UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
ESCUELA POLITECNICA SUPERIOR DE ELCHE

GRADO EN INGENIERIA ELECTRONICA Y
AUTOMATICA INDUSTRIAL

ENHANCING STUDENT LEARNING IN
TEMPERATURE SENSING AND DATA

ACQUISITION WITH PYRODAQ:

A Python-Based Approach for Controlling National
Instruments Data Acquisition Devices

TRABAJO FIN DE GRADO
Septiembre —2023

AUTORA: Judit Danso Llaquet
DIRECTORA: Julia Arias Rodriguez

“The skill I was learning was a crucial one,
the patience to read things I could not yet understand.”

Tara Westover

TABLE OF CONTENT

LIST OF FIGUREScutiintinrentinnesinstennesnessisssessssssssssesssssssssasssssssesssssssssaessassnne VI
LIST OF SNIPPETSuuuiiinieiieninneninstennessnsssesssessssssssssessssssessasssssssessasssssssessassane IX
LIST OF EQUATIONS.....uoiiiiinientinnesinssennessnessessnsssnsssssssessssssessasssssssessasssssssessassane XI
LIST OF ABBREVIATIONSuuuiiiiiininninsnennesensnessncsnsssesssssssessessasssssssssssssssssaess XII
ABSTRACT ..uereinninrineennennesnesssssssssessesssessssssssssssssssssssssssassssssssssasssssssassassasesss XIII
RESUMEN ...cotiiiiiientinnennnsnessnessnsssessssssnssssssasssesssessassasssssssasssasssessassassssessassssssassasssns XV
1. INTRODUCTION AND BACKGROUNDuuiiierinsnennnsnnnsnesncssessaesnssanesnenns 17

1.1. A BRIEF INTRODUCTION TO THE NATIONAL INSTRUMENTS DAQ AND LABVIEW
18

1.2, PYTHON, FROM A VERSATILE PROGRAMMING LANGUAGE TO USES IN
TEMPERATURE SENSING AND DATA ACQUISITION........cccoiiminmmirnnessss s ssssssnnss 19

1.3. OVERVIEW OF TEMPERATURE SENSING CIRCUITRYcccocniminrnnennsnnnsnssenns 20

1.4. IDENTIFICATION OF GAPS IN THE TRADITIONAL APPROACHES THAT THE

CURRENT RESEARCH AIMS TO ADDRESS.........ccccuntmnimiimninisnmsssssssssssssss s sssssssssns 20
1.5. OBUECTIVES ..ot ssss s s s s s s ss s smsssansssns sansnssnssnn s 21
1.6. OVERVIEW OF THE STRUCTURE OF THE THESIS........ccccoooiiimnrrrnennneennnenns 21
2. METHODOLOGY ..uuiiienrenninsnesinssesssessncssesssessssssssssessssssessassssssssssssssssssassassase 23
2.1. OVERVIEW OF THE METHODOLOGYcccccintmmenissimssnsssns 23
2.2, REQUIREMENT GATHERING AND ANALYSIS........cocoimiimnnimsnnesssssns s 24
23. IMPLEMENTATION........oooiiietiimnsn it sss s s ssss s s s s s s s s s s smssan s same s 25
2.3.1. DESCRIPTION OF THE NATIONAL INSTRUMENT DAQ SYSTEM AND
TEMPERATURE SENSOR USEDcccuiiiiiiiiiit ettt 25

il

2.3.2. OVERVIEW OF THE PROGRAMMING ENVIRONMENT (PYTHON) AND

SOFTWARE COMPONENTS UTILIZEDoooiiiiiieiieiee ettt 26
2.4. TESTING AND QUALITY ASSURANCE STRATEGYcccccinmmnmminsmmnsnnssesssnssssssnns 27
2.5. USER EVALUATION AND FEEDBACK.........ccoicinmitnnsnirsssnss s sssssns s 29
3. DEVELOPING THE APPLICATION......ccinienrenrnesnnsuessnesnsssesncssnsssessasanne 30

3.1. INTRODUCTION TO THE TEMPERATURE SENSING CIRCUIT CONTROL

o o 007 N I 1] 30
3.2 APPLICATION FEATURES AND CAPABILITIESccoonniinimninennss e 31
3.3. DESIGNING THE USER INTERFAGCEccoooirnrrrnsr s sss s 39
3.3.1. ICON DESIGN AND GUI AESTHETICSc.ooiiiiiiieeeiee et 39
3.3.2. GUI LAYOUT AND COMPONENTSooiiiiiiiitie ettt 41
3.4. OVERVIEW OF THE HIGH-LEVEL ARCHITECTUREccooivtmnmnrnnenssrsssnsseeans 45
3.5. BUILDING THE GRAPHICAL USER INTERFACEccccvcimnmnimneninsnssssnsssesnns 49
3.6. MANAGING USER INTERACTION AND CONTROL LOGICccocrrmmrinnrsnsssnnsnnns 58
3.6.1. INTEGRATING NATIONAL INSTRUMENTS DAQcoiiiiiieiiieiieneeeee e 60
3.6.2. INTEGRATING TEMPERATURE SENSING AND CIRCUIT CONTROL
FUNCTIONALITY ettt sttt ettt et nne e 63
3.7. USER INTERACTION FLOW......coooiiimnetisimnsn s ssss s ssse s s sss s s sssssans 64
3.8. ERROR HANDLING. ...ttt s s s s s s s sans s 76
3.9. TESTING, DEBUGGING, AND VALIDATIONccocvnimriminernrinesssnsssss s ssssssssssnns 78
3.10. SUGGESTIONS FOR FUTURE RESEARCH AND DEVELOPMENTcccusemnsurnans 79
4. EXPERIMENTAL SETUP.....uuuiinrenienninnennnsnisnesssssessssssssssessssssssssessassnes 82
4.1. 103 10 U 8 T 82

4.2. CALIBRATION AND VALIDATION PROCEDURES FOR THE TEMPERATURE
SENSOR. ...ttt E R R R e e RE R e a R e naEnn 83

43. RESULTS AND ANALYSIS ...ttt ssssssss s s ssssans 84

v

4.3.1. CONSIDERATION OF HOW THE PROGRAM CAN FACILITATE STUDENT

ENGAGEMENT AND EXPLORATION IN EXPERIMENTAL SETUPccooiiiiiiiieieeeee 87
5. CONCLUSIONSuoiinienensninsnesnessesssessasssessasssssssesssssssessessasssasssssssessasssssssessassane 88
5.1. OVERVIEW OF RESEARCH OBJECTIVES AND MAIN FINDINGSc.cccusmnnuenane 88

5.2. EXPLORATION OF THE PROGRAM’S POTENTIAL TO ENHANCE LEARNING

EXPERIENCES IN TEMPERATURE SENSING AND DATA ACQUISITION..........ccceiiuninnncns 88
5.3. CONCLUDING REMARKScooiitrirmnicnnn st ss s s s snsss s 89
6. BIBLIOGRAPHY ...couuiiiiiininiinininsnnnsnensnncssenssessssesssassssnssssssssesssasssssssssssssesssases 920
APPENDIX A: ASSETS AND ATTRIBUTIONccueineeiueinsnecsnensnncsaecssnecsansssneeses 92
APPENDIX B: STUDENT’S GUIDEuucuniinuenrrinsninsnensnecsnecsaensssecssessssesssesssaesses 93
APPENDIX C: CODKE.......cccccccvuresueissnecsrncssccssasssassssssssssssassssassssssssssssassssassssssssssssassss 105

LIST OF FIGURES

Fig. 3.1.1 Initial wireframe of PyroDAQ application design...........cccceevveeveenuienneennen. 30
Fig. 3.2.1 Calibration OPtIONSc..eecuerieriirieniiiieeie ettt 32
Fig. 3.2.2 Direct calibration input for a LM35 temperature sensor example. 32
Fig. 3.2.3 Testing the calibration.c.cccceriiriieiiinieniiieneeeeeee e 33
Fig. 3.2.4 Known temperature-voltage correlation calibrationccccceceveevieniennnne 33
Fig. 3.2.5 Linear Calibration, Least Squares Method............ccccoceviiniininiininninicnn 34
Fig. 3.2.6 Linear Calibration, Linear Interpolationc..cccceveriinienininieenenienenn 34
Fig. 3.2.7 Non-Linear Calibrationcoccevieruieiienieneiieniesieeeeeeseeie e 34
Fig. 3.2.8 Calibration 10Z.......cccoevuiiiiiiiiiiierieeeeeeeeee e 35
Fig. 3.2.9 Example of data logging in known temperature and voltage correlation 35
Fig. 3.2.10 Further Examples of Data Logging, now with a Plotted Line 36
Fig. 3.2.11 On Demand Option with 500ms Time Interval, Data Acquisition 36
Fig. 3.2.12 On Demand Option with 60ms Time Interval, Data Acquisition 37

Fig. 3.2.13 Finite Sampling Example with 20 samples and 2 Sa/s, Data Acquisition ... 37
Fig. 3.2.14 Example of Alarms Set at 30.5°C and 31.5°C and Maximum Alarm Going

Off, Finite Sampling, Data ACQUISIEION......c.cevuieiieerieeriienieeiieenieeieeseeeieesireesaeeseveeneees 38
Fig. 3.2.15 Saving Data as @ CSV Fileccoociiiiiiiiiiiiiiiiceeeeeee e 38
Fig. 3.3.1 PyroDAQ icon in place with the green layoutc.ccoceveeiininiincnienene. 40
Fig. 3.3.2 PYTODAQ 100N ...cutiiiiiiieiieiiieieetest ettt sttt 40
Fig. 3.3.3 PyroDAQ assets for temperature alarms and togglecccoccvveeieniennnnnen. 41

Fig. 3.3.4 Disabled Buttons When There is No Data or Calibration, Known
Temperature-Voltage Correlation Calibration.............cceceveererrienieneeienieneeieseeeenne. 42
Fig. 3.3.5 Enabled button when there is data, disabled when there’s no calibration,
known temperature-voltage correlation calibration...........c.ccceceeveevienieneniineeneeienenn 43
Fig. 3.3.6 Action Sequence for choosing linearity of calibration, data input, and data
management in the left column, known temperature-voltage correlation calibration.... 44

Fig. 3.3.7 Parallel updating of user interaction in the right column, known temperature-

voltage correlation calibrationceccueeriiiiiieniieiiee e 44
Fig. 3.5.1 Combo box shown as dropdown menu in DAQ selection window 51
Fig. 3.5.2 Radio Button when ‘Linear Equation’ is selected, and all is enabled............ 53

Fig. 3.5.3 Radio Button when ‘Non-linear Equation’ is selected, and options are

QISADIE .o 53

Vi

Fig. 3.5.4 Voltage and temperature inputs in known temperature-voltage window 55

Fig. 3.5.5 Data table, Clear and Delete buttons in known temperature-voltage window56

Fig. 3.5.6 Plotted data table in known temperature-voltage windowcccceeuvenneee. 57
Fig. 3.6.1 Popup message when there is no DAQ detected..........ccccooeeverinienicniennne 63
Fig. 3.7.1 DAQ model selection WindOWcccceevueriiriiriinienienieneereneseee e 64
Fig. 3.7.2 DAQ model selection with options Windowccceeveeeviienieeiieenienieennen. 65
Fig. 3.7.3 Calibration method WiINdOWccoieiiiriiniiiiiniieeee e 65
Fig. 3.7.4 EQUAtion tyPe ChOICES.ccviieiieiiieiieiie ettt ettt ettt et e 66
Fig. 3.7.5 Linear Interpolation method with “Choose Points” button............cccccecuenneene. 66
Fig. 3.7.6 Choose Points window, point clicked onccccocceeviriniininiiniicee 67
Fig. 3.7.7 Choose Points window, two points selectedccoevierienenineeneniennnn. 67
Fig. 3.7.8 Subsequent calibration from chooSing pointsccccceceeveererieneenieneeneenn 67
Fig. 3.7.9 Change to non-linear €qUationccceeceereerierienieenienieneenie e 68
Fig. 3.7.10 Change to linear equation, least squares methodc.cccceviiriiniinicnnnne 68
Fig. 3.7.11 Set Calibration.........cccoecueriiriiiiiiiiiieieciese e 69
Fig. 3.7.12 Linear equation calibration input with corresponding plot......................... 69
Fig. 3.7.13 Copy equation SElected............ccoriiriiriiiniiniiiieiierieeee e 70
Fig. 3.7.14 Data points logged and represented in plot.........ccecevviiniineniiniencnieneenn. 70
Fig. 3.7.15 Calibration log with saved calibrations and options to calibrate and acquire
AALA. ..ottt 71
Fig. 3.7.16 Example of alarms being set at 29.5°C and 31.5°C........ccceoeviiniininiennnne 72
Fig. 3.7.17 On demand acquisition with 500ms time interval..........c..cccceeverieneniennnn. 72
Fig. 3.7.18 On demand acquisition with 60ms time interval............cccceccervirienennennnn. 73
Fig. 3.7.19 On demand acquisition stopped manuallycccccoevieiviiiniiniienienieenen. 73
Fig. 3.7.20 Ongoing finite sampling acquisition with the parameters: 20 samples and 2
SA/S .ttt ettt 74
Fig. 3.7.21 finite sampling acquisition finished with the parameters: 10 samples and 2
SISttt sae s 74
Fig. 3.7.22 Save data Prompt.........ccceeieeiiienieeiierie ettt ettt et e e 75
Fig. 3.7.23 Data successfully saved.........ccccooiiviiiiiniiniiiiniiceeeeeeeee e 75
Fig. 3.7.24 Data successfully createdccooeeviiriiniiiiniineeceeeeeeeeee e 75
Fig. 4.1.1 Wheatstone bridge configurationcceeeveeviienieeiiienieeieesiie e 82
Fig. 4.3.1 Table with Rx, Vd_theo., T and Vd_exp. values powered at 1V With 6001
DIAQ ettt ettt 85

Fig. 4.3.2 Comparison between R1 and R2 values and how Vref is affected................ 85
Fig. 4.3.3 Data acquisition plot for DAQ 6001 where temperature resolution can be

viii

LIST OF SNIPPETS

Snippet 3.2.1 CSV File “‘data.CoV’ ..cccuiiiiiiiieiieciieieete ettt 39
Snippet 3.4.1Project dir€Ctory StIUCTUIEcccvieeiieriierieeiie ettt te e eeeee e e 45
Snippet 3.4.2Branching in main function './main.py’c..cceceeeuerieneniienienenieneerienens 46

Snippet 3.4.3 Interlinking between logic and GUI in function 'run_select daq’ with
function ‘select daq window’ in './src/app/appDAQ.PY' .eeeeiieiiieiieeiieieee e 47
Snippet 3.4.4 Creation of object 'niDAQ' in 'run_select daq' function in
L/STC/APP/APPDIAQ . DY ettt ettt e et e eabeenneas 47
Snippet 3.4.5 Object 'calibration' creation given the method chosen in function
'run_calibrate' in './src/app/appCalibrationMethod.py'ccoveeeviinieiiniiniieieeee, 48
Snippet 3.5.1GUI window structure in ‘run_expression_input calibrate’ function in
¢./src/app/appExpressionInputCalibrate.py’cocveeeiierieeriienieeiieeie e 49
Snippet 3.5.2 Return of ‘expression_calibrate window’ in
¢./src/gui/guiExpressionInputCalibrate.py’cc.eeeveeeiierieeiieeiecteee e 49
Snippet 3.5.3 Layout and window configuration returned in function
‘gui_window_with graph’ in ©./Src/guiTOO0IS.PY’ ..oooviiiiieiiiiiiiieceeeee e 50
Snippet 3.5.4 Window Behavior loop in function

‘expression_input_calibrate window_behavior’ in
¢./src/gui/guiExpressionInputCalibrate.py’cceeeieeeiieiiieiieeii e 50
Snippet 3.5.5 Combo box in layout to select DAQ model in 'select daq window'
function in "./Src/gui/GUIDAQ.DY' c.eeieiieiieeiieee et 51
Snippet 3.5.6 Radio elements for equation type in layout in function

'temp volt calibrate window' in './src/gui/guiTempVoltCalibrate.py'........c..ccceeeueenneee. 52
Snippet 3.5.7 Enabling and disabling radio buttons given the button selected in

'temp_volt calibrate window_behavior' function in './src/gui/guiTempVoltCalibrate.py’

Snippet 3.5.8 Voltage and temperature input in layout in ‘temp_volt calibrate window*
function in‘./src/gui/guiTempVoltCalibrate.py’.......ccoeoeeeiiiiieniieiieeieeeeee e 54
Snippet 3.5.9 Voltage and temperature sequence in
‘temp_volt calibrate window behavior’ function in
¢/src/gui/guiTempVoltCalibrate.py’cccveeeieeiieie e 54
Snippet 3.5.10 Data table, Delete and Clear buttons in layout in

‘temp_volt calibrate window’ function in ‘./src/gui/guiTempVoltCalibrate.py’ 55

X

Snippet 3.5.11 Delete and Clear behavior in 'temp_volt calibrate window' function in

"/ src/gui/guiTempVoltCalibrate. Py ...cccuveevieeiieeiieiie ettt 56
Snippet 3.5.12 Canvas for the plot in layout in 'temp_volt calibrate window' function
in './src/gui/guiTempVoltCalibrate.py'c.cooveeiiieiiieiiieeie e 57
Snippet 3.5.13 Canvas update for the plot in 'temp_volt calibrate window_behavior'
function in './src/gui/guiTempVoltCalibrate.py'.......cccccveeiieiieniiieiieeieeeeee e 57
Snippet 3.6.1 'filter numeric_characters' function in './src/guiTools.py"cccoceevuenenee 59

Snippet 3.6.2 Writing task in function 'run_data acquisition' in

"./src/app/appDataACqUISTHON. DY ..oeovieriieeiieriieeieeeite et ettt ettt e e esabeebeesaeeeneeas 61
Snippet 3.6.3 Reading task in 'read_voltage' function in './src/daqTools.py’................. 61
Snippet 3.6.4 'is_daq_connected' function in "./src/app/daqTools.py'cccccveeveerivennnnne 62

Snippet 3.6.5 Check if DAQ is connected in 'set_tasks' function in
L/STC/APP/AAGTOO0IS. DY ettt ettt e eneees 62
Snippet 3.6.6 Catching the no DAQ error in 'run_select daq' function in
L/STC/APP/APPDIAQ DY ettt ettt e b enaeenneas 62
Snippet 3.6.7 Assignation of calibration to niDAQ object after 'run_temp_volt calibrate'
has run, in 'run_calibrate' function in './ src/app/appCalibrationMethod.py’ 64
Snippet 3.8.1 try-except block for setting alarms in function

'data_acquisition_ window_behavior' in './src/gui/guiDataAcquisition.py'..................... 77

LIST OF EQUATIONS

Equation. 1 Temperature and resistance variation.............ceceeveerieeieneenienieneeniesseeneenne 82
Equation. 2 Balanced Wheatstone bridge condition.............cccceeverienienenieneeneniennnn. 83
Equation. 3 Output voltage equation for Wheatstone bridgecoceeververeenieniennnne. 83
Equation. 4 Voltage resolution of 6001 DAQc.coeoiieiiiiiieriieiieeeeeeeee e 86
Equation. 5 Temperature resolution for DAQ 6001 with Pt100..........ccccooeviiiiniennnnn. 86

Xi

LIST OF ABBREVIATIONS

Abbreviation Definition

DAQ Data Acquisition Device

GUI Graphical Interface User

LabVIEW Laboratory Virtual Instrument Engineering Workbench
NI National Instruments

RTD Resistance Temperature Detector

Xii

ABSTRACT

The motivation for this project arises from the importance of temperature sensing and
data acquisition across various fields, particularly in electronics and engineering. It is a
fundamental aspect of modern engineering, with applications ranging from climate

control to industrial processes, healthcare, and scientific research.

In engineering, National Instruments (NI) and Data Acquisition (DAQ) devices are
notable tools, facilitating interaction with sensors and instruments. However, in
educational settings, these devices often face accessibility issues due to complex and
proprietary software like LabVIEW (Laboratory Virtual Instrument Engineering
Workbench).

This project's motivation is to address these challenges by harnessing Python's versatility
and power. Python is an open-source language known for its simplicity and extensive
libraries, making it ideal for scientific and engineering applications, including interfacing

with NI DAQ devices.

The project's culmination is a GUI-based Python application, aiming to provide a user-
friendly interface closely integrated with NI DAQ systems. It empowers users in
temperature sensing and data acquisition, making these processes accessible and efficient.
This project enhances the usability and accessibility of essential tools for engineers,

researchers, and students in electronics and engineering.

The primary project’s aim is to streamline the construction process by offering a
straightforward application. It simplifies the user experience and allows users to explore
hardware-software connections, addressing gaps in traditional approaches. Additionally,
the project emphasizes key concepts in electronic instrumentation, focusing on
temperature measurement. A student guide is created to assist with installation, usage,

and optimization.

The project is divided into several sections. Chapter 2 outlines the methodology,
including requirement gathering, implementation, testing, and user evaluation. Chapter 3
details the development of the temperature sensing circuit control application, covering
its features, architecture, and user interaction. Chapter 4 addresses practical aspects,

including circuit setup, calibration, and results analysis. In the concluding chapter, the

Xiii

project summarizes objectives and key findings, highlighting the application's usability
and potential for enhancing learning experiences. It acknowledges the learning journey

in Python programming and GUI design, emphasizing the importance of adaptability.

Overall, the project achieved its primary research objectives, delivering an educational
application (PyroDAQ) for temperature sensing and data acquisition. It provides a
foundation for further exploration and customization in the field, emphasizing the value

of open-source tools and hands-on experiences in electronic instrumentation.

X1V

RESUMEN

La motivacion de este proyecto surge de la importancia de la medida de la temperatura y
la adquisicion de datos en diversos campos, especialmente en electronica e ingenieria. Es
un aspecto fundamental de la ingenieria moderna, con aplicaciones que van desde el

control climatico hasta procesos industriales, atencion médica e investigacion cientifica.

En la ingenieria, los dispositivos de National Instruments (NI) y la adquisicion de datos
(DAQ) son herramientas destacadas que facilitan la interaccién con sensores e
instrumentos. Sin embargo, en entornos educativos, estos dispositivos a menudo
enfrentan problemas de accesibilidad debido al software complejo y propietario como lo

es LabVIEW (Laboratory Virtual Instrument Engineering Workbench).

La motivacion de este proyecto esta en abordar estos desafios aprovechando la
versatilidad y potencia de Python. Python es un lenguaje de codigo abierto conocido por
su simplicidad y sus amplias bibliotecas, lo que lo hace ideal para aplicaciones cientificas

e ingenieriles, incluida la interfaz con dispositivos NI DAQ.

La culminacion del proyecto es una aplicacion Python basada en una interfaz grafica de
usuario (GUI), con el objetivo de proporcionar una interfaz amigable para el usuario
estrechamente integrada con los sistemas NI DAQ. Empodera a los usuarios en la medida
de la temperatura y la adquisicion de datos, haciendo que estos procesos sean accesibles
y eficientes. Este proyecto mejora la usabilidad y accesibilidad de herramientas esenciales

para ingenieros, investigadores y estudiantes en electronica e ingenieria.

El objetivo principal del proyecto es simplificar el proceso de construccion mediante la
oferta de una aplicacion sencilla. Simplifica la experiencia del usuario y permite a los
usuarios explorar las conexiones entre hardware y software, abordando las deficiencias
de enfoques tradicionales. Ademads, el proyecto enfatiza conceptos clave en la
instrumentacion electronica, centrandose en la medida de la temperatura. Se ha creado

una guia para estudiantes para ayudar en la instalacion, el uso y la optimizacion.

El proyecto se divide en varias secciones. El Capitulo 2 describe la metodologia, que
incluye la recopilacion de requisitos, la implementacion, las pruebas y la evaluacion por
parte del usuario. El Capitulo 3 detalla el desarrollo de la aplicacion de control de circuito

de deteccion de temperatura, cubriendo sus caracteristicas, arquitectura e interaccion con

XV

el usuario. El Capitulo 4 aborda aspectos practicos, como la configuracion del circuito, la
calibracion y el andlisis de resultados. En el capitulo de conclusion, el proyecto resume
los objetivos y hallazgos clave, destacando la usabilidad de la aplicacion y su potencial
para mejorar las experiencias de aprendizaje. Se reconoce el proceso de aprendizaje en la
programacion de Python y el disefio de GUI, enfatizando la importancia de la

adaptabilidad.

En resumen, el proyecto ha logrado sus objetivos de trabajo principales al proporcionar
una aplicacion educativa (PyroDAQ) para la medida de la temperatura y la adquisicién
de datos. Ofrece una base para una mayor exploracion y personalizacion en el campo,
destacando el valor de las herramientas de codigo abierto y las experiencias practicas en

la instrumentacion electronica.

xvi

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

1. INTRODUCTION AND BACKGROUND

The motivation for this project stems from the significance of temperature sensing and
data acquisition in various fields, particularly in electronics and the broader engineering
domain. Temperature sensing is a fundamental aspect of modern engineering, impacting
a wide range of applications from climate control to industrial processes, healthcare, and

scientific research.

Accurate temperature measurements are crucial for ensuring safety, optimizing
performance, and maintaining quality in various systems. To achieve this, temperature
sensing circuitry plays a pivotal role. Examples of the importance of temperature sensing
include the pharmaceutical industry, where accurate temperature measurement ensures
the safe storage and transportation of pharmaceutical products to prevent degradation. In
scientific research, precise temperature control is critical for experiments in biology and
chemistry. In the automotive industry, temperature plays a key role in ensuring optimal
engine performance and fuel efficiency. These examples highlight the diverse

applications where temperature measurement and data acquisition are fundamental.

In the world of engineering, the use of National Instruments (NI) and Data Acquisition
(DAQ) devices is notable. These devices enable interaction with a wide range of sensors
and instruments, making them pivotal in experimental setups, automation systems, and

quality control processes.

However, in classrooms, the accessibility and user-friendliness of these devices have
often been overshadowed by complex and proprietary software, such as LabVIEW
(Laboratory Virtual Instrument Engineering Workbench) [1], which conceals the intricate

connection between hardware and software.

This project's motivation lies in addressing these challenges by leveraging the versatility
and power of Python, an open-source programming language renowned for its simplicity

and ease of use. Python's plethora of libraries makes it an ideal candidate for scientific

17

1. INTRODUCTION AND BACKGROUND

and engineering applications, including the potential to interface with NI DAQ devices,

thereby revealing the bridge between hardware and software.

The culmination of this motivation is the development of a GUI-based Python
application. This application aims to provide a user-friendly interface while being closely
integrated with NI DAQ systems. By doing so, it seeks to empower users in the field of
temperature sensing and data acquisition, making these processes more accessible,
comprehensible, and efficient. This project represents a significant step towards
enhancing the usability and accessibility of essential tools for engineers, researchers, and

students in the realm of electronics and engineering.

1.1. A BRIEF INTRODUCTION TO THE NATIONAL
INSTRUMENTS DAQ AND LABVIEW

National Instruments has been a prominent player in the engineering world for more than
40 years [2], providing tools for data acquisition and control systems. The key component
for this research is the NI Data Acquisition (DAQ) hardware which has traditionally been
used with the software LabVIEW.

LabVIEW is a widely recognized system design and development software platform
created by National Instruments. It is commonly used in engineering and scientific fields
for designing, testing, and implementing systems that involve measurement and control.
It is renowned for its graphical programming approach, where users can create
applications by connecting visual icons and wires, making it accessible to both engineers
and scientists who may not have extensive programming backgrounds. It enables the
development of custom graphical user interfaces (GUIs) and the creation of complex

measurement and control routines for a wide range of applications.

NI DAQ systems are hardware devices designed to be the bridge between the real world
and a computer. They facilitate the measurement and control of physical parameters such
as current, temperature, pressure, or sound. At the heart of a DAQ system, there is signal
conversion, input/output channels, signal conditioning, connectivity, and

programmability.

Traditionally, LabVIEW has been the software of choice for interfacing with NI DAQ

hardware, offering a way to design data acquisition and control applications. Engineers

18

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

and scientists could create custom GUIs and develop complex measurement and control

routines without delving deep into low-level programming languages.

However, while LabVIEW has its merits, it also presents some challenges. Its learning
curve can be steep for newcomers, and the visual programming paradigm may limit the
accessibility of the underlying code for students and those seeking a deeper understanding
of the hardware-software interaction. Moreover, LabVIEW is proprietary software, which

can pose constraints on its distribution and customization.

This project aimed to address these challenges by developing an alternative solution.

1.2. PYTHON, FROM A VERSATILE PROGRAMMING
LANGUAGE TO USES IN TEMPERATURE SENSING AND
DATA ACQUISITION

Python, well-known for its versatility and approachability, stands apart in the realm of
programming languages. While other languages such as C/C++ have better performance
due to their lower-level nature and direct memory control [3], they require more intricate

coding and a less comprehensive understanding upon initial inspection.

That’s why, in this context, Python's suitability for small-scale projects like the present
one becomes clear, as it enables a direct approach without dealing with unnecessary

complexities.

