. These configurations, which shape the
pulse trains that will be delivered through the cor-
responding channels, are defined by the following
parameters: Amplitude 1, Amplitude 2, PulseWidth
1, PulseWidth 2, InterPhase, and InterPulse (see
Fig. 1). Another key parameter to be taken into con-
sideration is the InterTrain, that is, the time between
train pulses.

In this experiment, we select a list of electrodes
which will be activated and map them into the actual
channels to which the device connects.

After this, the camera configuration parameters
are set, taking into consideration the dimensions of
the input image and the number of frames to buffer
for the spatiotemporal processing. The retina model
is defined by loading, reshaping. and normalizing
the ganglion cell’s LN or any other customized filter
based model’s weights into a Keras or TensorFlow
model which will handle the convolution operations
and strides. In the case of using a hardware acceler-
ation device like the NCS for offloading the model’s
computations, we compile the desired model and load
it into the device.

Once the main configurations are set, the main
thread starts. Each input frame from the camera
device is handled by openCV. resized and normal-
ized, and stored in a buffer variable of the desired
length. This buffer will be processed by the retina
model, either in the main computer or in the accel-
eration device. The model’s predictions are then
normalized between 0 and 1 and matched to the
closest of the 15 configurations selected for each elec-
trode, which vary either in the intensity of frequency,
depending on the desired train modulation strategy.
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Then. a single group stimulation sequence is gener-
ated for the corresponding electrodes and configu-
rations and the command is sent to the stimulation
device. If desired, a prompt window will be updated,
showing the camera input and stimulation infor-
mation. After checking that the stimulation opera-
tion has been properly performed, the next frame is
obtained from the camera and the whole process is
repeated.

The stimulation strategies must be shaped by
decisions of diverse nature related to the actual
knowledge of the psychophysics, computational mod-
eling needs, software design decisions, hardware
features and limitations. Two main strategies are
contemplated currently: amplitude modulation and
frequency modulation (see Fig. 1), where the model’s
predictions for each electrode are mapped to the clos-
est matching configurations, which are previously
set and loaded into the stimulator device. Clinical
studies will reveal the most optimal way of operat-
ing.10:41,83-85
In order to generate meaningful perceptions with
closely spaced electrode arrays, phosphene mapping
techniques may be needed.®%%7 Several mapping
strategies are reviewed in Ref. 87.

We programmed a simple routine similar to®®
that allows us to remap the desired spatial pat-
terns to the electrodes that are most likely to pro-
duce spatially similar perceptions, based on the
Euclidean distances from the desired patterns to the
phosphenes that are possible to elicit.

In order to do this, a phosphene map must have
been previously generated. For each of the pattern’s
constituent elements, the electrode that elicited a
phosphene that is near the desired one is selected
for activation.

An example of the ideal outcome is shown in
Fig. 6. where a random phosphene map is generated
and the electrodes are selected in such a way that
they will create a phosphene pattern similar to the
desired one.

This remapping procedure which may be needed
in order to enhance the spatial coherence of the
elicited phosphenes, can be used both in the case
of trying to reproduce the input scene in a reliable
way and in the case of using task-oriented DL pro-
cessing modules for specific goals. As an example of a
high-level semantic task, in an object detection task.
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Fig. 6. Phosphene remapping will be needed in order
to produce meaningful phosphenes. In the figure, a ran-
domly generated phosphene map is created as a test cor-
responding to the worst situation possible no coherence
between cortical electrode position and phosphene posi-
tion is created and several meaningful patterns are gener-
ated by selecting the electrodes which elicited phosphenes
that are the closest to each pattern’s element.

the user could want to locate an object in space. For
the system to elicit a particular phosphene pattern
in the spatial location corresponding to the centroid
of that detected object, electrode remapping would
be used.

5.3. Hardware implementation: NCS

In order to explore the possibilities that dedicated
hardware acceleration offers, we deployed the vision
models in an Intel NCS,?* a low-power-consumption
edge-computing device that is designed to deploy
DL models for inference and incorporates an Intel®
Movidius” VPU. This device is connected to the
main computer; the preprocessed image/video data
are passed to it through a USB port, and the model’s
predictions are returned after the processing.

