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Abstract

Over the years, the design of modern vehicles is becoming an extremely complex task.
This trend is caused by the increasing functional requirements of new designs and by
the vast amount of mechatronic systems within the vehicle. Motorcycle technology has
reached a point where, to make further improvements, a global and multidisciplinary
understanding of the vehicle is essential. In this respect, it has become indispensable to
consider the interaction of such diverse elements as road, suspensions, chassis, engine,
rider, sensors and electronics in the design process of new devices.

It is in this challenging framework where simulation takes a crucial role in the
evolution and development of new ideas. Virtual models offer a faster and cost-effective
alternative to physical testing, they decrease the development time, limit the number
of prototypes needed to validate a new design and, most importantly, they permit
conducting experiments with no risk for the human operator. This last feature, for
instance, results especially attractive for the development of new active safety systems.

In order to achieve realistic results, it is essential to properly replicate the behavior
of the human operator within the simulation environment. This is the main scope of the
present thesis, which focuses on the application of control techniques to drive a virtual
motorcycle model along a predefined path. This implies generating appropriate control
actions to govern the throttle, the brakes and the steering system during the simulation.

Two-wheeled vehicles are complex dynamic systems; they are highly nonlinear, non-
minimum phase, unstable and underactuated. This makes motorcycle control a rather
challenging task. Building upon Model Predictive Control theory, we have developed a
novel control strategy capable of riding a nonlinear motorcycle model in a wide range
of conditions, including extremely demanding manoeuvres such as those performed by
racing riders.

The lack of appropriate simulation packages for vehicle control motivated the in-
house development of all necessary tools for the realization of this project. These
include, in addition to the virtual rider, a detailed multibody model of the motorcycle
and a new methodology for the quasi-steady state analysis of motorcycles.
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The research performed in this PhD project yields new insights into the simulation of
motorcycle dynamics and extends the working range of existing controllers. Although a
sports motorcycle has been used throughout this document, both the modeling approach
and the results can be extended to other vehicle typologies. This research has also
paved the way for improvements and further developments that are suggested as future
research lines.



Resumen

Con el paso de los años, el desarrollo de vehículos se está convirtiendo progresivamente
en una tarea cada vez más compleja. Esto es debido, en parte, a los requisitos funcionales
de los nuevos diseños y a la gran cantidad de sistemas mecatrónicos que incorporan los
vehículos modernos. Se ha llegado a un punto en que, para mejorar el comportamiento
de las motocicletas actuales, es esencial una comprensión global y multidisciplinar del
vehículo. En este sentido, es indispensable considerar la interacción entre elementos tan
diversos como el terreno, las suspensiones, el chasis, el motor, el piloto y la electrónica
en el proceso de diseño de nuevos dispositivos.

Es en este difícil contexto donde la simulación juega un papel crucial en la evolución
y el desarrollo de nuevas ideas. Los modelos virtuales ofrecen una alternativa más rápida
y rentable que los ensayos físicos, disminuyen el tiempo de desarrollo, limitan el número
de prototipos necesarios para validar un nuevo diseño y, lo que es más importante,
permiten llevar a cabo experimentos sin ningún riesgo para el ser humano. Esta última
característica, por ejemplo, resulta especialmente atractiva para el desarrollo de nuevos
sistemas de seguridad activa.

Con el fin de lograr resultados realistas, es esencial replicar adecuadamente el com-
portamiento del piloto en el entorno de simulación. Este es el objetivo principal de la
presente tesis, en la que se aplican técnicas de control al modelado del piloto.

Los vehículos de dos ruedas son sistemas dinámicos complejos; son altamente no
lineales, de fase no mínima, inestables y subactuados. Esto hace del control de la
motocicleta una tarea particularmente difícil. Tomando la teoría de control predictivo
como punto de partida, se ha desarrollado una estrategia de control capaz de estabilizar
un modelo no lineal de motocicleta en un amplio rango de condiciones, incluyendo
maniobras agresivas, como por ejemplo, las realizadas por los pilotos de carreras. Para
ello el sistema de control actúa sobre el acelerador, los frenos y la dirección tal y como
lo haría un piloto real.

La carencia de herramientas de simulación adecuadas para el control de vehículos
motivó el desarrollo interno de todos los elementos necesarios para la realización de
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este proyecto. Éstos incluyen, además del piloto virtual, un modelo multicuerpo de la
motocicleta y una nueva metodología para el análisis quasi-estático del vehículo.

La investigación realizada en este proyecto de doctorado aporta nuevos conocimien-
tos sobre la simulación de la dinámica de la motocicleta y amplía el rango de trabajo
de los controladores existentes. Aunque se ha utilizado una motocicleta deportiva a lo
largo de este documento, tanto la metodología como los resultados pueden ser extendi-
dos fácilmente a otras tipologías de vehículos. Al final de la investigación se proponen
futuras líneas de trabajo para continuar el desarrollo del piloto virtual.
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Because riding is good for my soul...
Anonymous answer to the question
“Why do you ride your motorcycle?”

From SAFERIDER public survey.

Chapter 1

Introduction and objectives

1.1 Motivation

The first motorcycle ever built was actually an engine attached to a wooden bicycle; it
was designed and built by the German Engineers Gottlieb Daimler (who later teamed
up with Karl Benz to form the Daimler-Benz Corporation) and Wilhelm Maybach in
Bad Cannstatt (Stuttgart) in 1885. That marked the moment in history when the
development of the petrol-powered engine and the modern bicycle collided. This new
vehicle was powered by a single-cylinder Otto-cycle engine, and may have already had a
spray-type carburettor since at that time Maybach was working on the development of
the first prototype. It is worth noting the first motorcycles did not fit pneumatic tyres
as they were introduced for the first time in 1888 by John Boyd Dunlop.

There is a previous invention that could have the honour of being the first motorcycle
if the steam propulsion is considered. The American inventor Sylvester Howard Roper
built a two-wheeled vehicle powered by a two-cylinder steam-engine in 1867. His steam-
powered bike was demonstrated at fairs in the eastern US and anticipated many modern
motorbike features, including the twisting-handgrip throttle control.

The first production two-wheeler was the Hildebrand & Wolfmüller, patented in
Munich in 1894. Only a few hundred examples of this model were ever built. Apart from
the high purchase price, technical problems such as the absence of a clutch prevented

1
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the motorbike from becoming a commercial success. In the early period of motorcycle
history, many producers of bicycles adapted their designs to accommodate the new
internal combustion engine. As the engines became more powerful and designs outgrew
the bicycle origins, the number of motorcycle producers increased.

Until the First World War, the largest motorcycle manufacturer in the world was
Indian, producing over 20.000 bikes per year. By 1920, this honour went to Harley-
Davidson, with their motorcycles being sold by dealers in 67 countries. In 1928, the
German DKW took it over as the largest manufacturer. After the Second World War,
the British BSA Group became the largest producer of motorcycles in the world, produc-
ing up to 75.000 bikes per year in the 1950s. By that time, streamlining began to play
an increasing role in the development of racing motorcycles and held out the possibility
of radical changes to motorcycle design. The German company NSU Motorenwerke AG,
which held the position of largest manufacturer from 1955 until the 1970s, and the italian
Moto-Guzzi were in the vanguard of this development, both producing very innovative
designs well ahead of their time. Many other factories have appeared throughout the
twentieth century, among them: Triumph (1902), Harley-Davidson (1903), Moto-Guzzi
(1921), Honda (1946), Ducati (1952), Suzuki (1952), KTM (1954), Kawasaki (1954),
Yamaha (1955)...

Maker <50cc 50-125cc 126-250cc >250cc >50cc Total

Suzuki 21.703 2.865 10.832 51.265 64.962 86.665

Yamaha 1.804 6.445 14.321 55.720 76.486 78.290

Honda 10.013 619 6.568 53.678 60.865 70.878

Kawasaki - 965 5.516 20.698 27.179 27.179

Total 34.170 10.894 37.245 181.361 229.500 263.670

Table 1.1: Japanese motorcycle production by engine displacement and manufacturer.
January to June 2013 (source: JAMA).

Today, the Japanese manufacturers Honda, Kawasaki, Suzuki, and Yamaha domi-
nate the motorcycle market, although Harley-Davidson still maintains a high degree of
popularity in the United States. Aside from these high-powered motorcycles, there is
a very large market for low capacity motorcycles and mopeds. In this latter reference
market, the Italian manufacturer Piaggio is currently leader in Europe and one of the
four world’s largest producers of two-wheeled vehicles.

The motorcycle has evolved since its early days and so has the concept that people
have about this vehicle. Nowadays two-wheeled vehicles are more and more used not
only for pleasure as in the past, but also because of the increasing mobility needs in
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the crowded urban and sub-urban roads of many European towns. In the developing
world there is an increasingly large demand for mopeds due to the lack of common
forms of mass public transport and to the fact that mopeds are much more affordable
compared to other motor vehicles. In general, space efficiency and low consumption
make two-wheeled vehicles very attractive for urban transport.

Many innovations have been introduced since the Daimler-Maybach motorcycle was
built in 1885. For instance, hydraulic shock absorbers were introduced in the 1930s with
the aim of improving vehicle handling and comfort as speeds increased. Even though
the early design of hydraulic dampers was rudimentary, its concept is still used today:
current dampers are based on a moving piston, placed inside a canister, and on the use
of oil to control the relative movement of both elements.

The braking performance of motorcycles took a significant step forward with the
introduction of disc brakes in the early 1960s. By that time they were only available
on racing machines although it did not take long before they were mounted on mass-
production motorcycles. The first road motorcycle to fit a front disc brake was the
Honda CB750 in 1969. Since then the disc brake has evolved to become the most used
braking device nowadays. Compared to drum brakes, disc brakes are lighter, perform
better in wet weather and are less prone to fade under severe usage as they dissipate
heat better.

The first progressive monoshock rear suspension was introduced in the 1970s. Pre-
vious systems used two shock absorbers, one on each side of the vehicle, fitted directly
between the arm and the frame. The single shock absorber allowed the use of a linkage
to make the suspension progressive, which implied several advantages over traditional
systems such as better riding comfort and easier setup.

Above all, improvements in the manufacturing techniques allowed two-wheeled vehi-
cles to be produced at decreasing costs causing thus an extraordinary increment in the
number of users. An example of this is the aluminium perimeter frames, which debuted
on street bikes in the mid 1980s.

The introduction of computers and electronics in the automotive market during
the last decades of the twentieth century initiated a revolution which rapidly gained
in importance and has not yet reached its peak. Lately terms such as ABS (Antilock
Braking System), TCS (Traction Control System), CBS (combined braking system) are
becoming more and more common in the motorcycle jargon. These acronyms designate
mechatronic devices aimed at improving the stability, maneuverability and comfort of
motorcycles, helping thus the rider and ultimately enhancing safety.

Despite the huge effort put forward by motorcycle manufacturers to improve the
road safety and riding comfort of motorcycle riders, the current technology available for



4 1.2 Context of the research: the MYMOSA project

single track vehicles still lags behind the automotive industry. In general, the knowhow
acquired for cars cannot be simply reused in motorcycles as two and four-wheeled vehi-
cles differ in many aspects: motorcycles are intrinsically unstable; they reach large roll
angles; there is less space for sensors/actuators and less power available; and what is
most important, motorcyclists are less prone than car drivers to accept a system that
interferes with motorcycle dynamics and personal driving style.

In addition, most of the current devices involve the enhancement of an individual
component at a time, regardless of the vehicle as a whole. Current technology has
reached the point where, to further improve the performance of the motorcycle, a global
and multidisciplinary understanding of the vehicle is essential; it is indispensable to
consider the interaction of such diverse elements as road, suspensions, chassis, engine,
driver, sensors, electronics, etc. in the design process of new devices.

It is in this challenging framework where simulation takes a crucial role in the evo-
lution and development of new ideas and concepts. The use of virtual models allows
to reduce costs, decreases the development time and limits the number of prototypes
needed to validate a new design. Furthermore, computer simulations also permit con-
ducting experiments in conditions that would not be feasible in the real world. A key
element in this process is the mathematical algorithm employed to mimic the behaviour
of the human rider within the simulation environment, also known as rider model. Ex-
isting virtual riders have not reached its maturity yet. This fact has motivated the
development of this thesis, which final target is the design of a novel rider model based
on Model Predictive Control (MPC).

1.2 Context of the research: the MYMOSA project

The number of fatalities in road accidents has decreased in Europe during the last years.
This happens in global terms where not only motorcyclists but all types of vehicles are
considered. However, the total number of dead motorcyclists in road accidents has
remained almost unchanged [1]. Motorcyclists and moped drivers are road users with
a particularly high damage risk since motorcycle accidents are severe in nature due to
the relative lack of protection of motorcyclists. Furthermore, given the young age of
many victims, these accidents often result in a high loss of life expectancy for fatalities
and high social-economic costs for severely injured motorcyclists.

Within this context, the European project MYMOSA was born with the ambition to
provide a significant contribution to the reduction of motorcycle fatalities and injuries
on European roads. The acronym MYMOSA stands for MotorcYcle and MOtorcyclist
SAfety. This project was funded by 6th Framework Programme of the European Union
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Universities Companies Research centres

Imperial College (UK), Uni-
versity of West Bohemia (CZ),
L.M. University Munich (D),
University of Florence (IT)
and University Louis Pasteur
(FR).

TRL (UK), IBEO (D), Altair
(FR), Dainese SpA (IT), Cell-
bond Ltd (UK), LMS Interna-
tional (BE), DEKRA (D) and
Uniresearch (NL).

TNO (NL).

Table 1.2: Members of the MYMOSA consortium.

(MRTN-CT-2006-035965) and included multiple universities, research institutes and
companies as listed in Table. 1.2.

The main outcomes of the MYMOSA project were the collaborative generation of
multidisciplinary knowhow in accident dynamics, vehicle dynamics and biomechanics,
the development of simulation tools, predictive models, new protective equipment con-
cepts and a new safety vision through the implementation of novel integrated safety
devices. For further info the reader is referred to [2].

This PhD thesis was mostly developed within the MYMOSA project and the support
of the company LMS International (Belgium), where the author worked for three years
in the development of a novel virtual rider for motorcycles as a simulation tool to assess
new safety devices. A brief description of the company and its interests is introduced
next with the aim of establishing the context in which this research project was carried
out.

LMS (Leuven Measurement and Systems) was born as a spin-off of the Catholic
University of Leuven in 1980. In its early stages it became widely known in the modal
analysis sector for being one of the first companies in the world to make a unified
modal data acquisition and analysis system. In addition to this, in the last decade the
company has expanded its business into simulation software. Nowadays LMS offers a
combination of virtual simulation software, testing systems and engineering services to
key manufacturing industries, including structural integrity, system dynamics, handling,
safety, reliability, comfort and sound quality. It has more than 400 employees in Belgium
and more than 1200 distributed in 40 offices worldwide. As far as the economic aspect is
concerned, it produces an annual turnover of more than 140 million euro (2012). From
November 2012 LMS is part of the German multinational company Siemens.

LMS took a very active part in the development of this PhD thesis by providing
full access to their knowhow and by supporting, both from a technical and a theoretical
point of view, the use of their multibody software Virtual.Lab Motion, formerly known
as DADS (Dynamic Analysis and Design System).
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DADS was born in the 80’s based on the research done at the University of Iowa
under Prof. Ed Haug [3,4] and financed from the US Army project TACOM (Tank Au-
tomotive COmmand). The aim was to develop a more numerically stable and accurate
solver since their experience with ADAMS showed poor reliability. Progressively DADS
incorporated several technical features based on advanced research successes: superior
DAE solver, flexible bodies based on finite element methods, coupled controls and hy-
draulics, cosimulation with Matlab/Simulink, etc. In 1999 LMS acquired CADSI, the
company that had developed DADS since 1983, and incorporated the motion solver to
its simulation suite Virtual.Lab, thus giving rise to Virtual.Lab Motion. LMS software
was used as a validation tool for the symbolic motorcycle model presented in this thesis.

1.3 Objectives of the thesis

Given the context depicted in the previous sections, the aim of this research project is
the development of a novel rider model for the dynamic simulation of motorcycles.

Dynamic simulation is applied nowadays within the motorcycle industry for a great
variety of purposes. Typical applications go, for example, from comfort analysis to the
design of advanced riding assistance systems. However, most of these simulations are
limited to basic manoeuvres, generally straight line and slow cornering (low roll rates).
Although significant progress has been made in the last decade in the field of rider
modelling, a satisfactory solution for the dynamic simulation of motorcycles is yet to
be found.

Two-wheeled vehicles are complex dynamic systems; they are highly nonlinear, non-
minimum phase, unstable and underactuated. This makes motorcycle control a rather
challenging task. As a matter of fact, existing rider models work well only in a limited
set of conditions. In general, they are not able to cope with severe manoeuvres, show-
ing poor performance when simulating aggressive acceleration profiles, quick direction
changes, etc. Most of them also require a great deal of interaction from the user to
adjust the controller parameters. In addition to that, many of these rider models are
based on highly simplified motorcycle models that do not take into account the main
vibration modes of the vehicle (e.g. capsize, wobble and weave), which results in a loss
of accuracy.

The rider model presented in this thesis is expected to increase the range of appli-
cation of the current simulation tools. In particular, we intend to develop a control
strategy capable of riding a multibody motorcycle model in a wide range of conditions,
including extremely demanding manoeuvres such as those performed by racing riders.
For that purpose, the following points are deemed necessary:
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• Development of a symbolic multibody model of the motorcycle. Such model must
describe the nonlinear dynamics of a generic road motorcycle, thus providing a
suitable framework for the development of the thesis. The model will be employed
at two different levels throughout the project. In the first place, it will be used
as the nonlinear plant to be controlled, i.e. it will represent the real vehicle
within the simulation environment. In the second place, and more importantly,
the motorcycle model will be used to develop the internal model associated to the
rider control strategy. This last application imposes several requirements on the
model that are described next.

• Characteristics of the multibody model. In order to facilitate the design of the
rider control strategy, it is desirable to formulate the multibody model as a system
of Ordinary Differential Equations (ODE) in state space form. In addition to this,
we will augment the model equations in order to include the curvilinear coordinates
of the vehicle with respect to the target path. Such coordinates will allow us to
define the rider model in a direct and intuitive way. Finally, we will improve the
efficiency of the multibody code by using Computer Algebra Software (CAS).

• Quasi-steady state solution of the target manoeuvre. As part of the process to
build the rider model, it is considered essential to obtain the quasi-steady state
solution of the motorcycle equations along the desired manoeuvre. Given the
manoeuvre specifications, defined in terms of the target trajectory and the desired
speed profile, the solution of the quasi-steady state problem will provide a suitable
estimation of the model states and control inputs along the target trajectory.

• Characteristics of the quasi-steady state solution. The study of the stationary
motion of vehicles is widespread in the automotive literature, especially as far
as four-wheeled vehicles are concerned. Unlike previous works, the quasi-steady
solution introduced in this thesis will not be limited to the constant speed case.
In order to get a suitable estimation of the vehicle’s states and control inputs, it
is intended to include the effect of the longitudinal acceleration in the problem
formulation. We will also consider the effect of the most relevant derivatives such
as the roll rate and the roll acceleration. The quasi-steady state solution will be
obtained by solving the nonlinear algebraic equation system that arises from the
dynamic model when the desired quasi-steady state conditions are imposed.

• Sensitivity study. An extensive parametric study will be conducted in steady and
quasi-steady state conditions in order to gain insight into the behavior of the
motorcycle. The steady state motion of the motorcycle will allow us to explore



8 1.3 Objectives of the thesis

how the most relevant variables (e.g. steering torque, tyre forces, attitude, etc)
vary as a function of the corner radius and the vehicle speed. On the other
hand, the quasi-steady state analysis will assess the effect of the longitudinal
acceleration and the roll derivatives. Basically, we will determine to what extent
these terms modify the solutions obtained assuming pure stationary conditions.
The information obtained from this analysis will allow us to sketch the design
requirements of the virtual rider.

• Definition of the internal model and stability analysis. The internal model of the
rider’s control strategy will be defined as the linearization of the motion equations
along the quasi-steady state solution of the manoeuvre. In addition to that, we will
use the results of the linearization to perform a stability analysis of the motorcycle
in straight line and cornering conditions. Results will provide valuable information
on how the vibration modes of the vehicle (frequency, damping and modal shape)
vary in function of the running conditions.

• Development of the prediction model and related control strategy. The internal
model symbolizes the rider’s mental image of the motorcycle, i.e. a representation
of the inverse dynamics of the vehicle that the human mind constantly tunes based
on experience. Humans use this stored knowledge while riding to estimate the fu-
ture behavior of the vehicle and then act accordingly to achieve the desired goal,
e.g. to follow a predefined path. The rider model introduced in this thesis will
behave in a similar way. We will employ the internal model to formulate a predic-
tion model, which will be subsequently optimized in order to minimize the error
between the system’s output and the desired control targets. The development of
the control strategy will be based on Model Predictive Control theory.

• Representative simulations and analysis of results. We will conclude this thesis by
applying the developed methodology to four severe manoeuvres. In the first place,
we will perform a slalom test, which typically consists of multiple line-up cones
that must be avoided by the rider. Such manoeuvre will allow us to investigate
the response of the rider against fast variations in the lateral acceleration target.
In the second place, we will use a chicane to assess the behaviour of the rider
model under severe combined conditions. In this case the motorcycle will be
ridden along an s-shaped trajectory typical of race tracks. The combination of
high longitudinal and lateral accelerations, together with the abrupt transition
from acceleration to braking, make this manoeuver a challenging test for the rider
model. The third example will be a corner exit manoeuvre. Similarly to racing
riders, the rider model will accelerate along the corner until the front tyre is lifted.
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Finally, we will simulate a corner entry maneuver where the rider will decelerate
aggressively as the vehicle rolls into the corner. We will use this last manoeuvre
to test the robustness of the rider model against road perturbations. For that
purpose, we will use an uneven road profile.

1.4 Outline of the thesis

This thesis consists of seven main chapters, not counting annex and references. It
presents a comprehensive collection of mathematical tools for the analysis and control
of motorcycles. The document is organized as follows:

• Chapter 1. Introduction and objectives. The present chapter describes the
motivation that led to the development of this thesis, introduces the context of
the MYMOSA research project and presents an overview of the different chapters
that compose this dissertation along with its objectives.

• Chapter 2. Review of motorcycle dynamics and rider modelling. This
chapter presents a literature review on motorcycle dynamics and rider control. In
first place, the most relevant motorcycle models presented to date are studied
and their characteristics are comprehensively analyzed. The second part of the
chapter introduces the topic of tyre modelling and emphasizes its importance
in the field of computational vehicle dynamics. The chapter continues with a
detailed description of the existing rider models, paying special attention to the
most relevant approaches used in their development, namely classical and modern
control theories. A thorough analysis of the existing rider models reveals that
the problem is still open. Finally, a critical summary of the results is presented
together with some concluding remarks.

• Chapter 3. A symbolic motorcycle model for virtual rider design and
simulation. An analytical motorcycle model based on the symbolic multibody
approach is presented in this chapter. The chapter starts with a brief review of the
multibody formulations currently available in literature, including a comparison
between symbolic and numeric formalisms. The multibody model of the motor-
cycle model is presented in the second part of the chapter along with a detailed
description of its implementation. The tyre model and the underlying assumptions
of its formulation complete this section. In the third part, an additional multi-
body model developed in LMS Virtual.Lab Motion is introduced and then used
as a validation tool. To conclude, some considerations regarding the advantages
of the symbolic model are presented and discussed.
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• Chapter 4. A new methodology for the quasi-steady-state analysis of mo-
torcycles. This chapter, together with Chapter 5, introduces a new methodology
for the quasi-steady state analysis of motorcycles. The approach presented here
is based on the reduction of the dynamic model to a set of nonlinear algebraic
equations. The first part of the chapter describes the quasi-steady state assump-
tions and how they are applied to the multibody model. This section also includes
the development of a continuation strategy to efficiently explore the effect that
the input parameters (curvature, speed, etc) have on the motorcycle behaviour
(tyre forces, sideslip angle, etc). Such strategy is applied in the second part of
the chapter to perform an extensive parametric study. A thorough analysis of the
results completes the chapter.

• Chapter 5. Quasi-steady state analysis of continuous manoeuvres. This
chapter extends the methodology introduced in Chapter 4 to simulate continuous
manoeuvres. Fundamentally, this means that, instead of finding the solution for
a predefined set of input parameters, in this chapter we solve the states and
control inputs needed to drive the vehicle along a given path. As the name of
the chapter indicates, this is done in a quasi-steady state fashion. The chapter is
structured in two parts. In the first part we use a dynamic inversion approach to
estimate the roll rate and its derivative along the target trajectory. The results
of the estimation problem are then used in the second part of the chapter to
develop a novel procedure for the quasi-steady state analysis of motorcycles. The
resulting strategy is applied to two different manoeuvres, a slalom test and a
chicane. Finally, the advantages and drawbacks of the proposed methodology are
discussed.

• Chapter 6. A rider model based on MPC. This chapter introduces a new
approach for the dynamic simulation of motorcycles based on Model Predictive
Control. In particular, we develop an algorithm to drive a nonlinear motorcycle
model along a control target, defined by a reference path and a given speed profile.
The first part of this chapter deals with the linearization of the motion equations
along the quasi-steady state solution of the problem. The outcome is a family
of state space models that represent the rider’s mental model of the vehicle at
every point of the reference path. The underlying equations of the rider model
are described in the second part of the chapter together with the details of its
implementation. In the third part, a series of maneuvers are simulated and their
results are thoroughly discussed. The robustness of the rider model is ultimately
demonstrated by including the road unevenness in one additional simulation. The
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chapter ends with some remarks and conclusions on the performance of the rider
model.

• Chapter 7. Conclusions and future work. This chapter summarizes the main
findings of the present work and their practical applications. A series of recom-
mendations for future research lines are also presented at the end of the chapter.





Steering a motorcycle or bicycle is
counterintuitive; to turn right, you
must steer left initially, and vice
versa. You can execute this initially
counter-directed turn by turning the
handlebars explicitly (called
counter-steering) or by throwing your
hips to the side. Contrary to common
belief, gyroscopic forces play only a
limited role in balancing and steering.

D. E. H. Jones, Phys. Today (1970)

Chapter 2

Review of motorcycle dynamics and
rider modelling: the state of the art

2.1 Dynamics of single track vehicles and its modelling

2.1.1 The early stages

Since the first single track vehicles were built in the early 19th century, many vehicle
dynamicists have investigated their dynamic behaviour attracted by the fascinating sta-
bility characteristics of bicycles, motorcycles and similar vehicles. One of the first pub-
lications on this field dates back to 1869, when Rankine [5] presented semi-quantitative
observations on the stability and steering behaviour of velocipedes. He was probably
the first to provide a basic description of the countersteering1 phenomenon, noticing
that centrifugal forces were sufficient to balance the gravitational overturning moment
caused by the roll angle of the vehicle.

Another early investigation worth mentioning was developed in the late nineteen
century by Whipple [6] and Carvallo [7] who derived, independently of each other,
the nonlinear differential equations that describe the dynamic behaviour of a bicycle.

1‘Riders briefly turn to the left to generate the rightward lean necessary for a steady rightward turn’.
Rankine, 1869.

13
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Year Author Main contribution

1869 Rankine Presented semi-quantitative observations on the steering be-
haviour of velocipedes. First description of countersteering.

1899 Whipple
Carvallo

Derived the motion equations of the bicycle and studied its
linear motion in straight-running conditions.

1971 Sharp Investigated the straight line stability of large motorcycles.
Sharp was one of the first to consider the effects of tyre
relaxation.

1974 Sharp Studied the influence of frame flexibility on the lateral sta-
bility of motorcycles.

1974 Jenninngs First to observe the coupling between pitch and weave
modes.

1976 Sharp Demonstrated the interaction of pitch and weave at high
speeds.

1978 Kane Studied the effect of frame flexibility on high speed weave of
motorcycles.

1979 Weir &
Zellner

Investigated experimentally the steering behavior of motor-
cycles in transient conditions.

1983 Koenen Presented a pioneering study of the motorcycle vibration
modes in steady-state cornering conditions.

1985 Nishimi Developed a 12-dof motorcycle model including the rider’s
body. Studied the effect of body properties in the straight
running stability of motorcycles.

1988 Katayama Modelled the human rider as a 2-dof inverted pendulum.
Studied the control behaviour of motorcycle riders.

1994 Sharp Put together the state-of-the-art features into one simulation
model: flexibilities, rider’s torso lean, tyre model, etc.

Table 2.1: The early stages: summary of the most relevant contributions to the study
of single track vehicles before the introduction of multibody codes.

Whipple’s equations were derived using a Lagrangian approach and already included
the possibility of the rider applying a control action modelled as a torsional steering
stiffness. His model consisted essentially of two bodies, frame and fork, connected
through a revolute joint along the steering head. The wheels were assumed to be
infinitely thin, and were included in the model as nonholonomic constraints, meaning
that no tyre slipping was possible. In total the model had only two degrees of freedom,
roll and steering, as the speed was imposed through a kinematic constraint applied to
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the frame. Whipple’s model did not include any aerodynamic effects, suspensions or
flexibility. Carvallo’s model, on the other hand, was slightly simpler as it neglected the
mass and moments of inertia of the front assembly in comparison to those of the front
wheel.

By that time no computational tools were available to integrate such a set of dif-
ferential equations, and in consequence Whipple’s equations were never used directly.
Instead, they were simplified into a linear set of differential equations and then used to
study the small motions of the vehicle about a straight-running trim condition. Whipple
used the Routh criterion to assess the stability of the system at constant speed, con-
cluding that the bicycle was self-stable without rider control in the small speed range
between 16 and 20 kph. However, at higher speeds the rider was concluded to be es-
sential for bicycle stability. Carvallo, on the other hand, identified the eigenmodes of
the bicycle and derived the equations that predict its critical speeds during hands-free
straight running. Despite of the solid foundations laid by Whipple and Carvallo, re-
search on the dynamics of single track vehicles evolved slowly in the subsequent years.
A detailed description of early mathematical models can be found in [8], [9] and [10].

In fact, it wasn’t until 1971 that the first relevant analysis of motorcycle dynamics
was published. Robin Sharp [11] used a linear model to carry out a theoretical analysis
of the straight line stability properties of a large motorcycle, including discussions about
rider control and its implications on vehicle design. He used a Lagrangian approach to
derive the equations of motion of his model, which was composed of two rigid bodies
joined at an inclined steering axis; suspensions were not included, and the rider was
assumed to be rigidly attached to the rear frame. In total, the model had four degrees
of freedom, namely lateral motion, roll, yaw and steer. No aerodynamic forces were
included. Probably the most interesting feature of this work was inside the tyre model
as Sharp, unlike previous authors, did not assume that the lateral force builds up
instantaneously in response to sideslip. Instead he used a first order filter to model the
so called relaxation behaviour of the tyre [12]. The aim of this filter was to limit the
bandwidth of the tyre response, hence making the model behaviour more realistic.