A distinctive facet of Python's utility emerges in its rich library ecosystem. It offers
excellent integration for calculations through libraries like NumPy and SciPy, enabling
swift development and easy implementation of mathematical operations. Along with
others like matplotlib that permit visualizations and plots, parallel the functionalities
offered by programs like MATLAB [4]. In the realm of electronic instrumentation, these
libraries are particularly valuable. Here, precision mathematical calculations underpin a

multitude of tasks, from signal analysis to data interpretation.

This relevance isn't just confined to calculations; it extends to the realm of hardware
integration. This is most evident in fields where electronics and software converge, as
exemplified by the integration of Python libraries tailored for controlling NI DAQ which
this project is based on [5].

19

1. INTRODUCTION AND BACKGROUND

1.3. OVERVIEW OF TEMPERATURE SENSING CIRCUITRY

In the realm of temperature sensing, various circuit configurations are designed to cater
to different levels of complexity and precision. These circuits serve as fundamental

components in data acquisition and instrumentation.

Temperature sensing circuits are instrumental in enabling precise temperature
measurements, a critical parameter in numerous applications spanning diverse industries.
The choice of circuitry hinges on several key factors, including the required accuracy, the

range of temperatures to be measured, and the specific application’s demands.

At the foundational level, circuits can effectively employ sensors with a linear voltage
output directly proportional to temperature in degrees Celsius. Their inherent simplicity
makes them an excellent starting point for introductory temperature sensing experiments,

providing a solid foundation in the field.

As one progresses into intermediate-level temperature sensing circuits, more advanced
sensors such as thermistors or integrated digital temperature sensors come into play.
These sensors offer enhanced accuracy but may require additional signal conditioning

and calibration processes to ensure optimal performance and reliability.

In the course of this project, a deeper exploration of temperature-sensing circuits will be
undertaken. Their principles, calibration methods, and practical applications will be
thoroughly examined. Through this exploration, a comprehensive understanding of the
temperature measurement techniques that form the foundation of data acquisition and

instrumentation in diverse fields will be achieved.

1.4. IDENTIFICATION OF GAPS IN THE TRADITIONAL
APPROACHES THAT THE CURRENT RESEARCH AIMS TO
ADDRESS

As previously mentioned, a significant gap exists between tools like LabVIEW and their
users, creating a noticeable disconnect between software and hardware components. This
issue is particularly prevalent among students who are venturing into practical
applications for the first time, transitioning from the realm of theoretical knowledge to
hands-on experience. This transitional phase in their education demands a clear

understanding of the intricate connections between the hardware they’re working with,

20

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

the circuits they’re studying, and the software that generates the results. Unfortunately,

existing tools like LabVIEW often fall short of providing this level of transparency.

For students, constructing interfaces within LabVIEW for their experiments has been the
norm. While this highlights the software's versatility, it imposes a dual challenge on
students. Not only must they bridge the gap between theory and practice in their projects,
but they are also compelled to construct the very interfaces they rely on. Regrettably, this
construction phase usually leaves them with limited insights into the underlying

mechanisms behind the GUI.

1.5. OBJECTIVES

The primary aim of this project is to streamline this construction process by offering a
straightforward application. This application not only simplifies the user experience but
also allows users to delve into its inner workings, providing a unique opportunity to
explore the connections between hardware and software, thereby addressing the

aforementioned gaps in traditional approaches.

Furthermore, another additional objective is to emphasize key concepts in the broader
field of electronic instrumentation, with a particular focus on temperature measurement.
These concepts can be experimentally explored using the developed application, allowing
for a deeper understanding of topics such as calibration, sensitivity, resolution, load

regulation, self-heating, and more.

Both objectives inherently entail the creation of a student guide to assist them in the

installation, usage, and optimization of the provided application.

1.6. OVERVIEW OF THE STRUCTURE OF THE THESIS

The project is divided into several key sections that collectively form a comprehensive

exploration of the research, development, and application of this educational tool.

In chapter 2, the methodology employed for the research and development of the
educational application is outlined. It begins with an overview of the methodology,
followed by a discussion of requirement gathering and analysis. The chapter then delves
into the implementation process, covering the selection and description of the NI DAQ

system and temperature sensor used, as well as an overview of the programming

21

1. INTRODUCTION AND BACKGROUND

environment, Python, and the software components utilized. The methodology also
includes a comprehensive strategy for testing and quality assurance, as well as a section

on user evaluation and feedback.

Chapter 3 constitutes the heart of the thesis, detailing the development of the temperature
sensing circuit control application. It begins with an introduction to the application's
purpose and significance. The subsequent sections provide an in-depth exploration of the
application's features and capabilities, the design of the user interface, the high-level
architecture, and the GUI development process. It also covers the management of user
interaction and control logic, including the integration of the NI DAQ and temperature
sensing functionality. The chapter concludes by demonstrating the user interaction flow,
error handling strategies, testing, debugging, and validation processes, and offers

suggestions for potential future research and development directions.

Chapter 4 is dedicated to the practical aspects of the research. It begins with a detailed
description of the circuit setup used for temperature sensing and data acquisition.
Subsequently, it outlines the calibration and validation procedures for the temperature
sensor. The chapter culminates with the presentation of the results and analysis, which
include considerations regarding the program's ability to enhance student engagement in

experimental setups.

In the concluding chapter, the thesis provides a summary of the research objectives and
key findings, emphasizing the successful development of the educational application and
its usability for students. It also explores the program's potential to enhance learning
experiences in temperature sensing and data acquisition, shedding light on the broader
implications of this innovative approach to education. The chapter closes with concluding
remarks that highlight the project's achievements and its potential for further expansion

and exploration.

Additionally, the thesis includes three appendices: Appendix A contains image
attributions used in the application, Appendix B features the comprehensive student's

guide, and Appendix C provides access to the code repository for this project.

22

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

2. METHODOLOGY

2.1. OVERVIEW OF THE METHODOLOGY

The methodology employed in this project played a pivotal role in addressing a significant
challenge that loomed at the beginning of the project: the mastery of Python programming
and the intricacies of constructing an application with a GUI, all within the context of a
limited background in the subject matter. This endeavor marked a journey of trial and
error, a path defined by the necessary adaptation to the new concepts encountered at every

step of the development process.

Central to the project's achievement was the necessity to acquire proficiency in the Python
programming language from the ground up. Despite the absence of prior Python
familiarity, the project was facilitated by the foundation of advanced competence in both
C and C++. This advanced foundation played a crucial role in guiding the learning
process, therefore, through a combination of self-guided exploration, interactive coding
exercises, and reference to the established online resources in the vibrant Python

community, a foundational competence in Python was cultivated.

The considerable assistance rendered by Python for Science and Engineering by Hans-
Petter Halvorsen is properly noted [4]. This resource played a significant role in providing
a structured pathway for acquiring Python skills in the context of mathematical
applications, data acquisition, and the control of National Instrument devices. The clear
explanations, practical exercises, and readily available resources contributed significantly
to the foundation of this project. This learning phase created the groundwork for the

subsequent stages, setting the stage for the development of the application.

The challenge, however, transcended the realm of programming proficiency. The
construction of an application with a GUI posed a different set of challenges, particularly
given the relatively modest exposure to GUI development. Consequently, selecting a
suitable GUI framework became crucial for addressing this issue. Therefore, the decision
was made to opt for PySimpleGUI. As its name suggests, PySimpleGUI is a
straightforward and accessible wrapper, with many online resources for learning and
developing [6]. Sections to come will delve into a comprehensive exploration of the

advantages and disadvantages presented by this wrapper.

23

2. METHODOLOGY

This learning process necessitated a strategic shift towards a trial-and-error approach;
thus, the construction of the application’s functionality and user interface became a
dynamic process of experimentation and adaptation. With each iteration, valuable

insights were gleaned, serving as steppingstones toward a refined and user-friendly GUI.

Throughout the process, it became evident that adhering to a key principle of adaptation
was crucial. Every obstacle encountered provided a learning opportunity, and each
advancement was marked by the assimilation of new skills and insights. It consequently
became apparent that, for effective programming of any user interface, the formulation
of a well-structured plan with rough sketches detailing the arrangement of elements
within each window and their interactions was of paramount importance to ensure

efficiency coding-wise.

This process of perpetual learning was not confined to the realms of programming and
GUI design alone; it encompassed a broader spectrum of skills, from debugging intricate

code segments to integrating user feedback into the application's evolution.

In summary, the methodology embraced in this project was an example of adaptability
and development. It provided a platform for tackling the complexities of Python

programming and GUI design.

2.2. REQUIREMENT GATHERING AND ANALYSIS

The process of requirement gathering and analysis for the application was rooted in the
subject laboratory session for which the application is intended to be used. The
foundational essence of this lab session served as the basis for formulating the
application's requirements. The main goal was to transition the functionalities initially

executed in LabVIEW to a dedicated application environment.

The requisites encompassed the ability to effectively recognize and manage the NI DAQ,
facilitate the computation of calibrations for the designated temperature sensor circuit,
provide the means for utilizing these calibrations for data acquisition purposes, and
present a user-friendly interface for comprehending and controlling the acquired data and

the associated DAQ functions.

Furthermore, the process included catering to the specific needs of the students. This was

achieved by engineering an application that remains focused on its primary purpose. By

24

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

simplifying its features, the application facilitates a practical exploration for students to
apply their theoretical understanding of temperature sensor circuits. This approach
mitigates the requirement for them to divide their focus between mastering diverse

software tools, such as LabVIEW, and comprehending the core subject matter.

2.3. IMPLEMENTATION

An overview of the implementation process encompassing both hardware and software
components is presented in this section. The integration of NI DAQ, temperature sensors
LM35 and PT100, alongside the utilization of Python and PySimpleGUI, constitutes the
focal points of this phase. The subsequent sections will provide an in-depth exploration
of each component, explaining their roles and collaborative interactions within the

application's architecture.

2.3.1. DESCRIPTION OF THE NATIONAL INSTRUMENT DAQ SYSTEM
AND TEMPERATURE SENSOR USED

The ensuing section offers a comprehensive portrayal of the specific hardware
components central to the study's implementation, focusing on the NI DAQ system and
the temperature sensors employed. The DAQ system of choice was the entry-level,
plug-and-play USB series. During the project's construction, the primary DAQ system
utilized was the USB-6001, notable for its robust capabilities. The USB-6001 is often
considered a cost-effective solution for basic data acquisition needs. The USB-6001,
characterized by its compact form factor, facilitated seamless integration with the
Python-based application. It offers 8 single-ended (4 differential) analog input channels
and includes 2 analog output channels for signal generation. Specifications include its
14-bit analog-to-digital converter (ADC), digital input/output capabilities, and a

moderate sampling rate (20 kS/s maximum) [7] and [8]

Furthermore,

compatibility with various DAQ systems was included in the implementation scope,
such as the USB-6002 and USB-6211. These DAQ systems, while sharing commonalities
with the USB-6001, offer distinctions in terms of analog input channels, sampling rates,

and voltage ranges, catering to diverse experimental demands.

25

2. METHODOLOGY

Regarding temperature sensors, the preliminary phase incorporated the LM35, a simple
yet effective sensor suitable for initial testing scenarios. The LM35 facilitated
straightforward temperature readings in basic circuit configurations. However, as the
project's complexity grew, a shift toward a more advanced sensor took place. The Pt100,
a platinum resistance temperature detector (RTD), emerged as the sensor of choice for

enhanced precision and accuracy.

The LM35 and Pt100 sensors present notable differences. The LM35 operates linearly
within a specific temperature range and offers direct temperature-to-voltage conversion,
making it suitable for rudimentary applications. Contrariwise, the Pt100 exhibits a wider
temperature range, increased accuracy, and a resistance-based response that necessitates
specialized circuitry, such as a Wheatstone bridge, to convert resistance changes into
voltage values. The way this bridge is configured in terms of power supply and the values

of fixed resistors will ultimately determine its sensitivity to changes in temperature.

One could emulate the behavior of a Pt100 at a specific temperature by simply replacing
it in the circuit with a precision resistor of the same value as the Pt100 at that temperature.
This opens the possibility of emulating the circuit's behavior for various Pt100
temperatures, a crucial aspect for implementing and evaluating calibration methods,

thereby aptly accommodating the application's evolution.

2.3.2. OVERVIEW OF THE PROGRAMMING ENVIRONMENT (PYTHON)
AND SOFTWARE COMPONENTS UTILIZED
The subsequent segment offers an encompassing insight into the programming
environment leveraged for the project, primarily focusing on Python and the software

components integral to its functionality.

Central to the project's interface design was the adoption of PySimpleGUI, a GUI wrapper
acclaimed for its intuitive nature and robust capabilities. PySimpleGUI encapsulates the
complexity of GUI development, serving as a bridge between the programmer and the

interface.

Further enhancing the programmer experience, PySimpleGUI effectively wraps Tkinter,
an established GUI toolkit [9]. By doing so, PySimpleGUI harnesses the strengths of
Tkinter's vast functionality while simplifying its implementation thus making the learning
curve not as steep. This choice was motivated by PySimpleGUI's proficiency in striking

26

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

a balance between accessibility and power, making it an ideal fit for this project's

objectives.

Furthermore, an indispensable driver, NI-DAQmyx, is central to this project for its role in
enabling interaction with NI DAQ devices [10]. As a product of National Instruments,
NI-DAQmx presents a Python interface for seamless communication with DAQ
hardware, facilitating data acquisition, control operations, and integration with other

Python libraries.

Arithmetic and data manipulation was facilitated by the incorporation of libraries like
NumPy, SciPy, and Matplotlib. NumPy [11] and SciPy [12] were employed to perform
mathematical computations, specifically in deriving equations for linear and non-linear
equations to interpret the data. These libraries enabled the formulation of mathematical
models that accurately described the relationships present within the dataset.
Additionally, Matplotlib [13] enabled visually appealing data visualization. These
libraries collectively consolidated the project's capacity to manage and represent data

effectively.

In summary, the programming environment was meticulously curated, with
PySimpleGUI championing intuitive yet robust interface design, NI-DAQmx
orchestrating seamless DAQ device communication, and the arithmetic libraries fostering

data manipulation and visualization.

2.4. TESTING AND QUALITY ASSURANCE STRATEGY

This section explains the planned testing approach undertaken to establish the
application's functionality, reliability, and performance. It involves various tiers of
testing, encompassing unit testing, integration testing, and system testing, with each stage

designed to guarantee careful evaluation.

Unit testing was used to examine individual components in isolation and
was typically performed as the code was developed and each portion was completed.

Specific functions and methods of the code were tested to ensure that in isolation they
worked as intended and produced accurate results. This ensured that when having to work

together with other units, a solid foundation was established. These units of the

27

2. METHODOLOGY

application, such as temperature data acquisition, GUI interactions, and calibration

calculations

Integration testing involved verifying the interplay between the application's components
to ensure that the individual units of code worked together cohesively as a larger
integrated system. Interaction scenarios, encompass user input through the GUI, data
acquisition via the DAQ system, and the subsequent processing and display of results.

Through this process, seamless cooperation can be ensured between diverse modules.

System testing, an evaluative approach that scrutinizes the application in its entirety, was
executed through a series of thoughtfully designed scenarios. These scenarios were
crafted to emulate real-world user interactions and edge cases to assess the application's

coherence and resilience.

These scenarios encompass the emulation of normal user behavior, extreme temperature
values, rapid user interactions, erroneous input, compatibility tests conducted with

different DAQ systems, and the absence of such.

Collectively, these scenarios underscored the application's ability to manage diverse user

interactions, ensuring a comprehensive evaluation of its functionality and reliability.

The process of bug identification, tracking, and resolution followed a structured approach.
Detected issues were logged and assigned priority levels. The tracking system ensured
that each issue was traced from identification to resolution. This methodology ensured

that bugs were systematically addressed, guaranteeing the application's robustness.

In essence, the orchestrated testing approach encompassed a spectrum of meticulous
examination, extending from granular unit tests to comprehensive system validation.
This method proved invaluable as it enabled the achievement of a polished and
dependable outcome. By swiftly pinpointing issues without the inefficiencies of
troubleshooting, the established timelines were adeptly adhered ensuring successful

project completion.

28

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

2.5. USER EVALUATION AND FEEDBACK

The process of user evaluation and feedback collection was used in assessing the
application's usability and effectiveness. This phase involved the simulation of diverse
user scenarios, effectively mirroring real-world usage scenarios to ensure a

comprehensive assessment.

Following the guidelines outlined in the provided student guide, a designated group of
users interacted with the application, exploring its features as intended. This emulation
provided valuable insights into the application's user-friendliness, navigational logic, and

overall effectiveness in achieving its intended purpose.

Contrariwise, to gauge the application's robustness and error-handling capabilities, users
were given a degree of freedom to interact with the application as they saw fit. This
exploratory approach aimed to identify any potential vulnerabilities, unanticipated usage
patterns, or points of failure. By observing how the application performed in such
scenarios, the evaluation encompassed a comprehensive examination of its resilience and

error-catching mechanisms.

Feedback like issues and suggestions was incorporated in the same mannerism that bugs
were tackled in the testing stage. By logging and prioritizing, solutions were devised,
tested, and integrated into the application. This feedback was subsequently used as a
foundation for enhancing the application and, in doing so, aligning it more closely with

users' expectations and workflow.

Furthermore, the project was also uploaded to GitHub, providing a platform for potential
future feedback and contributions from the open-source community, which may further
improve the application's functionality and usability. To this day, feedback hasn't been
received, but suggestions are awaited, and they will be carefully considered for the

project's ongoing development and refinement.

29

3. DEVELOPING THE APPLICATION

3. DEVELOPING THE APPLICATION

This section introduces the temperature sensing circuit control application, designed to
establish an interface between a NI DAQ device and a temperature sensor using Python.
This integration facilitates the calibration of the circuit and acquisition of accurate

temperature readings, offering a solution for temperature sensing circuit control.

3.1. INTRODUCTION TO THE TEMPERATURE SENSING
CIRCUIT CONTROL APPLICATION

The application's architecture is made to bridge the gap between hardware and software,
enabling students to access temperature data easily with precision. Its role in this context
is key, as its simplicity enhances the efficiency and accuracy of temperature measurement

processes without the user having to do anything else.

Fig. 3.1.1 Initial wireframe of PyroDAQ application design

A prominent feature of the application is calibration, a key mechanism that serves as the
foundation for temperature measurement precision. Through the application's intuitive
interface, students can establish a calibration line or curve, correlating known temperature
inputs with the sensor's corresponding readings. They can also choose to establish an

already known calibration. This calibration serves as the foundation for converting raw

30

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

sensor data into reliable temperature values, ensuring the accuracy of acquired

measurements.

Additionally, the application offers data acquisition capabilities, interfacing with the NI
DAQ device. This integration empowers students to monitor temperature fluctuations in
real-time, enabling dynamic analysis and experimentation within temperature-sensitive

circuit control environments.

The significance of the developed application is rooted in its capacity to simplify the
intricacies associated with building the interface for temperature sensing circuit control
from scratch. By facilitating data acquisition and interpretation, it emerges as a valuable
tool for students as it bypasses any additional designs in LabVIEW and directly offers the

necessary tools.

Its pragmatic utility extends beyond temperature measurement, encompassing a
comprehensive educational tool that bridges theory and practical implementation. This
powerful tool not only allows for the observation of Python in action within an electronics
environment but also serves as a dynamic platform for gaining hands-on experience and

insights into real-world applications.

3.2. APPLICATION FEATURES AND CAPABILITIES

The emphasis revolves around facilitating precision in temperature sensor calibration and
enabling real-time data acquisition. Together, these essential features improve the
application's ability to handle the complexities of temperature sensing in circuit control

situations.

One significant functionality center on establishing a correlation between raw sensor
readings and known temperature values. This process, integral to the application, results
in the calibration of the temperature sensor (Fig. 3.2.1). The significance of this
calibration becomes pronounced in real-world scenarios, where precise temperature

monitoring is imperative for effective circuit control.

31

3. DEVELOPING THE APPLICATION

Fig. 3.2.1 Calibration options

This calibration process is designed to be intuitive and flexible. Users are granted the
capability to input calibration coefficients directly using a known mathematical
expression (Fig. 3.2.2). This empowers users with the freedom to tailor the calibration to
their specific needs. Moreover, the application provides a practical feature that enables
users to test the accuracy of the entered calibration while still in the input window,

ensuring confidence in the calibration's reliability (Fig. 3.2.3).

2 Input Sensor Calibration Equation - X

| —— Linear m:aision 4 |
e DataPoints

Fig. 3.2.2 Direct calibration input for a LM35 temperature sensor

example.

32

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

2 Input Sensor Calibration Equation = x

027 028 029 030
Voltage (V)

Fig. 3.2.3 Testing the calibration.

Alternatively, the application offers an avenue for calibration selection by providing a
known temperature and voltage correlation (Fig. 3.2.4). Users can choose the calibration
that best fits their understanding and requirements. This method aligns with empirical
learning, allowing students to witness the practical implications of their calibration

choices.

2 Known Temperature-Voltage Sensor Calibration Equation - X

T T
4 —— Linear Reg
@ Data Points

g
g
2
s
g
£
e

~=d

0.002 0.004 0.006 0008 0.010 0.012
Voltage (V)

Fig. 3.2.4 Known temperature-voltage correlation calibration

Calibrations within the application cater to diverse scenarios and needs, accommodating
both linear and non-linear calibrations (Fig. 3.2.7). For linear calibrations, users are
equipped with the option to choose between two calculation methods: the least squares

method (Fig. 3.2.5) and interpolation between user-selected data points (Fig. 3.2.6). This

33

3. DEVELOPING THE APPLICATION

versatility in calibration methodologies ensures adaptability to varying user preferences

and complexities.

2’ Known Temperature-Voltage Sensor Calibration Equation x

Fig. 3.2.5 Linear Calibration, Least Squares Method

Temperature (°C)

Fig. 3.2.6 Linear Calibration, Linear Interpolation

2 Known Temperature-Voltage Sensor Calibration Equation - X

T T
- —— Fitted Curve
e Data Points

g
g
2
®
g
£

e

Fig. 3.2.7 Non-Linear Calibration
34

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

Every calibration set by the user is automatically saved and stored in logs. These saved
calibrations can be readily accessed for future trials and experiments (Fig. 3.2.8),

eliminating the need for repeated calibration setups.

‘- 'y = 1300.647x -2.863 .

= 0.005¢" + 0.200x + 25.000
ly = 100.000x + 0.000
o

Fig. 3.2.8 Calibration log

In essence, the application's calibration functionality enhances precision, fosters active
learning, and provides an array of options to suit different scenarios, ultimately enriching

the educational and practical value of the platform.

Furthermore, the application integrates the calibration process with real-time temperature
data acquisition. By interfacing with the NI DAQ device, users are bestowed with the
ability to procure temperature data within dynamic environments. This pairing of data
acquisition is accompanied by a simultaneous process of data logging (Fig. 3.2.9) and

real-time plotting (Fig. 3.2.10), thus elevating the application's utility.

0.00096 0.00098 0.00100 0.00102 0.00104
Voltage (V)

Fig. 3.2.9 Example of data logging in known temperature and voltage

correlation

35

3. DEVELOPING THE APPLICATION

2 Known Temparsture Voltage Sensor Calibeation Equason - X

0002 0004 0006 0008 0010 0012
Voltage (V)

Fig. 3.2.10 Further Examples of Data Logging, now with a Plotted

Line

This multifaceted functionality becomes particularly noteworthy in scenarios where the
monitoring of temperature variations is in real time is. This empowerment extends to both
educational and practical realms, enabling students and users to closely track temperature

fluctuations as they occur.

Diving deeper into data acquisition, the application offers users the flexibility to choose
between two distinct modes. The first mode, "On Demand" allows users to trigger data
acquisition at their discretion. This mode is characterized by indefinite data acquisition,
enabling users to gather data continuously until they choose to halt the process. During
this ongoing data acquisition, users retain the freedom to dynamically adjust the time
interval between successive acquisitions (Fig. 3.2.11) and (Fig. 3.2.12). This adaptability
is mirrored in real-time data plots, enabling users to witness immediate reflections of their

chosen time intervals on the evolving data plot.

2’ Data Acquisition - x

500 1000 1500 2000 2500
Readings (ms)

Fig. 3.2.11 On Demand Option with 500ms Time Interval, Data
Acquisition

36

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

2 Dota Acquisition - X

0 2000 4000 6000 8000 10000
Readings (ms)

Fig. 3.2.12 On Demand Option with 60ms Time Interval, Data

Acquisition

Alternatively, the application caters to scenarios that demand a finite sampling approach.
In this mode, termed "Finite Sampling" users define both the total number of samples
they wish to acquire and the desired sample rate (Fig. 3.2.13). This approach offers
control over the data collection process, allowing users to gather a predetermined amount

of data with temporal intervals.

0 250 500 750 1000 1250 1500
Readings (ms)

Fig. 3.2.13 Finite Sampling Example with 20 samples and 2 Sa/s,

Data Acquisition

Moreover, the application's monitoring functionalities extend to establishing alarm limits
for both lower and/or upper-temperature thresholds. These alarms trigger as soon as

37

3. DEVELOPING THE APPLICATION

temperature readings breach the set limits (Fig. 3.2.13). In this manner, users are

promptly alerted to deviations from the desired temperature range.

2’ Oota Acquisition - x

0 2 4 6
Readings (ms)

10

Fig. 3.2.14 Example of Alarms Set at 30.5°C and 31.5°C and
Maximum Alarm Going Off; Finite Sampling, Data Acquisition

All collected data, along with the triggered alarms and corresponding readings, can be
saved, offering a comprehensive record of the system's behavior (Fig. 3.2.15) and
(Snippet 3.2.1). This comprehensive suite of monitoring features not only ensures real-
time data collection but also equips users with valuable insights by logging alarm-

triggered events and temperature parameters.

0 1000 2000 3000 4000
Readings (ms)

Fig. 3.2.15 Saving Data as a CSV File

38

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

13/09/2023 13:40:00.582277

CALIBRATION
y = 1300.647x -2.863

PARAMETERS
Number of samples,Sample rate [Sa/s]
10,2.0

ALARM LOGS

Min alarm,Max alarm

30.5,31.5

Alarm Type,Temperature,Time Interval
Above Maximum,32.254,500

Above Maximum,32.254,1000

Above Maximum,32.254,2000

Above Maximum,32.254,3000

Above Maximum,32.254,3500

Above Maximum,32.254,4500

DATA

Voltage [V],Temperature [[C]
.026,30.954
.027,32.254
.027,32.254
.026,30.954
.027,32.254
.026,30.954
.027,32.254
.027,32.254
.026,30.954
.027,32.254

OO OO OOODOOO

Snippet 3.2.1 CSV File ‘data.csv’

3.3. DESIGNING THE USER INTERFACE

3.3.1. ICON DESIGN AND GUI AESTHETICS
The icon design and user interface aesthetics were considered during the development of
the application. Several design choices were made to enhance user-friendliness and

appeal, particularly with a focus on student and youth engagement.

The primary color chosen for the application was green (Fig. 3.3.1). This choice was
deliberate, as it aligns with the Python programming language, a key component of the
application. The use of green was intended to make the application more approachable

and relatable to students.

39

3. DEVELOPING THE APPLICATION

2" Sensor Calibration = x

Fig. 3.3.1 PyroDAQ icon in place with the green layout

The application's logo is a central element of its visual identity. The logo features a snake
wrapped around a thermometer (Fig. 3.3.2). This design was selected to symbolize the
application's Python-based functionality for temperature sensor circuit control. The snake
represents Python programming, while the thermometer signifies temperature sensing—
a direct reflection of the application's purpose. Notably, the logo was intentionally
designed in an emoji-like style. This decision was made to make it more appealing and
relatable to younger users, including students. The emoji-style design aims to alleviate
the apprehension associated with the traditionally complex world of instrumentation

towards a more familiar and friendly aesthetics of youth-oriented applications.

Fig. 3.3.2 PyroDAQ icon

40

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

The application's icon and other graphical assets were shaped by the author, from a
selection of copyright-free images. These images were used as foundational elements for
the design but were adapted to create cohesive visual elements. Proper attribution for the
original images used in the icon and other assets is provided in the "APPENDIX A:
ASSETS AND ATTRIBUTION" section of the appendix.

In keeping with the overall design philosophy, other graphical assets within the
application were also fashioned in an emoji-like style. This consistent approach ensures
that the visual elements maintain a cohesive and engaging appearance, enhancing the user

experience.

Fig. 3.3.3 PyroDAQ assets for temperature alarms and toggle

The combination of these design choices, from the color scheme to the logo and icon
design, contributes to an interface that is both visually appealing and aligned with the
educational goals of the application. It aims to create a welcoming and accessible
environment for students and users of all backgrounds to explore the world of temperature

sensing and data acquisition.

3.3.2. GUI LAYOUT AND COMPONENTS
Within the domain of designing the user interface, the application's core considerations
revolve around optimizing user experience, ensuring accessibility, and seamlessly

guiding users through the application's functionalities.

41

3. DEVELOPING THE APPLICATION

The development process prioritizes the ease of use for students, making accessibility and
usability paramount. The application's design aims to minimize user effort by creating a

seamless and intuitive user journey.

The necessary components and controls within the user interface have been outlined to
facilitate effective visualization. The application embraces real-time visualization,
showcasing crucial inputs such as calibration expressions, voltage readings, and
calculated temperatures. This dynamic display provides users with instant feedback,

enhancing their engagement and understanding.

