
1

 UNIVERSIDAD MIGUEL HERNÁNDEZ DE ELCHE

ESCUELA POLITÉCNICA SUPERIOR DE ELCHE

GRADO EN INGENIERÍA ELECTRÓNICA Y
AUTOMÁTICA INDUSTRIAL

ENHANCING STUDENT LEARNING IN
TEMPERATURE SENSING AND DATA

ACQUISITION WITH PYRODAQ:
A Python-Based Approach for Controlling National

Instruments Data Acquisition Devices

TRABAJO FIN DE GRADO
Septiembre – 2023

AUTORA: Judit Danso Llaquet

DIRECTORA: Julia Arias Rodriguez

“The skill I was learning was a crucial one,

the patience to read things I could not yet understand.”

Tara Westover

 iii

TABLE OF CONTENT

LIST OF FIGURES .. VI

LIST OF SNIPPETS .. IX

LIST OF EQUATIONS .. XI

LIST OF ABBREVIATIONS .. XII

ABSTRACT ... XIII

RESUMEN ... XV

1. INTRODUCTION AND BACKGROUND .. 17

1.1. A BRIEF INTRODUCTION TO THE NATIONAL INSTRUMENTS DAQ AND LABVIEW

 18

1.2. PYTHON, FROM A VERSATILE PROGRAMMING LANGUAGE TO USES IN

TEMPERATURE SENSING AND DATA ACQUISITION ... 19

1.3. OVERVIEW OF TEMPERATURE SENSING CIRCUITRY ... 20

1.4. IDENTIFICATION OF GAPS IN THE TRADITIONAL APPROACHES THAT THE

CURRENT RESEARCH AIMS TO ADDRESS ... 20

1.5. OBJECTIVES .. 21

1.6. OVERVIEW OF THE STRUCTURE OF THE THESIS .. 21

2. METHODOLOGY ... 23

2.1. OVERVIEW OF THE METHODOLOGY .. 23

2.2. REQUIREMENT GATHERING AND ANALYSIS .. 24

2.3. IMPLEMENTATION ... 25
2.3.1. DESCRIPTION OF THE NATIONAL INSTRUMENT DAQ SYSTEM AND

TEMPERATURE SENSOR USED ... 25

 iv

2.3.2. OVERVIEW OF THE PROGRAMMING ENVIRONMENT (PYTHON) AND

SOFTWARE COMPONENTS UTILIZED ... 26

2.4. TESTING AND QUALITY ASSURANCE STRATEGY ... 27

2.5. USER EVALUATION AND FEEDBACK ... 29

3. DEVELOPING THE APPLICATION ... 30

3.1. INTRODUCTION TO THE TEMPERATURE SENSING CIRCUIT CONTROL

APPLICATION .. 30

3.2. APPLICATION FEATURES AND CAPABILITIES ... 31

3.3. DESIGNING THE USER INTERFACE .. 39
3.3.1. ICON DESIGN AND GUI AESTHETICS ... 39
3.3.2. GUI LAYOUT AND COMPONENTS ... 41

3.4. OVERVIEW OF THE HIGH-LEVEL ARCHITECTURE ... 45

3.5. BUILDING THE GRAPHICAL USER INTERFACE .. 49

3.6. MANAGING USER INTERACTION AND CONTROL LOGIC 58
3.6.1. INTEGRATING NATIONAL INSTRUMENTS DAQ ... 60
3.6.2. INTEGRATING TEMPERATURE SENSING AND CIRCUIT CONTROL

FUNCTIONALITY ... 63

3.7. USER INTERACTION FLOW .. 64

3.8. ERROR HANDLING .. 76

3.9. TESTING, DEBUGGING, AND VALIDATION .. 78

3.10. SUGGESTIONS FOR FUTURE RESEARCH AND DEVELOPMENT 79

4. EXPERIMENTAL SETUP .. 82

4.1. CIRCUIT SETUP ... 82

4.2. CALIBRATION AND VALIDATION PROCEDURES FOR THE TEMPERATURE

SENSOR ... 83

4.3. RESULTS AND ANALYSIS .. 84

 v

4.3.1. CONSIDERATION OF HOW THE PROGRAM CAN FACILITATE STUDENT

ENGAGEMENT AND EXPLORATION IN EXPERIMENTAL SETUP 87

5. CONCLUSIONS ... 88

5.1. OVERVIEW OF RESEARCH OBJECTIVES AND MAIN FINDINGS 88

5.2. EXPLORATION OF THE PROGRAM’S POTENTIAL TO ENHANCE LEARNING

EXPERIENCES IN TEMPERATURE SENSING AND DATA ACQUISITION 88

5.3. CONCLUDING REMARKS ... 89

6. BIBLIOGRAPHY ... 90

APPENDIX A: ASSETS AND ATTRIBUTION ... 92

APPENDIX B: STUDENT’S GUIDE ... 93

APPENDIX C: CODE .. 105

 vi

LIST OF FIGURES
Fig. 3.1.1 Initial wireframe of PyroDAQ application design ... 30

Fig. 3.2.1 Calibration options ... 32

Fig. 3.2.2 Direct calibration input for a LM35 temperature sensor example. 32

Fig. 3.2.3 Testing the calibration. ... 33

Fig. 3.2.4 Known temperature-voltage correlation calibration 33

Fig. 3.2.5 Linear Calibration, Least Squares Method ... 34

Fig. 3.2.6 Linear Calibration, Linear Interpolation .. 34

Fig. 3.2.7 Non-Linear Calibration .. 34

Fig. 3.2.8 Calibration log .. 35

Fig. 3.2.9 Example of data logging in known temperature and voltage correlation 35

Fig. 3.2.10 Further Examples of Data Logging, now with a Plotted Line 36

Fig. 3.2.11 On Demand Option with 500ms Time Interval, Data Acquisition 36

Fig. 3.2.12 On Demand Option with 60ms Time Interval, Data Acquisition 37

Fig. 3.2.13 Finite Sampling Example with 20 samples and 2 Sa/s, Data Acquisition ... 37

Fig. 3.2.14 Example of Alarms Set at 30.5ºC and 31.5ºC and Maximum Alarm Going

Off, Finite Sampling, Data Acquisition .. 38

Fig. 3.2.15 Saving Data as a CSV File ... 38

Fig. 3.3.1 PyroDAQ icon in place with the green layout ... 40

Fig. 3.3.2 PyroDAQ icon .. 40

Fig. 3.3.3 PyroDAQ assets for temperature alarms and toggle 41

Fig. 3.3.4 Disabled Buttons When There is No Data or Calibration, Known

Temperature-Voltage Correlation Calibration .. 42

Fig. 3.3.5 Enabled button when there is data, disabled when there’s no calibration,

known temperature-voltage correlation calibration .. 43

Fig. 3.3.6 Action Sequence for choosing linearity of calibration, data input, and data

management in the left column, known temperature-voltage correlation calibration 44

Fig. 3.3.7 Parallel updating of user interaction in the right column, known temperature-

voltage correlation calibration .. 44

Fig. 3.5.1 Combo box shown as dropdown menu in DAQ selection window 51

Fig. 3.5.2 Radio Button when ‘Linear Equation’ is selected, and all is enabled 53

Fig. 3.5.3 Radio Button when ‘Non-linear Equation’ is selected, and options are

disabled ... 53

 vii

Fig. 3.5.4 Voltage and temperature inputs in known temperature-voltage window 55

Fig. 3.5.5 Data table, Clear and Delete buttons in known temperature-voltage window 56

Fig. 3.5.6 Plotted data table in known temperature-voltage window 57

Fig. 3.6.1 Popup message when there is no DAQ detected .. 63

Fig. 3.7.1 DAQ model selection window ... 64

Fig. 3.7.2 DAQ model selection with options window .. 65

Fig. 3.7.3 Calibration method window ... 65

Fig. 3.7.4 Equation type choices ... 66

Fig. 3.7.5 Linear Interpolation method with “Choose Points” button 66

Fig. 3.7.6 Choose Points window, point clicked on ... 67

Fig. 3.7.7 Choose Points window, two points selected .. 67

Fig. 3.7.8 Subsequent calibration from choosing points .. 67

Fig. 3.7.9 Change to non-linear equation ... 68

Fig. 3.7.10 Change to linear equation, least squares method ... 68

Fig. 3.7.11 Set Calibration .. 69

Fig. 3.7.12 Linear equation calibration input with corresponding plot 69

Fig. 3.7.13 Copy equation selected ... 70

Fig. 3.7.14 Data points logged and represented in plot .. 70

Fig. 3.7.15 Calibration log with saved calibrations and options to calibrate and acquire

data .. 71

Fig. 3.7.16 Example of alarms being set at 29.5ºC and 31.5ºC 72

Fig. 3.7.17 On demand acquisition with 500ms time interval .. 72

Fig. 3.7.18 On demand acquisition with 60ms time interval .. 73

Fig. 3.7.19 On demand acquisition stopped manually ... 73

Fig. 3.7.20 Ongoing finite sampling acquisition with the parameters: 20 samples and 2

Sa/s .. 74

Fig. 3.7.21 finite sampling acquisition finished with the parameters: 10 samples and 2

Sa/s .. 74

Fig. 3.7.22 Save data prompt .. 75

Fig. 3.7.23 Data successfully saved .. 75

Fig. 3.7.24 Data successfully created ... 75

Fig. 4.1.1 Wheatstone bridge configuration ... 82

Fig. 4.3.1 Table with Rx, Vd_theo., T and Vd_exp. values powered at 1V With 6001

DAQ .. 85

 viii

Fig. 4.3.2 Comparison between R1 and R2 values and how Vref is affected 85

Fig. 4.3.3 Data acquisition plot for DAQ 6001 where temperature resolution can be

observed .. 86

Fig.1 Original images from Flaticon .. 92

 ix

LIST OF SNIPPETS
Snippet 3.2.1 CSV File ‘data.csv’ .. 39

Snippet 3.4.1Project directory structure ... 45

Snippet 3.4.2Branching in main function './main.py' ... 46

Snippet 3.4.3 Interlinking between logic and GUI in function 'run_select_daq’ with

function ‘select_daq_window’ in './src/app/appDAQ.py' ... 47

Snippet 3.4.4 Creation of object 'niDAQ' in 'run_select_daq' function in

'./src/app/appDAQ.py' ... 47

Snippet 3.4.5 Object 'calibration' creation given the method chosen in function

'run_calibrate' in './src/app/appCalibrationMethod.py' ... 48

Snippet 3.5.1GUI window structure in ‘run_expression_input_calibrate’ function in

‘./src/app/appExpressionInputCalibrate.py’ ... 49

Snippet 3.5.2 Return of ‘expression_calibrate_window’ in

‘./src/gui/guiExpressionInputCalibrate.py’ .. 49

Snippet 3.5.3 Layout and window configuration returned in function

‘gui_window_with_graph’ in ‘./src/guiTools.py’ .. 50

Snippet 3.5.4 Window Behavior loop in function

‘expression_input_calibrate_window_behavior’ in

‘./src/gui/guiExpressionInputCalibrate.py’ .. 50

Snippet 3.5.5 Combo box in layout to select DAQ model in 'select_daq_window'

function in './src/gui/guiDAQ.py' ... 51

Snippet 3.5.6 Radio elements for equation type in layout in function

'temp_volt_calibrate_window' in './src/gui/guiTempVoltCalibrate.py' 52

Snippet 3.5.7 Enabling and disabling radio buttons given the button selected in

'temp_volt_calibrate_window_behavior' function in './src/gui/guiTempVoltCalibrate.py’

 .. 52

Snippet 3.5.8 Voltage and temperature input in layout in ‘temp_volt_calibrate_window‘

function in‘./src/gui/guiTempVoltCalibrate.py’ ... 54

Snippet 3.5.9 Voltage and temperature sequence in

‘temp_volt_calibrate_window_behavior’ function in

‘./src/gui/guiTempVoltCalibrate.py’ .. 54

Snippet 3.5.10 Data table, Delete and Clear buttons in layout in

‘temp_volt_calibrate_window’ function in ‘./src/gui/guiTempVoltCalibrate.py’ 55

 x

Snippet 3.5.11 Delete and Clear behavior in 'temp_volt_calibrate_window' function in

'./ src/gui/guiTempVoltCalibrate.py’ .. 56

Snippet 3.5.12 Canvas for the plot in layout in 'temp_volt_calibrate_window' function

in './src/gui/guiTempVoltCalibrate.py' ... 57

Snippet 3.5.13 Canvas update for the plot in 'temp_volt_calibrate_window_behavior'

function in './src/gui/guiTempVoltCalibrate.py' ... 57

Snippet 3.6.1 'filter_numeric_characters' function in './src/guiTools.py' 59

Snippet 3.6.2 Writing task in function 'run_data_acquisition' in

'./src/app/appDataAcquisition.py' ... 61

Snippet 3.6.3 Reading task in 'read_voltage' function in './src/daqTools.py' 61

Snippet 3.6.4 'is_daq_connected' function in './src/app/daqTools.py' 62

Snippet 3.6.5 Check if DAQ is connected in 'set_tasks' function in

'./src/app/daqTools.py' .. 62

Snippet 3.6.6 Catching the no DAQ error in 'run_select_daq' function in

'./src/app/appDAQ.py' ... 62

Snippet 3.6.7 Assignation of calibration to niDAQ object after 'run_temp_volt_calibrate'

has run, in 'run_calibrate' function in './ src/app/appCalibrationMethod.py’ 64

Snippet 3.8.1 try-except block for setting alarms in function

'data_acquisition_window_behavior' in './src/gui/guiDataAcquisition.py' 77

 xi

LIST OF EQUATIONS
Equation. 1 Temperature and resistance variation .. 82

Equation. 2 Balanced Wheatstone bridge condition ... 83

Equation. 3 Output voltage equation for Wheatstone bridge ... 83

Equation. 4 Voltage resolution of 6001 DAQ .. 86

Equation. 5 Temperature resolution for DAQ 6001 with Pt100 86

 xii

LIST OF ABBREVIATIONS

Abbreviation Definition

DAQ Data Acquisition Device

GUI Graphical Interface User

LabVIEW Laboratory Virtual Instrument Engineering Workbench

NI National Instruments

RTD Resistance Temperature Detector

 xiii

ABSTRACT
The motivation for this project arises from the importance of temperature sensing and

data acquisition across various fields, particularly in electronics and engineering. It is a

fundamental aspect of modern engineering, with applications ranging from climate

control to industrial processes, healthcare, and scientific research.

In engineering, National Instruments (NI) and Data Acquisition (DAQ) devices are

notable tools, facilitating interaction with sensors and instruments. However, in

educational settings, these devices often face accessibility issues due to complex and

proprietary software like LabVIEW (Laboratory Virtual Instrument Engineering

Workbench).

This project's motivation is to address these challenges by harnessing Python's versatility

and power. Python is an open-source language known for its simplicity and extensive

libraries, making it ideal for scientific and engineering applications, including interfacing

with NI DAQ devices.

The project's culmination is a GUI-based Python application, aiming to provide a user-

friendly interface closely integrated with NI DAQ systems. It empowers users in

temperature sensing and data acquisition, making these processes accessible and efficient.

This project enhances the usability and accessibility of essential tools for engineers,

researchers, and students in electronics and engineering.

The primary project’s aim is to streamline the construction process by offering a

straightforward application. It simplifies the user experience and allows users to explore

hardware-software connections, addressing gaps in traditional approaches. Additionally,

the project emphasizes key concepts in electronic instrumentation, focusing on

temperature measurement. A student guide is created to assist with installation, usage,

and optimization.

The project is divided into several sections. Chapter 2 outlines the methodology,

including requirement gathering, implementation, testing, and user evaluation. Chapter 3

details the development of the temperature sensing circuit control application, covering

its features, architecture, and user interaction. Chapter 4 addresses practical aspects,

including circuit setup, calibration, and results analysis. In the concluding chapter, the

 xiv

project summarizes objectives and key findings, highlighting the application's usability

and potential for enhancing learning experiences. It acknowledges the learning journey

in Python programming and GUI design, emphasizing the importance of adaptability.

Overall, the project achieved its primary research objectives, delivering an educational

application (PyroDAQ) for temperature sensing and data acquisition. It provides a

foundation for further exploration and customization in the field, emphasizing the value

of open-source tools and hands-on experiences in electronic instrumentation.

 xv

RESUMEN
La motivación de este proyecto surge de la importancia de la medida de la temperatura y

la adquisición de datos en diversos campos, especialmente en electrónica e ingeniería. Es

un aspecto fundamental de la ingeniería moderna, con aplicaciones que van desde el

control climático hasta procesos industriales, atención médica e investigación científica.

En la ingeniería, los dispositivos de National Instruments (NI) y la adquisición de datos

(DAQ) son herramientas destacadas que facilitan la interacción con sensores e

instrumentos. Sin embargo, en entornos educativos, estos dispositivos a menudo

enfrentan problemas de accesibilidad debido al software complejo y propietario como lo

es LabVIEW (Laboratory Virtual Instrument Engineering Workbench).

La motivación de este proyecto está en abordar estos desafíos aprovechando la

versatilidad y potencia de Python. Python es un lenguaje de código abierto conocido por

su simplicidad y sus amplias bibliotecas, lo que lo hace ideal para aplicaciones científicas

e ingenieriles, incluida la interfaz con dispositivos NI DAQ.

La culminación del proyecto es una aplicación Python basada en una interfaz gráfica de

usuario (GUI), con el objetivo de proporcionar una interfaz amigable para el usuario

estrechamente integrada con los sistemas NI DAQ. Empodera a los usuarios en la medida

de la temperatura y la adquisición de datos, haciendo que estos procesos sean accesibles

y eficientes. Este proyecto mejora la usabilidad y accesibilidad de herramientas esenciales

para ingenieros, investigadores y estudiantes en electrónica e ingeniería.

El objetivo principal del proyecto es simplificar el proceso de construcción mediante la

oferta de una aplicación sencilla. Simplifica la experiencia del usuario y permite a los

usuarios explorar las conexiones entre hardware y software, abordando las deficiencias

de enfoques tradicionales. Además, el proyecto enfatiza conceptos clave en la

instrumentación electrónica, centrándose en la medida de la temperatura. Se ha creado

una guía para estudiantes para ayudar en la instalación, el uso y la optimización.

El proyecto se divide en varias secciones. El Capítulo 2 describe la metodología, que

incluye la recopilación de requisitos, la implementación, las pruebas y la evaluación por

parte del usuario. El Capítulo 3 detalla el desarrollo de la aplicación de control de circuito

de detección de temperatura, cubriendo sus características, arquitectura e interacción con

 xvi

el usuario. El Capítulo 4 aborda aspectos prácticos, como la configuración del circuito, la

calibración y el análisis de resultados. En el capítulo de conclusión, el proyecto resume

los objetivos y hallazgos clave, destacando la usabilidad de la aplicación y su potencial

para mejorar las experiencias de aprendizaje. Se reconoce el proceso de aprendizaje en la

programación de Python y el diseño de GUI, enfatizando la importancia de la

adaptabilidad.

En resumen, el proyecto ha logrado sus objetivos de trabajo principales al proporcionar

una aplicación educativa (PyroDAQ) para la medida de la temperatura y la adquisición

de datos. Ofrece una base para una mayor exploración y personalización en el campo,

destacando el valor de las herramientas de código abierto y las experiencias prácticas en

la instrumentación electrónica.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 17

1. INTRODUCTION AND BACKGROUND

The motivation for this project stems from the significance of temperature sensing and

data acquisition in various fields, particularly in electronics and the broader engineering

domain. Temperature sensing is a fundamental aspect of modern engineering, impacting

a wide range of applications from climate control to industrial processes, healthcare, and

scientific research.

Accurate temperature measurements are crucial for ensuring safety, optimizing

performance, and maintaining quality in various systems. To achieve this, temperature

sensing circuitry plays a pivotal role. Examples of the importance of temperature sensing

include the pharmaceutical industry, where accurate temperature measurement ensures

the safe storage and transportation of pharmaceutical products to prevent degradation. In

scientific research, precise temperature control is critical for experiments in biology and

chemistry. In the automotive industry, temperature plays a key role in ensuring optimal

engine performance and fuel efficiency. These examples highlight the diverse

applications where temperature measurement and data acquisition are fundamental.

In the world of engineering, the use of National Instruments (NI) and Data Acquisition

(DAQ) devices is notable. These devices enable interaction with a wide range of sensors

and instruments, making them pivotal in experimental setups, automation systems, and

quality control processes.

However, in classrooms, the accessibility and user-friendliness of these devices have

often been overshadowed by complex and proprietary software, such as LabVIEW

(Laboratory Virtual Instrument Engineering Workbench) [1], which conceals the intricate

connection between hardware and software.

This project's motivation lies in addressing these challenges by leveraging the versatility

and power of Python, an open-source programming language renowned for its simplicity

and ease of use. Python's plethora of libraries makes it an ideal candidate for scientific

1. INTRODUCTION AND BACKGROUND

 18

and engineering applications, including the potential to interface with NI DAQ devices,

thereby revealing the bridge between hardware and software.

The culmination of this motivation is the development of a GUI-based Python

application. This application aims to provide a user-friendly interface while being closely

integrated with NI DAQ systems. By doing so, it seeks to empower users in the field of

temperature sensing and data acquisition, making these processes more accessible,

comprehensible, and efficient. This project represents a significant step towards

enhancing the usability and accessibility of essential tools for engineers, researchers, and

students in the realm of electronics and engineering.

1.1. A BRIEF INTRODUCTION TO THE NATIONAL

INSTRUMENTS DAQ AND LABVIEW
National Instruments has been a prominent player in the engineering world for more than

40 years [2], providing tools for data acquisition and control systems. The key component

for this research is the NI Data Acquisition (DAQ) hardware which has traditionally been

used with the software LabVIEW.

LabVIEW is a widely recognized system design and development software platform

created by National Instruments. It is commonly used in engineering and scientific fields

for designing, testing, and implementing systems that involve measurement and control.

It is renowned for its graphical programming approach, where users can create

applications by connecting visual icons and wires, making it accessible to both engineers

and scientists who may not have extensive programming backgrounds. It enables the

development of custom graphical user interfaces (GUIs) and the creation of complex

measurement and control routines for a wide range of applications.

NI DAQ systems are hardware devices designed to be the bridge between the real world

and a computer. They facilitate the measurement and control of physical parameters such

as current, temperature, pressure, or sound. At the heart of a DAQ system, there is signal

conversion, input/output channels, signal conditioning, connectivity, and

programmability.

Traditionally, LabVIEW has been the software of choice for interfacing with NI DAQ

hardware, offering a way to design data acquisition and control applications. Engineers

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 19

and scientists could create custom GUIs and develop complex measurement and control

routines without delving deep into low-level programming languages.

However, while LabVIEW has its merits, it also presents some challenges. Its learning

curve can be steep for newcomers, and the visual programming paradigm may limit the

accessibility of the underlying code for students and those seeking a deeper understanding

of the hardware-software interaction. Moreover, LabVIEW is proprietary software, which

can pose constraints on its distribution and customization.

This project aimed to address these challenges by developing an alternative solution.

1.2. PYTHON, FROM A VERSATILE PROGRAMMING

LANGUAGE TO USES IN TEMPERATURE SENSING AND

DATA ACQUISITION
Python, well-known for its versatility and approachability, stands apart in the realm of

programming languages. While other languages such as C/C++ have better performance

due to their lower-level nature and direct memory control [3], they require more intricate

coding and a less comprehensive understanding upon initial inspection.

That’s why, in this context, Python's suitability for small-scale projects like the present

one becomes clear, as it enables a direct approach without dealing with unnecessary

complexities.

A distinctive facet of Python's utility emerges in its rich library ecosystem. It offers

excellent integration for calculations through libraries like NumPy and SciPy, enabling

swift development and easy implementation of mathematical operations. Along with

others like matplotlib that permit visualizations and plots, parallel the functionalities

offered by programs like MATLAB [4]. In the realm of electronic instrumentation, these

libraries are particularly valuable. Here, precision mathematical calculations underpin a

multitude of tasks, from signal analysis to data interpretation.

This relevance isn't just confined to calculations; it extends to the realm of hardware

integration. This is most evident in fields where electronics and software converge, as

exemplified by the integration of Python libraries tailored for controlling NI DAQ which

this project is based on [5].

1. INTRODUCTION AND BACKGROUND

 20

1.3. OVERVIEW OF TEMPERATURE SENSING CIRCUITRY
In the realm of temperature sensing, various circuit configurations are designed to cater

to different levels of complexity and precision. These circuits serve as fundamental

components in data acquisition and instrumentation.

Temperature sensing circuits are instrumental in enabling precise temperature

measurements, a critical parameter in numerous applications spanning diverse industries.

The choice of circuitry hinges on several key factors, including the required accuracy, the

range of temperatures to be measured, and the specific application’s demands.

At the foundational level, circuits can effectively employ sensors with a linear voltage

output directly proportional to temperature in degrees Celsius. Their inherent simplicity

makes them an excellent starting point for introductory temperature sensing experiments,

providing a solid foundation in the field.

As one progresses into intermediate-level temperature sensing circuits, more advanced

sensors such as thermistors or integrated digital temperature sensors come into play.

These sensors offer enhanced accuracy but may require additional signal conditioning

and calibration processes to ensure optimal performance and reliability.

In the course of this project, a deeper exploration of temperature-sensing circuits will be

undertaken. Their principles, calibration methods, and practical applications will be

thoroughly examined. Through this exploration, a comprehensive understanding of the

temperature measurement techniques that form the foundation of data acquisition and

instrumentation in diverse fields will be achieved.

1.4. IDENTIFICATION OF GAPS IN THE TRADITIONAL

APPROACHES THAT THE CURRENT RESEARCH AIMS TO

ADDRESS
As previously mentioned, a significant gap exists between tools like LabVIEW and their

users, creating a noticeable disconnect between software and hardware components. This

issue is particularly prevalent among students who are venturing into practical

applications for the first time, transitioning from the realm of theoretical knowledge to

hands-on experience. This transitional phase in their education demands a clear

understanding of the intricate connections between the hardware they’re working with,

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 21

the circuits they’re studying, and the software that generates the results. Unfortunately,

existing tools like LabVIEW often fall short of providing this level of transparency.

 For students, constructing interfaces within LabVIEW for their experiments has been the

norm. While this highlights the software's versatility, it imposes a dual challenge on

students. Not only must they bridge the gap between theory and practice in their projects,

but they are also compelled to construct the very interfaces they rely on. Regrettably, this

construction phase usually leaves them with limited insights into the underlying

mechanisms behind the GUI.

1.5. OBJECTIVES
The primary aim of this project is to streamline this construction process by offering a

straightforward application. This application not only simplifies the user experience but

also allows users to delve into its inner workings, providing a unique opportunity to

explore the connections between hardware and software, thereby addressing the

aforementioned gaps in traditional approaches.

Furthermore, another additional objective is to emphasize key concepts in the broader

field of electronic instrumentation, with a particular focus on temperature measurement.

These concepts can be experimentally explored using the developed application, allowing

for a deeper understanding of topics such as calibration, sensitivity, resolution, load

regulation, self-heating, and more.

Both objectives inherently entail the creation of a student guide to assist them in the

installation, usage, and optimization of the provided application.

1.6. OVERVIEW OF THE STRUCTURE OF THE THESIS
The project is divided into several key sections that collectively form a comprehensive

exploration of the research, development, and application of this educational tool.