Sharp used the model described above to investigate the main motorcycle modes in
steady-state straight line conditions. To that end he wrote the system equations in state-
space form and obtained the model eigenvalues and eigenvectors from the state matrix.
His results and, in particular, the variation of the modal damping and frequency with
speed, contributed significantly to the current understanding of motorcycle dynamics.
During his research, Sharp explored two possible rider control strategies: fixed and free
control. In order to investigate the so-called fixed control approach, Sharp removed the
steering dynamics from his model, thus assuming that the rider was able to control the
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steering angle regardless of the required torque. On the other hand, in free-control mode
steering dynamics were necessary as the rider was assumed to control the handlebar
by means of the steering torque. After multiple studies, fixed-control was found to
be unattractive for motorcycle simulations, as opposed to double track vehicles (cars,
trucks, etc) where the low forces required to steer the vehicle make this assumption more
realistic. Therefore, Sharp concluded that motorcycle dynamics should be regarded as
involving free-control.

Sharp predicted the presence of three important vibration modes by using a free-
control model, which were denominated capsize, wobble and weave. Capsize is a di-
vergent instability where the whole vehicle behaves as an inverted pendulum, falling
onto its side. This mode evolves very slowly, on the order of seconds, being easy for
the rider to control it. For this reason, capsize stabilization is normally done subcon-
sciously. Furthermore, this mode can be intentionally excited by the rider to initiate
a turn [13, 14]. Instead, weave is a low frequency oscillation of the whole motorcycle
(2-3 Hz) involving roll, yaw and steer motions. This mode is stable at low and medium
speeds, becomes progressively less damped at higher speeds and may become unstable
at very high speeds. The third mode, wobble, is a high frequency mode (7-9 Hz) in-
volving primarily the steering system rotating with respect to the main frame. Sharp’s
model predicted this mode to be stable at low speeds, becoming less damped as the
speed increases. Wobble is qualitatively similar to the well-known wheel shimmy on air-
crafts and cars [12]. Sharp performed a series of experiments with his model to assess
the effect of the tyre relaxation on motorcycle modes, coming to the conclusion that it
was an essential feature of the model as its absence unrealistically stabilized the wobble
mode. In contrast, capsize and weave were almost unaffected by the tyre relaxation.
Sharp also demonstrated that the steering damper improves wobble stability while is
detrimental for the weave mode.

Sharp’s groundbreaking work can be considered the starting point of modern motor-
cycle dynamics. As a matter of fact, his research has inspired a great number of papers
on this subject. Models have become more and more complex, including new features
and making use of the latest computational advances. However, the influence of his
findings is still relevant to this day.

Following Sharp’s 1971 publication, and acknowledging the great utility of his new
approach as a potential design tool, several research groups developed advanced models
to explore further aspects of motorcycle behaviour. By the middle of the seventies, Sharp
[15] and Kane [16] investigated the influence of frame flexibility on the lateral stability
of motorcycles. To that end, Sharp extended his original model by adding a new degree
of freedom, the roll motion of the rear wheel with respect to the frame, and introduced a
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(lumped) torsional spring-damper between these two bodies that represented the frame
compliance. Low frame flexibility was found to be detrimental to the stability of the
weave mode at medium and high speeds, while its influence on the capsize and wobble
modes proved to be irrelevant. It was also demonstrated that increasing the frame
stiffness above a certain level does not to produce significant changes in stability. It
is worth noting that the structures of modern motorcycles, especially in motorsports,
are quite stiff and the reported effects have limited value nowadays. Other aspects that
Kane studied were the influence of mass distribution and fork trail.

Parallel to this research, Jennings [17] and Sharp [18] studied the most compliant
structural element of the motorcycle: the suspensions. Jennings was the first to observe
an unprecedented weave oscillation in cornering with significant suspension movement,
suggesting that pitch and weave modes could be interacting. A few years later, following
a Dunlop film showing this phenomenon, Sharp demonstrated by a simple analysis [18]
that the natural frequency of the weave mode gets closer to that of the pitch as the
speed increases, which could lead to the interaction of both modes at high speeds. At
that time it was clear that the mode coupling between in-plane and out-of-plane modes
was weak in straight running conditions; on the contrary, these new findings suggested
that the coupling would become stronger at higher roll angles. Hence, a full analysis
of the motorcycle vibration modes in cornering conditions was needed to shed light on
this question.

Koenen PhD thesis in 1983 [19], along with his previous work with Pacejka [20,21],
represented a big step forward in motorcycle theoretical analysis. His most significant
contribution was a pioneering study of the motorcycle vibration modes in steady-state
cornering conditions. To that end, Koenen’s model comprised two sets of equations: a
set of nonlinear algebraic equations, needed to describe the stationary cornering equi-
librium, and a system of linear differential equations with constant coefficients that
described the dynamic response of the system. Koenen was aware that including the
suspension degrees of freedom in the model was crucial for the accurate modelling of
the cornering motorcycle, as suggested by [18]. Consequently, he used a total of eleven
generalized coordinates, including both suspension strokes as well as the torsion of the
frame and the lean angle of the rider’s torso. The tyres were treated as radially flexible,
taking into account their cross-sectional shape in a simple geometrical fashion similar
to that employed by Eaton [22], except that the overturning moments were neglected.
The outputs of the tyre model, i.e. side forces and aligning moments, were applied at
the contact patch as functions of the slip angle, the camber angle, the turn-slip and
the normal load. The tyre relaxation behaviour was also taken into account, assum-
ing the same relaxation length for all tyre inputs. The model featured also in-plane



18 2.1 Dynamics of single track vehicles and its modelling

Figure 2.1: Motorcycle model developed by Koenen (1983). This model comprised
a total of eleven generalized coordinates, including suspension strokes, frame torsion
and rider’s lean. Note the simplified rear suspension, modelled as a vertical stiffness
applied at the wheel center. Images from [19].

aerodynamic forces.
Koenen used the set of linear equations described above to study the stability of the

cornering motorcycle. Nowadays it is a well known fact that lightly damped modes can
lead to catastrophic consequences if they are excited. When this happens, the steering
torques and frequencies involved make it very difficult for the rider to control the vehicle.
In cornering conditions the risk is even higher as the vehicle is usually more difficult to
control. In this context, Koenen’s results were very useful. He was the first to prove
what Sharp suggested in [18], i.e. the coupling between in-plane and out-of-plane modes
increases with increased roll angle, the suspensions playing an important role in this
phenomenon. Koenen showed that a significant energy transfer between in-plane and
out-of-plane modes is possible in cornering conditions; modes with similar frequencies
tend to interact, thus giving rise to new modal shapes. He introduced for the first
time the cornering weave and other cornering modes such as those arising from the
coupling between wheel-hops and wobble modes. His results included multiple root-loci
in an attempt to study the sensitivity of the vehicle response to parameter variations.
Unexpectedly, and in contrast with the experimental results of Jennings [17] and Weir
& Zellner [23], Koenen’s model predicted that the suspension damping had a very little
effect on cornering stability. Many years later, in 2000, Sharp suggested in [24,25] that
these discrepancies could be due to an error in Koenen’s calculations. Despite this,
Koenen’s research settled the basis for the study of motorcycle dynamics in cornering
conditions. It is important to note that the computational resources available at that
time were very limited, what makes his contribution even more impressive. We could
mention, as a curiosity, that he recorded on film the computer graphic output in order to
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animate the mode shapes, which would otherwise have been very difficult to interpret.
By the middle of the eighties rider modelling started to receive more and more atten-

tion as body motions were suspected to have a big impact on the motorcycle response.
Early studies had simplified the analysis by rigidly connecting the rider to the rear frame
or, in the most detailed models, by modelling the lean of the rider’s torso with respect
to the main frame as in [19, 26]. In the subsequent years to Koenen’s work, several
authors focused their research on the rider model, proposing different alternatives to
model the human body motion on the motorcycle. We can divide them into two groups:
passive models, which used simple springs and dampers to keep the rider position, and
active models, which included additional control elements to dynamically control the
rider position during the simulation. In this section we will only focus on the structural
part of the rider model as the control algorithms deserve special attention in this thesis,
and thus they will be discussed later in a dedicated section.

A noteworthy example of rider structural modelling was presented in 1985 by Nishimi
[27], who used an elaborated model to study the straight running stability of motorcycles.
His mathematical model consisted of twelve degrees of freedom, divided as follows: two
degrees of freedom were used to represent the rider motions, including the leaning
movement of the upper body and the lateral displacement of the lower body with
respect to the frame, while the remaining ten degrees of freedom were used to model
the vehicle, including four rigid motions (lateral displacement, yaw, roll and steer) along
with the torsional and bending deformations of the fork, frame and swing arm. A passive
combination of linear springs and dampers were used to keep the rider upright.

The parameters of the rider model were obtained experimentally; Nishimi identified
the vibration response of the rider’s body to vehicle roll by means of an excitation bench
and an innovative device to measure the rider’s position and attitude with respect to the
motorcycle. He then used his model to obtain the frequency and damping ratios of the
weave and wobble modes for the straight running case at several speeds. Experimental
tests were conducted with four motorcycles of different sizes and the outcome was
compared with numerical results, obtaining a good correlation. Measured damping
factors were observed to be slightly greater than those predicted by the model. Nishimi
also used a second model, without the rider’s degrees of freedom, which showed worse
correlation. Additionally he also investigated numerically the effect of several body
parameters (mass, inertia and CG position) on motorcycle stability, concluding that
upper body parameters influence mainly the weave mode while those regarding the
lower body influence primarily the wobble mode.

Following Nishimi’s trend of using two degrees of freedom to model the rider’s body,
Katayama [28] presented in 1988 a new rider model with two rotational degrees of
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freedom, allowing the lower body to lean relative to the frame instead of moving laterally
as in [27]. Basically, the rider was treated as a double inverted pendulum connected
to the main frame. The motorcycle model used by Katayama was much simpler than
Nishimi’s as no compliances were included; it was essentially the same as Sharp’s 1971
model [11], described by a linear system with four degrees of freedom. Katayama’s
tyre model included lateral forces, aligning moments and overturning moments due to
sideslip and camber angle. He also included the tyre relaxation behaviour as a first
order system. The main objective of his research was to study the control behaviour of
motorcycle riders. For this purpose a lane change manoeuvre was simulated and results
were compared with experimental tests carried out by several riders, showing a good
correlation. Katayama’s control algorithm is described in detail in section 2.3.1.

Returning to the general motorcycle modelling overview, in 1994 Sharp presented an
update of his model [29] that put together most of the state-of-the-art features available
at that time, such as lateral and twist frame flexibilities (lumped at the steering head),
flexibility of the rear wheel assembly (around an axis attached to the main frame), rider’s
torso lean, in-plane aerodynamic effects and a detailed tyre model. Sharp’s tyre model
included lagged and instantaneous outputs in response to sideslip and camber angles
respectively: side forces and aligning moments were produced by both mechanisms,
while the overturning moment depended only on the camber angle. The tyre model was
basically linear, with the only exception that its coefficients were defined as functions
of the tyre load. The tyre was considered infinitely thin, and an overturning moment
was used to account for the lateral shift of the tyre contact patch in camber conditions.
Other details of the tyre modelling, e.g. turn slip and tread band mass effects, were
known to be negligible from [30] and therefore were not included. The parameters of
the model were obtained from laboratory experiments. Sharp used his new model to
conduct a sensitivity study on several design parameters that affect the straight running
stability of motorcycles. Hence, no suspensions were included in the model due to the
low coupling between in-plane out-of-plane modes in these conditions. He also studied
the effect of the rider impedance on motorcycle dynamics in what he called “hands on”
and “hands off” case studies. The main difference between both cases was the amount
of stiffness, damping, and inertia applied to the handlebar in order to model the rider’s
arms. Sharp’s results showed a good correlation with experimental data [31]. It is worth
noting that this was one of the last Sharp’s models derived using a manual method.

2.1.2 The multibody era

By the middle of the nineties, the ever-increasing model requirements were so high that
the manual derivation of the equations of motion was not practical anymore. It was
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Year Author Main contribution

1994 Sharp Presented a review on the existing multibody codes and their
application to the mathematical modelling of road vehicles.

1996 Ghani Successfully reproduced Sharp’s results with the multibody
modelling package AutoSim.

1996 Imaizumi Developed a multibody model of the rider’s body composed
of twelve rigid bodies, thus allowing naturalistic movements.

1998 De Vries &
Pacejka

Adapted the Magic Formula to motorcycles.

1999 Cossalter Presented a comprehensive analysis of the steady turning of
two-wheeled vehicles based on an algebraic symbolic model.

2001 Sharp Presented a new version of his model based on AutoSim and
confirmed the cornering results established by Koenen.

2001 Limebeer First stability analysis of the motorcycle under acceleration
and braking in straight running conditions.

2002 Cossalter Presented a motorcycle model for real time applications. In-
troduced a new tyre model with a detailed description of the
elastic deformation of the carcass.

2002 Cossalter Published the first book entirely dedicated to motorcycle
dynamics.

2004 Sharp &
Evangelou

Latest version of Sharp’s model. Included an improved tyre
geometry, an analytic treatment of the rear suspension and
a new tyre model fully based on Pacejka’s Magic Formula.

2004 Evangelou Introduced the first steering compensator for sport motorcy-
cles motivated by the poor stability of these vehicles at high
speeds.

2008 Cossalter Presented the first riding simulator based on a detailed multi-
body model.

Table 2.2: The multibody era: summary of the most relevant contributions to the
study of motorcycle dynamics after the introduction of multibody codes.

during that period when the need of automated tools for model generation converged
with the emerging computer codes for mechanical modelling such as multibody packages,
thus opening a new era in the field of vehicle dynamics. A review on the application of
multibody codes to the mathematical modelling of road vehicles was presented by Sharp
in 1994 [32]. In this publication the existing multibody codes where classified in two cat-
egories, numeric and symbolic, and their main characteristics were discussed. In general,



22 2.1 Dynamics of single track vehicles and its modelling

numeric codes prepare and solve the equations numerically, and then post-process the
results to produce outputs provided to the user as tables, graphs or animations. These
codes are oriented to the product’s final design, and model equations are not available
for the user to explore or manipulate them. Symbolic codes, as opposed to numerical,
derive the equations of motion in a fashion similar to hand derivation; obtaining first the
model equations which are then converted into a C or FORTRAN source code in order
to produce highly specialized, problem-oriented, simulation programs. This approach
allows a low-level control of the model. Furthermore, some of these symbolic codes
exploit algebraic manipulation to simplify the equations of motion with the aim of pro-
ducing extremely efficient simulation codes. In a second stage the code is compiled and
numerical results are obtained via numerical integration (time histories), perturbation
(linear analysis), etc.

A significant example of this new era can be found in [33], where Gani (1996) revis-
ited Sharp’s latest model [29] with the aim of reproducing his results with the multibody
modelling package AutoSim [34]. He successfully verified that both approaches yielded
the same results, and highlighted in the conclusions the advantages of using an auto-
mated approach for model development with respect to manual procedures: reduced
building time, less probability of error, and effortless parametric studies and topology
changes.

Contemporary to Gani’s research, Imaizumi [35] took the rider structural modelling
a step forward by introducing a very complex multibody model composed of twelve rigid
bodies, representing the rider’s arms, legs, trunk, etc. Imaizumi used a combination
of spring, dampers, and proportional control elements to stabilize the rider’s joints,
allowing naturalistic movements such as steering, body leaning, body pitching, weight
shift and knee grip. The motorcycle model used in this work was based on Nishimi’s [27].
Several simulations corresponding to a corner entry manoeuvre were presented with
small roll angles of up to twenty degrees. Imaizumi developed his model in a series of
later papers [36–38].

The application of multibody codes to motorcycle dynamics spread very fast during
the last years of the nineties, giving rise to an unprecedented boost in this field. For
instance, Cossalter used an algebraic2 symbolic model in 1999 [39] to study the steady
turning of two-wheeled vehicles, giving special emphasis to the influence of speed and
curvature on the steering torque. His model included detailed steering kinematics and a
comprehensive tyre model with circular cross-section, thus automatically accounting for
the lateral migration of the contact point. Tyre forces and moments were applied at the

2Cossalter’s equations were derived specifically for a steady-state cornering analysis. In these condi-
tions the vehicle differential equations become algebraic as the states and its derivatives are constant.
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contact patch in response to longitudinal slip, sideslip and camber angle. In particular,
the tyre model included longitudinal and lateral forces as well as rolling resistance and
aligning/twisting moments. Suspensions were not considered. The resulting system of
nonlinear algebraic equations was solved by means of a fixed-point iteration method
for several combinations of roll and steering angles. Cossalter showed that the steering
torque is the result of the simultaneous action of several forces and moments with either
aligning or twisting effects. In the range of velocities and curvatures considered, sideslip
and roll stiffness showed little effect on the steering torque while the twisting torque was
found to be the most important contribution at high roll angles. It was also shown that
the design of the front fork has a significant effect on the steering torque; over a wide
range of speed and curvature values, increasing the trail reduces the steering torque,
whereas increasing the castor angle has the opposite effect.

In 2001 Sharp developed a new dynamic model [41] for the stability and control
analysis of motorcycles based on Gani’s work [33]. Sharp’s new model became more
general and powerful than any other model in the literature of that time [41] due to the
use of state-of-the-art multibody tools; the model was implemented in the commercial
multibody code AutoSim [34] and comprised thirteen degrees of freedom. Rider’s lean
and frame twist degrees of freedom were included, as well as a detailed description of
the steering kinematics and front tyre contact point. The most relevant differences with
respect to Sharp’s 1994 model [29] were the possibility to simulate the motorcycle in
corner conditions and the presence of suspensions. Furthermore, unlike Koenen [19]
who used a simplified suspension, Sharp’s new model included a detailed modelling of
the swinging arm and its associated suspension system. A historical review of Sharp’s
models is shown in Fig. 2.2. Currently, the commercial multibody package BikeSim [42],
developed by the same company of AutoSim, is largely based on Sharp’s 2001 model.

This new model confirmed the fundamental patterns of behaviour of the cornering
motorcycle established by Koenen [19]. In particular, the in-plane and out-of-plane
modes were shown to become increasingly coupled as the roll angle increases. Sharp’s
root loci were similar to those of Koenen. However, detailed results did not match and
it was suggested that the reason might be an error in Koenen’s calculations. Sharp
acknowledged Koenen’s monumental dedication in deriving the equations of motion by
hand, and was not surprised that exact results could not be reproduced. With respect to
the major prediction problem of Koenen’s model, which predicted that the suspension
damping had a very little effect on cornering stability, Sharp’s results were in line with
experimental evidence [17,23] and conflicted with Koenen’s, thus showing his predictions
were not correct.

Limebeer used Sharp’s 2001 model to investigate the straight running stability of
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Figure 2.2: Evolution of Sharp’s model topology throughout the years. (a) 1971,
Sharp’s first model was composed of two rigid bodies joined at an inclined steering
axis: rear and front frames. (b) 1994, new degrees of freedom were added to model
the flexibility of the fork and frame as lumped parameters. (c) 2001, multibody tools
were used for the first time to derive the equations of motion (AutoSim). The model
comprised thirteen degrees of freedom. Images from [40].
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motorcycles under mild acceleration and braking conditions [25]. His work can be
considered the first successful analysis of the accelerated motion of two-wheeled vehicles.
Twenty five years earlier, in 1976, Sharp had made an early attempt but his results were
proved incorrect by Limebeer, who suggested that Sharp’s model was too simple to
explore this phenomenon. Limebeer simulated the motorcycle in two different scenarios,
accelerating/decelerating on a flat surface and ascending/descending an inclined surface
at constant speed. He showed that both conditions have similar effects on vehicle
stability. In particular, he concluded that the wobble mode is significantly destabilized
when the machine descends an incline or brakes on a horizontal surface. And conversely,
he showed that the damping of the wobble mode is substantially increased when the
machine ascends an incline at constant speed or accelerates on a horizontal surface.
Inclines, acceleration and deceleration appeared to have very little effect on the damping
or frequency of the weave mode, except at very low speeds.

Another nonlinear dynamic model worth mentioning was introduced in 2002 by
Cossalter and Lot [43]. Their model had eleven degrees of freedom and included an
original dynamic tyre model, which featured a detailed geometric description of the
cross-section along with the elastic deformation of the carcass. Cossalter and Lot’s
tyre model explained the physical behaviour of the tyre in more detail than previous
relaxation models, making unnecessary the use of specific equations to simulate the
tyre relaxation behaviour. However, this was at the cost of adding a number of implicit
differential equations to the model, which required special treatment. Lot further elab-
orated this approach in [44], where more details on this innovative tyre model can be
found. Unlike Sharp’s model, neither frame compliance nor rider’s leaning were mod-
elled. The equations of motion of the motorcycle model were derived symbolically using
Maple [45,46] according to the natural coordinates approach [47] with the aim of making
the model real-time capable. This approach produces very simple equations of motion
and kinematic relationships. However, the downside is that the number of variables
required to describe the system is much larger than the number of degrees of freedom
and consequently algebraic equations (constraints) must be introduced, yielding a set of
differential-algebraic equations (DAE). This kind of equations is not convenient if the
system is to be utilized as the internal model of a control algorithm, as it will be the
case in this PhD thesis.

Cossalter’s code, named FastBike, was validated against experimental data obtained
with an Aprilia RSV 1000. The geometrical and inertial properties of the vehicle were
measured at the University of Padua along with the non-linear elastic and damping
characteristics of the suspensions and the tyre parameters [48–50]. The motorcycle was
equipped with a measurement system to log the roll and yaw rates, the steering angle,
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the spin velocity of both wheels and the steering torque. Two different manoeuvres
were compared, a lane change and a slalom manoeuvre, showing a very good agreement
between numerical simulations and experimental data. Furthermore, the performance
of FastBike was compared against several commercial codes, namely DADS and Visual
Nastran, with FastBike being 10 and 100 times faster respectively.

The first book entirely dedicated to motorcycle dynamics was published by Cos-
salter in 2002 [13]. It was written from an engineering perspective, unlike other books
published earlier oriented to riders and general public, and summarized Cossalter’s
decades of experience in the field, including multiple topics such as kinematics, tyre
modelling, steady-state straight running and cornering analysis, in-plane dynamics, vi-
bration modes and stability, manoeuvrability and handling, etc.

One of the latest models available in literature was presented by Sharp and Evan-
gelou in 2004 [51], which featured the latest advances in the modelling of motorcycle dy-
namics at that time, including the outcomes of Evangelou’s PhD thesis [40]. This model
was developed with the commercial multibody code AutoSim [34], and presented sub-
stantial improvements with respect to previous models developed by Sharp [11, 29, 41],
namely: an improved tyre/road contact geometry, a new analytic treatment of the
monoshock rear suspension mechanism, speed-dependent relaxation lengths and an ac-
curate description of the tyre shear forces and moments based on Pacejka’s “Magic
Formula” [52–54]. All these improvements represented an important progress towards
a complete parametric description of modern high performance motorcycles. Addition-
ally, the calculation of steady-turning equilibrium states and steer torque requirements
was refined and verified. The use of this model for the stability analysis in cornering
conditions was demonstrated by means of multiple root-loci. Furthermore, their pub-
lication included the derivation of all “Magic Formula” coefficients for a series of high
performance motorcycle tyres, which constitute the only tyre dataset publicly available
in literature.

The model described above was used by Evangelou [55] to develop a mechanical
steering compensator3 for high-performance motorcycles, motivated by the reported
poor stability of this type of vehicles at high speed. The compensator was seen as
a possible replacement for the conventional steering damper, commonly used in high-
powered sports motorcycles to increase the damping of the wobble mode at the expense
of destabilizing the weave. In this context, a new device able to improve both modes
at the same time was desirable. The compensator designed by Evangelou comprised a
spring, a damper and a less familiar component called inerter. All components were

3A steering compensator is a passive mechanical device aimed at improving the stability of motor-
cycles. It is usually fitted between the fork and the chassis, in replacement of the steering damper.
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tuned so that the system behaved as a damper in the wobble frequency band, and
as an inerter at lower frequencies. Evangelou showed that his device could provide
significant improvements to the dynamics of both wobble and weave modes compared
to the conventional steering damper. This approach was further elaborated in 2006 [56],
including the presentation of physical prototypes.

Recently other minor contributions to the field of motorcycle modelling have been
presented, however none of them introduced unprecedented features with respect to
their predecessors. Among these works, it is worth mentioning, for instance: the Mo-
delica motorcycle modelling package (2006) [57–59], an open library developed by the
Politecnico di Milano to prototype and test active control systems in the field of motor-
cycle dynamics; an analysis of alternative suspension models developed by Mavroudakis
(2006) [60]; a flexible model presented by the University of Padua to study the impact
that rider’s mobility and frame compliance have on scooter stability [61]; a real time
motorcycle model integrated within an innovative riding simulator [62] developed by
the same university, etc.

2.2 Motorcycle tyre modelling for dynamic simulations

A precise description of the tyre behaviour is essential for the dynamic analysis of
road vehicles. For this reason, tyre modelling has been extensively studied over the
past decades. The most relevant results for the development of this thesis are briefly
reviewed in this section, where special emphasis has been put on those works focused on
tyre modelling for full vehicle simulations. For a complete description of tyre mechanics
and modelling techniques the reader is referred to [12].

We can classify existing works according to the amount of theoretical/experimental
effort needed to develop the tyre model. At one extreme of this classification we find
pure theoretical models, which describe the physical behaviour of the tyre through
complex mathematical equations representing the tyre structure and the tread-ground
interaction. For instance, the multi-radial-spoke model developed by Sharp in [63] and
all finite element models belong to this category. At the other extreme there are pure
empirical models that describe measured tyre characteristics through lookup tables
and fitted formulae. The best known example of this group is the so-called Magic
Formula [52–54]. In between these two groups there are simple physical models based
on empirical knowledge. These models, although being less accurate, allow to obtain
an analytical solution, thus providing a better understanding of tyre behaviour. The
brush model presented by Fujioka in [64,65] belongs to this group as it lies between the
pure physical and pure empirical models.
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Tyre model inputs Tyre model outputs

ξ radial deflection

κ longitudinal slip

θ̇ tyre rotational speed

λ lateral slip angle

φ camber angle

βt turnslip

Fx longitudinal force

Fy cornering side force

Fz normal load

Mx overturning moment

My rolling resistance moment

Mz aligning/twisting moment

Figure 2.3: Input/output quantities of the Magic Formula model.

Pure theoretical models can be very accurate and cover a wide range of working
conditions. However, they are computationally expensive and therefore not suitable for
full vehicle simulations. This kind of models is often used for component performance
analysis, e.g. to assess the tyre construction. On the other hand, the accuracy of
intermediate models is generally not very high, especially for motorcycle simulations
where the camber thrust plays an important role. Currently the most widely used model
in the field of computational vehicle dynamics is the Magic Formula, which belongs to
the pure empirical group. This is the approach that will be used throughout this thesis
and consequently the other two groups will not be further discussed.

The Magic Formula model was originally developed in 1987 for car tyres in a joint
project between TU-Delft and Volvo [66]. More than one decade later, in 1998, De
Vries and Pacejka [52] improved the model to make it suitable for motorcycles, where
the camber angles can reach much higher values. For this purpose, they performed
steady state measurements on public roads and then modified the Magic Formula so
that it fitted all experimental data, including a wide range of camber angles. Special
attention was paid to ensure a consistent behaviour outside the measured domain. This
tyre model was further improved by several authors [12,54,67].

The Magic Formula is composed of a set of parametric equations that express the
steady-state longitudinal forces, side forces, aligning moments and overturning moments
as a function of the longitudinal slip, side-slip, camber angle and normal load. All model
inputs and outputs are summarized in Fig. 2.3; it is worth noting that all inputs are
kinematic quantities whereas all outputs represent tyre forces and moments. The general
form of the Magic Formula is reproduced in Eq. 2.1, while Fig. 2.4 illustrates its shape
and the meaning of its parameters by means of the classic side force characteristic curve.

y = D sin [C arctan {Bx− E (Bx− arctanBx)}] (2.1)
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The Magic Formula equations include a great number of parameters which, depending
on the model version, can be over two hundred. Therefore, extensive experimental tests
are needed to fit all required data. In the last decades several tyre suppliers, automotive
companies and a number of universities have developed test facilities for full-scale tyre
measurements in order to identify the tyre force and moment generation capabilities.
Two examples of these facilities are the test truck developed by the Dutch company
TNO for outdoor testing [12] and the machine designed at the University of Padua for
indoor testing [68]. In spite of this, the amount of motorcycle tyre data available in
literature is still very limited. Sharp [51] published in 2004 a comprehensive collection
of Magic Formula parameters for modern high-performance motorcycle tyres, which is
probably the only dataset publicly available nowadays. Sharp’s parameters will be used
in this PhD thesis to populate the Magic formula model.

In the last decade, in addition to the advances described above, one of the most
active groups on motorcycle tyre modelling has been the one coordinated by Professors
Cossalter and Lot out at the University of Padua. In 1999 they presented a motorcycle
model for steady state analysis with circular cross-section [39] which considered the
lateral migration of the contact point with camber. In contrast to previous thin-disc
models, their results led to a more faithful description of the tyre contact kinematics

Figure 2.4: Shape of the sine version of the Magic Formula. The curve y(x) passes
through the point (Sh, Sv), reaches a maximum peak value D and subsequently tends
to a horizontal asymptote ya. Sh and Sv are the offsets with respect to the origin in
the horizontal and vertical directions respectively. The slope at the origin is given by
the product of the coefficients BCD. The coefficient B is called the stiffness factor
and is used to set the slope at the origin. The coefficient C is a shape factor used to
control the range of the sine function, which in turn modifies the shape of the curve.
The remaining coefficient E is introduced to control both the curvature at the peak
and its horizontal position.
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for large camber angles and, consequently, of all related forces and torques generated by
the tyre-ground interaction. This concept was later extended in [43,44,69] for dynamic
simulations. Unlike other authors, Cossalter and Lot did not use a first order relaxation
equation to model the lag between sideslip angle and lateral force. Instead, they included
the compliance of the tyre carcass in their model, thus leading to a more physical model
which better explained the dynamic tyre behaviour.

2.3 Rider modelling

In the previous section an overview of motorcycle dynamics and existing models was
presented. A comprehensive understanding of the system is essential in order to develop
a representative rider model. The following section introduces the concept of virtual
rider and reviews the most relevant literature in this field.