A delicate balance between user freedom and guided functionality is maintained within
the interface design. While users are granted the flexibility to navigate and utilize the
application as intended, certain controls are strategically embedded to ensure a coherent
experience. For example, buttons and inputs are thoughtfully hidden or revealed, disabled
and abled based on the context, thereby preventing user confusion, and streamlining the

process.

Choose Type: Calibration Equation
@ Linear Equation Expression. .
@ Least Squares Method
€ Linear Interpolation
€ Non-linear Equation
Input Data: 0.04
Typein (D Measure
0.02
V= T
Ex 000
Voltage (V) | Temperature (°C) |2 6.5
-0.04
-0.04 -0.02 0.00 0.02 0.04
24
Number of Samples: 0 ! g -

Fig. 3.3.4 Disabled Buttons When There is No Data or Calibration,

Known Temperature-Voltage Correlation Calibration

42

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

2 Known Temperature-Voltage Sensor Calibration Equation - X

Choose ion Type:: ion Equation
& Linear Equation Waiting for 2 points...
@ Least Squares Method
€ Linear Interpolation
€ Non-linear Equation
Input Data: 0.04 4 @ Data Points
Typein (D Measure
0.02

Temperature (2C)
°
°
S
L

0.00096 0.00098 0.00100 0.00102 0.00104
Voltage (V)

=
Number of Samples: 1 | Clear [Delete | G|

Fig. 3.3.5 Enabled button when there is data, disabled when there’s

no calibration, known temperature-voltage correlation calibration

This is observed in examples like Fig. 3.3.4 where if there’s no data introduced, the
“Clear” and “Delete” buttons are disabled, since there is no data, there’s no need to edit
the entries. Once data has been introduced, in Fig. 3.3.5 one can note that the “Clear” and
“Delete” buttons are enabled. In both cases “Choose” remains disabled since this sets the
calibration equation. Since there aren’t enough points for the equation to be calculated, it
doesn’t make sense for the user to select it, so the option isn’t available for the user. Thus,
the user is unconsciously guided through the steps without requiring unnecessary

interactions.

The intuitive nature of the interface is achieved by emulating a workflow that mirrors the
traditional process. The application's flow guides users through familiar steps, ensuring a
sense of continuity. This approach resonates particularly with users accustomed to
following the structured workflow of manually calculating these scenarios, aligning the

application's design with their expectations.

The process of designing and integrating these diverse components adheres to the natural
progression of actions. The interface's layout follows a deliberate sequence, featuring
components aligned from left to right and top to bottom. This organization reflects the

logical progression of user inputs, enhancing clarity and coherence.

43

3. DEVELOPING THE APPLICATION

For instance, in cases of known voltage-temperature calibration, the interface design
corresponds with the flow of decision-making. Users are prompted in the left column to
choose the linearity of calibration, specify voltage input preferences, and log data points
(Fig. 3.3.6). Concurrently, the interface updates the right column to reflect these inputs,
displaying the expression being calculated and plotted alongside the logged data points
(Fig. 3.3.7). This real-time feedback ensures users remain aware of their actions'

outcomes.

2 Known Temperature-Voltage Sensor Calibration Equation - X

Fig. 3.3.6 Action Sequence for choosing linearity of calibration, data
input, and data management in the left column, known temperature-

voltage correlation calibration

2 Known Temperature-Voltage Sensor Calibration Equation - X

: ;
® Data Points |

§

e
o
~

o
=3
S

mj
s
o
()

Temperature (2C)

0.00096 0.00098 0.00100 0.00102 0.00104
Voltage (V)

Fig. 3.3.7 Parallel updating of user interaction in the right column,

known temperature-voltage correlation calibration

44

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

The user interface design unites accessibility, functionality, and familiarity. By
maintaining an equilibrium between user autonomy and guided interaction, the
application bridges the gap between user expectations and its functionalities. The
interface's logical layout and real-time visualizations enhance user engagement and

comprehension.

3.4. OVERVIEW OF THE HIGH-LEVEL ARCHITECTURE

The project's file hierarchy forms the backbone of its organization, fostering a clear
distinction between logic and GUI components. This hierarchical structure ensures that
the code is organized and modular, allowing different aspects of the application to work
together while maintaining separation where necessary. The project's directory structure

1s as follows:

PyroDAQ/

— assets/

— alarm_max_off.png

— alarm_max_on.png

— alarm_min_off.png

— alarm_min_on.png

— alarm_unset.png

— icon_big.png

— switch_off.png

— switch_on.png

— src/

— app/

— appCalibrationMethod.py
— appDAQ.py

— appDataAcquisition.py
— appExpressionInputCalibrate.py
— appTempVoltCalibrate.py
— gui/

— guiCalibrationMethod.py
— guiDAQ.py

— guiDataAcquisition.py
— guiExpressionInputCalibrate.py
— guiTempVoltCalibrate.py
— calibrationTools.py

— daqTools.py

— guiTools.py

— main.py

Snippet 3.4.1Project directory structure

The high-level architecture of the application can be understood through a hierarchical

organization, divided into three distinct phases: the setup phase, calibration, and data

45

3. DEVELOPING THE APPLICATION

acquisition. This structure underscores the systematic flow that guides users through the

application's functionalities.

At its core, the application's architecture is tripartite, rooted in the main script that
serves as the epicenter of all operations. This main script initiates the setup phase, from
which the subsequent branches emanate (Snippet 3.4.2). The branching nature of the

architecture ensures a modular approach, enhancing both organization and scalability.

def main():

niDAQ = daq.run_select daq()

while not niDAQ.is_exit requested():

calibration_method.run_calibrate(niDAQ)

if niDAQ.is_exit requested():

niDAQ.exit()

continue

data_acquisition.run_data_acquisition(niDAQ)

Snippet 3.4.2Branching in main function '/main.py’

The architecture's design revolves around a symbiotic relationship between the logical
components and the GUI. Each phase of the application bifurcates, with logical
components branching towards various functions while remaining interlinked with the
GUI (Snippet 3.4.3). This arrangement fosters a cohesive user experience where GUI

elements and logical operations complement each other.

46

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

def run_select_daq():

while True:

try:

modelsDAQ, exitFlag = guiDAQ.select_daq_window(dt.modelsDAQ)

Snippet 3.4.3 Interlinking between logic and GUI in function
'run_select _daq’ with function ‘select daq window’ in

"/src/app/appDAQ.py’

Central to this architecture are two foundational objects. The first object is instantiated at
the application's outset, entwined with the chosen DAQ device (Snippet 3.4.4). The
second object emerges during the calibration setup phase (Snippet 3.4.5). While these
objects maintain their distinct domains, they are engineered to function together,

orchestrating the flow of data and control throughout the application.

modelsDAQ, exitFlag = guiDAQ.select_daq_window(dt.modelsDAQ)

niDAQ = dt.niDAQ(modelsDAQ, exitFlag)

if not exitFlag:
niDAQ.initiate_daq()

return niDAQ

Snippet 3.4.4 Creation of object 'niDAQ' in 'run_select daq' function
in "/src/app/appDAQ.py'

47

3. DEVELOPING THE APPLICATION

match method:
case 'TEMP_VOLTAGE"':
calibration =
appTempVoltCalibrate.run_temp volt calibrate(niDAQ)
if calibration is not None:
niDAQ.add_calibration_to_log(calibration)
niDAQ.set calibration(repr(calibration))
case 'EXPRESSION_ INPUT':
calibration =
appExpressionInputCalibrate.run_expression_input_ calibrate(niDAQ)

if calibration is not None:

niDAQ.add_calibration_to_log(calibration)

niDAQ.set calibration(repr(calibration))
case 'ACQUIRE_DATA':
if niDAQ.is calibration_set:

break

Snippet 3.4.5 Object ‘calibration’ creation given the method chosen in

function 'run_calibrate' in './src/app/appCalibrationMethod.py'

This architectural design optimizes the division of labor and ensures clear demarcations
between components while promoting efficient collaboration. The logical and GUI-based
components are interconnected, collectively working towards the application's

overarching goals.

In essence, the application's high-level architecture exemplifies a structured yet
interconnected framework, utilizing both logical and GUI features to cooperatively guide
users through phases. The appendix, a repository of detailed explanations, will further
clarify the interplay between code segments and components, providing a comprehensive

understanding of the application's architectural intricacies.

48

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

3.5. BUILDING THE GRAPHICAL USER INTERFACE

The construction of the GUI adheres to a defined structure that fosters consistency and
simplicity across different sections. Each GUI section is synchronized with its
corresponding logical counterpart, guaranteeing integration of functionality and user

interaction.

In a nutshell, the GUI structure follows a systematic pattern across all sections, ensuring
uniformity and ease of use. This pattern encompasses the delineation of a layout (Snippet
3.5.2 and Snippet 3.5.3), the association of this layout with a designated window (Snippet
3.5.1), and the establishment of window behaviors within a recurring loop (Snippet 3.5.4).
This cohesive structure serves as the foundation upon which the entire GUI framework is

built.

window, fig, figure_canvas_agg =

guiExpressionInputCalibrate.expression_calibrate_window()

calibration =
guiExpressionInputCalibrate.expression_input_calibrate_window_behavior(niDAQ, window,
fig, figure_canvas_agg)

[...]

Snippet 3.5.1GUI window structure in
‘run_expression_input_calibrate’ function in

“/src/app/appExpressionlnputCalibrate.py’

[...]

return gt.gui_window_with_graph(‘Input Sensor Calibration Equation’, layout,

gt.FIG_SIZE WIDTH, gt.FIG_SIZE_HEIGHT, False)

[...]

Snippet 3.5.2 Return of ‘expression_calibrate_window’ in

“./src/gui/guiExpressionInputCalibrate.py’
49

3. DEVELOPING THE APPLICATION

def gui_window_with_graph(title, layout, figSizeWidth, figSizeHeight, isModal):

€233

Initializes a PySimpleGUI window with a matplotlib using a CANVAS with empty
graph that can be updated later

:param title: title of the window

:param layout: layout designed for the window

:param figSizeWidth: desired width of the graph

:param figSizeHeight: desired height of the graph
:param isModal: bool if window is modal
:return: window, fig, figure_canvas_agg

€233

return window, fig, figure_canvas_agg

Snippet 3.5.3 Layout and window configuration returned in function

‘eui_window_with_graph’ in “/src/guiTools.py’

def expression_input_calibrate_window_behavior(niDAQ, window, fig,
figure_canvas_agg):

Behaviour for direct expression input calibration window

:param niDAQ: object

:param window: pysimplegui window

:param fig: calibration plot

:param figure_canvas_agg: canvas for calibration plot

:return: calibration object

€233

calibration = ct.LinearCalibration()
while True:
event, values = window.read()

Snippet 3.5.4 Window Behavior loop in function
‘expression_input_calibrate_window_behavior’ in

“./src/gui/guiExpressionInputCalibrate.py’

50

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

The nature of this structure is chosen by its compatibility with PySimpleGUI, which
accommodates the design. By maintaining consistency across GUI sections, the
application establishes a sense of continuity, enabling users to navigate different sections

easily.

The integration of relevant widgets plays a pivotal role in ensuring user engagement and
interaction. Users’ decisions are effectively captured through elements such as combo
boxes, such as offering a dropdown menu to select the appropriate DAQ device (Snippet
3.5.5 and Fig. 3.5.1). The interface reflects user preferences, as the application adapts to

the selected choice.

[...]

[sg.Text('Select the model of the National Instruments DAQ:', pad=((@, ©),
(15,)N 1,
[sg.Combo(modelDAQ,
default_value="Select the model...",
key="-MODEL-",
expand_x=True,
tooltip="'Select an option before moving forward')],

Snippet 3.5.5 Combo box in layout to select DAQ model in
'select_daq window' function in '/src/gui/guiDAQ.py’

2 PyroDAQ - X

Select the model of the National Instruments DAQ:
Select the model .|

USB-6211
USB-6002

Fig. 3.5.1 Combo box shown as dropdown menu in DAQ selection

window

51

3. DEVELOPING THE APPLICATION

Other elements like radio buttons further augment the user's control over the application's
functionalities, like offering choices that align with the calibration process (Snippet 3.5.6,
Snippet 3.5.7, Fig. 3.5.2 and Fig. 3.5.3). By selecting specific calibration options, users

steer the application's behavior in line with their requirements.

[sg.Radio(gt.TEMP_VOLT LIN_EQ,
group_id="exp_type’,
default=True,
k="'-LINEAR_EQ-',
enable_events=True,
pad=((10, @), (10, 0)))],

[sg.Radio(gt.TEMP_VOLT LEAST SQUARES,
pad=((40, 0), 0),
group_id="1lin_eq"',
default=True,
enable_events=True,
k="'-LEAST_ SQUARES-')],

[sg.Radio(gt.TEMP_VOLT LIN INTERP,
pad=((40, 0), 0),
group_id="1lin_eq"',
default=False,
enable_events=True,
k="-LINEAR_INTERPOLATION-'),

Snippet 3.5.6 Radio elements for equation type in layout in function

‘temp _volt_calibrate_window' in "/src/gui/guiTempVoltCalibrate.py’

if event == '-LINEAR_EQ-"':
gt.set_disabled(window, False, '-LEAST_SQUARES-', '-LINEAR_INTERPOLATION-')
Taooll

if event == '-NON_LINEAR_EQ-"':
gt.set_disabled(window, True, '-LEAST SQUARES-', '-LINEAR_INTERPOLATION-')

Snippet 3.5.7 Enabling and disabling radio buttons given the button
selected in 'temp _volt calibrate_window_behavior' function in

"/src/gui/guiTempVoltCalibrate.py’

52

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

2’ Known Temperature-Voltage Sensor Calibration Equation

Fig. 3.5.2 Radio Button when ‘Linear Equation’ is selected, and all is
enabled

2 Known Temperature-Voltage Sensor Calibration Equation

Fig. 3.5.3 Radio Button when ‘Non-linear Equation’ is selected, and

options are disabled

The incorporation of user input is streamlined through input fields such as those that
cater to voltage input (Snippet 3.5.8, Snippet 3.5.9 and Fig. 3.5.4). This interactive
element enables users to input specific voltage values, an essential step in the

calibration and data acquisition processes.

53

3. DEVELOPING THE APPLICATION

[sg.Text('V =', k="-V_TXT-', pad=(10, 0)),
sg.Input(size=gt.SIZE_INPUT,
key="'-V_INPUT-',
enable_events=True,

disabled_readonly background_color=sg.theme_button_color()[1]),

sg.Text('T ="),
sg.Input(size=gt.SIZE_INPUT, key='-T_INPUT-',
enable_events=True),

sg.Button('Enter', k='-ENTER-', bind_return_key=True, pad=((10,

0), (10, 10)))]

[...]

Snippet 3.5.8 Voltage and temperature input in layout in
‘temp_volt calibrate_window * function

in “/src/gui/guiTempVoltCalibrate.py’

if event == '-ENTER-':
try:
if values['-T_INPUT-"] == "":
raise ValueError("Values must be assigned")
elif not gt.is_number(values['-T_INPUT-']):
raise ValueError("Values must be a numeric value.")

if not window['-TOGGLE-'].metadata:
if values['-V_INPUT-'] == "":
raise ValueError("Values must be assigned")
elif not gt.is_number(values['-V_INPUT-']):
raise ValueError("Values must be a numeric value.")
inputValues = [float(values['-V_INPUT-']), float(values['-

T_INPUT-"])]

else:

inputValues = [niDAQ.read_voltage(), float(values['-T_INPUT-'])]

Snippet 3.5.9 Voltage and temperature sequence in
‘temp_volt calibrate_window_behavior’ function in

“/src/gui/guiTempVoltCalibrate.py’

54

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

-Input Data:
Typein (I Measure

Fig. 3.5.4 Voltage and temperature inputs in known temperature-

voltage window

The application's visualization of data handling, including logging and manipulation, is
facilitated through intuitive data tables, and accompanying buttons such as clear and
delete functions (Snippet 3.5.10, Snippet 3.5.11 and Fig. 3.5.5). The interactive table
empowers users to observe logged data while retaining the ability to manage and edit

entries.

[sg.Table(values=[],
headings=['Voltage (V)', 'Temperature (°C)'],
k="'-TABLE-',
enable click events=True,
enable events=True)],
[sg.Text("'Number of Samples: '),
sg.Text('0', k='-N_SAMPLES-'),
sg.Push(),
sg.Button('Clear', k='-CLEAR-', tooltip=" Clear table ",
disabled=True),

sg.Button('Delete', k='-DELETE-', tooltip=" Delete last row
", disabled=True)]

Snippet 3.5.10 Data table, Delete and Clear buttons in layout in
‘temp_volt calibrate window’ function in
“/src/gui/guiTempVoltCalibrate.py’
55

3. DEVELOPING THE APPLICATION

if event == '-DELETE-':
del calibration[-1]

calibration.change in_data(window, fig, figure_canvas_agg,

known_expression=False)

if event == '-CLEAR-':
calibration.clear_data()
calibration.change in_data(window, fig, figure_canvas_agg,

known_expression=False)

Snippet 3.5.11 Delete and Clear behavior in
‘temp_volt_calibrate window' function in '/

src/gui/guiTempVoltCalibrate.py’

Voltage (V) | Temperature (°C) |=
0.001 0.0

Number of Samples: 1

Fig. 3.5.5 Data table, Clear and Delete buttons in known temperature-

voltage window

For effective data visualization, the application incorporates plot widgets that

dynamically display acquired data (Snippet 3.5.12, Snippet 3.5.13 and Fig. 3.5.6). This

56

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

visual representation offers users an immediate grasp of data trends and patterns,

enhancing their comprehension of temperature variations.

[sg.Canvas(k="-CANVAS-', size=(200, 200))],

Snippet 3.5.12 Canvas for the plot in layout in
‘temp_volt calibrate window' function in

"/src/gui/guiTempVoltCalibrate.py’

calibration.update_figure(fig, figure_canvas_agg, known_expression=False)

Snippet 3.5.13 Canvas update for the plot in
‘temp_volt_calibrate window behavior' function in

"/src/gui/guiTempVoltCalibrate.py’

2 Known Temperature-Voltage Sensor Calibration Equation - X

Choose ion Type: Calibration Equation
@ Linear Equation y = 1180.636x -1.181
@ Least Squares Method
€ Linear Interpolation
€ Non-linear Equation
12.5 1 Linear Regression L
Input Data: C 9
@ Data Points
Typeln (D Measure 100
7.5

Temperature (2C)

001 @

0.002 0.004 0.006 0.008 0.010 0.012
Voltage (V)

Number of Samples: 2 | Clear [{ Delete | Croose |

Fig. 3.5.6 Plotted data table in known temperature-voltage window

57

3. DEVELOPING THE APPLICATION

In summary, the process of building the GUI revolves around a structured approach that
unifies the user experience across different sections. A consistent framework ensures
coherence and familiarity, while the strategic incorporation of diverse widgets caters to
user decisions, input, data handling, and visualization. This meticulous integration of GUI
elements forms the bedrock of the application's user interface, creating an intuitive and

engaging platform for users within the temperature-sensing circuit control context.

3.6. MANAGING USER INTERACTION AND CONTROL LOGIC

The basic principle for managing user interaction is to maximize usability by matching
functionalities with their intended purpose. This approach streamlines the user experience
by selectively enabling or disabling certain actions, ensuring that users are presented with

pertinent options tailored to their current context.

For instance, the user interface is thoughtfully structured to reflect the logic that specific
functionalities are only accessible when all relevant parameters have been accurately
inputted. An illustrative instance involves the button labeled "Choose", as described
earlier, by initially disabling it and subsequently activating it when all prerequisites are
met, the application guides users along a structured path, fostering efficient decision-

making.

Furthermore, the strategy extends to the user input process, particularly in situations
where only numerical values are valid. Rather than permitting any input and subsequently
notifying users of invalid entries, the application proactively filters out non-numeric
characters as users type, preventing erroneous inputs from occurring (Snippet 3.6.1). This
proactive measure enhances workflow, ensuring that users remain within the realm of

valid inputs, thereby reducing the likelihood of errors.

def filter_numeric_characters(window, values, event, text input_keys: list):

Filters out non-numeric text inputs so that even if the user types

letters and numbers, only numbers, and '-
are shown

:param window: window from gui where text is inputted and shown

:param values: list of values in gui window

:param text_input_keys: list with text-input keys

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

:param event: event in gui window

k_event = text input keys[text input keys.index(event)] if
len(text_input_keys) > 1 else text input keys[0]

filtered chars = []

dot_found = False

for char in values[k _event]:

if char.isdigit():
filtered chars.append(char)

elif char == '.' and not dot_found:
filtered chars.append(char)

dot_found = True

elif char == '-' and len(filtered chars) == 0:

filtered chars.append(char)

values[k_event] = ''.join(filtered_chars)

window[k_event].update(values[k _event])

Snippet 3.6.1 'filter_numeric_characters' function in

"/src/guiTools.py’

The intermediary control layer between the GUI and Python code functions as a crucial
bridge, orchestrating communication, and command flow. These intermediary functions,
positioned at each juncture of the application's process, facilitate coordination between
the GUI and underlying logic. Their role encompasses the initiation of essential tasks,

ensuring that subsequent steps are executed in a controlled and sequential manner.

This separation of layers proves indispensable, particularly when handling multiple

windows. By avoiding overlaps and establishing a sequential workflow, the application

59

3. DEVELOPING THE APPLICATION

sustains its coherence and functional integrity. This layer serves as a conduit, ensuring

that each GUI action corresponds with the appropriate command on the logic side.

This symbiotic relationship extends further as GUI functions operate as intermediaries
between user input and logical commands. Upon completion of a GUI process, such as
selecting a calibration method, the resulting action is transmitted back to the logical layer.
This can occur through the return from a function or by updating pertinent objects. This
tightly intertwined interaction ensures an exchange of information, aligning user input

with the subsequent logical steps.

The upcoming sections delve deeper into the intricacies of control logic within the context
of interfacing with the DAQ and the temperature sensor. These discussions give detailed
insights into the management of user interface and control logic and further clarify the

sequencing of the application.

The philosophy governing user interaction management within the application embodies
a systematic approach that aligns functionalities with user context. By proactively
limiting invalid inputs, controlling user access to functionalities, and utilizing
intermediary control layers, the application orchestrates a user-friendly and coherent
experience. This methodology is essential in seamlessly connecting the GUI with
underlying logic, fostering a harmonious synergy between user interactions and the

application's overarching goals.

3.6.1. INTEGRATING NATIONAL INSTRUMENTS DAQ
The integration of the NI DAQ device using NI-DAQmx is the fundamental aspect of the
application's functionality. This integration entails distinct tasks, primarily focused on

facilitating analog channel output and input operations.

At the heart of the integration lies the utilization of the DAQ to accomplish essential
tasks: writing and reading. The writing task involves channeling a set output analog
voltage to power the circuit. The powering of the circuit will be further discussed in
Section “EXPERIMENTAL SETUP," where the specifics of the power source and its

implications will be elaborated upon.

60

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

This function operates in the background, automatically activated when the circuit is
deemed correctly set up and the user initiates temperature reading (Snippet 3.6.2). The
reading task, on the other hand, is indirectly prompted by the user when they opt to

acquire data or measure voltage (Snippet 3.6.3).

def run_data_acquisition(niDAQ):

Runs data acquisition
:param niDAQ: object where data will be stored
:return:

window, fig, figure_canvas_agg =
guiDataAcquisition.data_acquisition_window(niDAQ.calibration)

niDAQ.set_task_start(1)

niDAQ.set_task_write(1)

guiDataAcquisition.data_acquisition_window_behavior(niDAQ, window, fig,
figure_canvas_agg)

niDAQ.set_task_stop(1)

Snippet 3.6.2 Writing task in function 'run_data_acquisition' in

"/src/app/appDataAcquisition.py’

def read_voltage(self):

Simulates the reading of the voltage by the DAQ

returns:
voltage (float): reading of voltage by the DAQ

self.set_task_start(®0)
match self.model:

[...]

case 'USB-6001':

voltage = self.task_ai_ao[@].read()

[...]
self.set_task_stop(®@)
return round(voltage, 3)

Snippet 3.6.3 Reading task in 'read voltage' function in
"/src/daqTools.py’

61

3. DEVELOPING THE APPLICATION

A foundational aspect of this integration is the application's capacity to recognize the
presence of a connected DAQ. Through a function, the program detects whether the DAQ
is properly connected (Snippet 3.6.4, Snippet 3.6.5, Snippet 3.6.6 and Fig. 3.6.1). This
preemptive check serves as a valuable precaution, reminding users to connect the DAQ

and avoid errors stemming from unintentional omissions.

def is_daq_connected():
system = nidagmx.system.System.local()

devices = system.devices
return len(devices) > ©

Snippet 3.6.4 'is_daq_connected' function in "./src/app/daqTools.py’

def set_tasks(self):
if is_dag_connected():
for channel in range(2):
self.task_ai_ao.append(nidagmx.Task())
else:
raise ValueError("Number of devices found in system is 0")

Snippet 3.6.5 Check if DAQ is connected in 'set_tasks' function in
"/src/app/daqTools.py’

def run_select_daq():

Runs daq selection
:return:

while True:
try:

except ValueError as e:
guiDAQ.no_daq_detected_popup(e)

Snippet 3.6.6 Catching the no DAQ error in 'run_select _daq' function
in "/src/app/appDAQ.py’

62

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

Mo DAQ detected:
I Number of devices found in system is 0

Fig. 3.6.1 Popup message when there is no DAQ detected

Upon selecting the suitable DAQ model through the user's action and choice, as stated
before, an object is initialized with the relevant model information. This object serves as
the central focal point of the application. Once calibration is assigned to this object, it
becomes the source from which all functions essential for data addition, management,

and trial-related information stem.

Further details regarding the decision-making process behind the selection of the DAQ
model are elaborated upon in the section titled “ SUGGESTIONS FOR FUTURE
RESEARCH AND DEVELOPMENT”.

3.6.2. INTEGRATING TEMPERATURE SENSING AND CIRCUIT CONTROL
FUNCTIONALITY
The integration of temperature sensing functionality into the application centers around
the circuit control capabilities established in the preceding section "Integrating National
Instruments DAQ." This symbiotic relationship empowers the application to both power

and read the circuit, thereby facilitating temperature-sensing processes.

In the calibration process, as noted earlier, a pivotal object is instantiated, serving as a
central hub for all calibration-related procedures. This object becomes the focal point for
all endeavors related to calibration setup, acting as a hub from which various trials and
configurations emanate. This approach maintains a separation of concerns, allowing the
two distinct objects to function concurrently while delaying interaction until the user
selects a specific calibration (Snippet 3.6.7). This design choice provides users with the
autonomy to experiment with different calibrations while retaining the freedom to opt for

previously calculated values.

63

3. DEVELOPING THE APPLICATION

'TEMP_VOLTAGE ' :
calibration = appTempVoltCalibrate.run_temp_volt_calibrate(niDAQ)
if calibration is not None:

niDAQ.add_calibration_to_log(calibration)
niDAQ.set_calibration(repr(calibration))

Snippet 3.6.7 Assignation of calibration to niDAQ object after
'run_temp volt calibrate' has run, in 'run_calibrate’ function in '/

src/app/appCalibrationMethod.py’

3.7. USER INTERACTION FLOW

The subsequent section provides a comprehensive walkthrough of the user interaction
flow, delineating the sequence of actions from the initiation of the application to the
culmination of data analysis. This step-by-step exploration sheds light on the user's
journey, underscoring the logical progression and transitions that characterize the user

experience.

1. Launching the Application and GUI Initialization: The user launches the Python-
based application designed for controlling the NI DAQ. Upon launch, the

graphical user interface (GUI) of the application is presented to the user.

2 PyroDAQ = x

Select the model of the National Instruments DAQ:

[Select the model.

Fig. 3.7.1 DAQ model selection window

64

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

2. DAQ Model Selection: The user is provided with options from a dropdown menu
to select the appropriate model of the NI DAQ.

Fig. 3.7.2 DAQ model selection with options window

3. Calibration Configuration: At this stage, the user is guided through the process
of setting the calibration value for the temperature-sensing circuit. They are

prompted to select the desired calculation method. Two options are provided:

2’ Sensor Calibration = X

Fig. 3.7.3 Calibration method window

a. Known Temperature-Voltage Value: Users are presented with the choice

between calculating a linear or non-linear equation.

65

3. DEVELOPING THE APPLICATION

2 Known Temperature-Voltage Sensor Calibration Equation — X

-0.04 -0.02 0.00

Fig. 3.7.4 Equation type choices

If the linear option is chosen, they can further decide between the least
squares method or point interpolation. When two data points are
collected, users are prompted to choose two points for interpolation. The

user's choice establishes the expression type.

Next, users are presented with options regarding the voltage value. They
can manually input the voltage or allow the DAQ to measure the voltage
at that instant. Correspondingly, the user inputs the temperature value and,
if necessary, the voltage. All collected data is visually displayed in a table

format, providing options to delete the last added point or clear the table.