In chapter 2, the methodology employed for the research and development of the

educational application is outlined. It begins with an overview of the methodology,

followed by a discussion of requirement gathering and analysis. The chapter then delves

into the implementation process, covering the selection and description of the NI DAQ

system and temperature sensor used, as well as an overview of the programming

1. INTRODUCTION AND BACKGROUND

 22

environment, Python, and the software components utilized. The methodology also

includes a comprehensive strategy for testing and quality assurance, as well as a section

on user evaluation and feedback.

Chapter 3 constitutes the heart of the thesis, detailing the development of the temperature

sensing circuit control application. It begins with an introduction to the application's

purpose and significance. The subsequent sections provide an in-depth exploration of the

application's features and capabilities, the design of the user interface, the high-level

architecture, and the GUI development process. It also covers the management of user

interaction and control logic, including the integration of the NI DAQ and temperature

sensing functionality. The chapter concludes by demonstrating the user interaction flow,

error handling strategies, testing, debugging, and validation processes, and offers

suggestions for potential future research and development directions.

Chapter 4 is dedicated to the practical aspects of the research. It begins with a detailed

description of the circuit setup used for temperature sensing and data acquisition.

Subsequently, it outlines the calibration and validation procedures for the temperature

sensor. The chapter culminates with the presentation of the results and analysis, which

include considerations regarding the program's ability to enhance student engagement in

experimental setups.

In the concluding chapter, the thesis provides a summary of the research objectives and

key findings, emphasizing the successful development of the educational application and

its usability for students. It also explores the program's potential to enhance learning

experiences in temperature sensing and data acquisition, shedding light on the broader

implications of this innovative approach to education. The chapter closes with concluding

remarks that highlight the project's achievements and its potential for further expansion

and exploration.

Additionally, the thesis includes three appendices: Appendix A contains image

attributions used in the application, Appendix B features the comprehensive student's

guide, and Appendix C provides access to the code repository for this project.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 23

2. METHODOLOGY

2.1. OVERVIEW OF THE METHODOLOGY
The methodology employed in this project played a pivotal role in addressing a significant

challenge that loomed at the beginning of the project: the mastery of Python programming

and the intricacies of constructing an application with a GUI, all within the context of a

limited background in the subject matter. This endeavor marked a journey of trial and

error, a path defined by the necessary adaptation to the new concepts encountered at every

step of the development process.

Central to the project's achievement was the necessity to acquire proficiency in the Python

programming language from the ground up. Despite the absence of prior Python

familiarity, the project was facilitated by the foundation of advanced competence in both

C and C++. This advanced foundation played a crucial role in guiding the learning

process, therefore, through a combination of self-guided exploration, interactive coding

exercises, and reference to the established online resources in the vibrant Python

community, a foundational competence in Python was cultivated.

The considerable assistance rendered by Python for Science and Engineering by Hans-

Petter Halvorsen is properly noted [4]. This resource played a significant role in providing

a structured pathway for acquiring Python skills in the context of mathematical

applications, data acquisition, and the control of National Instrument devices. The clear

explanations, practical exercises, and readily available resources contributed significantly

to the foundation of this project. This learning phase created the groundwork for the

subsequent stages, setting the stage for the development of the application.

The challenge, however, transcended the realm of programming proficiency. The

construction of an application with a GUI posed a different set of challenges, particularly

given the relatively modest exposure to GUI development. Consequently, selecting a

suitable GUI framework became crucial for addressing this issue. Therefore, the decision

was made to opt for PySimpleGUI. As its name suggests, PySimpleGUI is a

straightforward and accessible wrapper, with many online resources for learning and

developing [6]. Sections to come will delve into a comprehensive exploration of the

advantages and disadvantages presented by this wrapper.

2. METHODOLOGY

 24

This learning process necessitated a strategic shift towards a trial-and-error approach;

thus, the construction of the application’s functionality and user interface became a

dynamic process of experimentation and adaptation. With each iteration, valuable

insights were gleaned, serving as steppingstones toward a refined and user-friendly GUI.

Throughout the process, it became evident that adhering to a key principle of adaptation

was crucial. Every obstacle encountered provided a learning opportunity, and each

advancement was marked by the assimilation of new skills and insights. It consequently

became apparent that, for effective programming of any user interface, the formulation

of a well-structured plan with rough sketches detailing the arrangement of elements

within each window and their interactions was of paramount importance to ensure

efficiency coding-wise.

This process of perpetual learning was not confined to the realms of programming and

GUI design alone; it encompassed a broader spectrum of skills, from debugging intricate

code segments to integrating user feedback into the application's evolution.

In summary, the methodology embraced in this project was an example of adaptability

and development. It provided a platform for tackling the complexities of Python

programming and GUI design.

2.2. REQUIREMENT GATHERING AND ANALYSIS
The process of requirement gathering and analysis for the application was rooted in the

subject laboratory session for which the application is intended to be used. The

foundational essence of this lab session served as the basis for formulating the

application's requirements. The main goal was to transition the functionalities initially

executed in LabVIEW to a dedicated application environment.

The requisites encompassed the ability to effectively recognize and manage the NI DAQ,

facilitate the computation of calibrations for the designated temperature sensor circuit,

provide the means for utilizing these calibrations for data acquisition purposes, and

present a user-friendly interface for comprehending and controlling the acquired data and

the associated DAQ functions.

Furthermore, the process included catering to the specific needs of the students. This was

achieved by engineering an application that remains focused on its primary purpose. By

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 25

simplifying its features, the application facilitates a practical exploration for students to

apply their theoretical understanding of temperature sensor circuits. This approach

mitigates the requirement for them to divide their focus between mastering diverse

software tools, such as LabVIEW, and comprehending the core subject matter.

2.3. IMPLEMENTATION
An overview of the implementation process encompassing both hardware and software

components is presented in this section. The integration of NI DAQ, temperature sensors

LM35 and PT100, alongside the utilization of Python and PySimpleGUI, constitutes the

focal points of this phase. The subsequent sections will provide an in-depth exploration

of each component, explaining their roles and collaborative interactions within the

application's architecture.

2.3.1. DESCRIPTION OF THE NATIONAL INSTRUMENT DAQ SYSTEM

AND TEMPERATURE SENSOR USED

The ensuing section offers a comprehensive portrayal of the specific hardware

components central to the study's implementation, focusing on the NI DAQ system and

the temperature sensors employed. The DAQ system of choice was the entry-level,

plug-and-play USB series. During the project's construction, the primary DAQ system

utilized was the USB-6001, notable for its robust capabilities. The USB-6001 is often

considered a cost-effective solution for basic data acquisition needs. The USB-6001,

characterized by its compact form factor, facilitated seamless integration with the

Python-based application. It offers 8 single-ended (4 differential) analog input channels

and includes 2 analog output channels for signal generation. Specifications include its

14-bit analog-to-digital converter (ADC), digital input/output capabilities, and a

moderate sampling rate (20 kS/s maximum) [7] and [8]

Furthermore,

compatibility with various DAQ systems was included in the implementation scope,

such as the USB-6002 and USB-6211. These DAQ systems, while sharing commonalities

with the USB-6001, offer distinctions in terms of analog input channels, sampling rates,

and voltage ranges, catering to diverse experimental demands.

2. METHODOLOGY

 26

Regarding temperature sensors, the preliminary phase incorporated the LM35, a simple

yet effective sensor suitable for initial testing scenarios. The LM35 facilitated

straightforward temperature readings in basic circuit configurations. However, as the

project's complexity grew, a shift toward a more advanced sensor took place. The Pt100,

a platinum resistance temperature detector (RTD), emerged as the sensor of choice for

enhanced precision and accuracy.

The LM35 and Pt100 sensors present notable differences. The LM35 operates linearly

within a specific temperature range and offers direct temperature-to-voltage conversion,

making it suitable for rudimentary applications. Contrariwise, the Pt100 exhibits a wider

temperature range, increased accuracy, and a resistance-based response that necessitates

specialized circuitry, such as a Wheatstone bridge, to convert resistance changes into

voltage values. The way this bridge is configured in terms of power supply and the values

of fixed resistors will ultimately determine its sensitivity to changes in temperature.

One could emulate the behavior of a Pt100 at a specific temperature by simply replacing

it in the circuit with a precision resistor of the same value as the Pt100 at that temperature.

This opens the possibility of emulating the circuit's behavior for various Pt100

temperatures, a crucial aspect for implementing and evaluating calibration methods,

thereby aptly accommodating the application's evolution.

2.3.2. OVERVIEW OF THE PROGRAMMING ENVIRONMENT (PYTHON)

AND SOFTWARE COMPONENTS UTILIZED

The subsequent segment offers an encompassing insight into the programming

environment leveraged for the project, primarily focusing on Python and the software

components integral to its functionality.

Central to the project's interface design was the adoption of PySimpleGUI, a GUI wrapper

acclaimed for its intuitive nature and robust capabilities. PySimpleGUI encapsulates the

complexity of GUI development, serving as a bridge between the programmer and the

interface.

Further enhancing the programmer experience, PySimpleGUI effectively wraps Tkinter,

an established GUI toolkit [9]. By doing so, PySimpleGUI harnesses the strengths of

Tkinter's vast functionality while simplifying its implementation thus making the learning

curve not as steep. This choice was motivated by PySimpleGUI's proficiency in striking

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 27

a balance between accessibility and power, making it an ideal fit for this project's

objectives.

Furthermore, an indispensable driver, NI-DAQmx, is central to this project for its role in

enabling interaction with NI DAQ devices [10]. As a product of National Instruments,

NI-DAQmx presents a Python interface for seamless communication with DAQ

hardware, facilitating data acquisition, control operations, and integration with other

Python libraries.

Arithmetic and data manipulation was facilitated by the incorporation of libraries like

NumPy, SciPy, and Matplotlib. NumPy [11] and SciPy [12] were employed to perform

mathematical computations, specifically in deriving equations for linear and non-linear

equations to interpret the data. These libraries enabled the formulation of mathematical

models that accurately described the relationships present within the dataset.

Additionally, Matplotlib [13] enabled visually appealing data visualization. These

libraries collectively consolidated the project's capacity to manage and represent data

effectively.

In summary, the programming environment was meticulously curated, with

PySimpleGUI championing intuitive yet robust interface design, NI-DAQmx

orchestrating seamless DAQ device communication, and the arithmetic libraries fostering

data manipulation and visualization.

2.4. TESTING AND QUALITY ASSURANCE STRATEGY
This section explains the planned testing approach undertaken to establish the

application's functionality, reliability, and performance. It involves various tiers of

testing, encompassing unit testing, integration testing, and system testing, with each stage

designed to guarantee careful evaluation.

Unit testing was used to examine individual components in isolation and

was typically performed as the code was developed and each portion was completed.

Specific functions and methods of the code were tested to ensure that in isolation they

worked as intended and produced accurate results. This ensured that when having to work

together with other units, a solid foundation was established. These units of the

2. METHODOLOGY

 28

application, such as temperature data acquisition, GUI interactions, and calibration

calculations

Integration testing involved verifying the interplay between the application's components

to ensure that the individual units of code worked together cohesively as a larger

integrated system. Interaction scenarios, encompass user input through the GUI, data

acquisition via the DAQ system, and the subsequent processing and display of results.

Through this process, seamless cooperation can be ensured between diverse modules.

System testing, an evaluative approach that scrutinizes the application in its entirety, was

executed through a series of thoughtfully designed scenarios. These scenarios were

crafted to emulate real-world user interactions and edge cases to assess the application's

coherence and resilience.

These scenarios encompass the emulation of normal user behavior, extreme temperature

values, rapid user interactions, erroneous input, compatibility tests conducted with

different DAQ systems, and the absence of such.

Collectively, these scenarios underscored the application's ability to manage diverse user

interactions, ensuring a comprehensive evaluation of its functionality and reliability.

The process of bug identification, tracking, and resolution followed a structured approach.

Detected issues were logged and assigned priority levels. The tracking system ensured

that each issue was traced from identification to resolution. This methodology ensured

that bugs were systematically addressed, guaranteeing the application's robustness.

In essence, the orchestrated testing approach encompassed a spectrum of meticulous

examination, extending from granular unit tests to comprehensive system validation.

This method proved invaluable as it enabled the achievement of a polished and

dependable outcome. By swiftly pinpointing issues without the inefficiencies of

troubleshooting, the established timelines were adeptly adhered ensuring successful

project completion.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 29

2.5. USER EVALUATION AND FEEDBACK
The process of user evaluation and feedback collection was used in assessing the

application's usability and effectiveness. This phase involved the simulation of diverse

user scenarios, effectively mirroring real-world usage scenarios to ensure a

comprehensive assessment.

Following the guidelines outlined in the provided student guide, a designated group of

users interacted with the application, exploring its features as intended. This emulation

provided valuable insights into the application's user-friendliness, navigational logic, and

overall effectiveness in achieving its intended purpose.

Contrariwise, to gauge the application's robustness and error-handling capabilities, users

were given a degree of freedom to interact with the application as they saw fit. This

exploratory approach aimed to identify any potential vulnerabilities, unanticipated usage

patterns, or points of failure. By observing how the application performed in such

scenarios, the evaluation encompassed a comprehensive examination of its resilience and

error-catching mechanisms.

Feedback like issues and suggestions was incorporated in the same mannerism that bugs

were tackled in the testing stage. By logging and prioritizing, solutions were devised,

tested, and integrated into the application. This feedback was subsequently used as a

foundation for enhancing the application and, in doing so, aligning it more closely with

users' expectations and workflow.

Furthermore, the project was also uploaded to GitHub, providing a platform for potential

future feedback and contributions from the open-source community, which may further

improve the application's functionality and usability. To this day, feedback hasn't been

received, but suggestions are awaited, and they will be carefully considered for the

project's ongoing development and refinement.

3. DEVELOPING THE APPLICATION

 30

3. DEVELOPING THE APPLICATION
This section introduces the temperature sensing circuit control application, designed to

establish an interface between a NI DAQ device and a temperature sensor using Python.

This integration facilitates the calibration of the circuit and acquisition of accurate

temperature readings, offering a solution for temperature sensing circuit control.

3.1. INTRODUCTION TO THE TEMPERATURE SENSING

CIRCUIT CONTROL APPLICATION
The application's architecture is made to bridge the gap between hardware and software,

enabling students to access temperature data easily with precision. Its role in this context

is key, as its simplicity enhances the efficiency and accuracy of temperature measurement

processes without the user having to do anything else.

Fig. 3.1.1 Initial wireframe of PyroDAQ application design

A prominent feature of the application is calibration, a key mechanism that serves as the

foundation for temperature measurement precision. Through the application's intuitive

interface, students can establish a calibration line or curve, correlating known temperature

inputs with the sensor's corresponding readings. They can also choose to establish an

already known calibration. This calibration serves as the foundation for converting raw

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 31

sensor data into reliable temperature values, ensuring the accuracy of acquired

measurements.

Additionally, the application offers data acquisition capabilities, interfacing with the NI

DAQ device. This integration empowers students to monitor temperature fluctuations in

real-time, enabling dynamic analysis and experimentation within temperature-sensitive

circuit control environments.

The significance of the developed application is rooted in its capacity to simplify the

intricacies associated with building the interface for temperature sensing circuit control

from scratch. By facilitating data acquisition and interpretation, it emerges as a valuable

tool for students as it bypasses any additional designs in LabVIEW and directly offers the

necessary tools.

Its pragmatic utility extends beyond temperature measurement, encompassing a

comprehensive educational tool that bridges theory and practical implementation. This

powerful tool not only allows for the observation of Python in action within an electronics

environment but also serves as a dynamic platform for gaining hands-on experience and

insights into real-world applications.

3.2. APPLICATION FEATURES AND CAPABILITIES
The emphasis revolves around facilitating precision in temperature sensor calibration and

enabling real-time data acquisition. Together, these essential features improve the

application's ability to handle the complexities of temperature sensing in circuit control

situations.

One significant functionality center on establishing a correlation between raw sensor

readings and known temperature values. This process, integral to the application, results

in the calibration of the temperature sensor (Fig. 3.2.1). The significance of this

calibration becomes pronounced in real-world scenarios, where precise temperature

monitoring is imperative for effective circuit control.

3. DEVELOPING THE APPLICATION

 32

Fig. 3.2.1 Calibration options

This calibration process is designed to be intuitive and flexible. Users are granted the

capability to input calibration coefficients directly using a known mathematical

expression (Fig. 3.2.2). This empowers users with the freedom to tailor the calibration to

their specific needs. Moreover, the application provides a practical feature that enables

users to test the accuracy of the entered calibration while still in the input window,

ensuring confidence in the calibration's reliability (Fig. 3.2.3).

Fig. 3.2.2 Direct calibration input for a LM35 temperature sensor

example.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 33

Fig. 3.2.3 Testing the calibration.

Alternatively, the application offers an avenue for calibration selection by providing a

known temperature and voltage correlation (Fig. 3.2.4). Users can choose the calibration

that best fits their understanding and requirements. This method aligns with empirical

learning, allowing students to witness the practical implications of their calibration

choices.

Fig. 3.2.4 Known temperature-voltage correlation calibration

Calibrations within the application cater to diverse scenarios and needs, accommodating

both linear and non-linear calibrations (Fig. 3.2.7). For linear calibrations, users are

equipped with the option to choose between two calculation methods: the least squares

method (Fig. 3.2.5) and interpolation between user-selected data points (Fig. 3.2.6). This

3. DEVELOPING THE APPLICATION

 34

versatility in calibration methodologies ensures adaptability to varying user preferences

and complexities.

Fig. 3.2.5 Linear Calibration, Least Squares Method

Fig. 3.2.6 Linear Calibration, Linear Interpolation

Fig. 3.2.7 Non-Linear Calibration

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 35

Every calibration set by the user is automatically saved and stored in logs. These saved

calibrations can be readily accessed for future trials and experiments (Fig. 3.2.8),

eliminating the need for repeated calibration setups.

Fig. 3.2.8 Calibration log

In essence, the application's calibration functionality enhances precision, fosters active

learning, and provides an array of options to suit different scenarios, ultimately enriching

the educational and practical value of the platform.

Furthermore, the application integrates the calibration process with real-time temperature

data acquisition. By interfacing with the NI DAQ device, users are bestowed with the

ability to procure temperature data within dynamic environments. This pairing of data

acquisition is accompanied by a simultaneous process of data logging (Fig. 3.2.9) and

real-time plotting (Fig. 3.2.10), thus elevating the application's utility.

Fig. 3.2.9 Example of data logging in known temperature and voltage

correlation

3. DEVELOPING THE APPLICATION

 36

Fig. 3.2.10 Further Examples of Data Logging, now with a Plotted

Line

This multifaceted functionality becomes particularly noteworthy in scenarios where the

monitoring of temperature variations is in real time is. This empowerment extends to both

educational and practical realms, enabling students and users to closely track temperature

fluctuations as they occur.

Diving deeper into data acquisition, the application offers users the flexibility to choose

between two distinct modes. The first mode, "On Demand" allows users to trigger data

acquisition at their discretion. This mode is characterized by indefinite data acquisition,

enabling users to gather data continuously until they choose to halt the process. During

this ongoing data acquisition, users retain the freedom to dynamically adjust the time

interval between successive acquisitions (Fig. 3.2.11) and (Fig. 3.2.12). This adaptability

is mirrored in real-time data plots, enabling users to witness immediate reflections of their

chosen time intervals on the evolving data plot.

Fig. 3.2.11 On Demand Option with 500ms Time Interval, Data

Acquisition

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 37

Fig. 3.2.12 On Demand Option with 60ms Time Interval, Data

Acquisition

Alternatively, the application caters to scenarios that demand a finite sampling approach.

In this mode, termed "Finite Sampling" users define both the total number of samples

they wish to acquire and the desired sample rate (Fig. 3.2.13). This approach offers

control over the data collection process, allowing users to gather a predetermined amount

of data with temporal intervals.

Fig. 3.2.13 Finite Sampling Example with 20 samples and 2 Sa/s,

Data Acquisition

Moreover, the application's monitoring functionalities extend to establishing alarm limits

for both lower and/or upper-temperature thresholds. These alarms trigger as soon as

3. DEVELOPING THE APPLICATION

 38

temperature readings breach the set limits (Fig. 3.2.13). In this manner, users are

promptly alerted to deviations from the desired temperature range.

Fig. 3.2.14 Example of Alarms Set at 30.5ºC and 31.5ºC and

Maximum Alarm Going Off, Finite Sampling, Data Acquisition

All collected data, along with the triggered alarms and corresponding readings, can be

saved, offering a comprehensive record of the system's behavior (Fig. 3.2.15) and

(Snippet 3.2.1). This comprehensive suite of monitoring features not only ensures real-

time data collection but also equips users with valuable insights by logging alarm-

triggered events and temperature parameters.

Fig. 3.2.15 Saving Data as a CSV File

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 39

13/09/2023 13:40:00.582277

CALIBRATION
y = 1300.647x -2.863

PARAMETERS
Number of samples,Sample rate [Sa/s]
10,2.0

ALARM LOGS
Min alarm,Max alarm
30.5,31.5
Alarm Type,Temperature,Time Interval
Above Maximum,32.254,500
Above Maximum,32.254,1000
Above Maximum,32.254,2000
Above Maximum,32.254,3000
Above Maximum,32.254,3500
Above Maximum,32.254,4500

DATA
Voltage [V],Temperature [∫C]
0.026,30.954
0.027,32.254
0.027,32.254
0.026,30.954
0.027,32.254
0.026,30.954
0.027,32.254
0.027,32.254
0.026,30.954
0.027,32.254

Snippet 3.2.1 CSV File ‘data.csv’

3.3. DESIGNING THE USER INTERFACE

3.3.1. ICON DESIGN AND GUI AESTHETICS

The icon design and user interface aesthetics were considered during the development of

the application. Several design choices were made to enhance user-friendliness and

appeal, particularly with a focus on student and youth engagement.

The primary color chosen for the application was green (Fig. 3.3.1). This choice was

deliberate, as it aligns with the Python programming language, a key component of the

application. The use of green was intended to make the application more approachable

and relatable to students.

3. DEVELOPING THE APPLICATION

 40

Fig. 3.3.1 PyroDAQ icon in place with the green layout

The application's logo is a central element of its visual identity. The logo features a snake

wrapped around a thermometer (Fig. 3.3.2). This design was selected to symbolize the

application's Python-based functionality for temperature sensor circuit control. The snake

represents Python programming, while the thermometer signifies temperature sensing—

a direct reflection of the application's purpose. Notably, the logo was intentionally

designed in an emoji-like style. This decision was made to make it more appealing and

relatable to younger users, including students. The emoji-style design aims to alleviate

the apprehension associated with the traditionally complex world of instrumentation

towards a more familiar and friendly aesthetics of youth-oriented applications.

Fig. 3.3.2 PyroDAQ icon

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 41

The application's icon and other graphical assets were shaped by the author, from a

selection of copyright-free images. These images were used as foundational elements for

the design but were adapted to create cohesive visual elements. Proper attribution for the

original images used in the icon and other assets is provided in the "APPENDIX A:

ASSETS AND ATTRIBUTION" section of the appendix.

In keeping with the overall design philosophy, other graphical assets within the

application were also fashioned in an emoji-like style. This consistent approach ensures

that the visual elements maintain a cohesive and engaging appearance, enhancing the user

experience.

Fig. 3.3.3 PyroDAQ assets for temperature alarms and toggle

The combination of these design choices, from the color scheme to the logo and icon

design, contributes to an interface that is both visually appealing and aligned with the

educational goals of the application. It aims to create a welcoming and accessible

environment for students and users of all backgrounds to explore the world of temperature

sensing and data acquisition.

3.3.2. GUI LAYOUT AND COMPONENTS

Within the domain of designing the user interface, the application's core considerations

revolve around optimizing user experience, ensuring accessibility, and seamlessly

guiding users through the application's functionalities.

3. DEVELOPING THE APPLICATION

 42

The development process prioritizes the ease of use for students, making accessibility and

usability paramount. The application's design aims to minimize user effort by creating a

seamless and intuitive user journey.

The necessary components and controls within the user interface have been outlined to

facilitate effective visualization. The application embraces real-time visualization,

showcasing crucial inputs such as calibration expressions, voltage readings, and

calculated temperatures. This dynamic display provides users with instant feedback,

enhancing their engagement and understanding.

A delicate balance between user freedom and guided functionality is maintained within

the interface design. While users are granted the flexibility to navigate and utilize the

application as intended, certain controls are strategically embedded to ensure a coherent

experience. For example, buttons and inputs are thoughtfully hidden or revealed, disabled

and abled based on the context, thereby preventing user confusion, and streamlining the

process.

Fig. 3.3.4 Disabled Buttons When There is No Data or Calibration,

Known Temperature-Voltage Correlation Calibration

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 43

Fig. 3.3.5 Enabled button when there is data, disabled when there’s

no calibration, known temperature-voltage correlation calibration

This is observed in examples like Fig. 3.3.4 where if there’s no data introduced, the

“Clear” and “Delete” buttons are disabled, since there is no data, there’s no need to edit

the entries. Once data has been introduced, in Fig. 3.3.5 one can note that the “Clear” and

“Delete” buttons are enabled. In both cases “Choose” remains disabled since this sets the

calibration equation. Since there aren’t enough points for the equation to be calculated, it

doesn’t make sense for the user to select it, so the option isn’t available for the user. Thus,

the user is unconsciously guided through the steps without requiring unnecessary

interactions.

The intuitive nature of the interface is achieved by emulating a workflow that mirrors the

traditional process. The application's flow guides users through familiar steps, ensuring a

sense of continuity. This approach resonates particularly with users accustomed to

following the structured workflow of manually calculating these scenarios, aligning the

application's design with their expectations.

The process of designing and integrating these diverse components adheres to the natural

progression of actions. The interface's layout follows a deliberate sequence, featuring

components aligned from left to right and top to bottom. This organization reflects the

logical progression of user inputs, enhancing clarity and coherence.

3. DEVELOPING THE APPLICATION

 44

For instance, in cases of known voltage-temperature calibration, the interface design

corresponds with the flow of decision-making. Users are prompted in the left column to

choose the linearity of calibration, specify voltage input preferences, and log data points

(Fig. 3.3.6). Concurrently, the interface updates the right column to reflect these inputs,

displaying the expression being calculated and plotted alongside the logged data points

(Fig. 3.3.7). This real-time feedback ensures users remain aware of their actions'

outcomes.

Fig. 3.3.6 Action Sequence for choosing linearity of calibration, data

input, and data management in the left column, known temperature-

voltage correlation calibration

Fig. 3.3.7 Parallel updating of user interaction in the right column,

known temperature-voltage correlation calibration

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 45

The user interface design unites accessibility, functionality, and familiarity. By

maintaining an equilibrium between user autonomy and guided interaction, the

application bridges the gap between user expectations and its functionalities. The

interface's logical layout and real-time visualizations enhance user engagement and

comprehension.