After creating LN models of single ganglion cells,
they were loaded into a TensorFlow graph. The LN
models, as described in Sec. 5.1, consist of a spa-
tial or spatiotemporal filter with a nonlinear acti-
vation function which is convoluted through the
image/video input, returning the predicted ganglion
cell’s firing rates, and these predictions can be used
for stimulator control after proper normalization and
configuration-matching (see Fig. 5). The graph cre-
ated is prepared for inference-only mode and com-
piled into a compatible format to be used in the
device, up to 14 frames per second in the prepared
setup.
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6. Interfacing a Deep Neural Network
with the Brain: Object Detection

The success of a visual prosthesis will be ultimately
measured by the improvement in the quality of life
of the people using it. In this line, the proposed task-
oriented image processing in Sec. 4, reflected in Fig. 3
could play a major role in the system’s usefulness
by incorporating relevant information related to the
user needs and specific environment, for example,
border detection and depth estimation for naviga-
tion on streets versus face identification in a familiar
environment. In this section, we implement a pro-
cessing pipeline which incorporates a state-of-the-art
DL model used for object detection and interface it
with and interface it with 96 intracortical microelec-
trodes (Utah Electrode Array).

6.1. A DL model interface

Neurolight allows the use of a wide array of visual
processing models and stimulation control strategies.
In Sec. 5, we created an artificial retina and used it
to encode visual information. In this section, we can
further the potential of Neurolight by interfacing the
visual brain with a task-oriented DNN. By incorpo-
rating such diverse image-processing capabilities, a
blind user could dynamically change the model in
order to perform the task needed for each specific
context, for example, semantic segmentation, border
detection, or depth estimation for navigation or face
identification and emotion recognition or pose detec-
tion for assistance in social interactions.

Here, we show this concept by using an object
detection model able to detect and classify 21 differ-
ent entities — classes — when trained on the COCO
dataset.® We then use its last layer’s predictions to
activate the Utah array’s electrodes corresponding
with the center of the detected object’s position in
order to allow the future user to be aware of the
presence of two distinct categories person and dog.

The model used was a Single Shot Detector?
SSD with MobileNetV29! as a feature extractor. This
feature extractor processes the input image through
a series of efficient depth-separable convolution layers
with residuals (see the original MobileNetV2 paper
for details), which makes it suitable for real-time
applications with a competent accuracy comparable
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to heavier models in several applications such as
object detection and semantic segmentation.

The SSD method allows the prediction of “cat-
egorv scores and box offsets for a fixed set of
default bounding boxes using small convolutional fil-
ters applied to feature maps”. which in this case are
provided by the MobileNetV2 convolutional layers.

The model is used to detect the presence and
position of selected categories present in the train-
ing set and can be retrained to detect new categories
transfer learning® and adapted to the needs to blind
users. We describe the use of the model predictions
in Sec. 6.2.

6.2. Neurostimulator control and
stimulation strategy

In this task, two different train pulse configurations
were defined: the first one relating to the category
“person” and the second relating to “dog”. In a clin-
ical setup. these configurations would be first tested
with a 2-Alternative Forced Choice paradigm, in
which the user diseriminates between the two stimuli.

Once the experiment starts, the incoming frames
from the camera are preprocessed resized and nor-
malized and fed to the Single Shot Detection model,
which returns predictions regarding to the bounding
boxes of the detected objects along with the classi-
fication of this objects. These predictions are sorted
by a confidence threshold, e.g. 80% model’s predic-
tion confidence. The middle points of the remaining
predicted bounding boxes are calculated and situ-
ated in a 10 x 10 pixel image corresponding to the
Utah array electrodes position, see Fig. 7. Whenever
an electrode overlapping occurs, that is, two distinet
high confidence detections are assigned to the same
final electrode, the class with a higher priority per-
son in this case would be selected. After the follow-
ing electrode remapping, the corresponding stimu-
lator channels are activated with the pre-configured
train parameters frequency, pulse width, interphase
according to the each object class, and with a pulse
intensity corresponding to the phosphene perception
threshold corresponding to each electrode that would
assure at least a 90% of probability of phosphene per-
ception in single trials -preliminary results in a blind
human volunteer can be found in Ref. 93.
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Input Convolutional Neural Network

Model predictions Encoded categories

Fig. 7. By using object detection DL models and a simple category coding strategy, a visual prosthesis can convey useful
information for a blind user in daily life situations. In the figure, a simple example where the category “person” is encoded
as an elementary shape with the size of the generated pattern being proportional to the size of the predicted bounding

box.