2 Known Temperature-Voltage Sensor Calibration Equation - X

T T
- —— Linear
@ Data Points

e

.

g
4
2
e
3
£
]

v

0.00 0.02 0.04 0.06 0.08
Voltage (V)

Fig. 3.7.5 Linear Interpolation method with “Choose Points” button

66

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

2 Choose Points = M

1001 @ Oatafoints »
| .
5 804 s 1
o ———
L]
-
& ! 1e ! } }

“1 . -]
oLe : ' : : Seocted Ponis
000 002 004 006 008 [udwbu.

Voitage (V)

Fig. 3.7.6 Choose Points window, point clicked on

2’ Choose Points = x
f— ‘ - — ‘ r ® 000 00
s] 001 @ DataPoints — .08 zaer]
e - selected Points | | (B3 \) Calien o [
=g s - . L ‘ I L h;._
§ 60 il i — — -
€ s0tH— / !
£ | - e =
€ 5 1 ,7l77, IEEr 1 . Em
b | | | mm—]
= 4 0.00 05: : 004 0.06 0.08 [mm' 2R A)
j T Voltagev) : choose |
Fig. 3.7.7 Choose Points window, two points selected
' Known Tempacature-Voltage Sensor Calibration Equaticn - x

Fig. 3.7.8 Subsequent calibration from choosing points

67

3. DEVELOPING THE APPLICATION

Once either two or three data points are collected (depending on the
expression type), the calculated expression is presented to the user. The
user has the option to copy the expression if desired. Alongside the
expression, both the data and the expression are plotted. Users can choose
to change the expression calculation method while retaining the collected

data points.

2’ Known Temperature-Voltage Sensor Calibration Equation - X

T T
1 — Fitted Curve

@ Data Points

Temperature (2C)

Fig. 3.7.9 Change to non-linear equation

2’ Known Temperature-Voltage Sensor Calibration Equation - 5%

T T T
1 —— Linear Regressi
@ Data Points

Pl

g
@
2
e
g
£
e

Fig. 3.7.10 Change to linear equation, least squares method

Upon satisfaction, users can proceed by selecting the "Choose" button,
which redirects them to the calibration menu. Here, the selected calibration

is set.

68

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

2 sensor Calibration -] X

Fig. 3.7.11 Set Calibration

b. Known Expression Parameters: Users are given the option to choose
between a linear or non-linear calibration expression. Depending on the
choice, they need to input two or three parameters, respectively.

After setting the parameters, the expression is calculated and displayed
alongside the corresponding plot. The option to copy the expression is also

available.

2 Input Sensor Calibration Equation - X

[T T T
—— Linear Regression
| @ Data Points

Temperature (2C)

4 6
Voltage (V)

Fig. 3.7.12 Linear equation calibration input with corresponding plot

69

3. DEVELOPING THE APPLICATION

2 Input Sensor Calibration Equation - X

§

= T T
~— Linear Regression
| ® Data Points

8

o
8

]

Temperature (2C)

4 6
Voltage (V)

Fig. 3.7.13 Copy equation selected

Following this, users are prompted to select between typing in the voltage
or measuring it instantly. A temperature point is calculated and appended
to the data table for each voltage point. The table provides the capability
to delete the last point added or clear the entire table. All data points are

visualized on the plot, alongside the expression.

2 Input Sensor Calibration Equation - C X

T ; T
" —— Linear Regression
@ Data Points

0.25 0.26 0.27 0.28 0.29
Voltage (V)

Fig. 3.7.14 Data points logged and represented in plot

Once users are content with the calibration setup, they can proceed to
finalize their choice. They are then returned to the calibration method

section, where the newly calculated calibration is set.

70

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

From this point onward, users are empowered to select from previously calculated

calibrations, add new calibrations, or move forward to the data acquisition phase.

@ sensor Calibration - X

i
O—

['y = 1300.647x 2.863 .|

ly = 0.005x* + 0.200x + 25.000
ly = 100.000x + 0.000

@
£ 4

Fig. 3.7.15 Calibration log with saved calibrations and options to

calibrate and acquire data

4. Data Acquisition Setup and Display: At this phase, the user engages in

configuring parameters for data acquisition.

The user is presented with the ability to incorporate alarms that monitor
temperature values. Maximum and/or minimum temperature alarms can be added,
with triggers set for temperatures surpassing or falling below specified values.
These alarms are visually represented as LEDs that will turn on and off, as well
as dashed lines on the plot, enabling users to intuitively identify potential issues.

Users can edit or disable these alarms according to their requirements.

71

3. DEVELOPING THE APPLICATION

2 Data Acquisition

w
B
«n

w
E
o

g
g
§305
8
3
&

g
(=]

N
©
wn

0 2 4 6 8 10
Readings (ms)

Fig. 3.7.16 Example of alarms being set at 29.5°C and 31.5°C

Users have the choice between two modes: on-demand data acquisition or finite

sampling, using the calibration established in the preceding step.

a. On-Demand Data Acquisition: When this option is selected and “Acquire

Data” clicked on, data acquisition commences automatically with a default

time interval of 500ms.

500 1000 1500 2000 2500
Readings (ms)

Fig. 3.7.17 On demand acquisition with 500ms time interval

Users can dynamically adjust this interval using a slider. Until the user
initiates the "Stop" command, the acquisition persists. Data collected is

graphically represented in a plot, accompanied by a tally of the acquired

72

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

samples. Users can opt to restart the process or modify the configuration as
needed.

Q' Data Acquisition

\

. —

1
|
1
!

0 2000 4000 6000 8000 10000
Readings (ms)

Fig. 3.7.18 On demand acquisition with 60ms time interval

' Data Acquisition

|
|
l
I
\

0 2500 5000 7500 10000 12500 15000
Readings (ms)

Fig. 3.7.19 On demand acquisition stopped manually

b. Finite Sampling: For this option, users input the desired number of samples
along with the time interval between each sample. Upon activating the
"Acquire Data" button, data collection begins. Like the previous mode, a

sample counter and a graphical plot of the data are presented.

73

3. DEVELOPING THE APPLICATION

0 250 500 750 1000 1250 1500
Readings (ms)

Fig. 3.7.20 Ongoing finite sampling acquisition with the parameters:
20 samples and 2 Sa/s

Unless the user triggers the "Stop" command, data collection continues until
the targeted number of samples is achieved. Upon completion, the option to

save the data emerges.

VA
VIV

Temperature (2C)

o 1000 2000 3000 4000
Readings (ms)

Fig. 3.7.21 finite sampling acquisition finished with the parameters.
10 samples and 2 Sa/s

If the user chooses to save the data, a prompt appears asking them to name the
file and designate its location. This generated CSV file (Snippet 3.2.1)
encompasses the DAQ information, the calibration established for the

acquisition, pertinent parameters, the alarm log, and the gathered data points.

74

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

\ # D Acguisiion - x

3000
Readings (ms)

Fig. 3.7.22 Save data prompt

@ Data Acquisition - X

e VAR
VIV

10 0 1000 2000 3000 4000
Readings (ms)

Fig. 3.7.23 Data successfully saved

data.csv

Fig. 3.7.24 Data successfully created

75

3. DEVELOPING THE APPLICATION

Upon completion of the data acquisition process, users are given the choice to
either continue acquiring data or return to the calibration phase, facilitating

recalibration as needed.

5. Closing the Application: Finally, from the calibration menu, the user can close

the application when they're done.

3.8. ERROR HANDLING

The strategy employed for detecting and addressing errors within the application draws
upon the basis of constraining user input, a principle discussed in earlier sections. This
approach significantly minimizes the potential for errors and enhances the application's

overall robustness, allowing for a more streamlined error-handling process.

By implementing measures like restricting user input to valid characters and numerical
values, most potential errors are preemptively mitigated. This proactive stance ensures
that input values are appropriate and relevant, lowering the possibility of errors

originating from incorrect or inappropriate input.

For instance, as explained before, the application's user input mechanism is designed to
exclusively accept numbers or pertinent symbols, effectively guaranteeing the accuracy
of numeric inputs. This screening method significantly reduces the number of potential

errors, leaving only a handful that require care.

Should an error be detected, the application uses a popup message mechanism to
communicate the issue to the user, exposing the problem and guiding users toward

rectification.

Among the remaining error scenarios, such as omitting necessary inputs or entering a
minimum value greater than the maximum, must be considered. To address these
scenarios, the application implements try-except blocks that intercept errors as they arise,

preventing their escalation and potential disruption of user experience.

76

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

if event == '-SET-':
try:

if all(values[key] == "" for key in alarm_input_keys):
raise ValueError("Values must be assigned")
elif all(values[key] != "" for key in alarm_input_keys):
alarm_min, alarm_max = gt.to_number_n_dec(gt.N_DECIMALS,
values['-MIN_TEMP_INPUT-'],

values['-
MAX_TEMP_INPUT-'])
if alarm_min >= alarm_max:
raise ValueError("Min alarm can't be bigger or equal to max
alarm")
niDAQ.set_alarm_min(alarm_min)
niDAQ.set_alarm_max(alarm_max)
else:
if values['-MIN_TEMP_INPUT-'] != "":
[alarm_min] = gt.to_number_n_dec(gt.N_DECIMALS, values['-
MIN_TEMP_INPUT-'])
if niDAQ.is_alarm_max_set() and (alarm_min >=
niDAQ.get_alarm_max()):
raise ValueError("Min alarm can't be bigger or equal to
already set max alarm")
else:
niDAQ.set_alarm_min(alarm_min)
if values['-MAX_TEMP_INPUT-'] != "":
[alarm_max] = gt.to_number_n_dec(gt.N_DECIMALS, values['-
MAX_TEMP_INPUT-'])
if niDAQ.is_alarm_min_set() and (alarm_max <=
niDAQ.get_alarm_min()):
raise ValueError("Max alarm can't be bigger or equal to
already set min alarm")
else:
niDAQ.set_alarm_max(alarm_max)
niDAQ.update_figure(fig, figure_canvas_agg)
niDAQ.trigger_alarm_icon(window, alarm_icon_keys)
gt.set_visible(window, True, '-DISABLE-')
except Exception as e:
sg.popup_error(str(e), title="Error")

Snippet 3.8.1 try-except block for setting alarms in function
'data_acquisition_window_behavior' in

"/src/gui/guiDataAcquisition.py’

77

3. DEVELOPING THE APPLICATION

y = 1300.647x -2.863

33.0

Min = [FCl Max= 30 el
2 ; = _ 35
- [
oy $ ma
315[C) ‘e = x|
e Max alarm cant be bigger or equal to already set min alarm
i
€ Finite Sampliing 300 4
No. Samples: [IRN 0 2 4 6 8 10
Sample Rate: [l Sals Readings (ms)

Fig. 3.8: Popup informing the user that there’s an error setting max

alarm

3.9. TESTING, DEBUGGING, AND VALIDATION
The comprehensive testing, debugging, and validation process, as outlined in Section 2.4
“TESTING AND QUALITY ASSURANCE STRATEGY”, was implemented
throughout the development journey. This methodical approach proved invaluable in
uncovering numerous bugs and errors that were promptly addressed and resolved. While

many issues were successfully handled, one emerged that resisted simple solutions.

During the examination of extreme scenarios within the system testing stage, a critical
oversight of the hierarchical control structure of the NI DAQ came to light. The real
sample rate of data acquisition was different from what it should be, which prompted a

more thorough examination of the underlying system architecture.

The separation between control logic and the user interface holds vital importance,
considering the simultaneous functioning of both components. Unfortunately, this
principle was unintentionally overlooked, leading to a situation where the NI DAQ was

erroneously managed within the user interface segment of the code.

This mistake had a notable outcome as a result: the update frequency of the NI DAQ
became reliant on the frequency of the PySimpleGUI function. This linkage
unintentionally limited the DAQ's sample rate, which had an impact on its ability to
acquire data. Once this issue was identified, it was evident that considerable refactoring

of the project's code was necessary to correct it.

78

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

By the time the oversight was identified, a substantial portion of the project had already
been completed. The decision to proceed with the existing work was influenced by the
nature of the application's operational scenarios, which were temperature-based. Given
the relatively gradual changes in temperature, a hyper-precise frequency was not

paramount, and the user experience remained relatively unaffected.

Nevertheless, it was acknowledged that not fully capitalizing on the DAQ's potential
capabilities represented a significant compromise. The chosen solution involved limiting
the frequency available for the user, enabling a balance between the existing system

architecture and the user's requirements.

While this discovery posed a notable challenge, it also reinforced the importance of
vigilance in system architecture design and highlighted the potential ramifications of

decisions made at the outset of a project.

3.10. SUGGESTIONS FOR FUTURE RESEARCH AND
DEVELOPMENT

Considering the limitations highlighted in the preceding section, several insightful

suggestions for future research and development come to the forefront:

Firstly, addressing the challenge of separating the control of the DAQ presents an
immediate opportunity for improvement. This could be effectively resolved by extracting
the pertinent functions from the GUI component and integrating them in the control
portion. By integrating these aspects, a more coherent and efficient control structure could
be established, ensuring better synchronization between user interaction and DAQ
functionality. This evolution could serve to enhance the overall performance and usability

of the application.

Basic aesthetic improvements can be considered for the GUI, such as enhancing the
increments on the x-axis to achieve a cleaner look, especially when dealing with larger

time values where the current representation might appear less refined.

79

3. DEVELOPING THE APPLICATION

Samples Collected: 303

y = 100.000x + 0.000

26
Min = [FC] Max= el
- " E;,g 92
Unset Unset ;
E 22
L . g
rChoose Data Acquisition Type: g2
@ On Demand &
€ Finte Sampling A8
No. Samples: [T 0 2500050000 750001000002500a50000
Sample Rate: [0 Sals Readings (ms)
Time Intenval [ms]
500 e
60 1060 2060 3060 4060 5060

Fig. 3.10: GUI x-axis representation at high time values

It's important to note that this application represents a first version, and future iterations
have the potential to build upon these foundational aspects, incorporating refinements and

user-driven enhancements.

Furthermore, the prospect of extending the application's capabilities to accommodate the
simultaneous utilization of two DAQ units holds potential. This expansion would provide
users with enhanced flexibility in data acquisition scenarios that involve multiple sensors
or circuits. Additionally, the feasibility of incorporating other models of DAQ units,
beyond the initial three, is a noteworthy avenue for future exploration. The foundation for
such integration is already laid through the existing option to choose among the three

models.

This initial choice was introduced owing to the differences among the three DAQs
tailored for this application's scope. The underlying revelation, however, surfaced
subsequently; it became apparent that a unified codebase could be harnessed across these

models, given the commonality in basic functionalities like reading and writing.

This foresight guided the decision to retain the choice among the existing models, as it
was deduced that the foundational architecture already in place would readily facilitate
the integration of further models in the future. The architectural flexibility laid the
groundwork for seamless expansion, should the need arise to encompass additional DAQ

variants.

80

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

In the realm of educational enrichment, a compelling direction involves integrating code
inspection as an instructive tool. The open-source nature of Python and its widespread
utilization within the field make it an invaluable resource for students. By enabling
students to delve into the code behind the application, a deeper understanding of software-
hardware interactions in the context of electronics can be fostered. This presents a unique
opportunity for students to grasp the intricacies of the underlying mechanisms, which is

often obscured in tools like LabVIEW.

Considering the enhancement of the student learning experience, the development of a
mobile application could be a promising endeavor. Such an extension would bridge
traditional learning methodologies with modern technology, providing students with a

more engaging and immersive learning experience.

Lastly, for broader accessibility and improved student comprehension, incorporating
translation options in languages such as Spanish or Valencian (as spoken where the
project has been developed) could prove beneficial. This localization effort would ensure
that a wider spectrum of students can engage with the application in a language that aligns

with their comfort and familiarity.

These suggestions collectively offer a roadmap for refining and expanding the
application's functionality, impact, and usability in both educational and practical

contexts.

81

4. EXPERIMENTAL SETUP

4. EXPERIMENTAL SETUP

In this section, we delve into the experimental setup, providing a comprehensive guide to
the practical aspects of utilizing this application. This section offers a condensed
overview of the experimental setup, focusing on the critical components and processes
involved in harnessing the application's capabilities for temperature sensing and data
acquisition. For a more detailed walkthrough, readers are encouraged to refer to the

appended "PyroDAQ Student's Guide."

4.1. CIRCUIT SETUP

The central configuration employed in this experiment is a Wheatstone bridge, using a
Pt100 as the temperature sensor. The Pt100, a platinum resistance temperature detector,
exhibits a well-defined resistance-temperature relationship, rendering it highly suitable
for temperature sensing applications. Pt100 probes operate on the principle of the
(practically linear) change in resistance exhibited by a platinum wire as a function of

temperature, which can be expressed as:
R(t)=Ry[l+a(t— tg)
Equation. 1 Temperature and resistance variation
With t, = 0°C,R, = 100 Q,and « = 0,00385°C™ 1.

A Wheatstone bridge is a circuit configuration used for measuring electrical resistance
with high accuracy [14]. It consists of four resistors arranged in a diamond-shaped
configuration (as depicted in Fig. 4.1.1). The Wheatstone bridge operates on the principle
of balancing two legs in the bridge circuit, with one leg having an unknown resistance to

be measured (Rx).

Vref
—

Fig. 4.1.1 Wheatstone bridge configuration

82

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

The voltage difference between the central points of the two legs is known as the "output
voltage" or "bridge output." When the ratio % is equal to the ratio %’ the bridge is said

to be in a balanced or null state (Equation. 2). This means that there is no net current
flowing through the central connection point, known as the bridge's "null" point. When a
change in resistance occurs in any of the four resistors (in particular Rx) the bridge
becomes unbalanced. This results in a voltage difference at the output that can be

measured (Equation. 3).

R1 _R3
R2 Rx

Equation. 2 Balanced Wheatstone bridge condition

Rx R3
R,+R, R;+R;

Va = Vrer X (

)

Equation. 3 Output voltage equation for Wheatstone bridge

By precisely calibrating the bridge with known resistors and recording the output voltage,
one can establish a relationship between resistance changes and the corresponding output
voltage variations. This calibration allows you to use the Wheatstone bridge for accurate

measurements of unknown resistances Rx.

4.2. CALIBRATION AND VALIDATION PROCEDURES FOR THE
TEMPERATURE SENSOR

In the context of the experimental setup for the temperature sensor, calibration assumes a
pivotal role in ensuring the accuracy and reliability of temperature measurements [15].
Given the challenges associated with directly controlling temperature in the experimental
environment, a distinctive feature of the Pt100 comes into play. Instead of physically
manipulating the temperature, the Pt100 can be substituted with a known (precision)

resistor.

This approach entails a selection of resistors, each designed to provide a distinct voltage
output corresponding to a specific temperature value. By choosing precision resistors in
the range of 0 to 140Q, a comprehensive span of reference temperature points is

established, in this case, 0 °C to 103.9 °C. The experiment's temperature range is designed

83

4. EXPERIMENTAL SETUP

to be used for a range of 0 °C to 100 °C. These emulated temperature values corresponding
to each resistor's voltage output are calculated in advance providing the user the

equivalent of putting the circuit in a controlled environment with a thermometer.

These reference points serve as anchors to build the calibration curve of the circuit,

against which all subsequent temperature measurements are adjusted.

Once this groundwork is laid, the calibration process within the application is
straightforward. For every resistor used in the simulation, a known temperature value is
inputted into the system. Simultaneously, the voltage generated by the circuit is measured.
This essential procedure establishes a direct and accurate relationship between voltage
and temperature, forming the bedrock for precise temperature measurements throughout

the experiment.

With calibration duly completed and the system primed for accurate measurements, the
experimental process can progress to data acquisition. This calibrated setup ensures that
temperature measurements align with the selected reference temperature points,

validating the reliability and validity of the acquired data.

4.3. RESULTS AND ANALYSIS

This segment offers a detailed examination of the obtained data, charting a path through
key graphical representations and calibration equations. Additionally, we explore a

noteworthy observation, shedding light on the impact of resolution on the collected data.

The Wheatstone bridge was powered with VREF=1V from one of the analog outputs of
the DAQ, and the calibration process was conducted as previously described. These are
the calculated theoretical values, with Vd theo representing the theoretical value
determined by Equation. 3, T the temperature calculated with Equation. 1, and Vd exp.

being the measured voltage from the circuit.

84

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

Rx(Q2) Vd theo (V) T (CC) Vd_exp. (V)

100 0,0000 0,0000 0

105 0,0122 12,9870 0,012
110 0,0238 25,9740 0,023
121 0,0475 54,5455 0,045
127 0,0595 70,1299 0,057
133 0,0708 85,7143 0,069
140 0,0833 103,8961 0,081

Fig. 4.3.1 Table with Rx, Vd_theo., T and Vd_exp. values powered at
1V With 6001 DAQ

It is noteworthy that Vd exp falls slightly below the anticipated value in comparison to
Vd theo. This discrepancy may arise from the fact that, in line with the 6001
specifications, the maximum current it can provide to an external circuit through this

analog output channel is limited to 5 mA. However, in the present circuit, the required

. - \'
current is approximately: 1(1% = 10mA.

This issue can be solved by either using an external power source for the circuit, like a

battery, or by increasing the R1 and R2 values to 1KQ instead of 100Q2.

R1 and R2 values (©2) Vref_exp (V)

100 0,883
1K 1,001
Fig. 4.3.2 Comparison between RI and R2 values and how Vref'is
affected

Furthermore, a notable trend emerges from our analysis: the discernible effect of

resolution on the acquired data.

In the context of a USB-6001 DAQ system coupled with a Pt100 TF101k temperature
sensor operating within a Wheatstone bridge configuration, certain specifications are

pertinent.

The resolution, this parameter designates the minimum distinguishable variation in

voltage that the DAQ can accurately detect. For the USB-6001 DAQ, with an ADC

85

4. EXPERIMENTAL SETUP

resolution of 14 bits, and an input range of £10 V, the resolution is calculated at 1.22 mV
(Equation. 4).
10V — (—10V)

Resolution = i = 1.22mV

Equation. 4 Voltage resolution of 6001 DAQ

In addition, bridge sensitivity characterizes the responsiveness of the Wheatstone bridge
to alterations in temperature. In this specific instance, it is specified at 0.8 mV per degree

Celsius (°C).

With these two things temperature resolution can be calculated. This refers to the smallest
change in temperature that a measuring system or instrument can detect or differentiate.
It is a measure of the system's ability to distinguish between two temperature values that

are very close together.

- (ADC resolution) 1.22mV

~ Bridge sensitivity ~ ; gmV
8¢

= 1.5°C

Equation. 5 Temperature resolution for DAQ 6001 with Pt100

This computation yields a temperature resolution of approximately 1.5°C. This means
that changes in temperature are quantified in 1.5°C steps, as it can be observed in

(Equation. 5).

Samples Collected: 10

w
il
=]

w
=1
w

Temperature (2C)

w
=1
o

w
=4
w

0 1000 2000 3000 4000
Readings (ms)

Fig. 4.3.3 Data acquisition plot for DAQ 6001 where temperature

resolution can be observed

86

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

In DAQs like the 6002, this temperature resolution step is lower as the ADC resolution
is higher (16 bits instead of 14) [16].

The data obtained from the experimental setup serves as the cornerstone of our analysis.

4.3.1. CONSIDERATION OF HOW THE PROGRAM CAN FACILITATE
STUDENT ENGAGEMENT AND EXPLORATION IN EXPERIMENTAL
SETUP
At the core of this project lies the temperature sensor and, by extension, the circuit where

it resides.

The application's primary request from the circuit is to provide a voltage signal to read.
This means that as long as the student provides an appropriate voltage measurement for
the application, there is freedom in the circuit setup. The student can replicate the specific
experiment outlined in this project with the Pt100 temperature sensor or they can explore
alternative temperature sensors and circuit configurations, fostering a culture of curiosity

and experimentation.

In the realm of engineering laboratories, students often grapple with predefined
experiments and limited room for experimentation. In contrast, this application empowers
students to embark on a journey of discovery. They can easily set up diverse temperature
sensors, create intricate circuitry with various components, and observe how these

elements interact.

By providing students with the possibility to deviate from the established setup, this
program not only enhances their understanding of temperature sensing and data

acquisition but also nurtures their innate curiosity and problem-solving skills.

87

5. CONCLUSIONS

5. CONCLUSIONS

5.1. OVERVIEW OF RESEARCH OBJECTIVES AND MAIN
FINDINGS

The primary objective of this project was to create an educational application that could
facilitate temperature sensing and data acquisition in order to substitute traditional tools
like LabVIEW. The underlying goal was to introduce students to an open-source, Python-

based application designed for electronic instrumentation use.

Throughout this project, several key milestones were achieved. These include the
successful integration with Python of a flexible and adaptable circuit for temperature
measurement, which interfaces with a NI DAQ device, and successfully ensures data

acquisition.

One of the accomplishments of this endeavor was the development of a user-friendly
application that empowers students to engage in a spectrum of activities. The application
allows students to perform essential tasks such as calibration, data acquisition, and real-
time data visualization. It provides a comprehensive learning experience, enabling

students to apply their classroom knowledge to practical experiments.

As this project progressed, it offered a unique learning opportunity. Valuable insights
were gained into the complexities of integrating software and hardware, establishing
communication between different components, and planning and building a functional
application. All while problem-solving along the way, thus giving a taste of project

management and undertaking in the engineering field.

5.2. EXPLORATION OF THE PROGRAM’S POTENTIAL TO
ENHANCE LEARNING EXPERIENCES IN TEMPERATURE
SENSING AND DATA ACQUISITION

As delved into in previous chapters, this application offers a comprehensive, hands-on
learning experience that combines theoretical knowledge and real-world application. It
serves as a tool for students seeking to deepen their understanding of data acquisition and

interpretation.

88

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

By offering a hands-on approach to the concepts of temperature sensing and data
acquisition, students can grasp the practical implications of the theories they study in
classrooms. This practical acquaintance enhances their comprehension and retention of

key concepts, making the learning process more tangible and engaging.

Beyond its role as a data acquisition tool, the program presents an additional benefit to
students: an opportunity to explore and understand coding. As already established, Python
is rapidly emerging as a standard in various scientific and engineering domains. By the
possibility of interacting with the application's code, students gain valuable experience in
this coding language. This not only cultivates their computational thinking but also
imparts a valuable skill that will accompany them on their journey toward becoming

engineers.

5.3. CONCLUDING REMARKS

In this research endeavor, the project successfully achieved its primary research
objectives. Delivering an educational application that simplifies temperature sensing and
data acquisition. Moreover, the project sets the stage for further exploration and
expansion. It provides students, educators, and enthusiasts with a foundation to delve
deeper into the realms of temperature sensing and data acquisition. The open-source
nature of the application, coupled with the flexibility of the integrated hardware, offers a
wealth of possibilities for customization and experimentation. Students and non-students

alike can leverage this project as a launchpad for their explorations in the field.

This research journey not only met its objectives but also illuminated the path for future
endeavors. It underscores the significance of practical, hands-on experiences in the realm
of electronic instrumentation. It reaffirms the value of open-source tools and collaborative
efforts in driving innovation and learning. As this chapter concludes, it is recognized that
this project is not merely a destination but a steppingstone towards a broader landscape

of possibilities in temperature sensing, data acquisition, and beyond.

&9

6. BIBLIOGRAPHY

6. BIBLIOGRAPHY

[1] Instruments, National, "NIL," [Online]. Available: https://www.ni.com/es-

es/shop/product/labview.html. [Accessed September 2023].

[2] National Instrument, “About NI,” [Online]. Available:

https://www.ni.com/en/about-ni.html. [Accessed September 2023].

[3] B. Stroustrup, The C++ programming language, Addison-Wesley Professional,
2013.

[4] H.-P. Halvorsen, "Python for Science and Engineering," 2019. [Online].
Available:
https://www.halvorsen.blog/documents/programming/python/python.php.

[5] "NI-DAQmx Python Documentation," [Online]. Available: https://nidagmx-
python.readthedocs.io/en/latest/. [Accessed September 2023].

[6] "PySimpleGUL" [Online]. Available: https://www.pysimplegui.org/en/latest/.
[Accessed September 2023].

[7] "USB-6001 Specifications," [Online]. Available: https://www.ni.com/docs/en-
US/bundle/usb-6001-specs/resource/374369a.pdf. [Accessed September 2023].

[8] "USB-6001/6002/6003 User Guide," [Online]. Available:
https://www.ni.com/docs/en-US/bundle/usb-6000-6001-6002-6003-
features/resource/374259a.pdf. [Accessed September 2023].

[9] "tkinter — Python interface to Tcl/Tk," [Online]. Available:
https://docs.python.org/3/library/tkinter.html. [Accessed September 2023].

[10] "NI-DAQ™mx Driver," [Online]. Available:
https://www.ni.com/en/support/downloads/drivers/download.ni-dag-

mx.html#484356. [Accessed September 2023].

90

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

[11] "NumPy documentation," [Online]. Available:
https://numpy.org/doc/stable/index.html. [Accessed September 2023].

[12] "SciPy," [Online]. Available: https://scipy.org/. [Accessed September 2023].

[13] "Matplotlib — visualization with python," [Online]. Available:
https://matplotlib.org/. [Accessed September 2023].

[14] R. P. Areny, Sensores y acondicionadores de sefial, Sevilla Marcombo Boixareu,

2003.

[15] M. A. Pérez Garcia, Instrumentacion electronica, Madrid: Thomson-Paraninfo,

2011.