3.4. OVERVIEW OF THE HIGH-LEVEL ARCHITECTURE
The project's file hierarchy forms the backbone of its organization, fostering a clear

distinction between logic and GUI components. This hierarchical structure ensures that

the code is organized and modular, allowing different aspects of the application to work

together while maintaining separation where necessary. The project's directory structure

is as follows:

PyroDAQ/
├── assets/
│ ├── alarm_max_off.png
│ ├── alarm_max_on.png
│ ├── alarm_min_off.png
│ ├── alarm_min_on.png
│ ├── alarm_unset.png
│ ├── icon_big.png
│ ├── switch_off.png
│ └── switch_on.png
├── src/
│ ├── app/
│ │ ├── appCalibrationMethod.py
│ │ ├── appDAQ.py
│ │ ├── appDataAcquisition.py
│ │ ├── appExpressionInputCalibrate.py
│ │ └── appTempVoltCalibrate.py
│ ├── gui/
│ │ ├── guiCalibrationMethod.py
│ │ ├── guiDAQ.py
│ │ ├── guiDataAcquisition.py
│ │ ├── guiExpressionInputCalibrate.py
│ │ └── guiTempVoltCalibrate.py
│ ├── calibrationTools.py
│ ├── daqTools.py
│ └── guiTools.py
└── main.py

Snippet 3.4.1Project directory structure

The high-level architecture of the application can be understood through a hierarchical

organization, divided into three distinct phases: the setup phase, calibration, and data

3. DEVELOPING THE APPLICATION

 46

acquisition. This structure underscores the systematic flow that guides users through the

application's functionalities.

At its core, the application's architecture is tripartite, rooted in the main script that

serves as the epicenter of all operations. This main script initiates the setup phase, from

which the subsequent branches emanate (Snippet 3.4.2). The branching nature of the

architecture ensures a modular approach, enhancing both organization and scalability.

def main():

 # --- DAQ SELECTION ---

 niDAQ = daq.run_select_daq()

 while not niDAQ.is_exit_requested():

 # --- CALIBRATION ---

 calibration_method.run_calibrate(niDAQ)

 if niDAQ.is_exit_requested():

 niDAQ.exit()

 continue

 # --- ACQUIRE DATA ---

 data_acquisition.run_data_acquisition(niDAQ)

[...]

Snippet 3.4.2Branching in main function './main.py'

The architecture's design revolves around a symbiotic relationship between the logical

components and the GUI. Each phase of the application bifurcates, with logical

components branching towards various functions while remaining interlinked with the

GUI (Snippet 3.4.3). This arrangement fosters a cohesive user experience where GUI

elements and logical operations complement each other.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 47

[...]

def run_select_daq():

 while True:

 try:

 # creates object where DAQ information is stored

 modelsDAQ, exitFlag = guiDAQ.select_daq_window(dt.modelsDAQ)

 [...]

Snippet 3.4.3 Interlinking between logic and GUI in function

'run_select_daq’ with function ‘select_daq_window’ in

'./src/app/appDAQ.py'

Central to this architecture are two foundational objects. The first object is instantiated at

the application's outset, entwined with the chosen DAQ device (Snippet 3.4.4). The

second object emerges during the calibration setup phase (Snippet 3.4.5). While these

objects maintain their distinct domains, they are engineered to function together,

orchestrating the flow of data and control throughout the application.

[...]

creates object where DAQ information is stored

 modelsDAQ, exitFlag = guiDAQ.select_daq_window(dt.modelsDAQ)

 # DAQ initiation with its corresponding model

 niDAQ = dt.niDAQ(modelsDAQ, exitFlag)

 if not exitFlag:

 niDAQ.initiate_daq()

 return niDAQ

[...]

Snippet 3.4.4 Creation of object 'niDAQ' in 'run_select_daq' function

in './src/app/appDAQ.py'

3. DEVELOPING THE APPLICATION

 48

[...]

 match method:

 case 'TEMP_VOLTAGE':

 calibration =

appTempVoltCalibrate.run_temp_volt_calibrate(niDAQ)

 if calibration is not None:

 niDAQ.add_calibration_to_log(calibration)

 niDAQ.set_calibration(repr(calibration))

 case 'EXPRESSION_INPUT':

 calibration =

appExpressionInputCalibrate.run_expression_input_calibrate(niDAQ)

 if calibration is not None:

 niDAQ.add_calibration_to_log(calibration)

 niDAQ.set_calibration(repr(calibration))

 case 'ACQUIRE_DATA':

 if niDAQ.is_calibration_set:

 break

[...]

Snippet 3.4.5 Object 'calibration' creation given the method chosen in

function 'run_calibrate' in './src/app/appCalibrationMethod.py'

This architectural design optimizes the division of labor and ensures clear demarcations

between components while promoting efficient collaboration. The logical and GUI-based

components are interconnected, collectively working towards the application's

overarching goals.

In essence, the application's high-level architecture exemplifies a structured yet

interconnected framework, utilizing both logical and GUI features to cooperatively guide

users through phases. The appendix, a repository of detailed explanations, will further

clarify the interplay between code segments and components, providing a comprehensive

understanding of the application's architectural intricacies.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 49

3.5. BUILDING THE GRAPHICAL USER INTERFACE
The construction of the GUI adheres to a defined structure that fosters consistency and

simplicity across different sections. Each GUI section is synchronized with its

corresponding logical counterpart, guaranteeing integration of functionality and user

interaction.

In a nutshell, the GUI structure follows a systematic pattern across all sections, ensuring

uniformity and ease of use. This pattern encompasses the delineation of a layout (Snippet

3.5.2 and Snippet 3.5.3), the association of this layout with a designated window (Snippet

3.5.1), and the establishment of window behaviors within a recurring loop (Snippet 3.5.4).

This cohesive structure serves as the foundation upon which the entire GUI framework is

built.

[...]

 # launches window where the user can input calibration expression

 window, fig, figure_canvas_agg =

guiExpressionInputCalibrate.expression_calibrate_window()

 [...]

 calibration =

guiExpressionInputCalibrate.expression_input_calibrate_window_behavior(niDAQ, window,

fig, figure_canvas_agg)

[...]

Snippet 3.5.1GUI window structure in

‘run_expression_input_calibrate’ function in

‘./src/app/appExpressionInputCalibrate.py’

[...]

return gt.gui_window_with_graph(‘Input Sensor Calibration Equation’, layout,
gt.FIG_SIZE_WIDTH, gt.FIG_SIZE_HEIGHT, False)

[...]

Snippet 3.5.2 Return of ‘expression_calibrate_window’ in

‘./src/gui/guiExpressionInputCalibrate.py’

3. DEVELOPING THE APPLICATION

 50

[...]

def gui_window_with_graph(title, layout, figSizeWidth, figSizeHeight, isModal):
 “””
 Initializes a PySimpleGUI window with a matplotlib using a CANVAS with empty
graph that can be updated later
 :param title: title of the window
 :param layout: layout designed for the window
 :param figSizeWidth: desired width of the graph
 :param figSizeHeight: desired height of the graph
 :param isModal: bool if window is modal
 :return: window, fig, figure_canvas_agg
 “””
 [...]

 return window, fig, figure_canvas_agg

[...]

Snippet 3.5.3 Layout and window configuration returned in function

‘gui_window_with_graph’ in ‘./src/guiTools.py’

[...]

def expression_input_calibrate_window_behavior(niDAQ, window, fig,
figure_canvas_agg):
 “””
 Behaviour for direct expression input calibration window
 :param niDAQ: object
 :param window: pysimplegui window
 :param fig: calibration plot
 :param figure_canvas_agg: canvas for calibration plot
 :return: calibration object
 “””
 calibration = ct.LinearCalibration()
 while True:
 event, values = window.read()

[...]

Snippet 3.5.4 Window Behavior loop in function

‘expression_input_calibrate_window_behavior’ in

‘./src/gui/guiExpressionInputCalibrate.py’

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 51

The nature of this structure is chosen by its compatibility with PySimpleGUI, which

accommodates the design. By maintaining consistency across GUI sections, the

application establishes a sense of continuity, enabling users to navigate different sections

easily.

The integration of relevant widgets plays a pivotal role in ensuring user engagement and

interaction. Users’ decisions are effectively captured through elements such as combo

boxes, such as offering a dropdown menu to select the appropriate DAQ device (Snippet

3.5.5 and Fig. 3.5.1). The interface reflects user preferences, as the application adapts to

the selected choice.

[...]
 [sg.Text('Select the model of the National Instruments DAQ:', pad=((0, 0),
(15, 0)))],
 [sg.Combo(modelDAQ,
 default_value="Select the model...",
 key='-MODEL-',
 expand_x=True,
 tooltip='Select an option before moving forward')],
[...]

Snippet 3.5.5 Combo box in layout to select DAQ model in

'select_daq_window' function in './src/gui/guiDAQ.py'

Fig. 3.5.1 Combo box shown as dropdown menu in DAQ selection

window

3. DEVELOPING THE APPLICATION

 52

Other elements like radio buttons further augment the user's control over the application's

functionalities, like offering choices that align with the calibration process (Snippet 3.5.6,

Snippet 3.5.7, Fig. 3.5.2 and Fig. 3.5.3). By selecting specific calibration options, users

steer the application's behavior in line with their requirements.

[...]
 [sg.Radio(gt.TEMP_VOLT_LIN_EQ,
 group_id='exp_type',
 default=True,
 k='-LINEAR_EQ-',
 enable_events=True,
 pad=((10, 0), (10, 0)))],
 [sg.Radio(gt.TEMP_VOLT_LEAST_SQUARES,
 pad=((40, 0), 0),
 group_id='lin_eq',
 default=True,
 enable_events=True,
 k='-LEAST_SQUARES-')],
 [sg.Radio(gt.TEMP_VOLT_LIN_INTERP,
 pad=((40, 0), 0),
 group_id='lin_eq',
 default=False,
 enable_events=True,
 k='-LINEAR_INTERPOLATION-'),
[...]

Snippet 3.5.6 Radio elements for equation type in layout in function

'temp_volt_calibrate_window' in './src/gui/guiTempVoltCalibrate.py'

[...]

if event == '-LINEAR_EQ-':
 gt.set_disabled(window, False, '-LEAST_SQUARES-', '-LINEAR_INTERPOLATION-')
 [...]
 if event == '-NON_LINEAR_EQ-':
 gt.set_disabled(window, True, '-LEAST_SQUARES-', '-LINEAR_INTERPOLATION-')

[...]

Snippet 3.5.7 Enabling and disabling radio buttons given the button

selected in 'temp_volt_calibrate_window_behavior' function in

'./src/gui/guiTempVoltCalibrate.py’

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 53

Fig. 3.5.2 Radio Button when ‘Linear Equation’ is selected, and all is

enabled

Fig. 3.5.3 Radio Button when ‘Non-linear Equation’ is selected, and

options are disabled

The incorporation of user input is streamlined through input fields such as those that

cater to voltage input (Snippet 3.5.8, Snippet 3.5.9 and Fig. 3.5.4). This interactive

element enables users to input specific voltage values, an essential step in the

calibration and data acquisition processes.

3. DEVELOPING THE APPLICATION

 54

[...]

 [sg.Text('V =', k='-V_TXT-', pad=(10, 0)),
 sg.Input(size=gt.SIZE_INPUT,
 key='-V_INPUT-',
 enable_events=True,

disabled_readonly_background_color=sg.theme_button_color()[1]),
 sg.Text('T ='),
 sg.Input(size=gt.SIZE_INPUT, key='-T_INPUT-',
enable_events=True),

 sg.Button('Enter', k='-ENTER-', bind_return_key=True, pad=((10,
0), (10, 10)))]

[...]

Snippet 3.5.8 Voltage and temperature input in layout in

‘temp_volt_calibrate_window‘ function

in‘./src/gui/guiTempVoltCalibrate.py’

[...]

 if event == '-ENTER-':
 try:
 if values['-T_INPUT-'] == "":
 raise ValueError("Values must be assigned")
 elif not gt.is_number(values['-T_INPUT-']):
 raise ValueError("Values must be a numeric value.")

 if not window['-TOGGLE-'].metadata:
 if values['-V_INPUT-'] == "":
 raise ValueError("Values must be assigned")
 elif not gt.is_number(values['-V_INPUT-']):
 raise ValueError("Values must be a numeric value.")
 inputValues = [float(values['-V_INPUT-']), float(values['-
T_INPUT-'])]
 else:
 inputValues = [niDAQ.read_voltage(), float(values['-T_INPUT-'])]

[...]

Snippet 3.5.9 Voltage and temperature sequence in

‘temp_volt_calibrate_window_behavior’ function in

‘./src/gui/guiTempVoltCalibrate.py’

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 55

Fig. 3.5.4 Voltage and temperature inputs in known temperature-

voltage window

The application's visualization of data handling, including logging and manipulation, is

facilitated through intuitive data tables, and accompanying buttons such as clear and

delete functions (Snippet 3.5.10, Snippet 3.5.11 and Fig. 3.5.5). The interactive table

empowers users to observe logged data while retaining the ability to manage and edit

entries.

[...]

 [sg.Table(values=[],

 headings=['Voltage (V)', 'Temperature (ºC)'],

 k='-TABLE-',

 enable_click_events=True,

 enable_events=True)],

 [sg.Text('Number of Samples: '),

 sg.Text('0', k='-N_SAMPLES-'),

 sg.Push(),

 sg.Button('Clear', k='-CLEAR-', tooltip=" Clear table ",

disabled=True),

 sg.Button('Delete', k='-DELETE-', tooltip=" Delete last row

", disabled=True)]

[...]

Snippet 3.5.10 Data table, Delete and Clear buttons in layout in

‘temp_volt_calibrate_window’ function in

‘./src/gui/guiTempVoltCalibrate.py’

3. DEVELOPING THE APPLICATION

 56

[...]

if event == '-DELETE-':

 del calibration[-1]

 calibration.change_in_data(window, fig, figure_canvas_agg,

known_expression=False)

 if event == '-CLEAR-':

 calibration.clear_data()

 calibration.change_in_data(window, fig, figure_canvas_agg,

known_expression=False)

[...]

Snippet 3.5.11 Delete and Clear behavior in

'temp_volt_calibrate_window' function in './

src/gui/guiTempVoltCalibrate.py’

Fig. 3.5.5 Data table, Clear and Delete buttons in known temperature-

voltage window

For effective data visualization, the application incorporates plot widgets that

dynamically display acquired data (Snippet 3.5.12, Snippet 3.5.13 and Fig. 3.5.6). This

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 57

visual representation offers users an immediate grasp of data trends and patterns,

enhancing their comprehension of temperature variations.

[...]

[sg.Canvas(k='-CANVAS-', size=(200, 200))],

[...]

Snippet 3.5.12 Canvas for the plot in layout in

'temp_volt_calibrate_window' function in

'./src/gui/guiTempVoltCalibrate.py'

[...]

 calibration.update_figure(fig, figure_canvas_agg, known_expression=False)

[...]

Snippet 3.5.13 Canvas update for the plot in

'temp_volt_calibrate_window_behavior' function in

'./src/gui/guiTempVoltCalibrate.py'

Fig. 3.5.6 Plotted data table in known temperature-voltage window

3. DEVELOPING THE APPLICATION

 58

In summary, the process of building the GUI revolves around a structured approach that

unifies the user experience across different sections. A consistent framework ensures

coherence and familiarity, while the strategic incorporation of diverse widgets caters to

user decisions, input, data handling, and visualization. This meticulous integration of GUI

elements forms the bedrock of the application's user interface, creating an intuitive and

engaging platform for users within the temperature-sensing circuit control context.

3.6. MANAGING USER INTERACTION AND CONTROL LOGIC
The basic principle for managing user interaction is to maximize usability by matching

functionalities with their intended purpose. This approach streamlines the user experience

by selectively enabling or disabling certain actions, ensuring that users are presented with

pertinent options tailored to their current context.

For instance, the user interface is thoughtfully structured to reflect the logic that specific

functionalities are only accessible when all relevant parameters have been accurately

inputted. An illustrative instance involves the button labeled "Choose", as described

earlier, by initially disabling it and subsequently activating it when all prerequisites are

met, the application guides users along a structured path, fostering efficient decision-

making.

Furthermore, the strategy extends to the user input process, particularly in situations

where only numerical values are valid. Rather than permitting any input and subsequently

notifying users of invalid entries, the application proactively filters out non-numeric

characters as users type, preventing erroneous inputs from occurring (Snippet 3.6.1). This

proactive measure enhances workflow, ensuring that users remain within the realm of

valid inputs, thereby reducing the likelihood of errors.

def filter_numeric_characters(window, values, event, text_input_keys: list):

 """

 Filters out non-numeric text inputs so that even if the user types

letters and numbers, only numbers, '.' and '-'

 are shown

 :param window: window from gui where text is inputted and shown

 :param values: list of values in gui window

 :param text_input_keys: list with text-input keys

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 59

 :param event: event in gui window

 """

 # assigns text input key where there is an event

 k_event = text_input_keys[text_input_keys.index(event)] if

len(text_input_keys) > 1 else text_input_keys[0]

 # empty string where filtered out characters will be added

 filtered_chars = []

 # flag to signal if a '.' has already been typed in

 dot_found = False

 for char in values[k_event]:

 # adds if char is between 0-9

 if char.isdigit():

 filtered_chars.append(char)

 # adds '.' if it's the first one found

 elif char == '.' and not dot_found:

 filtered_chars.append(char)

 dot_found = True

 # adds '-' if it's in the first position

 elif char == '-' and len(filtered_chars) == 0:

 filtered_chars.append(char)

 values[k_event] = ''.join(filtered_chars)

 window[k_event].update(values[k_event])

Snippet 3.6.1 'filter_numeric_characters' function in

'./src/guiTools.py'

The intermediary control layer between the GUI and Python code functions as a crucial

bridge, orchestrating communication, and command flow. These intermediary functions,

positioned at each juncture of the application's process, facilitate coordination between

the GUI and underlying logic. Their role encompasses the initiation of essential tasks,

ensuring that subsequent steps are executed in a controlled and sequential manner.

This separation of layers proves indispensable, particularly when handling multiple

windows. By avoiding overlaps and establishing a sequential workflow, the application

3. DEVELOPING THE APPLICATION

 60

sustains its coherence and functional integrity. This layer serves as a conduit, ensuring

that each GUI action corresponds with the appropriate command on the logic side.

This symbiotic relationship extends further as GUI functions operate as intermediaries

between user input and logical commands. Upon completion of a GUI process, such as

selecting a calibration method, the resulting action is transmitted back to the logical layer.

This can occur through the return from a function or by updating pertinent objects. This

tightly intertwined interaction ensures an exchange of information, aligning user input

with the subsequent logical steps.

The upcoming sections delve deeper into the intricacies of control logic within the context

of interfacing with the DAQ and the temperature sensor. These discussions give detailed

insights into the management of user interface and control logic and further clarify the

sequencing of the application.

The philosophy governing user interaction management within the application embodies

a systematic approach that aligns functionalities with user context. By proactively

limiting invalid inputs, controlling user access to functionalities, and utilizing

intermediary control layers, the application orchestrates a user-friendly and coherent

experience. This methodology is essential in seamlessly connecting the GUI with

underlying logic, fostering a harmonious synergy between user interactions and the

application's overarching goals.

3.6.1. INTEGRATING NATIONAL INSTRUMENTS DAQ

The integration of the NI DAQ device using NI-DAQmx is the fundamental aspect of the

application's functionality. This integration entails distinct tasks, primarily focused on

facilitating analog channel output and input operations.

At the heart of the integration lies the utilization of the DAQ to accomplish essential

tasks: writing and reading. The writing task involves channeling a set output analog

voltage to power the circuit. The powering of the circuit will be further discussed in

Section “EXPERIMENTAL SETUP," where the specifics of the power source and its

implications will be elaborated upon.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 61

This function operates in the background, automatically activated when the circuit is

deemed correctly set up and the user initiates temperature reading (Snippet 3.6.2). The

reading task, on the other hand, is indirectly prompted by the user when they opt to

acquire data or measure voltage (Snippet 3.6.3).

def run_data_acquisition(niDAQ):
 """
 Runs data acquisition
 :param niDAQ: object where data will be stored
 :return:
 """
 # launches window where the user can input calibration expression
 window, fig, figure_canvas_agg =
guiDataAcquisition.data_acquisition_window(niDAQ.calibration)
 niDAQ.set_task_start(1)
 niDAQ.set_task_write(1)
 guiDataAcquisition.data_acquisition_window_behavior(niDAQ, window, fig,
figure_canvas_agg)
 niDAQ.set_task_stop(1)

Snippet 3.6.2 Writing task in function 'run_data_acquisition' in

'./src/app/appDataAcquisition.py'

def read_voltage(self):
 """
 Simulates the reading of the voltage by the DAQ

 returns:
 voltage (float): reading of voltage by the DAQ
 """
 self.set_task_start(0)
 match self.model:
 [...]

 case 'USB-6001':
 # simulation of temperature reading by the DAQ
 voltage = self.task_ai_ao[0].read()

 [...]
 self.set_task_stop(0)
 return round(voltage, 3)

Snippet 3.6.3 Reading task in 'read_voltage' function in

'./src/daqTools.py'

3. DEVELOPING THE APPLICATION

 62

A foundational aspect of this integration is the application's capacity to recognize the

presence of a connected DAQ. Through a function, the program detects whether the DAQ

is properly connected (Snippet 3.6.4, Snippet 3.6.5, Snippet 3.6.6 and Fig. 3.6.1). This

preemptive check serves as a valuable precaution, reminding users to connect the DAQ

and avoid errors stemming from unintentional omissions.

def is_daq_connected():
 system = nidaqmx.system.System.local()
 devices = system.devices
 return len(devices) > 0

Snippet 3.6.4 'is_daq_connected' function in './src/app/daqTools.py'

def set_tasks(self):
 if is_daq_connected():
 for channel in range(2):
 self.task_ai_ao.append(nidaqmx.Task())
 else:
 raise ValueError("Number of devices found in system is 0")

Snippet 3.6.5 Check if DAQ is connected in 'set_tasks' function in

'./src/app/daqTools.py'

def run_select_daq():
 """
 Runs daq selection
 :return:
 """
 while True:
 try:
 [...]
 except ValueError as e:
 guiDAQ.no_daq_detected_popup(e)

Snippet 3.6.6 Catching the no DAQ error in 'run_select_daq' function

in './src/app/appDAQ.py'

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 63

Fig. 3.6.1 Popup message when there is no DAQ detected

Upon selecting the suitable DAQ model through the user's action and choice, as stated

before, an object is initialized with the relevant model information. This object serves as

the central focal point of the application. Once calibration is assigned to this object, it

becomes the source from which all functions essential for data addition, management,

and trial-related information stem.

Further details regarding the decision-making process behind the selection of the DAQ

model are elaborated upon in the section titled “ SUGGESTIONS FOR FUTURE

RESEARCH AND DEVELOPMENT”.

3.6.2. INTEGRATING TEMPERATURE SENSING AND CIRCUIT CONTROL

FUNCTIONALITY

The integration of temperature sensing functionality into the application centers around

the circuit control capabilities established in the preceding section "Integrating National

Instruments DAQ." This symbiotic relationship empowers the application to both power

and read the circuit, thereby facilitating temperature-sensing processes.

In the calibration process, as noted earlier, a pivotal object is instantiated, serving as a

central hub for all calibration-related procedures. This object becomes the focal point for

all endeavors related to calibration setup, acting as a hub from which various trials and

configurations emanate. This approach maintains a separation of concerns, allowing the

two distinct objects to function concurrently while delaying interaction until the user

selects a specific calibration (Snippet 3.6.7). This design choice provides users with the

autonomy to experiment with different calibrations while retaining the freedom to opt for

previously calculated values.

3. DEVELOPING THE APPLICATION

 64

[...]

 case 'TEMP_VOLTAGE':
 calibration = appTempVoltCalibrate.run_temp_volt_calibrate(niDAQ)
 if calibration is not None:
 niDAQ.add_calibration_to_log(calibration)
 niDAQ.set_calibration(repr(calibration))

[...]

Snippet 3.6.7 Assignation of calibration to niDAQ object after

'run_temp_volt_calibrate' has run, in 'run_calibrate' function in './

src/app/appCalibrationMethod.py’

3.7. USER INTERACTION FLOW
The subsequent section provides a comprehensive walkthrough of the user interaction

flow, delineating the sequence of actions from the initiation of the application to the

culmination of data analysis. This step-by-step exploration sheds light on the user's

journey, underscoring the logical progression and transitions that characterize the user

experience.

1. Launching the Application and GUI Initialization: The user launches the Python-

based application designed for controlling the NI DAQ. Upon launch, the

graphical user interface (GUI) of the application is presented to the user.

Fig. 3.7.1 DAQ model selection window

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 65

2. DAQ Model Selection: The user is provided with options from a dropdown menu

to select the appropriate model of the NI DAQ.

Fig. 3.7.2 DAQ model selection with options window

3. Calibration Configuration: At this stage, the user is guided through the process

of setting the calibration value for the temperature-sensing circuit. They are

prompted to select the desired calculation method. Two options are provided:

Fig. 3.7.3 Calibration method window

a. Known Temperature-Voltage Value: Users are presented with the choice

between calculating a linear or non-linear equation.

3. DEVELOPING THE APPLICATION

 66

Fig. 3.7.4 Equation type choices

If the linear option is chosen, they can further decide between the least

squares method or point interpolation. When two data points are

collected, users are prompted to choose two points for interpolation. The

user's choice establishes the expression type.

Next, users are presented with options regarding the voltage value. They

can manually input the voltage or allow the DAQ to measure the voltage

at that instant. Correspondingly, the user inputs the temperature value and,

if necessary, the voltage. All collected data is visually displayed in a table

format, providing options to delete the last added point or clear the table.

Fig. 3.7.5 Linear Interpolation method with “Choose Points” button

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 67

Fig. 3.7.6 Choose Points window, point clicked on

Fig. 3.7.7 Choose Points window, two points selected

Fig. 3.7.8 Subsequent calibration from choosing points

3. DEVELOPING THE APPLICATION

 68

Once either two or three data points are collected (depending on the

expression type), the calculated expression is presented to the user. The

user has the option to copy the expression if desired. Alongside the

expression, both the data and the expression are plotted. Users can choose

to change the expression calculation method while retaining the collected

data points.

Fig. 3.7.9 Change to non-linear equation

Fig. 3.7.10 Change to linear equation, least squares method

Upon satisfaction, users can proceed by selecting the "Choose" button,

which redirects them to the calibration menu. Here, the selected calibration

is set.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 69

Fig. 3.7.11 Set Calibration

b. Known Expression Parameters: Users are given the option to choose

between a linear or non-linear calibration expression. Depending on the

choice, they need to input two or three parameters, respectively.

After setting the parameters, the expression is calculated and displayed

alongside the corresponding plot. The option to copy the expression is also

available.

Fig. 3.7.12 Linear equation calibration input with corresponding plot

3. DEVELOPING THE APPLICATION

 70

Fig. 3.7.13 Copy equation selected

Following this, users are prompted to select between typing in the voltage

or measuring it instantly. A temperature point is calculated and appended

to the data table for each voltage point. The table provides the capability

to delete the last point added or clear the entire table. All data points are

visualized on the plot, alongside the expression.

Fig. 3.7.14 Data points logged and represented in plot

Once users are content with the calibration setup, they can proceed to

finalize their choice. They are then returned to the calibration method

section, where the newly calculated calibration is set.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 71

From this point onward, users are empowered to select from previously calculated

calibrations, add new calibrations, or move forward to the data acquisition phase.

Fig. 3.7.15 Calibration log with saved calibrations and options to

calibrate and acquire data

4. Data Acquisition Setup and Display: At this phase, the user engages in

configuring parameters for data acquisition.

The user is presented with the ability to incorporate alarms that monitor

temperature values. Maximum and/or minimum temperature alarms can be added,

with triggers set for temperatures surpassing or falling below specified values.