6.3. Real-time inference on Nvidia
Jetson Nano

In this implementation. we used the Nvidia Jetson
Nano System on Module (SOM), which incorporates
a Nvidia Maxwell™ GPU and is able to deliver 472
GFLOPs consuming 5 to 10 W.

This edge-computing device was designed to effi-
ciently perform DL model inference (see Ref. 94 for
more technical specifications).

The SSD-MobileNetV2 backend neural network
is able to run at 39 FPS on this hardware.”®

In order to take advantage of the device’s high
inference speed in these conditions, we implemented
the camera stream plus model’s detections in paral-
lel to the configuration sending of the commands to
the neurostimulator. This way, the electrode activa-
tions and the pulse train delivery can be refreshed at
20Hz in our setup. To elucidate the optimal use of
the developed system and its improvement, an exper-
imental framework and specific clinical trials must be
carefully designed, which constitutes the next step in
our work.

7. Discussion and Future work

Since many questions regarding the psychophysics
of the phosphene generation are either still unan-
swered or in need of more extensive exploration, cor-
tical neurostimulator control tools should be smooth
and easy to use and at the same time capable of
adaptation to the experimental scenarios.

In this work, a cortical prosthesis control frame-
work prototype endowed with DL capabilities is
developed, having at its core the design principles

of robustness and flexibility, allowing custom adap-
tation to the needs of clinical research. This func-
tional working pipeline also makes it possible to
incorporate both simple and complex computational
neural encoding models of visual inputs (such as
data-driven or custom LN or CNN models of retinal
ganglion cells) for prosthesis control and to define dif-
ferent stimulation strategies. such as amplitude and
frequency modulation, based on the implemented
model’s output. This framework has been designed
and implemented in an experimental setup with a
commercial neurostimulator that can be used in both
animal and human research. The core pipeline mod-
ules, such as the image capture and preprocessing,
the DL models for task-oriented processing, the neu-
ral encoding module, and the stimulator control API,
are based on open-source Python libraries commonly
used by the scientific community, which we believe is
a fundamental feature for scientific tools and knowl-
edge sharing.

As a proof of concept for our proposed visual
neuroprosthesis conceptual framework, which incor-
porates two signal processing stages a task oriented,
DL assisted image preprocessing and a neural encod-
ing stage, we implemented two of these systems as
real prototypes.

Our first implementation consists of an artificial
retina consisting of a spatiotemporal LN ganglion cell
model with a Rectifier Linear Unit as an activation
function, which is equivalent to a 1 layered Con-
volutional Neural Network with temporal channels
instead of RGB channels spatiotemporal processing
present in retina models developed in Refs. 30-33
and others.
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The weakness of this implementation is the fact
that it mainly uses a sequential processing flow: every
new image/video stream is preprocessed and the
model’s inference is performed before encoding the
commands and sending them to the stimulator. After
that, the stimulator sends the pulse trains, and then
finally a new image can be fetched. With this opera-
tion mode. the system is able to change the running
stimulation parameters at 14 FPS with short pulse
trains.

The fact that the electrical pulse trains are sent
after the image processing-model prediction stage
leads to a blinking stimulation strategy: train pulses
are interleaved with an inter-train resting period.
This type of stimulation of the visual cortex has
been tested previously®® and prevents the neural tis-
sue from being permanently under the influence of
external electrical fields, although the implications of
this stimulation strategy have vet to be elucidated.
In this matter, the inter-train interval necessary to
generate a separated or continuous phosphene will
be one of the main features of study in the clinical
phases, along with the effects of temporal summa-
tion, phosphene size, and brightness dynamics.