It should first be noted that the topic of rider modelling can be quite broad in
scope as it may involve multiple fields of research in addition to vehicle dynamics. This
thesis will focus on the lateral and longitudinal control behaviour of human riders, not
considering other behavioural activities of motorcycle riding such as rider distraction,
traffic-derived effects, side-tasking, rider impairments, etc.

While riding, a human rider applies certain actions to the motorcycle in order to
follow a desired trajectory. During this process, the rider must also prevent the vehicle
from falling by stabilising the capsize mode. In this respect, the rider behaves as a con-
trol system, continuously sensing the environment and generating precise control actions
that stabilize the system and allow it to follow a given reference. Lateral and longitu-
dinal control tasks such as path-following, obstacle avoidance, and headway control are
examples of typical activities carried out by human riders. Interestingly, Rashevsky [70]
observed in 1966 the following regarding the interaction between car and driver:

“The car and driver constitute a complex feedback system. The behaviour
of the car results in certain reactions by the driver. Inversely, the behaviour
of the driver affects the behaviour of the car. This man-machine system
cannot, in many instances, be separated into the purely mechanical and the
purely human components. The system must be treated as a whole.”

Rashevsky’s statement applies not only to cars, but also to motorcycles, where the
interaction man-machine is even stronger. This idea of treating the vehicle and driver
together as a combined system has been adopted by researchers since the early stages
of rider/driver modelling.
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A human rider can employ various forms of control to guide the motorcycle such
as feedback, i.e. reacting to perceived errors between the actual and desired motorcycle
response, and preview, where the rider’s experience and the environment information
are used to anticipate the behaviour of the vehicle. The ability of humans to look ahead
on the road and preview information compensates part of their intrinsic reaction time,
thus significantly reducing the control effort needed to guide the vehicle. Preview is
a fundamental feature of riders, and feedback control can work in parallel to it with
the aim of rejecting external disturbances. These two terms, feedback and preview, are
widely used in control theory. In the present thesis the human rider will be modelled as
a control system; henceforward the control algorithm that models the rider behaviour
will be referred to as rider model or virtual rider. On the other hand, the term rider
structural model, introduced in the previous section, will be used to describe the rider’s
topology (e.g. bodies, joints, etc) as far as mathematical modelling is concerned. Three
important characteristics of virtual riders are explained next.

The main distinctive feature of rider models is the control target, which is directly
related to the concepts discussed above. Authors generally distinguish two main control
targets: stabilizing control and path following control. Stabilizing control is normally
used to study the motorcycle in steady state conditions, e.g. to asses the effort required
to keep the vehicle from capsizing in straight running or during steady state corner-
ing. In contrast, path following control is used when the target is to follow a given
trajectory with a predefined speed profile. Feedback control theory, also called compen-
satory control, and preview control are commonly used in literature to achieve these
two targets.

A second important feature of rider modelling is the type of steering control used
to guide the vehicle, which can be classified into two categories: position control and
force control. In the first case the steering angle is directly imposed by the control
algorithm and therefore no steering dynamics are included in the motorcycle model. By
contrast, the second approach applies a steering torque to control the vehicle, and in
consequence steering dynamics cannot be excluded from the model. Car drivers perform
large rotational motions of the steering wheel during normal driving with minimal effort
thanks to assisted steering systems. In this context it has been widely accepted to
model drivers through angle control [71]. On the contrary, motorcycle riders turn the
handlebar only a few degrees and steering torques may reach high values, thus requiring
a significant effort. Furthermore, steering dynamics must be included in the model as
they are essential to properly simulate weave and wobble modes [11]. Consequently,
nowadays most authors use torque control in order to model the rider steering action.
However, several exceptions can be found in literature, e.g. in [72–76] the authors used
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angle control in order to simplify the complexity of the control problem.
The third characteristic aspect of rider modelling is the structural model of the rider.

The number of additional degrees of freedom used to model the rider’s body depends
on the scope of the model and its application. For stability analysis, handling and
control design, most authors consider the rider rigidly attached to the main frame [43]
or include the rider’s torso lean as an additional degree of freedom [51]. More elaborated
models including two [27] or more degrees of freedom [35] are often developed to carry
out detailed rider analyses such as, for instance, vibration and comfort assessment [77].

In the following sections the most relevant rider models in the existing literature
will be reviewed. They have been classified in two groups according to the underlying
theory used to design the control system: classical control methods and modern control
methods.

2.3.1 Rider models based on classical control theory

Classical control theory was developed between 1940 and 1950, and mainly relies on the
root locus technique and the various frequency response representations of linear time
invariant systems (LTI) in order to set the parameters of the controller transfer func-
tion. The tuning of these parameters is typically performed via an educated (heuristic)
trial-and-error approach, and therefore the creativity and experience of the designer
play an important role in the design process. Classical techniques are characterized
by the use of transfer functions in the complex frequency domain, the use of feedback,
emphasis on the use of graphical techniques, and the use of simplifying assumptions to
approximate the time response. Methods such as root locus, Bode and Nyquist plots,
and Routh-Hurwitz stability criteria are widely used in the classical design approach,
which is usually restricted to single-input-single-output systems (SISO). Multiple-input-
multiple-output systems (MIMO) can be analyzed and designed but only one loop can
be considered at a time.

Proportional-integral-derivative controllers (PID) and lead-lag compensators are
some examples of classical tools that have been applied to rider modelling. A PID
is a generic control loop feedback system widely used in industrial applications. His-
torically it is considered the best controller when no knowledge is available about the
underlying process [78]. The target of the PID controller is to minimize the error be-
tween the process output and a desired reference. It comprises three terms, the error
itself (P) and its integral (I) and derivative values (D), which are linearly combined to
produce the control action:

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

d

dt
e(t) (2.2)
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These terms can be heuristically interpreted as follows: the term P reacts to the present
error, I to the accumulation of past errors, and D reacts to a prediction of future
errors based on current rate of change. On the other hand, lead-lag compensators
improve/stabilize the response of a dynamic system by introducing pole-zero pairs into
the open loop transfer function, and are normally designed in the frequency domain. A
comprehensive description of PID controllers, lead-lag compensators and other classical
tools for control design can be found in [79].

Most of the early works on human operator modelling (e.g. drivers, riders, pilots,
etc) were focused on aircraft control [80,81]. One of the first attempts to model human
car drivers as a control system dates back to 1959, when Iguchi [82, 83] presented a
PID compensation model based on the block diagram of Fig. 2.5.In this figure the plant

Gc(s) Gp(s)+

−

bb b

yref e u y

Figure 2.5: General scheme of a SISO closed-loop system, where Gc is the transfer
function of the controller and Gp represents the transfer function of the plant.

Gp represents the vehicle while the controller Gc was introduced to model the driver’s
response. Iguchi used the angle of the steering wheel as the control action (u) with the
aim to reduce the error (e) between the reference signal (yref ) and the output of the
vehicle (y). Some of the controlled outputs were, for instance, the speed of the vehicle
and its lateral deviation with respect to the reference path. Tuning the coefficients kp,
ki, and kd proved to be very difficult, this being one of the reasons why this approach
has not been used extensively.

Shortly after Iguchi, in 1962, McRuer published a driver model [84] based on the
following lead-lag network,

Gc(s) =
Ke−tds (1 + Tls)

(1 + ths) (1 + Tis)
(2.3)

where K is a static gain, Tl is the lead time constant, Ti is the lag time constant, td is a
pure time delay and th is an additional time constant. Experiments showed that td and
th were vehicle independent and had typical values of 0.2s and 0.1s respectively. In fact,
these values characterized the driver’s response delay induced by muscle dynamics and
neural transport. On the other hand, K, Tl and Ti depended on the controlled vehicle
and on the driver’s experience. Later, in 1967, McRuer [80] proposed a method to
determine K, Tl and Ti based on the well-known crossover law, according to which the
driver adapts his response so that the open loop transfer function Gc(s)Gp(s), i.e. the
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Driver model
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Figure 2.6: Driver model proposed by Yoshimoto (1968).

combined system vehicle-driver, has the following form for disturbances in the vicinity
of the crossover frequency ωc4,

Gc(s)Gp(s) =
ωce

−tds

s
(2.4)

which emphasizes the driver adaptation to changing plant dynamics. This capability of
human drivers was also recognized in many early laboratory experiments [85,86].

However, an important observation was surprisingly ignored in the first driver mod-
els. Today it is a well known fact that human drivers look ahead along the road while
driving. This allows them not only to anticipate the control response for upcoming
manoeuvres, but also to conduct planning activities in reaction to developing scenarios.
One of the first authors to include future path information in the control scheme was
Kondo in 1968 [87], who focused on measuring the driver’s look-ahead point5 and devel-
oped a driver model based on the error between this point and the planned trajectory.

Yoshimoto [88], also in 1968, presented the driver model shown in Fig. 2.6. Where
P (s) characterizes the preview delay, H(s) represents the main control function, G(s) is
the vehicle model, and B(s) is a prediction function used to estimate the response of the
vehicle. The parameter Tp is the time required to reach the look-ahead point, while K
and td represent the driver’s gain and delay respectively. The main novelty of this model
was the use of the second order prediction function B(s), which allowed to estimate the
position of the vehicle at the look-ahead point by simply integrating the velocity and
acceleration terms. In addition to this, an integrator was added to H(s) in order to
model the correction ability of drivers. All the single-loop controllers introduced so far,
including Yoshimoto’s, were focused on path following control of automobiles. Single
track vehicles (i.e. bicycles and motorcycles) require, in addition to the path following
loop, an inner loop to stabilize roll dynamics.

4The crossover frequency is defined as the frequency at which the open loop gain is unity.
5Term used to define the point along the road where the driver/rider is looking at.
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Figure 2.7: Multi-loop rider model proposed by Weir and Zellner. The control
scheme is composed of three loops: an inner loop for roll angle stabilization (ϕ), an
intermediate loop for heading control (ψ), and an outer loop for the lateral position
control (y).

Weir and Zellner were probably the first authors to study in detail the interaction
between rider and motorcycle. They carried out an exhaustive theoretical investigation
on the rider control process, published in a series of papers between 1972 and 1979
[23,26,89–91]. One of their main conclusions was that the primary objective of human
riders is to stabilize the roll angle, showing that this behaviour could be easily simulated
by using the transfer function between roll angle and steer torque Y τ

ϕ . Their finding
emphasized the importance of this transfer function, which plays a key role in motorcycle
control, and is usually characterized by a high cross over frequency (1 rad/s) and large
gain and phase margins. Other transfer functions that Weir and Zellner found relevant
were those between roll angle and rider’s lean angle, and between yaw rate and rider’s
lean angle.

To achieve both good stabilization and tracking performance they proposed the
multi-loop rider model shown in Fig. 2.7, composed of three loops: an inner loop for roll
angle stabilization (ϕ) around the upright condition, an intermediate loop for heading
control (ψ), and an outer loop for lateral position control (y). The inner loop includes
the transfer function Y τ

ϕ , which generates the steering torque τ from the roll angle ϕ.
It is worth noting that this loop is decoupled from the other two as it has no reference
signal. This clearly shows that the target of this control scheme was to stabilize the
vehicle assuming small perturbations with respect to the straight running condition, i.e.
ϕ = 0. On the other hand, the intermediate and outer loops work together in order
to control the rider’s lean ϕr as follows: first the transfer function Y ψ

y transforms the
lateral position error ye into the required yaw angle ψc, from which the actual yaw angle
ψ is subtracted to obtain the yaw angle error ψe; subsequently the transfer function Y ϕr

ψ

transforms ψe into the rider’s lean ϕr that is required to follow the target path.
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Figure 2.8: Multi-loop rider model proposed by Prem and Good (1983). Note that
the steering torque τ is coupled to the rider’s lean angle ϕr through the transfer
function Y τϕr

. Prem and Good found that this kind of coupling was typical of novice
riders.

Weir and Zellner’s algorithm was coupled to a vehicle model with four degrees of
freedom, namely the lateral velocity, the roll angle, the yaw rate and the steering angle.
The full model was then used to assess the control actions exerted by the rider in
different conditions of forward speed, front wheel trail and tyre response. Additionally,
Weir and Zellner investigated how to adjust the design parameters of a given motorcycle
to achieve the desired handling properties and system performance.

Another significant example of multi-loop control was published by Prem and Good
[92] in 1983. These authors suggested, based on experimental evidence, that skilled
motorcycle riders are able to independently control the upper body lean and the steer
torque, which is consistent with the above model proposed by Weir and Zellener. How-
ever, they found that there was a strong coupling between lean and steering inputs when
it comes down to less skilled riders. Following Weir and Zellner’s line of work, Prem
and Good proposed the block diagram of Fig. 2.8 to model novice riders.

The main control method proposed by Prem and Good was the upper body lean
ϕr, while the steer torque was considered a consequence of the rider’s motion, i.e. when
the rider leans laterally, his arms apply a steering torque to the handlebar which is not
generated deliberately but as a reaction in order to keep the rider’s body in the desired
position. This coupling between steer torque and rider’s lean is shown in Fig. 2.8, where
the steering torque τ is generated from the rider’s lean angle ϕr through the transfer
function Y τ

ϕr
.

Prem and Good showed that a comparable tracking performance could be achieved
with their novice and expert rider models. However, differences were found in the am-
plitude of the control actions and in the stability margins. They observed that unskilled
riders may have lower stability margins but require physically less extreme upper body
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motions to control de motorcycle. Similar results were observed in experimental tests
conducted with multiple riders of varying experience performing an avoidance manoeu-
vre.

A more elaborated structural model of the rider was used by Nishimi [27] in 1985
to study the influence of the rider’s movements on the straight running stability of
motorcycles. His model comprised two passive degrees of freedom: the leaning of the
torso and the lateral movement of the lower body with respect to the chassis. Nishimi’s
numerical results correlated well with full scale experiments, showing that upper body
parameters influence mainly the weave mode while those regarding the lower body
influence primarily the wobble mode. Some years later, in 1988, Katayama [28] extended
Nishimi’s work with the aim to investigate what control inputs had a bigger effect on
the response of the motorcycle. To that end, he modelled the rider as a double inverted
pendulum and included three control actions to stabilize the vehicle: the steering torque
applied to the handlebars, and two torques applied to the lower and upper parts of the
rider’s body. The rider model designed by Katayama was a straightforward linear
controller; all three control torques were written as linear functions of the roll angle and
the heading error of the vehicle with respect to the reference path.

The rider model described above was coupled with a four degree-of-freedom mo-
torcycle model, which included the lateral velocity, and the yaw, roll and steer angles.
Katayama performed numerous lane change simulations with his model and compared
the results with the responses of twelve real riders, concluding that the major source of
control is the steer torque whereas rider’s movements are of secondary importance. The
relative importance of the rider’s actions was quantified as follows: the lower body effect
was found to be 1/12 of the steer torque, with the upper body contribution being 1/80.
According to Katayama’s results, the lower part of the body helps in generating the
steering torque (i.e. as the reaction body), while the upper part is usually positioned
to keep the rider in a comfortable position.

Classical control theory did not receive much attention in the years following the
work of Katayama. During the nineties, alternative and newly-developed control theo-
ries captured the attention of most researchers. As a matter of fact, we have to move
forward to the year 2000 in order to find again relevant works based on the classical
approach. One of them was presented by Berrita in [93]. During his research, Berrita
used two parallel PD controllers to model the steering torque generated by the rider τ .
He proposed the following control law,

τ = kϕ ϕ+ cϕ
∂ϕ

∂t
+ kn n

∗ + cn
∂n∗

∂t
(2.5)

where the first two terms were designed to stabilize the roll angle ϕ and the last two
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were introduced to reduce the error with respect to the reference path n. Unlike most
of previous works, which used the actual position of the motorcycle to compute the
trajectory error, the path-following control proposed by Berrita was based on a future
estimation of n, indicated by the asterisk in Eq. 2.5. This technique allowed not only
to anticipate the response of the vehicle, but also to reduce the control effort needed to
follow the target path. Berrita coupled his virtual rider with the commercial multibody
code MSC Working Model, showing that a single look-ahead point was sufficient to
successfully simulate simple manoeuvres such as constant radius turns and slaloms.

Berrita’s controller was extended by his colleagues Lot and Cossalter in 2006 [94].
They introduced three new ideas: a new architecture of the virtual rider (Fig. 2.9a), an
algorithm for vehicle tracking and look-ahead (Fig. 2.9b), and a procedure to optimize
the control gains. The vehicle tracking algorithm was based on the curvilinear coordi-
nates approach, i.e. the distance travelled along the road sv, the lateral deviation from
the road center nv, and the angle of the vehicle with respect to the track centerline χv
were included as additional model states in order to track the position of the vehicle
(v). This technique was also applied to track the position of the look-ahead point (f),
defined by the look-ahead distance Lahead in Fig. 2.9b.

Lot and Cossalter wrote the rider’s control law as a function of the curvilinear
coordinates defined above. The resulting controller, represented by Eq.2.6, comprised
two PDs and several damping terms. The first two rows of the equation constitute
the PDs, which stabilize the capsize mode, preventing the motorcycle from falling over,
and reduce the error with respect to the target trajectory. Note that the target values,
denoted by the subscript t, are evaluated at the look-ahead point. In addition to the
PDs, the damping terms of the third row complete the rider model. These terms are
proportional to the yaw and steering rates respectively and were introduced to stabilize
the weave and wobble modes. Moreover, a low-pass filter was added in order to limit
the rider’s bandwidth, thus replicating human neuromuscular limitations during fast
manoeuvres.

τ = kϕ
[
ϕt(sf )− ϕv

]
− cϕ

∂ϕv
∂t

+ kn
[
nt(sf )− nv

]
− cn

∂nv
∂t

+ cψ
[∂ψv
∂t
− uvΘv

]
+ cδ

∂δv
∂t

(2.6)

Lot and Cossalter developed an optimization procedure based on Laplace’s transform
to find the controller gains (kϕ, kn, cϕ, cn, cψ, cδ) for different conditions of speed and
roll angle. Their method was based on the minimization of a cost function, namely the
trajectory error with respect to the target path, subject to three inequality constraints.
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Figure 2.9: Rider model proposed by Lot and Cossalter (2006). (a) Structure of the
closed-loop simulation model. It comprises three main blocks: the steering controller
PD(s), a low pass filter LP(s) to limit the bandwidth of the virtual rider, and the non-
linear motorcycle model. (b) Tracking algorithm based on the curvilinear coordinates
approach. The current position and orientation of the vehicle (v) and the look-ahead
point (f) are expressed in track coordinates by six additional states (sv, nv, χv) and
(sf , nf , χf ).

These constraints were added to keep the vehicle within the track boundaries and to
limit the maximum values of the roll angle and the steering torque.

The rider model described above was coupled to a complex non-linear multibody
model of the motorcycle [43] and used to simulate typical handling tests, e.g. lane
change, slalom and cornering manoeuvres. A good correlation against experimental
data was achieved for constant speed manoeuvres. As part of the conclusions, Lot and
Cossalter highlighted the main difficulties in extending this method to more general
manoeuvres: the linearization of the model for control optimization and the necessity
to update the control gains during the simulation to account for changes in vehicle speed
and roll angle.

Lot and Massaro presented an improved version of their rider model in 2007 [95],
where an integral term was added to remove the steady-state error of the roll angle. One
year later they proposed a new methodology with speed dependent gains and two nested
control loops [96], shown in Fig. 2.10. The inner loop included a PI controller, H2(s),
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Figure 2.10: Rider model proposed by Lot and Massaro (2007). Their control scheme
included two control loops: an inner loop designed to stabilize the roll angle ϕ, and
an outer loop to make the motorcycle follow the target path nom. The references nom,
ϕom and τom were computed offline by the Optimal Maneuver method.

designed to stabilize the roll angle, whereas the outer featured a PD, H1(s), designed
to make the motorcycle follow the desired path. Between these two loops, a saturation
block was included to prevent the motorcycle from leaning above a given threshold. A
third loop, not shown in the figure, was used for speed control. Unlike their previous
rider models [94,95], this version did not include any preview information.

The nominal solution of the problem was computed with the Optimal Maneuver
method [97]. Given the track boundaries, the vehicle model and the rider physiological
limits, this approach allows finding the optimal trajectory and control inputs that mini-
mize the time needed to complete a certain manoeuvre. However, this nonlinear control
method can only be used with simple models due computational limitations, which pre-
cludes its practical application to detailed multibody models such as that used by Lot
and Massaro.

In order to overcome such limitation, they proposed to split the problem into two
subtasks: trajectory planning and vehicle control. They solved the first by applying
the Optimal Maneuver to a simple motorcycle model, and then the second by using the
rider model described above in combination with a detailed motorcycle model. Note in
Fig. 2.10 that the results of the Optimal Manoeuvre provide a feedforward action to
the control blocks. The feedforward action includes the desired path nom, expressed in
curvilinear coordinates, the roll angle ϕom and the steering torque τom.

Lot and Massaro computed the gains of the roll controller by applying the Nyquist
theorem to the open loop transfer function between the steering torque and the roll
angle. This process was repeated for different conditions, covering the typical speed,
roll and acceleration ranges of the motorcycle. As a matter of fact, these two authors
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were probably the first to successfully simulate the motorcycle-rider system at both high
roll angles and variable speed.

They presented promising results corresponding to the simulation of three corners
of the Mugello track. Nonetheless, significant trajectory errors can be observed in their
results. The error between the desired and the actual trajectories of the motorcycle
ranges between two and three meters, meaning that there is still possibility for further
improvements in the development of virtual riders. Moreover, no information is provided
on how close the motorcycle is to its performance limits during the manoeuvre, e.g.
acceleration, tyre loads, etc.

In any case, we can state that Lot and Massaro’s algorithm is the most advanced
rider model based on classical control theory that has been presented to this day.

2.3.2 Rider models based on modern control theory

In contrast to the classical approach, modern control theory employs a more formal
methodology for the design of control systems. Modern controllers are based on the
state-space representation of dynamic systems [79], and are modelled in time-domain
as a set of inputs u, outputs y and states x (internal variables) related by first-order
differential equations,  ẋ(t) = f

(
t,x(t),u(t)

)
y(t) = g

(
t,x(t),u(t)

) (2.7)

where f is called the state equation and g is the output equation. The application of
matrix methods provides a convenient and compact way to represent dynamic systems,
and makes possible the treatment of multiple-input-multiple-output (MIMO) problems.
Inputs, outputs and states are expressed as vectors and, when the system is linear,
the differential equations can also be written in matrix form. A general state-space
representation of a linear system with nu inputs, ny outputs and nx state variables can
be written as follows:

 ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
where

A =
∂f

∂x

∣∣∣∣
x̂

B =
∂f

∂u

∣∣∣∣
x̂

C =
∂g

∂x

∣∣∣∣
x̂

D =
∂g

∂u

∣∣∣∣
x̂

(2.8)

where x̂ represents the nominal trajectory around which the system is linearized. When
matrices A(t), B(t), C(t) and D(t) depend on time, Eq. 2.8 is known as a Linear Time-
Varying (LTV) system. On the other hand, if those matrices are constant, the above
equation is referred to as a Linear Time-Invariant (LTI) system.



42 2.3 Rider modelling

The trial-and-error aspect of the classical design method is significantly reduced
in modern control theory as the design target can be quantified by means of a cost
function or performance index: the main objective of the controller is to determine the
control signals that will cause the system to move from one state to another and, at the
same time, extremize (maximize or minimize) a given performance criterion. Several
examples of cost functions are described below:

a) Cost function for time-optimal problems. The index below can be used to mini-
mize the time required to transfer the system from an arbitrary initial state x(t0)
to a specified final state x(tf ). This type of formulation is widely used in the
motorsports industry for laptime simulations. For further information, see [97,98].

J =

∫ tf

t0

dt = tf − t0 (2.9)

b) Cost function for minimum-energy problems. If u(t)2 is proportional to the power
required to drive the system, then Eq. 2.10 represents a measure of the energy
required to perform a certain manoeuvre, where R is a positive definite matrix
that allows the user to specify different weights for each control input. This index
can be also used to reduce the rider/driver effort as it penalizes large control
actions.

J =

∫ tf

t0

m∑
i=1

u2i (t)ridt =

∫ tf

t0

uT (t)Ru(t)dt (2.10)

c) Cost function for regulation problems. If a system is required to work in the
neighbourhood of a given setpoint, then the index below can be used to minimize
the deviation of the states with respect to the equilibrium point x0, where x(t) is
defined as the difference between the current states and x0. This index is widely
used in the design of driver models for steady state cornering.

J =

∫ tf

t0

m∑
i=1

x2i (t)qidt =

∫ tf

t0

xT (t)Qx(t)dt (2.11)

d) Combined cost function. By merging the last two formulations, and using the
system outputs y(t) instead of the states x(t), we have a performance index suited
for modelling human operators. This cost function tends to reduce the error with
respect to the desired trajectory yd(t) while keeping control actions low.

J =

∫ tf

t0

[(
y(t)− yd(t)

)T
Q
(
y(t)− yd(t)

)
+ uT (t)Ru(t)

]
dt (2.12)
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Examples of this type of cost function applied to rider and driver modelling can
be found in [99–101].

A great number of techniques are available in literature to solve the control problem
formed by Eqs. 2.7, 2.8 and the above cost functions. For linear plants the control
inputs u(t) can be computed as a linear combination of the states x(t) as follows,

u(t) = −K(t)x(t) (2.13)

where K(t) is known as the feedback matrix. One of the most extended methods to
design this matrix is the Linear Quadratic Regulator (LQR) approach [102], which can
be applied when the system is described by a set of linear differential equations and the
cost index is a quadratic function of the states and the inputs, e.g. 2.12. In the nonlinear
case, however, more advanced approaches are required. Techniques such as nonlinear
optimal control [103] and manoeuvre regulation [76] have been successfully applied to
the control of vehicles. For a detailed description of modern control techniques, the
reader is referred to [76,79,102,103].

The Eqs. 2.7 and 2.8 constitute the so called internal model of the controller in its
non-linear and linear versions respectively. This concept is widely used in literature
to denote the rider’s mental model of the vehicle, i.e. a representation of the inverse
dynamics of the vehicle that the human mind develops and tunes to anticipate its
behaviour. The term simulation model, on the other hand, will be used throughout
this dissertation to denote the model to which the rider model will be coupled. It is
important to note the differences between these two models: the internal model behaves
as the ‘brain’ of the rider, while the simulation model represents the real vehicle within
a computer program. Although it is not strictly necessary for the simulation and the
internal models to be the same, significant differences between them would lead to a
poor performance of the rider model. To illustrate this, imagine a scooter rider trying
for the first time a powerful machine; his mental model of the motorcycle would be far
from the actual vehicle, which in turn would result in inadequate control actions.

Next, the most relevant controllers based on modern control theory are reviewed.
Kleinman, Baron and Levison were among the first to apply optimal control techniques
to simulate human control tasks. In 1970 they presented a quantitative model of the
human operator [104, 105] based on the assumption that humans always behave opti-
mally in some sense when carrying out control tasks, e.g. to achieve a given target in
minimum time, with a minimum effort, etc. In order to render the model more realis-
tic, human psychophysical limitations were also accounted for. Kleinman, Baron and
Levison used their model, along with a linear feedback controller, to validate experimen-
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tally measured data for three simple tracking tasks, and to study a complex hovering
manoeuvre of a VTOL (Vertical Take-Off and Landing) aircraft.

In the following years several authors developed car driver models based on modern
control theory. In 1980 MacAdam [106, 107] presented a linear time-invariant (LTI)
steering controller based on preview control theory. This novel approach was based on
the minimization of a cost function involving the future lateral error of the vehicle with
respect to a target trajectory. To simplify the problem, MacAdam obtained the gains of
the controller on the basis that the driver keeps the steer angle constant over the preview
distance. His driver model proved especially useful in the study of straight-line driving
tasks and transient lane-change manoeuvres. MacAdam’s findings were successfully
validated against experimental measurements. Later on, in 2002, Peng [108] would
extend Macadam’s work to include yaw displacement errors in the cost function and
non-constant steer angle preview.

It was not until the end of the nineties that the first rider models based on modern
control theory appeared. One of the first examples was presented in 1998 by Cos-
salter [98], who developed an innovative technique to assess motorcycle handling and
manoeuvrability denominated the Optimal Manoeuvre method. Unlike previous works,
his purpose was not to reproduce measured experimental data but to create a control
algorithm able to guide the motorcycle in the most efficient manner. The aim was to
measure the best motorcycle performance regardless of the rider’s ability. Cossalter
included handling and manoeuvrability indexes in the cost function, where handling
was defined as the “easy to drive” (control effort) and manoeuvrability as the ability to
perform complex manoeuvres fast (minimum time). The former involves the judgement
of the rider, as he may find one vehicle easier to drive than another, while the latter is
regarded as an intrinsic property of the motorcycle, independent of the rider’s skills.

The Optimal Manoeuvre was posed as a nonlinear optimal control problem and then
solved by an indirect method [103], i.e. by transforming it into a two-point boundary
value problem (TPBV) derived from the necessary condition of optimality. It is worth
noting that the motorcycle used by Cossalter was rather simple as it was focused on
the gross motion of the vehicle. It comprised only one body and did not consider
realistic control inputs. As a matter of fact, the front lateral force was directly used
as the steering input in order to reduce the complexity of the problem. Later works
from Cossalter’s group at the University of Padua improved the method by using more
complex models and more advanced solution procedures [109,110].

The above approach was applied in [98] to simulate three different manoeuvres that
are commonly used to evaluate motorcycle manoeuvrability: slalom, lane change and
U-turn. Four different setups were compared to assess the effect of a number of mod-
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Figure 2.11: Sharp Preview Model (2001). At the current simulation instant (k),
the road preview data observed by the driver comprises h+1 equally spaced references
yri at and ahead of the car. E.g. h = 6 in the above figure. The distance between
points is uT , where u is the car speed, considered constant by Sharp. At the next
instant, (k + 1), the car moves forward and the first sample yr0 disappears from the
preview. The index of all the other samples i becomes i−1, and a new value, previously
outside the preview, is added at position h. This road preview updating process is
continuously repeated throughout the simulation.

ifications regarding wheelbase, centre of mass position, rotating inertias (gyroscopic
effect) and tyre grip. The increase of the wheelbase showed significant favourable ef-
fects, whereas moving the centre of mass forward was found to be detrimental to bike
performance. The results of the U-turn manoeuvre showed that the tyre grip has a big
impact on motorcycle trajectory. On the other hand, the increase of the gyroscopic
effect did not show significant results. In [97] Cossalter validated his numerical results
against experimental data with good results. For that purpose data from a racing mo-
torcycle logged at the Mugello track was used. Professional riders are able to take the
motorcycle close to its limits, producing thus results that are in line with the Optimal
Manoeuvre method. This method was later modified in [111] to simulate average riders
with the aim to integrate it in the design process of advanced driving assistance systems
(ADAS).