These alarms are visually represented as LEDs that will turn on and off, as well

as dashed lines on the plot, enabling users to intuitively identify potential issues.

Users can edit or disable these alarms according to their requirements.

3. DEVELOPING THE APPLICATION

 72

Fig. 3.7.16 Example of alarms being set at 29.5ºC and 31.5ºC

Users have the choice between two modes: on-demand data acquisition or finite

sampling, using the calibration established in the preceding step.

a. On-Demand Data Acquisition: When this option is selected and “Acquire

Data” clicked on, data acquisition commences automatically with a default

time interval of 500ms.

Fig. 3.7.17 On demand acquisition with 500ms time interval

Users can dynamically adjust this interval using a slider. Until the user

initiates the "Stop" command, the acquisition persists. Data collected is

graphically represented in a plot, accompanied by a tally of the acquired

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 73

samples. Users can opt to restart the process or modify the configuration as

needed.

Fig. 3.7.18 On demand acquisition with 60ms time interval

Fig. 3.7.19 On demand acquisition stopped manually

b. Finite Sampling: For this option, users input the desired number of samples

along with the time interval between each sample. Upon activating the

"Acquire Data" button, data collection begins. Like the previous mode, a

sample counter and a graphical plot of the data are presented.

3. DEVELOPING THE APPLICATION

 74

Fig. 3.7.20 Ongoing finite sampling acquisition with the parameters:

20 samples and 2 Sa/s

Unless the user triggers the "Stop" command, data collection continues until

the targeted number of samples is achieved. Upon completion, the option to

save the data emerges.

Fig. 3.7.21 finite sampling acquisition finished with the parameters:

10 samples and 2 Sa/s

If the user chooses to save the data, a prompt appears asking them to name the

file and designate its location. This generated CSV file (Snippet 3.2.1)

encompasses the DAQ information, the calibration established for the

acquisition, pertinent parameters, the alarm log, and the gathered data points.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 75

Fig. 3.7.22 Save data prompt

Fig. 3.7.23 Data successfully saved

Fig. 3.7.24 Data successfully created

3. DEVELOPING THE APPLICATION

 76

Upon completion of the data acquisition process, users are given the choice to

either continue acquiring data or return to the calibration phase, facilitating

recalibration as needed.

5. Closing the Application: Finally, from the calibration menu, the user can close

the application when they're done.

3.8. ERROR HANDLING
The strategy employed for detecting and addressing errors within the application draws

upon the basis of constraining user input, a principle discussed in earlier sections. This

approach significantly minimizes the potential for errors and enhances the application's

overall robustness, allowing for a more streamlined error-handling process.

By implementing measures like restricting user input to valid characters and numerical

values, most potential errors are preemptively mitigated. This proactive stance ensures

that input values are appropriate and relevant, lowering the possibility of errors

originating from incorrect or inappropriate input.

For instance, as explained before, the application's user input mechanism is designed to

exclusively accept numbers or pertinent symbols, effectively guaranteeing the accuracy

of numeric inputs. This screening method significantly reduces the number of potential

errors, leaving only a handful that require care.

Should an error be detected, the application uses a popup message mechanism to

communicate the issue to the user, exposing the problem and guiding users toward

rectification.

Among the remaining error scenarios, such as omitting necessary inputs or entering a

minimum value greater than the maximum, must be considered. To address these

scenarios, the application implements try-except blocks that intercept errors as they arise,

preventing their escalation and potential disruption of user experience.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 77

[...]

 if event == '-SET-':
 try:
 # checks if both inputs are empty
 if all(values[key] == "" for key in alarm_input_keys):
 raise ValueError("Values must be assigned")
 elif all(values[key] != "" for key in alarm_input_keys):
 alarm_min, alarm_max = gt.to_number_n_dec(gt.N_DECIMALS,
values['-MIN_TEMP_INPUT-'],
 values['-
MAX_TEMP_INPUT-'])
 if alarm_min >= alarm_max:
 raise ValueError("Min alarm can't be bigger or equal to max
alarm")
 niDAQ.set_alarm_min(alarm_min)
 niDAQ.set_alarm_max(alarm_max)
 else:
 if values['-MIN_TEMP_INPUT-'] != "":
 [alarm_min] = gt.to_number_n_dec(gt.N_DECIMALS, values['-
MIN_TEMP_INPUT-'])
 if niDAQ.is_alarm_max_set() and (alarm_min >=
niDAQ.get_alarm_max()):
 raise ValueError("Min alarm can't be bigger or equal to
already set max alarm")
 else:
 niDAQ.set_alarm_min(alarm_min)
 if values['-MAX_TEMP_INPUT-'] != "":
 [alarm_max] = gt.to_number_n_dec(gt.N_DECIMALS, values['-
MAX_TEMP_INPUT-'])
 if niDAQ.is_alarm_min_set() and (alarm_max <=
niDAQ.get_alarm_min()):
 raise ValueError("Max alarm can't be bigger or equal to
already set min alarm")
 else:
 niDAQ.set_alarm_max(alarm_max)
 niDAQ.update_figure(fig, figure_canvas_agg)
 niDAQ.trigger_alarm_icon(window, alarm_icon_keys)
 gt.set_visible(window, True, '-DISABLE-')
 except Exception as e:
 sg.popup_error(str(e), title="Error")

[...]

Snippet 3.8.1 try-except block for setting alarms in function

'data_acquisition_window_behavior' in

'./src/gui/guiDataAcquisition.py'

3. DEVELOPING THE APPLICATION

 78

Fig. 3.8: Popup informing the user that there’s an error setting max

alarm

3.9. TESTING, DEBUGGING, AND VALIDATION
The comprehensive testing, debugging, and validation process, as outlined in Section 2.4

“TESTING AND QUALITY ASSURANCE STRATEGY”, was implemented

throughout the development journey. This methodical approach proved invaluable in

uncovering numerous bugs and errors that were promptly addressed and resolved. While

many issues were successfully handled, one emerged that resisted simple solutions.

During the examination of extreme scenarios within the system testing stage, a critical

oversight of the hierarchical control structure of the NI DAQ came to light. The real

sample rate of data acquisition was different from what it should be, which prompted a

more thorough examination of the underlying system architecture.

The separation between control logic and the user interface holds vital importance,

considering the simultaneous functioning of both components. Unfortunately, this

principle was unintentionally overlooked, leading to a situation where the NI DAQ was

erroneously managed within the user interface segment of the code.

This mistake had a notable outcome as a result: the update frequency of the NI DAQ

became reliant on the frequency of the PySimpleGUI function. This linkage

unintentionally limited the DAQ's sample rate, which had an impact on its ability to

acquire data. Once this issue was identified, it was evident that considerable refactoring

of the project's code was necessary to correct it.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 79

By the time the oversight was identified, a substantial portion of the project had already

been completed. The decision to proceed with the existing work was influenced by the

nature of the application's operational scenarios, which were temperature-based. Given

the relatively gradual changes in temperature, a hyper-precise frequency was not

paramount, and the user experience remained relatively unaffected.

Nevertheless, it was acknowledged that not fully capitalizing on the DAQ's potential

capabilities represented a significant compromise. The chosen solution involved limiting

the frequency available for the user, enabling a balance between the existing system

architecture and the user's requirements.

While this discovery posed a notable challenge, it also reinforced the importance of

vigilance in system architecture design and highlighted the potential ramifications of

decisions made at the outset of a project.

3.10. SUGGESTIONS FOR FUTURE RESEARCH AND

DEVELOPMENT
Considering the limitations highlighted in the preceding section, several insightful

suggestions for future research and development come to the forefront:

Firstly, addressing the challenge of separating the control of the DAQ presents an

immediate opportunity for improvement. This could be effectively resolved by extracting

the pertinent functions from the GUI component and integrating them in the control

portion. By integrating these aspects, a more coherent and efficient control structure could

be established, ensuring better synchronization between user interaction and DAQ

functionality. This evolution could serve to enhance the overall performance and usability

of the application.

Basic aesthetic improvements can be considered for the GUI, such as enhancing the

increments on the x-axis to achieve a cleaner look, especially when dealing with larger

time values where the current representation might appear less refined.

3. DEVELOPING THE APPLICATION

 80

Fig. 3.10: GUI x-axis representation at high time values

It's important to note that this application represents a first version, and future iterations

have the potential to build upon these foundational aspects, incorporating refinements and

user-driven enhancements.

Furthermore, the prospect of extending the application's capabilities to accommodate the

simultaneous utilization of two DAQ units holds potential. This expansion would provide

users with enhanced flexibility in data acquisition scenarios that involve multiple sensors

or circuits. Additionally, the feasibility of incorporating other models of DAQ units,

beyond the initial three, is a noteworthy avenue for future exploration. The foundation for

such integration is already laid through the existing option to choose among the three

models.

This initial choice was introduced owing to the differences among the three DAQs

tailored for this application's scope. The underlying revelation, however, surfaced

subsequently; it became apparent that a unified codebase could be harnessed across these

models, given the commonality in basic functionalities like reading and writing.

This foresight guided the decision to retain the choice among the existing models, as it

was deduced that the foundational architecture already in place would readily facilitate

the integration of further models in the future. The architectural flexibility laid the

groundwork for seamless expansion, should the need arise to encompass additional DAQ

variants.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 81

In the realm of educational enrichment, a compelling direction involves integrating code

inspection as an instructive tool. The open-source nature of Python and its widespread

utilization within the field make it an invaluable resource for students. By enabling

students to delve into the code behind the application, a deeper understanding of software-

hardware interactions in the context of electronics can be fostered. This presents a unique

opportunity for students to grasp the intricacies of the underlying mechanisms, which is

often obscured in tools like LabVIEW.

Considering the enhancement of the student learning experience, the development of a

mobile application could be a promising endeavor. Such an extension would bridge

traditional learning methodologies with modern technology, providing students with a

more engaging and immersive learning experience.

Lastly, for broader accessibility and improved student comprehension, incorporating

translation options in languages such as Spanish or Valencian (as spoken where the

project has been developed) could prove beneficial. This localization effort would ensure

that a wider spectrum of students can engage with the application in a language that aligns

with their comfort and familiarity.

These suggestions collectively offer a roadmap for refining and expanding the

application's functionality, impact, and usability in both educational and practical

contexts.

4. EXPERIMENTAL SETUP

 82

4. EXPERIMENTAL SETUP
In this section, we delve into the experimental setup, providing a comprehensive guide to

the practical aspects of utilizing this application. This section offers a condensed

overview of the experimental setup, focusing on the critical components and processes

involved in harnessing the application's capabilities for temperature sensing and data

acquisition. For a more detailed walkthrough, readers are encouraged to refer to the

appended "PyroDAQ Student's Guide."

4.1. CIRCUIT SETUP
The central configuration employed in this experiment is a Wheatstone bridge, using a

Pt100 as the temperature sensor. The Pt100, a platinum resistance temperature detector,

exhibits a well-defined resistance-temperature relationship, rendering it highly suitable

for temperature sensing applications. Pt100 probes operate on the principle of the

(practically linear) change in resistance exhibited by a platinum wire as a function of

temperature, which can be expressed as:

!(#) = !![1 +)(# − #!)

Equation. 1 Temperature and resistance variation

With #! = 0℃,!! = 100	Ω, and) = 0,00385℃"#.

A Wheatstone bridge is a circuit configuration used for measuring electrical resistance

with high accuracy [14]. It consists of four resistors arranged in a diamond-shaped

configuration (as depicted in Fig. 4.1.1). The Wheatstone bridge operates on the principle

of balancing two legs in the bridge circuit, with one leg having an unknown resistance to

be measured (Rx).

Fig. 4.1.1 Wheatstone bridge configuration

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 83

The voltage difference between the central points of the two legs is known as the "output

voltage" or "bridge output." When the ratio
$#
$% is equal to the ratio

$&
$', the bridge is said

to be in a balanced or null state (Equation. 2). This means that there is no net current

flowing through the central connection point, known as the bridge's "null" point. When a

change in resistance occurs in any of the four resistors (in particular Rx) the bridge

becomes unbalanced. This results in a voltage difference at the output that can be

measured (Equation. 3).

!1
!2

=
!3
!7

Equation. 2 Balanced Wheatstone bridge condition

8(= 8$)* × (
!'

!% + !'
−

!&
!# + !&

)

Equation. 3 Output voltage equation for Wheatstone bridge

By precisely calibrating the bridge with known resistors and recording the output voltage,

one can establish a relationship between resistance changes and the corresponding output

voltage variations. This calibration allows you to use the Wheatstone bridge for accurate

measurements of unknown resistances Rx.

4.2. CALIBRATION AND VALIDATION PROCEDURES FOR THE

TEMPERATURE SENSOR
In the context of the experimental setup for the temperature sensor, calibration assumes a

pivotal role in ensuring the accuracy and reliability of temperature measurements [15].

Given the challenges associated with directly controlling temperature in the experimental

environment, a distinctive feature of the Pt100 comes into play. Instead of physically

manipulating the temperature, the Pt100 can be substituted with a known (precision)

resistor.

This approach entails a selection of resistors, each designed to provide a distinct voltage

output corresponding to a specific temperature value. By choosing precision resistors in

the range of 0 to 140Ω, a comprehensive span of reference temperature points is

established, in this case, 0 ºC to 103.9 ºC. The experiment's temperature range is designed

4. EXPERIMENTAL SETUP

 84

to be used for a range of 0 ºC to 100 ºC. These emulated temperature values corresponding

to each resistor's voltage output are calculated in advance providing the user the

equivalent of putting the circuit in a controlled environment with a thermometer.

 These reference points serve as anchors to build the calibration curve of the circuit,

against which all subsequent temperature measurements are adjusted.

Once this groundwork is laid, the calibration process within the application is

straightforward. For every resistor used in the simulation, a known temperature value is

inputted into the system. Simultaneously, the voltage generated by the circuit is measured.

This essential procedure establishes a direct and accurate relationship between voltage

and temperature, forming the bedrock for precise temperature measurements throughout

the experiment.

With calibration duly completed and the system primed for accurate measurements, the

experimental process can progress to data acquisition. This calibrated setup ensures that

temperature measurements align with the selected reference temperature points,

validating the reliability and validity of the acquired data.

4.3. RESULTS AND ANALYSIS
This segment offers a detailed examination of the obtained data, charting a path through

key graphical representations and calibration equations. Additionally, we explore a

noteworthy observation, shedding light on the impact of resolution on the collected data.

The Wheatstone bridge was powered with VREF=1V from one of the analog outputs of

the DAQ, and the calibration process was conducted as previously described. These are

the calculated theoretical values, with Vd_theo representing the theoretical value

determined by Equation. 3, T the temperature calculated with Equation. 1, and Vd_exp.

being the measured voltage from the circuit.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 85

Rx(Ω) Vd_theo (V) T (°C) Vd_exp. (V)
100 0,0000 0,0000 0
105 0,0122 12,9870 0,012
110 0,0238 25,9740 0,023
121 0,0475 54,5455 0,045
127 0,0595 70,1299 0,057
133 0,0708 85,7143 0,069
140 0,0833 103,8961 0,081

Fig. 4.3.1 Table with Rx, Vd_theo., T and Vd_exp. values powered at

1V With 6001 DAQ

It is noteworthy that Vd_exp falls slightly below the anticipated value in comparison to

Vd_theo. This discrepancy may arise from the fact that, in line with the 6001

specifications, the maximum current it can provide to an external circuit through this

analog output channel is limited to 5 mA. However, in the present circuit, the required

current is approximately:
#+
#!!, = 10mA.

This issue can be solved by either using an external power source for the circuit, like a

battery, or by increasing the R1 and R2 values to 1KW instead of 100W.

R1 and R2 values (W) Vref_exp (V)

100 0,883

1K 1,001

Fig. 4.3.2 Comparison between R1 and R2 values and how Vref is

affected

Furthermore, a notable trend emerges from our analysis: the discernible effect of

resolution on the acquired data.

In the context of a USB-6001 DAQ system coupled with a Pt100 TF101k temperature

sensor operating within a Wheatstone bridge configuration, certain specifications are

pertinent.

The resolution, this parameter designates the minimum distinguishable variation in

voltage that the DAQ can accurately detect. For the USB-6001 DAQ, with an ADC

4. EXPERIMENTAL SETUP

 86

resolution of 14 bits, and an input range of ±10 V, the resolution is calculated at 1.22 mV

(Equation. 4).

!<=>?@#A>B =
10	8 − (−10V)

2#-
= 1.22mV

Equation. 4 Voltage resolution of 6001 DAQ

In addition, bridge sensitivity characterizes the responsiveness of the Wheatstone bridge

to alterations in temperature. In this specific instance, it is specified at 0.8 mV per degree

Celsius (°C).

With these two things temperature resolution can be calculated. This refers to the smallest

change in temperature that a measuring system or instrument can detect or differentiate.

It is a measure of the system's ability to distinguish between two temperature values that

are very close together.

∆F =
(GHI	J<=>?@#A>B)

KJALM<	=<B=A#ANA#O
=
1.22	mV

0.8
mV
℃ 	

= 1.5℃

Equation. 5 Temperature resolution for DAQ 6001 with Pt100

This computation yields a temperature resolution of approximately 1.5°C. This means

that changes in temperature are quantified in 1.5ºC steps, as it can be observed in

(Equation. 5).

Fig. 4.3.3 Data acquisition plot for DAQ 6001 where temperature

resolution can be observed

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 87

In DAQs like the 6002, this temperature resolution step is lower as the ADC resolution

is higher (16 bits instead of 14) [16].

The data obtained from the experimental setup serves as the cornerstone of our analysis.

4.3.1. CONSIDERATION OF HOW THE PROGRAM CAN FACILITATE

STUDENT ENGAGEMENT AND EXPLORATION IN EXPERIMENTAL

SETUP

At the core of this project lies the temperature sensor and, by extension, the circuit where

it resides.

The application's primary request from the circuit is to provide a voltage signal to read.

This means that as long as the student provides an appropriate voltage measurement for

the application, there is freedom in the circuit setup. The student can replicate the specific

experiment outlined in this project with the Pt100 temperature sensor or they can explore

alternative temperature sensors and circuit configurations, fostering a culture of curiosity

and experimentation.

In the realm of engineering laboratories, students often grapple with predefined

experiments and limited room for experimentation. In contrast, this application empowers

students to embark on a journey of discovery. They can easily set up diverse temperature

sensors, create intricate circuitry with various components, and observe how these

elements interact.

By providing students with the possibility to deviate from the established setup, this

program not only enhances their understanding of temperature sensing and data

acquisition but also nurtures their innate curiosity and problem-solving skills.

5. CONCLUSIONS

 88

5. CONCLUSIONS

5.1. OVERVIEW OF RESEARCH OBJECTIVES AND MAIN

FINDINGS
The primary objective of this project was to create an educational application that could

facilitate temperature sensing and data acquisition in order to substitute traditional tools

like LabVIEW. The underlying goal was to introduce students to an open-source, Python-

based application designed for electronic instrumentation use.

Throughout this project, several key milestones were achieved. These include the

successful integration with Python of a flexible and adaptable circuit for temperature

measurement, which interfaces with a NI DAQ device, and successfully ensures data

acquisition.

One of the accomplishments of this endeavor was the development of a user-friendly

application that empowers students to engage in a spectrum of activities. The application

allows students to perform essential tasks such as calibration, data acquisition, and real-

time data visualization. It provides a comprehensive learning experience, enabling

students to apply their classroom knowledge to practical experiments.

As this project progressed, it offered a unique learning opportunity. Valuable insights

were gained into the complexities of integrating software and hardware, establishing

communication between different components, and planning and building a functional

application. All while problem-solving along the way, thus giving a taste of project

management and undertaking in the engineering field.

5.2. EXPLORATION OF THE PROGRAM’S POTENTIAL TO

ENHANCE LEARNING EXPERIENCES IN TEMPERATURE

SENSING AND DATA ACQUISITION
As delved into in previous chapters, this application offers a comprehensive, hands-on

learning experience that combines theoretical knowledge and real-world application. It

serves as a tool for students seeking to deepen their understanding of data acquisition and

interpretation.

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 89

By offering a hands-on approach to the concepts of temperature sensing and data

acquisition, students can grasp the practical implications of the theories they study in

classrooms. This practical acquaintance enhances their comprehension and retention of

key concepts, making the learning process more tangible and engaging.

Beyond its role as a data acquisition tool, the program presents an additional benefit to

students: an opportunity to explore and understand coding. As already established, Python

is rapidly emerging as a standard in various scientific and engineering domains. By the

possibility of interacting with the application's code, students gain valuable experience in

this coding language. This not only cultivates their computational thinking but also

imparts a valuable skill that will accompany them on their journey toward becoming

engineers.

5.3. CONCLUDING REMARKS
In this research endeavor, the project successfully achieved its primary research

objectives. Delivering an educational application that simplifies temperature sensing and

data acquisition. Moreover, the project sets the stage for further exploration and

expansion. It provides students, educators, and enthusiasts with a foundation to delve

deeper into the realms of temperature sensing and data acquisition. The open-source

nature of the application, coupled with the flexibility of the integrated hardware, offers a

wealth of possibilities for customization and experimentation. Students and non-students

alike can leverage this project as a launchpad for their explorations in the field.

This research journey not only met its objectives but also illuminated the path for future

endeavors. It underscores the significance of practical, hands-on experiences in the realm

of electronic instrumentation. It reaffirms the value of open-source tools and collaborative

efforts in driving innovation and learning. As this chapter concludes, it is recognized that

this project is not merely a destination but a steppingstone towards a broader landscape

of possibilities in temperature sensing, data acquisition, and beyond.

6. BIBLIOGRAPHY

 90

6. BIBLIOGRAPHY

[1] Instruments, National, "NI," [Online]. Available: https://www.ni.com/es-

es/shop/product/labview.html. [Accessed September 2023].

[2] National Instrument, “About NI,” [Online]. Available:

https://www.ni.com/en/about-ni.html. [Accessed September 2023].

[3] B. Stroustrup, The C++ programming language, Addison-Wesley Professional,

2013.

[4] H.-P. Halvorsen, "Python for Science and Engineering," 2019. [Online].

Available:

https://www.halvorsen.blog/documents/programming/python/python.php.

[5] "NI-DAQmx Python Documentation," [Online]. Available: https://nidaqmx-

python.readthedocs.io/en/latest/. [Accessed September 2023].

[6] "PySimpleGUI," [Online]. Available: https://www.pysimplegui.org/en/latest/.

[Accessed September 2023].

[7] "USB-6001 Specifications," [Online]. Available: https://www.ni.com/docs/en-

US/bundle/usb-6001-specs/resource/374369a.pdf. [Accessed September 2023].

[8] "USB-6001/6002/6003 User Guide," [Online]. Available:

https://www.ni.com/docs/en-US/bundle/usb-6000-6001-6002-6003-

features/resource/374259a.pdf. [Accessed September 2023].

[9] "tkinter — Python interface to Tcl/Tk," [Online]. Available:

https://docs.python.org/3/library/tkinter.html. [Accessed September 2023].

[10] "NI-DAQ™mx Driver," [Online]. Available:

https://www.ni.com/en/support/downloads/drivers/download.ni-daq-

mx.html#484356. [Accessed September 2023].

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 91

[11] "NumPy documentation," [Online]. Available:

https://numpy.org/doc/stable/index.html. [Accessed September 2023].

[12] "SciPy," [Online]. Available: https://scipy.org/. [Accessed September 2023].

[13] "Matplotlib — visualization with python," [Online]. Available:

https://matplotlib.org/. [Accessed September 2023].

[14] R. P. Areny, Sensores y acondicionadores de señal, Sevilla Marcombo Boixareu,

2003.

[15] M. Á. Pérez García, Instrumentación electrónica, Madrid: Thomson-Paraninfo,

2011.

[16] National Instruments, "ni.com," [Online]. Available: https://www.ni.com/docs/en-

US/bundle/usb-6002-specs/resource/374371a.pdf. [Accessed September 2023].

[17] Texas Instruments, "LM35 Precision Centigrade Temperature Sensors," [Online].

Available: https://www.ti.com/lit/ds/symlink/lm35.pdf. [Accessed September

2023].

APPENDIX A: ASSETS AND ATTRIBUTION

 92

APPENDIX A: ASSETS AND ATTRIBUTION
The following icons used in this project were sourced from Flaticon, a platform that

provides a wide range of icons for various purposes. Each icon has been attributed to its

respective creator.

Fig.1 Original images from Flaticon

Snack free icon: Nature icons created by max.icons – Flaticon (https://www.flaticon.com/free-

icons/nature)

Thermometer free icon: Thermometer icons created by Freepik – Flaticon (https://www.flaticon.com/free-

icons/thermometer)

Led free icon : Led icons created by Smashicons – Flaticon (https://www.flaticon.com/free-icons/led)

Switch free icon : Toggle button icons created by Creatype – Flaticon (https://www.flaticon.com/free-

icons/toggle-button)

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 93

APPENDIX B: STUDENT’S GUIDE
This resource was created to provides comprehensive insights into temperature sensing

and data acquisition for students when using PyroDAQ. A PDF version can be

downloaded from the project's GitHub repository found in “APPENDIX C: CODE”

section.

1

PYRODAQ STUDENT’S GUIDE:
EXPLORING TEMPERATURE
SENSING WITH PYTHON
AND CONTROLLING
NATIONAL INSTRUMENTS
DAQ

INTRODUCTION
Welcome to PyroDAQ – your gateway to python driven temperature sensing. This guide is

your key to mastering temperature measurement using our application and National

Instrument's equipment.

Temperature sensing holds pivotal importance in various fields, from electronics to

industry. PyroDAQ is born out of the need to merge Python programming capabilities and

accessible, comprehensible code, with National Instrument's precision, enabling you to

navigate temperature measurement confidently.

In this guide we’ll lead you through installation, circuit setup, and program functionality.

Get ready to explore temperature sensing through PyroDAQ – where hardware and software

unite for precise measurements. Let's dive in!

ESSENTIAL CONCEPTS IN TEMPERATURE
SENSING
In this section, we'll delve into the essential building blocks that underpin accurate

temperature measurements and equip you to navigate electronic instrumentation.

1

APPENDIX B: STUDENT’S GUIDE

 94

ʥ

SĕŘƍĸƚĸƹĸƚǀ:

6ensitivity quantifies a sensor's responsiveness to temperature ˌuctuations. A highly

sensitive sensor detects even subtle temperature changes, enabling accurate and detailed

measurements.

RĕƍŢōƢƚĸŢŘ:

Temperature resolution signifies the smallest temperature change a sensor can detect. A

higher resolution allows finer distinctions, crucial for precision in temperature�sensitive

applications.

The resolution of an AD& refers to the smallest increment of analog input voltage that can

be accurately represented as a discrete digital value.

For USB-6001 DAQ:

AD& 5esolution� �� bits
AD&)6 voltage� s�� 9

5esolution �AD&)6 voltage� � ��AAD& 5esolution�
5esolution ��� 9 � ���� 9�� � ��A��� �.�� m9

For USB-6002 DAQ:

AD& 5esolution� �� bits
AD&)6 voltage� s�� 9

5esolution ��� 9 � ���� 9�� � ��A��� ��� w9

For USB-6211 DAQ:

AD& 5esolution� �� bits
AD&)6 voltage� s�� 9, s� 9, s� 9, s�.� 9 �with �� overrange�

5esolution ���, ���, ��, �.� w9

To estimate the resolution in temperature measurement for a data acquisition system using

a temperature sensor with a voltage output, it is essential to know the sensitivity of the

sensor. The sensitivity of the temperature sensor refers to how much the sensor's output

ʤ

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 95

ʦ

voltage changes in response to a unit change in temperature. The higher the sensor's

sensitivity, the higher the temperature measurement resolution you can achieve with the

data acquisition system. 5esolution is typically calculated as the ratio between the

minimum detectable variation in the sensor's output voltage and the sensor's sensitivity.