[16] National Instruments, "ni.com," [Online]. Available: https://www.ni.com/docs/en-

US/bundle/usb-6002-specs/resource/374371a.pdf. [Accessed September 2023].

[17] Texas Instruments, "LM35 Precision Centigrade Temperature Sensors," [Online].
Available: https://www.ti.com/lit/ds/symlink/Im35.pdf. [Accessed September
2023].

91

APPENDIX A: ASSETS AND ATTRIBUTION

APPENDIX A: ASSETS AND ATTRIBUTION

The following icons used in this project were sourced from Flaticon, a platform that
provides a wide range of icons for various purposes. Each icon has been attributed to its

respective creator.

QL

Fig.1 Original images from Flaticon

Snack free icon: Nature icons created by max.icons — Flaticon (https://www.flaticon.com/free-

icons/nature)

Thermometer free icon: Thermometer icons created by Freepik — Flaticon (https://www.flaticon.com/free-

icons/thermometer)

Led free icon : Led icons created by Smashicons — Flaticon (https.://www.flaticon.com/free-icons/led)

Switch free icon : Toggle button icons created by Creatype — Flaticon (https.://www.flaticon.com/free-

icons/toggle-button)

92

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

APPENDIX B: STUDENT’S GUIDE

This resource was created to provides comprehensive insights into temperature sensing
and data acquisition for students when using PyroDAQ. A PDF version can be
downloaded from the project's GitHub repository found in “APPENDIX C: CODE”

section.

PYRODAQ STUDENT’S GUIDE:

= EXPLORING TEMPERATURE

\ & SENSING WITH PYTHON
-5 AND CONTROLLING
(~ NATIONAL INSTRUMENTS
DAQ

INTRODUCTION

Welcome to PyroDAQ - your gateway to python driven temperature sensing. This guide is
your key to mastering temperature measurement using our application and National

Instrument's equipment.

Temperature sensing holds pivotal importance in various fields, from electronics to
industry. PyroDAQ is born out of the need to merge Python programming capabilities and
accessible, comprehensible code, with National Instrument's precision, enabling you to

navigate temperature measurement confidently.

In this guide we’ll lead you through installation, circuit setup, and program functionality.
Get ready to explore temperature sensing through PyroDAQ — where hardware and software

unite for precise measurements. Let's dive in!

ESSENTIAL CONCEPTS IN TEMPERATURE
SENSING

In this section, we'll delve into the essential building blocks that underpin accurate

temperature measurements and equip you to navigate electronic instrumentation.

93

APPENDIX B: STUDENT’S GUIDE

Sensitivity:

Sensitivity quantifies a sensor's responsiveness to temperature fluctuations. A highly
sensitive sensor detects even subtle temperature changes, enabling accurate and detailed

measurements.

Resolution:

Temperature resolution signifies the smallest temperature change a sensor can detect. A
higher resolution allows finer distinctions, crucial for precision in temperature-sensitive

applications.

The resolution of an ADC refers to the smallest increment of analog input voltage that can
be accurately represented as a discrete digital value.
For USB-6001 DAQ:

ADC Resolution: 14 bits
ADC FS voltage: #10 V

Resolution = (ADC FS voltage) / (2*ADC Resolution)
Resolution = (10V - (-10 V)) / (2*14) =1.22 mV

For USB-6002 DAQ:

ADC Resolution: 16 bits
ADC FS voltage: #10 V

Resolution = (10 V - (-10V)) / (2*16) =305 pV
For USB-6211 DAQ:

ADC Resolution: 16 bits
ADC FS voltage: #10 V, #5V, #1 V, #0.2 V (with 5% overrange)

Resolution = 320, 160, 32, 6.4 uV

To estimate the resolution in temperature measurement for a data acquisition system using
a temperature sensor with a voltage output, it is essential to know the sensitivity of the

sensor. The sensitivity of the temperature sensor refers to how much the sensor's output

94

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

voltage changes in response to a unit change in temperature. The higher the sensor's
sensitivity, the higher the temperature measurement resolution you can achieve with the
data acquisition system. Resolution is typically calculated as the ratio between the
minimum detectable variation in the sensor's output voltage and the sensor's sensitivity.

The lower this ratio, the higher the temperature measurement resolution.

For USB-6001 DAQ with LM35 sensor and:

ADC Resolution: 1.22 mV

LM35 sensitivity: 10 mV/°C

Temperature resolution = (ADC Resolution) / (LM35 sensitivity)

Temperature resolution = 1.22 mV/10 mV/°C = 0.122 °C.

For USB-6001 DAQ with a Pt100 TF101k in a Wheatstone bridge with 0.8 mV/°C
sensitivity:

ADC Resolution: 1.22 mV
Bridge sensitivity: 0.8 mV/°C

Temperature resolution = (ADC Resolution) / (Bridge sensitivity)

Temperature resolution = 1.22 mV/ 0.8 mV°C =1.5 °C.

Offset:

Offset accounts for inherent sensor errors by adding or subtracting a constant value from

the output. Managing offsets fine-tunes accuracy, especially in low-temperature ranges.

95

APPENDIX B: STUDENT’S GUIDE

Sampling Rate

Sampling rate dictates how often measurements are taken. A suitable sampling rate

captures rapid temperature changes without missing vital data.

Calibration

Calibration stands as a critical process that ensures your temperature sensor's readings
remain accurate and reliable. It involves adjusting the sensor's output to match a known
reference value, thereby correcting any inherent biases or deviations that may arise over

time.

Linear Calibration

For sensors with a linear, or relatively so, relationship between their output and the
measured quantity (PT100, LM35, limited range Thermocouples, etc.), linear calibration is

often employed.

Non-linear Calibration

Not all sensors exhibit linear behavior. Some sensors, especially those with intricate
response curves, demand non-linear calibration (thermistor, RTD, thermocouples, etc.). In
these cases, more sophisticated equations are employed. Non-linear calibration handles the
intricacies of the sensor's behavior and ensures accurate compensation across its entire

operating range.

Choosing the Right Calibration Approach

The choice between linear and non-linear calibration hinges on the sensor's characteristics
and the desired accuracy. Linear calibration is simple and effective when the sensor's
deviation from linearity is minor. Non-linear calibration, while more complex,
accommodates sensors with non-linear behaviors and offers better accuracy across a wider

range of conditions.

96

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

Data Acquisition Device (DAQ)

A component designed to capture, measure, and analyze real-world data from various
physical phenomena. It serves as a bridge between the analog world and digital processing,

enabling precise data collection for analysis and control.

Wheatstone Bridge

A Wheatstone Bridge is a fundamental circuit used in
electronics to measure resistances and detect changes in
resistance with high precision. It consists of four
resistors arranged in a diamond shape, with a power

source connected across one diagonal. When the bridge

is balanced, the ratio of resistances is equal on both
sides. This setup allows you to measure an unknown Figure 1. Wheatstone Bridge
resistance by adjusting known resistances until the Diagram

bridge is balanced.

In the following sections, we'll dive deeper into the intricacies of PyroDAQ and its
integration with National Instrument's equipment. Get ready to translate theory into

practical mastery!

SYSTEM REQUIREMENTS

Before embarking on your temperature sensing journey, let's ensure you have everything

you need. Here's a breakdown of the hardware and software necessities:

Hardware Requirements

1. National Instruments DAQ (USB-6001, 6002, or 6211): Think of it as the bridge
between the real world and your computer. It will also power your circuit (external

power source can also be used).

97

APPENDIX B: STUDENT’S GUIDE

2. Small flat screwdriver: necessary for connecting wires to the DAQ.

3. Circuit Setup: breadboard, It provides a convenient platform for assembling and

connecting the temperature sensor, precision resistors, and wires.
4. Temperature Sensor: You can choose a PT100 or LM35 sensor, among others.

5. Precision Resistors: These help fine-tune your measurements. They’ll be valuable

when calibrating.

6. Wires: You’ll need a few in different colors such as red, black, blue, ...

Software Requirements

1. Operating System: Windows will do the job.

2. PyroDAQ App: This is your window into the temperature sensing world, it helps

you see and understand what's happening with your setup.

Checklist:

[J National Instruments DAQ (USB-6001, 6002, or 6211)

O Screwdriver

[J Breadboard

[Temperature Sensor (PT100, LM35, etc.)

[J Precision Resistors (100, 105, 110, 121, 127, 133 and 140 Q)

[J wires

[J Computer with Windows Operating System

[PyroDAQ App (Download and installation process explained next).

With these essentials in place, you're all geared up to explore temperature sensing and dive

into the world of electronic instrumentation using PyroDAQ.

98

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

99

INSTALLATION

To get started with PyroDAQ, you'll need to follow a few simple steps to install the

application on your computer. Here's a detailed guide:

1. Access the GitHub Repository

First, you'll need to visit the PyroDAQ GitHub repository. You can find the link to the
repository here. This is where you'll find all the necessary files to install PyroDAQ.

2. Read the README.md

Once you're on the GitHub page, navigate to the README.md file. This file contains
comprehensive instructions on how to install and set up PyroDAQ on your computer. It's

your go-to resource for the installation process.

3. Follow the Installation Steps

The README.md file will provide step-by-step instructions for installing PyroDAQ. These
steps typically include downloading the necessary files, installing any dependencies, and

configuring your environment.

By following these steps and carefully reading the instructions in the README.md file on
the GitHub repository, you'll be able to successfully install PyroDAQ on your computer.
Happy installation!

GETTING STARTED

Let's kick off your journey by diving into the initial setup process. We will be exploring the
Wheatstone bridge circuit setup with a Pt100, but feel free to diverge into other circuit

examples.

APPENDIX B: STUDENT’S GUIDE

As you embark on this adventure, it's essential to start with the right foot forward. Ensure
you have all the hardware and software requirements in place, as outlined in the "System
Requirements" section. This includes your National Instruments DAQ, circuit components,

temperature sensor, wires, and your computer with the PyroDAQ app installed.

Wheatstone Bridge Setup with a Pt100

In a Wheatstone bridge setup, calibration is the process of establishing a relationship
between the electrical signals produced by the bridge and the actual physical quantity you're
trying to measure, such as temperature. Precision resistors play a key role in this calibration
process, allowing you to simulate different temperature conditions without changing the

actual temperature of the environment.

Here's a step-by-step guide:

7

NATIONAL A !
.. ..
NI myDAQ fi e 2 “e
-
- .o 219 - .o
:"' P LU . e

;: ¢ e e e . .
k sl Sesse S s %2
ra od R0 B 0 [| %
!i 8B . - : . . - ::

L! e e o
o bod iy EXT =
k — e .o
]
.. e E. o . e

- ..

L b b .
P .. .'. :.
.. LA LG .o
9 ::é:: %2
S
e oolo—-lo~-'
e L LU .o
P .. . LR L PPy
o« e . . - L L e
P .. . L e

.. . LU L L

Figure 2. Wheatstone Bridge Circuit Setup
1. Arrange on a breadboard the circuit from Figure 2.
,';_’ J

100

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

a. The three 100-ohm resistors will form the arms of the bridge. Connect them
in such a way that one resistor connects to the positive rail, another to the
negative rail, and the third resistor connects to the output pin of the bridge.

b. Connect the first of the precision resistors in the remaining place of the
wheatstone bridge (where the red box is). Once calibrated, this will be where
we connect the Pt100.

c. Referencing Figure 1, connect the breadboard to the DAQ with wires:

*AO0 powers the circuit from the DAQ, if desired this can be replaced by another power

supply of 1V. If this is changed, keep in mind that the reading configuration may need to
be changed from DIFF to something appropriate like RSE.

Temperature-Resistance table

To do so, fill in the table, this will correlate the known resistance values of the precision
resistors with their corresponding temperatures. This table serves as a reference for

simulating different temperature points and we will use it in the calibration step later on.

Rt(Q) Theoretical Vd (V) Temperature (°C) Measured Vd (V)
100
105
110
121
127
133
140

Formulated spreadsheet: E Student Guide Table.xlsx

101

APPENDIX B: STUDENT’S GUIDE

Temperature
The relationship between Pt100 and temperature can be represented by:
R =R + a(t —t),withR =1000Q, ¢t = 0°Canda = 0.00385 oc!

R

R, =100 + 0.00385(t — 0) —» t = ((55 — 1)/0.00385) + 0

Voltage

R

For a balanced bridge like this one: Vi = VIN(W - W)

NAVIGATING PYRODAQ STEP BY STEP

Get ready to explore the ins and outs of this powerful tool as we walk you through each step

of calibrating and acquiring data from a Wheatstone bridge setup.

LAUNCH

1. The first window you'll encounter will kindly ask you to select the specific model of

your DAQ. This information can be found on the underside of your DAQ.

| Make sure your DAQ is called “Dev1” as the app won’t recognize it if it’s not. This

can be checked and changed with the NI MAX software, in devices and interfaces.

CALIBRATION

In this initial stage, we're going to calibrate your temperature sensing setup using precision
resistors. Calibration is like teaching your system how to speak the language of temperature

changes. Here's how it works:

2. The Calibration Menu appears, ready to log your calibration settings. Once a

calibration is set, it can be later used as they’re saved.

Two options appear: Temperature and Voltage Relation and Input Direct Expression.

102

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llaquet, Judit

For our Wheatstone bridge setup, let's opt for the Temperature and Voltage Relation.
This is because we're simulating different temperatures using precision resistors. For
known calibrations like for a LM35 circuit setup, the direct input expression would

be useful.
3. Click "Calibrate" to proceed.

Temperature and Voltage Relation

4. In this window, you'll first need to select an expression type. We'll go with the linear
equation, least squares method for this tour, but feel free to explore other methods.

5. Under input data, toggle "Measure". If you’d instead like to input the calculated
voltage toggle for “Type In”.

6. Input the corresponding temperature value from your table and either click “Enter”
or press the Enter key.

7. Do so for each precision resistor, changing the resistor in the circuit as you go. You

can check if your measured values correspond with your previously calculated ones.
It’s normal for the real values to differ a bit from the calculated values.

8. If you make any mistakes, don't worry. You can delete the last input by clicking

"delete’, or all of them by clicking “Clear”.
As you add data points, you'll start to see your calibration plot taking shape.
9. Once all points are added, click "Choose" to finalize the calibration.

Back in the Calibration Menu, you can keep logging calibrations, but for now, let's move

forward.

10. Click "Acquire Data" to proceed.

DATA ACQUISITION AND VISUALIZATION

Now, we're ready to use the calibration expression to acquire actual data from the Pt100

sensor:

11. Connect your Pt100 temperature sensor in place of the precision resistors.

- i

103

APPENDIX B: STUDENT’S GUIDE

12. In the appearing window, you'll see your chosen calibration at the top. If you need to
change it, click "recalibrate.”

13. Explore control features like temperature alarms. Set minimum and/or maximum
alarms by entering desired values and clicking on “Set” (e.g. 25°C, 28°) . Dashed lines

will appear in the graph with their corresponding colors.
To delete the alarms, click on "disable".
Choose your data acquisition type:

14. For on-demand acquisition:
a. Select the option and click "acquire data."
b. Adjust the time interval with the slider. For more precision, click on either
side of the slider.
c. Click on “Stop” when you're ready.
15. For finite sampling:
a. Select the option.
b. Input the number of samples and time interval (e.g. 10, 2).
c. Click "Acquire Data."
d. Once finished, if desired, save the data as a CSV file by clicking on “Save
Data”.

Input a name for the file and open it on your computer to review parameters,

alarms, and acquired values.

This CSV file can easily be opened in other platforms such as excel to further

analyze the data.

With this tour, you've unlocked the basics of PyroDAQ. Repeat and experiment as much as
you like, delving into different calibrations and sensors. Let your curiosity lead the way as

you master the art of temperature sensing!

104

Enhancing Student Learning in Temperature Sensing and Data Acquisition with PyroDAQ
Danso Llagquet, Judit

APPENDIX C: CODE

What follows is the complete source code utilized in developing the PyroDAQ

application.

This codebase is available for reference and further exploration at the project's GitHub
repository, which can be accessed via the following link: GitHub Repository
(https://github.com/danllag/PyroDAQ.git).

105

Pyr oDAQ. bat

@cho off
title PyroDAQ

rem Activate the virtual environment
cal | PyroDAQuenv\ Scripts\activate

rem Run the PyroDAQ application
pyt hon mai n. py

READMVE. nmd

PyroDAQ @=U @<R!p

PyroDAQ is a Python application with a graphical user interface (GUJ)

designed for interacting with

National |nstruments DAQ (Data Acquisition) devices for tenperature sensing. @&F¥%

Prerequisites @=UE

Bef ore you begin, make sure you have Python and Pip installed on your system
and that you're using Wndows. @=U»

Python Installation @U

. Visit the [Python Dow oads] (https://ww. pyt hon. org/ downl oads/) page.
. Downl oad the installer for the version *3.11. 0*.

. Run the installer and follow the installation instructions.

. During the installation, make sure to check the box that says "Add Python
o PATH'.

. After installation, open a command pronpt and check that Python is
nstal |l ed by running:

" batch

pyt hon -- version

=

2
3
4
t
5
i

Pip Installation @=Use

When installing Python, pip should also be included. To check if it's
installed run:

" “batch

pip --version

If for any reason there's a problemrefer to [pip docunentation](https://
pi p. pypa.io/en/stable/installation/).

Driver Installation &M
To use PyroDAQ, you need to install the N -DAQw (version 2023 Ql).

Downl oadi ng and installing the NI -DAQr driver is essential because it
provi des the necessary software conponents for your

conputer to comruni cate with and control National I|nstrunents DAQ hardware
devices that this project uses.

Fol | ow these steps to download and install the driver:
1. **Downl oad the NI -DAQw Driver:**

- Visit the official N -DAQw driver downl oad pager: [N -DAQm Driver
Downl oad] (htt ps://ww. ni . com es/ support/downl oads/ dri ver s/ downl oad. ni - dag-
nx. ht m #477807) .

- Choose Wndows CS and the 2023 QL version

- Cick downl oad button and save to conputer.

2. **|nstallation:**
- Locate the .exe file and double-click
- Follow the instructions.

3. **Verification:**

- Verify the installation by opening N NMAX

- Open the "My System > Sof t ware".

- You should see the driver and the correct version

Setting up the project @pap

Page: 2 of 58

Downl oadi ng the project @=Ua

1. From [PyroDAQ G tHub page] (https://github.com danl|aqg/ PyroDAQ downl oad
zip file.

2. Extract the zip file to your prefered directory.

Creating a virtual environment @kB

In order to isolate dependencies for this project, we're going to create a
virtual environment. It's inmportant to note that

t he project and dependencies are going to be inside the venv but *Python and
pip **should not be** in the venv* 'W

To quickly set up and configure this project, follow these steps:

1. Copy the path of your project's directory.

1. Open a comuand pronpt and open the directory with the foll owi ng comand
(substituting for your actual path):

""" bash

cd C \Users\<user_nane>\ Pyr oDAQ nmai n

3. Run the setup script:

""" bash

set up. bat

4. Wit until the setup has finished, this will be indicated with ~ " " Setup
conpleted! """ it mght take a few nonents.

Runni ng the Program %p

After you have conpleted the prerequisites and set up the project, follow
these steps to run PyroDAQ
1. **Launch PyroDAQ **
You have some options for running the program
- In a command line, fromyour project directory, run
""" bash
Pyar DAQ bat

- You can al so double click on the file ~PyroDAQ bat"
- O in a command |ine your project directory, run
""" bash
PyroDAQvenv\ Scri pts\activate
pyt hon mai n. py

3. **Interact with the progranrt*

- Once the programis running, the GJ for PyroDAQ shoul d appear

- You can now connect you DAQ and use the GU to interact with it for
tenperature sensing and other data tasks
4. **Student's Gui de**

- You can find nore instructions and a guide through the programin the
attached pdf "Student's Cuide"

That's It! You're Set to Blaze a Trail with PyroDAQ @=U @xR!p

Congratul ations! You've successfully set up PyroDAQ and are now ready to
enbark on your data acquisition adventures. Wether you' re a seasoned

engi neer, a curious hobbyist, or sonmewhere in between, we hope PyroDAQ adds
some heat to your tenperature sensing projects!

Renenmber, the world of data acquisition is vast and filled with exciting

chal l enges. So, go forth, neasure tenperatures, and conquer your data |ike a
pro.

Page: 3 of 58

Happy data collecting, and stay toasty! @=Y%3p

Page: 4 of 58

mai n. py

i mport sys
i mport os

i nport src.app. appbDAQ as daq
i nport src.app.appCalibrati onMethod as calibration_nethod
i nport src.app. appbat aAcqui sition as data_acquisition

Cets the path of the current script
current _dir = os.path.dirname(os. path. abspath(__file_))

Adds the parent directory (project root) to the Python path

parent _dir = os.path.dirnane(current_dir)
sys. pat h. append(parent _dir)

def main():

--- DAQ SELECTION ---

ni DAQ = daq. run_sel ect _daq()

while not ni DAQis_exit_requested():
--- CALI BRATION - - -
cal i bration_nethod. run_calibrate(ni DAQ
if niDAQis_exit _requested():

ni DAQ. exi t ()
conti nue
--- ACQUI RE DATA ---
data_acqui sition.run_data acqui sition(ni DAQ
if _nane__ =="__main__":
mai n()

Page: 5 of 58

requirements.txt

ni dagnx==0. 6.5
matplotlib==3.7.1
PySi mpl eGUI ==4. 60. 5
nunpy==1. 24. 2

sci py==1.11.1

Page: 6 of 58

set up. bat

@cho off
title PyroDAQ setup

rem Creates virtual environnment
echo Creating the virtual environnent..
pyt hon -m venv PyroDAQuenv

rem Activates the virtual environnent

echo Activating the virtual environnment..

cal | PyroDAQuenv\ Scripts\activate

remlnstalls dependencies

echo Installing the required dependencies..

pip install -r requirenments.txt

rem Deactivate the virtual environnment

echo Deactivating the virtual environnent..

cal | deactivate

rem Di spl ay nessage to confirmthat the script has conpl eted

echo Setup conpl et ed!

Page: 7 of 58

src/ app/ appCal i brati onMet hod. py

i mport src.gui.guiCalibrati onMet hod as gui Cal i brati onMet hod
i mport src.app.appTenpVoltCalibrate as appTenpVoltCalibrate
i mport src.app. appExpressi onl nput Cal i brate as appExpressionlnputCalibrate

def run_cali brate(ni DAQ:

Runs cal i brate nenu

:param ni DAQ object with DAQ i nformati on and where all things related is
stored

sreturn:
whi | e True:
try:

if niDAQis_calibration_set():
| ayout =
gui Cal i brati onMet hod. | ayout _wi t h_expr essi on(ni DAQ cal i brati ons_| og)
| aunches wi ndow where calibration expression and/or nethod
wi |l be sel ected

wi ndow =
gui Cal i brati onMet hod. cal i brati on_net hod_wi ndow(| ayout)
net hod =
gui Cal i brati onMet hod. run_cal i brati on_met hod_w ndow(wi ndow, ni DAQ)
el se:
| ayout = gui Calibrati onMet hod. get | ayout _no_cal i bration()
wi ndow =
gui Cal i brati onMet hod. cal i brati on_net hod_wi ndow(| ayout)
net hod =

gui Cal i brati onMet hod. run_cal i brati on_nmethod_no_cal i brati on_w ndow(wi ndow)
mat ch met hod:
case ' TEMP_VOLTAGE :
calibration =
appTenpVol t Cal i brate. run_tenp_volt_cal i brate(ni DAQ
if calibration is not None:
ni DAQ add_cal i bration_to_l og(calibration)
ni DAQ set _cal i bration(repr(calibration))
case ' EXPRESSI ON_I NPUT" :
calibration =
appExpr essi onl nput Cal i brat e. run_expressi on_i nput _cal i br at e(ni DAQ)
if calibration is not None:
ni DAQ add_cal i bration_to_l og(calibration)
ni DAQ set _calibration(repr(calibration))
case ' ACQUI RE_DATA' :
if niDAQis_calibration_set:
br eak
el se:
rai se ValueError("No calibration assigned")
case 'EXIT :
ni DAQ set _exit_request()
br eak
case _
rai se ValueError("Wong calibration nethod chosen.")
except ValueError as e:
print(f"Error: {e}")

Page: 8 of 58

src/ app/ appDAQ. py

i mport src.daqTool s as dt
i nmport src.gui.gui DAQ as gui DAQ

def run_sel ect _daq():

Runs daq sel ection

sreturn:
whil e True:
try:

creates object where DAQ information is stored

nodel sDAQ exitFl ag = gui DAQ sel ect _dag_w ndow dt . nodel sDAQ
DAQinitiation with its correspondi ng nodel

ni DAQ = dt. ni DAQ(nmodel sDAQ, exit Fl ag)
i f not exitFlag:
ni DAQ initiate_daq()
return ni DAQ
except Val ueError as e:
gui DAQ no_daq_det ect ed_popup(e)

Page: 9 of 58

src/ app/ appDat aAcqui si tion. py

i mport src.gui.gui DataAcquisition as gui DataAcquisition

def run_data_acqui sition(niDAQ:
Runs data acqui sition
: param ni DAQ object where data will be stored
sreturn:

|l aunches wi ndow where the user can input calibration expression

wi ndow, fig, figure_canvas_agg =
gui Dat aAcqui si tion. data_acqui sition_w ndow ni DAQ cal i brati on)

ni DAQ set _task _start(1)

ni DAQ set _task wite(1l)

gui Dat aAcqui si tion. data_acqui sition_w ndow _behavi or (ni DAQ w ndow, fig,
figure_canvas_agg)

ni DAQ set _task_stop(1)

Page: 10 of 58

src/ app/ appExpr essi onl nput Cal i brat e. py

i mport src.gui.gui ExpressionlnputCalibrate as gui ExpressionlnputCalibrate

def run_expression_input_calibrate(ni DAQ:
Runs expression input calibration
: param ni DAQ obj ect where calibration will be stored
sreturn: object with the calibration information

|l aunches wi ndow where the user can input calibration expression

wi ndow, fig, figure_canvas_agg =
gui Expr essi onl nput Cal i br at e. expressi on_cal i brate_w ndow()

the window returns either a '1'" if the user has chosen an expression or
-1 if they want to go back or close w ndow

ni DAQ set _task_start(1)

ni DAQ set _task write(1)

calibration =
gui Expr essi onl nput Cal i br at e. expr essi on_i nput _cal i brat e_w ndow_behavi or (ni DAQ
wi ndow,

fig, figure_canvas_agg)

ni DAQ set task _stop(1)
return calibration

Page: 11 of 58

src/ app/ appTenpVol t Cal i br at e. py

i mport src.gui.gui TenpVoltCalibrate as gui TenpVoltCalibrate

def run_tenp_volt_calibrate(ni DAQ:

Runs tenperature-voltage relation calibration

: param ni DAQ obj ect where calibration will be stored

creturn: object with the calibration information

|l aunches wi ndow where the user can input voltage and tenperature and an
expression will be cal cul ated

wi ndow, fig, figure_canvas_agg =
gui TempVol t Cal i brate.tenp_volt_cal i brate_w ndow()

ni DAQ set _task _start(1)

ni DAQ set _task wite(1l)

the window returns either a '1' if the user has chosen an expression or
-1 if they want to go back or close w ndow

calibration =
gui TempVol t Cal i brate.tenp_volt_calibrate w ndow behavi or (ni DAQ w ndow, fig,
figure_canvas_agg)

ni DAQ set task _stop(1)

return calibration

Page: 12 of 58

src/calibrationTool s. py

fromabc inport ABC, abstractnethod
i mport src.gui Tools as gt

i nport nunpy as np
fromscipy.optimze inport curve_fit
i mport warni ngs

def linear_func(x, m n):
Li near function nethod
:param x: variabl e
:param m sl ope
paramn: y interception
creturn: linear function

return m* x +n

def non_linear_func(x, a, b, c):
Non-1inear function nethod
:param x: vari abl e
:param a: grade 2 param
:param b: grade 1 param
: param c: constant
:return: non-linear function

returna * x ** 2 + b * x +c

class Calibration(ABC):

Calibration parent class, everything related to the calibration when it's
bei ng set goes here. Once

It's set, it goes to the ni DAQ cl ass obj ect

def __init__(self, expression_type):

Initiates calibration object given the expression type

. param expressi on_type: string, types: 'LINEAR EQUATI ON ,
" NON_LI NEAR_EQUATI ON

sel f.expression_type = expression_type # types: 'LINEAR EQUATI ON ,
" NON_LI NEAR_EQUATI ON

sel f.paraneters = {} # dictionary where paraneters are stored
{'coefficient_g2', 'coefficient_gl', 'constant'}

self.data = []
self.interpolation _points =[] # only used for interpolation

def __len__(self):

Wien | en(object) is used, returns length of data Ii st
:return: nunber of points in data |ist

return | en(self.data)

def __getitem (self, index):

Page: 13 of 58

When object[index] is used, accesses data list to retrieve value
:paramindex: index to access
creturn: pair with [voltage, tenperature]

return self.data[index]

def _ setitem (self, index, voltage_ tenmperature: list):
VWhen object[index] is used, accesses data |list to assign value
:param i ndex: index to access
sreturn:
check _all _floats(voltage tenperature[0], voltage tenperature[1])
sel f.data[i ndex] = voltage_ tenperature

def _ delitem (self, index):
When using del object[index], deletes itemin data |ist
:param index: index to access
creturn:

del sel f.data[index]

def set _chosen_points(self, chosen_points: list):
Assign the chosen points pair selected by the user
: param chosen_points: two pairs in a |ist
sreturn:

self.interpolation_points = chosen_points

def set_data_list(self, data):

Takes a list (data) containing pairs of data points and assigns it to
n an object.