In 2001 Sharp applied a methodology originally elaborated for active suspension
control to develop the first path-following driver model with multiple preview points
[112,113]. One of the most interesting features of this work was the approach adopted to
model the driver’s preview, which is briefly explained in Fig. 2.11. Sharp approached the
design of the virtual driver as an optimal linear discrete time preview control problem,
and showed that the linear quadratic regulator theory (LQR) could be applied to solve
it6. The result was a LTI controller that minimized a cost function involving future path
and yaw errors along with the control action, i.e. the steer angle, which was assumed
to vary over an infinite horizon. Sharp found that the gains of the feedback controller

6Standard Matlab tools were used to solve the problem, namely DLQR.
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Figure 2.12: Motorcycle model proposed by Getz (1995). This is probably the most
simple representation of a single track vehicle that takes into account the countersteer-
ing effect. It comprises one body with two degrees of freedom: the displacement of
the vehicle in its longitudinal direction and the roll angle. The tyres were modelled as
nonholonomic constraints. Image from [72].

depended significantly on the weights of the cost function. Based on his results, he came
to the conclusion that preview gains reflect the dynamics of the vehicle under analysis.
This finding was further exploited in [114] to propose a new handling index.

Frezza and Beghi applied model predictive control techniques to model the rider’s
steering action in a series of papers published between 2003 and 2006 [73–75]. Their
control algorithm was based on a simple motorcycle model with two degrees of freedom,
namely longitudinal displacement and roll angle, similar to that presented by Getz
in [72] (Fig. 2.12). The most distinctive feature of their work was the inversion of the
cause-effect relationship. Frezza and Beghi used the motorcycle roll angle as the control
action instead of the steering angle, thus avoiding to directly deal with the non-minimum
phase behavior of the motorcycle (countersteering). Their controller computed, for
each time step, the roll angle trajectory necessary to bring the motorcycle back to the
target path in T seconds, with T being the preview time. Once the roll trajectory
was known, the steering angle was obtained by a simple geometric calculation based on
Getz’s model. This rider model showed very good performance results when applied
to the same motorcycle model used to derive the controller. However, a significant
loss of performance was observed for more complex motorcycle models, especially those
including pitch dynamics and sliding tyres, as these features were neglected by the
internal model. In fact, Frezza and Beghi’s virtual rider is not considered suitable for
controlling multibody motorcycle models of similar complexity to [43] or [51].

Based on an earlier publication from Antos and Ambrosio on car driver modelling
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[115], in 2005 Huyge investigated the use of a bilinear motorcycle model to design a new
virtual rider [116]. The target of Huyge’s control algorithm was to follow a given roll
trajectory, and not a reference path as had been previously done by other authors. The
linear quadratic regulator theory (LQR) was used to obtain the feedback gains but, as
opposed to Sharp [112], Huyge did not include any preview information. His motorcycle
model included two control inputs, the steering torque and the throttle, while the rider
lean was included only as a passive degree of freedom. Two manoeuvres were successfully
simulated, a constant radius turn with a roll angle of 29◦ and a S-shaped manoeuvre
where the roll angle was smoothly swept from −29◦ to 29◦. Huyge’s results were not
fully conclusive due to the limited number of cases studied. Furthermore, it is unlikely
that the performance of this approach could be competitive against models with road
preview.

In 2006 Sharp extended his previous work [112] and developed an optimal preview
steering controller for motorcycles [99, 100] with multiple preview points. The road
preview model described in Fig. 2.11 was combined with a linear version of Sharp’s
motorcycle model, giving rise to the following discrete LTI system:{

xv(k + 1)

yr(k + 1)

}
=

[
Av 0

0 Ar

]{
xv(k)

yr(k)

}
+

[
Bv

0

]
T (k) +

[
0

Br

]
yri(k) (2.14)

where xv(k) is the state vector of the vehicle, Av and Bv are the corresponding state
space matrices, and T (k) contains the motorcycle inputs (e.g. steering torque, thrust,
brakes, etc). Sharp modelled the dynamics of the driver’s preview as a shift register,
represented in Eq. 2.14 by the road state vector yr(k) and by matrices Ar and Br, which
have the following structure:

Ar =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . . 1

0 0 0 0 · · · 0


Br =



0

0

0
...
1


Each element of yr(k) stores a past observation of the road ahead of the vehicle and
hence the register includes as many states as preview points. At every time step (k),
the register captures the farthest point of the preview through the input yri(k). Subse-
quently, as the system moves forwards in time, a new input is considered yri(k+1), and
the previous input yri(k) is shifted through the states, one per time step. This process
is continuously done to populate the road states with the preview information. Once
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the vehicle has already passed a certain point on the road, its preview information is
shifted out (discarded) from the shift register.

As in [112], the controller gains were calculated by solving a LQR problem. The cost
function to be minimized included a weighted sum of trajectory errors and the rider con-
trol actions, i.e. the torque applied to the handlebars and the torque applied to balance
the leaning of the rider’s torso with respect to the frame. Sharp used this methodology
to simulate two manoeuvres at constant speed, a lane change and an S-shape trajectory,
both with good results. His results reinforced what Katayama anticipated in [28] re-
garding motorcycle control: the main control action applied by the rider is the steering
torque, whereas the movement of the torso is an order of magnitude less important.

Sharp made very interesting observations about the preview gain vector. He noticed
that, for optimal path tracking at high speeds, i.e. when wobble and weave become
lightly damped, his rider model required an oscillatory preview gain vector which ex-
hibited the same frequency content as the less damped modes of the vehicle. He also
observed that the components of the preview gain vector tended to zero as the pre-
view length was increased, meaning that seeing further than a certain distance does
not improve the rider’s performance. Another interesting conclusion, which agrees with
riding experience, is that the ideal preview length increases with the speed. In 2007,
Sharp [117] applied the same methodology to control motorcycle speed, however only
straight line results were presented. In 2009 Sharp published two new papers on the
application of the linear preview theory to car driver modelling [118,119].

Another interesting contribution was made by Saccon during his PhD thesis [76]
(2006). Following Hauser’s research on nonlinear manoeuvre regulation7, he developed
an innovative virtual rider based on an extension of Getz’s model [72]. Saccon improved
Getz’s model by including a linear tyre model and by increasing the number of degrees
of freedom from two to four, these being the planar coordinates (x, y) of the rear contact
point and the roll and yaw angles. He made several simplifications to derive the dynamic
equations of the motorcycle: the kinematic structure did not include the castor angle
of the steering system; tyres were modelled as having no thickness, thereby simplifying
the calculation of the front contact point; and neither the suspensions nor the chain
were considered. Unlike other authors [99, 100, 116] who used the steering torque as
the main control input, Saccon decided to control the vehicle through the steering
angle (position control) following the trend of his research group at the University

7Maneuver regulation is a technique for the control of nonlinear systems when the target output
trajectory is known in advance. It relies on a state feedback to make the system output follow the desired
reference while satisfying a given speed profile. It is based on an appropriate change of coordinates
that allows to rewrite the system equations, replacing the time with the longitudinal abscissa along the
desired trajectory. See [120–123] for more details.
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of Padua [73–75, 124]. Despite the simplifications described above, the rider model
presented by Saccon succeeded in controlling a more complex model developed in the
commercial code ADAMS. Two manoeuvres were simulated at variable speed, a chicane
and a slalom, with good results. However, it is noteworthy that the simplifications
introduced by the internal model, along with the position control approach, greatly
limit the application of this methodology. As a matter of fact, position control locks
the steering dynamics and therefore it does not allow to properly simulate some of the
characteristic vibration modes of the motorcycle such as wobble or weave.

Cole presented in [101] one of the first applications of Model Predictive Control
(MPC) theory to driver modelling. His work was based on a simple linear car model
with two degrees of freedom, namely the lateral velocity of vehicle measured on the
moving frame and the yaw velocity with respect to the ground. Cole used the control
theory developed by Maciejowski in [125] to derive a novel virtual driver able to guide
his vehicle model along a desired target trajectory at constant speed. Several methods
to transform the controller gains from global to vehicle-fixed axes were comprehensively
discussed following [112], where it was stated by Sharp that the driver views the road
relative to the longitudinal axis of the vehicle instead of relative to the ground-fixed
axes. Despite the simplicity of the model and the limitation imposed by the constant
speed assumption, the results obtained by using MPC were very promising and showed
a great potential for developing more advanced vehicle controllers.

2.4 Concluding remarks

A thorough review of current literature on motorcycle dynamics and rider modelling has
been presented in this chapter. The analysis reveals that current motorcycle models have
reached a high level of applicability, which has not been matched by the existing virtual
riders. Although significant progress has been made in the last decade in the field of
rider modelling, based on both classical and modern control theories, a fully satisfactory
solution to the problem has not yet been found.

Existing algorithms work well only under certain conditions such as moderate lon-
gitudinal acceleration, low roll angles, etc. Most of them also require a great deal of
interaction from the user to adjust the controller parameters for each condition. In
addition, many of these rider models are based on highly simplified models that do not
take into account the main modes of vibration of the motorcycle (capsize, wobble and
weave), which compromises their accuracy.

In 2009 the author of this dissertation published a motorcycle model specifically fo-
cused on control system design [126] with the purpose of using it as the internal model
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of his virtual rider. On the other hand, models published previously, such as Cossalter’s
and Sharp’s, were mainly created for simulation purposes and presented some limita-
tions as far as the design of the virtual rider is concerned. The author’s mathematical
multibody model was born with the aim of solving these limitations. It was developed
symbolically in Maple8 using relative coordinates, thus obtaining a set of ordinary dif-
ferential equations (ODE) suited for control system design. Cossalter’s model, on the
contrary, had been formulated as a system of differential algebraic equations (DAE) due
to the great number of constraints introduced by the natural coordinates approach [47].
Although Cossalter’s model showed very good computational performance, the presence
of algebraic equations made it less suitable for control purposes.

Sharp, on the other hand, developed his model in the commercial multibody code
AUTOSIM [34]. Commercial multibody tools simplify the modelling task considerably
as the user does not have to focus on writing the equations of motion; complex mech-
anisms can be defined by specifying the spatial layout of the components and their
interconnections. These codes, however, do not allow direct access/manipulation of
the underlying equations, which greatly limits the development of more advanced tools.
Furthermore, the user is generally constrained to use a limited set of numerical tools
integrated in the multibody package, usually static equilibrium solvers and integrators.
The development of the rider model proposed in this thesis requires special tools not
available in any commercial code. An example of the realization of such tools was pre-
sented by the author in [127], where the motorcycle equations of [126] were rearranged
to solve the quasi-steady-state equilibrium problem by means of a nonlinear equation
solver. The solution of the quasi-steady-state problem in straight line and in cornering
conditions is an essential step in the development of the virtual rider as will be show
throughout this dissertation.

Sharp, in contrast, used a time-integration procedure to find the equilibrium states
[99, 100]. Basically, his method consisted in running a controlled dynamic simulation
until the vehicle reached the desired trim condition. This approach presents several
disadvantages compared to using a nonlinear solver. In the first place, the motorcycle
is unstable and consequently a steering controller is needed to stabilize the vehicle as
described by Sharp in [51]. This procedure is obviously not ideal when the final target is
to design the controller itself, i.e. it means that one needs to first design a simple virtual
rider to find the equilibrium conditions which will be then used to obtain the gains of
the final rider model. Additionally, this process is slow, requires many simulations, and
does not guarantee that all desired conditions (e.g. position along the track, curvature,
velocity and acceleration) are met at the same time, especially in presence of longitudinal

8Maple is a commercial software for the symbolic manipulation of equations.
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acceleration. As a matter of fact, Sharp did not include any longitudinal acceleration
in his equilibrium solutions.

As far as the control theory is concerned, it is expected that the application of
Model Predictive Control (MPC) to the field of rider modelling can improve the re-
sults presented to date. In fact, the author of this dissertation introduced in [128] the
first successful application of MPC to control both the speed and the trajectory of a
motorcycle. In this work, the methodology suggested by Cole to steer a two degree-
of-freedom car model [101, 125] was extended to control a twenty-two-state multibody
model of a sports motorcycle [126]. Several manoeuvres were successfully simulated at
constant and varying speeds by controlling the steering torque and the braking/throttle
commands. Later, in [129, 130] some of the tools developed during the course of this
PhD project were integrated into the commercial code LMS Virtual.Lab Motion.

An improved version of the motorcycle model developed by the author of this thesis
in [126] is comprehensively described in Chapter 3, while the tools introduced in [127]
for the quasi-static analysis of motorcycles are described and extended in Chapters 4
and 5. Finally, in Chapter 6 a novel virtual rider based on MPC is presented, which
concludes the research first published in 2010 [128].





Even now, after we’ve been building
them for 100 years, it’s very difficult
to understand just why a bicycle
works - it’s even difficult to formulate
it as a mathematical problem.

Freeman Dyson in Wired News
(February 1998)

Chapter 3

A symbolic motorcycle model for
virtual rider design and simulation

The present chapter introduces a motorcycle model based on the symbolic multibody
approach. The chapter can be divided in four sections. In the first part, a brief review
of the most relevant multibody formulations available in literature is provided. The
differences between symbolic and numeric codes are then discussed. In the second part
of the chapter, the motorcycle model is presented together with a detailed description of
its implementation. The tyre model and the underlying assumptions of its formulation
are also discussed. In the third part, a model developed in LMS Virtual.Lab Motion is
introduced and then used as a validation tool. Finally, some considerations regarding
the development of the model and its application to the development of the virtual rider
are presented and discussed.

3.1 Introduction

One of the most relevant innovations that has taken place in the field of automotive
engineering during the last decades is the integration of computer simulation techniques
into the vehicle design process. These techniques, which are usually grouped under the
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name of virtual product design, are nowadays present in all stages of vehicle development,
from the design of all its parts up to the dynamic simulation of the full vehicle including
complex control systems like ABS, ESP, ADAS, etc.

The development of a new vehicle is usually an iterative process. Before reaching
the market, a vehicle must pass numerous tests that assess their safety, performance
and durability. If the test results are not satisfactory a new iteration is performed, i.e.
the design is modified and the tests are repeated. This iterative process represents a
considerable investment for the manufacturer and, what is more important, increases
significantly the time-to-market of the product. In this context, the use of virtual mod-
els allows to reduce costs, decreases the development time and limits the number of
functional prototypes needed to validate a new design. Furthermore, computer simu-
lations permit conducting experiments in conditions that would not be feasible in the
real world.

Over the years, numerical simulation has become a key part of the design and devel-
opment of new vehicles, to the point that today it is possible to accurately predict the
mechanical behaviour of new components in a completely virtual environment. However,
not all simulation techniques have spread equally in the automotive and motorcycle in-
dustries. Unlike computer design software (CAD) and structural analysis (FEA), which
are nowadays considered standard tools in both industries, multibody simulation tools
are still far from reaching in the motorcycle industry the same level of penetration
found in the automotive sector. In this respect, there is an obvious lag between both
industries.

One of the major reasons of this discrepancy lies in the intrinsic instability of single
track vehicles, which makes their dynamic simulation a complex task. As a matter of
fact, it is not even possible to simulate basic manoeuvres, e.g. steady-state cornering,
without a suitable rider model that keeps the vehicle on the desired path and prevents
the motorcycle from falling over. Although several rider models are available in litera-
ture, none of them has been wholly accepted in the industry yet. The main drawback of
current models is the lack of robustness and versatility as has been previously discussed
in Chapter 2. In this context, the low performance observed in the existing virtual
riders has been one of the main motivations to develop this PhD thesis, where a novel
rider model based on model predictive control theory is introduced.

There are two key elements in the development of model-based controllers: the
dynamic model of the plant (internal model) and the simulation model. The first is
used in the control design process, while the second represents the real vehicle within a
simulation environment and is generally used to validate the resulting control strategy.
The quality of the virtual rider highly depends on the underlying models. Surprisingly,
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some of the existing algorithms are based on extremely simplified models [73–75, 124]
that do not take into account the main modes of vibration of the vehicle (wobble and
weave). In general, mathematical models must be as detailed as possible to accurately
represent the real system and, at the same time, they must be as simple as possible to
allow efficient and fast calculations. These conflicting requirements were highlighted by
Sharp in [131]:

“Models do not possess intrinsic value. They are for solving problems. They
should be thought of in relation to the problem or range of problems which
they are intended to solve. The ideal model is that with minimum complexity
which is capable of solving the problems of concern with an acceptable risk
of the solution being wrong. This acceptable risk is not quantifiable and it
must remain a matter of judgement. However, it is clear that diminishing
returns are obtained for model elaboration.”

In the market there are many commercial codes for the modelling and simulation
of mechanical systems which greatly simplify the generation of the model as the user
does not have to focus on writing the equations of motion. Complex mechanisms can be
defined by simply specifying its components and their interconnections. Furthermore,
most of these codes come with specific libraries for vehicle modelling, including prede-
fined components such as suspensions, tyres, transmission, aerodynamics, etc. However,
commercial multibody codes offer a limited set of numerical tools, usually static equilib-
rium solvers and integrators, which are usually not sufficient to develop suitable internal
models for control purposes.

The development of the rider model proposed in this thesis requires special tools not
available in any commercial or research code. Because of this reason, the elaboration of
a motorcycle model tailored to the needs of this project is considered an essential step
towards improving the performance of existing virtual riders.

3.2 A brief review of multibody dynamics

Wheeled vehicles are usually composed by a main body to which the powertrain, steering
and suspension subsystems are connected. All these elements interact dynamically with
each other, with the tyres playing a key role in this process as they constitute the
interface between the vehicle and the road. The analysis of this interplay of forces
and motions requires a unified treatment of all components. Interestingly, Milliken had
already identified the need of an integrated approach for handling analysis in 1956 [132]
when simulation tools were yet to appear:
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“The major effort in handling research to date has been in the recognition of
individual effects, their isolation, and examination as separate entities. [. . . ]
All the individual effects now known need quantitative analytical expression.
More significant, however, is the need for comprehensive, integrated analysis
methods, for such overall theories will enable the prediction of the actual
motion by rationally and simultaneously taking into account all the separate
effects.”

Nowadays multibody dynamics provide powerful solutions to approach this scenario:
starting from the set of bodies, joints and forces defined by the user, multibody tools
are capable of generating the equations of motion of the vehicle. This section presents a
brief review of some contemporary methods to model and simulate mechanical systems,
putting special emphasis on wheeled vehicles. Some definitions and remarks regarding
the nomenclature used throughout this thesis are also introduced next.

3.2.1 Reference frames and coordinate systems

The definition of appropriate frames of reference is the first step in modelling a mechan-
ical system. Frames are mainly employed to describe the position and orientation of the
different bodies that compose the model and to define the attachment points of joints
and external forces. Mathematically, frames are unequivocally parameterized by a set
of variables called coordinates.

There are multiple ways to parameterize the motion of a mechanical system which,
if properly chosen, may lead to remarkable improvements in the performance and effi-
ciency of the resulting model. The most relevant types of coordinates used currently in
multibody dynamics are relative coordinates, reference point coordinates (Cartesian),
and natural coordinates. They are briefly introduced next, more details can be found
in the book by Jalon and Bayo [47] and in the works of Nikravesh [133] and Haugh [3].

Relative coordinates

Relative coordinates define the position and orientation of each body with respect to
the previous one in the kinematic chain, see Fig. 3.1b. In particular, every coordinate
is chosen so that it represents one of the degrees of freedom allowed by the joint that
connects two consecutive bodies. As a result, this approach builds up a system where
the number of degrees of freedom is equal to the number of coordinates and hence no
constraint equations are required.

The main features of this formulation [47] are: a minimal number of coordinates,
good numerical efficiency for open-loop configurations, and the possibility to directly
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Figure 3.1: Coordinate systems available for multibody systems. (a) Reference point
coordinates. (b) Relative coordinates. (c) Natural coordinates.

control the motion of each joint due to a one-to-one correspondence between the coordi-
nates and the degrees of freedom of the joints. Furthermore, as no constraint equations
are included, relative coordinates provide a straightforward state space representation
of the model (ODE) which is perfectly suited for control system design and analysis.
For instance, relative coordinates have been shown to be particularly advantageous and
effective in robotics [134] where multibody models are essential to develop advanced
control strategies.

The negative aspect of this approach is the high level of coupling found in the
resulting equations of motion due to the fact that the absolute position of each body
depends on the positions of all preceding bodies in the kinematic chain. Moreover,
relative coordinates are not suited for closed-loop systems, where the computational
effort required by this technique often makes its application prohibitive.

Reference point coordinates

Reference point coordinates (Cartesian coordinates) define the absolute position of each
body by means of the Cartesian coordinates of one of its points along with the angular
orientation of a reference frame rigidly attached to the body, see Fig. 3.1a Thus, at least
six parameters are needed for each single body: three for the position and three for the
angular orientation. The centre of gravity of the body is usually chosen as the reference
point, whereas the parameterization of the angular orientation is a well known problem
of mechanics that allows different solutions.
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Probably the most general way of defining the angular orientation of a rigid body is
by means of the rotation matrix S, composed of nine elements: three direction cosines
for each one of the moving axes. These elements are not independent, but are related
by six constraint equations given that the rotation matrix must be orthonormal, i.e.
the three column vectors must be orthogonal to each other and each vector must have
unit modulus. It is worth noting that no subset of three elements of the matrix S can
unequivocally represent the orientation of the moving frame at any possible position.
Therefore, several alternatives to direction cosines have been developed as it is usually
inconvenient to work with nine coordinates and six constraint equations.

We can classify these alternatives in two groups [3, 133], one based on three coor-
dinates without constraint equations and another based on four coordinates with one
constraint equation. The first group represents the spatial orientation of any refer-
ence frame as a composition of three elemental rotations (about x, y or z) starting
from the inertial frame. The most widespread sequences are the Euler angles and the
Tait-Bryan angles, also known as roll-pitch-yaw. The problem is that all the existing
three-parameter systems have singular configurations where the rotation sequence can
not be defined unequivocally. In order to avoid this problem, a set of four parameters
known as Euler parameters can be used at the expense of adding one constraint equa-
tion and increasing the number of coordinates, which become seven instead of six for
each body.

One of the main advantages of reference point coordinates is their simplicity as the
position of each body is directly included in the equations, thus making the formulation
of the problem simple with low pre-processing requirements. Furthermore, joints are
defined at a local level, i.e. the constraint equation associated to any joint only includes
the coordinates of those bodies connected by the joint in question.

The above two features of reference point coordinates make straightforward the au-
tomatic generation of the equations of motion for arbitrarily complex models. Therefore
it is not surprising that these coordinates have become the preferred solution of many
commercial codes [135]. In addition, reference point coordinates can be easily integrated
with multiple formalisms: NEWEUL and DADS are based on the Newton-Euler equa-
tions, MESA VERDE on Jourdain’s principle, SIMPACK uses D’Alembert’s principle,
and ADAMS obtains its equations of motion directly from Lagrange’s approach. All of
them are based on reference point coordinates.

Although reference point coordinates are probably the best choice to automatically
build efficient simulation models, the fact that they do not directly reflect the degrees
of freedom of the mechanism, the need to include one constraint equation for each
kinematic joint and the large number of required parameters (six per body) make these
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coordinates less appealing to design internal models for control system design.

Natural coordinates

Natural coordinates are characterized by the absence of angular variables in its formu-
lation. They were originally introduced by Jalón in 1981 for planar cases, and then
extended to spatial systems in 1986 by the same author [136]. In the case of planar
multibody systems, natural coordinates can be seen as an evolution of the reference
point coordinates where the reference points have been moved to the joints, see Fig.
3.1c. In this case, the Cartesian coordinates (x, y) of the basic points constitute the
natural coordinates. For three dimensional systems, on the other hand, the Cartesian
coordinates of the basic points are augmented with a set of unit vectors associated with
the joints of the system. Non-commercial codes COMPAMM and MBSNAT, both based
on Jourdain’s principle, use this type of coordinates.

The number of natural coordinates necessary to describe a system is usually an
average between the number of relative coordinates and the number of reference point
coordinates. This is due to the elimination of the angular coordinates and to the sharing
of the basic points by two or more bodies.

According to Jalón [47], the most significant advantage of natural coordinates over
relative and reference point coordinates is their easy formulation and implementation
from a programming point of view. As a matter of fact, the resulting mass matrix is
constant and therefore no Coriolis or centrifugal forces appear explicitly in the model
equations. Furthermore, the nonlinearity of the constraints is generally low; the con-
straint equations are linear for the most common joints encountered in practice, and at
most quadratic. This makes the constraint equations and their Jacobian matrix very
easy to evaluate

Natural coordinates have similar disadvantages to reference point coordinates as far
the development of internal models for control design is concerned: these coordinates do
not directly reflect the degrees of freedom of the mechanism, they need to be completed
with constraint equations, and the number of required coordinates is high.

3.2.2 Kinematics

In general, the position and orientation of a rigid body can be unequivocally described
with respect to the inertial frame by means of the position vector ri and the rotation
matrix Si.

ri = [ri1, ri2, ri3]
T (3.1)
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Si = Si(αi, βi, γi) (3.2)

This means that we need six coordinates to define each body, three for the position and
three for the orientation, which may be collected in the column vector qi.

qi(t) = [ri1, ri2, ri3, αi, βi, γi]
T (3.3)

As a result, a multibody system composed of n rigid bodies will include 6n position
coordinates, resulting in a 6n×1 global position vector.

q(t) = [qT
1 , . . .q

T
n ]

T (3.4)

Generally these coordinates are not independent as their number is bigger than the
number of degrees of freedom of the system. Consequently, m constraint equations
must be added to the system.

Φ(q, t) = 0 (3.5)

In realistic vehicle models only holonomic constraints are found; they define the relative
translation or rotation between two bodies through geometric or integrable equations.
However, in very specific applications it can be useful to constrain the relative velocity
between two bodies. For example, to model non-slipping tyres, where the relative
velocity of the contact point with respect to the ground must be zero. In this particular
case the velocity constraint cannot be integrated and requires special treatment. These
constraints receive the name of non-holonomic constraints, and will not be further
mentioned in this dissertation. For more details, see Chapter 3 of [47].

Due to the introduction of the constraints, there remain only f=6n−m linearly
independent position coordinates, which characterize the f degrees of freedom of the
mechanism. This set of independent coordinates may be collected in a f×1 column
vector as follows:

z(t) = [z1 . . . zf ]
T (3.6)

By combining Eqs. 3.5 and 3.6, the vector of dependent coordinates q can be expressed
as a function of the independent coordinates z.

q = q(z, t) (3.7)

It is worth noting that the choice of independent coordinates is not unique as has
been discussed in Section 3.2.1, and therefore multiple parameterizations of the same
mechanical system are possible. Once the set of independent coordinates has been
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chosen, the position and orientation of each body can be expressed as a function of this
new set of coordinates z.

ri = ri(z, t) (3.8)

Si = Si(z, t) (3.9)

The velocity variables associated to ri and Si, i.e. vi and ωi respectively, can be
obtained by differentiating the above equations as follows,

vi(t) = ṙi(t) =
∂ri
∂zT

ż+
∂ri
∂t

= JTi(z, t)ż+ v̄i(z, t) (3.10)

ωi(t) = ṡi(t) =
∂si
∂zT

ż+
∂si
∂t

= JRi(z, t)ż+ ω̄i(z, t) (3.11)

where ∂si represents the infinitesimal rotation vector 3×1 associated to the rotation
matrix S, in a similar fashion to the rotational velocity vector1.

∂s̃i = ∂SiS
T
i :=

 0 −∂si3 ∂si2

∂si3 0 −∂si1
−∂si2 ∂si1 0

 , ∂si =

∂si1∂si2

∂si3

 (3.12)

The 3×f Jacobian matrices JTi and JRi directly relate the dependent q̇ and indepen-
dent ż velocities when there are no rheonomous constraints. The structure of these
matrices may be defined using the chain rule of differentiation. E.g. for the translation
coordinates it yields:

JTi =
∂ri
∂zT

=


∂ri1
∂z1

∂ri1
∂z2

· · · ∂ri1
∂zf

∂ri2
∂z1

∂ri2
∂z2

· · · ∂ri2
∂zf

∂ri3
∂z1

∂ri1
∂z2

· · · ∂ri3
∂zf

 =
∂ri
∂qT

∂q

∂zT
(3.13)

The acceleration variables ai and αi are obtained by differentiating Eqs. 3.10 and 3.11,
obtaining:

ai(t) = v̇i(t) = JTi(z, t)z̈+
∂vi
∂zT

ż+
∂vi
∂t

(3.14)

αi(t) = ω̇i(t) = JRi(z, t)z̈+
∂ωi
∂zT

ż+
∂ωi
∂t

(3.15)

It is interesting to observe that for scleronomic joints, which do not depend explicitly

1The rotational velocity vector ωi(t) can be represented by the skew symmetric tensor ω̃i(t) = ṠiS
T
i .
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on time, the partial time derivatives in Eqs. 3.10, 3.11, 3.14 and 3.15 vanish.

3.2.3 Dynamics

In this section two basic formulations to derive the equations of motion of a multibody
system are briefly introduced, namely the Newton-Euler approach and the Lagrangian
approach. The first method describes the behaviour of the system by means of vec-
tor and tensor quantities with clear mechanical and geometrical meaning such as mass
centre, inertia tensor, angular velocity, linear and angular momentums, etc. The main
drawback of this method is that reaction forces have to be included in the motion equa-
tions and then eliminated, which often turns out to be a complicated problem. On the
other hand, the Lagrange approach uses only scalar quantities based on energy consid-
erations, which usually do not reflect directly the geometry and the dynamics of the
system considered. Furthermore, this second method does not provide any information
about the reaction forces.

The Newton-Euler approach

The fundamental laws of Newton (1687) and Euler (1758) relate respectively the trans-
lational motion of a body, represented by the momentum p, to the sum of applied
external forces f and its rotational motion, represented by the angular momentum h0,
to the sum of external torques l0.

dp

dt
= f ,

dh0

dt
= l0 (3.16)

The time derivatives in the above equations must be evaluated in the inertial frame. On
the other hand, the reference point 0 in the second equation may be either a fixed point
attached to the inertial frame or a moving point. Then, if the centre of mass is chosen
as the reference point for all bodies, we get for the ith body,

pi = mivi, hi = Iiωi (3.17)

where mi is the mass of the body, Ii is the inertia tensor with respect to centre of mass,
and vectors vi and ωi represent the absolute linear and angular velocities respectively.
By introducing Eq. 3.17 into 3.16 we get the Newton-Euler equations expressed in the
inertial reference frame.

mv̇i = f ei + f ri (3.18)

Iiω̇i + ω̃iIiωi = lei + lri (3.19)
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In order to apply the previous equations to a multibody system, it must be first dis-
assembled as a set of single bodies and all constraints must be replaced by external
reaction forces f r and torques lr acting on the involved bodies. For instance, a joint
connecting two bodies would be replaced by two forces, one on each body, with the
same magnitude and opposite sign, according to the action-reaction principle. Vectors
f e and le represent the external forces and torques applied to the ith body respectively.