The lower this ratio, the higher the temperature measurement resolution.

For USB-6001 DAQ ZLWK /0�� VHQVor DQG:

AD& 5esolution� �.�� m9
L0�� sensitivity� �� m9�r&

Temperature resolution �AD& 5esolution� � �L0�� sensitivity�

Temperature resolution �.�� m9��� m9�r& �.��� r&.

For USB-6001 DAQ ZLWK D 3W100 7F101N LQ D :KHDWVWoQH ErLGJH ZLWK 0�� P9�r&
VHQVLWLYLW\:

AD& 5esolution� �.�� m9
%ridge sensitivity� �.� m9�r&

Temperature resolution �AD& 5esolution� � �%ridge sensitivity�

Temperature resolution �.�� m9� �.� m9r& �.� r&.

OĬĬƍĕƚ:

2ffset accounts for inherent sensor errors by adding or subtracting a constant value from

the output. 0anaging offsets fine�tunes accuracy, especially in low�temperature ranges.

ʥ

APPENDIX B: STUDENT’S GUIDE

 96

ʧ

SêŖƂōĸŘĭ Rêƚĕ

6ampling rate dictates how often measurements are taken. A suitable sampling rate

captures rapid temperature changes without missing vital data.

CêōĸąƅêƚĸŢŘ

&alibration stands as a critical process that ensures your temperature sensor's readings

remain accurate and reliable. It involves adMusting the sensor's output to match a known

reference value, thereby correcting any inherent biases or deviations that may arise over

time.

LĸŘĕêƅ CêōĸąƅêƚĸŢŘ

)or sensors with a linear, or relatively so, relationship between their output and the

measured quantity �PT���, L0��, limited range Thermocouples, etc.�, linear calibration is

often employed.

NŢŘ̆ōĸŘĕêƅ CêōĸąƅêƚĸŢŘ

Not all sensors exhibit linear behavior. 6ome sensors, especially those with intricate

response curves, demand non�linear calibration �thermistor, 5TD, thermocouples, etc.�. In

these cases, more sophisticated equations are employed. Non�linear calibration handles the

intricacies of the sensor's behavior and ensures accurate compensation across its entire

operating range.

CĳŢŢƍĸŘĭ ƚĳĕ Rĸĭĳƚ CêōĸąƅêƚĸŢŘ AƂƂƅŢêĆĳ

The choice between linear and non�linear calibration hinges on the sensor's characteristics

and the desired accuracy. Linear calibration is simple and effective when the sensor's

deviation from linearity is minor. Non�linear calibration, while more complex,

accommodates sensors with non�linear behaviors and offers better accuracy across a wider

range of conditions.

ʦ

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 97

ʨ

Dêƚê AĆƄƢĸƍĸƚĸŢŘ DĕƹĸĆĕ ̀DAQ́

A component designed to capture, measure, and analy]e real�world data from various

physical phenomena. It serves as a bridge between the analog world and digital processing,

enabling precise data collection for analysis and control.

WĳĕêƚƍƚŢŘĕ �ƅĸčĭĕ

AWheatstone %ridge is a fundamental circuit used in

electronics to measure resistances and detect changes in

resistance with high precision. It consists of four

resistors arranged in a diamond shape, with a power

source connected across one diagonal. When the bridge

is balanced, the ratio of resistances is equal on both

sides. This setup allows you to measure an unknown

resistance by adMusting known resistances until the

bridge is balanced.

In the following sections, we'll dive deeper into the intricacies of PyroDAQ and its

integration with National Instrument's equipment. Get ready to translate theory into

practical mastery!

SYSTEM REQUIREMENTS
%efore embarking on your temperature sensing Mourney, let's ensure you have everything

you need. +ere's a breakdown of the hardware and software necessities�

Hêƅčƺêƅĕ RĕƄƢĸƅĕŖĕŘƚƍ

�. 1DWLoQDO ,QVWrXPHQWV DAQ �USB-6001� 6002� or 6211�: Think of it as the bridge

between the real world and your computer. It will also power your circuit �external

power source can also be used�.

ʧ

)igureb�. Wheatstone %ridge
Diagram

APPENDIX B: STUDENT’S GUIDE

 98

ʩ

2. SPDOO ˌDW VFrHZGrLYHr: necessary for connecting wires to the DAQ.

�. &LrFXLW SHWXS: breadboard, It provides a convenient platform for assembling and

connecting the temperature sensor, precision resistors, and wires.

�. 7HPSHrDWXrH SHQVor: <ou can choose a PT��� or L0�� sensor, among others.

�. 3rHFLVLoQ 5HVLVWorV: These help fine�tune your measurements. They’ll be valuable

when calibrating.

�. :LrHV: <ou’ll need a few in different colors such as red, black, blue, Ȫ

SŢĬƚƺêƅĕ RĕƄƢĸƅĕŖĕŘƚƍ

�. 2SHrDWLQJ S\VWHP:Windows will do the Mob.

�. 3\roDAQ ASS: This is your window into the temperature sensing world, it helps

you see and understand what's happening with your setup.

CĳĕĆŊōĸƍƚ:

National Instruments DAQ �86%�����, ����, or �����

6crewdriver

%readboard

Temperature 6ensor �PT���, L0��, etc.�

Precision 5esistors ����, ���, ���, ���, ���, ��� and ��� Ĺ�

Wires

&omputer with Windows 2perating 6ystem

PyroDAQ App �Download and installation process explained next�.

With these essentials in place, you're all geared up to explore temperature sensing and dive

into the world of electronic instrumentation using PyroDAQ.

ʨ

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 99

ʪ

INSTALLATION
To get started with PyroDAQ, you'll need to follow a few simple steps to install the

application on your computer. +ere's a detailed guide�

ʤ˴ AĆĆĕƍƍ ƚĳĕ GĸƚHƢą RĕƂŢƍĸƚŢƅǀ

)irst, you'll need to visit the PyroDAQ Git+ub repository. <ou can find the link to the

repository here. This is where you'll find all the necessary files to install PyroDAQ.

ʥ˴ Rĕêč ƚĳĕ README˴Ŗč

2nce you're on the Git+ub page, navigate to the 5(AD0(.md file. This file contains

comprehensive instructions on how to install and set up PyroDAQ on your computer. It's

your go�to resource for the installation process.

ʦ˴ HŢōōŢƺ ƚĳĕ IŘƍƚêōōêƚĸŢŘ SƚĕƂƍ

The 5(AD0(.md file will provide step�by�step instructions for installing PyroDAQ. These

steps typically include downloading the necessary files, installing any dependencies, and

configuring your environment.

%y following these steps and carefully reading the instructions in the 5(AD0(.md file on

the Git+ub repository, you'll be able to successfully install PyroDAQ on your computer.

+appy installation!

GETTING STARTED
Let's kick off your Mourney by diving into the initial setup process. We will be exploring the

Wheatstone bridge circuit setup with a Pt���, but feel free to diverge into other circuit

examples.

ʩ

APPENDIX B: STUDENT’S GUIDE

 100

ʫ

As you embark on this adventure, it's essential to start with the right foot forward. (nsure

you have all the hardware and software requirements in place, as outlined in the �6ystem

5equirements� section. This includes your National Instruments DAQ, circuit components,

temperature sensor, wires, and your computer with the PyroDAQ app installed.

WĳĕêƚƍƚŢŘĕ �ƅĸčĭĕ SĕƚƢƂ ƺĸƚĳ ê Pƚʤʣʣ

In a Wheatstone bridge setup, calibration is the process of establishing a relationship

between the electrical signals produced by the bridge and the actual physical quantity you're

trying to measure, such as temperature. Precision resistors play a key role in this calibration

process, allowing you to simulate different temperature conditions without changing the

actual temperature of the environment.

+ere's a step�by�step guide�

)igureb�. Wheatstone %ridge &ircuit 6etup

�. Arrange on a breadboard the circuit from)igureb�.

ʪ

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 101

ʬ

a. The three ����ohm resistors will form the arms of the bridge. &onnect them

in such a way that one resistor connects to the positive rail, another to the

negative rail, and the third resistor connects to the output pin of the bridge.

b. &onnect the first of the precision resistors in the remaining place of the

wheatstone bridge �where the red box is�. 2nce calibrated, this will be where

we connect the Pt���.

c. 5eferencing)igureb�, connect the breadboard to the DAQ with wires�

DLDJrDP DAQ

9in�, 9in � A2�
, A2GND

9out�, 9out � AI��, AI��

*AO0 powers the circuit from the DAQ, if desired this can be replaced by another power

supply of 1V. If this is changed, keep in mind that the reading configuration may need to

be changed from DIFF to something appropriate like RSE.

TĕŖƂĕƅêƚƢƅĕ̆RĕƍĸƍƚêŘĆĕ ƚêąōĕ

To do so, fill in the table, this will correlate the known resistance values of the precision

resistors with their corresponding temperatures. This table serves as a reference for

simulating different temperature points and we will use it in the calibration step later on.

5W�Ĺ� 7KHorHWLFDO 9G �9� 7HPSHrDWXrH �|&� 0HDVXrHG 9G �9�

���

���

���

���

���

���

���

)ormulated spreadsheet� 6tudent�Guide�Table.xlsx

ʫ

APPENDIX B: STUDENT’S GUIDE

 102

1ʣ

7HPSHrDWXrH

The relationship between Pt��� and temperature can be represented by�

, with and𝑅
𝑡

= 𝑅
𝑜

+ α(𝑡 − 𝑡
𝑜
) 𝑅

𝑜
= 100 Ω , 𝑡

𝑜
= 0º𝐶 α = 0. 00385 º𝐶−1

𝑅
𝑡

= 100 + 0. 00385(𝑡 − 0) → 𝑡 = ((
𝑅

𝑡

100 − 1)/0. 00385) + 0

9oOWDJH

)or a balanced bridge like this one� 𝑉
𝑂𝑈𝑇

= 𝑉
𝐼𝑁

(
𝑅

𝑡

𝑅
𝑡
+𝑅

3
−

𝑅
1

𝑅
1
+𝑅

2
)

NAÔIGATING PYRODAQ STEP �Y STEP

Get ready to explore the ins and outs of this powerful tool as we walk you through each step

of calibrating and acquiring data from a Wheatstone bridge setup.

LAUNCH

�. The first window you'll encounter will kindly ask you to select the specific model of

your DAQ. This information can be found on the underside of your DAQ.

0ake sure your DAQ is called ȤDev�ȥ as the app won’t recogni]e it if it’s not. This

can be checked and changed with the NI 0A; software, in devices and interfaces.

CALI�RATION

In this initial stage, we're going to calibrate your temperature sensing setup using precision

resistors. &alibration is like teaching your system how to speak the language of temperature

changes. +ere's how it works�

�. The &alibration 0enu appears, ready to log your calibration settings. 2nce a

calibration is set, it can be later used as they’re saved.

Two options appear� Temperature and 9oltage 5elation and Input Direct (xpression.

1ʢ

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 103

11

)or our Wheatstone bridge setup, let's opt for the Temperature and 9oltage 5elation.

This is because we're simulating different temperatures using precision resistors.)or

known calibrations like for a L0�� circuit setup, the direct input expression would

be useful.

�. &lick �&alibrate� to proceed.

TĕŖƂĕƅêƚƢƅĕ êŘč ÔŢōƚêĭĕ RĕōêƚĸŢŘ

�. In this window, you'll first need to select an expression type. We'll go with the linear

equation, least squares method for this tour, but feel free to explore other methods.

�. 8nder input data, toggle �0easure�. If you’d instead like to input the calculated

voltage toggle for ȤType Inȥ.

�. Input the corresponding temperature value from your table and either click Ȥ(nterȥ

or press the (nter key.

�. Do so for each precision resistor, changing the resistor in the circuit as you go. <ou

can check if your measured values correspond with your previously calculated ones.

It’s normal for the real values to differ a bit from the calculated values.

�. If you make any mistakes, don't worry. <ou can delete the last input by clicking

�delete�, or all of them by clicking Ȥ&learȥ.

As you add data points, you'll start to see your calibration plot taking shape.

�. 2nce all points are added, click �&hoose� to finali]e the calibration.

%ack in the &alibration 0enu, you can keep logging calibrations, but for now, let's move

forward.

��. &lick �Acquire Data� to proceed.

DATA ACQUISITION AND ÔISUALIåATION

Now, we're ready to use the calibration expression to acquire actual data from the Pt���

sensor�

��. &onnect your Pt��� temperature sensor in place of the precision resistors.

11

APPENDIX B: STUDENT’S GUIDE

 104

1ʥ

��. In the appearing window, you'll see your chosen calibration at the top. If you need to

change it, click �recalibrate.�

��. (xplore control features like temperature alarms. 6et minimum and�or maximum

alarms by entering desired values and clicking on Ȥ6etȥ �e.g. ��|&, ��|� . Dashed lines

will appear in the graph with their corresponding colors.

To delete the alarms, click on �disable�.

&hoose your data acquisition type�

��.)or on�demand acquisition�

a. 6elect the option and click �acquire data.�

b. AdMust the time interval with the slider.)or more precision, click on either

side of the slider.

c. &lick on Ȥ6topȥ when you're ready.

��.)or finite sampling�

a. 6elect the option.

b. Input the number of samples and time interval �e.g. ��, ��.

c. &lick �Acquire Data.�

d. 2nce finished, if desired, save the data as a &69 file by clicking on Ȥ6ave

Dataȥ.

Input a name for the file and open it on your computer to review parameters,

alarms, and acquired values.

This &69 file can easily be opened in other platforms such as excel to further

analy]e the data.

With this tour, you've unlocked the basics of PyroDAQ. 5epeat and experiment as much as

you like, delving into different calibrations and sensors. Let your curiosity lead the way as

you master the art of temperature sensing!

1ʤ

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

 105

APPENDIX C: CODE
What follows is the complete source code utilized in developing the PyroDAQ

application.

This codebase is available for reference and further exploration at the project's GitHub

repository, which can be accessed via the following link: GitHub Repository

(https://github.com/danllaq/PyroDAQ.git).

PyroDAQ.bat

@echo off
title PyroDAQ

rem Activate the virtual environment
call PyroDAQvenv\Scripts\activate

rem Run the PyroDAQ application
python main.py

README.md

PyroDAQ Ø=Ü� Ø<ß!þ�
PyroDAQ is a Python application with a graphical user interface (GUI)
designed for interacting with
National Instruments DAQ (Data Acquisition) devices for temperature sensing. Ø=Ý%

Prerequisites Ø=ÜË

Before you begin, make sure you have Python and Pip installed on your system
and that you're using Windows. Ø=Ü»

Python Installation Ø=Ü�
1. Visit the [Python Dowloads](https://www.python.org/downloads/) page.
2. Download the installer for the version *3.11.0*.
3. Run the installer and follow the installation instructions.
4. During the installation, make sure to check the box that says "Add Python
to PATH".
5. After installation, open a command prompt and check that Python is
installed by running:
```batch
python -- version
```

Pip Installation Ø=Üæ

When installing Python, pip should also be included. To check if it's
installed run:
```batch 
pip --version
```
If for any reason there's a problem refer to [pip documentation](https://
pip.pypa.io/en/stable/installation/).

Driver Installation &™þ�

To use PyroDAQ, you need to install the NI-DAQmx (version 2023 Q1).

Downloading and installing the NI-DAQmx driver is essential because it
provides the necessary software components for your
computer to communicate with and control National Instruments DAQ hardware
devices that this project uses.

Follow these steps to download and install the driver:
1. **Download the NI-DAQmx Driver:**
 - Visit the official NI-DAQmx driver download pager: [NI-DAQmx Driver
Download](https://www.ni.com/es/support/downloads/drivers/download.ni-daq-
mx.html#477807).
 - Choose Windows OS and the 2023 Q1 version.
 - Click download button and save to computer.
2. **Installation:**
 - Locate the .exe file and double-click.
 - Follow the instructions.
3. **Verification:**
 - Verify the installation by opening NI MAX.
 - Open the "My System > Software".
 - You should see the driver and the correct version.

Setting up the project Ø=Þàþ�

Page: 2 of 58

Downloading the project Ø=Üå
1. From [PyroDAQ GitHub page](https://github.com/danllaq/PyroDAQ) download
zip file.
2. Extract the zip file to your prefered directory.

Creating a virtual environment Ø<ß�
In order to isolate dependencies for this project, we're going to create a
virtual environment. It's important to note that
the project and dependencies are going to be inside the venv but *Python and
pip **should not be** in the venv* 'W

To quickly set up and configure this project, follow these steps:
1. Copy the path of your project's directory.
1. Open a command prompt and open the directory with the following command
(substituting for your actual path):
```bash
cd C:\Users\<user_name>\PyroDAQ-main
```
3. Run the setup script:
```bash
setup.bat
```
4. Wait until the setup has finished, this will be indicated with ```Setup
completed!``` it might take a few moments.

Running the Program %¶þ�

After you have completed the prerequisites and set up the project, follow
these steps to run PyroDAQ:
1. **Launch PyroDAQ:**
 You have some options for running the program:
 - In a command line, from your project directory, run:
     ```bash
     PyarDAQ.bat
     ```
 - You can also double click on the file `PyroDAQ.bat`
 - Or in a command line your project directory, run:
     ```bash
     PyroDAQvenv\Scripts\activate
     python main.py
     ```
3. **Interact with the program**
 - Once the program is running, the GUI for PyroDAQ should appear
 - You can now connect you DAQ and use the GUI to interact with it for
temperature sensing and other data tasks
4. **Student's Guide**
 - You can find more instructions and a guide through the program in the
attached pdf "Student's Guide"

That's It! You're Set to Blaze a Trail with PyroDAQ Ø=Ü� Ø<ß!þ�

Congratulations! You've successfully set up PyroDAQ and are now ready to
embark on your data acquisition adventures. Whether you're a seasoned
engineer, a curious hobbyist, or somewhere in between, we hope PyroDAQ adds
some heat to your temperature sensing projects!

Remember, the world of data acquisition is vast and filled with exciting
challenges. So, go forth, measure temperatures, and conquer your data like a
pro.

Page: 3 of 58

Happy data collecting, and stay toasty! Ø=Ý%Ø=Þ�

Page: 4 of 58

main.py

import sys
import os

import src.app.appDAQ as daq
import src.app.appCalibrationMethod as calibration_method
import src.app.appDataAcquisition as data_acquisition

Gets the path of the current script
current_dir = os.path.dirname(os.path.abspath(__file__))

Adds the parent directory (project root) to the Python path

parent_dir = os.path.dirname(current_dir)
sys.path.append(parent_dir)

def main():

 # --- DAQ SELECTION ---
 niDAQ = daq.run_select_daq()
 while not niDAQ.is_exit_requested():
 # --- CALIBRATION ---
 calibration_method.run_calibrate(niDAQ)
 if niDAQ.is_exit_requested():
 niDAQ.exit()
 continue
 # --- ACQUIRE DATA ---
 data_acquisition.run_data_acquisition(niDAQ)

if __name__ == "__main__":
 main()

Page: 5 of 58

requirements.txt

nidaqmx==0.6.5
matplotlib==3.7.1
PySimpleGUI==4.60.5
numpy==1.24.2
scipy==1.11.1

Page: 6 of 58

setup.bat

@echo off
title PyroDAQ setup

rem Creates virtual environment
echo Creating the virtual environment...
python -m venv PyroDAQvenv

rem Activates the virtual environment
echo Activating the virtual environment...
call PyroDAQvenv\Scripts\activate

rem Installs dependencies
echo Installing the required dependencies...
pip install -r requirements.txt

rem Deactivate the virtual environment
echo Deactivating the virtual environment...
call deactivate

rem Display message to confirm that the script has completed

echo Setup completed!

Page: 7 of 58

src/app/appCalibrationMethod.py

import src.gui.guiCalibrationMethod as guiCalibrationMethod
import src.app.appTempVoltCalibrate as appTempVoltCalibrate
import src.app.appExpressionInputCalibrate as appExpressionInputCalibrate

def run_calibrate(niDAQ):
 """
 Runs calibrate menu
 :param niDAQ: object with DAQ information and where all things related is
stored
 :return:
 """
 while True:
 try:
 if niDAQ.is_calibration_set():
 layout =
guiCalibrationMethod.layout_with_expression(niDAQ.calibrations_log)
 # launches window where calibration expression and/or method
will be selected
 window =
guiCalibrationMethod.calibration_method_window(layout)
 method =
guiCalibrationMethod.run_calibration_method_window(window, niDAQ)
 else:
 layout = guiCalibrationMethod.get_layout_no_calibration()
 window =
guiCalibrationMethod.calibration_method_window(layout)
 method =
guiCalibrationMethod.run_calibration_method_no_calibration_window(window)
 match method:
 case 'TEMP_VOLTAGE':
 calibration =
appTempVoltCalibrate.run_temp_volt_calibrate(niDAQ)
 if calibration is not None:
 niDAQ.add_calibration_to_log(calibration)
 niDAQ.set_calibration(repr(calibration))
 case 'EXPRESSION_INPUT':
 calibration =
appExpressionInputCalibrate.run_expression_input_calibrate(niDAQ)
 if calibration is not None:
 niDAQ.add_calibration_to_log(calibration)
 niDAQ.set_calibration(repr(calibration))
 case 'ACQUIRE_DATA':
 if niDAQ.is_calibration_set:
 break
 else:
 raise ValueError("No calibration assigned")
 case 'EXIT':
 niDAQ.set_exit_request()
 break
 case _:
 raise ValueError("Wrong calibration method chosen.")
 except ValueError as e:
 print(f"Error: {e}")

Page: 8 of 58

src/app/appDAQ.py

import src.daqTools as dt
import src.gui.guiDAQ as guiDAQ

def run_select_daq():
 """
 Runs daq selection
 :return:
 """
 while True:
 try:
 # creates object where DAQ information is stored

 modelsDAQ, exitFlag = guiDAQ.select_daq_window(dt.modelsDAQ)
 # DAQ initiation with its corresponding model

 niDAQ = dt.niDAQ(modelsDAQ, exitFlag)
 if not exitFlag:
 niDAQ.initiate_daq()
 return niDAQ
 except ValueError as e:
 guiDAQ.no_daq_detected_popup(e)

Page: 9 of 58

src/app/appDataAcquisition.py

import src.gui.guiDataAcquisition as guiDataAcquisition

def run_data_acquisition(niDAQ):
 """
 Runs data acquisition
 :param niDAQ: object where data will be stored
 :return:
 """
 # launches window where the user can input calibration expression

 window, fig, figure_canvas_agg =
guiDataAcquisition.data_acquisition_window(niDAQ.calibration)
 niDAQ.set_task_start(1)
 niDAQ.set_task_write(1)
 guiDataAcquisition.data_acquisition_window_behavior(niDAQ, window, fig,
figure_canvas_agg)
 niDAQ.set_task_stop(1)

Page: 10 of 58

src/app/appExpressionInputCalibrate.py

import src.gui.guiExpressionInputCalibrate as guiExpressionInputCalibrate

def run_expression_input_calibrate(niDAQ):
 """
 Runs expression input calibration
 :param niDAQ: object where calibration will be stored
 :return: object with the calibration information
 """
 # launches window where the user can input calibration expression

 window, fig, figure_canvas_agg =
guiExpressionInputCalibrate.expression_calibrate_window()
 # the window returns either a '1' if the user has chosen an expression or
-1 if they want to go back or close window

 niDAQ.set_task_start(1)
 niDAQ.set_task_write(1)
 calibration =
guiExpressionInputCalibrate.expression_input_calibrate_window_behavior(niDAQ,
window,

 fig, figure_canvas_agg)
 niDAQ.set_task_stop(1)
 return calibration

Page: 11 of 58

src/app/appTempVoltCalibrate.py

import src.gui.guiTempVoltCalibrate as guiTempVoltCalibrate

def run_temp_volt_calibrate(niDAQ):
 """
 Runs temperature-voltage relation calibration
 :param niDAQ: object where calibration will be stored
 :return: object with the calibration information
 """
 # launches window where the user can input voltage and temperature and an
expression will be calculated
 window, fig, figure_canvas_agg =
guiTempVoltCalibrate.temp_volt_calibrate_window()
 niDAQ.set_task_start(1)
 niDAQ.set_task_write(1)
 # the window returns either a '1' if the user has chosen an expression or
-1 if they want to go back or close window

 calibration =
guiTempVoltCalibrate.temp_volt_calibrate_window_behavior(niDAQ, window, fig,
figure_canvas_agg)
 niDAQ.set_task_stop(1)
 return calibration

Page: 12 of 58

src/calibrationTools.py

from abc import ABC, abstractmethod
import src.guiTools as gt
import numpy as np
from scipy.optimize import curve_fit
import warnings

def linear_func(x, m, n):
 """
 Linear function method
 :param x: variable
 :param m: slope
 :param n: y interception
 :return: linear function
 """
 return m * x + n

def non_linear_func(x, a, b, c):
 """
 Non-linear function method
 :param x: variable
 :param a: grade 2 param
 :param b: grade 1 param
 :param c: constant
 :return: non-linear function
 """
 return a * x ** 2 + b * x + c

class Calibration(ABC):
 """
 Calibration parent class, everything related to the calibration when it's
being set goes here. Once
 It's set, it goes to the niDAQ class object
 """

 def __init__(self, expression_type):
 """
 Initiates calibration object given the expression type
 :param expression_type: string, types: 'LINEAR_EQUATION',
'NON_LINEAR_EQUATION'
 """
 self.expression_type = expression_type # types: 'LINEAR_EQUATION',
'NON_LINEAR_EQUATION'
 self.parameters = {} # dictionary where parameters are stored
{'coefficient_g2', 'coefficient_g1', 'constant'}

 self.data = []
 self.interpolation_points = [] # only used for interpolation

 def __len__(self):
 """
 When len(object) is used, returns length of data list
 :return: number of points in data list
 """
 return len(self.data)

 def __getitem__(self, index):
 """

Page: 13 of 58

 When object[index] is used, accesses data list to retrieve value
 :param index: index to access
 :return: pair with [voltage, temperature]
 """
 return self.data[index]

 def __setitem__(self, index, voltage_temperature: list):
 """
 When object[index] is used, accesses data list to assign value
 :param index: index to access
 :return:
 """
 check_all_floats(voltage_temperature[0], voltage_temperature[1])
 self.data[index] = voltage_temperature

 def __delitem__(self, index):
 """
 When using del object[index], deletes item in data list
 :param index: index to access
 :return:
 """
 del self.data[index]

 def set_chosen_points(self, chosen_points: list):
 """
 Assign the chosen points pair selected by the user
 :param chosen_points: two pairs in a list
 :return:
 """
 self.interpolation_points = chosen_points

 def set_data_list(self, data):
 """
 Takes a list (data) containing pairs of data points and assigns it to
a list in an object.
 :param data: list of data pair points
 :return:
 """
 self.data = data

 def get_parameter(self, parameter_name):
 """
 Accesses equation parameter dictionary and returns desired value
 :param parameter_name: name of the equation parameter
['coefficient_g2', 'coefficient_g1', 'constant']
 :return: equation parameter value
 """
 return self.parameters.get(parameter_name)

 def get_data(self):
 """
 Returns the data points stored by the user
 :return: list of pairs
 """
 return self.data

 def update_parameters(self, parameters_dict):
 """
 Takes a dictionary (parameters_dict) containing the parameter names
and their corresponding values.
 The update method of the parameters dictionary is then used to update

Page: 14 of 58

the parameter values in another object.
 :param parameters_dict: dictionary where equation parameter values
are stored
 :return:
 """
 self.parameters.update(parameters_dict)

 def add_voltage(self, voltage):
 """
 Given a voltage value, will add to the data list
 :param voltage: Voltage value, float
 :return:
 """
 [voltage] = gt.to_number_n_dec(gt.N_DECIMALS, voltage)
 temperature = self.calculate_temperature(voltage)
 self.data.append([voltage, temperature])

 def add_data(self, voltage_temperature: list):
 """
 Given a voltage and temperature pair, adds to de data
 :param voltage_temperature: voltage and temperature pair
 :return:
 """
 self.data.append(voltage_temperature)

 def clear_data(self):
 """
 Clears table list
 :return:
 """
 self.data.clear()

 def update_data(self):
 """
 Updates data points
 :return:
 """
 for i, (voltage, temperature) in enumerate(self.data):
 new_temperature = self.calculate_temperature(voltage)
 self[i] = [voltage, new_temperature]

 def sort_x(self):
 """
 Sorts data points by x
 :return: list of x values
 """
 return gt.get_sorted_nth_elements(self.data, n=0)

 def sort_y(self):
 """
 Sorts data points by x
 :return: list of y values
 """
 return gt.get_sorted_nth_elements(self.data, n=1)

 def is_linear(self):
 """
 Checks if object is linear
 :return: boolean, true if it is
 """
 return self.expression_type == 'LINEAR_EQUATION'

Page: 15 of 58

 def is_nonlinear(self):
 """
 Checks if object is non-linear
 :return: boolean, True if it is
 """
 return self.expression_type == 'NON_LINEAR_EQUATION'

 def is_type(self, expression_type):
 """
 Checks if the object has the same expression type
 :param expression_type: LINEAR_EQUATION or NON_LINEAR_EQUATION
 :return: True if they are, false if it isn't
 """
 return self.expression_type == expression_type

 def data_exists(self, data_point):
 """
 Checks if voltage is already stored in data
 :param data_point:pair [voltage, temperature]
 :return: True if voltage is already stored
 """
 return any(voltage == data_point[0] for voltage, temperature in
self.data)

 def has_enough_points(self):
 """
 Checks if there are at least 2 points to calculate a linear
expression, or at least 3 for a nonlinear
 :return:
 """
 return (len(self) > 1 and self.is_linear()) or (len(self) > 2 and
self.is_nonlinear())

 def to_linear_calibration(self, m=0, n=0):
 """
 Converts a NonLinearCalibration object to a LinearCalibration one,
updating parameters and passing data
 :param n:
 :param m:
 :return: linear_cal, LinearCalibration object with relevant
information
 """
 if self.expression_type == "NON_LINEAR_EQUATION":
 # creates LinearCalibration object

 linear_cal = LinearCalibration()
 # converts to floats with 3 decimal points

 m, n = gt.to_number_n_dec(gt.N_DECIMALS, m, n)
 # assigns parameters to new object

 linear_cal.update_parameters(parameters_dictionary(m, n))
 # assigns data list to new object
 linear_cal.set_data_list(self.data)
 return linear_cal
 else:
 raise ValueError("Cannot convert to LinearCalibration. Current
equation type is linear.")