:paramdata: list of data pair points

creturn:

self.data = data

a list

def get paraneter(self, parameter_nane):
Accesses equation paraneter dictionary and returns desired val ue
. param par anet er _nanme: nane of the equation paraneter
["coefficient_g2', 'coefficient_gl', 'constant']
:return: equation paraneter val ue

return sel f. paraneters. get(paraneter_nane)

def get _data(self):
Returns the data points stored by the user
creturn: list of pairs

return self.data

def update_paraneters(self, paranmeters_dict):

Takes a dictionary (paranmeters_dict) containing the paraneter nanes
and their correspondi ng val ues.
The update nethod of the paraneters dictionary is then used to update

Page: 14 of 58

t he paraneter values in another object.

:param paraneters_dict: dictionary where equati on paraneter val ues
are stored

sreturn:

sel f. paranet ers. updat e(par anet ers_di ct)

def add_vol tage(sel f, voltage):
G ven a voltage value, will add to the data |ist
. param vol tage: Vol tage val ue, fl oat
creturn:
[voltage] = gt.to_nunber n_dec(gt.N DECI MALS, voltage)
tenperature = sel f.cal cul ate_tenperature(voltage)
sel f. dat a. append([vol t age, tenperature])

def add_data(self, voltage tenperature: |ist):
G ven a voltage and tenperature pair, adds to de data
. param vol tage_tenperature: voltage and tenperature pair
creturn:

sel f. dat a. append(vol t age_t enper at ure)

def clear_data(self):
Clears table list
‘return:

sel f.data. cl ear ()

def update_data(sel f):
Updat es data points
creturn:
for i, (voltage, tenperature) in enunerate(self.data):
new tenperature = sel f.cal cul ate_tenperature(voltage)
self[i] = [voltage, new_ tenperature]

def sort_x(self):

Sorts data points by x
creturn: list of x values

return gt.get_sorted_nth_el enents(sel f.data, n=0)

def sort_y(self):

Sorts data points by x
creturn: list of y values

return gt.get_sorted_nth_el enents(sel f.data, n=1)

def is_linear(self):
Checks if object is |inear
:return: boolean, true if it is

return self.expression_type == 'LI NEAR_EQUATI ON

Page: 15 of 58

def is_nonlinear(self):
Checks if object is non-linear
:return: boolean, True if it is

return self.expression_type == 'NON LI NEAR EQUATI ON

def is_type(self, expression_type):
Checks if the object has the sane expression type
;. param expressi on_type: LI NEAR EQUATI ON or NON_LI NEAR EQUATI ON
creturn: True if they are, false if it isn't

return self.expression_type == expression_type

def data_exists(self, data_point):
Checks if voltage is already stored in data
. param data_point:pair [voltage, tenperature]
:return: True if voltage is already stored
return any(voltage == data_point[0] for voltage, tenperature in
sel f. dat a)

def has_enough_poi nts(self):
Checks if there are at least 2 points to calculate a |inear
expression, or at least 3 for a nonlinear
sreturn:
return (len(self) > 1 and self.is_linear()) or (len(self) > 2 and
self.is_nonlinear())

def to_linear_calibration(self, m0, n=0):
Converts a NonLinearCalibration object to a LinearCalibration one,
updati ng paraneters and passing data
. param n:
: param m
:return: linear_cal, LinearCalibration object with rel evant
i nformation
i f self.expression_type == "NON_LI NEAR_EQUATI ON'
creates LinearCalibration object

i near_cal = LinearCalibration()
converts to floats with 3 decimal points

m n = gt.to_nunber_n_dec(gt. N DECI MALS, m n)
assigns paraneters to new object

| i near _cal . updat e_par anet er s(paraneters_dictionary(m n))
assigns data |list to new object
linear_cal.set_data_list(self.data)
return linear_ca
el se:
rai se Val ueError("Cannot convert to LinearCalibration. Current
equation type is linear.")

Page: 16 of 58

def to_nonlinear _calibration(self, a=0, b=0, c¢=0):

Converts a LinearCalibration object to a NonLinearCalibration one,
updating paraneters and passing data

: param c:

: param b:

:param a:

:return: non_linear_cal, NonLinearCalibration object with rel evant
i nformation

i f self.expression_type == "LI NEAR EQUATI ON'

creates NonLi nearCalibration object

non_l i near_cal = NonLinearCalibration()
converts to floats with 3 decimal points

a, b, ¢ = gt.to_nunber_n_dec(gt.N DECI MALS, a, b, c¢)
assigns paraneters to new obj ect

non_l i near _cal . update_paraneters(paraneters_dictionary(a, b, c))
assigns data list to new object
non_linear _cal.set data |ist(self.data)
return non_linear_cal
el se:
rai se ValueError("Cannot convert to NonLinearCalibration. Current
equation type is not linear.")

def draw_expression(sel f, axes, known_expression):
Draws expression pl ot
. param axes: axes where the figure is
: param known_expressi on: calibration expression
creturn:
i f known_expression:
Generate points for the plot
if len(self) > 0:
x_plot = np.linspace(self.sort_x()[0], self.sort_x()[-1], 100)
el se:
Xx_plot = np.linspace(0, 10, 100)

sel f. pl ot _expression(axes, known_expression, x_plot)
el se:
i f self.has_enough_points():
sel f. pl ot _expression(axes, known_expression)

def update_figure(self, fig, figure_canvas_agg, known_expression
i s_poi nt_sel ect ed=Fal se, x_sel _poi nt =None,
y_sel _poi nt=None):

Updat es and draws the pl ot

cparam fig: calibration plot

:param figure_canvas_agg: canvas for calibration plot

: par am known_expressi on: bool ean, indicates if the figure is being
drawn with a known expression input by user

paramis_point_sel ected: boolean if user has selected a point from
tabl e

:param x_sel _point: x for selected point

:paramy_sel _point: y for selected point

sreturn:

Page: 17 of 58

axes, X, y = gt.get_axes for_points(fig, self.data)
sel f. draw_expressi on(axes, known_expression)
gt.draw poi nts(axes, x, y, 'bo', "Data Points")
if is_point_selected:

gt.draw_poi nts(axes, x_sel _point, y sel _point, 'ro')
axes[0] . | egend()
gt . pack_canvas(figure_canvas_agg)

def change_in_data(self, win, fig, figure_canvas_agg, known_expression):

Updat es wi ndow when there is a change in the data

:param wi n: pysinpl egui w ndow

:param fig: calibration plot

:param figure_canvas_agg: canvas for the calibration plot

: param known_expressi on: calibration expression

creturn:

Wi n['-TABLE-']. update(val ues=sel f. dat a)

i f not known_expression
W n['-N SAMPLES-'].update(len(self))

if a point was deleted that was used for interpolation, the

interpolation data clears

if self.is_interpolation_points_in_data():
self.interpolation_points.clear()

sel f.update figure(fig, figure_canvas_agg, known_expression)

@bst ract met hod
def calculate_tenperature(self, voltage: float):

Abstract method, given a voltage value it will be overriden by the
appropriate subcl ass nethod that

will calculate the tenperature

: param vol tage: Vol tage val ue, fl oat

sreturn:

pass

def pl ot _expression(sel f, axes, known_expression, x_plot=None):
Abstract nethod, given an x_plot and axes it will be overriden by the
appropriate subclass nethod that wll
pl ot the expression
: par am known_expr essi on

:param x_plot: list of x values for the plot to reference
: param axes: axes where the graph will be plotted on
sreturn:

pass

def is_interpolation_points_in_data(self):
Checks if the set interpolation points are in the data
:return: boolean, True if they are

return not all(pair in self.data for pair in
sel f.interpol ati on_points)

def check_all _floats(*args):

Gven a list of values, checks if they all are float. If any isn't raises
an error.

Page: 18 of 58

Used when val ues are inputted by user.
:param args: equation paraneters
jreturn:
for arg in args:
if not isinstance(arg, float):
rai se ValueError(f"lnvalid value: "{arg}' is not float. Type: {
type(arg).__nane__}")

def get_sign(nunber):
Return '+ if nunber is positive
: par am nunber :
sreturn:

return ' " I f nunber < 0 else ' +

def paraneters_dictionary(*args):
G ven the expression paraneters, creates a dictionary format in order to
save to the object
:param args: calibration paraneters, 2 for linear, 3 for non-Ilinear
:return: dictionary with the fornmat set by the progranmer
if len(args) == 3:
return {'coefficient_g2': args[0], 'coefficient_gl': args[1],
'constant': args[2]}
elif len(args) == 2:
return {'coefficient_g2': None, 'coefficient_gl' : args[0], 'constant
args[1]}
el se:
rai se ValueError(f"There must be 2 or 3 paraneters, {len(args)} were
provi ded")

class LinearCalibration(Calibration):

Child class of calibration for the |linear expression, here everything
related to linear calibration

i s managed and can convert to non-linear class if needed

def __init__ (self, calculation_nethod=""):
Creates a child class of Calibration that if assigned has a type of
cal cul ati on net hod
. param cal cul ati on_net hod: nethods: ['LEAST SQUARES',
' LI NEAR_| NTERPOLATI ON']
super().__init__ ("LI NEAR_EQUATI ON")
sel f.cal cul ati on_net hod = cal cul ati on_net hod

def repr__(self):

String representation nethod
:return: calibration equation in string form
return f"y = {self.get_parameter (' coefficient_gl'):.3f}x
{get _sign(self.get_parameter (' constant'))}" \
f"{self.get _paraneter('constant'):.3f}

def update_method(sel f, cal cul ati on_nethod):

Page: 19 of 58

Updat es cal cul ati on net hod

:param cal cul ati on_net hod: net hods: ['LEAST SQUARES',
" LI NEAR | NTERPOLATI ON']

Jreturn:

sel f.cal cul ati on_method = cal cul ati on_met hod

def set_paraneters(self, m n):
Sets equation paraneters
:paramm grade 1 coefficient value in a linear equation
:param n: constant coefficient value in a |inear equation
sreturn:
m n = gt.to_nunber_n_dec(gt.N DECIMALS, m n)
sel f. updat e_paraneters(paraneters_dictionary(m n))

def cal cul ate_expression(self, point_1: list = None, point_2: list = None

G ven at |least 2 point, calculates the coefficients for a linear
expr essi on
:param point_1: first point
: param poi nt _2: second poi nt
sreturn:
mat ch sel f. cal cul ati on_net hod
case ' LEAST SQUARES' :
coefficients = np.polyfit(self.sort_x(), self.sort_y(), deg=1)
case ' LI NEAR | NTERPOLATI ON :
coefficients = np.polyfit([point_1[0], point_2[0]], [point_1[1
], point_2[1]], deg=1)
case _:
rai se ValueError (' Calibration cal culati on nethod not accepted

sel f.set_paraneters(coefficients[0], coefficients[1])

def cal cul ate_tenperature(self, voltage: float):

Cal cul ates the tenperature with calibration equation rounded to 3
deci nmal points.

. param vol tage: Vol tage val ue

:return: Tenperature value rounded to 3 decinmal points

check _all _floats(voltage)

return round(linear_func(voltage, self.get_parameter(' coefficient_gl'
), self.get _paraneter('constant')), 3)

def plot_expression(self, axes, known_expression, x_plot=None):

Plots linear calibration graph on axes

: par am known_expr essi on:

:param x_pl ot :

. par am axes:

sreturn:

x_list = x_plot if known_expression else self.sort_x()

axes[O].plot(x_list, np.polyval ([sel f.get_parameter(' coefficient_gl'
), self.get _paraneter('constant')],

x_list), 'y-', |abel = Linear

Page: 20 of 58

Regr essi on')

cl ass NonLi near Cal i bration(Calibration):

Child class of calibration for the non-linear expression, here everything
related to linear calibration

i s managed and can convert to linear class if needed

def _init_ (self):

Initiates object with its type

super (). __init__("NON_LI NEAR_EQUATI ON')

def __repr__(self):
String representation nethod
:return: calibration equation in string form

return = {self.get _paraneter (' coefficient_g2'):.3f}x\u00B2" \
et _sign(self.get paraneter('coefficient_gl'))}" \

el f.get paraneter('coefficient_g1'):.3f}x" \

et _sign(self.get _paraneter('constant'))}" \

fry
f{g
f"{s
f{g
f"{self.get_paraneter('constant'):.3f}"

def set_paranmeters(self, a: float, b: float, c: float):
Sets equation paraneters
:param a: grade 2 coefficient value in a non |inear equation
:param b: grade 1 coefficient value in a non |inear equation
:param c: constant coefficient value in a non |linear equation
sreturn:
check_all _floats(a, b, c)
sel f. updat e_paranet ers(paraneters_dictionary(a, b, c))

def cal cul ate_expression(self):
Cal cul ated non-linear coefficient for the expression
creturn:

x_array = np.array(self.sort_x())

y array = np.array(self.sort_y())

popt, = curve_fit(f=non_linear_func, xdata=x_array, ydata=y_array)
a, b, ¢ = popt

sel f.set_paranmeters(a, b, c)

def cal cul ate_tenperature(self, voltage: float):
Cal cul ates the tenperature with calibration equation rounded to 3
deci mal points.
. param vol t age: Vol tage val ue
:return: Tenperature val ue rounded to 3 decinal points
check_al |l _fl oats(voltage)
return round(
non_I|inear_func(voltage, self.get _paraneter('coefficient_g2'),
sel f.get _paranmeter (' coefficient_gl'),
sel f.get _paranmeter('constant')), 3)

Page: 21 of 58

def plot_expression(sel f, axes, known_expression, x_plot=None):

Pl ots nonlinear calibration graph on axes
: param known_expressi on: calibration expression

param x_plot: list of x values if there's an expression
. param axes: plot information
sreturn:

x_list = x_plot i f known_expression el se np.linspace(self.sort_x()[O0
], self.sort_x()[-1], 100)
y _plot = non_linear func(x_list, self.get paraneter(' coefficient g2
), self.get paraneter('coefficient_gl'),
sel f.get _paraneter (' constant'))
axes[O0].plot(x_list, y plot, "y-', label=Fitted Curve')

Page: 22 of 58

src/ daqTool s. py

i mport csv
i mport ni dagmk

inport datetime as dt
i nport src.gui Tools as gt

from ni dagnx. constants i nport (Term nal Confi guration)

DAQ nodel |Ii st
nodel sDAQ = [' USB-6211', ' USB-6001', 'USB-6002']

alarmlog_fieldnanes = [' Alarm Type', 'Tenperature', 'Tine Interval']

AO DAQ NAME = "wheat st one_vcc"
AO DAQ MN VAL = 0

AO DAQ VAL =1

AO DAQ MAX VAL = 5

def is_daq_connected():
system = ni dagnx. system System | ocal ()
devi ces = system devi ces
return | en(devices) > 0

class ni DAQ

Class with DAQ i nformation

Attributes:
nodel (string): DAQ nodel selected by the user

def __init__(self, nodel, exit_requested):
sel f. nodel = nodel
self.task_ai_ao = []
self.exit_requested = exit_requested
self.calibration = ""
self.calibrations_log =[]
self.alarm mn = None
sel f.alarm max = None
sel f.sanple_rate = None
sel f.n_sanpl es = None
self.start_acquisition_tine =
self.data = []
self.tinme_intervals =[]
self.alarns_log = []

def en_ (self):

|
return | en(self.data)

def __getitem _(self, index):

When object[index] is used, accesses data list to retrieve val ue
:paramindex: index to access
creturn: pair with [voltage, tenperature]

return sel f.data[index]

Page: 23 of 58

def __repr__(self):
return f"nodel: {self.nodel}, " \
f"calibration: {repr(self.calibration)}, " \
fralarm [min, max] = {[self.alarmmnmn, self.alarmmax]} °C

def set_tasks(self):
i f is_dag_connected():
for channel in range(2):
sel f.task_ai _ao. append(ni daqmx. Task())
el se:
rai se Val ueError (" Nunber of devices found in systemis 0")

def set_exit_request(self):
Sets exit request to True
:return: bool in True

self.exit_requested = True

def set_alarmmin(self, alarmmin):
Sets mini mum al ar m par anet er
:param al arm m n:
Sreturn:

self.alarmmn = alarmmn

def set_al arm max(sel f, al arm nax):
Set s nmaxi num al ar m par amet er
: param al ar m nax:
creturn:

sel f.alarm max = al ar m nmax

def set _calibration(self, expression):
Sets to true if user has assigned a calibration
creturn:

sel f.calibration = expression

def set _tinme_|og(self):
Sets tine log to current date/ nonth/year hour:ninute: second
jreturn:
self.start_acquisition_tine = dt.datetinme.now).strftinme(" %/ % % %
o9Vt U8. % ")

def set_sanple_rate(self, sanple_rate):

Sets sanple rate of data acquisition
:param sanmpl e_rate: sanple rate introduced by user
sreturn:

sel f.sanple_rate = sanple_rate

def set _n_sanpl es(self, n_sanples):

Page: 24 of 58

Sets nunber of sanples in data acquisition
:param n_sanpl es: nunber of sanples introduced by user
sreturn:

sel f.n_sanpl es = n_sanpl es

def get_sanple_rate(self):
Sets sanple rate of data acquisition
:return: sanple rate introduced by user

return self.sanple rate

def get _n_sanpl es(sel f):
Sets nunber of sanples in data acquisition
:return: nunber of sanples introduced by user

return self.n_sanples

def get_tine_log(self):
Ret urns nonent when the data acquisition started
creturn: string "date/nonth/year hour:m nute:second”

return self.start_acquisition_tinme

def get_alarmmn(self):
Returns min al arm val ue
:return: mn tenperature in [°(C]

return self.alarmmn

def get _al arm max(self):
Return max al arm val ue
;return: nmax tenperature in [°(C]

return self.al arm nax

def get _calibration(self):
Returns the calibration object
sreturn:
repr_calibration = [repr(calibrations) for calibrations in
sel f.calibrations_|og]
return self.calibrations_|log[repr_calibration.index(self.calibration)]

def disable_alarnms(self):

Di sabl es al arns
sreturn:

sel f.alarm max = None
self.alarm mn = None

def is_exit_requested(self):

Page: 25 of 58

def

def

def

def

def

Returns True if exit has been requested
:return: bool

return self.exit_requested

has_dat a(sel f):
Returns true is there has been data coll ected
return: True: data > 0

return len(self) >0

is_alarmmn_set(self):
Returns true if mn alarmis set
creturn:

return self.alarmnn is not None

is_alarmmax_set(sel f):
Returns true if nax alarmis set
creturn:

return self.alarmmax i s not None

is_calibration_set(self):
Checks if there has been a calibration assigned
:return: True if there has been

return self.calibration !=

i s_sanpling underway(self):
Checks if finite data acquisition is underway
:return: True is the nunber of sanples taken is smaller than the

nunber of sanples introduced by the user

def

def

return len(self) < self.n_sanples

calculate tine_interval ns(self):
Cal cul ates period in mlliseconds given a sanple_rate in Hertz
:return: calculated period in mlliseconds
if self.sanple_rate == 0:
rai se ValueError("Sanple rate cannot be zero.")
return (1 / self.sanple_rate) * 1000

read_vol t age(sel f):

Simul ates the readi ng of the voltage by the DAQ

returns:
voltage (float): reading of voltage by the DAQ
self.set_task _start(0)
mat ch sel f. nodel
case ' USB-6211":
sinmulation of tenperature reading by the DAQ

Page: 26 of 58

voltage = self.task_ai_ao[0].read()
case ' USB-6001":
simul ati on of tenperature reading by the DAQ

voltage = self.task_ai_ao[0].read()
case ' USB-6002' :
sinmulation of tenperature reading by the DAQ

vol tage = self.task_ai_ao[0].read()
case _
rai se ValueError(f"No matchi ng nodel found.\nExpected:

{nodel sDAG\nCGot: {self.nodel}.")

sel f.set _task _stop(0)
return round(vol tage, 3)

def add_calibration_to |og(self, calibration):
Adds calibration paraneters to |og
:param cal i bration: calibration object
creturn:

sel f.calibrations_| og. append(calibration)

def add_data(self, voltage tenperature: list, tine_interval):
G ven a voltage and tenperature and tinme_interval, adds to data
:param vol tage_tenperature: |ist [voltage, tenperature]
paramtine_interval: tinme interval between sanpling
jreturn:
sel f. dat a. append(vol t age_t enper at ur e)
self.add_time(time_interval)

def acquire_data(self, calibration, tine_interval):

Reads voltage from DAQ converts to tenperature with calibration,

adds points to data

cparam tinme_interval

:param cal i bration:

creturn:

reads vol tage

voltage = self.read vol tage()

cal cul ates tenperature

tenperature = calibration.cal cul ate_tenperature(voltage)
adds data

sel f.add_data([vol tage, tenperature], tine_interval)

def add_time(self, time_interval):
if not self.time_intervals:
If the list is enpty, adds the first value starting fromO

self.time_interval s. append(0)
el se:
If the list is not enpty, adds the next value with the given

i nt erval

self.time_interval s.append(int(self.tinme_interval s[-1] +

time_interval))

def add_alarns_log(self, is_mn):

Page: 27 of 58

def

and tinme

def

def

alarmentry = {

"Alarm Type': 'Below Mnimum if is_mn else 'Above Maxinmuni,
' Tenperature': self[-1][1],
"Tinme Interval': self.time_interval s[-1]

sel f.al arnms_I| og. append(al arm entry)

cl ear _data_acquisition(self):

Clears stored information frompast logs |ike the data, parameters

creturn:

sel f.data. cl ear ()

self.tinme_interval s.clear()

self.alarns_I| og. cl ear ()

sel f.sanple_rate = None

sel f.n_sanpl es = None

self.start_acquisition_time = ""

save _data_acquisition(self, file_nane):

if not file_name.lower().endswith(".csv"):
file_name += ".csv"

with open(file_nane, node="w, newine="") as file:
witer = csv.witer(file)

wites date and tinme
witer.witerowm[self.start_acquisition_tine])
witer.witerom[])

wites calibration
witer.witerow ["CALI BRATI ON'])
witer.witerowm[self.calibration])
witer.witerow([])

writes nunber of sanples and sanple rate

witer.witerow ["PARAMETERS'])

witer.witerow["Nunber of sanples", "Sanple rate [Sa/s]"])
witer.witerow[self.n_sanples, self.sample rate])
witer.witerowm([])

wites alarmlogs
witer.witerow["ALARM LOGS"])
witer.witerom{(["Mn alarnt, "Max alarn'])
witer.witerom[self.alarmmn, self.alarmmax])
dic_ witer = csv.DictWiter(file, fieldnanes=alarm./log fiel dnanmes)
dic_witer.witeheader()
for entry in self.alarns_|og:
dic_witer.witerowentry)
witer.witerom[])

wites data

witer.witerow["DATA"])

witer.witerom["Voltage [V]", "Tenperature [°C]"])

for voltage, tenperature in self.data:
witer.witerow[voltage, tenperature])

generate_index_|ist(self):

Cenerates a |list that goes from1l to the nunber of data sanples stored

Page: 28 of 58

Sreturn:
return [i for i in range(l, len(self.data) + 1)]

def trigger_alarms(self, w ndow, alarm.icon_keys):
Checks if alarms should be triggered and if so |logs and triggers them
: param wi ndow. gui w ndow
:param alarmicon_keys: ['-MNTEMP_ICON-", '-MAX TEMP_ | CON-']
sreturn:
if self.is_alarmmn_set():
if self[-1][1] < self.get_alarmmn():
sel f.add_al arnms_| og(is_m n=True)

wi ndowf al arm.i con_keys[0]].netadata = True
el se:

wi ndowf al arm.i con_keys[0]].netadata = Fal se

if self.is_alarmmax_set():

if self[-1][1] > self.get_alarmmax():

sel f.add_al arns_| og(i s_m n=Fal se)

wi ndowf al arm.i con_keys[1]].netadata = True
el se:

wi ndowf al arm_i con_keys[1]].netadata = Fal se

def trigger_alarmicon(self, w ndow, alarm.icon_keys):
update min alarmimge
wi ndowf al arm_i con_keys[0]]. updat e(
source=gt. ALARM M N ON PATH i f w ndow al arm.i con_keys[O
]1.metadata el se
gt. ALARM M N OFF PATH i f self.is_alarmmn_set() else
gt . ALARM UNSET_PATH))
update max al arm i mage
wi ndowf al arm i con_keys[1]]. updat e(
sour ce=gt . ALARM MAX_ON _PATH i f w ndow al arm_i con_keys[1
]]. metadata el se
(gt. ALARM MAX OFF PATH if self.is_alarmmax_set() else
gt . ALARM UNSET_PATH))

def performdata_acquisition(self, wi ndow, fig, figure_canvas_agg,
calibration, tine_interval, alarm.icon_keys):
sel f.acquire_data(calibration, time_interval)
sel f.update figure(fig, figure_canvas_agg)
sel f.trigger_al arns(w ndow, alarm.icon_keys)

def update_figure(self, fig, figure_canvas_agg):

axes = fig.axes # getting the subplots

axes[0] . cl ear ()

axes[0] . set _xl abel ("Readings (ns)")

axes[0] . set _yl abel (" Tenperature (°Q")

axes[0] . grid()

if self.has_data():
sel f. pl ot _tenperature_points(axes)

if self.is_alarmmn_set() or self.is_alarmnmax_set():
sel f.plot_tenperature_al arms(axes)

figure_canvas_agg. draw()
figure_canvas_agg. get _tk_wi dget (). pack(side="top', fill="both",
expand=1)

def plot_tenperature_al arns(self, axes):

Page: 29 of 58

x = [0, self.time_intervals[-1] if self.has_data() else 10]

if self.is_alarmmn_set():
y = [self.alarmnin] * 2
axes[O0].plot(x, vy, "b--")
if self.is_alarmmax_set():
y = [self.alarmmax] * 2
axes[O] .plot(x, vy, '"r--")

def plot_tenperature_points(self, axes):
x = self.time_intervals
y = [tenperature[l] for tenperature in self.data]
axes[0].plot(x, y, color="orange', linestyle="-")

def set task start(self, index_ai_ao):
sel f.task_ai _ao[index_ai_ao].start()

def set _task stop(self, index_ai_ao):
sel f.task_ai _ao[index_ai _ao].stop()

def set task wite(self, value: float):
self.task _ai _ao[1].wite(val ue)

def initiate_daq(self):
sel f.set _tasks()
assignation of anal og input
sel f.add_anal og_i nput ()
assignation of anal og out put
sel f. add_anal og_out put ()

def add_anal og_i nput (sel f):
Defines anal og i nput in DAQ
creturn:
sel f.task_ai _ao[0].ai _channels.add _ai voltage chan("Devl/ai 0",
term nal _config=Term nal Confi guration. Dl FF)

def add_anal og_out put (sel f):
sel f.task_ai _ao[1].ao_channel s. add_ao_vol tage _chan("Devl/ ao0",
AO_DAQ_NAME

m n_val =AO DAQ M N VAL, max_val =AO DAQ MAX VAL)
def exit(self):
print("Exit requested before calibration")

sel f.set_task_stop(0)
sel f.set_task_stop(1)

Page: 30 of 58

src/ gui/ gui Cal i brati onMet hod. py

i mport src.guiTools as gt
from src.gui Tools inport sg
def get layout_no_calibration():

Defines l[ayout for the wi ndow when there is no calibration set
creturn: list with the |ayout
sg. t hene(gt . DEFAULT_THEME)
col um = sg. Col um(|
[sg. Push(), sg.lmage(gt.! CON PATH, size=(200, 200)), sg.Push()],
[sg. Frane(' Calibration Expression', [
[sg. Text (' No calibration yet..."', pad=(10, 10))]
], element_justification="center', expand_x=True, pad=(10, 10),
relief=sg. RELI EF_RAI SED)],
[sg. Text (' Choose Calibration Method:')],
[sg. Radi o(gt. CAL_METHOD TEMP_VOLT, group_id="cal Method", k='-
TEMP_AND_VOLT-', defaul t=True,
enabl e_events=True)],
[sg. Radi o(gt. CAL_METHOD EXP, group_id="cal Met hod", k='-EXP-', default=
Fal se, enable_events=True)],
[sg. Push(),
sg. Button(' Calibrate', key="-CALI BRATE-"),
sg. Button(' Acquire Data', key='-DATA-', visible=False)]
], pad=((0, 0), (0, 110)))
[ayout = [
[sg. VPush()],
[col um],
[sg. VPush()]

return | ayout
def calibration_net hod_wi ndow(| ayout):

Creates wi ndow for the calibration nenu
:param | ayout: desired layout to show in the w ndow
sreturn: pysinplegui w ndow

return sg. Wndow("Sensor Calibration”, l|ayout, size=(gt.W NDOW W DTH,
gt . W NDOW _HEI GHT) ,
el ement _justification="center')

def layout _with_expression(calibration_|og):