Subsequently, a set of six Newton-Euler equations is obtained for each one of the n
bodies composing the system. This results in a total of 6n scalar equations, which may
be expressed in terms of the dependent coordinates q as,

M(q)q̈+ k(q, q̇, t) = Qe(q, q̇, t) +Qr (3.20)

where M is the inertia matrix of the system, Qr includes the reaction forces, Qe includes
the external forces applied to the system and k includes the centrifugal, Coriolis and
gyroscopic terms. Furthermore, the reaction forces can be rewritten as a function of the
m generalized constraint forces λ [137], which yields:

M(q)q̈+ k(q, q̇, t) +Φq
Tλ = Qe(q, q̇, t) (3.21)

In general Eq. 3.21 is not well defined as the number of unknowns 6n+m is bigger
than the number of equations 6n; the unknowns comprise the 6n elements of vector q̈
and the m elements of vector λ. Therefore, it is necessary to include m more equations
in order to obtain a determined system. The constraints from Eq. 3.5 can be used
for this purpose, which, along with Eq. 3.21, constitute a set of differential algebraic
equations (DAE) of index three. This form of the equations of motion receives the name
of descriptor form [135], M(q)q̈+Φq(q)

Tλ = Q(q, q̇, t)

Φ(q, t) = 0
(3.22)

where now Q includes the applied forces as well as the centrifugal, Coriolis and gyro-
scopic terms.

The index of a DAE represents the number of times that the system must be differ-
entiated with respect to time in order to convert it into an explicit ordinary differential
system, known as the underlying ODE [138]. The index of a DAE can also be understood
as a perturbation index, i.e. a measure of the sensitivity of the solution to numerical
perturbations. For instance, the solution of an index-3 problem like Eq. 3.22 is affected
by the second derivative of any error introduced during the solution procedure. As a
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consequence, both index three and index two formulations are in general not suitable
for direct integration.

Several techniques exist in literature to deal with index three DAEs, which are
usually classified into index and coordinate reduction techniques. Index reduction tech-
niques transform the original system into a lower index DAE, keeping the same coor-
dinates as the original problem. On the other hand, coordinate reduction techniques
transform the original DAE into an ODE containing a smaller set of independent co-
ordinates. A brief overview of these two methods is presented next. For a extensive
review of reduction techniques, the reader is referred to [139,140].

a) Index reduction. A DAE of index one can be obtained by differentiating twice
with respect to time the constraint equations in Eq. 3.5:

Φqq̈ = −Φ̇qq̇− Φ̇t (3.23)

which can be combined with Eq. 3.21 to yield the well known index one expression
of the multibody equations:[

M ΦT
q

Φq 0

]{
q̈

λ

}
=

[
Q

−Φ̇qq̇− Φ̇t

]
(3.24)

The above equations are numerically unstable due to the double zero eigenvalues
originating from the differentiation of the constraints. This problem is known
as drift-off phenomenon, and makes necessary the use of additional stabilisation
techniques to enforce the constraints. During the last decades great progress has
been achieved in the stabilization of the solutions of Eq. 3.24; among the most
relevant, we can highlight Baumgarte’s approach and the penalty formulation
proposed by Bayo [140–142].

b) Coordinate reduction. The coordinate reduction approach converts the original
descriptor form (Eq. 3.22) into a minimal formulation of the problem [137, 143].
For that purpose, the constraint forces are eliminated by means of D’Alembert’s
principle, which exploits the orthogonality of generalized motions and constraints
in order to obtain a set of ODEs containing the minimal number of equations,

M̂(z)z̈ = Q̂(z, ż, t) (3.25)

where z is the vector of independent coordinates, M̂ is the symmetric inertia
matrix of the system and Q̂ includes the gyroscopic, Coriolis and centrifugal
forces along with the generalized applied forces.
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The main characteristic of Eq.3.25 is that the number of coordinates used to
describe the system z is equal to its number of degrees of freedom, and therefore
no (algebraic) constraint equations are needed.

The Lagrangian approach

Unlike the Newton-Euler approach, where the reaction forces have to be included in the
motion equations to subsequently eliminate them, the Lagrangian approach allows to
directly obtain the minimal representation of open loop systems without having to deal
with the constraint equations.

The key element of this approach is the Lagrangian function, which summarizes the
dynamics of the entire system in one expression,

L = T − U (3.26)

where T and U are the total kinetic and potential energy of the system respectively.
For a system composed of n bodies, the kinetic energy can be computed as,

T =
1

2

n∑
i=1

[
vTi mivi + ωT

i Iiωi

]
(3.27)

which can be expressed as a function of the independent coordinates z and its derivatives
ż,

T = T (z, ż) (3.28)

On the other hand, the potential energy U depends only on the independent coordinates
z and can be used to derive the contribution of the conservative forces.

Qk = −
∂U(z)

∂zk

(
k=1 . . . f

)
(3.29)

In order to introduce general forces into the system, the concept of virtual displacement
must be first introduced: a virtual displacement is defined as an arbitrary, infinitesimally
small variation of the system position which is compatible with the constraints at any
time. It is called virtual rather than real since no actual displacement can occur if the
time stays constant. The symbol δ is usually employed to represent the virtual motion
operator, which behaves mathematically as the regular differential operator, i.e.

δ(cr) = cδr, δ(r1 + r2) = δr1 + δr2, δr(z) =
∂r

∂zT
δz (3.30)

Hence, the virtual motion of a multibody system can be expressed by means of the
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Jacobian matrices introduced in Eqs. 3.10 and 3.11 as follows:

δri = JT iδz, δsi = JRiδz
(
i=1 . . . n

)
(3.31)

The principle of virtual work [144] allows to project the external forces f ei and torques
lei on the direction of the generalized coordinates,

δW e =

n∑
i=1

[
(f ei )

Tδri + (lei )
Tδsi

]
=

f∑
k=1

Qekδzk (3.32)

where Qek is the projection of all external forces on the kth generalized coordinate. The
above equation may be rewritten as follows:

Qek =

n∑
i=1

[(
∂ri
∂zk

)T

f ei +

(
∂si
∂zk

)T

lei

]
=

n∑
i=1

[
JTi(:, k)

Tf ei + JRi(:, k)
Tlei

]
(3.33)

where the Matlab notation (:, k) has been used to denote the kth column of the Jaco-
bians. It is worth noting that only those forces that perform work are included, and
therefore the reaction forces do not appear in the equations. Once the expression of the
Lagrangian is know and the generalized forces have been obtained, the equations of the
multibody system can be obtained by means of the Lagrange equations [144],

d

dt

(
∂L

∂żk

)
− ∂L

∂zk
= Qek, (k=1 . . . f) (3.34)

where the conservative forces are implicitly included in the term ∂L/∂zk. The above
equations are know as Lagrange equations of the second kind and constitute a system
of ODEs which can be rewritten in matrix form as in Eq. 3.25.

M̂(z)z̈ = Q̂(z, ż, t) (3.35)

In fact, both Newton-Euler and Lagrange’s approaches yield identical results if the
same set of independent coordinates is used. For systems with a closed kinematic struc-
ture, Eq. 3.34 can be augmented to include the corresponding m Lagrange multipliers
arising from Eq. 3.5.

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
+ΦT

qjλ = Qej , (j=1 . . . f+m) (3.36)

In this case, reduction techniques like those presented for the Newton-Euler approach
would be needed to integrate the system of DAEs. However, the motorcycle model
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Figure 3.2: Summary of the different steps required to generate of the equations of
motion by the Newton-Euler and Lagrange methods.
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that is presented in the next sections does not have any closed loop and therefore this
formulation will not be not further discussed here. For more details regarding multibody
dynamics, see [3, 47,133].

Comparison of the Newton and Lagrange approaches

The main steps to derive the equation of motion of a multibody system by the methods
of Newton-Euler and Lagrange are depicted in Fig. 3.2. As shown in the figure, both
approaches share the same starting point, the mechanical model of the system, and
produce the same equations of motion if the same generalized coordinates are chosen.
Furthermore, in both cases the resulting equations of motion can be reduced to a set of
ODEs. However, the effort required to obtain those equations is different.

The most important advantage of the Lagrange’s approach is that it allows to di-
rectly write the equations of motion in a minimal form. However, there appear terms
in d/dt (∂L/∂żk) which are then eliminated by ∂L/∂zk according to Eq. 3.34. This im-
plies a useless computational effort which is not present in the Newton-Euler approach.
On the other hand, if the Newton-Euler approach is chosen, additional steps need to be
carried out in order to remove the reaction forces from the equations.

In this thesis, the Lagrange approach is preferred over the Newton-Euler equations as
its implementation in a symbolic tool such as Mapler [45] is simpler due to the minimal
form of the problem. Furthermore, the use of computer algebra software (CAS) allows
to overcome the main drawback of Lagrange’s approach by simplifying the equations
of motion symbolically. This means that the duplicated terms described above will be
cancelled during the symbolic manipulation stage and therefore will not appear in the
final equations.

3.2.4 Numerical vs. symbolic formalisms

Two formalisms to generate the mathematical equations representing a multibody model
are found in literature, namely numerical and symbolic formalisms.

Generally, numerical codes generate and solve the equations numerically at each
timestep of the integration procedure. Symbolic codes, on the other hand, derive the
equations of motion only once, in a fashion similar to hand derivation; obtaining first
the model equations which are then converted into a C or FORTRAN source code. In
a second stage the symbolic code is compiled and numerical results are obtained via nu-
merical integration. The symbolic derivation of the equations of motion is usually more
complex than the numeric one; however, there is no need to regenerate the equations
every time a new simulation is run or during parametric studies. Both formalisms are
summarized in Fig.3.3
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Figure 3.3: Structure of numerical and symbolic formalisms. (a) Numeric formalism.
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Numerical codes are oriented to the product’s final design, and model equations are
not available for the user to explore or manipulate them. Symbolic codes, on the other
hand, allow a low-level control of the model in order to produce specialized, problem-
oriented, simulation programs. For example, the symbolic manipulation of the equations
of motion allows the user to neglect insignificant details that are not relevant to the
problem bandwidth, to treat small displacements in an efficient manner or to neglect
them. Furthermore, some of these symbolic codes exploit algebraic manipulation to
simplify the equations of motion and thus produce extremely efficient simulation codes.

Multibody codes are nowadays the most widespread tool for the dynamic analysis
of complex mechanisms. Most of the commercially available codes for modelling and
simulating multibody systems are based on a numerical approach. However, it has been
proven that symbolic codes are more suited to analyse fundamental problems and/or
when high computational efficiency is required [32,46]. Furthermore, they allow a deeper
understanding of the system by providing access to the underlying equations.

Lastly, it can be concluded from literature that the symbolic generation of the
equations of motion is especially suited for control design and optimization [46, 137].
Symbolic models may be obtained by Computer Algebra Software like Mapler [45] or
Mathematicar [145], or with special software like NEWEUL [146], ROBOTRAN [147]
or MBSymba [46]. Most of the symbolic routines developed in this thesis are based on
the latter. MBSymba is a Maple library developed at the University of Padova for the
symbolic modelling of multibody systems that contains a variety of routines for defining
the elements of the multibody systems and for the derivation and manipulation of the
equations of motion. A comprehensive review of numerical and symbolic formalisms is
found in [143].

3.3 The symbolic motorcycle model

In this section, a motorcycle model comprising eleven degrees of freedom is presented
and its equations of motion are derived in a symbolic fashion using the computer algebra
software Mapler. The scope of this model is not to improve the level of detail or the
computing performance of existing models but to provide a suitable framework for the
development of a novel virtual rider and a set of symbolic-numeric tools aimed at the
study and optimization of motorcycle dynamics. These tools, which are not available
in any commercial multibody software, play a key role in the development of the rider
algorithm presented in this thesis and will be introduced in subsequent chapters.

Models published previously, such as Cossalter’s [43] and Sharp’s [51], were mainly
developed for simulation purposes and present some drawbacks as far as the design
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of control algorithms is concerned. Cossalter’s model is symbolically formulated as a
system of DAEs due to the great number of constraints introduced by the natural co-
ordinates approach [47]. Although it shows very good computational performance, the
algebraic equations make it unsuitable for control purposes, in particular for state-space
based approaches, where a system of ODEs is required. Sharp, conversely, created his
model with the commercial multibody code AUTOSIM [34]. Commercial multibody
tools simplify the modelling task significantly by numerically deriving and solving the
equations of motion of complex mechanical systems. This process is however trans-
parent to the user, who does not have access to the underlying equations and is often
constrained by the limited set of numerical tools integrated in the multibody package,
basically static equilibrium solvers and integrators. These tools are insufficient to de-
velop the rider model proposed in this thesis and hence a more suitable model will be
derived here.

In the first part of this section the kinematics of the model are described, includ-
ing the bodies that compose the system and the generalized coordinates employed to
describe their configuration. The position of the tyre contact points is also derived in
this section for a generic cross section. In the second part, the force elements (tyres,
suspensions, control inputs, etc) are introduced along with their kinematic inputs. Then
these forces are projected on the generalized coordinates by means of the virtual work
principle. In the third part, the equations of motion are derived and the resulting code
is optimized in order to improve the computing performance of the model. Finally,
the code is translated into C and then compiled in Matlabr as an S-function for
time-domain simulations and as a .mex file for optimization and other purposes.

3.3.1 Model kinematics

The motorcycle model proposed here is composed of six bodies as depicted in Fig. 3.4
and Table 3.1: the front and rear wheels, the main assembly (including the frame, the
engine and the fuel tank), the rear assembly (including the swingarm and the rear brake
calipers), the upper part of the front assembly (including the sprung part of the forks,
both triple clamps, the steering column, and the handlebar), and the lower part of the
front assembly (including the unsprung part of the forks and the front brake calipers).
Based on the conclusions of [28, 99], where the rider movements were found to be an
order of magnitude less important than the steering torque as far as the control of the
motorcycle is concerned, it has been decided to model the rider as a rigid body attached
to the main assembly. No rider motions are therefore considered.

The geometry of the standard motorcycle chassis can be characterized by means of
three main parameters as shown in Fig. 3.4: the length of the swinging arm lr, measured
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Figure 3.4: Multibody model of the motorcycle. Note that each body is represented
by its center of gravity Gi. The drawing includes also the main reference frames used
to define the model and the main geometric parameters of the chassis: lr, lm, and lf .

Body Subscript Reference frame Unit vectors

front wheel fw Tfw (̂ıfw, ȷ̂fw, κ̂fw)
rear wheel rw Trw (̂ırw, ȷ̂rw, κ̂rw)
main assembly m Tm (̂ım, ȷ̂m, κ̂m)
rear assembly r Tr (̂ır, ȷ̂r, κ̂r)
front assembly (upper fork) uf Tuf (̂ıuf , ȷ̂uf , κ̂uf)
front assembly (lower fork) lf Tlf (̂ılf , ȷ̂lf , κ̂lf)

Table 3.1: List of bodies included in the model.

from the rear wheel centre to the pivot2; the length of the frame lm, measured along
the line connecting the pivot and the fork at right angles; and the offset between the
front wheel and the steering axis lf . The geometry of the tyres and their cross section,
which will be elaborated later in this section, complete the geometric description of the
vehicle.

Generalized coordinates and reference frames

In addition to the geometric parameters, a suitable set of generalized coordinates and
reference frames is needed in order to properly describe the position and orientation
of the different bodies that compose the model. The motorcycle system presents an

2In motorcycle terminology, the term pivot is usually employed to describe the joint where the
swingarm connects to the frame.



3.3 The symbolic motorcycle model 73

open-loop topology and possesses eleven degrees of freedom, from which six correspond
to the rigid motion of the vehicle, one to the steering system, two to the suspensions and
the last two correspond to the rotation of the wheels. In view of the above, eleven inde-
pendent coordinates are sufficient to unequivocally describe the motion of the system.
We can collect them in the 11×1 vector q:

q(t) = [x, y, z, ψ, ϕ, µ, δ, df , µr, θrw, θfw]
T (3.37)

Note that the letter q has been used to denote the vector of generalized coordinates
instead of the usual letter z introduced in Section 3.2.2. This avoids confusion with
the coordinate z and does not imply any further changes in the nomenclature as the
model presented here does not include any dependent coordinates. The set of chosen
coordinates is described in Table 3.2 and illustrated in Fig. 3.5.

Coordinate Definition

x, y, z Coordinates of the centre of gravity of the main
assembly Gm. The pair (x, y) represents the
Cartesian position of the reference point P with
respect to the inertial frame. The coordinate z,
on the other hand, measures the distance from
P to Gm.

ψ Yaw angle. Angle between the x-axis of the iner-
tial frame and the intersection of the mid-plane
of the vehicle with the road plane.

ϕ Roll angle, also called lean or camber. Angle
between the road normal vector and the mid-
plane of the vehicle.

µ Pitch angle. Angle between the x-axis of the
main assembly ı̂m and the road plane measured
on the mid-plane of the vehicle.

δ Steering angle.

df Front suspension travel.

µr Pitch angle of the rear assembly. Angle between
the x-axis of the swingarm ı̂r and the road plane
measured on the mid-plane of the vehicle.

θfw, θrw Rotation angle of the front and rear wheels mea-
sured with respect to the lower fork and the rear
assembly respectively.

Table 3.2: List of generalized coordinates.
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Figure 3.5: Set of generalized coordinates. The model possesses eleven degrees of
freedom, which are depicted in blue in the above figure: six correspond to the rigid
motion of the main assembly (x, y, z, ψ, ϕ, µ), one to the steering system (δ), two to the
suspensions (df , µr) and the last two represent to the angular rotation of the wheels
(θfw, θrw).

It is important to point out that, contrary to what seems intuitive, the relative angle
between the swingarm and the main assembly is not present among the generalized
coordinates. Instead, we included the pitch angle of the swingarm with respect to the
road µr. Note that due to the particular parameterization of the motorcycle orientation
defined in Table 3.2, the absolute pitch angle of the main assembly µ and the relative
rotation of the swingarm with respect to it γ can be directly added as their rotation
axes remain always parallel, i.e.

µr = µ+ γ (3.38)

A preliminary version of the model created using γ as a generalized coordinate revealed
that the two terms in the right hand side of Eq. 3.38 could be always collected together
in the kinematic equations. However, this symbolic procedure was not straightforward
and resulted even more complex for the dynamic equations. For this reason, and in order
to obtain a more compact set of equations, the absolute pitch angle of the swingarm
has been selected as a generalized coordinate.

Usually it is more convenient to express the vehicle motion in a moving frame at-
tached to the vehicle. If we project the derivative of q on the vehicle frame, i.e. a
non-inertial reference frame that moves with the motorcycle but does not include the
roll and pitch rotations, we get a new set of generalized velocities in body coordinates
qv. As shown in Eq. 3.39, such projection only involves the first two generalized veloc-
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ities ẋ and ẏ. We will use q to describe the model kinematics at position level and qv

for the velocities.

qv =



cψ sψ 0 0 · · · 0

−sψ cψ 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1


q̇ = Γq̇ (3.39)

The vector of generalized coordinates q has been used to parameterize the reference
frames attached to the bodies of the model and to other relevant points such as the
application points of external forces and additional measurement points. One way of
defining these frames is by means of 4×4 homogeneous transformation matrices Tj [144],

Tj =

S3×3

j p
3×1

j

0
1×3

1

 (3.40)

where pj is a position vector defining the origin of the jth frame and Sj is a 3×3 rotation
matrix representing its orientation. The columns of the rotation matrix contain the unit
vectors (̂ıj, ȷ̂j, κ̂j) of the frame expressed in the inertial reference system. The advantage
of this notation is that the frame position and orientation can be described by one single
matrix. It is however important to note that, unlike rotation matrices, homogeneous
transformations are not orthogonal, i.e.

T−1
j ̸= TT

j (3.41)

The sequence of transformations followed to derive all the reference frames contained
in the model is shown in the tree diagram of Fig. 3.6. A combination of basic trans-
formation matrices has been used to obtain them starting from the inertial reference
frame, where Rotξ(α) applies a relative rotation α around the ξ-axis of the preceding
frame and Tra(x, y, z) applies a relative translation (x, y, z) also with respect to the
preceding frame. These matrices are detailed in Eq. 3.42.

The first element of the kinematic chain is the ground-fixed frame T0, which has
been defined according to the SAE convention so that its x and y axes lie on the road
plane and its z-axis points downwards. If we continue down the tree diagram we find
the auxiliary3 frame Tψ. This reference system is usually known as the vehicle frame
or moving frame. Its origin is coincident with the point P while its x-axis ı̂ψ is aligned

3We call auxiliary frames those frames that are not directly used to define the bodies of the system.
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Figure 3.6: Topology of the multibody model. The figure shows the sequence of
transformations needed to derive all the reference frames included in the model. A
combination of 4×4 transformation matrices has been used to derive them starting
from the inertial reference frame T0, where Rotξ(α) represents a relative rotation
α around the ξ-axis while Tra(x, y, z) represents a relative translation (x, y, z), both
with respect to the preceding frame. Auxiliary frames are depicted in grey.
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Rotx(α) =


1 0 0 0

0 cα −sα 0

0 sα cα 0

0 0 0 1

 Roty(α) =


cα 0 sα 0

0 1 0 0
−sα 0 cα 0
0 0 0 1



Rotz(α) =


cα −sα 0 0

sα cα 0 0

0 0 1 0

0 0 0 1

 Tra(x, y, z) =


1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1


(3.42)

with the longitudinal direction of the vehicle, see Fig. 3.5. This is the same frame on
which the vector of generalized velocities q̇ was projected in Eq. 3.39 in order to obtain
qv.

The next element of the kinematic chain is the auxiliary frame Ti, where the sub-
script i stands for intermediate. This frame is located at the center of gravity of the
main assembly Gm with its xz-plane being parallel to the mid-plane of the motorcycle,
i.e. the angle between the z-axis of Ti and the z-axis of the inertial frame T0 is equal to
the roll angle ϕ. The intermediate frame is not depicted in Fig. 3.5 as it has no particu-
lar interest. It is required however in the tree diagram of Fig.3.6 to represent the point
where the kinematic chain bifurcates. After Ti the diagram splits into two branches:
the first includes the main and front assemblies (right) while the second contains only
the rear assembly (left).

The first frame in the right branch is the body-fixed reference system of the main
assembly Tm. The origin of such frame is located at the pivot while its x-axis ı̂m is
rotated with respect to the road by the pitch angle µ as shown in Fig. 3.5. The position
vector of the centre of gravity of the main assembly Gm is defined in this reference
frame as

rm(q) = Tm

[
gxm, 0, g

z
m, 1

]T (3.43)

where gxm and gzm are local coordinates (constant).
It is worth noting that the attitude of the main frame is expressed by a non-standard

rotation sequence z-x-y or yaw-roll-pitch. This sequence however is convenient to model
single-track vehicles where the roll and pitch angles have special definitions as described
in Table 3.2. In particular, the rotation order is chosen so that the roll angle represents
the camber of the chassis and the pitch is measured in the bike plane, both with respect
to the road.

The next frame is the body-fixed reference system of the upper fork Tuf . This frame
is located at the headpipe and is rotated around the steering axis κ̂uf by the steering
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angle δ. Hence, the position vector of Guf may be defined as follows:

ruf(q) = Tuf

[
gxuf , 0, g

z
uf , 1

]T (3.44)

After that, the translation (lf , 0, df) places the body-fixed reference system of the lower
fork Tlf at the centre of the front wheel. Note that lf is a constant offset while df is the
generalized coordinate representing the fork travel. Therefore, we can write the position
vector of the centre of gravity Glf as:

rlf(q) = Tlf

[
gxlf , 0, g

z
lf , 1
]T (3.45)

Finally, the front wheel frame Tfw is defined by a rotation θfw around the y-axis of Tlf .
The centre of gravity of the wheel Gfw is located at the wheel hub, i.e.

rfw(q) = Tfw

[
0, 0, 0, 1

]T (3.46)

The remaining two blocks, depicted in grey, are auxiliary frames included to model the
tyre kinematics. The frame Tfwp is defined so that its y-axis is parallel to the rotation
axis of the wheel and its x-axis is parallel to the road. The frame Tfwg, on the other
hand, shares the same x-axis as Tfwp but has its xy-plane parallel to the road. The
pitch and roll angles of the front assembly, i.e. βfw and ϕfw, are derived in the next
section dedicated to tyre kinematics. Fig. 3.7 illustrates the tyre frames.

The first frame of the left branch is the body-fixed reference system of the rear
assembly Tr. This frame is not defined as the previous ones since, as discussed earlier
in this section, we want to use the absolute angle µr to parameterize the motion of the
rear assembly instead of the relative coordinate γ. To do so, we first build a new frame
that has the same position vector of Tm and the same orientation matrix of Ti. This
may be expressed by using Matlab notation as,Si pm

0 1

 =

Ti(1:3, 1:3) Tm(1:3, 4)

0 1

 (3.47)

which represents a frame located at the pivot and oriented with its x-axis parallel to the
ground. Then, Tr can be obtained by rotating the frame introduced above around its
y-axis by the angle µr followed by a translation from the pivot to the rear wheel. The
resulting frame Tr is the body-fixed reference system of the rear assembly and may be
used to define its centre of gravity Gr as follows:

rr(q) = Tr

[
gxr , 0, g

z
r , 1
]T (3.48)



3.3 The symbolic motorcycle model 79

Figure 3.7: Front tyre kinematics. Two reference frames are involved in the kinematic
definition the tyre model: Tfwp and Tfwg. The coordinates ζy and ζz define the position
of the geometric contact point. Note that the road normal vector points downwards.

A rotation θrw around the y-axis of the swingarm defines the rear wheel frame Trw,
which is located at the centre of the rear wheel, i.e.

rrw(q) = Trw

[
0, 0, 0, 1

]T (3.49)

The remaining two frames, depicted in grey, are homologous to those described for the
front assembly. The frame Trwp is defined so that its y-axis is parallel to the rotation
axis of the wheel and its x-axis parallel to the road. The frame Trwg, on the other hand,
shares the same x-axis as Trwp but has its xy-plane parallel to the road.

Tyre kinematics

A proper modelling of the tyre forces is essential for the dynamic simulation of any
ground vehicle; this becomes especially important when it comes down to motorcycles
due to the high camber angles achieved and the curvature of the tyre cross section.
When a tyre cambers, the contact patch shifts laterally with respect to the mid-plane
of the tyre, thus modifying the projection of the tyre forces on the vehicle. In the past,
motorcycle tyres were inaccurately represented as thin discs; Sharp [51] and Lot [44]
were the first to introduce advanced models with a detailed description of the tyre cross
section and of the contact point migration. These approaches have the advantage that
the longitudinal and vertical forces automatically produce realistic yawing and overturn-
ing moments without the need of introducing artificial terms in the tyre equations. The
concept proposed by Sharp regarding the contact point migration has been adopted
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here to develop the tyre model of this thesis.
In order to evaluate the tyre forces during the simulation, a series of kinematic

inputs are needed (see Fig.2.3). These inputs can be usually expressed as functions of
the position and velocity of the contact patch and the spatial orientation of the tyre.
The purpose of this section is to derive symbolic expressions for the tyre kinematics
considering the real shape of the tyre cross section.

We will start with the kinematic description of the front tyre. In the tree diagram
of Fig.3.6 we introduced two frames to describe the position and orientation of the front
wheel, namely Tfwp and Tfwg. Both of them share the same origin, located at the front
wheel center, and the same x-axis, which is parallel to the road, is contained on the
mid-plane of the front assembly and points forwards. The main difference between these
reference systems is the camber angle ϕfw as shown in Fig.3.7. Note that the y-axis of
Tfwp is parallel to the rotation axis of the wheel while the respective y-axis of Tfwg is
parallel to the ground.

The first frame Tfwp is very useful to define the position of the undeformed or
geometrical contact point of the front wheel C0f , which can be written as

C0f = Tfwp


0

ζyf

ζzf

1

 (3.50)

where ζy and ζz constitute a local parametric representation of the tyre profile. The
second frame Tfwg, on the other hand, is the reference frame where the tyre forces will be
defined on since it has its xy-plane parallel to the road . Additionally, the angle between
the x-axis of this frame ı̂fwg and the longitudinal axis of the vehicle ı̂ψ determines the
kinematic steering angle ∆.

The orientation of Tfwp and Tfwg is characterized by two angles, the pitch angle
of the front assembly βfw and the camber angle of the front tyre ϕfw, which in turn
depend on the generalized coordinates q. Both angles can be derived from the unit
vector that represents the rotation axis of the wheel ȷ̂lf , i.e. from the second column
of the orientation matrix Slf . According to Fig. 3.6, such matrix may be obtained by
applying four successive rotations as follows:Slf 0

0 1

 = Rotz(ψ) ·Rotx(ϕ) ·Roty(µ) ·Rotz(δ) (3.51)

No translations need to be considered in the above expression given that we are only
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interested in the frame orientation. It then follows that,

Slf = Sψ

 cδcµ −cµsδ sµ

cδsϕsµ + cϕsδ −sδsϕsµ + cϕcδ −sϕcµ
−cϕsµcδ + sϕsδ cϕsµsδ + sϕcδ cϕcµ

 (3.52)

where the expanded matrix of the right hand side is expressed in the vehicle frame.
Based on the above, the camber angle can be obtained from the dot product between
ȷ̂lf and the unit vector perpendicular to the road plane κ̂0 as:

ȷ̂lf • κ̂0 = cos(π/2− ϕfw)

ϕ
fw

= arcsin(cϕsµsδ + sϕcδ)
(3.53)

Note that the camber angle of the front wheel ϕ
fw

is in general different from the
roll angle of the main assembly ϕ; they only match when the steering angle δ is zero.
According to Eq. 3.53, ϕ

fw
depends solely on the roll ϕ and pitch µ angles of the chassis

and on the steering angle δ. The effect of these parameters on the front camber angle is
depicted in Figs. 3.8a and 3.8c. We show that, for a given roll angle of the chassis, the
steering angle tends to increase the camber of the front wheel when the handlebar is
turned in the same direction of the vehicle roll (same sign) and viceversa, the steering
angle tends to decrease the camber of the front wheel when the handlebar is turned
in the opposite direction (opposite sign). In normal riding conditions roll and steering
have the same sign, and therefore the front wheel is usually more inclined than the
chassis. This has an important implication in the lateral forces generated by the tyres
as they strongly depend on the camber angle.