This bottleneck caused by the sequential model’s
inference and electrode configuration setting can be
avoided by using a multiprocessing approach, allow-
ing for independent and parallel processing of every
stage (image processing-encoding and stimulation
commands), which is the strategy adopted in our
second implementation, which consists of a DNN
(a Single Shot Detector) that allows for automatic
object detection in real time. This allows Neurolight
to obtain a better performance in terms of FPS we
were able to re-configure and reallocate and electrode
activations up to the rate of 20Hz at the present
moment. The two signal processing and stimulator
control algorithms were implemented with different
hardware platforms (NCS with a Raspberry Pi 3B+
and a Nvidia Jetson Nano), in order to show the flex-
ibility of the proposed framework.

One of the main challenges faced by a visual-
prostheses designer is how to convey the most useful
information through the neural prosthesis: Neuro-
light incorporates a set of tools that could help eluci-
date the effect of different image-encoding strategies
and the usefulness of several task-oriented image pro-
cessing techniques in both clinical environments and
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daily life activities when portable neurostimulation
hardware (or virtual reality setups) are used.

Since future extensive clinical trials are yet
to come, we deliberately designed and kept this
framework flexible enough so that clinicians and
researchers would be able to experiment with or use
different combinations of its processing modules.

Therefore, if the research team (the user, in the
future) aims to elicit phosphene perceptions with-
out any task-oriented support, skipping this way
any semantic preprocessing, Processing Stage 1 (see
Fig. 3) can be ignored, which is equivalent to using
the “Identity” block shown in the figure. Then, Pre-
processing Stage I1 neural encoding and stimulator
control will be the main active modules, and the opti-
mal outcome of this way of functioning would be to
generate a visual perception which resemblances to
the real environment with as high fidelity as possi-
ble, with optional iimage enhancement preprocessing
models deployment such as Edge Detection or Depth
estimation.

If task-driven is chosen, both Processing Stage I
and Processing Stage I will be active. As an example
for, let’s say, object detection, the desired categories
of objects will be recognized and detected in real time
by a DNN to be encoded and appear as pre-defined
phosphene patterns with differentiable characteris-
tics in space and time which will allow the user to
recognize and locate them. The most effective way
to encode an object category to allow a maximum
number of patterns to differentiate will be one of the
challenges that we face in the clinical trials stage.

One of the challenges in this work was to show
how the proposed general framework can be deployed
in devices which are accessible to any laboratory (see
NCS, Raspberry Pi or Nvidia Jetson Nano which can
be purchased easily and for a price within reach of
any research team). These details are also impor-
tant to show that the computing power needed is
not extremely high for the current technology, and
hardware devices designed with DL model inference
in mind, such as the NCS and the Nvidia Jetson
SOCs, allow us to deploy these vision systems in real
time with low power consumption and high flexibil-
ity in terms of model architectures. We believe these
are useful features in order to build a neuroprothesis
that aims to be useful in the future with the current
technology.
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The strategy proposed in the DL approach is
to simplify the transmitted visual information in
a meaningful way such that the complexity of the
environment is diminished without disregarding the
important information necessary for understanding
the scene, improved navigation, and social interac-
tions, thus augmenting the capabilities of a neural
interface independently of its number of electrodes.

Among of the limitations of this approach is that.
by using task-driven models (i.e. semantic segmenta-
tion or object detection) that can augment the capa-
bilities of the visual prosthesis to be useful in cer-
tain environments and situations of daily life, we are
at the same time imposing a “sensory” and a “con-
ceptual” bottleneck, that is, limiting the information
received by the user from the external world. In addi-
tion, DL models which are insufficiently robust to
generalize in different environments and conditions
could fail to be useful, for example by providing false
positives or negatives or dynamically unstable pre-
dictions. Objects or categories which are unrecog-
nizable by the neural networks will not be encoded
by the system. This issue is only one of many that
imposes a big responsibility on the use of Al in neu-
ral interfaces, and ethical debate becomes not only
essential but mandatory. For a related comment on
the implications of the actual and future develop-
ments in neurotechnology, see Ref. 96.

The advantage of this object detection system is
that it detects categorically perfectly defined objects,
so the electrical stimulus conveyed to the brain can
be modified (e.g. a certain blinking frequency or cur-
rent) in a way that it gives a hint to the prosthe-
sis wearer of what he/she is seeing and thus helping
object recognition.