Layout when there are already |ogged calibrations
:param calibration_log: |ist of past calibrations
creturn: list with the |ayout

sg. t hene(gt. DEFAULT_THEME)

col um = sg. Col um(|
[sg. Push(), sg.lmage(gt.| CON PATH, size=(200, 200)), sg.Push()],
[sg. Frane(' Calibration Expression', [
[sg. Conmbo(calibration_l| og,
defaul t _val ue=cal i bration_I og[0],
key='- CALI BRATI ONS_LOG ',
expand_x=Tr ue,

Page: 31 of 58

enabl e_event s=Tr ue,
pad=(10, 10))],
], elenment _justification="center', expand_x=True, pad=(10, 10),
relief=sg. RELI EF_RAI SED)],
[sg. Text (' Choose Calibration Method:")],
[sg. Radi o(gt. CAL_METHOD TEMP_VOLT, group_id="cal Method", k='-
TEMP_AND VOLT-', default=True,
enabl e_events=True)],
[sg. Radi o(gt. CAL_METHOD EXP, group_id="cal Met hod", k='-EXP-', default=
Fal se, enable_events=True)],
[sg. Push(),
sg.Button(' Calibrate', key="-CALI BRATE-"),
sg. Button(' Acquire Data', key='-DATA-', visible=True)]
1, pad=((0, 0), (0, 110)))

| ayout = |
[sg. VPush()],
[col um],
[sg. VPush()]

return | ayout

def run_calibration_method_no_calibration_wi ndow wi ndow) :
Runs pysi npl egui wi ndow behavi or when there is no calibration set
: param wi ndow. pysi npl egui wi ndow
creturn: string with the option selected by user['EXIT,

" EXPRESSI ON_I NPUT' , ' ACQUI RE_DATA' |

whil e True:
event, values = w ndow.read()

if event == sg. WN_CLOSED:
wi ndow. cl ose()
return '"EXIT

if event == '-CALI BRATE-":
i f values['-TEMP_AND VOLT-']:
wi ndow. cl ose()
return ' TEMP_VOLTAGE
elif values['-EXP-']:
wi ndow. cl ose()
return ' EXPRESSI ON_| NPUT'

if event == "'-DATA-':
wi ndow. cl ose()
return ' ACQUI RE_DATA

def run_calibration_nethod w ndow(w ndow, ni DAQ) :
Runs pysi nmpl egui wi ndow behavi or when there are calibrations |ogged
: param wi ndow. pysi npl egui w ndow
:param ni DAQ object with past calibrations
creturn: string with the option selected by user["'EXIT,
" EXPRESSI ON_I NPUT' , ' ACQUI RE_DATA' |
whil e True:
event, values = window.read() # w ndow read returns event and val ues

Page: 32 of 58

event == sg. WN_CLOSED:
wi ndow. cl ose()
return "EXIT

event == ' - CALI BRATIONS_LOG ':
ni DAQ set _cal i bration(val ues[' - CALI BRATIONS LOG '1])

event == '-CALI BRATE-":
i f values['-TEMP_AND VOLT-']:
wi ndow. cl ose()
return ' TEMP_VOLTAGE'
elif values['-EXP-']:
wi ndow. cl ose()
return ' EXPRESSI ON_I NPUT'

event == '-DATA-':

wi ndow. cl ose()
return ' ACQUI RE_DATA'

Page: 33 of 58

src/ gui / gui DAQ. py

i mport src.guiTools as gt
fromsrc.gui Tools inport sg
def fltlalllect_daq_wi ndow(nodel DAQ) :
Creates a wi ndow so that the user chooses their DAQ nodel

Argunent s:
nodel DAQ (str list): DAQ nodel |i st

Ret ur ns:
nodel : (str): DAQ nodel that the user has chosen

sg. t hene(gt . DEFAULT_THEME)
col um = sg. Col um(|
[sg. Push(), sg.lmage(gt.|CON PATH, size=(200, 200)), sg.Push()],
[sg. Text (' Sel ect the nodel of the National Instrunents DAQ', pad=((0
» 0), (15, 0)))],
[sg. Conbo(nodel DAQ,
defaul t _val ue="Sel ect the nodel...",
key="- MODEL-",
expand_x=Tr ue,
tool ti p=' Sel ect an option before noving forward')],
[sg. Push(), sg.Button(' OK', key='"-OK-', bind_return_key=True)]
1. pad=((0, 0), (0, 120)))
[ayout = [
[sg. VPush()],
[col um],
[sg. VPush()]

wi ndow = sg. Wndow(' PyroDAQ , |ayout, size=(gt.W NDOWN W DTH,
gt . WNDOW HEI GHT), el enent_justification=" center')

whil e True:
event, values = w ndow. read()
if event == sg. WN_CLOSED:
wi ndow. cl ose()
return None, True

elif event == '"-OK-":
wi ndow[' - MODEL-"'].set _tooltip("")
nodel = val ues[' - MODEL-"]
wi ndow. cl ose()
return nodel, False

def no_daq_det ected_popup(e):
Popup error wi ndow that warns there is no DAQ detected
:parame: ValueError fromtrying to initiate DAQ
sreturn:

sg. t hene(gt. ACCENT THEME)
sg. Wndow(' Error', [[sg. Text(f'No DAQ detected:\n{e}"')]]).read()

Page: 34 of 58

src/ gui / gui Dat aAcqui si tion. py

i mport src.guiTools as gt
from src.gui Tools inport sg

alarm.input _keys = ['-M N_TEMP_I NPUT-", ' -MAX_TEMP_I NPUT-"]
alarm.icon_keys = ['-M N_ALARM | CON-', ' -MAX_ALARM | CON-']
paraneters_i nput _keys = ['-N_SAMPLES | NPUT-', '-SAMPLE RATE_I NPUT-"]

def data_acquisition_w ndow(calibration_expression):

Pysi mpl egui | ayout and wi ndow for data acquisition
:param cal i bration_expression: string with current calibration expression
:return: pysinplegui wi ndow with rel evant | ayout

sg. t heme(gt . DEFAULT_THEME)

first_colum = sg. Col um(]|
[sg.Button(' Recalibrate', k= -RECALI BRATE-')],
[sg. VPush()],
[sg. Frane(' Calibration', |
[sg. Text (calibration_expression, pad=(10, 10))]
], element _justification='center', expand x=True, pad=(10, 10),
relief=sg. RELI EF_RAI SED)],
[sg. Frane(' Tenperature Alarns', |
[sg. Col um([
[sg. Text('Mn =),
sg. | nput (si ze=gt. SI ZE_| NPUT, key='-M N_TEMP_| NPUT-"
enabl e_event s=True),
sg. Text (" [°C]")],
[sg. 1 mage(gt. ALARM UNSET_PATH, key='-M N_ALARM | CON-",
net adat a=Fal se)],
[sg. Text (' Unset', key='"-M N_TEMP_TXT-")]
], elenent _justification="center'),
sg. Col um([
[sg. Text (' Max ="),
sg. I nput (si ze=gt. SI ZE_| NPUT, key='-MAX_TEMP_I NPUT-",
enabl e_event s=True),
sg. Text (" [°C')],
[sg. I mage(gt. ALARM UNSET_PATH, key='-MAX_ALARM | CON-',
nmet adat a=Fal se)],
[sg. Text (' Unset', key='"-MAX TEMP_TXT-')]
], elenment justification=' center'),
sg. Col um([
[sg. Push()]

sngOIunn([
[sg. VPush()],
[sg. Push(), sg.Button('Set', k='-SET-')],
[sg. Push(), sg.Button(' Disable', k='-DI SABLE-', visible=
Fal se)]
], element _justification="right')

]
], expand_x=True, pad=(10, 10), relief=sg. RELI EF_SUNKEN)],
[sg. Frane(' Choose Data Acquisition Type:', |
[sg. Radi o(gt . DATA_ON_DEMAND,
group_i d="acq_type'
def aul t =Tr ue,
k='- ON_DEMAND- ',
enabl e_event s=Tr ue,

Page: 35 of 58

~pad=((10, 0), (10, 0)))],
[sg. Radi o(gt. DATA CUSTOM group_i d="acq_type', k= -
FI Nl TE_ SAMPLI NG ', enabl e_event s=Tr ue,
pad=((10, 0), (10, 0)))],
[sg. Text (' No. Sanples:', pad=((40, 0), 0)),
sg. I nput (si ze=gt . SI ZE | NPUT, key='-N _SAMPLES I NPUT-', disabl ed=
True, enabl e_events=True,

di sabl ed_r eadonl y_background_col or=sg. thene_button_color()[1])],

[sg. Text (' Sanple Rate:', pad=((40, 0), (0, 10))),

sg. I nput (si ze=gt . SI ZE_| NPUT, key='-SAVMPLE_RATE_ | NPUT-', disabl ed=
True, enabl e_events=True,

di sabl ed_r eadonl y_background_col or=sg. t heme_button_col or()[1], pad=(0, (0, 10
))) .
sg. Text (' Sa/s', pad=((0, 10), (0, 10)))]
], expand x=True, pad=(10, 10), relief=sg. RELI EF_SUNKEN)],
[sg. Push(), sg.Button('Acquire Data', k='-ACQUI RE-', netadata=False)],
[sg. Frane(' Tine Interval [nB]'
[sg. Slider(range=(gt. M N_TI ME_UPDATE_MS,
gt. MAX_TI ME_| NTERVAL_MS), default_val ue=500, resol ution=10,
orientation="h', key='-SLIDER-', size=(40, 15),
tick_interval =1000)]
], key='"-TIME_I NTERVAL-', visible=Fal se, expand_x=True, pad=(10, 10),
el ement _justification="center',
relief=sg. RELI EF_SUNKEN)],
[sg. VPush()]

], expand_x=True, expand_y=True)

second_col um = sg. Col um(|[
[sg. Push(),
sg. Text (" Sanpl es Col l ected: ", key='-SAMPLES COLLECTED TXT-',
vi si bl e=Fal se),
sg. Text ("", key='-SAMPLES COLLECTED VALUE-', size=gt.SlIZE_| NPUT
vi si bl e=Fal se)],
[sg. Canvas(k='- CANVAS-', size=(200, 200))],
[sg.Button(' Stop', k='-STOP-', visible=Fal se, pad=(10, 10)),
sg. Button(' Reset', k='-RESET-', visible=False, pad=(10, 10))],
[sg. Push(), sg.Button(' Save Data', k='-SAVE-', visible=False)]
], expand x=True, elenent_justification="center')

| ayout = |
[sg. VPush()],
[first_colum, second_col um],
[sg. VPush()]

return gt.gui _w ndow w th_graph(' Data Acquisition', |ayout,
gt. FI G_SI ZE WDTH, gt.Fl G SI ZE_HElI GHT, Fal se)

def data_acquisition_w ndow_behavi or (ni DAQ w ndow, fig, figure_canvas_agg):

Dat a acqui sition w ndow behavi or

: param ni DAQ object where data will be stored

: param wi ndow. pysi npl egui wi ndow wi th data acqui sition |ayout
:param fig: data pl ot

. param figure_canvas_agg: canvas for the data pl ot

sreturn:

None
gt.cal cul ate_frequency(gt. MAX TI ME_| NTERVAL_MS) * 1000

time_interva
m n_frequency

Page: 36 of 58

max_frequency = gt.cal cul ate_frequency(gt. M N_TI ME_UPDATE MS) * 1000

whi | e True:
event, values = w ndow. read(tineout=tine_interval)

if event ==

sg. WN_CLGOSED:

ni DAQ set _exit_request()

br eak

i f event ==
br eak

only accepts digits, decinal point

if event in

' - RECALI BRATE-" :

1 1 1 1

and ' -

al arm.i nput _keys:

gt.filter_nuneric_characters(w ndow, val ues, event,
al arm.i nput _keys)

only accepts digits

i f event in

par anmet ers_i nput _keys:

gt.filter_digits(w ndow, values, event, ['-N_SAMPLES |NPUT-'])
gt.filter_numeric_characters(w ndow, values, event, ['-
SAMPLE_RATE_| NPUT-"])

if event ==
try:

'-SET-":

checks if both inputs are enpty

if all(val ues[key] == for key in alarminput_keys):

elif

rai se ValueError("Val ues nust be assigned")
al | (values[key] !'="" for key in alarm.input_keys):
alarmmn, alarmnmax = gt.to_nunber_n_dec(gt. N _DECI MALS,

val ues[' -M N_TEMP_I NPUT-"'],

MAX_TEMP_| NPUT-" 1)

to max al arni)

val ues[' -

if alarmmn >= al arm max:
raise ValueError("Mn alarmcan't be bigger or equal

ni DAQ set _alarm m n(al arm.m n)
ni DAQ set _al arm max(al ar m _nmax)

el se:

if values['-MN_TEMP_INPUT-"] I="":
[alarmnmin] = gt.to_nunber_n_dec(gt. N DECI NMALS,

val ues['-M N_TEMP_I NPUT-"'1])

if ni DAQis_alarmmax_set() and (alarmmn >=

ni DAQ get _al arm max()):

equal

to al ready set

raise ValueError("Mn alarmcan't be bigger or
max al arni')
el se:
ni DAQ set _al arm nmi n(al ar m_mi n)
if values['-MAX TEMP_INPUT-'] = "":
[al arm max] = gt.to_nunmber _n_dec(gt. N _DECI MALS,

val ues[' - MAX_TEMP_I NPUT-"'])

if niDAQis_alarmmn_set() and (alarmnmax <=

ni DAQ get _alarmmn()):

equal

to al ready set

rai se ValueError("Max alarmcan't be bigger or
mn al arnt')
el se:
ni DAQ set _al ar m max(al ar m max)

ni DAQ update_figure(fig, figure_canvas_agg)
ni DAQ trigger_al arm.icon(w ndow, alarm.icon_keys)
gt.set _visible(window, True, '-DI SABLE-'")

Page: 37 of 58

except Exception as e:
sg. popup_error(str(e), title="Error")

gt.empty_i nputs(wi ndow, '-M N_TEMP_I NPUT-", ' -NMAX_TEMP_I NPUT-")

if event == '-DI SABLE-":
ni DAQ. di sabl e_al arns()
wi ndowf al arm_i con_keys[0]].netadata = Fal se
wi ndowf al arm i con_keys[1]]. net adat a Fal se
ni DAQ tri gger_al arm.icon(w ndow, alarm.icon_keys)
ni DAQ update_figure(fig, figure_canvas_agg)
gt.set _visible(w ndow, False, '-DI SABLE-")

if event == "'-ON_DEVAND- ' :
gt.set _di sabl ed(w ndow, True, '-N SAMPLES |INPUT-', °'-
SAMPLE_RATE_| NPUT-")

if event == "'-FIN TE_SAWPLING ':
gt.set _di sabl ed(w ndow, False, '-N _SAMPLES | NPUT-', '-
SAVPLE_RATE_| NPUT-")

if event == "'-ACQUI RE-":
saves nonment in tinme when acquisition starts

ni DAQ cl ear _data_acqui sition()
ni DAQ set _ti ne_l og()
if on demand data acquisition is selected

i f values['-ON _DEVMAND-']:
fromnot reading to on denand
wi ndow[' - ACQUI RE-']. netadata = True
gt.set_visible(wi ndow, True, '-STOP-', '-TIME | NTERVAL-")
gt.set_visible(w ndow, False, '-SAVE-')
gt.set _di sabl ed(w ndow, True, '-FIN TE_SAVPLI NG ')
el i f values['-FIN TE_SAVMPLING ']:
try:
[sampl e _rate] = gt.check_if_valid_input(val ues,
gt . N_DECI MALS, '-SAWVPLE_RATE | NPUT-")
[n_sanples] = gt.check if _valid_input(values, 0, '-
N_SAMPLES | NPUT-")
if not mn_frequency <= sanple rate <= nmax_frequency:
rai se ValueError(f"Sanple rate nust be between"

f* {mn_frequency:.3f} and
{max_frequency:.3f} Sa/s."
f"\nGot {sanple rate} instead.")
elif not 2 <= n_sanples <= 10000:
rai se ValueError(f"Nunber of sanples nmust be between
2 and 10k.\n"
f"CGot {n_sanples} instead.")
el se:
ni DAQ set _sanpl e_rate(sanple_rate)
ni DAQ set _n_sanpl es(n_sanpl es)
fromnot reading to finite sanpling

wi ndow ' - ACQUI RE-"] . nmetadata = True
sets tinme_interval

time_interval = ni DAQ cal culate_time_interval _ns()
gt.set _visible(w ndow, True, '-STOP-")
gt.set _visible(w ndow, False, '-SAVE-', '-ACQU RE-')

except Exception as e:

Page: 38 of 58

sg. popup_error(str(e), title="Error")
gt.enpty_inputs(w ndow, '-SAVPLE RATE | NPUT-', '-
N_SAMPLES | NPUT-")

if event == "'-STOP-':
wi ndow ' - ACQUI RE-"] . net adata = Fal se
gt.set_visible(w ndow, False, '-STOP-')
gt.set_visible(w ndow, True, '-RESET-', '-ACQU RE-')
i f val ues['-ON_DEMAND-']:
gt.set_di sabl ed(w ndow, Fal se, '-FI NI TE_SAMPLI NG ")
if values['-FIN TE_SAMPLING ']:
gt.set _visible(w ndow, True, '-SAVE-')

if event == "'-SAVE-':
try:
file_name = sg.popup_get file("Save CSV File",
defaul t _pat h=gt.get _desktop_dir(),
defaul t _extensi on="*.csv",
save_as=True,
file_types=(("CSV Files",

"*.csv"),))
if file_nane ==""' or file_name[-1] == "/":
raise ValueError("File name can't be enpty.")
elif file_name is not None:
ni DAQ save_data_acquisition(file_nane)
el se:
rai se ValueError("Coul dn't save file.")
sg. popup("Success", "Data saved to CSV successfully!")
except Exception as e:
sg. popup_error(str(e), title="Error")
if event == '-RESET-'":
ni DAQ. cl ear _data_acqui sition()
ni DAQ update_figure(fig, figure_canvas_agg)
gt.set _visible(w ndow, False, '-RESET-', '-SAVE-', '-
SAMPLES_COLLECTED TXT-', '-SAMPLES COLLECTED_VALUE-')

wi ndow[' -M N_TEMP_TXT-"].update(f"{ni DAQ get _alarmnmin()} [°C" if
niDAQis alarmmn_set() else '"Unset')

wi ndowf ' - MAX_TEMP_TXT-"].update(f"{ni DAQ get _alarm nmax()} [°C]" if
ni DAQ is_alarmnax_set() else 'Unset')

it wndow'-ACQU RE-']. netadat a:
gt.set _disabl ed(w ndow, True, '-N SAMPLES |NPUT-', °'-
SAVPLE_RATE_| NPUT-")
gt.set _visible(w ndow, False, '-RESET-', '-ACQU RE-')
gt.set _visible(w ndow, True, '-SAWMPLES COLLECTED TXT-', '-
SAMPLES COLLECTED VALUE-')
i f values['-ON_DENVAND-']:
tinme_interval = values['-SLIDER-"]
ni DAQ. perform data_acquisition(wi ndow, fig, figure_canvas_agg,
ni DAQ get _cal i bration(),
time_interval, alarm.icon_keys)
elif values['-FIN TE_SAVPLING']:
i f ni DAQ is_sanpling_underway():
ni DAQ. perform data_acquisition(w ndow, fig,
figure_canvas_agg,
ni DAQ get _cal i bration(),
time_interval, alarm.icon_keys)
el se:
wi ndow[' - ACQUI RE-'] . netadata = Fal se

Page: 39 of 58

gt.set_visible(wi ndow, True, '-RESET-', '-SAVE-', '-
ACQUI RE- ")
gt.set_visi bl e(wi ndow, False, '-STOP-')
el se:
rai se ValueError("Acquiring data incorrectly")
wi ndow| ' - SAMPLES COLLECTED VALUE-']. updat e(! en(ni DAQ))
ni DAQ. tri gger _al arm.icon(w ndow, al arm.icon_keys)

el se:
gt.set _di sabl ed(w ndow, False, '-ACQU RE-")
time_interval = None
i f val ues['-ON_DEVMAND-']:
gt.set_visible(w ndow, False, '-TIME | NTERVAL-")
i f values['-FIN TE_SAMPLING ']:
gt.set _di sabl ed(w ndow, False, '-N_SAMPLES INPUT-', '-
SAMPLE_RATE_| NPUT-")

wi ndow. cl ose()

Page: 40 of 58

src/ gui / gui Expr essi onl nput Cal i brate. py

inport src.calibrationTools as ct
i nport src.gui Tools as gt

from src.gui Tools inport sg
inmport time

text_input_keys = ['-A INPUT-', '-B_INPUT-', '-C_INPUT-', '-M.INPUT-"
N_I NPUT- "']

def expression_calibrate w ndow():

W ndow for direct expression
:return: pysinplegui windowwith its | ayout

sg. t hene(gt . DEFAULT_THEME)
first_colum = sg. Col um(]|
[sg. Frane(' Choose Expression Type:', |
[sg. Radi o(gt. TEMP_VOLT_LI N_EQ
group_i d="exp_type'
def aul t =Tr ue,
k="-LI NEAR_EQ ',
enabl e_event s=Tr ue,
pad=((10, 0), (10, 0)))],
[sg. Text (' m =", pad=((40, 0), 0),),
sg. I nput (si ze=gt . SI ZE | NPUT
key='-M_| NPUT-",
enabl e_event s=Tr ue,

di sabl ed_r eadonl y_background_col or =sg. t heme_button_color()[1]),
sg. Text('n ="),
sg. | nput (si ze=gt . SI ZE_| NPUT
key='-N_I NPUT-",
enabl e_event s=Tr ue,

di sabl ed_r eadonl y_backgr ound_col or =sg. t heme_button_color()[1])],
[sg. Radi o(gt. TEMP_VOLT_NON_LI NEAR _EQ
group_i d="exp_type'
def aul t =Fal se
k="-NON_LI NEAR _EQ ',
enabl e_event s=Tr ue,
pad=((10, 0), (10, 10)))],
[sg. Text('a =", pad=((40, 0), 0),
sg. I nput (si ze=gt . SI ZE_| NPUT,
key="-A_I NPUT-",
enabl e_event s=Tr ue,
di sabl ed=Tr ue,

di sabl ed_readonly_background_col or=sg.thene_button_color()[1]),
sg. Text('b =),
sg. | nput (si ze=gt . SI ZE_| NPUT
key='-B_ | NPUT-",
enabl e_event s=Tr ue,
di sabl ed=Tr ue,

di sabl ed_r eadonl y_background_col or =sg. t heme_button_color()[1]),
sg. Text('c =),
sg. | nput (si ze=gt . SI ZE_| NPUT
key='-C_I NPUT-'

Page: 41 of 58

enabl e_event s=Tr ue,
di sabl ed=Tr ue,

di sabl ed_r eadonl y_background_col or =sg. t heme_button_col or ()[1])]
], expand_x=True, pad=(10, 10), relief=sg. RELI EF_SUNKEN)],
[sg. Push(), sg.Button('Enter', k='-ENTER-')],
[sg. Frane(' Cal cul ated expression:', [
[sg. Text (" Cal cul ati ng expression...", pad=(10, 10), k='-EQUATI ON-'

) L
sg. Button(" Copy", key="-COPY-", tooltip="Copy to clipboard"
pad=((10, 10), (10, 10)), visible=False)],
], expand x=True, pad=(10, 10), relief=sg. RELI EF_RAIl SED
el ement _justification="center')],
[sg. Frane(' Vol tage Input:', |
[sg. Text (" Type In", pad=(10, 0), k='-TOGGELE OFF TXT-',
font =gt. FONT_BOLD),
sg. Button(i mage_fil enane=gt. TOGGLE OFF PATH,
key='-TOGGLE- ",
button_col or=(sg. t hene_background_col or (),
sg. t hene_background_col or()),
bor der _wi dt h=0,
net adat a=Fal se),
sg. Text ("Measure", k='-TOGGLE_ON TXT-', font=gt.FONT_DEFAULT)],
[sg. Text('V =", k='-V_TXT-', pad=(10, 10)),
sg. | nput (si ze=gt . SI ZE_| NPUT
key='-V_I NPUT-",
enabl e_event s=Tr ue,

di sabl ed_r eadonl y_backgr ound_col or =sg. t heme_button_color ()[1]),
sg. Text (" [V]")] '
], expand_x=True, pad=(10, 10), relief=sg. RELI EF_SUNKEN)],
[sg. Push(), sg.Button(' Cal cul ate', k='-CALCULATE-', disabled=True)]
1)

second_col um = sg. Col um(

[sg. Canvas(k='- CANVAS-', size=(200, 200))],
[sg. Tabl e(val ues=[],
headi ngs=[' Vol tage (V)', 'Tenperature (°Q'],
k='-TABLE-"',
num r ows=5,
enabl e_click_events=True,
enabl e_event s=Tr ue,
expand_x=True)],
[sg.Button('Clear', k='-CLEAR-', tooltip=" Cear table ",
di sabl ed=Tr ue),
sg. Button(' Del ete', k='-DELETE-', tooltip=" Delete |last row ",
di sabl ed=True)],

[sg. Push(), sg.Button(' Choose', k='-CHOOSE-', disabled=True)]
)
Define the | ayout
[ayout = |

[sg. VPush()],
[first_colum, second_col um],
[sg. VPush()]

]

return gt.gui _w ndow with graph('Input Sensor Calibration Equation',
| ayout ,

Page: 42 of 58

gt.FlI G SI ZE WDTH, gt.FlIG_SIZE HEIl GHT,
Fal se)

def expression_input_calibrate w ndow behavi or (ni DAQ w ndow, fig,
figure_canvas_agg):
Behavi our for direct expression input calibration w ndow
: param ni DAQ obj ect
: param wi ndow. pysi npl egui w ndow
param fig: calibration plot
:param figure_canvas_agg: canvas for calibration plot
:return: calibration object
calibration = ct.LinearCalibration()
whil e True:
event, values = w ndow. read()
if event == sg. WN_CLOSED:

br eak
if event == "'-LINEAR EQ"':
gt.set_di sabl ed(wi ndow, False, '-MINPUT-", '-N_INPUT-")

wi ndow[' -A INPUT-"].update('', disabled=True)
wi ndow[' -B_I NPUT-"].update('', disabled=True)
wi ndow[' -C I NPUT-"].update('', disabled=True)

if event == "'-NON LI NEAR EQ ":
wi ndow[' - M I NPUT-"].update('', disabled=True)
wi ndow[' - N_I NPUT-"].update('', disabled=True)
gt.set_di sabl ed(wi ndow, False, '-A_INPUT-', '-B_INPUT-', '-
C INPUT-")

if event == '-CHOOSE-':
wi ndow. cl ose()
return calibration

1 1 1 1

only accepts digits, decinal point and ' -
if event in text_input_keys:
gt.filter_nuneric_characters(w ndow, val ues, event,
text i nput _keys)

if event == '"-ENTER-'":
try:
i f values['-LINEAR EQ']:
checks if any input value is enpty
i f any(val ues[key] == "' for key in ['-MINPUT-', "-
N I NPUT-"1):
rai se Val ueError("Val ues nust be assigned")

checks if the input is a valid nunber

i f any(not gt.is_nunber(values[key]) for key in ['-
M INPUT-', "-N_INPUT-"]):
rai se Val ueError("Val ues nust be a numeric value.")
checks if equation type has changed

if calibration.is_type('LI NEAR EQUATION):
updat es paraneters
calibration.set_paraneters(values['-MINPUT-'],
val ues['-N_I NPUT-"])
el se:

Page: 43 of 58

changes object fromnonlinear to linear calibration

calibration =
calibration.to_linear_calibration(values['-MINPUT-"'], values['-N_INPUT-'])

elif values['-NON LI NEAR EQ ']:
checks if any input is enpty
i f any(values[key] =="'"' for key in ['"-A INPUT-", "-
B INPUT-', '-CINPUT-"]):
rai se Val uekrror("Val ues nust be assi gned")
checks if the input is a valid nunber

if not any(gt.is_nunber(val ues[key]) for key in ['-
A INPUT-', "-B INPUT-", '"-CINPUT-"]):
rai se Val ueError("Val ues nust be a nuneric value.")
checks if equation type has changed

if calibration.is_type('NON LI NEAR EQUATI ON):
updat es paraneters
a, b, ¢ =gt.to_nunber_n_dec(gt.N DECI MALS
val ues['-A | NPUT-'],
val ues['-B_INPUT-"], values['-C_INPUT-'])
calibration.set_paraneters(a, b, c)
el se:
changes object fromnonlinear to linear calibration

calibration =
calibration.to_nonlinear_calibration(values['-A INPUT-'], values['-B_|INPUT-'],

val ues['-C_INPUT-"])

wi ndow ' - EQUATI ON-'] . updat e(val ue=repr(calibration))
gt.set _di sabl ed(w ndow, False, '-CHOOSE-', '-CALCULATE-')
gt.set _visible(w ndow, True, '-COPY-")
enpties text inputs
for key in text_input_keys:
wi ndowf key] . update('"')
cal i bration.update_data()
wi ndow ' - TABLE-"']. updat e(val ues=cal i brati on. dat a)
calibration.update figure(fig, figure_canvas_agg,
known_expr essi on=Tr ue)
except Val ueError as e:
sg. popup_error(str(e), title="Error")

i f isinstance(event, tuple):
TABLE CLI CKED Event has value in format ('-TABLE=
" +CLI CKED+', (row, col))
You can also call Table.get |last clicked position to get the
cell clicked
if event[0] == "'-TABLE-':
if event[2][0] not in [-1, None]: # If an actual row was

clicked
calibration.update figure(fig, figure_canvas_agg,
known_expr essi on=Tr ue,
i s_point_sel ect ed=Tr ue,
x_sel _poi nt=calibration[event][2]