The pitch angle of the front assembly βfw is slightly more complicated to obtain
than the camber. First, the cross product between ȷ̂lf and κ̂0 is used to get ı̂fwp

ı̂fwp =
ȷ̂lf × κ̂0

cϕfw
(3.54)

which is parallel to the ground and is contained in the mid-plane of the front assembly
(xz-plane). The projection of ı̂fwp on the body-fixed frame of the lower fork Tlf yields

ı̂
(Tlf )

fwp =


cϕcµ
cϕfw

0

cϕsµcδ − sϕsδ
cϕfw

 (3.55)

which can be also obtained, according to Fig. 3.6, by rotating ı̂lf around the y-axis of
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Figure 3.8: Front tyre orientation parameters. The front tyre orientation is char-
acterized by its camber angle ϕfw and by the kinematic steering angle ∆. The first
parameter measures the angle between the road normal vector and the symmetry plane
of the wheel, while the second represents the projection of the steering angle on the
road plane. Both parameters depend solely on the chassis roll ϕ and pitch µ angles and
on the steering angle δ. The effect of the pitch angle is usually small and therefore is
not included in the above figure for the sake of clarity. (a) Front camber as a function
of the steering angle for several roll angles of the chassis. (b) Kinematic steering angle
as a function of the steering angle for several roll angles of the chassis. (c) Contour plot,
front camber angle as a function of the steering and chassis roll angles. (d) Contour
plot, kinematic steering angle as a function of the steering and chassis roll angles.
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Tlf by the angle −βfw. Therefore we can write

ı̂
(Tlf )

fwp =
([

1 0 0 0
]
·Roty(−βfw)

)T
=


cβfw

0

sβfw

 (3.56)

where the fourth element of the resulting vector is always null and has been omitted.
Finally, by combining Eq. 3.55 and Eq. 3.56, we can put βfw as:

βfw = tan−1

(
cϕsµcδ − sϕsδ

cϕcµ

)
(3.57)

It is important to note that the terms in the denominator cannot become zero during
the simulation as both the roll and the pitch angles are always below ninety degrees.
This condition has been ensured for all the expressions appearing in the model in order
to avoid singularities.

One additional angle that can be computed regarding the front tyre is the kinematic
steering angle ∆, which is basically the projection of the handlebar angle δ on the road
plane. Although it is not strictly required for the simulation of the model, the kinematic
steering angle can be helpful to simplify some of the expressions appearing in the model
equations as well as to gain insight on the steering system of the motorcycle. We may
use the unit vector ȷ̂lf to derive it. By projecting ȷ̂lf on the vehicle reference system Tψ

we get the second column of Eq. 3.52, i.e.

ȷ̂
(Tψ)

lf =

 −cµsδ
−sδsϕsµ + cϕcδ

cϕsµsδ + sϕcδ

 (3.58)

We can also obtain ȷ̂lf through a sequence of rotations different to that shown in Fig. 3.6.
Instead of following the kinematic chain of the motorcycle, we can start from the unitary
vector ȷ̂ψ and apply directly the rotations associated to the kinematic steering angle ∆

and to the camber angle of the front assembly ϕfw as follows,

ȷ̂
(Tψ)

lf =
([

0 1 0 0
]
·Rotz(∆) ·Rotz(ϕfw)

)T
=

−s∆cϕfwc∆cϕfw
sϕfw

 (3.59)

which can by combined with Eq. 3.58 to obtain the kinematic steering angle.

∆ = tan−1

(
cµsδ

−sδsϕsµ + cϕcδ

)
(3.60)
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As with the front camber angle, the kinematic steering angle is a function of the roll,
pitch and handlebar angles. Fig. 3.8b shows how the kinematic steering angle varies
in function of the handlebar position for several roll angles. It is interesting to note
here that there is a roll angle above which the kinematic steering angle ∆ becomes
bigger than the handlebar angle δ. In this specific case, such threshold is found at
ϕ = 22◦, i.e. those curves representing roll angles above that value have slopes greater
than unity and viceversa. Below that threshold, the kinematic steering angle is lower
than the handlebar angle. This has an important implication in motorcycle control.
For low values of the roll angle, the steering mechanism of the motorcycle attenuates
the handlebar angle imposed by the rider (∆ < δ), thus making it easier to steer the
motorcycle. On the contrary, for high roll angles, the steering mechanism amplifies the
rider’s input (∆ > δ), which in turn makes the vehicle more sensitive to steering inputs.
Fig. 3.8d, on the other hand, shows how the roll angle modifies the kinematic steering
angle for a given handlebar position. With this we finish the kinematic description of
the reference frames that characterize the front wheel. Next we derive the position and
velocity of the front contact patch together with other related expressions such as the
tyre deflection, the effective rolling radius and the tyre slips.

The position of the geometric contact point, denoted by C0f , can be obtained from
the tangency condition between the road and the tyre profile as shown in Fig.3.9. In
order for the tyre and the road to have a common tangent plane, the parametric coor-
dinates ζy and ζz must fulfil the following equation [43],

tanϕfw = −
dζzf
dϕfw

/
dζyf
dϕfw

(3.61)

which allows to express the position of C0f as a function of the wheel camber, i.e.

ζyf = ζyf (ϕfw)

ζzf = ζzf (ϕfw)
(3.62)

As a consequence, the position of C0f can be determined from the vector of generalized
coordinates q and Eq. 3.53. Subsequently, the position of the actual contact point Cf

is obtained by projecting C0f on the road plane. This allows to compute the deflection
of the tyre carcass ξ as the distance between the undeformed and the actual contact
points,

ξf = (C0f −Cf ) • κ̂0 (3.63)

with the result being positive when the tyre is compressed. Its derivative represents the
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Figure 3.9: Tangency condition between the tyre and the road plane.

deformation velocity of the carcass measured perpendicular to the road plane.

ξ̇f = Ċ0f • κ̂0 (3.64)

In order to derive the remaining kinematic parameters, it results convenient to use
the wheel frame Tfwp to parameterize the position of the actual contact point Cf . From
Fig. 3.7 we can write

Cf = Tfwp


0

ζ∗yf
ζ∗zf
1

 (3.65)

where
ζ∗yf = ζyf − sϕfwξf
ζ∗zf = ζzf − cϕfwξf

(3.66)

are the local coordinates of Cf on the wheel frame. As a result, the last coordinate
coincides with the effective radius of the tyre ρf , defined as the distance between the
actual contact point Cf and the wheel axis, i.e.

ρf = ζ∗zf (3.67)

The absolute velocity of the contact point with respect to the inertial frame can be
obtained by differentiating Eq.3.65 with respect to time,

Ċf = Ṫfwp


0

ζ∗yf
ζ∗zf
1

+Tfwp


0

ζ̇∗yf
ζ̇∗zf
1

 = Ċ′
f + Ċrel (3.68)

where the first term on the right hand side corresponds to the velocity of a point C′
f



86 3.3 The symbolic motorcycle model

that belongs to the tyre, i.e. that is attached to Tfwp, and is instantaneously coincident
with Cf . The second term, on the other hand, corresponds to the relative velocity
between Cf and C′

f .
We can use Eq. 3.68 to obtain the longitudinal slip of the tyre κ, defined as the ratio

between the longitudinal slip velocity of the contact point Vsx and its absolute forward
velocity Vx .

κf = −
Vsxf
Vxf

(3.69)

The forward velocity Vxf is easily obtained by projecting the velocity of the contact
point Ċf onto the x-direction of the front frame Tfwg, i.e.

Vxf = Ċf • ı̂fwg (3.70)

whereas the slip velocity Vsx may be derived by adding the rolling velocity of the wheel
ρfΩfw to the previous expression, which yields

Vsxf = Vxf + ρfΩfw (3.71)

Note that Ωfw is the absolute angular speed of the wheel, which is different from the
derivative of the generalized coordinate θfw. The first represents the wheel speed with
respect to the ground, whereas the second is the relative speed between the wheel and
the front assembly. Both are related by the following equation:

Ωfw = θ̇fw + β̇fw (3.72)

Hence, due to the adopted SAE reference system, Ωfw will be always negative while the
longitudinal slip will be positive in traction and negative in braking.

Finally, the sideslip angle λ is defined as the angle between the velocity of the contact
point and the intersection of the wheel plane with the road. It can be computed as
follows,

λf = − arctan

(
Vsyf
Vxf

)
(3.73)

where Vsyf is known as the sideslip velocity of the front contact point. It is obtained by
projecting the velocity of the material point of the tyre that is in contact with the road,
i.e. the point denoted as C′

f , onto the y-axis of the front frame Tfwg.

Vsyf = Ċ′
f • ȷ̂fwg (3.74)

The sideslip angle is therefore defined as positive when the tyre slides to the left side,
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e.g. on a right corner.
The kinematic description of the rear tyre may be obtained from the orientation

matrix of the rear assembly Sr,Sr 0

0 1

 = Rotz(ψ) ·Rotx(ϕ) ·Roty(µr) (3.75)

by using the same procedure that has been applied to the front tyre. In fact, Eqs. 3.61
to 3.74 apply also to the rear wheel. Furthermore, the absence of steering at the rear
tyre makes its kinematics straightforward: the rear camber angle is equal to the roll
angle of the main assembly and the angle βrw is equal to the pitch angle of the rear
assembly, i.e.

ϕrw = ϕ

βrw = µr
(3.76)

This concludes the section dedicated to tyre kinematics; the expressions derived here
constitute the inputs of the tyre model.

3.3.2 Force and control elements

The last step before we can generate the motorcycle equations is to characterize the
external actions applied to the vehicle. These actions are represented in the model
by forces and torques that are usually grouped under the names of force and control
elements depending on their purpose. In general, force elements are evaluated within
the model code whereas control elements interface the model with external applications.
The motorcycle model introduced in this thesis comprises the following force elements:
the fork, the rear shock absorber, the aerodynamic map and the tyre-ground interaction.
It also includes four control elements that interface the motorcycle with the virtual rider:
the steering torque, the wheel braking torques and the chain force.

The principle of virtual work introduced in Eq. 3.33 may be used to project the
external forces along the direction of the generalized coordinates. If a force element j
aplies a force fj and a torque lj to the body i, its contribution to the kth generalized
force is given by the following expression

Qek,j =

(
∂rj
∂qk

)T

f ej +

(
∂si
∂qk

)T

lej (3.77)

where rj is the point of application of the force. The partial derivatives involved in the
previous equation can be obtained from the transformation matrices used to describe
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the position of each body Ti and the corresponding rotation submatrices Si.

∂rj
∂qk

=
∂Ti

∂qk
rij (3.78)

∂s̃i = ∂SiS
T
i =

 0 −∂si3 ∂si2

∂si3 0 −∂si1
−∂si2 ∂si1 0

 → ∂si
∂qk

=


∂si1
∂qk
∂si2
∂qk
∂si3
∂qk

 (3.79)

In this case rij is the vector that connects the origin of body i with the application point
of the force fj . The above equations may be combined with the kinematic description of
the model introduced in the preceding section in order to derive the vector of generalized
forces Qe. With the purpose of minimizing the size of the resulting equations, it has
been found convenient to project the generalize forces onto the vehicle frame. This new
set of forces, referred to as Qe, can be computed by multiplying the projection matrix
Γ introduced in Eq. 3.39 by the vector Qe.

Qe = ΓQe (3.80)

Next, the mathematical representation of the force elements included in the model
is elaborated together with their contribution to the vector of generalized forces.

Front suspension

The present model includes the most widespread front suspension system for motor-
cycles, the fork. Such system consists of two telescopic sliders which move along the
interior of two cylindrical tubes. If the sliders are connected to the triple clamp, the
fork is referred to as conventional ; on the other hand, the constructive solution with the
outer tubes fastened to the steering head is called upside-down. The main advantage
of the fork resides in the simplicity of its design. As a matter of fact, the kinematics of
the fork are rather simple and may be modelled as a relative translation between the
upper (sprung) and lower (unsprung) parts of the front assembly (Fig. 3.6). The main
drawbacks of telescopic forks are the high value of the unsprung mass and the friction
forces that appear under braking and during cornering.

The nonlinear force introduced by the fork can be modeled as the contribution of
four different terms. The first is the elastic force due to the helicoidal springs,

Ffrk,1 = ∆Ff − k
(
1 + αsf

)
sf (3.81)

where sf is the stroke of the suspension, k is the stiffness of the springs, ∆Ff is the
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Figure 3.10: Front fork properties. (a) Elastic force. The curve includes the contri-
bution of the linear spring together with the nonlinear effect of the air contained in
the sleeves. Bump and rebound stops limit the course of the suspension. (b) Damping
force. The damping force in rebound is in general higher than in compression so that
the wheel follows road bumps without opposing an excessive force.

preload and α represents the nonlinear stiffening of the springs. The stroke is measured
with respect to the fully extended position as

sf(t) = df(t)− lfrk (3.82)

where lfrk is a positive constant equal to the maximum length of the fork. As a result,
the stroke will be always negative in the working range of the suspension.

The second term represents the effect of the air contained in the fork tubes; this
small volume of air acts as a pneumatic spring in parallel with the main springs when
the suspension is compressed. The force exerted by the air can be computed by means
of a polytrophic transformation law.

Ffrk,2 = p0A

(
V0

V0 +Asf

)γp
(3.83)

In this case p0 is the initial pressure in the fork sleeves, A is the cross section area of
the chamber containing the air, γp is the polytrophic coefficient of the transformation
and V0 is the initial volume, which depends on the amount of oil in the chamber. If
required, the initial volume may be decreased by adding oil so as to increase the elastic
effect of the air.

The third term that contributes to build up the total fork force is the end-stroke
spring, which represents the physical limit of the fork travel. This element is usually
disabled and engages only when the suspension is compressed below the bump limit
or extended above the rebound limit. Such a discontinuity is modelled by an if-then
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clause,

Ffrk,3 =


−kstop(sf − smin,f) if sf < smin,f (bump stop)

0 if 0 ≥ sf ≥ smin,f

−kstopsf if sf > 0 (rebound stop)

(3.84)

where kstop is the stiffness of the end-stroke springs and smin,f is the suspension stroke
at which the bump stop engages. The first three terms constitute the elastic component
of the fork force, depicted in Fig. 3.10a.

The fourth term is the damping force, which is usually quite complex to be described
by an algebraic expression and hence a spline has been used to accurately represent it
as a function of the stroke derivative, see Fig. 3.10b.

Ffrk,4a = f(ṡf) (3.85)

However, in order to perform parametric studies a simpler expression may be useful. If
we define cc and ce as the compression and rebound damping coefficients respectively,
we may represent the damping as a piecewise function of the stroke derivative as follows:

Ffrk,4b =

{
−ccṡf if ṡf < 0

−ceṡf if ṡf ≥ 0
(3.86)

Finally, the total force applied by the fork is computed as the sum of all components,

Ffrk = Ffrk,1 + Ffrk,2 + Ffrk,3 + Ffrk,4a + Ffrk,4b (3.87)

with the result being positive if the suspension force tends to extend the fork and
negative if it tends to compress it. The fork force is applied between the lower and
upper parts of the front assembly as an action-reaction pair, see Fig. 3.11. Its projection
on the generalized coordinates according to Eq. 3.77 is straightforward as the force is
applied in the same direction of df .

Qe
frk =


0

7×1

1

0
3×1

Ffrk (3.88)
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Figure 3.11: Suspension forces. The fork force is directly applied between the upper
and lower parts of the front assembly. The rear suspension, on the other hand, is
more complex due to the geometry of the monoshock arrangement. This system is
characterized by having only one shock absorber, generally mounted between the frame
and the swingarm through a four-bar linkage. The link point F is usually connected
to the frame or to the engine, not depicted in the figure for the sake of clarity.

Rear suspension

A monoshock arrangement is employed for the rear suspension as shown in Fig. 3.11.
This system is characterized by having only one shock absorber, generally mounted
between the frame and the swingarm through a four-bar linkage. The linkage is designed
to make the suspension progressive, which has two advantages over direct systems [13]:
first, it improves the riding comfort as the suspension responds softly to the small
disturbances of the road and, in second place, it allows to keep the frequencies of the in-
plane modes approximately constant when the load is increased by the second passenger
or by the luggage.

It is important to note that the linkage introduces a closed kinematic loop in the
model. Such mechanism may be modelled online, by considering all the bodies and
joints, or offline, by a map that projects the force of the shock absorber onto an equiva-
lent moment applied to the swingarm. The second solution is computationally faster as
the kinematic loop does not need to be solved at each time step. Furthermore, it allows
to keep the model equations as a system of ODEs, which is an important requirement
for the development of the rider control system. The main drawback of this approach is
that the bodies composing the linkage and the shock cannot be included in the model
and hence their mass must be distributed between the frame and swingarm. This how-
ever does not represent a very restrictive limitation as the neglected elements are very
light compared to the frame and the swingarm-wheel assemblies. The derivation of the
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Figure 3.12: Rear shock properties. (a) Elastic force. The spring of the shock
absorber is usually linear; it is the linkage that makes the rear suspension progressive.
Bump and rebound stops limit the course of the suspension. (b) Damping force. As
with the fork, the damping force in rebound is in general higher than in compression.

geometric equations for a pro-link suspension can be found in [51], where an analytical
expression g is defined to compute the stroke of the shock absorber sr as a function of
the swingarm angle γ.

sr(t) = dr(t)− lshock = g
(
γ(t)

)
(3.89)

As with Eq. 3.82, the term lshock is simply a positive constant equal to the maximum
length of the shock. The above equation may be used to find the stroke velocity as a
function of the arm angular speed. By differentiating it with respect to time we obtain,

ṡr =
∂g

∂γ

dγ

dt
= ηγ̇ (3.90)

where η represents the motion ratio of the rear suspension and is defined, for a given
position of the system, as the ratio between an infinitesimal stroke variation and the
resulting infinitesimal rotation of the swingarm. Once the stroke and its derivative are
known, the force generated by the shock may be computed in the same way of the fork,
i.e. by the addition of the elastic force of the spring, the air effect, the end-stroke stops
and the damping curve.

The elastic and damping forces of the rear shock are depicted in Fig. 3.12. The
total shock force is obtained by adding the elastic and damping components and is then
transformed into an equivalent moment around the pivot by means of the virtual work
principle. Let Fshock be the shock force and Mswg the equivalent torque applied to the
swingarm, then by means of the principle of virtual work we can write

Mswg =
∂g

∂γ
Fshock = ηFshock (3.91)
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which allows to express the arm torque as a function of the shock force. Finally, the
moment applied to the swingarm is projected on the generalized coordinates.

Qe
swg =



0
5×1

−1

0
2×1

1

0
2×1


Mswg (3.92)

This way of modelling the suspension has one additional advantage compared to the
online approach as parametric studies can be performed in an intuitive way by simply
modifying the motion ratio map instead of the hard-points of the mechanism.

Aerodynamic forces and moments

The aerodynamic effect is included in the model as a set of two forces (drag and lift)
and one moment4 (pitch) applied at the centre of gravity of the main assembly Gm and
oriented according to the reference frame Ti. The x-axis of this frame lies on the mid-
plane of the vehicle and is always parallel to the ground; its z-axis points downwards
when the motorcycle is upright and forms an angle with the road normal equal to the roll
angle ϕ in cornering conditions; finally, the y-axis is perpendicular to the other two axes
and to the mid-plane of the vehicle. All forces have been assumed to be proportional
to the square of the motorcycle velocity u,

Fax = −1/2ρcxAu2

Faz = −1/2ρczAu2 (3.93)

May = −1/2ρcµAu2

where ρ represents the density of the air, A is the area of the motorcycle cross section
and cx, cz and cµ are the drag, lift and pitch coefficients respectively. The drag force
Fax is strongly influenced by the shape of the motorcycle, especially by the presence or
lack of fairings, and affects both the maximum attainable speed and the performance
in acceleration. The lift force Faz , on the other hand, reduces the tyre loads and may
become dangerous at high speeds. As a matter of fact, modern fairings are designed
to reduce lift force to a minimum. Both effects produce a load variation at the tyres,
which can modify significantly the dynamic response of the vehicle.

4This moment arises from the fact that the pressure centre is not coincident with Gm.



94 3.3 The symbolic motorcycle model

The aerodynamic forces introduced in Eq. 3.93 may be projected along the general-
ized coordinates by using Eq. 3.77.

Qe
a =



1 0 0

0 −sϕ 0

0 1 0

zsϕ 0 sϕ

0 0 0

0 0 1

0
5×1

0
5×1

0
5×1



FaxFaz

May

 (3.94)

Tyre forces and moments

The tyre model presented by Sharp in [51] is used in the present work to evaluate the
forces and moments that characterize motorcycle tyres5. The underlying equations,
which are based on Pacejka’s Magic Formula [12], have been implemented symbolically
in a Maple routine and the resulting code has been coupled with the motorcycle model.
The accuracy of Pacejka’s approach is considered appropriate for the handling simula-
tions needed to assess the behaviour of the virtual rider.

The inputs of the tyre model are the normal load Fz, the camber angle ϕ, the
longitudinal slip κ and the sideslip angle λ. All of them may be calculated from the
tyre kinematics and expressed as functions of the generalized coordinates as discussed
in Section 3.3.1.

The outputs of the tyre model, on the other hand, comprise three forces and three
moments. The most relevant components are depicted in Fig. 3.13 for a reference tyre.
They are expressed according to the modified SAE convention, which is explained in
Fig. 3.14. Note that the tyre forces and moments are applied at the centre of the contact
patch. All of them are computed from Pacejka’s Magic Formula except the normal load,
the value of which is proportional to the carcass deformation ξ and its derivative ξ̇,

Fz = −kzξ − cz ξ̇ (3.95)

where kz is the vertical stiffness of the tyre and cz represents its damping coefficient.
Figs. a) to c) depict the pure slip case, defined as the situation when either longi-

tudinal slip or lateral sideslip occur in isolation. The remaining graphs, d) to f), depict
the combined slip case, where the tyre is simultaneously subject to both longitudinal
and sideslip inputs.

5To increase the oversteering character of the vehicle, the front cornering stiffness has been increased
by +15% with respect to Sharp’s data, whereas the rear has been decreased by the same amount.
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Figure 3.13: Pacejka forces for a 180/55ZR17 rear tyre. (a) Pure longitudinal force.
(b) Pure lateral force. (c) Aligning/twisting moment. (d) Friction ellipse. (e) Com-
bined longitudinal force. (f) Combined lateral force. A vertical load of 2000N has
been used in all figures with the exception of (a).
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Figure 3.14: Sign conventions for tyre forces and moments based on the modified
SAE frame [12]. In this reference frame the x and y axes lie on the road plane whereas
the z-axis points downwards. (a) Rear view. (b) Top view.

The longitudinal force Fx is depicted in Fig. 3.13a as a function of the slip ratio for
several values of the vertical load. We can divide the curve in three different regions;
for small slip values the force is linear with respect to the slip, then the curve presents
a peak where the maximum force occurs and finally the longitudinal force saturates as
the slip increases. Average riders usually work within the first region.

The lateral force Fy is represented in Fig. 3.13b as a function of the sideslip angle
for five different values of the camber angle. We can observe how the response of the
tyre is linear at the origin and then progressively saturates, only showing a peak at
very high camber angles. Motorcycle tyres can generate lateral force by two different
mechanisms, namely sideslip and camber thrust [13]. The red curve shows the effect
of pure sideslip variations (ϕ=0), while the effect of pure camber variations can be
observed by comparing the origin of all five curves (λ=0). Unlike car tyres, which build
up lateral force mainly through sideslip, in motorcycle tyres the dominant mechanism
is the camber thrust.

Fig. 3.13c shows the aligning/twisting moment Mz. This torque results from the
addition of two different effects, one that tends to align the tyre with the direction of
travel (self-aligning) and another that has the opposite effect (twisting). The aligning
moment has its origin in the asymmetric distribution of the shear stress along the
longitudinal direction of the contact patch. Such bias in the stress distribution shifts
the lateral force rearwards with respect to the centre of the contact patch, which in turn
translates into an aligning moment. The twisting moment, on the other hand, arises
when the motorcycle is cambered due to an asymmetrical distribution of the shear stress
in the lateral direction of the contact patch. In the most external area of the patch,
the peripheral velocity of the tyre is greater than the forward velocity, thus leading to
positive longitudinal slip. The opposite happens in the interior area, which undergoes
negative slip. As a result, the shear stress pushes the tyre forward in the external area
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and backward in the interior, thus generating a torque that tends to rotate the tyre
towards the centre of the corner.

The aligning effect dominates at low roll angles while the twisting effect becomes
more important as the roll angle increases. Let’s use a right corner to explain Fig. 3.13c.
According to the SAE reference system, a right corner implies positive values of the
sideslip and roll angles. In this situation Mz is negative (aligning) for small roll angles
and increases rapidly with the roll angle, becoming positive (twisting).

Figs. d) to f) depict the combined slip case. This condition is characterized by the
reduction of lateral force due to longitudinal slip and vice versa, i.e. by the reduction
of longitudinal force due to sideslipping. Pacejka’s tyre model includes a series of loss
functions to account for this phenomenon, which shape the friction ellipse shown in
Fig. 3.13d. Each line in the graph is obtained by varying the longitudinal slip for a
given value of the sideslip. It can be observed that all lines converge towards two points
with null lateral force and a constant value of longitudinal force. As the longitudinal
slip increases, the longitudinal force saturates and the capability of the tyre to generate
lateral force tends to zero.

The saturation of the tyres is also appreciated in Fig. 3.13e, where the maximum
longitudinal force Fx is obtained with no sideslip, and especially in Fig. 3.13f, where
the lateral force Fy tends to zero for high values of the longitudinal slip κ.

The last step in the definition the tyre element is to project the resulting forces on
the generalized coordinates. This is done in two steps. First the tyre forces and moments
at the contact patch are transformed into an equivalent set of forces applied at the wheel
hub. To simplify the projection, this new set of forces and moments is expressed in the
body reference frames Tlf and Tr for the front and rear tyres respectively. The resulting
forces and moments are then projected on the generalized coordinates by using Eq. 3.77.
The result is not shown here due to its size. We can express it in compact form as

Qe
fw = Jfw

[
Fxf Fyf Fzf Mxf Myf Mzf

]T (3.96)

Qe
rw = Jrw

[
Fxr Fyr Fzr Mxr Myr Mzr

]T (3.97)

where Jfw and Jrw are the Jacobian matrices that project the tyre forces of the front
and rear tyres onto the vector of generalized forces.

Control inputs

The forces and torques used by the rider to control the motorcycle are described in
this section. Average human riders generally use the brakes and the throttle for the
longitudinal control of the bike, while the lateral dynamics are mainly controlled through
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the steering system. Racing riders, on the other hand, take advantage of the coupling
between longitudinal and lateral dynamics to fully exploit the performance of the vehicle.
In order to simulate the control actions that human riders exert on the motorcycle, the
model presented in this thesis comprises four independent control elements: the braking
torques applied to the front and rear wheels, denoted as Mfw and Mrw, the chain force
Fch and the steering torque τ .

In the virtual world, this set of forces and torques represents the interface between
the motorcycle equations and the rider model, i.e. the outputs of the rider constitute
the inputs of the motorcycle and vice versa. This means that, unlike the force elements
introduced so far, the generalized forces associated to the rider are not entirely evalu-
ated within the motorcycle equations. Their values are actually determined, at every
integration step, by the rider model, which then feeds them back to the motorcycle in
order to close the control loop.

Both the braking and the steering torques are directly applied to the correspond-
ing degrees of freedom of the model, and therefore their projection on the generalized
coordinates is straightforward. This direct projection is represented by the unit values
in the first three columns of Eq. 3.98, which correspond to the front, rear and steering
torques respectively. The term bδ δ̇ in the third column models the rotational steering
damper.

Qe
u =



0
5×1

0
5×1

0
5×1

0
5×1

0 0 0 lrsα +R

0 0 1− bδ δ̇ 0

0 0 0 0

0 0 0 −lrsα −R
0 1 0 −R
1 0 0 0




Mfw

Mrw

τ

Fch

 (3.98)

On the other hand, the projection of the chain force on the generalized coordinates
requires some additional steps. The chain transmits the engine power from the drive
sprocket to the rear wheel and influences considerably the load distribution during
acceleration and braking, thus reducing or increasing the rear force available for traction.
It is therefore important to consider its effect on the vehicle model. As a matter of fact,
it would not be realistic to represent the engine as a simple torque applied on the rear
wheel as doing so would introduce significant errors, especially under high acceleration.

The projection of the chain force on the generalized coordinates comes down to
finding the angle α between the chain and the swinging arm. This geometric problem,
depicted schematically in Fig. 3.15, presents a closed solution that can be easily derived
from the auxiliary angles α1 and α2. The first of them is defined as the angle between
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Figure 3.15: Schematic of the chain model. The chain transmits the engine power
from the drive sprocket to the rear wheel. The geometry of the system formed by the
arm, the chain and both sprockets have a big impact on the load distribution during
acceleration and braking.

the vector normal to the chain and the line that connects the sprocket centres, i.e. the
angle enclosed between the lines AC and CD,

α1 = ÂCD = arccos

(
R− r
CD

)
(3.99)

where r and R are the radii of the front and rear sprockets respectively. The second
angle, on the contrary, measures the orientation of the line CD with respect to the
swingarm, depicted in the Figure by the line CO.

α2 = D̂CO = arctan

(
OD sin(β − γ)

CO +OD cos(β − γ)

)
(3.100)

Finally, the expression of the chain angle may be computed as follows:

α = α1 + α2 −
π

2
(3.101)

The projection of the chain force along the direction of the generalized coordinates
depends solely on α and is represented by the fourth column of Eq. 3.98. The non-
zero terms correspond to the following generalized coordinates: the chassis pitch, the
swingarm pitch and the rear wheel rotation respectively.

To conclude this section regarding the force and control elements, we derive the
global vector of generalized forces Qe by adding the contribution of all the external
forces applied to the model, i.e. front and rear suspensions, aerodynamics, tyre forces
and control inputs.

Qe =
∑
j

Qe
j = Qe

frk + Qe
swg + Qe

a + Qe
fw + Qe

rw + Qe
u (3.102)
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3.3.3 Equations of Motion

The dynamic equations of the motorcycle model are derived in this section, which is
structured in four parts. The first three introduce the multibody dynamic equations
of the vehicle, the tyre relaxation model and the track equations respectively. In the
fourth, the precedent elements are coupled to build the full model in state space form.