Page: 16 of 58

 def to_nonlinear_calibration(self, a=0, b=0, c=0):
 """
 Converts a LinearCalibration object to a NonLinearCalibration one,
updating parameters and passing data
 :param c:
 :param b:
 :param a:
 :return: non_linear_cal, NonLinearCalibration object with relevant
information
 """
 if self.expression_type == "LINEAR_EQUATION":
 # creates NonLinearCalibration object

 non_linear_cal = NonLinearCalibration()
 # converts to floats with 3 decimal points

 a, b, c = gt.to_number_n_dec(gt.N_DECIMALS, a, b, c)
 # assigns parameters to new object

 non_linear_cal.update_parameters(parameters_dictionary(a, b, c))
 # assigns data list to new object
 non_linear_cal.set_data_list(self.data)
 return non_linear_cal
 else:
 raise ValueError("Cannot convert to NonLinearCalibration. Current
equation type is not linear.")

 def draw_expression(self, axes, known_expression):
 """
 Draws expression plot
 :param axes: axes where the figure is
 :param known_expression: calibration expression
 :return:
 """
 if known_expression:
 # Generate points for the plot
 if len(self) > 0:
 x_plot = np.linspace(self.sort_x()[0], self.sort_x()[-1], 100)
 else:
 x_plot = np.linspace(0, 10, 100)

 self.plot_expression(axes, known_expression, x_plot)
 else:
 if self.has_enough_points():
 self.plot_expression(axes, known_expression)

 def update_figure(self, fig, figure_canvas_agg, known_expression,
is_point_selected=False, x_sel_point=None,
 y_sel_point=None):
 """
 Updates and draws the plot
 :param fig: calibration plot
 :param figure_canvas_agg: canvas for calibration plot
 :param known_expression: boolean, indicates if the figure is being
drawn with a known expression input by user
 :param is_point_selected: boolean if user has selected a point from
table
 :param x_sel_point: x for selected point
 :param y_sel_point: y for selected point
 :return:
 """

Page: 17 of 58

 axes, x, y = gt.get_axes_for_points(fig, self.data)
 self.draw_expression(axes, known_expression)
 gt.draw_points(axes, x, y, 'bo', "Data Points")
 if is_point_selected:
 gt.draw_points(axes, x_sel_point, y_sel_point, 'ro')
 axes[0].legend()
 gt.pack_canvas(figure_canvas_agg)

 def change_in_data(self, win, fig, figure_canvas_agg, known_expression):
 """
 Updates window when there is a change in the data
 :param win: pysimplegui window
 :param fig: calibration plot
 :param figure_canvas_agg: canvas for the calibration plot
 :param known_expression: calibration expression
 :return:
 """
 win['-TABLE-'].update(values=self.data)
 if not known_expression:
 win['-N_SAMPLES-'].update(len(self))
 # if a point was deleted that was used for interpolation, the
interpolation data clears
 if self.is_interpolation_points_in_data():
 self.interpolation_points.clear()
 self.update_figure(fig, figure_canvas_agg, known_expression)

 @abstractmethod
 def calculate_temperature(self, voltage: float):
 """
 Abstract method, given a voltage value it will be overriden by the
appropriate subclass method that
 will calculate the temperature
 :param voltage: Voltage value, float
 :return:
 """
 pass

 def plot_expression(self, axes, known_expression, x_plot=None):
 """
 Abstract method, given an x_plot and axes it will be overriden by the
appropriate subclass method that will
 plot the expression
 :param known_expression:
 :param x_plot: list of x values for the plot to reference
 :param axes: axes where the graph will be plotted on
 :return:
 """
 pass

 def is_interpolation_points_in_data(self):
 """
 Checks if the set interpolation points are in the data
 :return: boolean, True if they are
 """
 return not all(pair in self.data for pair in
self.interpolation_points)

def check_all_floats(*args):
 """
 Given a list of values, checks if they all are float. If any isn't raises
an error.

Page: 18 of 58

 Used when values are inputted by user.
 :param args: equation parameters
 :return:
 """
 for arg in args:
 if not isinstance(arg, float):
 raise ValueError(f"Invalid value: '{arg}' is not float. Type: {
type(arg).__name__}")

def get_sign(number):
 """
 Return '+' if number is positive
 :param number:
 :return:
 """
 return ' ' if number < 0 else ' + '

def parameters_dictionary(*args):
 """
 Given the expression parameters, creates a dictionary format in order to
save to the object
 :param args: calibration parameters, 2 for linear, 3 for non-linear
 :return: dictionary with the format set by the programmer
 """
 if len(args) == 3:
 return {'coefficient_g2': args[0], 'coefficient_g1': args[1],
'constant': args[2]}
 elif len(args) == 2:
 return {'coefficient_g2': None, 'coefficient_g1': args[0], 'constant'
: args[1]}
 else:
 raise ValueError(f"There must be 2 or 3 parameters, {len(args)} were
provided")

class LinearCalibration(Calibration):
 """
 Child class of calibration for the linear expression, here everything
related to linear calibration
 is managed and can convert to non-linear class if needed
 """
 def __init__(self, calculation_method=""):
 """
 Creates a child class of Calibration that if assigned has a type of
calculation method
 :param calculation_method: methods: ['LEAST_SQUARES',
'LINEAR_INTERPOLATION']
 """
 super().__init__("LINEAR_EQUATION")
 self.calculation_method = calculation_method

 def __repr__(self):
 """
 String representation method
 :return: calibration equation in string form
 """
 return f"y = {self.get_parameter('coefficient_g1'):.3f}x
{get_sign(self.get_parameter('constant'))}" \
 f"{self.get_parameter('constant'):.3f}"

 def update_method(self, calculation_method):

Page: 19 of 58

 """
 Updates calculation method
 :param calculation_method: methods: ['LEAST_SQUARES',
'LINEAR_INTERPOLATION']
 :return:
 """
 self.calculation_method = calculation_method

 def set_parameters(self, m, n):
 """
 Sets equation parameters
 :param m: grade 1 coefficient value in a linear equation
 :param n: constant coefficient value in a linear equation
 :return:
 """
 m, n = gt.to_number_n_dec(gt.N_DECIMALS, m, n)
 self.update_parameters(parameters_dictionary(m, n))

 def calculate_expression(self, point_1: list = None, point_2: list = None
):
 """
 Given at least 2 point, calculates the coefficients for a linear
expression
 :param point_1: first point
 :param point_2: second point
 :return:
 """
 match self.calculation_method:
 case 'LEAST_SQUARES':
 coefficients = np.polyfit(self.sort_x(), self.sort_y(), deg=1)
 case 'LINEAR_INTERPOLATION':
 coefficients = np.polyfit([point_1[0], point_2[0]], [point_1[1
], point_2[1]], deg=1)
 case _:
 raise ValueError('Calibration calculation method not accepted'
)
 self.set_parameters(coefficients[0], coefficients[1])

 def calculate_temperature(self, voltage: float):
 """
 Calculates the temperature with calibration equation rounded to 3
decimal points.
 :param voltage: Voltage value
 :return: Temperature value rounded to 3 decimal points
 """
 check_all_floats(voltage)
 return round(linear_func(voltage, self.get_parameter('coefficient_g1'
), self.get_parameter('constant')), 3)

 def plot_expression(self, axes, known_expression, x_plot=None):
 """
 Plots linear calibration graph on axes
 :param known_expression:
 :param x_plot:
 :param axes:
 :return:
 """
 x_list = x_plot if known_expression else self.sort_x()
 axes[0].plot(x_list, np.polyval([self.get_parameter('coefficient_g1'
), self.get_parameter('constant')],
 x_list), 'y-', label='Linear

Page: 20 of 58

Regression')

class NonLinearCalibration(Calibration):
 """
 Child class of calibration for the non-linear expression, here everything
related to linear calibration
 is managed and can convert to linear class if needed
 """
 def __init__(self):
 """
 Initiates object with its type
 """
 super().__init__("NON_LINEAR_EQUATION")

 def __repr__(self):
 """
 String representation method
 :return: calibration equation in string form
 """
 return f"y = {self.get_parameter('coefficient_g2'):.3f}x\u00B2" \
 f"{get_sign(self.get_parameter('coefficient_g1'))}" \
 f"{self.get_parameter('coefficient_g1'):.3f}x" \
 f"{get_sign(self.get_parameter('constant'))}" \
 f"{self.get_parameter('constant'):.3f}"

 def set_parameters(self, a: float, b: float, c: float):
 """
 Sets equation parameters
 :param a: grade 2 coefficient value in a non linear equation
 :param b: grade 1 coefficient value in a non linear equation
 :param c: constant coefficient value in a non linear equation
 :return:
 """
 check_all_floats(a, b, c)
 self.update_parameters(parameters_dictionary(a, b, c))

 def calculate_expression(self):
 """
 Calculated non-linear coefficient for the expression
 :return:
 """
 x_array = np.array(self.sort_x())
 y_array = np.array(self.sort_y())

 popt, _ = curve_fit(f=non_linear_func, xdata=x_array, ydata=y_array)

 a, b, c = popt
 self.set_parameters(a, b, c)

 def calculate_temperature(self, voltage: float):
 """
 Calculates the temperature with calibration equation rounded to 3
decimal points.
 :param voltage: Voltage value
 :return: Temperature value rounded to 3 decimal points
 """
 check_all_floats(voltage)
 return round(
 non_linear_func(voltage, self.get_parameter('coefficient_g2'),
self.get_parameter('coefficient_g1'),
 self.get_parameter('constant')), 3)

Page: 21 of 58

 def plot_expression(self, axes, known_expression, x_plot=None):
 """
 Plots nonlinear calibration graph on axes
 :param known_expression: calibration expression
 :param x_plot: list of x values if there's an expression
 :param axes: plot information
 :return:
 """
 x_list = x_plot if known_expression else np.linspace(self.sort_x()[0
], self.sort_x()[-1], 100)
 y_plot = non_linear_func(x_list, self.get_parameter('coefficient_g2'
), self.get_parameter('coefficient_g1'),
 self.get_parameter('constant'))
 axes[0].plot(x_list, y_plot, 'y-', label='Fitted Curve')

Page: 22 of 58

src/daqTools.py

import csv
import nidaqmx

import datetime as dt
import src.guiTools as gt

from nidaqmx.constants import (TerminalConfiguration)

DAQ model list
modelsDAQ = ['USB-6211', 'USB-6001', 'USB-6002']

alarm_log_fieldnames = ['Alarm Type', 'Temperature', 'Time Interval']

AO_DAQ_NAME = "wheatstone_vcc"
AO_DAQ_MIN_VAL = 0
AO_DAQ_VAL = 1
AO_DAQ_MAX_VAL = 5

def is_daq_connected():
 system = nidaqmx.system.System.local()
 devices = system.devices
 return len(devices) > 0

class niDAQ:
 """
 Class with DAQ information.

 Attributes:
 model (string): DAQ model selected by the user.
 """

 def __init__(self, model, exit_requested):
 self.model = model
 self.task_ai_ao = []
 self.exit_requested = exit_requested
 self.calibration = ""
 self.calibrations_log = []
 self.alarm_min = None
 self.alarm_max = None
 self.sample_rate = None
 self.n_samples = None
 self.start_acquisition_time = ""
 self.data = []
 self.time_intervals = []
 self.alarms_log = []

 def __len__(self):
 return len(self.data)

 def __getitem__(self, index):
 """
 When object[index] is used, accesses data list to retrieve value
 :param index: index to access
 :return: pair with [voltage, temperature]
 """
 return self.data[index]

Page: 23 of 58

 def __repr__(self):
 return f"model: {self.model}, " \
 f"calibration: {repr(self.calibration)}, " \
 f"alarm: [min, max] = {[self.alarm_min, self.alarm_max]} ºC"

 def set_tasks(self):
 if is_daq_connected():
 for channel in range(2):
 self.task_ai_ao.append(nidaqmx.Task())
 else:
 raise ValueError("Number of devices found in system is 0")

 def set_exit_request(self):
 """
 Sets exit request to True
 :return: bool in True
 """
 self.exit_requested = True

 def set_alarm_min(self, alarm_min):
 """
 Sets minimum alarm parameter
 :param alarm_min:
 :return:
 """
 self.alarm_min = alarm_min

 def set_alarm_max(self, alarm_max):
 """
 Sets maximum alarm parameter
 :param alarm_max:
 :return:
 """
 self.alarm_max = alarm_max

 def set_calibration(self, expression):
 """
 Sets to true if user has assigned a calibration
 :return:
 """
 self.calibration = expression

 def set_time_log(self):
 """
 Sets time log to current date/month/year hour:minute:second
 :return:
 """
 self.start_acquisition_time = dt.datetime.now().strftime("%d/%m/%Y %H:
%M:%S.%f")

 def set_sample_rate(self, sample_rate):
 """
 Sets sample rate of data acquisition
 :param sample_rate: sample rate introduced by user
 :return:
 """
 self.sample_rate = sample_rate

 def set_n_samples(self, n_samples):

Page: 24 of 58

 """
 Sets number of samples in data acquisition
 :param n_samples: number of samples introduced by user
 :return:
 """
 self.n_samples = n_samples

 def get_sample_rate(self):
 """
 Sets sample rate of data acquisition
 :return: sample rate introduced by user
 """
 return self.sample_rate

 def get_n_samples(self):
 """
 Sets number of samples in data acquisition
 :return: number of samples introduced by user
 """
 return self.n_samples

 def get_time_log(self):
 """
 Returns moment when the data acquisition started
 :return: string "date/month/year hour:minute:second"
 """
 return self.start_acquisition_time

 def get_alarm_min(self):
 """
 Returns min alarm value
 :return: min temperature in [ºC]
 """
 return self.alarm_min

 def get_alarm_max(self):
 """
 Return max alarm value
 :return: max temperature in [ºC]
 """
 return self.alarm_max

 def get_calibration(self):
 """
 Returns the calibration object
 :return:
 """
 repr_calibration = [repr(calibrations) for calibrations in
self.calibrations_log]
 return self.calibrations_log[repr_calibration.index(self.calibration)]

 def disable_alarms(self):
 """
 Disables alarms
 :return:
 """
 self.alarm_max = None
 self.alarm_min = None

 def is_exit_requested(self):
 """

Page: 25 of 58

 Returns True if exit has been requested
 :return: bool
 """
 return self.exit_requested

 def has_data(self):
 """
 Returns true is there has been data collected
 :return: True: data > 0
 """
 return len(self) > 0

 def is_alarm_min_set(self):
 """
 Returns true if min alarm is set
 :return:
 """
 return self.alarm_min is not None

 def is_alarm_max_set(self):
 """
 Returns true if max alarm is set
 :return:
 """
 return self.alarm_max is not None

 def is_calibration_set(self):
 """
 Checks if there has been a calibration assigned
 :return: True if there has been
 """
 return self.calibration != ""

 def is_sampling_underway(self):
 """
 Checks if finite data acquisition is underway
 :return: True is the number of samples taken is smaller than the
number of samples introduced by the user
 """
 return len(self) < self.n_samples

 def calculate_time_interval_ms(self):
 """
 Calculates period in milliseconds given a sample_rate in Hertz
 :return: calculated period in milliseconds
 """
 if self.sample_rate == 0:
 raise ValueError("Sample rate cannot be zero.")
 return (1 / self.sample_rate) * 1000

 def read_voltage(self):
 """
 Simulates the reading of the voltage by the DAQ

 returns:
 voltage (float): reading of voltage by the DAQ
 """
 self.set_task_start(0)
 match self.model:
 case 'USB-6211':
 # simulation of temperature reading by the DAQ

Page: 26 of 58

 voltage = self.task_ai_ao[0].read()
 case 'USB-6001':
 # simulation of temperature reading by the DAQ

 voltage = self.task_ai_ao[0].read()
 case 'USB-6002':
 # simulation of temperature reading by the DAQ

 voltage = self.task_ai_ao[0].read()
 case _:
 raise ValueError(f"No matching model found.\nExpected:
{modelsDAQ}\nGot: {self.model}.")
 self.set_task_stop(0)
 return round(voltage, 3)

 def add_calibration_to_log(self, calibration):
 """
 Adds calibration parameters to log
 :param calibration: calibration object
 :return:
 """
 self.calibrations_log.append(calibration)

 def add_data(self, voltage_temperature: list, time_interval):
 """
 Given a voltage and temperature and time_interval, adds to data
 :param voltage_temperature: list [voltage, temperature]
 :param time_interval: time interval between sampling
 :return:
 """
 self.data.append(voltage_temperature)
 self.add_time(time_interval)

 def acquire_data(self, calibration, time_interval):
 """
 Reads voltage from DAQ, converts to temperature with calibration,
adds points to data
 :param time_interval:
 :param calibration:
 :return:
 """
 # reads voltage
 voltage = self.read_voltage()
 # calculates temperature
 temperature = calibration.calculate_temperature(voltage)
 # adds data
 self.add_data([voltage, temperature], time_interval)

 def add_time(self, time_interval):
 if not self.time_intervals:
 # If the list is empty, adds the first value starting from 0

 self.time_intervals.append(0)
 else:
 # If the list is not empty, adds the next value with the given
interval
 self.time_intervals.append(int(self.time_intervals[-1] +
time_interval))

 def add_alarms_log(self, is_min):

Page: 27 of 58

 alarm_entry = {
 'Alarm Type': 'Below Minimum' if is_min else 'Above Maximum',
 'Temperature': self[-1][1],
 'Time Interval': self.time_intervals[-1]
 }
 self.alarms_log.append(alarm_entry)

 def clear_data_acquisition(self):
 """
 Clears stored information from past logs like the data, parameters
and time
 :return:
 """
 self.data.clear()
 self.time_intervals.clear()
 self.alarms_log.clear()
 self.sample_rate = None
 self.n_samples = None
 self.start_acquisition_time = ""

 def save_data_acquisition(self, file_name):
 if not file_name.lower().endswith(".csv"):
 file_name += ".csv"
 with open(file_name, mode='w', newline='') as file:
 writer = csv.writer(file)

 # writes date and time
 writer.writerow([self.start_acquisition_time])
 writer.writerow([])

 # writes calibration
 writer.writerow(["CALIBRATION"])
 writer.writerow([self.calibration])
 writer.writerow([])

 # writes number of samples and sample rate

 writer.writerow(["PARAMETERS"])
 writer.writerow(["Number of samples", "Sample rate [Sa/s]"])
 writer.writerow([self.n_samples, self.sample_rate])
 writer.writerow([])

 # writes alarm logs
 writer.writerow(["ALARM LOGS"])
 writer.writerow(["Min alarm", "Max alarm"])
 writer.writerow([self.alarm_min, self.alarm_max])
 dic_writer = csv.DictWriter(file, fieldnames=alarm_log_fieldnames)
 dic_writer.writeheader()
 for entry in self.alarms_log:
 dic_writer.writerow(entry)
 writer.writerow([])

 # writes data
 writer.writerow(["DATA"])
 writer.writerow(["Voltage [V]", "Temperature [ºC]"])
 for voltage, temperature in self.data:
 writer.writerow([voltage, temperature])

 def generate_index_list(self):
 """
 Generates a list that goes from 1 to the number of data samples stored

Page: 28 of 58

 :return:
 """
 return [i for i in range(1, len(self.data) + 1)]

 def trigger_alarms(self, window, alarm_icon_keys):
 """
 Checks if alarms should be triggered and if so logs and triggers them
 :param window: gui window
 :param alarm_icon_keys: ['-MIN_TEMP_ICON-', '-MAX_TEMP_ICON-']
 :return:
 """
 if self.is_alarm_min_set():
 if self[-1][1] < self.get_alarm_min():
 self.add_alarms_log(is_min=True)
 window[alarm_icon_keys[0]].metadata = True
 else:
 window[alarm_icon_keys[0]].metadata = False
 if self.is_alarm_max_set():
 if self[-1][1] > self.get_alarm_max():
 self.add_alarms_log(is_min=False)
 window[alarm_icon_keys[1]].metadata = True
 else:
 window[alarm_icon_keys[1]].metadata = False

 def trigger_alarm_icon(self, window, alarm_icon_keys):
 # update min alarm image
 window[alarm_icon_keys[0]].update(
 source=gt.ALARM_MIN_ON_PATH if window[alarm_icon_keys[0
]].metadata else
 (gt.ALARM_MIN_OFF_PATH if self.is_alarm_min_set() else
gt.ALARM_UNSET_PATH))
 # update max alarm image
 window[alarm_icon_keys[1]].update(
 source=gt.ALARM_MAX_ON_PATH if window[alarm_icon_keys[1
]].metadata else
 (gt.ALARM_MAX_OFF_PATH if self.is_alarm_max_set() else
gt.ALARM_UNSET_PATH))

 def perform_data_acquisition(self, window, fig, figure_canvas_agg,
calibration, time_interval, alarm_icon_keys):
 self.acquire_data(calibration, time_interval)
 self.update_figure(fig, figure_canvas_agg)
 self.trigger_alarms(window, alarm_icon_keys)

 def update_figure(self, fig, figure_canvas_agg):
 axes = fig.axes # getting the subplots
 axes[0].clear()
 axes[0].set_xlabel("Readings (ms)")
 axes[0].set_ylabel("Temperature (ºC)")
 axes[0].grid()
 if self.has_data():
 self.plot_temperature_points(axes)
 if self.is_alarm_min_set() or self.is_alarm_max_set():
 self.plot_temperature_alarms(axes)

 figure_canvas_agg.draw()
 figure_canvas_agg.get_tk_widget().pack(side='top', fill='both',
expand=1)

 def plot_temperature_alarms(self, axes):

Page: 29 of 58

 x = [0, self.time_intervals[-1] if self.has_data() else 10]

 if self.is_alarm_min_set():
 y = [self.alarm_min] * 2
 axes[0].plot(x, y, 'b--')
 if self.is_alarm_max_set():
 y = [self.alarm_max] * 2
 axes[0].plot(x, y, 'r--')

 def plot_temperature_points(self, axes):
 x = self.time_intervals
 y = [temperature[1] for temperature in self.data]
 axes[0].plot(x, y, color='orange', linestyle='-')

 def set_task_start(self, index_ai_ao):
 self.task_ai_ao[index_ai_ao].start()

 def set_task_stop(self, index_ai_ao):
 self.task_ai_ao[index_ai_ao].stop()

 def set_task_write(self, value: float):
 self.task_ai_ao[1].write(value)

 def initiate_daq(self):
 self.set_tasks()
 # assignation of analog input
 self.add_analog_input()
 # assignation of analog output
 self.add_analog_output()

 def add_analog_input(self):
 """
 Defines analog input in DAQ
 :return:
 """
 self.task_ai_ao[0].ai_channels.add_ai_voltage_chan("Dev1/ai0",
terminal_config=TerminalConfiguration.DIFF)

 def add_analog_output(self):
 self.task_ai_ao[1].ao_channels.add_ao_voltage_chan("Dev1/ao0",
AO_DAQ_NAME,

min_val=AO_DAQ_MIN_VAL, max_val=AO_DAQ_MAX_VAL)

 def exit(self):
 print("Exit requested before calibration")
 self.set_task_stop(0)
 self.set_task_stop(1)