[orreon,
[01101])

y_sel _point=calibration[event][?2]

Page: 44 of 58

if event == "'-DELETE-":
del calibration[-1]
cal i bration.change_i n_data(w ndow, fig, figure_canvas_agg,
known_expr essi on=Tr ue)
calibration.update_figure(fig, figure_canvas_agg,
known_expr essi on=Tr ue)

if event == '-CLEAR-':
cal i bration.cl ear_data()
cal i bration.change_i n_data(w ndow, fig, figure_canvas_agg,
known_expr essi on=Tr ue)
calibration.update figure(fig, figure_canvas_agg,
known_expr essi on=Tr ue)

if event == "'-COPY-":
wi ndowf ' - COPY-"] . updat e(' Text Copied!", disabled=True)
sg.clipboard_set(repr(calibration)) # Copy the text to clipboard

tinme.sleep(l)
wi ndowf ' - COPY-']. update(' Copy', disabl ed=Fal se)

if event =="-TOGGEE-":

gt.gui _toggl e_behavi our (W ndow)
if event == '-CALCULATE-":

try:

i f not window'-TOGGLE-']. netadat a:
if values['-V_INPUT-"] == "":
rai se Val ueError("Val ues nust be assigned")
elif not gt.is_nunber(values['-V_INPUT-"]):
rai se Val ueError("Val ues nust be a numeric value.")
i nput Vol tage = fl oat (values['-V_INPUT-"])
i f inputVoltage in calibration.data:
rai se ValueError("Data input is repeated.")
el se:
i nput Vol t age = ni DAQ read_vol t age()

cal i bration.add _vol tage(i nput Vol t age)

except Val ueError as e:
sg. popup_error(str(e), title="Error")

calibration.update figure(fig, figure_canvas_agg,
known_expr essi on=Tr ue)

wi ndow ' - TABLE-"] . updat e(val ues=cal i brati on. dat a)

wi ndow[' -V_INPUT-"].update('")
if len(calibration) > 0:

gt.set _di sabl ed(w ndow, False, '-CLEAR-', '-DELETE-')
el se:

gt.set _di sabl ed(w ndow, True, '-CLEAR-', '-DELETE-')

wi ndow. cl ose()

Page: 45 of 58

src/ gui/ gui TempVol t Cal i brate. py

inport src.calibrationTools as ct
inmport time

i nport src.gui Tools as gt

fromsrc.gui Tools inport sg

text _input_keys = ['-V_INPUT-', '-T_INPUT-"]
def §$Lect_points_mﬁndow(data: [ist):

Behavi our for w ndow with [ayout for selecting points in the
i nterpol ati on et hod

paramdata: pair list with data points

creturn: list with two data points sel ected

sg. t hene(gt . ACCENT_THEME)

data _sorted = gt.sort_pair_list_by x(list(data))
avai |l abl e_points = |ist(data_sorted)

colum_left = sg. Col um(]
[sg. Canvas(key="- CANVAS-')]
1)

colum_right = sg. Col um([
[sg. Tabl e(val ues=dat a_sorted,
headi ngs=[' Vol tage (V)', 'Tenperature (°C'],
k='-TABLE-',
sel ected_row col ors='green on white',
enabl e_click_events=True)],
[sg. Push(), sg.Button('Select', k='-SELECT-')],
[sg. Frane(' Sel ected Points: ', [
[sg. Text('list of points...', k="-PONTS-")]
], expand_x=True)],
[sg. Push(), sg.Button("Choose", k='-CHOOSE-', visible=False)]
1)

| ayout = |
[sg. VPush()],
[colum_left, colum_right],
[sg. VPush()]

]

wi ndow, fig, figure_canvas_agg = gt.gui _w ndow with _graph("Choose Points"
, layout,

gt. FI G_SI ZE_ W DTH, gt.Fl G_SI ZE_HEI GHT, True)
axes, X, y = gt.get_axes for_points(fig, data sorted)
gt.draw points(axes, x, y, 'bo', "Data Points")
axes[0] . | egend()
gt . pack_canvas(figure_canvas_agg)
sel ected_points =[]

whil e True:
event, values = w ndow. read()

Page: 46 of 58

axes, X, y = gt.get_axes_for_points(fig, data_sorted)

gt.draw points(axes, x, y, 'bo', "Data Points")
if event == sg. WN_CLOSED

br eak
if event == '-CHOOSE-"':

wi ndow. cl ose()
return gt.sort_pair_list_by x(selected_points)

i f isinstance(event, tuple):

TABLE CLI CKED Event has value in format ('-TABLE=',
' +CLI CKED+', (row, col))

if event[0] == '-TABLE-':

if event[2][0] not in [-1, None]: # Header was clicked and
wasn't the "row' col um
gt.draw poi nts(axes, avail able _points[event[2][0]][0],

avai | abl e_points[event[2][0]][1], 'yo')

if event == '-SELECT-":
i f values['-TABLE-']:
sel ected_row = val ues[' - TABLE-'][0]

if len(selected_points) >= 2:
avai | abl e_poi nts. append(sel ect ed_poi nts[0])
sel ect ed_poi nts. pop(0) # Renove the ol dest point

sel ect ed_poi nts. append(avai | abl e_poi nts[sel ected_row]) # Add
the sel ected point

avai | abl e_poi nts. pop(sel ect ed_r ow)

avai l abl e_points = gt.sort_pair_list_by x(avail abl e_points)

wi ndow ' - TABLE-"']. updat e(val ues=avail abl e_points) # C ear
the tabl e selection
wi ndow ' - PO NTS-']. updat e(sel ect ed_poi nts)

if selected points:
gt.draw poi nts(axes, gt.get_sorted nth_elenents(sel ected points, 0

gt.get _sorted nth_elenents(sel ected points, 1), 'r-
o', "Selected Points")
if len(selected points) > 1
gt.set _visible(w ndow, True, '-CHOCSE-')

axes[0] . | egend()
gt . pack_canvas(figure_canvas_agg)

wi ndow. cl ose()

def tenp_volt_calibrate_w ndow():
W ndow and | ayout for tenperature-voltage relation
:return: w ndow with | ayout

sg. t heme(gt . DEFAULT_THEME)

colum_left = sg. Col um(|
[sg. Franme(' Choose Expression Type:', |
[sg. Radi o(gt. TEMP_VOLT_LI N_EQ
group_i d='exp_type',

Page: 47 of 58

def aul t =Tr ue,

k="-LI NEAR EQ ',

enabl e_event s=Tr ue,
~pad=((10, 0), (10, 0)))],

[sg. Radi o(gt. TEMP_VOLT_LEAST_SQUARES,
pad=((40, 0), 0),
group_id='lin_eq',
def aul t =Tr ue,
enabl e_event s=Tr ue,
k='-LEAST _SQUARES-')],

[sg. Radi o(gt. TEMP_VOLT_LI N_I NTERP
pad=((40, 0), 0),
group_id="lin_eq',
def aul t =Fal se
enabl e_event s=Tr ue,
k="- LI NEAR_I NTERPOLATI ON-'),

sg. Button(" Choose Poi nts",
k="- CHOOSE_PO NTS-',

vi si bl e=Fal se
~pad=((10, 0), 0),)],

[sg. Radi o(gt. TEMP_VOLT_NON_LI NEAR_EQ
group_i d="exp_type'
def aul t =Fal se
=' - NON_LI NEAR EQ ',
enabl e_event s=Tr ue,
pad=((10, 0), (10, 10)))]

], expand_x=True, pad=(10, 10), relief=sg. RELI EF_SUNKEN)],
[sg. Frane(' I nput Data:',

[sg. Text (" Type In", pad=(10, 0), k="-TOGGE_OFF_TXT-",

font=gt. FONT_BOLD),

sg. Button(i mage_fil enane=gt. TOGGLE OFF_PATH
key=' - TOGGLE-",
button_col or=(sg. t hene_background_col or (),

sg. t hene_background_col or ()),
bor der _wi dt h=0,
net adat a=Fal se),

sg. Text ("Measure", k="-TOGGELE ON TXT-")],

[sg. Text('V =", k='-V_TXT-', pad=(10, 0)),

sg. I nput (si ze=gt . SI ZE_| NPUT,
key='-V_I NPUT-",
enabl e_event s=Tr ue,

di sabl ed_readonly_background_col or=sg.thene_button_color()[1]),
sg. Text (' T =),
sg. | nput (si ze=gt. SI ZE_| NPUT, key='-T_I NPUT-",
enabl e_event s=True),
sg. Button(' Enter', k='-ENTER-', bind_return_key=True,
pad=((10, 0), (10, 10)))]
], expand_x=True, pad=(10, 10), relief=sg. RELI EF_SUNKEN)],
[sg. Tabl e(val ues=[1],
headi ngs=[' Vol tage (V)', 'Tenperature (°C)'],
k='-TABLE-",
enabl e_click_event s=Tr ue,
enabl e_events=True)],
[sg. Text (' Nunber of Sanples: '),
sg. Text (' 0', k='"-N_SAWPLES-'),
sg. Push(),
sg.Button(' Cear', k="-CLEAR-', tooltip=" Cear table ",
di sabl ed=True),
sg.Button(' Delete', k='-DELETE-', tooltip=" Delete last row"
, disabled=True)]

Page: 48 of 58

1)

colum_right = sg. Col um([
[sg. Frane(' Calibration Equation',
[[sg. Text (' Expression...",
k='-EQ EXPRESSI ON-'
enabl e_event s=Tr ue,
nmet adat a=Fal se,
pad=(10, 10)),
sg. Button(" Copy", key="-COPY-", tooltip="Copy to
cli pboard”, pad=(10, 10), visible=False)]

expand_x=Tr ue,
expand_y=Tr ue,
pad=(10, 10),
el ement _justification="center',
relief=sg. RELI EF_RAlI SED)],
[sg. Canvas(k='- CANVAS-', size=(200, 200))],
[sg. Push(), sg.Button(' Choose', k='-CHOOSE-', disabled=True)]
1)

[ayout = [
[sg. VPush()],
[columm_l eft, columm_right],
[sg. VPush()],

]

return gt.gui _w ndow w th_graph(' Known Tenper at ur e- Vol t age Sensor
Calibration Equation', |ayout,

gt.FI G SI ZE_ WDTH, gt.FlG_SIZE_HEIl GHT,
Fal se)

def tenp_volt_calibrate_w ndow behavi or (ni DAQ w ndow, fig, figure_canvas_agg
):

Behavi our for tenperature-voltage relation w ndow

: param ni DAQ obj ect

: param wi ndow. pysi npl egui w ndow

param fig: calibration plot

:param figure_canvas_agg: canvas for the calibration plot

:return: object with set calibration

calibration = ct.LinearCalibration(' LEAST _SQUARES')
whil e True:

event, values = w ndow. read()
i f event == sg. W NDOW CLGCSED:
br eak

if event == "'-CHOOSE-':
wi ndow. cl ose()
return calibration

if event == "'-LINEAR EQ":
gt.set _di sabl ed(w ndow, Fal se, '-LEAST_SQUARES-', '-
LI NEAR_| NTERPCLATI ON- ')
if not calibration.is_type(' LI NEAR EQUATION):
calibration = calibration.to_linear_calibration()
if event == '-CHOOSE_ PO NTS-':

calibration.set _chosen_points(sel ect_points_w ndowcalibration.get _data()))

Page: 49 of 58

if event == '"-NON_LINEAR EQ ":
gt.set _di sabl ed(w ndow, True, '-LEAST SQUARES-', °'-
LI NEAR_I NTERPOLATI ON-")
gt.set_visible(w ndow, False, '-CHOOSE PO NTS-')
if not calibration.is_type(' NON_LI NEAR_EQUATI ON):
calibration = calibration.to_nonlinear_calibration()
elif wndow '-EQ EXPRESSI ON-']. nmet adat a:
To cal culate a nonlinear function there nust be at |east 3
poi nts
wi ndow ' - EQ EXPRESSI ON-'] . update("Waiting for 3 points...")

1 1

only accepts digits and deci mal point

if event in ['-V_INPUT-', "-T_INPUT-"]:
gt.filter_nuneric_characters(w ndow, val ues, event,
text i nput _keys)

if event =="-TOGGEE-":

gt.gui _toggl e _behavi our (Wi ndow)
if event == "'-ENTER-':

try:

if values['-T_INPUT-"] == "":
rai se Val ueError("Val ues nust be assigned")
elif not gt.is_nunber(values['-T_INPUT-"]):
rai se ValueError("Val ues nust be a numeric value.")

i f not windowf'-TOGGLE-']. netadat a:
if values['-V_INPUT-"] == "":
rai se Val ueError("Val ues nust be assigned")
elif not gt.is_nunber(values['-V_INPUT-"]):
rai se Val ueError("Val ues nust be a numeric value.")
i nput Val ues = [fl oat(values['-V_INPUT-"]), float(values[’
T_INPUT-"]1)1
el se:
i nput Val ues = [ni DAQ read_vol tage(), float(values['-
T_INPUT-"]1)1

if calibration.data_exists(inputVal ues):
raise ValueError("Data input is repeated.")

cal i bration.add_dat a(i nput Val ues)

except ValueError as e:
sg. popup_error(str(e), title="Error")

wi ndow ' - TABLE-"] . updat e(val ues=cal i brati on. dat a)
wi ndow[' - N_SAMPLES-'].update(len(calibration))

wi ndow[' - V_I NPUT-"].update('")

wi ndow[' - T_I NPUT-"].update('")

if event == "'-DELETE-":
del calibration[-1]
cal i bration.change_i n_data(w ndow, fig, figure_canvas_agg,
known_expr essi on=Fal se)

if event == '-CLEAR-':
calibration.clear_data()
cal i bration.change_in_data(w ndow, fig, figure_canvas_agg,
known_expr essi on=Fal se)

Page: 50 of 58

i f event == "'-COPY-':
wi ndow ' - COPY-"]. update(' Text Copied!"', disabled=True)
sg.clipboard_set(repr(calibration)) # Copy the text to clipboard

time.sleep(l)
wi ndowf ' - COPY-'].update(' Copy', disabled=Fal se)

if len(calibration) > 0:
gt.set_di sabl ed(w ndow, False, '-CLEAR-', '-DELETE-')
i f values['-LINEAR EQ']:
if len(calibration) > 1:
i f val ues['-LEAST_SQUARES-']:
cal i bration. update_net hod(' LEAST _SQUARES')
cal i bration.cal cul ate_expression()
el se:
cal i bration. update_net hod(' LI NEAR | NTERPOLATI ON)
if calibration.interpolation_points:

calibration.cal cul ate _expression(calibration.interpolation_points[O0],

calibration.interpolation_points[1])
el se:

calibration.calculate expression([calibration.sort_x()[0],
calibration.sort_y()[0]],

[calibration.sort_x()[-1], calibration.sort_y()[-1]])

wi ndow ' - EQ EXPRESSI ON-']. updat e(repr(calibration))
wi ndow ' - EQ EXPRESSI ON-']. netadata = True
el se:
To cal cul ate a polynonm al function there nmust be at
| east 2 points
wi ndow ' - EQ EXPRESSI ON-']. netadata = Fal se
el i values['-NON_LINEAR EQ']:
if len(calibration) > 2:
cal i bration.cal cul ate_expression()
wi ndow| ' - EQ EXPRESSI ON-'] . updat e(repr(calibration))
wi ndow ' - EQ EXPRESSI ON-'] . netadata = True
el se:
wi ndowf ' - EQ EXPRESSI ON-'] . netadata = Fal se
calibration.update figure(fig, figure_canvas_agg,
known_expr essi on=Fal se)
el se:
gt.set _di sabl ed(w ndow, True, '-CLEAR-', '-DELETE-')
gt.set_visi bl e(wi ndow, False, '-COPY-")
wi ndowf ' - EQ EXPRESSI ON-'] . net adata = Fal se

i f window '-EQ EXPRESSI ON-']. net adat a:
gt.set _di sabl ed(w ndow, Fal se, '-CHOOSE-')
gt.set_visi bl e(wi ndow, True, '-COPY-")
el se:
gt.set _di sabl ed(w ndow, True, '-CHOOSE-')
gt.set_visible(w ndow, False, '-COPY-")
To calculate a linear function there nmust be at |east 2 points

wi ndowf ' - EQ EXPRESSI ON-'] . update(f"Waiting for "

f*{"2" if calibration.is_type(
"LI NEAR_EQUATION) else "3"} points...")

Page: 51 of 58

gt.set_visi bl e(wi ndow, val ues['-LI NEAR | NTERPCLATION-'] and val ues[' -
LI NEAR_EQ '] and
wi ndow ' - EQ EXPRESSI ON-'] . net adata, '-CHOOSE_PO NTS-')

wi ndow. cl ose()

Page: 52 of 58

src/ gui Tool s. py

inmport matplotlib
inmport time
i mport re

import PySinpl eGUl as sg

from mat pl otlib. backends. backend_t kagg i nport Fi gureCanvasTkAgg
frommtplotlib.figure inport Figure
frompathlib inport Path

Bowmmmaamne APPEARANCE - - = -------
W NDOW W DTH = 900
W NDOW HEI GHT = 600

FIG SIZE WDTH = 5
FI G_S| ZE_HEI GHT = 4

SIZE_INPUT = (7, 1)

DEFAULT_THEME = "G eenMono”
ACCENT_THEME = "Li ght Gr een10"

FONT_DEFAULT = (' Hel vetica', 10)
FONT_BOLD = (' Hel vetica', 10, 'bold')

T TEXTS FOR W NDOWS - - - === ===-

Calibration Method
CAL_METHOD TEMP_VOLT = "Tenperature and Vol tage Rel ation”

CAL_METHOD_EXP = "Direct Expression |nput"

Tenperature and Vol tage Correl ation
TEMP_VOLT_LIN EQ = "Linear Equation"
TEMP_VOLT_LEAST_SQUARES = "Least Squares Method"
TEMP_VOLT_LIN_INTERP = "Linear I|Interpolation”
TEMP_VOLT_NON_LI NEAR_EQ = "Non-1linear Equation"

Direct Expression |nput
I NP_EXP_LIN EQ = "Linear Equation”,
I NP_EXP_NON LIN = "Non-|inear Equation”

Data Acquisition
DATA _ON _DEMAND = "On Denand"
DATA CUSTOM = "Finite Sanpling"

A | MAGE PATHS ---------

| CON_PATH = "assets/icon_bhig. png'

TOGGELE_ON PATH = 'assets/switch_on. png'
TOGGALE_OFF _PATH = 'assets/swi tch_of f. png'
ALARM M N_ON_PATH = 'assets/al arm.m n_on. png'
ALARM M N_OFF_PATH = 'assets/alarmnmin_of f. png'
ALARM MAX_ON_PATH = 'assets/al arm nax_on. png'
ALARM MAX_OFF_PATH = 'assets/al arm nmax_of f. png'
ALARM UNSET_PATH = ' asset s/ al arm unset. png'

Boaoeon- PARAVETERS - - -------
N_DECI MALS = 3

Page: 53 of 58

M N_TI ME_UPDATE_M5 = 60 # mininumtine that app can update

MAX_TI ME_I NTERVAL_MS = 5100

def get_desktop_dir():
CGet the user's desktop directory
:return: user's desktop as a string

return str(Path. hone().joinpath("Desktop")) + "/"

def filter _digits(w ndow, val ues, event, text _input_keys: list):

Filters out non-digit text inputs even if the user types letter, nunbers
or synbol s

: param wi ndow. wi ndow from gui where text is inputted and shown

:param val ues: list of values in gui w ndow

s param text _i nput _keys: list with text-input keys
i param event: event in gui w ndow

‘return:

k_event = text input_keys[text input_keys.index(event)] if len
(text_input_keys) > 1 else text_input_keys[O0]

val ues[k_event] = "".join(c for ¢ in values[k_event] if c.isdigit())

wi ndow k_event] . updat e(val ues[k_event])

def filter_nuneric_characters(w ndow, values, event, text_input_keys: |ist):

Filters out non-nuneric text inputs so that even if the user types

| etters and nunbers, only nunbers, '.' and '-'
are shown
: param wi ndow. wi ndow from gui where text is inputted and shown
:paramval ues: list of values in gui w ndow
:param text _input_keys: list with text-input keys

:param event: event in gui w ndow

assigns text input key where there is an event

k_event = text _input_keys[text input_keys.index(event)] if len
(text _input_keys) > 1 else text_input_keys[O]
enpty string where filtered out characters will be added

filtered chars =[]
flag to signal if a'.' has already been typed in
dot found = Fal se
for char in values[k_event]:
adds if char is between 0-9
if char.isdigit():
filtered_chars. append(char)
adds '."' if it's the first one found
elif char == "." and not dot_found:
filtered_chars. append(char)
dot _found = True
adds '-' if it's in the first position

elif char == "'-" and len(filtered chars) ==

Page: 54 of 58

filtered_chars. append(char)

val ues[k_event] = "".join(filtered_chars)
wi ndow k_event] . updat e(val ues[k_event])

def _check_if_key(key_input):

Private nethod that checks if the value passed is a valid key

: param key_i nput :

creturn:

Checks if value is a string

if not isinstance(key_input, str):

rai se TypeError(f"Variable 'key input' nust be a string,\ngot {type

(key_input). name__} instead.")

Checks if the val ue passed has the correct key fornat

1

key format = r' - \w-$' # defining pattern: '-<key>-'
if not re.match(key_format, key_input):
raise ValueError(f"Invalid key format for 'key_input': '{key_input}
\ nKeys must have '-<key>-'")

def check_if _valid_input(values, n_decimals, *args):
Checks if input value when entered is a valid nunber and isn't enpty
: param n_deci mal s: nunber of decinals desired

:param val ues: list of values in gui w ndow

s param args: input key(s)

creturn: list of valid input(s) as floats with 3 deci mals
list where valid inputs will be stored

valid_inputs =[]
for key_input in args:
checks if key input is valid
_check_if_key(key_input)
checks if input value isn't enpty
i f values[key input] == "":
rai se Val uekrror("Val ues nust be assi gned")
checks if input is a valid nunber
el if not is_nunmber(val ues[key input]):
rai se Val uekrror("Val ues nust be a nuneric value.")
converts input fromstring to float with 3 decinals and adds it to
the valid input list
valid_inputs += to_nunber_n_dec(n_deci mal s, val ues[key_input])
return valid_inputs

def set _di sabl ed(wi ndow, is_disabled: bool, *args):
Updat es di sabl ed paraneter of an el enent
: param wi ndow. gui W ndow
:paramis_disabled: bool, True: if elenment should be disabled, False if
not
:param args: el enent key(s)
sreturn:
for key_input in args:
_check_if_key(key_input)
wi ndowf key_i nput] . updat e(di sabl ed=i s_di sabl ed)

Page: 55 of 58

def set_visible(w ndow, is_visible: bool, *args):
Updates visibility paraneter of an el ement
: param wi ndow. gui W ndow
paramis_visible: bool, True: if elenent should be visible, False if not
:param args: el enent key(s)
sreturn:
for key_input in args:
_check_if_key(key_i nput)
wi ndowf key_i nput]. updat e(vi si bl e=i s_vi si bl e)

def enpty_inputs(w ndow, *args):

Enpties the input in a w ndow
: param wi ndow. gui w ndow
:param args: input key(s)
creturn:
for key_input in args:

_check_i f_key(key_i nput)

wi ndow key i nput].update('")

def is_nunber(string):
Sane as isnunmeric but with floats al so
»param string: nunber input
creturn: True if it's a nunber, False if it isn't
if string[0] =="-":
string = string[1:]

return string.replace('.", , 1).isdigit() or string.isnuneric()

def to_nunber _n_dec(n_decinals, *args):
Turns argunents to a float with 3 decimal points
:param n_deci mal s: nunber of decinals desired
. param ar gs:
creturn:
if not isinstance(n_decimals, int):
rai se TypeError(f"Nunber of decinmals nmust be integer,\ngot {type
(n_decinals). nane_ }")
result =]
for nunber in args:
if n_decimals > O:
resul t.append(round(fl oat (nunber), n_decinmals))
el se:
resul t.append(round(int(nunber), n_decinals))
return result

def cal cul ate_frequency(period):
Cal cul ates frequency val ue, given period val ue
:param period: period val ue
:return: frequency value in the sane tine unit as period val ue
i f not isinstance(period, (int, float)):
rai se TypeError(f"Expected a nunber (float or integer), got {type
(period). nane__} instead")

Page: 56 of 58

return 1 / period

def gui _toggl e_behavi our (wi ndow) :
wi ndow ' - TOGGLE-'].netadata = not wi ndow ' - TOGGLE-']. nmet adat a
i f window'-TOGGLE-']. net adat a:
set _di sabl ed(wi ndow, True, -V | NPUT-")
wi ndow ' - V_I NPUT-"].update("")
wi ndow ' - V_TXT-"]. updat e(text col or=sg. thene_button_color()[1])
wi ndow[' - TOGGLE_OFF_TXT-']. updat e(f ont =FONT_DEFAULT)
wi ndow ' - TOGGLE_ON_TXT-"'] . updat e(f ont =FONT_BOLD)
el se:
set di sabl ed(wi ndow, False, '-V_INPUT-")
wi ndow[' -V_TXT-"'].update(text_col or=sg.thene_text color())
wi ndow ' - TOGGLE_ON_TXT-"] . updat e(f ont =FONT_DEFAULT)
wi ndowf ' - TOGGLE_OFF_TXT-']. updat e(f ont =FONT_BOLD)

wi ndow ' - TOGGLE-"']. update(i mage fil enane=TOGGLE _ON PATH i f w ndow ' -
TOGGLE-'] . netadata el se TOGGLE _OFF_PATH)

def gui _w ndow with graph(title, layout, figSizewWdth, figSizeHeight, isMbdal

Initializes a PySinpleGU w ndow with a matplotlib using a CANVAS with
enpty graph that can be updated | ater

cparamtitle: title of the w ndow

:param | ayout: |ayout designed for the w ndow

cparam figSi zeWdth: desired width of the graph

:param fi gSi zeHei ght: desired height of the grap

:paramishodal : bool if wi ndow is nodal

:return: window, fig, figure_canvas_agg

Create the PySinpleGJ w ndow with the provided title and | ayout
wi ndow = sg. Wndow(title, layout, finalize=True, elenment_justification=
"center', nodal =i shbdal ,
si ze=(W NDOW W DTH, W NDOW _HEI GHT))
Create a new matplotlib Figure object with the provided size

fig = matplotlib.figure.Figure(figsize=(figSi zeWdth, figSizeHeight))
Adjust the position of the axes within the figure

fig.subplots adjust(top=0.8, bottom=0.25, left=0.2) # Myve the axes up
by adjusting the top and bottom positions

Add a subplot (axes) to the figure and plot an enpty line

fig.add_subplot(111).plot([], [])

Create a FigureCanvasTkAgg object by associating the figure with the
tkinter canvas el enent

figure_canvas_agg = Fi gureCanvasTkAgg(fig, w ndowf'-CANVAS-']. TKCanvas)

Draw the initial enpty plot on the canvas

figure_canvas_agg. draw()
Pack the canvas w dget into the wi ndow s | ayout

figure_canvas_agg. get _tk_wi dget (). pack()
return wi ndow, fig, figure_canvas_agg

def get _axes for_points(fig, data: list):

Page: 57 of 58

Creates axes for a graph nade with data points

:param fig:

:param data: |ist of points

:return: axes with xlabel, ylabel and a grid and x and y list of

separ at ed data

def

def

def

def

axes = fig.axes

x = [i[0] for i in data]

y = [i[1] for i in data]
axes[0] .cl ear ()

axes[0] .set _xl abel ("Voltage (V)")
axes[0] .set _yl abel ("Tenperature (°Q")
axes[0] .grid()

return axes, X, Yy

pack canvas(figure_canvas_agg):

Packs canvas for later use in graph

. param figure_canvas_agg:

creturn:

figure_canvas_agg. draw()
figure_canvas_agg. get _tk wi dget(). pack()

draw_poi nts(axes, x_points, y_points, marker, |abel=None):

If a user selects a points in table, it will be drawn in table
. par am axes:

»param x_poi nts: x point or |ist

paramy_points: y point or list

: param mar ker: desired shape and col or for point/s
:param | abel : nane of |abe

sreturn:

axes[0].plot(x_points, y points, marker, | abel =l abel)

sort_pair_list_by x(data):

Sorts a list of pairs by x

paramdata: list of data points

creturn: list of pairs sorted

sorted_points = sorted(data, key=lanbda p: p[0])
return sorted_points

get _sorted nth_el enents(data, n):

Extracts elenents at any index n fromthe pairs
cparam data: list of pairs

paramn: nth elenent [0] or [1]

creturn: list of nth elenments

return [i[n] for i in sort_pair_list_by_x(data)]

Page: 58 of 58