Motorcycle equations

We now derive the dynamic equations of the motorcycle model by using the Lagrange
approach. In consequence, the equations of motion will be obtained from Eq. 3.34,
which is repeated below for convenience.

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk, (k=1 . . . f)

In the above expression the Lagrangian L is defined as L = T − U , where T is the
kinetic energy of the motorcycle and U is its potential energy. All the steps described
in section 3.2.3 to derive the equations of motion for multibody systems have been
implemented in the computer algebra software Mapler [45]. Symbolic software allows
to derive the equations of motion for large systems in a fashion similar to hand derivation;
obtaining first the model equations which are then compiled in order to produce highly
efficient simulation programs. The details of the resulting motorcycle equations are not
shown here due to their size; it is possible however to include them in their compact
form,

M̂(q)q̈ = Q̂(q, q̇,pλ,u) (3.103)

where q is the vector of generalized coordinates, u is the vector of control inputs, M̂ is
the inertia matrix of the system and Q̂ includes the gyroscopic, Coriolis and centrifugal
forces along with the vector of generalized applied forces defined in Eq. 3.102. The
vector pλ, on the other hand, comprises the tyre states, which are described in the next
section dedicated to tyre dynamics. We can project these equations on the vehicle frame
Tψ through the transformation matrix Γ introduced in Eq. 3.39.

ΓM̂(q)q̈ = ΓQ̂(q, q̇,pλ,u) (3.104)

In order to fully convert the dynamic equations to the vehicle frame, we also need to
transform the velocity of the vehicle from Cartesian coordinates (ẋ, ẏ) to body coordi-
nates (u, v), i.e. [

ẋ

ẏ

]
= Sψ

[
u

v

]
(3.105)
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which can be written in function of the transformation matrix Γ and the vector of
generalized velocities qv.

q̇ = Γ−1qv (3.106)

The same needs to be done with the accelerations (ẍ, ÿ), i.e.[
ẍ

ÿ

]
= Sψ

[
u̇

v̇

]
+ Ṡψ

[
u

v

]
= Sψ

[
u̇− ψ̇v
v̇ + ψ̇u

]
(3.107)

which can also be expressed in function of Γ and qv.

q̈ = Γ̇
−1

qv + Γ−1q̇v (3.108)

By substituting Eqs. 3.106 and 3.108 into Eq. 3.104, we obtain the desired system
of first-order differential equations expressed in the vehicle frame Tψ,

d

dt

[
qv

qp

]
=

[
M−1(qp)Q(qv,qp,pλ,u)

Apqv

]
(3.109)

with M=ΓM̂Γ−1 and Q=ΓQ̂−ΓM̂Γ̇
−1

qv. Not all the generalized coordinates appear
in the Lagrangian. In particular, the Cartesian coordinates (x, y), the yaw angle ψ, and
the tyre rotation angles θfw and θrw are not present at position level. These coordinates
are know as cyclic or ignorable coordinates [144] and their presence is associated with
the existence of symmetries in the system; e.g. wheel angles are cyclic because the
wheels are axially symmetric and their center of mass lies along their rotation axis. The
matrix Ap projects the generalized velocities qv onto a new set of velocities q̇p, with

qp = [z, ϕ, µ, δ, df , µr]
T (3.110)

not including any cyclic coordinates. This projection reduces the number of system
states and also avoids the integration of the vehicle speeds u and v, which would lack
of physical meaning as they are expressed in the body frame.

Tyre Dynamics

It is a well know fact that tyre forces do not originate instantaneously [12], they need a
certain time to build up, which depends on the carcass stiffness and damping character-
istics of the tyre. To illustrate the dynamic response of the tyres, let’s suppose that the
motorcycle is initially running in straight line. In these conditions the roll and sideslip
angles are zero and, in consequence, so are the lateral forces at the contact patch. If we
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Figure 3.16: Scheme of the lateral relaxation model of the tyre.

instantaneously change the attitude of the tyre, the lateral force will increase gradually
from zero to the steady state value corresponding to the assigned sideslip and roll angles.
In other words, the contact forces will follow, with a delay, the variation of the angles
on which they depend. Measurements also show that the component due to camber has
a smaller lag than that due to sideslip.

This transient behaviour of the tyre in the lateral direction can be represented by
the first order model of Figure. 3.16, which is composed of a contact point C that is
suspended with respect to the wheel by a lateral spring and a damper connected in series.
The contact point may move (slip) with respect to the tyre in the lateral direction, thus
exciting the spring and damper elements. The spring represents the lateral compliance
of the tyre and depends mainly on the characteristics of the carcass while the damper
models the response of the tyre to lateral slip.

As the spring and the damper are in series, the cornering force due to sideslip must
be equal to the elastic force generated by the elastic deformation of the tyre if the
carcass inertia is neglected, i.e.

kλ
Vx
ẏC = −ks(yC − yi) (3.111)

where yC represents the lateral displacement of the contact point, yi is the displacement
imposed on the tyre and Vx is the longitudinal component of the contact patch velocity.
If we introduce the definition of the (linear) sideslip angle in the above expression, after
some manipulation we can write

σy
Vx

dλ

dt
= λss − λ (3.112)

which defines the tyre dynamics in terms of the transient sideslip λ and its steady-state
counterpart λss previously defined in Eq. 3.73, where the subscript ss was omitted
for simplicity. The term σy = kλ/ks is know as the relaxation length and determines
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transient behaviour of the tyre as it represents the space that the wheel has to travel in
order for the lateral force to reach a 63% of the steady-state value. This follows from
the fact that Eq. 3.112 corresponds to a first order filter with time constant τ = σy/Vx.

The transient sideslip angles of the front and rear tyres constitute two first order
states that must be integrated along with the motorcycle equations. At each simulation
step, the current value of the transient sideslips, λf and λr, will be passed to the tyre
model in order to calculate the tyre forces. We can collect these two states in the
following vector equation:

d

dt

[
λf

λr

]
=

[
fλf (λf ,qv,qp)

fλr(λr,qv,qp)

]
(3.113)

Note that the vehicle states, qv and qp, are present in the right hand side of the equation
as they appear in the definition of the steady-state sideslip λss . It is more convenient
to express this equation in compact form,

ṗλ = fλ(pλ,qv,qp) (3.114)

with pλ being the vector of tyre states.
The effect of the relaxation length on the camber thrust is almost negligible [13]

and therefore is not included in the present model. This assumption implies that forces
and moments arising from wheel camber occur without delay, while those arising from
sideslip are lagged. The same considerations are made by Sharp in [51], who considers it
the most physically accurate approach since camber builds up the lateral forces geomet-
rically whereas sideslip leads to forces through a distortion of the tyre carcass, which
requires time to develop. As in Sharp’s model, the longitudinal slip is also assumed
to be instantaneous. A detailed relaxation model in the longitudinal direction would
become necessary, for instance, to capture high-frequency phenomena like the so-called
chatter [148], typical of the racing machines, which is out of the scope of this thesis.

Track Coordinates

Road vehicles typically travel along a path (e.g. a road, a track, etc), which makes
it convenient to describe their motion by means of curvilinear coordinates rather than
the usual Cartesian parameterization employed to derive the equations of motion. The
shape of the path, slender along its main dimension and narrow across it, makes the
curvilinear coordinates a natural choice for the simulation of road vehicles [94,97].

This new set of coordinates comprises three elements as shown in Fig. 3.17: the
longitudinal coordinate s, which defines the position of the vehicle along the track; the
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Figure 3.17: Definition of curvilinear coordinates.

lateral coordinate n, which represents the transverse displacement of the vehicle with
respect to the track centre line; and the angle χ, that represents the orientation of
the vehicle, also with respect to the track centre line. In order to fully exploit these
coordinates, it is convenient to parameterize the road by its arc-length s and its local
curvature κ.

Thus, the coordinates of the reference point of the motorcycle P can be defined with
respect to the track by taking the nearest point of the centre line Pcl as a reference,
that is [

x

y

]
=

[
xcl

ycl

]
+

[
−nsθcl
ncθcl

]
(3.115)

where the pair (x, y) represents the planar coordinates of P, the pair (xcl , ycl ) are the
coordinates of Pcl and θcl is the orientation of the track centre line with respect to the
global x-axis. By differentiating Eq. 3.115 with respect to time, we get

Sψ

[
u

v

]
= Sθcl

[
ṡ− θ̇cln

ṅ

]
(3.116)

where Sψ and Sθcl are 2×2 rotation matrices associated to the vehicle frame and to the
track centerline respectively. Then, by expanding these matrices and replacing θ̇cl by
κṡ, we can write [

cψ −sψ
sψ cψ

][
u

v

]
=

[
cθcl −sθcl
sθcl cθcl

][
(1− nκ)ṡ

ṅ

]
(3.117)

which allows to derive the following explicit expression for the derivatives of the curvi-
linear coordinates s and n,

ṡ =
ucχ − vsχ
1− nκ

ṅ = usχ + vcχ

(3.118)
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with
χ = ψ − θcl (3.119)

i.e. the relative angle of the vehicle with respect to the track χ is equal to the difference
between the yaw angle ψ and the angle of the track centre line θcl .

We need one more differential equation to fully determine the curvilinear coordinates
from the vehicle states. This last equation can be obtained by differentiating Eq. 3.119
with respect to time, which yields:

χ̇ = ψ̇ − θ̇cl = ψ̇ − κṡ = ψ̇ − κucχ − vsχ
1− nκ

(3.120)

The curvilinear coordinates constitute a set of three first order equations. As op-
posed to the tyre slips, the motorcycle equations do not depend on the curvilinear
coordinates and therefore they can be considered mere kinematic outputs of the system,
which means that they could be obtained offline in a postprocessing stage. However, in
this thesis we need to integrate Eqs. 3.118 and 3.120 along with the motorcycle equations
as the rider model will make use of the curvilinear coordinates during the simulation.
We can collect them in the following vector equation,

d

dt

sn
χ

 =


ucχ − vsχ
1− nκ

usχ + vcχ

ψ̇ − κucχ − vsχ
1− nκ

 (3.121)

which can be expressed in compact form as

ṗt = ft(pt,qv,qp) (3.122)

Global equations in state space form

The global equations of the motorcycle model, including tyre dynamics and track coor-
dinates, are obtained in by coupling Eqs. 3.109, 3.114 and 3.122. This yields a system
of first-order differential equations known as the nonlinear state-space representation of
the model.

d

dt


qv

qp

pλ

pt

 =


M−1(qp)Q(qv,qp,pλ,u)

Apqv

fλ(pλ,qv,qp)

ft(pt,qv,qp)

 (3.123)



106 3.3 The symbolic motorcycle model

In compact form, the model equations can be written as follows,ẋ = f(x,u)

y = g(x,u)
(3.124)

where f represents the state equations, x is the state vector and u is the input vector.

x =
[
qv qp pλ pt

]T
u =

[
Mfw Mrw τ Fch

]T (3.125)

The output function g is needed to couple the motorcycle model with the virtual
rider. The vector y contains two elements, the transverse displacement of the motorcycle
with respect to the track center line n and the curvilinear speed ṡ.

y =
[
n ṡ
]T (3.126)

The target of the rider model developed in the successive chapters will be to minimize
the error between the system outputs y and a given reference imposed by the user yd.

The system presents a total of 22 states, 4 inputs and 2 outputs. In order to give
an idea of its size, the number of operations required to evaluate one call to the state
function f is provided next.

Operation Original Code Optimized Code

Additions 4551 1342
Multiplications 8113 1465
Divisions 19 13
Function calls 1841 41
Assignments 785 174

Table 3.3: Number of operations needed to evaluate one call to f .

The first column represents the original equations, while the second corresponds to
the same system after performing a common subexpression optimization, i.e. an heuris-
tic procedure that identifies, removes, and collects common subexpressions in the code.
The Maple package codegen[optimize] [149] was used for this purpose. It is interest-
ing to note how the code optimization greatly reduces the number of operations needed
to evaluate the equations, thus improving the efficiency of the model. In particular,
the most significant reduction is observed for the function calls. This is due to the fact
that the optimization procedure replaces all the functions within the model (mainly
trigonometric) by subexpressions which are evaluated just once per function call; e.g.
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Figure 3.18: Reference multibody model developed in Virtual.Lab Motion.

all occurrences of sin(ϕ) are replaced by t1, adding the statement t1 = sin(ϕ) at the
beginning of the code.

3.4 Model verification

A comparison between the symbolic motorcycle model defined in this chapter and an
equivalent model developed within the commercial package Virtual.Lab Motion is pre-
sented in this section for verification purposes. The reference model, shown in Fig. 3.18,
comprises 10 rigid bodies, including the chain and the linkage system, for a total of 60
dependent coordinates and 11 degrees of freedom. Both models possess exactly the same
parameters. They correspond to a sports motorcycle; geometric and inertial properties
come from [43] whereas the tyre model is parameterised according to [51].

Three different manoeuvres, designed to evaluate the longitudinal and lateral dy-
namics of the vehicle, are used to compare the models. Due to the intrinsic instability
of motorcycles, all manoeuvres are performed in a closed-loop fashion by coupling the
model to a virtual rider. The details of the rider algorithm are not relevant to under-
stand the comparison and will be discussed in successive chapters.

3.4.1 Longitudinal dynamics

An acceleration test in straight line conditions is reported here with the purpose of
comparing the in-plane behaviour of the models. The results are shown in Fig. 3.19,
where the blue line represents the symbolic model and the red crosses correspond to the
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Figure 3.19: .Comparison between the symbolic model and the reference model
developed in Virtual.Lab Motion during an acceleration test in straight line. (a) Mo-
torcycle speed. (b) Motorcycle acceleration. (c) Pitch angle of the main frame. (d)
Front stroke. (e) Vertical load at the front tyre. (f) Vertical load at the rear tyre.

model developed in Virtual.Lab Motion. During the proposed manoeuvre, the motor-
cycle accelerates from 10 up to 44m/s, reaching a maximum longitudinal acceleration
of 9.3m/s2.

The combined effect of the longitudinal acceleration of the vehicle, the aerodynamic
drag and the chain force compresses the rear suspension and raises the front end. This
is characterized by an increase in the pitch angle of the chassis µ and an extension of
the fork sf . It is worth pointing out that the fork stops extending at t = 8.5s when the
rebound limit is reached. This manoeuvre is also characterized by a big load transfer
towards the rear tyre. In fact, at the end of the simulation the front wheel is nearly
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Figure 3.20: .Comparison between the symbolic model and the reference model
developed in Virtual.Lab Motion during a corner entry maneuver. (a) Motorcycle
speed. (b) Roll angle. (c) Steering torque. (d) Steering angle. (e) Lateral force at the
front tyre. (f) Lateral force at the rear tyre.

unloaded, Fzf ≈ 0, while the rear load Fzr almost doubles its initial value.
A close agreement is observed between both models in terms of vehicle speed, longi-

tudinal acceleration, chassis pitch angle, front stroke and tyre loads.

3.4.2 Lateral dynamics

Two maneuvers are reported next to compare the lateral response of the models. In
particular, a corner entry and a slalom test, both performed at a constant speed of
20m/s.
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Figure 3.21: .Comparison between the symbolic model and the reference model
developed in Virtual.Lab Motion during a slalom test. (a) Motorcycle speed. (b) Roll
angle. (c) Steering torque. (d) Steering angle. (e) Lateral force at the front tyre. (f)
Lateral force at the rear tyre.

The corner entry is shown in Fig. 3.20; the motorcycle starts this maneuver running
in straight line (ϕ = 0) and then makes a right hand turn, reaching a stable steady state
after a few seconds. The final state represents an aggressive corner, as as shown by the
extreme roll angle reached by the vehicle at the end of the simulation (ϕ > 55 ◦) and by
the large tyre forces. The roll motion initiates with a small rotation of the handlebar
to the left side (δ < 0); technique that is usually know as counter-steering since the
rider steers in the opposite direction to the corner. This action generates a centrifugal
force that leans the motorcycle to the right. Once the motorcycle is rolling, the rider
turns the handlebar into the direction of the corner in order to make the vehicle follow
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the desired line. Note that the steering torque is always negative during the maneuver,
meaning that the rider prevents the handlebar from turning into the direction of the
corner.

The results of the slalom test are depicted in Fig. 3.21. This maneuver is character-
ized by a series of cones that the rider must avoid alternately, i.e. leaving the first on the
right, the second on the left and so on. The cones are usually positioned equidistantly,
with the distance between cones being set to 62m in this case. In order to execute the
manoeuvre, the rider applies a periodic steering torque to the vehicle which in turn re-
sponds with a periodic motion. The roll angle reached by the vehicle during the slalom
is also large , being the peak value over 50 ◦.

As far as the lateral dynamics are concerned, a good match is observed between
both models in terms of vehicle speed, roll angle, steering torque, steering angle and
lateral tyre forces.

3.5 Concluding remarks

In this chapter we have introduced an eleven-degree-of-freedom vehicle model suitable
for the simulation and control of motorcycle dynamics. The model includes the main
bodies that compose any standard motorcycle, i.e.: the front and rear wheels, the
main assembly (including the frame, the engine and the fuel tank), the rear assembly
(including the swing arm and the rear brake calipers), the upper part of the fork assembly
(including the sprung part of the fork, triple clamps, the steering column, and the
handlebar), and the lower part of the fork assembly (including the unsprung part of
the fork and the front brake calipers). Together with the multibody model, a series of
subroutines and force elements have been developed in this chapter in order to calculate
the suspension forces, the rear linkage kinematics, the chain effect, the aerodynamic map,
and the tyre forces.

All the equations have been derived in a symbolic form, thus allowing a low-level
control of the model throughout the development process: the model uses a combina-
tion of relative coordinates and track coordinates, which have been employed to de-
scribe the motion of the motorcycle along a given road; first order relaxation equations
have been included to represent tyre dynamics; symbolic expressions have been derived
for tyre kinematics, including the real cross-section of the carcass, etc. Furthermore,
the equations of motion have been significantly simplified by exploiting algebraic ma-
nipulation, thus producing an efficient simulation code able to run in real-time. The
resulting procedure has been subsequently exported to C and then compiled in Matlab,
as an S-function and a .mex file, for the numerical evaluation of the equations. The
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S-function implementation allows to fully exploit the capabilities of Matlab as the
model can be coupled with any control algorithm developed in Simulink.

The equations of motion of the motorcycle model have been written as a system
of first order ODEs, taking advantage that an analytical solution exists for the linkage
of the rear suspension, which is the only closed-loop present in the system. As no
constraint equations are included, this formulation provides a straightforward state
space representation of the model, being perfectly suited for control system design and
analysis. Another advantage offered by the chosen implementation is that a great variety
of solvers are available to integrate the equations of motion.

In the final part of the chapter, a multibody model developed in the commercial
software LMS Virtual.Lab Motion has been introduced. The model, which represents
the same vehicle as the symbolic eleven-degrees-of-freedom motorcycle, has been em-
ployed as a validation tool. Both models have been simulated by means of in-plane and
out-of-plane maneuvers, with the results showing a very good agreement.

The motorcycle model presented here will be used in the next chapters to build the
virtual rider. It is in this process where the symbolic model will prove especially useful
for research purposes as opposed to commercial programs such as ADAMS, Simpack,
Virtual.Lab Motion, etc. In the next chapter, the model characteristics will be thor-
oughly exploited to solve the quasi-steady state motion of motorcycles in straight line
and in cornering conditions.



I’m not sure they understand
everything about racing cars.
I am not sure that this is wise.

Jean Alesi

Chapter 4

A new methodology for the quasi-
steady state analysis of motorcycles

The next two chapters introduce a new methodology for the quasi-steady state analysis
of motorcycles in straight line and in cornering conditions. The approach presented
here is based on the solution of the nonlinear algebraic equation system that arises
from the dynamic model when the quasi-steady state conditions are imposed. The first
part of the chapter describes the underlying assumptions of the proposed methodology
and the details of its implementation. A continuation strategy to efficiently explore the
quasi-steady state solutions of the motorcycle equations completes this section. The
second part of the chapter includes an extensive analysis of the stationary equilibrium
points as a function of the vehicle speed and the corner radius. Finally, a parametric
study of the quasi-steady state motion of the motorcycle is performed and the results
are discussed. The chapter is concluded with some remarks and conclusions regarding
the application of the results to the development of the virtual rider.

4.1 Introduction

When a wheeled vehicle makes a turn, it normally goes through three phases. The first
is the transient corner entry, for example after a straight section. In this phase the yaw
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rate and the vehicle sideslip build up from zero in straight running until the stationary
motion is reached in the mid section of the turn. The second phase is the steady state
corner, where the vehicle moves along a circular path at constant speed. Most of the
states that describe the motion of the vehicle, such as the yaw rate and the sideslip,
remain constant in this part of the manoeuvre, and hence its name. The final phase of
this process is the transient corner exit, where the yaw speed and the sideslip return to
zero as the vehicle goes back to the straight running conditions.

The study of the steady state part of the cornering manoeuvre is widespread in
the automotive literature, especially as far as four-wheeled vehicles are concerned [150,
151]. A simplified model with three degrees of freedom, known as the bicycle model, is
usually employed for this purpose. This technique relies in the fact that the differential
equations that characterize the response of the vehicle become algebraic if the radius
of the corner and the speed of the vehicle are held constant. The resulting equations,
which present an analytical solution for the linear bicycle model, allow to calculate all
the states of the vehicle given its speed and the radius of the corner. The simplicity of
this approach, which allows to investigate the directional stability of the vehicle without
having to integrate the equations of motion, has led to the development of multiple
metrics widely used to study vehicle handling such as the understeer coefficient and the
handling diagram.

The study of more complex models requires, however, the use of multibody tools
to represent the vehicle. A thorough analysis of the most popular multibody codes in
the market, performed during the first stages of this thesis, revealed that none of them
included the numerical tools needed to solve the steady state problem in a direct manner.
Although most of the general-purpose packages currently available possess a built-in
(static) equilibrium solver, this cannot be used to find the steady state configuration
of the vehicle as it forces the system derivatives to be zero by definition. This means
that the vehicle speed cannot be included in the solution and therefore only pure static
problems can be solved.

The steady state equilibrium of multibody vehicle models is usually found by inte-
grating the equations of motion until the desired condition is reached [40, 100]. This
approach, which will be referred to as the indirect solution, has two significant draw-
backs. Even though research in the field of numerical analysis has brought about efficient
techniques for the numerical integration of multibody models, simulation times can be
long. Moreover, if a dynamic solver is used to achieve a steady state solution, a con-
troller is required to stabilize the vehicle around the desired condition. This process is
slow and does not guarantee that all desired conditions (e.g. curvature and velocity) are
accurately met at the same time. The above disadvantages are even more significant
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when it comes down to motorcycles as they are intrinsically unstable, which makes it
difficult to design a controller that is simultaneously fast, stable and steady state error
free.

As an alternative to the indirect solution, Cossalter et al. presented in [39] an
algebraic method to solve the steady state motion of a multibody motorcycle model.
The scope of their work, based on a six degree-of-freedom model with no suspensions,
was to study the steering torque in stationary conditions and its sensitivity to speed,
curvature and several design parameters. The equations of the model were directly
obtained in a steady state form and included only the stationary terms, i.e. those that
do not vanish when the motorcycle runs along a circular path at constant speed. In
addition, to further simplify the problem, they linearized the pitch equation and used
the roll and the steering angles as the independent variables of the problem. Such
selection of variables allowed them to precompute the kinematics of the motorcycle
at position level, thus reducing the equilibrium problem to solving the curvature, the
generalized velocities and the tyre reaction forces. The resulting system of non-linear
algebraic equations was successfully solved by means of a fixed-point iteration method.

The approach proposed by Cossalter significantly reduces the complexity of finding
the steady state equilibrium due to the fact that the position problem is not passed to
the nonlinear solver. However, one of the major disadvantages of this method is that
the speed of the vehicle and its trajectory cannot be directly set by the user; they are
implicitly imposed through the steering and roll angles. In addition, it is not possible
to extend the approach to more complex models including suspensions as the additional
degrees of freedom would not allow to decuple the position problem.

The same authors proposed a different methodology for the steady state analysis
of motorcycles in [152] where the speed and the curvature were considered the inde-
pendent variables of the problem. This new method was specifically designed for the
model presented in [43], which was built in dependent coordinates following the natural
coordinates approach. The key idea behind this new method was to rewrite the Carte-
sian coordinates of all points in a reference frame moving and rotating along a circular
path with the desired radius. Two additional constrains were introduced to fix the rear
contact point to the origin of the moving frame. Finally, the solution was obtained by
means of a nonlinear equation solver.

The author of the present thesis presented in [130] the first direct application of a
general purpose multibody code, namely Virtual.Lab Motion, for the steady state anal-
ysis of motorcycles. In that work, the Newton-Euler approach was used to represent
the equations of motion of the motorcycle according to the internal formulation of the
Virtual.Lab Motion solver. Three translational coordinates and four Euler parameters
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were employed to represent the position and orientation of each body respectively. To-
gether with the standard constraints used to define the model joints, a set of velocity
and acceleration constraints were added to the problem, thus allowing the application
of the static solver to solve the steady state equilibrium. The influence of curvature and
speed on the steering angle, the steering torque and the acceleration index were studied
for a multibody motorcycle model with eleven degrees of freedom.

The approach introduced in this thesis extends the works described in the preceding
paragraphs. As opposed to those works, we present here a quasi-steady state treatment
of the motorcycle equations, with the solution not being limited to the constant speed
case. By exploiting the minimal formulation of the multibody model introduced in
the previous chapter, it is possible to easily include in the solution the effect of the
longitudinal acceleration as well as the effect of the derivative of any other degree of
freedom such as, for instance, the roll rate or the roll acceleration. The quasi-steady1

state solution will be obtained by solving the nonlinear algebraic equation system that
arises from the dynamic model when the quasi-steady state conditions are imposed. A
nonlinear equation solver based on the Newton-Raphson’s method will be used to that
end.

4.2 The quasi-steady state method

In this section we describe the method developed to find the quasi-steady state solution
of the motorcycle equations introduced in the previous chapter. We start by describing
the reference frame where the velocity and the acceleration of the motorcycle are defined
together with the constraint equations needed to impose them. Then, the underlying
assumptions of the methodology and the details of its implementation are presented
for the pure steady state case. Finally, the methodology is extended to the general
quasi-steady state solution.

4.2.1 Reference frames and kinematic constraints

The main parameters that define the quasi-steady state equilibrium are the speed of
the vehicle, its longitudinal acceleration and the local curvature of the trajectory at
the point of interest. The lateral acceleration, on the other hand, is implicitly given by
the vehicle speed and the track curvature. All the kinematic quantities involved in the

1The prefix quasi is used in this case to emphasize that the solution does not represent a pure
stationary condition as the equations may include general velocity/acceleration terms. The term quasi-
steady state solution refers to a consistent set of states and derivatives that fulfill the dynamic equations
of motion at a certain time instant.
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Figure 4.1: Kinematic quantities involved in the definition of the quasi-steady state
problem. Two reference frames are shown in the figure: a frame attached to the
vehicle Tψ, and a frame tangent to the trajectory Tβ . The speed and acceleration of
the vehicle, shown in blue, are defined in the tangent frame.

definition of the problem are shown in Fig. 4.1. It is important to note that the vehicle
speed and its acceleration, depicted in blue, are not defined in the vehicle frame Tψ

but in a reference frame Tβ tangent to the trajectory. We will denote the unit vectors
of these two frames as ı̂β , ȷ̂β and κ̂β for the tangent frame and ı̂ψ, ȷ̂ψ and κ̂ψ for the
vehicle frame.

The angle between both frames, depicted as β in the figure, is generally known as
the vehicle sideslip angle and represents the deviation of the longitudinal axis of the
vehicle with respect to its direction of motion. It can be computed from the model
states as follows,

β = − arctan
(v
u

)
(4.1)

where u and v are respectively the longitudinal and lateral components of the vehicle
velocity expressed in the body-fixed frame Tψ.

We can use the sideslip angle β to project the vehicle velocity along the axes of the
tangent frame Tβ , [

vt

0

]
=

[
cβ −sβ
sβ cβ

][
u

v

]
(4.2)

with vt being the absolute velocity of the vehicle. The projections of u and v along the
y-axis of the tangent frame cancel out due to the definition of β, which can be easily
proven by comparing the second row of Eq. 4.2 to Eq. 4.1.

Similarly, the absolute acceleration of the vehicle can be projected on Tβ ,[
a
xβ

a
yβ

]
=

[
cβ −sβ
sβ cβ

][
a
xψ

a
yψ

]
(4.3)

where a
xβ

and a
yβ

are the components of the vehicle acceleration in the tangent frame,
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while a
xψ

and a
yψ

represent the same vector resolved in the vehicle frame.
The first row of Eq. 4.2 together with Eq. 4.3 constitute a set of three kinematic

constraints that can be used to impose the desired speed and acceleration conditions
for the quasi-steady state equilibrium. In order to make the constraint equations con-
sistent with the motorcycle model, we need to rewrite them as functions of the model
states, its derivatives and the imposed variables vt, axβ and κ. This can be achieved by
differentiating the velocity vector in the vehicle frame,[

a
xψ

a
yψ

]
=

[
u̇− vψ̇
v̇ + uψ̇

]
(4.4)

and by rewriting the lateral acceleration as the product of the speed and the track
curvature,

a
yβ

= v2t κ (4.5)

which allows to define the following set of algebraic equations,

Φ(q̇v,qv) =

 ucβ − vsβ − vt
(u̇− vψ̇)cβ − (v̇ + uψ̇)sβ − axβ
(u̇− vψ̇)sβ + (v̇ + uψ̇)cβ − v2t κ

 = 0 (4.6)

where β is also a function of the model states as per Eq. 4.1. As far as the sign of the
imposed variables is concerned, they are consistent with the tangent frame Tβ . Hence,
the speed of the motorcycle vt is always positive, the longitudinal acceleration axβ is
positive in traction and negative in braking, whereas the lateral acceleration ayβ is
defined as positive when the motorcycle makes a right turn and negative when it turns
in the opposite direction. Finally, the above equations can be further simplified if there
is no longitudinal acceleration and ψ̇ = vtκ as it happens in the steady state case.