Page: 30 of 58

src/gui/guiCalibrationMethod.py

import src.guiTools as gt

from src.guiTools import sg

def get_layout_no_calibration():
 """
 Defines layout for the window when there is no calibration set
 :return: list with the layout
 """
 sg.theme(gt.DEFAULT_THEME)
 column = sg.Column([
 [sg.Push(), sg.Image(gt.ICON_PATH, size=(200, 200)), sg.Push()],
 [sg.Frame('Calibration Expression', [
 [sg.Text('No calibration yet...', pad=(10, 10))]
], element_justification='center', expand_x=True, pad=(10, 10),
relief=sg.RELIEF_RAISED)],
 [sg.Text('Choose Calibration Method:')],
 [sg.Radio(gt.CAL_METHOD_TEMP_VOLT, group_id="calMethod", k='-
TEMP_AND_VOLT-', default=True,
 enable_events=True)],
 [sg.Radio(gt.CAL_METHOD_EXP, group_id="calMethod", k='-EXP-', default=
False, enable_events=True)],
 [sg.Push(),
 sg.Button('Calibrate', key="-CALIBRATE-"),
 sg.Button('Acquire Data', key='-DATA-', visible=False)]
], pad=((0, 0), (0, 110)))
 layout = [
 [sg.VPush()],
 [column],
 [sg.VPush()]
]
 return layout

def calibration_method_window(layout):
 """
 Creates window for the calibration menu
 :param layout: desired layout to show in the window
 :return: pysimplegui window
 """
 return sg.Window("Sensor Calibration", layout, size=(gt.WINDOW_WIDTH,
gt.WINDOW_HEIGHT),
 element_justification='center')

def layout_with_expression(calibration_log):
 """
 Layout when there are already logged calibrations
 :param calibration_log: list of past calibrations
 :return: list with the layout
 """
 sg.theme(gt.DEFAULT_THEME)

 column = sg.Column([
 [sg.Push(), sg.Image(gt.ICON_PATH, size=(200, 200)), sg.Push()],
 [sg.Frame('Calibration Expression', [
 [sg.Combo(calibration_log,
 default_value=calibration_log[0],
 key='-CALIBRATIONS_LOG-',
 expand_x=True,

Page: 31 of 58

 enable_events=True,
 pad=(10, 10))],
], element_justification='center', expand_x=True, pad=(10, 10),
relief=sg.RELIEF_RAISED)],
 [sg.Text('Choose Calibration Method:')],
 [sg.Radio(gt.CAL_METHOD_TEMP_VOLT, group_id="calMethod", k='-
TEMP_AND_VOLT-', default=True,
 enable_events=True)],
 [sg.Radio(gt.CAL_METHOD_EXP, group_id="calMethod", k='-EXP-', default=
False, enable_events=True)],
 [sg.Push(),
 sg.Button('Calibrate', key="-CALIBRATE-"),
 sg.Button('Acquire Data', key='-DATA-', visible=True)]
], pad=((0, 0), (0, 110)))

 layout = [
 [sg.VPush()],
 [column],
 [sg.VPush()]
]
 return layout

def run_calibration_method_no_calibration_window(window):
 """
 Runs pysimplegui window behavior when there is no calibration set
 :param window: pysimplegui window
 :return: string with the option selected by user['EXIT',
'EXPRESSION_INPUT', 'ACQUIRE_DATA']
 """

 while True:
 event, values = window.read()

 if event == sg.WIN_CLOSED:
 window.close()
 return 'EXIT'

 if event == '-CALIBRATE-':
 if values['-TEMP_AND_VOLT-']:
 window.close()
 return 'TEMP_VOLTAGE'
 elif values['-EXP-']:
 window.close()
 return 'EXPRESSION_INPUT'

 if event == '-DATA-':
 window.close()
 return 'ACQUIRE_DATA'

def run_calibration_method_window(window, niDAQ):
 """
 Runs pysimplegui window behavior when there are calibrations logged
 :param window: pysimplegui window
 :param niDAQ: object with past calibrations
 :return: string with the option selected by user['EXIT',
'EXPRESSION_INPUT', 'ACQUIRE_DATA']
 """
 while True:
 event, values = window.read() # window.read returns event and values

Page: 32 of 58

 if event == sg.WIN_CLOSED:
 window.close()
 return 'EXIT'

 if event == '-CALIBRATIONS_LOG-':
 niDAQ.set_calibration(values['-CALIBRATIONS_LOG-'])

 if event == '-CALIBRATE-':
 if values['-TEMP_AND_VOLT-']:
 window.close()
 return 'TEMP_VOLTAGE'
 elif values['-EXP-']:
 window.close()
 return 'EXPRESSION_INPUT'

 if event == '-DATA-':
 window.close()
 return 'ACQUIRE_DATA'

Page: 33 of 58

src/gui/guiDAQ.py

import src.guiTools as gt

from src.guiTools import sg

def select_daq_window(modelDAQ):
 """
 Creates a window so that the user chooses their DAQ model

 Arguments:
 modelDAQ (str list): DAQ model list

 Returns:
 model: (str): DAQ model that the user has chosen
 """
 sg.theme(gt.DEFAULT_THEME)
 column = sg.Column([
 [sg.Push(), sg.Image(gt.ICON_PATH, size=(200, 200)), sg.Push()],
 [sg.Text('Select the model of the National Instruments DAQ:', pad=((0
, 0), (15, 0)))],
 [sg.Combo(modelDAQ,
 default_value="Select the model...",
 key='-MODEL-',
 expand_x=True,
 tooltip='Select an option before moving forward')],
 [sg.Push(), sg.Button('OK', key='-OK-', bind_return_key=True)]
], pad=((0, 0), (0, 120)))
 layout = [
 [sg.VPush()],
 [column],
 [sg.VPush()]
]

 window = sg.Window('PyroDAQ', layout, size=(gt.WINDOW_WIDTH,
gt.WINDOW_HEIGHT), element_justification='center')

 while True:
 event, values = window.read()
 if event == sg.WIN_CLOSED:
 window.close()
 return None, True

 elif event == '-OK-':
 window['-MODEL-'].set_tooltip("")
 model = values['-MODEL-']
 window.close()
 return model, False

def no_daq_detected_popup(e):
 """
 Popup error window that warns there is no DAQ detected
 :param e: ValueError from trying to initiate DAQ
 :return:
 """
 sg.theme(gt.ACCENT_THEME)
 sg.Window('Error', [[sg.Text(f'No DAQ detected:\n{e}')]]).read()

Page: 34 of 58

src/gui/guiDataAcquisition.py

import src.guiTools as gt
from src.guiTools import sg

alarm_input_keys = ['-MIN_TEMP_INPUT-', '-MAX_TEMP_INPUT-']
alarm_icon_keys = ['-MIN_ALARM_ICON-', '-MAX_ALARM_ICON-']
parameters_input_keys = ['-N_SAMPLES_INPUT-', '-SAMPLE_RATE_INPUT-']

def data_acquisition_window(calibration_expression):
 """
 Pysimplegui layout and window for data acquisition
 :param calibration_expression: string with current calibration expression
 :return: pysimplegui window with relevant layout
 """
 sg.theme(gt.DEFAULT_THEME)

 first_column = sg.Column([
 [sg.Button('Recalibrate', k='-RECALIBRATE-')],
 [sg.VPush()],
 [sg.Frame('Calibration', [
 [sg.Text(calibration_expression, pad=(10, 10))]
], element_justification='center', expand_x=True, pad=(10, 10),
relief=sg.RELIEF_RAISED)],
 [sg.Frame('Temperature Alarms', [
 [sg.Column([
 [sg.Text('Min ='),
 sg.Input(size=gt.SIZE_INPUT, key='-MIN_TEMP_INPUT-',
enable_events=True),
 sg.Text(' [ºC]')],
 [sg.Image(gt.ALARM_UNSET_PATH, key='-MIN_ALARM_ICON-',
metadata=False)],
 [sg.Text('Unset', key='-MIN_TEMP_TXT-')]
], element_justification='center'),
 sg.Column([
 [sg.Text('Max ='),
 sg.Input(size=gt.SIZE_INPUT, key='-MAX_TEMP_INPUT-',
enable_events=True),
 sg.Text(' [ºC]')],
 [sg.Image(gt.ALARM_UNSET_PATH, key='-MAX_ALARM_ICON-',
metadata=False)],
 [sg.Text('Unset', key='-MAX_TEMP_TXT-')]
], element_justification='center'),
 sg.Column([
 [sg.Push()]
]),
 sg.Column([
 [sg.VPush()],
 [sg.Push(), sg.Button('Set', k='-SET-')],
 [sg.Push(), sg.Button('Disable', k='-DISABLE-', visible=
False)]
], element_justification='right')
]
], expand_x=True, pad=(10, 10), relief=sg.RELIEF_SUNKEN)],
 [sg.Frame('Choose Data Acquisition Type:', [
 [sg.Radio(gt.DATA_ON_DEMAND,
 group_id='acq_type',
 default=True,
 k='-ON_DEMAND-',
 enable_events=True,

Page: 35 of 58

 pad=((10, 0), (10, 0)))],
 [sg.Radio(gt.DATA_CUSTOM, group_id='acq_type', k='-
FINITE_SAMPLING-', enable_events=True,
 pad=((10, 0), (10, 0)))],
 [sg.Text('No. Samples:', pad=((40, 0), 0)),
 sg.Input(size=gt.SIZE_INPUT, key='-N_SAMPLES_INPUT-', disabled=
True, enable_events=True,

disabled_readonly_background_color=sg.theme_button_color()[1])],
 [sg.Text('Sample Rate:', pad=((40, 0), (0, 10))),
 sg.Input(size=gt.SIZE_INPUT, key='-SAMPLE_RATE_INPUT-', disabled=
True, enable_events=True,

disabled_readonly_background_color=sg.theme_button_color()[1], pad=(0, (0, 10
))),
 sg.Text('Sa/s', pad=((0, 10), (0, 10)))]
], expand_x=True, pad=(10, 10), relief=sg.RELIEF_SUNKEN)],
 [sg.Push(), sg.Button('Acquire Data', k='-ACQUIRE-', metadata=False)],
 [sg.Frame('Time Interval [ms]', [
 [sg.Slider(range=(gt.MIN_TIME_UPDATE_MS,
gt.MAX_TIME_INTERVAL_MS), default_value=500, resolution=10,
 orientation='h', key='-SLIDER-', size=(40, 15),
tick_interval=1000)]
], key='-TIME_INTERVAL-', visible=False, expand_x=True, pad=(10, 10),
element_justification='center',
 relief=sg.RELIEF_SUNKEN)],
 [sg.VPush()]

], expand_x=True, expand_y=True)

 second_column = sg.Column([
 [sg.Push(),
 sg.Text("Samples Collected: ", key='-SAMPLES_COLLECTED_TXT-',
visible=False),
 sg.Text("", key='-SAMPLES_COLLECTED_VALUE-', size=gt.SIZE_INPUT,
visible=False)],
 [sg.Canvas(k='-CANVAS-', size=(200, 200))],
 [sg.Button('Stop', k='-STOP-', visible=False, pad=(10, 10)),
 sg.Button('Reset', k='-RESET-', visible=False, pad=(10, 10))],
 [sg.Push(), sg.Button('Save Data', k='-SAVE-', visible=False)]
], expand_x=True, element_justification='center')

 layout = [
 [sg.VPush()],
 [first_column, second_column],
 [sg.VPush()]
]
 return gt.gui_window_with_graph('Data Acquisition', layout,
gt.FIG_SIZE_WIDTH, gt.FIG_SIZE_HEIGHT, False)

def data_acquisition_window_behavior(niDAQ, window, fig, figure_canvas_agg):
 """
 Data acquisition window behavior
 :param niDAQ: object where data will be stored
 :param window: pysimplegui window with data acquisition layout
 :param fig: data plot
 :param figure_canvas_agg: canvas for the data plot
 :return:
 """
 time_interval = None
 min_frequency = gt.calculate_frequency(gt.MAX_TIME_INTERVAL_MS) * 1000

Page: 36 of 58

 max_frequency = gt.calculate_frequency(gt.MIN_TIME_UPDATE_MS) * 1000

 while True:
 event, values = window.read(timeout=time_interval)
 if event == sg.WIN_CLOSED:
 niDAQ.set_exit_request()
 break

 if event == '-RECALIBRATE-':
 break

 # only accepts digits, decimal point '.' and '-'

 if event in alarm_input_keys:
 gt.filter_numeric_characters(window, values, event,
alarm_input_keys)

 # only accepts digits
 if event in parameters_input_keys:
 gt.filter_digits(window, values, event, ['-N_SAMPLES_INPUT-'])
 gt.filter_numeric_characters(window, values, event, ['-
SAMPLE_RATE_INPUT-'])

 if event == '-SET-':
 try:
 # checks if both inputs are empty

 if all(values[key] == "" for key in alarm_input_keys):
 raise ValueError("Values must be assigned")
 elif all(values[key] != "" for key in alarm_input_keys):
 alarm_min, alarm_max = gt.to_number_n_dec(gt.N_DECIMALS,
values['-MIN_TEMP_INPUT-'],
 values['-
MAX_TEMP_INPUT-'])
 if alarm_min >= alarm_max:
 raise ValueError("Min alarm can't be bigger or equal
to max alarm")
 niDAQ.set_alarm_min(alarm_min)
 niDAQ.set_alarm_max(alarm_max)
 else:
 if values['-MIN_TEMP_INPUT-'] != "":
 [alarm_min] = gt.to_number_n_dec(gt.N_DECIMALS,
values['-MIN_TEMP_INPUT-'])
 if niDAQ.is_alarm_max_set() and (alarm_min >=
niDAQ.get_alarm_max()):
 raise ValueError("Min alarm can't be bigger or
equal to already set max alarm")
 else:
 niDAQ.set_alarm_min(alarm_min)
 if values['-MAX_TEMP_INPUT-'] != "":
 [alarm_max] = gt.to_number_n_dec(gt.N_DECIMALS,
values['-MAX_TEMP_INPUT-'])
 if niDAQ.is_alarm_min_set() and (alarm_max <=
niDAQ.get_alarm_min()):
 raise ValueError("Max alarm can't be bigger or
equal to already set min alarm")
 else:
 niDAQ.set_alarm_max(alarm_max)
 niDAQ.update_figure(fig, figure_canvas_agg)
 niDAQ.trigger_alarm_icon(window, alarm_icon_keys)
 gt.set_visible(window, True, '-DISABLE-')

Page: 37 of 58

 except Exception as e:
 sg.popup_error(str(e), title="Error")

 gt.empty_inputs(window, '-MIN_TEMP_INPUT-', '-MAX_TEMP_INPUT-')

 if event == '-DISABLE-':
 niDAQ.disable_alarms()
 window[alarm_icon_keys[0]].metadata = False
 window[alarm_icon_keys[1]].metadata = False
 niDAQ.trigger_alarm_icon(window, alarm_icon_keys)
 niDAQ.update_figure(fig, figure_canvas_agg)
 gt.set_visible(window, False, '-DISABLE-')

 if event == '-ON_DEMAND-':
 gt.set_disabled(window, True, '-N_SAMPLES_INPUT-', '-
SAMPLE_RATE_INPUT-')

 if event == '-FINITE_SAMPLING-':
 gt.set_disabled(window, False, '-N_SAMPLES_INPUT-', '-
SAMPLE_RATE_INPUT-')

 if event == '-ACQUIRE-':
 # saves moment in time when acquisition starts

 niDAQ.clear_data_acquisition()
 niDAQ.set_time_log()
 # if on demand data acquisition is selected

 if values['-ON_DEMAND-']:
 # from not reading to on demand
 window['-ACQUIRE-'].metadata = True
 gt.set_visible(window, True, '-STOP-', '-TIME_INTERVAL-')
 gt.set_visible(window, False, '-SAVE-')
 gt.set_disabled(window, True, '-FINITE_SAMPLING-')
 elif values['-FINITE_SAMPLING-']:
 try:
 [sample_rate] = gt.check_if_valid_input(values,
gt.N_DECIMALS, '-SAMPLE_RATE_INPUT-')
 [n_samples] = gt.check_if_valid_input(values, 0, '-
N_SAMPLES_INPUT-')
 if not min_frequency <= sample_rate <= max_frequency:
 raise ValueError(f"Sample rate must be between"

 f" {min_frequency:.3f} and
{max_frequency:.3f} Sa/s."
 f"\nGot {sample_rate} instead.")
 elif not 2 <= n_samples <= 10000:
 raise ValueError(f"Number of samples must be between
2 and 10k.\n"
 f"Got {n_samples} instead.")
 else:
 niDAQ.set_sample_rate(sample_rate)
 niDAQ.set_n_samples(n_samples)
 # from not reading to finite sampling

 window['-ACQUIRE-'].metadata = True
 # sets time_interval
 time_interval = niDAQ.calculate_time_interval_ms()
 gt.set_visible(window, True, '-STOP-')
 gt.set_visible(window, False, '-SAVE-', '-ACQUIRE-')
 except Exception as e:

Page: 38 of 58

 sg.popup_error(str(e), title="Error")
 gt.empty_inputs(window, '-SAMPLE_RATE_INPUT-', '-
N_SAMPLES_INPUT-')

 if event == '-STOP-':
 window['-ACQUIRE-'].metadata = False
 gt.set_visible(window, False, '-STOP-')
 gt.set_visible(window, True, '-RESET-', '-ACQUIRE-')
 if values['-ON_DEMAND-']:
 gt.set_disabled(window, False, '-FINITE_SAMPLING-')
 if values['-FINITE_SAMPLING-']:
 gt.set_visible(window, True, '-SAVE-')

 if event == '-SAVE-':
 try:
 file_name = sg.popup_get_file("Save CSV File",
default_path=gt.get_desktop_dir(),
 default_extension="*.csv",
save_as=True,
 file_types=(("CSV Files",
"*.csv"),))
 if file_name == '' or file_name[-1] == '/':
 raise ValueError("File name can't be empty.")
 elif file_name is not None:
 niDAQ.save_data_acquisition(file_name)
 else:
 raise ValueError("Couldn't save file.")
 sg.popup("Success", "Data saved to CSV successfully!")
 except Exception as e:
 sg.popup_error(str(e), title="Error")

 if event == '-RESET-':
 niDAQ.clear_data_acquisition()
 niDAQ.update_figure(fig, figure_canvas_agg)
 gt.set_visible(window, False, '-RESET-', '-SAVE-', '-
SAMPLES_COLLECTED_TXT-', '-SAMPLES_COLLECTED_VALUE-')

 window['-MIN_TEMP_TXT-'].update(f"{niDAQ.get_alarm_min()} [ºC]" if
niDAQ.is_alarm_min_set() else 'Unset')
 window['-MAX_TEMP_TXT-'].update(f"{niDAQ.get_alarm_max()} [ºC]" if
niDAQ.is_alarm_max_set() else 'Unset')

 if window['-ACQUIRE-'].metadata:
 gt.set_disabled(window, True, '-N_SAMPLES_INPUT-', '-
SAMPLE_RATE_INPUT-')
 gt.set_visible(window, False, '-RESET-', '-ACQUIRE-')
 gt.set_visible(window, True, '-SAMPLES_COLLECTED_TXT-', '-
SAMPLES_COLLECTED_VALUE-')
 if values['-ON_DEMAND-']:
 time_interval = values['-SLIDER-']
 niDAQ.perform_data_acquisition(window, fig, figure_canvas_agg,
 niDAQ.get_calibration(),
time_interval, alarm_icon_keys)
 elif values['-FINITE_SAMPLING-']:
 if niDAQ.is_sampling_underway():
 niDAQ.perform_data_acquisition(window, fig,
figure_canvas_agg,
 niDAQ.get_calibration(),
time_interval, alarm_icon_keys)
 else:
 window['-ACQUIRE-'].metadata = False

Page: 39 of 58

 gt.set_visible(window, True, '-RESET-', '-SAVE-', '-
ACQUIRE-')
 gt.set_visible(window, False, '-STOP-')
 else:
 raise ValueError("Acquiring data incorrectly")
 window['-SAMPLES_COLLECTED_VALUE-'].update(len(niDAQ))
 niDAQ.trigger_alarm_icon(window, alarm_icon_keys)

 else:
 gt.set_disabled(window, False, '-ACQUIRE-')
 time_interval = None
 if values['-ON_DEMAND-']:
 gt.set_visible(window, False, '-TIME_INTERVAL-')
 if values['-FINITE_SAMPLING-']:
 gt.set_disabled(window, False, '-N_SAMPLES_INPUT-', '-
SAMPLE_RATE_INPUT-')

 window.close()

Page: 40 of 58

src/gui/guiExpressionInputCalibrate.py

import src.calibrationTools as ct
import src.guiTools as gt
from src.guiTools import sg
import time

text_input_keys = ['-A_INPUT-', '-B_INPUT-', '-C_INPUT-', '-M_INPUT-', '-
N_INPUT-']

def expression_calibrate_window():
 """
 Window for direct expression
 :return: pysimplegui window with its layout
 """
 sg.theme(gt.DEFAULT_THEME)
 first_column = sg.Column([
 [sg.Frame('Choose Expression Type:', [
 [sg.Radio(gt.TEMP_VOLT_LIN_EQ,
 group_id='exp_type',
 default=True,
 k='-LINEAR_EQ-',
 enable_events=True,
 pad=((10, 0), (10, 0)))],
 [sg.Text('m =', pad=((40, 0), 0),),
 sg.Input(size=gt.SIZE_INPUT,
 key='-M_INPUT-',
 enable_events=True,

disabled_readonly_background_color=sg.theme_button_color()[1]),
 sg.Text('n ='),
 sg.Input(size=gt.SIZE_INPUT,
 key='-N_INPUT-',
 enable_events=True,

disabled_readonly_background_color=sg.theme_button_color()[1])],
 [sg.Radio(gt.TEMP_VOLT_NON_LINEAR_EQ,
 group_id='exp_type',
 default=False,
 k='-NON_LINEAR_EQ-',
 enable_events=True,
 pad=((10, 0), (10, 10)))],
 [sg.Text('a =', pad=((40, 0), 0),),
 sg.Input(size=gt.SIZE_INPUT,
 key='-A_INPUT-',
 enable_events=True,
 disabled=True,

disabled_readonly_background_color=sg.theme_button_color()[1]),
 sg.Text('b ='),
 sg.Input(size=gt.SIZE_INPUT,
 key='-B_INPUT-',
 enable_events=True,
 disabled=True,

disabled_readonly_background_color=sg.theme_button_color()[1]),
 sg.Text('c ='),
 sg.Input(size=gt.SIZE_INPUT,
 key='-C_INPUT-',

Page: 41 of 58

 enable_events=True,
 disabled=True,

disabled_readonly_background_color=sg.theme_button_color()[1])]
], expand_x=True, pad=(10, 10), relief=sg.RELIEF_SUNKEN)],
 [sg.Push(), sg.Button('Enter', k='-ENTER-')],
 [sg.Frame('Calculated expression:', [
 [sg.Text("Calculating expression...", pad=(10, 10), k='-EQUATION-'
),
 sg.Button("Copy", key="-COPY-", tooltip="Copy to clipboard",
pad=((10, 10), (10, 10)), visible=False)],
], expand_x=True, pad=(10, 10), relief=sg.RELIEF_RAISED,
element_justification='center')],
 [sg.Frame('Voltage Input:', [
 [sg.Text("Type In", pad=(10, 0), k='-TOGGLE_OFF_TXT-',
font=gt.FONT_BOLD),
 sg.Button(image_filename=gt.TOGGLE_OFF_PATH,
 key='-TOGGLE-',
 button_color=(sg.theme_background_color(),
sg.theme_background_color()),
 border_width=0,
 metadata=False),
 sg.Text("Measure", k='-TOGGLE_ON_TXT-', font=gt.FONT_DEFAULT)],
 [sg.Text('V =', k='-V_TXT-', pad=(10, 10)),
 sg.Input(size=gt.SIZE_INPUT,
 key='-V_INPUT-',
 enable_events=True,

disabled_readonly_background_color=sg.theme_button_color()[1]),
 sg.Text('[V]')]
], expand_x=True, pad=(10, 10), relief=sg.RELIEF_SUNKEN)],
 [sg.Push(), sg.Button('Calculate', k='-CALCULATE-', disabled=True)]
])

 second_column = sg.Column(
 [
 [sg.Canvas(k='-CANVAS-', size=(200, 200))],
 [sg.Table(values=[],
 headings=['Voltage (V)', 'Temperature (ºC)'],
 k='-TABLE-',
 num_rows=5,
 enable_click_events=True,
 enable_events=True,
 expand_x=True)],
 [sg.Button('Clear', k='-CLEAR-', tooltip=" Clear table ",
disabled=True),
 sg.Button('Delete', k='-DELETE-', tooltip=" Delete last row ",
disabled=True)],
 [sg.Push(), sg.Button('Choose', k='-CHOOSE-', disabled=True)]
]
)

 # Define the layout
 layout = [
 [sg.VPush()],
 [first_column, second_column],
 [sg.VPush()]
]

 return gt.gui_window_with_graph('Input Sensor Calibration Equation',
layout,

Page: 42 of 58

 gt.FIG_SIZE_WIDTH, gt.FIG_SIZE_HEIGHT,
False)

def expression_input_calibrate_window_behavior(niDAQ, window, fig,
figure_canvas_agg):
 """
 Behaviour for direct expression input calibration window
 :param niDAQ: object
 :param window: pysimplegui window
 :param fig: calibration plot
 :param figure_canvas_agg: canvas for calibration plot
 :return: calibration object
 """
 calibration = ct.LinearCalibration()
 while True:
 event, values = window.read()
 if event == sg.WIN_CLOSED:
 break

 if event == '-LINEAR_EQ-':
 gt.set_disabled(window, False, '-M_INPUT-', '-N_INPUT-')
 window['-A_INPUT-'].update('', disabled=True)
 window['-B_INPUT-'].update('', disabled=True)
 window['-C_INPUT-'].update('', disabled=True)

 if event == '-NON_LINEAR_EQ-':
 window['-M_INPUT-'].update('', disabled=True)
 window['-N_INPUT-'].update('', disabled=True)
 gt.set_disabled(window, False, '-A_INPUT-', '-B_INPUT-', '-
C_INPUT-')

 if event == '-CHOOSE-':
 window.close()
 return calibration

 # only accepts digits, decimal point '.' and '-'

 if event in text_input_keys:
 gt.filter_numeric_characters(window, values, event,
text_input_keys)

 if event == '-ENTER-':
 try:
 if values['-LINEAR_EQ-']:
 # checks if any input value is empty

 if any(values[key] == '' for key in ['-M_INPUT-', '-
N_INPUT-']):
 raise ValueError("Values must be assigned")
 # checks if the input is a valid number

 if any(not gt.is_number(values[key]) for key in ['-
M_INPUT-', '-N_INPUT-']):
 raise ValueError("Values must be a numeric value.")
 # checks if equation type has changed

 if calibration.is_type('LINEAR_EQUATION'):
 # updates parameters
 calibration.set_parameters(values['-M_INPUT-'],
values['-N_INPUT-'])
 else:

Page: 43 of 58

 # changes object from nonlinear to linear calibration

 calibration =
calibration.to_linear_calibration(values['-M_INPUT-'], values['-N_INPUT-'])

 elif values['-NON_LINEAR_EQ-']:
 # checks if any input is empty

 if any(values[key] == '' for key in ['-A_INPUT-', '-
B_INPUT-', '-C_INPUT-']):
 raise ValueError("Values must be assigned")
 # checks if the input is a valid number

 if not any(gt.is_number(values[key]) for key in ['-
A_INPUT-', '-B_INPUT-', '-C_INPUT-']):
 raise ValueError("Values must be a numeric value.")
 # checks if equation type has changed

 if calibration.is_type('NON_LINEAR_EQUATION'):
 # updates parameters
 a, b, c = gt.to_number_n_dec(gt.N_DECIMALS,
 values['-A_INPUT-'],
values['-B_INPUT-'], values['-C_INPUT-'])
 calibration.set_parameters(a, b, c)
 else:
 # changes object from nonlinear to linear calibration

 calibration =
calibration.to_nonlinear_calibration(values['-A_INPUT-'], values['-B_INPUT-'],

values['-C_INPUT-'])

 window['-EQUATION-'].update(value=repr(calibration))
 gt.set_disabled(window, False, '-CHOOSE-', '-CALCULATE-')
 gt.set_visible(window, True, '-COPY-')
 # empties text inputs
 for key in text_input_keys:
 window[key].update('')
 calibration.update_data()
 window['-TABLE-'].update(values=calibration.data)
 calibration.update_figure(fig, figure_canvas_agg,
known_expression=True)
 except ValueError as e:
 sg.popup_error(str(e), title="Error")

 if isinstance(event, tuple):
 # TABLE CLICKED Event has value in format ('-TABLE=',
'+CLICKED+', (row,col))
 # You can also call Table.get_last_clicked_position to get the
cell clicked
 if event[0] == '-TABLE-':
 if event[2][0] not in [-1, None]: # If an actual row was
clicked
 calibration.update_figure(fig, figure_canvas_agg,
 known_expression=True,
 is_point_selected=True,
 x_sel_point=calibration[event[2]
[0]][0],
 y_sel_point=calibration[event[2]
[0]][1])

Page: 44 of 58

 if event == '-DELETE-':
 del calibration[-1]
 calibration.change_in_data(window, fig, figure_canvas_agg,
known_expression=True)
 calibration.update_figure(fig, figure_canvas_agg,
known_expression=True)

 if event == '-CLEAR-':
 calibration.clear_data()
 calibration.change_in_data(window, fig, figure_canvas_agg,
known_expression=True)
 calibration.update_figure(fig, figure_canvas_agg,
known_expression=True)

 if event == '-COPY-':
 window['-COPY-'].update('Text Copied!', disabled=True)
 sg.clipboard_set(repr(calibration)) # Copy the text to clipboard

 time.sleep(1)
 window['-COPY-'].update('Copy', disabled=False)

 if event == '-TOGGLE-':
 gt.gui_toggle_behaviour(window)

 if event == '-CALCULATE-':
 try:
 if not window['-TOGGLE-'].metadata:
 if values['-V_INPUT-'] == "":
 raise ValueError("Values must be assigned")
 elif not gt.is_number(values['-V_INPUT-']):
 raise ValueError("Values must be a numeric value.")
 inputVoltage = float(values['-V_INPUT-'])
 if inputVoltage in calibration.data:
 raise ValueError("Data input is repeated.")
 else:
 inputVoltage = niDAQ.read_voltage()

 calibration.add_voltage(inputVoltage)

 except ValueError as e:
 sg.popup_error(str(e), title="Error")

 calibration.update_figure(fig, figure_canvas_agg,
known_expression=True)
 window['-TABLE-'].update(values=calibration.data)
 window['-V_INPUT-'].update('')

 if len(calibration) > 0:
 gt.set_disabled(window, False, '-CLEAR-', '-DELETE-')
 else:
 gt.set_disabled(window, True, '-CLEAR-', '-DELETE-')

 window.close()

Page: 45 of 58

src/gui/guiTempVoltCalibrate.py

import src.calibrationTools as ct
import time

import src.guiTools as gt

from src.guiTools import sg

text_input_keys = ['-V_INPUT-', '-T_INPUT-']

def select_points_window(data: list):
 """
 Behaviour for window with layout for selecting points in the
interpolation method
 :param data: pair list with data points
 :return: list with two data points selected
 """
 sg.theme(gt.ACCENT_THEME)

 data_sorted = gt.sort_pair_list_by_x(list(data))
 available_points = list(data_sorted)

 column_left = sg.Column([
 [sg.Canvas(key='-CANVAS-')]
])

 column_right = sg.Column([
 [sg.Table(values=data_sorted,
 headings=['Voltage (V)', 'Temperature (ºC)'],
 k='-TABLE-',
 selected_row_colors='green on white',
 enable_click_events=True)],
 [sg.Push(), sg.Button('Select', k='-SELECT-')],
 [sg.Frame('Selected Points: ', [
 [sg.Text('list of points...', k='-POINTS-')]
], expand_x=True)],
 [sg.Push(), sg.Button("Choose", k='-CHOOSE-', visible=False)]
])

 layout = [
 [sg.VPush()],
 [column_left, column_right],
 [sg.VPush()]
]

 window, fig, figure_canvas_agg = gt.gui_window_with_graph("Choose Points"
, layout,

gt.FIG_SIZE_WIDTH, gt.FIG_SIZE_HEIGHT, True)

 axes, x, y = gt.get_axes_for_points(fig, data_sorted)
 gt.draw_points(axes, x, y, 'bo', "Data Points")
 axes[0].legend()
 gt.pack_canvas(figure_canvas_agg)

 selected_points = []

 while True:
 event, values = window.read()

Page: 46 of 58

 axes, x, y = gt.get_axes_for_points(fig, data_sorted)
 gt.draw_points(axes, x, y, 'bo', "Data Points")

 if event == sg.WIN_CLOSED:
 break

 if event == '-CHOOSE-':
 window.close()
 return gt.sort_pair_list_by_x(selected_points)

 if isinstance(event, tuple):
 # TABLE CLICKED Event has value in format ('-TABLE=',
'+CLICKED+', (row,col))
 if event[0] == '-TABLE-':
 if event[2][0] not in [-1, None]: # Header was clicked and
wasn't the "row" column
 gt.draw_points(axes, available_points[event[2][0]][0],
available_points[event[2][0]][1], 'yo')

 if event == '-SELECT-':
 if values['-TABLE-']:
 selected_row = values['-TABLE-'][0]

 if len(selected_points) >= 2:
 available_points.append(selected_points[0])
 selected_points.pop(0) # Remove the oldest point

 selected_points.append(available_points[selected_row]) # Add
the selected point
 available_points.pop(selected_row)
 available_points = gt.sort_pair_list_by_x(available_points)

 window['-TABLE-'].update(values=available_points) # Clear
the table selection
 window['-POINTS-'].update(selected_points)

 if selected_points:
 gt.draw_points(axes, gt.get_sorted_nth_elements(selected_points, 0
),
 gt.get_sorted_nth_elements(selected_points, 1), 'r-
o', "Selected Points")
 if len(selected_points) > 1:
 gt.set_visible(window, True, '-CHOOSE-')

 axes[0].legend()
 gt.pack_canvas(figure_canvas_agg)

 window.close()

def temp_volt_calibrate_window():
 """
 Window and layout for temperature-voltage relation
 :return: window with layout
 """
 sg.theme(gt.DEFAULT_THEME)

 column_left = sg.Column([
 [sg.Frame('Choose Expression Type:', [
 [sg.Radio(gt.TEMP_VOLT_LIN_EQ,
 group_id='exp_type',

Page: 47 of 58

 default=True,
 k='-LINEAR_EQ-',
 enable_events=True,
 pad=((10, 0), (10, 0)))],
 [sg.Radio(gt.TEMP_VOLT_LEAST_SQUARES,
 pad=((40, 0), 0),
 group_id='lin_eq',
 default=True,
 enable_events=True,
 k='-LEAST_SQUARES-')],
 [sg.Radio(gt.TEMP_VOLT_LIN_INTERP,
 pad=((40, 0), 0),
 group_id='lin_eq',
 default=False,
 enable_events=True,
 k='-LINEAR_INTERPOLATION-'),
 sg.Button("Choose Points",
 k='-CHOOSE_POINTS-',
 visible=False,
 pad=((10, 0), 0),)],
 [sg.Radio(gt.TEMP_VOLT_NON_LINEAR_EQ,
 group_id='exp_type',
 default=False,
 k='-NON_LINEAR_EQ-',
 enable_events=True,
 pad=((10, 0), (10, 10)))]
], expand_x=True, pad=(10, 10), relief=sg.RELIEF_SUNKEN)],
 [sg.Frame('Input Data:', [
 [sg.Text("Type In", pad=(10, 0), k="-TOGGLE_OFF_TXT-",
font=gt.FONT_BOLD),
 sg.Button(image_filename=gt.TOGGLE_OFF_PATH,
 key='-TOGGLE-',
 button_color=(sg.theme_background_color(),
sg.theme_background_color()),
 border_width=0,
 metadata=False),
 sg.Text("Measure", k="-TOGGLE_ON_TXT-")],
 [sg.Text('V =', k='-V_TXT-', pad=(10, 0)),
 sg.Input(size=gt.SIZE_INPUT,
 key='-V_INPUT-',
 enable_events=True,

disabled_readonly_background_color=sg.theme_button_color()[1]),
 sg.Text('T ='),
 sg.Input(size=gt.SIZE_INPUT, key='-T_INPUT-',
enable_events=True),
 sg.Button('Enter', k='-ENTER-', bind_return_key=True,
pad=((10, 0), (10, 10)))]
], expand_x=True, pad=(10, 10), relief=sg.RELIEF_SUNKEN)],
 [sg.Table(values=[],
 headings=['Voltage (V)', 'Temperature (ºC)'],
 k='-TABLE-',
 enable_click_events=True,
 enable_events=True)],
 [sg.Text('Number of Samples: '),
 sg.Text('0', k='-N_SAMPLES-'),
 sg.Push(),
 sg.Button('Clear', k='-CLEAR-', tooltip=" Clear table ",
disabled=True),
 sg.Button('Delete', k='-DELETE-', tooltip=" Delete last row "
, disabled=True)]

Page: 48 of 58

])

 column_right = sg.Column([
 [sg.Frame('Calibration Equation',
 [[sg.Text('Expression...',
 k='-EQ_EXPRESSION-',
 enable_events=True,
 metadata=False,
 pad=(10, 10)),
 sg.Button("Copy", key="-COPY-", tooltip="Copy to
clipboard", pad=(10, 10), visible=False)]
],
 expand_x=True,
 expand_y=True,
 pad=(10, 10),
 element_justification='center',
 relief=sg.RELIEF_RAISED)],
 [sg.Canvas(k='-CANVAS-', size=(200, 200))],
 [sg.Push(), sg.Button('Choose', k='-CHOOSE-', disabled=True)]
])

 layout = [
 [sg.VPush()],
 [column_left, column_right],
 [sg.VPush()],
]

 return gt.gui_window_with_graph('Known Temperature-Voltage Sensor
Calibration Equation', layout,
 gt.FIG_SIZE_WIDTH, gt.FIG_SIZE_HEIGHT,
False)

def temp_volt_calibrate_window_behavior(niDAQ, window, fig, figure_canvas_agg
):
 """
 Behaviour for temperature-voltage relation window
 :param niDAQ: object
 :param window: pysimplegui window
 :param fig: calibration plot
 :param figure_canvas_agg: canvas for the calibration plot
 :return: object with set calibration
 """
 calibration = ct.LinearCalibration('LEAST_SQUARES')
 while True:
 event, values = window.read()
 if event == sg.WINDOW_CLOSED:
 break

 if event == '-CHOOSE-':
 window.close()
 return calibration

 if event == '-LINEAR_EQ-':
 gt.set_disabled(window, False, '-LEAST_SQUARES-', '-
LINEAR_INTERPOLATION-')
 if not calibration.is_type('LINEAR_EQUATION'):
 calibration = calibration.to_linear_calibration()

 if event == '-CHOOSE_POINTS-':

calibration.set_chosen_points(select_points_window(calibration.get_data()))

Page: 49 of 58

 if event == '-NON_LINEAR_EQ-':
 gt.set_disabled(window, True, '-LEAST_SQUARES-', '-
LINEAR_INTERPOLATION-')
 gt.set_visible(window, False, '-CHOOSE_POINTS-')
 if not calibration.is_type('NON_LINEAR_EQUATION'):
 calibration = calibration.to_nonlinear_calibration()
 elif window['-EQ_EXPRESSION-'].metadata:
 # To calculate a nonlinear function there must be at least 3
points
 window['-EQ_EXPRESSION-'].update("Waiting for 3 points...")

 # only accepts digits and decimal point '.'

 if event in ['-V_INPUT-', '-T_INPUT-']:
 gt.filter_numeric_characters(window, values, event,
text_input_keys)

 if event == '-TOGGLE-':
 gt.gui_toggle_behaviour(window)

 if event == '-ENTER-':
 try:
 if values['-T_INPUT-'] == "":
 raise ValueError("Values must be assigned")
 elif not gt.is_number(values['-T_INPUT-']):
 raise ValueError("Values must be a numeric value.")

 if not window['-TOGGLE-'].metadata:
 if values['-V_INPUT-'] == "":
 raise ValueError("Values must be assigned")
 elif not gt.is_number(values['-V_INPUT-']):
 raise ValueError("Values must be a numeric value.")
 inputValues = [float(values['-V_INPUT-']), float(values['-
T_INPUT-'])]
 else:
 inputValues = [niDAQ.read_voltage(), float(values['-
T_INPUT-'])]

 if calibration.data_exists(inputValues):
 raise ValueError("Data input is repeated.")

 calibration.add_data(inputValues)

 except ValueError as e:
 sg.popup_error(str(e), title="Error")

 window['-TABLE-'].update(values=calibration.data)
 window['-N_SAMPLES-'].update(len(calibration))
 window['-V_INPUT-'].update('')
 window['-T_INPUT-'].update('')

 if event == '-DELETE-':
 del calibration[-1]
 calibration.change_in_data(window, fig, figure_canvas_agg,
known_expression=False)

 if event == '-CLEAR-':
 calibration.clear_data()
 calibration.change_in_data(window, fig, figure_canvas_agg,
known_expression=False)

Page: 50 of 58

 if event == '-COPY-':
 window['-COPY-'].update('Text Copied!', disabled=True)
 sg.clipboard_set(repr(calibration)) # Copy the text to clipboard

 time.sleep(1)
 window['-COPY-'].update('Copy', disabled=False)

 if len(calibration) > 0:
 gt.set_disabled(window, False, '-CLEAR-', '-DELETE-')
 if values['-LINEAR_EQ-']:
 if len(calibration) > 1:
 if values['-LEAST_SQUARES-']:
 calibration.update_method('LEAST_SQUARES')
 calibration.calculate_expression()
 else:
 calibration.update_method('LINEAR_INTERPOLATION')
 if calibration.interpolation_points:

calibration.calculate_expression(calibration.interpolation_points[0],

calibration.interpolation_points[1])
 else:

calibration.calculate_expression([calibration.sort_x()[0],
calibration.sort_y()[0]],

[calibration.sort_x()[-1], calibration.sort_y()[-1]])

 window['-EQ_EXPRESSION-'].update(repr(calibration))
 window['-EQ_EXPRESSION-'].metadata = True
 else:
 # To calculate a polynomial function there must be at
least 2 points
 window['-EQ_EXPRESSION-'].metadata = False
 elif values['-NON_LINEAR_EQ-']:
 if len(calibration) > 2:
 calibration.calculate_expression()
 window['-EQ_EXPRESSION-'].update(repr(calibration))
 window['-EQ_EXPRESSION-'].metadata = True
 else:
 window['-EQ_EXPRESSION-'].metadata = False
 calibration.update_figure(fig, figure_canvas_agg,
known_expression=False)
 else:
 gt.set_disabled(window, True, '-CLEAR-', '-DELETE-')
 gt.set_visible(window, False, '-COPY-')
 window['-EQ_EXPRESSION-'].metadata = False

 if window['-EQ_EXPRESSION-'].metadata:
 gt.set_disabled(window, False, '-CHOOSE-')
 gt.set_visible(window, True, '-COPY-')
 else:
 gt.set_disabled(window, True, '-CHOOSE-')
 gt.set_visible(window, False, '-COPY-')
 # To calculate a linear function there must be at least 2 points

 window['-EQ_EXPRESSION-'].update(f"Waiting for "
 f"{'2' if calibration.is_type(
'LINEAR_EQUATION') else '3'} points...")

Page: 51 of 58

 gt.set_visible(window, values['-LINEAR_INTERPOLATION-'] and values['-
LINEAR_EQ-'] and
 window['-EQ_EXPRESSION-'].metadata, '-CHOOSE_POINTS-')

 window.close()

Page: 52 of 58

src/guiTools.py

import matplotlib
import time
import re

import PySimpleGUI as sg

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from pathlib import Path

---------- APPEARANCE ----------
WINDOW_WIDTH = 900
WINDOW_HEIGHT = 600

FIG_SIZE_WIDTH = 5
FIG_SIZE_HEIGHT = 4

SIZE_INPUT = (7, 1)

DEFAULT_THEME = "GreenMono"
ACCENT_THEME = "LightGreen10"

FONT_DEFAULT = ('Helvetica', 10)
FONT_BOLD = ('Helvetica', 10, 'bold')

---------- TEXTS FOR WINDOWS ----------

Calibration Method
CAL_METHOD_TEMP_VOLT = "Temperature and Voltage Relation"

CAL_METHOD_EXP = "Direct Expression Input"

Temperature and Voltage Correlation
TEMP_VOLT_LIN_EQ = "Linear Equation"
TEMP_VOLT_LEAST_SQUARES = "Least Squares Method"
TEMP_VOLT_LIN_INTERP = "Linear Interpolation"
TEMP_VOLT_NON_LINEAR_EQ = "Non-linear Equation"

Direct Expression Input
INP_EXP_LIN_EQ = "Linear Equation",
INP_EXP_NON_LIN = "Non-linear Equation"

Data Acquisition
DATA_ON_DEMAND = "On Demand"
DATA_CUSTOM = "Finite Sampling"

-------- IMAGE PATHS ---------
ICON_PATH = 'assets/icon_big.png'
TOGGLE_ON_PATH = 'assets/switch_on.png'
TOGGLE_OFF_PATH = 'assets/switch_off.png'
ALARM_MIN_ON_PATH = 'assets/alarm_min_on.png'
ALARM_MIN_OFF_PATH = 'assets/alarm_min_off.png'
ALARM_MAX_ON_PATH = 'assets/alarm_max_on.png'
ALARM_MAX_OFF_PATH = 'assets/alarm_max_off.png'
ALARM_UNSET_PATH = 'assets/alarm_unset.png'

-------- PARAMETERS ---------
N_DECIMALS = 3

Page: 53 of 58

MIN_TIME_UPDATE_MS = 60 # minimum time that app can update

MAX_TIME_INTERVAL_MS = 5100

def get_desktop_dir():
 """
 Get the user's desktop directory
 :return: user's desktop as a string
 """

 return str(Path.home().joinpath("Desktop")) + "/"

def filter_digits(window, values, event, text_input_keys: list):
 """
 Filters out non-digit text inputs even if the user types letter, numbers
or symbols
 :param window: window from gui where text is inputted and shown
 :param values: list of values in gui window
 :param text_input_keys: list with text-input keys
 :param event: event in gui window
 :return:
 """
 k_event = text_input_keys[text_input_keys.index(event)] if len
(text_input_keys) > 1 else text_input_keys[0]
 values[k_event] = "".join(c for c in values[k_event] if c.isdigit())
 window[k_event].update(values[k_event])

def filter_numeric_characters(window, values, event, text_input_keys: list):
 """
 Filters out non-numeric text inputs so that even if the user types
letters and numbers, only numbers, '.' and '-'
 are shown
 :param window: window from gui where text is inputted and shown
 :param values: list of values in gui window
 :param text_input_keys: list with text-input keys
 :param event: event in gui window
 """
 # assigns text input key where there is an event

 k_event = text_input_keys[text_input_keys.index(event)] if len
(text_input_keys) > 1 else text_input_keys[0]
 # empty string where filtered out characters will be added

 filtered_chars = []
 # flag to signal if a '.' has already been typed in

 dot_found = False
 for char in values[k_event]:
 # adds if char is between 0-9
 if char.isdigit():
 filtered_chars.append(char)
 # adds '.' if it's the first one found

 elif char == '.' and not dot_found:
 filtered_chars.append(char)
 dot_found = True
 # adds '-' if it's in the first position

 elif char == '-' and len(filtered_chars) == 0:

Page: 54 of 58

 filtered_chars.append(char)

 values[k_event] = ''.join(filtered_chars)
 window[k_event].update(values[k_event])

def _check_if_key(key_input):
 """
 Private method that checks if the value passed is a valid key
 :param key_input:
 :return:
 """
 # Checks if value is a string
 if not isinstance(key_input, str):
 raise TypeError(f"Variable 'key_input' must be a string,\ngot {type
(key_input).__name__} instead.")
 # Checks if the value passed has the correct key format

 key_format = r'^-\w+-$' # defining pattern: '-<key>-'

 if not re.match(key_format, key_input):
 raise ValueError(f"Invalid key format for 'key_input': '{key_input}'.
\nKeys must have '-<key>-'")

def check_if_valid_input(values, n_decimals, *args):
 """
 Checks if input value when entered is a valid number and isn't empty
 :param n_decimals: number of decimals desired
 :param values: list of values in gui window
 :param args: input key(s)
 :return: list of valid input(s) as floats with 3 decimals
 """
 # list where valid inputs will be stored

 valid_inputs = []
 for key_input in args:
 # checks if key input is valid
 _check_if_key(key_input)
 # checks if input value isn't empty
 if values[key_input] == "":
 raise ValueError("Values must be assigned")
 # checks if input is a valid number
 elif not is_number(values[key_input]):
 raise ValueError("Values must be a numeric value.")
 # converts input from string to float with 3 decimals and adds it to
the valid input list
 valid_inputs += to_number_n_dec(n_decimals, values[key_input])
 return valid_inputs

def set_disabled(window, is_disabled: bool, *args):
 """
 Updates disabled parameter of an element
 :param window: gui window
 :param is_disabled: bool, True: if element should be disabled, False if
not
 :param args: element key(s)
 :return:
 """
 for key_input in args:
 _check_if_key(key_input)
 window[key_input].update(disabled=is_disabled)

Page: 55 of 58

def set_visible(window, is_visible: bool, *args):
 """
 Updates visibility parameter of an element
 :param window: gui window
 :param is_visible: bool, True: if element should be visible, False if not
 :param args: element key(s)
 :return:
 """
 for key_input in args:
 _check_if_key(key_input)
 window[key_input].update(visible=is_visible)

def empty_inputs(window, *args):
 """
 Empties the input in a window
 :param window: gui window
 :param args: input key(s)
 :return:
 """
 for key_input in args:
 _check_if_key(key_input)
 window[key_input].update('')

def is_number(string):
 """
 Same as isnumeric but with floats also
 :param string: number input
 :return: True if it's a number, False if it isn't
 """
 if string[0] == '-':
 string = string[1:]

 return string.replace('.', '', 1).isdigit() or string.isnumeric()

def to_number_n_dec(n_decimals, *args):
 """
 Turns arguments to a float with 3 decimal points
 :param n_decimals: number of decimals desired
 :param args:
 :return:
 """
 if not isinstance(n_decimals, int):
 raise TypeError(f"Number of decimals must be integer,\ngot {type
(n_decimals).__name__}")
 result = []
 for number in args:
 if n_decimals > 0:
 result.append(round(float(number), n_decimals))
 else:
 result.append(round(int(number), n_decimals))
 return result

def calculate_frequency(period):
 """
 Calculates frequency value, given period value
 :param period: period value
 :return: frequency value in the same time unit as period value
 """
 if not isinstance(period, (int, float)):
 raise TypeError(f"Expected a number (float or integer), got {type
(period).__name__} instead")

Page: 56 of 58

 return 1 / period

def gui_toggle_behaviour(window):
 window['-TOGGLE-'].metadata = not window['-TOGGLE-'].metadata
 if window['-TOGGLE-'].metadata:
 set_disabled(window, True, '-V_INPUT-')
 window['-V_INPUT-'].update("")
 window['-V_TXT-'].update(text_color=sg.theme_button_color()[1])
 window['-TOGGLE_OFF_TXT-'].update(font=FONT_DEFAULT)
 window['-TOGGLE_ON_TXT-'].update(font=FONT_BOLD)
 else:
 set_disabled(window, False, '-V_INPUT-')
 window['-V_TXT-'].update(text_color=sg.theme_text_color())
 window['-TOGGLE_ON_TXT-'].update(font=FONT_DEFAULT)
 window['-TOGGLE_OFF_TXT-'].update(font=FONT_BOLD)

 window['-TOGGLE-'].update(image_filename=TOGGLE_ON_PATH if window['-
TOGGLE-'].metadata else TOGGLE_OFF_PATH)

def gui_window_with_graph(title, layout, figSizeWidth, figSizeHeight, isModal
):
 """
 Initializes a PySimpleGUI window with a matplotlib using a CANVAS with
empty graph that can be updated later
 :param title: title of the window
 :param layout: layout designed for the window
 :param figSizeWidth: desired width of the graph
 :param figSizeHeight: desired height of the grap
 :param isModal: bool if window is modal
 :return: window, fig, figure_canvas_agg
 """
 # Create the PySimpleGUI window with the provided title and layout

 window = sg.Window(title, layout, finalize=True, element_justification=
'center', modal=isModal,
 size=(WINDOW_WIDTH, WINDOW_HEIGHT))
 # Create a new matplotlib Figure object with the provided size

 fig = matplotlib.figure.Figure(figsize=(figSizeWidth, figSizeHeight))
 # Adjust the position of the axes within the figure

 fig.subplots_adjust(top=0.8, bottom=0.25, left=0.2) # Move the axes up
by adjusting the top and bottom positions

 # Add a subplot (axes) to the figure and plot an empty line

 fig.add_subplot(111).plot([], [])
 # Create a FigureCanvasTkAgg object by associating the figure with the
tkinter canvas element
 figure_canvas_agg = FigureCanvasTkAgg(fig, window['-CANVAS-'].TKCanvas)
 # Draw the initial empty plot on the canvas

 figure_canvas_agg.draw()
 # Pack the canvas widget into the window's layout

 figure_canvas_agg.get_tk_widget().pack()

 return window, fig, figure_canvas_agg

def get_axes_for_points(fig, data: list):
 """

Page: 57 of 58

 Creates axes for a graph made with data points
 :param fig:
 :param data: list of points
 :return: axes with xlabel, ylabel and a grid and x and y list of
separated data
 """
 axes = fig.axes
 x = [i[0] for i in data]
 y = [i[1] for i in data]
 axes[0].clear()
 axes[0].set_xlabel("Voltage (V)")
 axes[0].set_ylabel("Temperature (ºC)")
 axes[0].grid()
 return axes, x, y

def pack_canvas(figure_canvas_agg):
 """
 Packs canvas for later use in graph
 :param figure_canvas_agg:
 :return:
 """
 figure_canvas_agg.draw()
 figure_canvas_agg.get_tk_widget().pack()

def draw_points(axes, x_points, y_points, marker, label=None):
 """
 If a user selects a points in table, it will be drawn in table
 :param axes:
 :param x_points: x point or list
 :param y_points: y point or list
 :param marker: desired shape and color for point/s
 :param label: name of label
 :return:
 """
 axes[0].plot(x_points, y_points, marker, label=label)

def sort_pair_list_by_x(data):
 """
 Sorts a list of pairs by x
 :param data: list of data points
 :return: list of pairs sorted
 """
 sorted_points = sorted(data, key=lambda p: p[0])
 return sorted_points

def get_sorted_nth_elements(data, n):
 """
 Extracts elements at any index n from the pairs
 :param data: list of pairs
 :param n: nth element [0] or [1]
 :return: list of nth elements
 """
 return [i[n] for i in sort_pair_list_by_x(data)]

Page: 58 of 58