Another important matter is that DNNs are
developed for tasks that do not necessarily directly
match our needs, but for other research or commer-
cial applications. This observation is far from point-
ing towards an unsolvable challenge, since vision
models are relatively easy to retrain on custom
datasets to solve specific tasks by transfer learning.
A recent example of advances in this direction is in
Ref. 97, where several Convolutional Neural Neworks
are combined “...for extracting and conveying rele-
vant information about the scene such as structural
informative edges of the environment and silhouettes
of segmented objects”, and their performance is eval-
uated in sighted subjects using simulated prosthetic

vision. The ground truth for the models and their
evaluation procedures should be designed to address
blind people’s needs in collaboration with experts
in rehabilitation and navigation training. The abil-
ity of different image-processing strategies should be
assessed according to established procedures such as
that in Ref. 98, although a consensus on standardiza-
tion must be achieved in the field. In addition to the
assessment of the system’s performance, new reha-
bilitation paradigms should be developed along with
the different task-oriented and encoding frameworks.

Related to this goal-oriented use of DL, great
work in the line of assistive navigation systems for
visually impaired people in this case. peripheral
vision loss have been done in Ref. 99, where a real
time object detector is used along with a Kalman
Filter based object tracker and a motion model to
feed a hazard estimation Neural Network. Then, “the
provided hazard type is then translated into a smart
notification to increase the user's cognitive percep-
tion using the healthy vision within the visual field” .
Although real world evaluation with human subjects
it's still on its way, this constitutes a good exam-
ple of how this technologies are potentially useful
for blind people in real, daily life environments. In
addition, the use of virtual reality,'”Y visual prosthe-
ses phosphene simulation see Ref. 101 for an emo-
tion recognition simulation application along with
log-polar for filter based feature extraction strategies
and log-polar aware model of complex motion inte-
gration across the visual field being produced.!9%103
Together with signal processing advances, the design
of efficient neuromorphic hardware chips'?* and their
applications on the control robotic motor and cogni-
tive systems!V9:106
considering the design of a future prosthesis.

Along with the use of DL models to augment the
capabilities of a prosthesis with a limited electrode
count and artificial retinas to encode the visual infor-

are fields worth exploring when

mation in a more bioinspired way or data-driven psy-
chophysical models adapted to each user, another
element into the cortical prosthesis has been pro-
posed recently, named neural co-processors'” which
would perform motor prosthetic device control by
means of a combination of neural encoding and
decoding models.

Although this encoding-decoding approach
seems not to be feasible at the present moment
at least regarding to cortical visual prostheses it
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constitutes an interesting theoretical concept to con-
template.

An interesting example of the study of the con-
scious report of visual percepts by awake monkeys
by means of measuring neural activity at the level of
different brain stages including the dorsolateral pre-
frontal cortex (dIPFC) can be found at Ref. 108.

In future works, we expect to implement sev-
eral psychophysics modules which complement the
tool and allow for a better fine-tuning of the
whole system. Regarding the visual-encoding mod-
els, it is hypothesized that retina-like image pre-
processing could be beneficial for visual prosthe-
ses!” by performing a bioinspired feature extraction
of visual information, although this remains unan-
swered. Along with the technical achievements made,
new experiments need to be designed accordingly to
provide answers. In this way, more complex CNN-
RNN-based retina models which are proven to mimic
the retinal encoding will be compiled and tested and
a tradeoff between model complexity and overall sys-
tem performance in terms of computing speed will be
extensively studied.

In addition, regarding future clinical studies and
the evaluation of the usefulness of the task-oriented
image processing modules proposed, a conceptual
framework for clinical experiments design must be
performed along with rehabilitation procedures that
will be key in the human-neuroprosthesis interaction
improvement.

Finally, although more research is still need, we
hope that this work constitutes a step forward to
integrating knowledge from many scientific and engi-
neering fields towards the development of a cortical
visual neuroprosthesis for the blind. It is carried out
under the aim that many neural engineers dream
of: to help people achieving a level of neural func-
tion recovery sufficient to improve their quality of
life.
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