Φ(q̇v,qv) =

ucβ − vsβ − vtu̇

v̇

 = 0 (4.7)

It is worth highlighting two points here. Firstly, the path constraints introduced in
Eq. 4.6 and Eq. 4.7 are used to specify the kinematics of the reference point P, which
means that the velocity and acceleration of the vehicle are imposed at the road level, see
Fig. 4.2. Henceforth, we will refer to P as the path point. Secondly, all constraints are
defined so that the effect of the vehicle sideslip angle is properly taken into account, i.e.
the imposed velocity vt and the longitudinal acceleration axβ are both tangent to the
trajectory, while the lateral acceleration ayβ is perpendicular to it. This consideration
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Figure 4.2: Rear view of the motorcycle during a left turn. The constraint vector Φ
specifies the kinematics of the reference point P. Hence, the velocity and acceleration
of the vehicle are imposed at the road level. In the figure, the lateral acceleration of
the reference point ayψ is shown in blue while the longitudinal acceleration axψ, not
shown, points forward in traction and rearward in braking.

becomes especially important when it comes down to designing a rider model able to
complete aggressive maneuvers such as those performed by racing riders, who often
make use of significant vehicle slip. In other words, a rider model that neglects sideslip
will fail to understand the response of the vehicle in the nonlinear regime.

4.2.2 Steady state equations

The starting point to solve the stationary equilibrium of the motorcycle are the differ-
ential equations of motion introduced in Eq. 3.123. Although there exist methods to
find the steady state equilibrium by integrating the aforesaid equations [40, 100], they
present important drawbacks that make them unsuitable for the scope of this thesis.
Besides the simulation time, which can be relatively long until the desired conditions
are met, a control algorithm is required to stabilize the vehicle around the desired con-
dition. Furthermore, motorcycles are intrinsically unstable, which makes it difficult to
design a controller that is simultaneously fast, stable and steady state error free.

The steady state equilibrium will be solved here by the transforming the differential
equations of motion, which are partially reproduced below for ease of reference, into an
algebraic system.

d

dt

qv

pλ

 =

M−1(qp)Q(qv,qp,pλ,u)

fλ(pλ,qv,qp)

 (4.8)

Note that only the equations corresponding to the motorcycle and the tyre dynamics
are included in Eq. 4.8. The remaining terms from Eq. 3.123 are not needed to solve
the equilibrium as the track equations are mere kinematic outputs and the term Apqv
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is only needed if the equations are to be solved by a first-order integrator.
Eq. 4.8 can be transformed into an algebraic system if we assume that the motorcycle

performs a steady state motion along a circular path. Let’s illustrate the method by
using, for instance, the roll angle. In steady state conditions, the value of the roll angle
is not known, however we can safely set its first and second derivatives to zero since
the angle does not change with time. In this way the derivatives disappear from the
problem and, in consequence, the roll angle becomes an algebraic variable. We can
repeat the same procedure with all the degrees of freedom of the motorcycle, the tyre
states and the control inputs.

The following table summarizes the values assigned to each degree of freedom and
their first and second derivatives.

DOFs qp qv q̇v

u - z1 0

v - z2 0

z z3 0 0

ψ - vtκ 0

ϕ z4 0 0

µ z5 0 0

δ z6 0 0

zfrk z7 0 0

µswg z8 0 0

θfw - z9 0

θrw - z10 0

Table 4.1: List of degrees of freedom.

All the unknown variables have been denoted by the letter z followed by a subscript
indicating its position in the vector of unknowns z.

z = [z1, z2, . . . z14]
T (4.9)

The remaining states have been set to zero with the exception of the yaw rate ψ̇, which
in stationary cornering conditions can be computed as the product of the speed vt times
the curvature κ.

During stationary cornering, the sideslip angles of the tyres do not change and the
tyre forces stay constant. This condition can be included in the equilibrium solution by
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setting the derivatives of the tyre states to zero. Their values, however, are not known
and must be declared as unknown variables. Table 4.2 summarizes the values assigned
to the tyres states and their derivatives.

Tyre states pλ ṗλ

λf z11 0

λr z12 0

Table 4.2: List of tyre states.

The motorcycle model has four inputs but not all of them are used during stationary
motion. Only the chain force, needed to overcome the effect of the aerodynamic drag,
and the steering torque exerted by the rider are active. Obviously, the front and rear
brakes are not needed when running at constant speed on a flat surface and thus they
have been set to zero.

Inputs u

Mfw 0

Mrw 0

τ z13

Fch z14

Table 4.3: List of model inputs.

By replacing the differential states of Eq. 4.8 by the algebraic variables introduced
above, we obtain thirteen algebraic equations; eleven from the multibody equations and
two from the tyre dynamics. If we also include the first constraint from Eq. 4.7, we get
a fully determined system of fourteen equations and fourteen unknowns, the solution of
which represents the vehicle motion in steady state conditions.

h(z, vt, κ) =


Q(qv,qp,pλ,u)

fλ(pλ,qv,qp)

Φ1(qv)

 = 0 (4.10)

Note that the acceleration constraints, i.e. the second and third rows of Eq. 4.7, are
not included in Eq. 4.10 since they have been explicitly applied to the state derivatives,
see Table 4.1.
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4.2.3 Quasi-steady state equations

The methodology presented in the previous pages is limited, by definition, to the analysis
of the stationary motion of motorcycles. This implies that, as the vehicle travels at
constant speed, no traction or braking forces are considered other than the thrust needed
to overcome the aerodynamic drag and the rolling resistance. Furthermore, since all the
state derivatives are forced to be zero, see Tables 4.1 and 4.2, the equilibrium solution
cannot include, for instance, the load transfer originated by the longitudinal acceleration
or the gyroscopic effect due to the roll rate. Hence, it is clear that the steady state
solution covers only a reduced subset of the working range of the motorcycle. This
limitation is even more relevant when it comes down to racing machines, which rarely
travel at constant speed.

In order to avoid the limitations of the steady state solution, it is possible to extend
the equilibrium equations to include the effect of the longitudinal acceleration together
with the derivative of any other degree of freedom. For this purpose, we introduce the
inertial terms from Eq. 4.8 and the full set of constraints from Eq. 4.6 into Eq. 4.10,
which yields, 

M(qp)q̇v − Q(qv,qp,pλ,u)

ṗλ − fλ(pλ,qv,qp)

Φ(q̇v,qv)

 = 0 (4.11)

where the vehicle equilibrium has been written in terms of forces to avoid the inversion
of the mass matrix M. It is worth noting that in this case the motion of the vehicle is
no longer stationary. The scope here is to find a consistent set of states and derivatives
that fulfill the dynamic equations of motion at a certain time instant given the motion
conditions. For instance, imagine that we are interested in the torque needed to steer
the motorcycle at a certain point of a corner entry maneuver. Then, if the velocity,
deceleration and roll rate of the vehicle are known, the quasi-steady state problem
can be easily formulated by introducing these values into the equilibrium equations.
Additionally, we can estimate the yaw rate and the yaw acceleration from the reference
trajectory if we assume that the vehicle progresses smoothly along it, i.e.

ψ̇ = vtκ (4.12)

ψ̈ = vtκ̇+ a
xβ
κ (4.13)

The values assigned to each degree of freedom and their first and second derivatives
are summarized in Table 4.4, where the vector z,

z = [z1, z2, . . . z18]
T (4.14)
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includes the unknown variables and the vector ξ

ξ = [ξ1, ξ2, . . . ξ14]
T (4.15)

contains all the imposed derivatives that replace the zeros present in Table 4.1.

DOFs qp qv q̇v

u - z1 z2

v - z3 z4

z z5 ξ1 ξ2

ψ - vtκ ξ3

ϕ z6 ξ4 ξ5

µ z7 ξ6 ξ7

δ z8 ξ8 ξ9

zfrk z9 ξ10 ξ11

µswg z10 ξ12 ξ13

θfw - z11 z12

θrw - z13 z14

Table 4.4: List of degrees of freedom.

with ξ3=vtκ̇+axβκ as per Eq. 4.13. In the same way, the values assigned to the tyre
states and their derivatives are reported in Table 4.5.

Tyre states pλ ṗλ

λf z15 ξ14

λr z16 ξ15

Table 4.5: List of tyre states.

The configuration of the control inputs in this case is slightly different than in the
steady state case, and depends on whether the rider is accelerating (u+) or braking
(u−), see Table 4.6. The parameter γ ∈ [0, 1] represents the distribution of the braking
torque between the front and rear wheels, e.g. γ = 1 means that only the front brake
will be used to find the quasi-steady state equilibrium.

The quasi-steady state problem possesses a total of eighteen unknowns, four more
that the stationary case. These new variables are all defined at acceleration level and
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Inputs u+ u−

Mfw 0 γ z18

Mrw 0 (1− γ)z18
τ z17 z17

Fch z18 0

Table 4.6: List of model inputs.

correspond to the derivatives of the vehicle speed (u, v) and to the wheel accelerations
(θ̈fw, θ̈rw). The equation vector Eq. 4.11, on the other hand, has sixteen elements: eleven
from the multibody equations, two from the tyre dynamics and three from the kinematic
constraints. We therefore need two additional equations to complete the system, which
have to link the acceleration of the wheels to the model states and their derivatives.

The acceleration of a wheel is related to the longitudinal dynamics of the vehicle
through the slip ratio and its derivative. Indeed, we can obtain the wheel absolute
acceleration from the slip ratio expression introduced in Eq. 3.69. By differentiating
this equation, and after some manipulation, we get,

Ω̇ = −(1 + κ)
V̇x
ρ
− Vxκ̇

ρ
− Ωρ̇

ρ
(4.16)

where κ is the slip ratio, ρ is the effective rolling radius, Vx is the forward velocity of the
contact point and Ω is the angular velocity of the wheel with respect to the ground frame
as defined in Chapter 3. Three different effects contribute to the wheel acceleration in
Eq. 4.16. The first is usually the most important since it represents the contribution of
the longitudinal acceleration of the vehicle to the wheel acceleration. The second and
the third, on the other hand, represent respectively the effect of the slip ratio derivative
and the variation of the rolling radius.

Tyres typically show large values of slip stiffness in their working region, which
causes the slip dynamics to be much faster than the longitudinal response of the vehicle.
This means that, for smooth torque variations at the wheel, the slip evolves in a fast
and stable way, with κ̇ vanishing quickly. In this case, the contribution of the second
term of Eq. 4.16 may be neglected, and hence we can write the following constraint,

(1 + κ)

(
V̇x
ρ

+
ρ̇Vx
ρ2

)
+ Ω̇ = 0 (4.17)

where the derivatives of Vx and ρ can be obtained by symbolic differentiation, with the
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resulting expression being a function of the model states and their derivatives. If we
collect the constraint equations of the front and the rear wheels in the vector Υ, we can
write the following system of eighteen nonlinear equations and eighteen unknowns,

h(z, vt, κ, ξ) =


M(qp)q̇v − Q(qv,qp,pλ,u)

ṗλ − fλ(pλ,qv,qp)

Φ(q̇v,qv)

Υ(q̇v,qv,qp)

 = 0 (4.18)

the solution of which determines the vehicle configuration in quasi-steady state condi-
tions. It is worth noting that the above system and the steady state solution presented
in Eq. 4.10 are equivalent when no additional derivatives are imposed, ie. when ξ=0.

4.3 Solution of the equilibrium equations

The solution of the equilibrium equations constitutes the basis to design the virtual
rider as it allows to explore the response of the vehicle in a great variety of conditions
without the need of integrating the equations of motion. Basically, given the speed of the
motorcycle vt, the curvature of the trajectory κ and the vector of imposed derivatives
ξ, the problem consists in solving the resulting nonlinear system

h(z) = 0 (4.19)

in order to obtain the vector z containing the unknown states, derivatives and inputs
introduced in sections 4.2.2 and 4.2.3.

The Matlab nonlinear solver fsolve, based on the trust-region dogleg algorithm
[153, 154], is used for that purpose. Generally, nonlinear solvers start from an initial
guess z0 and improve the solution iteratively until convergence is reached. A proper
choice of z0 is therefore essential. The closer the initial guess is to the solution, the fewer
iterations the solver will need to converge. Conversely, the solver may not converge if
the starting point is too far from the final solution. In particular, special attention must
be taken when initializing the tyre elements due to their highly nonlinear behaviour. For
example, if the longitudinal slip falls into the unstable region of the slip-force curve, i.e.
beyond the grip peak, the solver will generally fail to find a solution.

So far we have described how to solve a single quasi-steady state problem. Next
we define a continuation strategy to efficiently investigate how the solution z evolves as
we vary the equilibrium parameters vt, κ and ξ. The pseudo-code below illustrates the
procedure, where, for the sake of readiness, only one the track curvature is swept.
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Algorithm 1 Continuation strategy (curvature sweep)

given: initial curvature κ0 and search step ∆κ

initialize model: z0

set: i = 1

while κi ≤ κmax and ∆κ ≥ ∆κmin do
update curvature: κi = κi−1 +∆κ

update equations: hi(z)← κi

call nonlinear solver: zi = fsolve(hi(z), zi−1)

if convergence then
save current point: (κi, zi)

move to next point: i = i+ 1

else
reduce search step: ∆κ = ∆κ/2

end if
end while

The methodology described above relies on the continuity of the solutions with
respect to the equilibrium parameters. Note that the initial guess needed to solve the
ith problem is taken from the preceding solution, i.e. zi = fsolve(hi(z), zi−1). This
approach has several advantages over solving a set of single problems. Specifically, if
the equilibrium parameters change smoothly, the use of the preceding solution as the
initial guess reduces the number of solver iterations and improves the robustness of
the solution against model nonlinearities. In addition to this, the procedure is easy to
automate as we only need to provide the initial guess z0 to get it started.

Such guess is obtained during the initialization of the model, which takes place
in two steps. First, the model is initialized in straight line conditions at constant
speed vt0 by integrating the equations of motion until the vehicle settles down onto the
suspensions. Subsequently a sequence of equilibrium problems is solved to gradually
apply the remaining equilibrium parameters κ0 and ξ0, thus bringing the system to the
initial condition z0.

There are several reasons for which the nonlinear solver could fail. In first place, the
solution of the quasi-steady state equations might not exist for the given equilibrium
parameters. This happens, for instance, when the tyres cannot generate enough lateral
force to perform the desired manoeuvre. Therefore, it is always preferable to start by
solving the less demanding conditions, e.g. low speed and acceleration, to then smoothly
increase the requirements of the solution. However, convergence problems may arise as
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we approach the physical limits of the vehicle. This usually happens when the preceding
solution is not valid anymore as an initial guess. To avoid this problem, the search step
is reduced iteratively until a solution is found or the minimum step is reached.

In the following section we use the strategy described above to explore the stationary
solutions of the system, also known as equilibrium manifold in modern control literature
[72,155].

4.4 Steady state motion: sensitivity study

This section is structured in three different parts. We start by verifying that the model
equations satisfy the power conservation law, which is a fundamental requirement for
any physical system in stationary motion. Then we explore how the most relevant
variables (e.g. steering angle, tyre forces, etc) vary in function of the vehicle speed and
the curvature of its trajectory. Such study will allow us to improve our knowledge of
the system and to identify its main nonlinearities. Finally, we briefly investigate the
directional behaviour of the motorcycle by modifying the cornering stiffness of the tyres.

The steady state motion of the motorcycle is unequivocally determined by its speed
vt and by the curvature of its trajectory κ. These two variables provide a convenient an
intuitive parametrization of the stationary solutions. The lateral acceleration, on the
other hand, becomes a dependent quantity defined by the product v2t κ. Only positive
curvatures, i.e. right corners, are considered in the subsequent analysis as the behaviour
of the vehicle is symmetric.

4.4.1 Power balance check

Basically, the power conservation law states that, under equilibrium conditions, the rate
at which a system dissipates energy (output power) must equal the power supplied to
it (input power), i.e.

Pin = Pout (4.20)

This check not only constitutes a helpful tool to identify modelling problems but also
gives an interesting insight into the power flow of the motorcycle.

Power supplied by the engine

Generally, the power of the motorcycle originates at the engine and is then transmitted
to the rear wheel through the drivetrain. If we assume that no power is lost in the
chain, the instantaneous power supplied to the engine sprocket Pe can be computed as
the product of the angular speed of the wheel Ωrw times the driving torque generated
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Figure 4.3: Power flow in stationary conditions: engine and aerodynamics. (a) Power
supplied by the engine. (b) Power dissipated by the aerodynamic field. Each point of
the graphs corresponds to a unique stationary condition characterized by the curvature
of the trajectory k and by the tangential speed of the vehicle vt.

by the chain Mch , which in turn can be written as the product of the chain force Fch

times the radius of the rear sprocket R, yielding

Pe =Mch Ωrw = FchRΩrw (4.21)

The power required to keep the motorcycle in stationary motion is shown in Fig. 4.3a
as a two-dimensional contour plot. Each point of the graph corresponds to a unique
condition characterized by the curvature of the trajectory k and by the speed of the
vehicle vt. The curvature is represented along the horizontal axis on a logarithmic scale,
while the speed is linearly distributed along the vertical axis. The engine power, on the
other hand, is depicted by means of a color scale, which ranges from 0 kW at rest up to
more than 100 kW (136 hp) at high speeds. This last value is in line with the maximum
power offered by commercial sport motorcycles.

It is important to observe that not all the combinations of speed and curvature lead
to a feasible solution in stationary conditions. The white area on the top left part of the
figure contains the non-feasible points, with its shape being mainly determined by the
tyre properties. The boundary between this area and the contour plot constitutes and
important characteristic of the motorcycle that will be referred to as the performance
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limit.

Power dissipated by the aerodynamic field

The major cause of power dissipation at high speeds is the aerodynamic field. In Eq. 3.93
we introduced the three components of the aerodynamic map: two forces Fax (drag)
and Faz (lift) and one moment May (pitch). As a general rule, all of them should be
considered to compute the power dissipated by the aerodynamics. However, the lift
force does not perform work in stationary conditions and can be omitted here, yielding

Pa = Faxu+May ψ̇sϕ (4.22)

where u is the speed of the vehicle and the term ψ̇sϕ is the projection of the yaw rate
on the y-axis of the chassis. The power dissipated by the aerodynamic field, depicted in
Fig. 4.3b, does not depend on the curvature and increases quadratically with the speed.

Power dissipated by the tyres

By comparing Figs. 4.3a and 4.3b, we can observe that the engine power required to
keep the motorcycle in stationary motion is higher than the power dissipated by the
aerodynamic forces. Moreover, for a given speed, the first increases with the curvature
while the second remains constant. Such power difference is due to the tyres. In general,
rubber tyres build up the contact forces by slipping on the road and, as a consequence,
they dissipate energy. It is worth pointing out that, as opposed to the engine and the
aerodynamic forces, the tyre forces are applied to a material point of the tread that
changes continuously as the wheel rotates. For that reason, special attention must be
taken in this case when computing the power dissipation.

The power loss due to the longitudinal Fx and lateral Fy forces can be computed
as the product of each force times the slip velocity of the contact patch [51]. Such
velocity, denoted by its components Vsx and Vsy, was introduced in Eqs. 3.71 and 3.74
to measure the velocity of the material point of the tread that is in contact with the
road. The remaining dissipation effects result from the aligning/twisting moments of
the tyres. They can be computed as the product of the vertical moment Mz times the
angular velocity of the tyre around an axis perpendicular to the road ωz.

Pt = FxVsx + FyVsy +Mzωz (4.23)

Fig. 4.4 depicts the power dissipated by the lateral forces and by the aligning/twisting
moments. It is no surprise that the power dissipated by the lateral forces increases sig-
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Figure 4.4: Power flow in stationary conditions: tyres. (a) Power dissipated by
the front lateral force Fyf . (b) Power dissipated by the rear lateral force Fyr . (c)
Power dissipated by the front aligning/twisting moment Mzf . (d) Power dissipated
by the rear aligning/twisting moment Mzr . It is interesting to realize that the rear
tyre dissipates more power, especially at high speeds. The reasons are threefold: first,
this particular motorcycle is oversteering, second, the rear tyre works in combined
conditions and, third, the rear camber angle is generally smaller that the front, which
tends to increase the sideslip at the rear even further.
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nificantly as we approach the performance limit of the vehicle. As a matter of fact, it
is in these conditions that sideslip angles become considerably large. Furthermore, by
comparing Figs. 4.4a and 4.4b with Fig. 4.6d (introduced in the next section) we can
observe how the power dissipated by the lateral forces is only relevant at high camber
angles above 35 degrees.

It is also interesting to realize that the power loss is larger at the rear tyre, especially
at high speeds. The reasons are threefold. First of all, the motorcycle under analysis
is oversteering, which essentially means that the rear end tends to slip laterally more
that the front. Secondly, the rear tyre works in combined conditions as it generates
both lateral and longitudinal forces. The combined use of the tyre reduces its lateral
performance and increases the sideslip angle needed to generate a given lateral force.
This effect becomes more important at high speeds as the driving force needed to keep
the stationary motion increases notably due to the aerodynamic drag. Finally, due to
the rotation of the steering system, and according to Fig.3.8c, the rear camber angle is
in general smaller that the front, which in turn reduces the contribution of the camber
thrust at the rear tyre and consequently increases its sideslip.

The power dissipated by the aligning/twisting torque is depicted in Figs. 4.4c and
4.4d for the front and rear tyres. Here, we can observe how the shape of the contour
plot is different to that obtained for the lateral forces. First, the highest dissipation
does not occur along the performance limit and, secondly, the peak is much wider in
this case. It is also interesting to note that the aligning/twisting torque can dissipate
more that 3 kilowatts per wheel at high speeds.

The power dissipated by the longitudinal force, not shown here, increases with the
speed and with the curvature. However, its value has been found to be small with
respect to the other effects described above except at very high speeds.

Conclusions

Finally, the power balance is depicted in Fig. 4.5. The first plot shows the percentage
of the input power used to overcome all the tyre losses while the second shows the per-
centage needed to overcome the aerodynamic drag. Both plots are complementary of
one another, i.e. their sum yields 100%, thus showing that the engine power accounts
exactly for the aerodynamic and tyre losses. The maximum error has been found to
be ε < 1.3 · 10−9%, which confirms that the equations of motion on which the simula-
tion model depends satisfy the power conservation law. In addition, we can draw an
important conclusion here: the aerodynamic forces are dominant at high speeds and
low curvatures, while the tyre forces become significant only at low speeds and high
curvatures.
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Figure 4.5: Power flow in stationary conditions: output/input ratio. (a) Ratio
between the overall power dissipated by the tyres and the engine power. (b) Ratio
between the power dissipated by the aerodynamic field and the engine power. Both
plots are complementary of one another, i.e. their sum yields 100%. This proves that
the engine power accounts exactly for the aerodynamic and tyre losses. The maximum
error has been found to be very small, ε < 1.3 · 10−9 %.

4.4.2 Effect of speed and curvature

The purpose of this section is to explore the stationary solution of the motorcycle
equations. For this end, we investigate next how the most relevant quantities (e.g.
steering angle, roll angle, tyre slips, tyre forces, etc) vary in function of the imposed
curvature κ and the motorcycle speed vt.

Steering torque

Fig. 4.6a shows the steering torque applied by the rider to the handlebar in order to
keep the desired trajectory. Let’s remember that the graphs of this section include only
positive curvatures, i.e. right corners. In this case, the steering torque is defined as
positive if the rider tries to rotate the handlebar towards the inside of the corner and
negative viceversa. We can therefore distinguish two areas in the figure according to
the torque sign. They are divided by a bold black line that represents the equilibrium
points where the rider exerts no torque on the handlebar. An interesting property of
this line is that it determines the transition from stable to unstable capsize dynamics.
For example, imagine that the rider releases the handlebar in the middle of a corner.



4.4 Steady state motion: sensitivity study 133

If the steering torque is negative, the reaction torque will steer the handlebar into the
corner as soon as it gets released, thus increasing the curvature of the trajectory and
hence the centrifugal force. In consequence, the motorcycle will roll towards a stable
upright position. However, if the steering torque is positive, the motorcycle will roll
towards the ground as the handlebar is released.

Negative steering torques do not only provide better capsize stability but are also
beneficial for cornering agility. Positive torques, on the other hand, generate an un-
pleasant sensation in the rider [13] as they make the motorcycle more difficult to con-
trol. Based on the above considerations, we can say that our reference motorcycle shows
good overall steering characteristics. For a given curvature, the steering torque is mainly
negative, being positive only at high speeds. In addition, the capsize mode is stable in
most of the domain, which implies reduced rider effort.

Steering angle

Fig. 4.6b shows the kinematic steering angle. This angle is positive if the front wheel
points towards the inside of the corner and negative viceversa. As with the steering
torque, a black line is used to separate the positive and negative areas. According
to the results, we can highlight two main points. First, the steering angle is strongly
affected by the curvature at low speeds. Second, the steering angle becomes negative
for speeds over 25 m/s (90 km/h), which means that at high speeds the rider steers
towards the outside of the corner. Since we are simulating a right corner, one would
intuitively expect the steering angle to be always positive. However, this is not the case
due to the oversteering behaviour of the motorcycle under analysis.

Neutral or modest oversteering motorcycles generally show better handling, being
easier for expert riders to push them to the limit [13]. Let’s consider an understeering
motorcycle to illustrate the above statement. Since understeering vehicles tend to ex-
pand their trajectory, the rider is generally forced to increase the roll angle in order to
correct the cornering radius. This is achieved at the expense of increasing the steering
angle. However, if the steering angle increases too much, the required lateral force at
the front may overcome the maximum grip available, causing the tyre to slip and even-
tually leading to a fall. On the other hand, oversteering motorcycles tend to lose the
rear end first. When this happens, expert riders can still control the vehicle by means
of a countersteering action.

Motorcycle attitude

The sideslip angle of the vehicle β is depicted in Fig. 4.6c. This angle represents the
deviation of the longitudinal axis of the vehicle with respect to its direction of motion.
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Figure 4.6: Steering torque and main kinematic variables. (a) Steering torque applied
by the rider; positive if the rider tries to rotate the front wheel towards the inside of
the corner. (b) Kinematic steering angle; positive if the front wheel points towards
the inside of the corner. (c) Sideslip angle of the vehicle; positive if the vehicle points
towards the inside of the corner. (d) Roll angle; positive if the motorcycle is inclined
towards the inside of the corner.
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At very low speeds the tyres do not slip significantly and hence the attitude of the
vehicle is fully determined by its kinematic parameters, i.e. wheelbase, steering angle,
etc. Under these conditions, the vehicle always points towards the outside of the corner
and in consequence the sideslip angle is negative. As the lateral acceleration increases,
tyre slips become progressively more important, which causes the sign of the sideslip
angle to reverse. For speeds above 12 m/s, the vehicle points towards the inside of
the corner, with the rear end following a path of greater radius than the front. This
behaviour is characteristic of all wheeled vehicles, not only motorcycles, as described
in [150,156].

Roll angle

Finally, Fig. 4.6d shows the roll angle of the motorcycle, where we can observe how it
increases with both the speed and the curvature. During steady turning the motorcycle
is subject to two main moments, a restoring moment, generated by the centrifugal force
that tends to return the vehicle to the upright position, and a tilting moment, generated
by the weight force, that tends to increase the leaning angle. This means that, if the
rider increases the lateral acceleration, either by increasing the speed, the curvature, or
both, the roll angle must increase accordingly in order to counterbalance the additional
restoring moment. However, the roll angle cannot be increased indefinitely. There exists
an upper limit that depends on the lateral performance of the tyres and, in particular,
on the maximum grip available. The maximum roll angle achieved by our reference
motorcycle is slightly lower than 60 degrees.

It is also convenient to depict the roll angle as a function of the lateral acceleration
in order to obtain a deeper insight into the lateral behaviour of the motorcycle. This
is shown in Fig. 4.7a for multiple values of the longitudinal speed. The fact that all
blue lines overlay on top of each other highlights the poor sensitivity of the roll angle
to speed variations. Likewise, it is interesting to study the effect that the tyre thickness
and the gyroscopic effect have on the lateral equilibrium. If we use infinitely thin tyres,
and by neglecting wheel inertia, we obtain the family of black curves labeled as ϕ∗ in
the figure. Interestingly, the classical equation2 from [13],

ϕ∗ ≃ arctan

(
ayβ
g

)
= arctan

(
v2t κ

g

)
(4.24)

2For further details, the derivation of the equation is available in Appendix A, where we introduce
a reduced model that captures the fundamental motion of the motorcycle. Such model provides a
simple set of equations that results very useful to understand simulation results, particularly in quasi-
steady state conditions. We will use those equations throughout the rest of this chapter in order to
qualitatively interpret the results of the full multibody model.
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Figure 4.7: Roll angle decomposition. (a) The blue curves represent the roll angle
of the full model. The fact that all lines overlay on top of each other highlights
the poor sensitivity of the roll angle to speed variations. The the black curve, on
the other hand, does not include the effect of tyre thickness and gyroscopic effects.
The analytical solution is depicted with red crosses. (b) The contribution of the tyre
thickness is shown in red, while the effect of the gyroscopic terms is depicted in green.
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Figure 4.8: Tyre loads. (a) Front tyre vertical load. (b) Rear tyre vertical load. Note
that the sum of the tyre loads is almost constant, independently of the equilibrium
conditions, and equals the totals mass of the motorcycle and rider 276.9 kg.
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provides a good approximation in this last case.
The contributions of the tyre thickness ∆ϕt and the gyroscopic terms ∆ϕg are shown

in Fig. 4.7b. We can observe how both of them increase with the lateral acceleration,
with the former being one order of magnitude higher than the latter. It is clear from the
results that the tyre shape has a big impact on the lateral equilibrium of the motorcycle
in stationary motion while the gyroscopic effect is of secondary importance.

Tyre loads

Next we study the tyre loads, i.e. the vertical reaction that the road exerts on the tyres.
They are shown in Fig. 4.8 for the front and rear tyres. In stationary conditions, if we
neglect the lift force, which is in general much smaller than the drag, the sum of the
tyre loads matches the weight of the motorcycle, i.e.

Fzf + Fzr ≃ mg (4.25)

which can be derived from Eq. A.7.
On the contrary, the load distribution is very sensitive to the speed of the motorcycle.

As the rider increases the speed, the drag force reduces the load at the front tyre and
increases it at the rear by the same amount. This effect increases quadratically with the
speed due to the nature of the aerodynamic field. The roll angle plays also an important
role in this load transfer. As the motorcycle leans, the centre of pressure lowers, thus
reducing the lever arm of the drag force with respect to the ground and consequently
decreasing the amount of transferred load. We can use Eq. A.20 to quantify this effect.
If we simplify the aforesaid equation for the case of stationary motion, we get,

∆Fz ≃
Faxhcϕ
a+ b

(4.26)

where Fax is the drag force, the term hcϕ represents the lever arm of the force perpen-
dicular to ground and the denominator a+b is the wheelbase of the motorcycle. Note
that a positive variation indicates, by definition, that the front load increases whereas
the rear decreases.

We can observe the effect of the roll angle by comparing Figs. 4.8a and 4.8b. To do
so it is convenient to keep the speed of the motorcycle constant so that the aerodynamic
drag does not vary. Let’s choose, for instance, a speed of 60 m/s for the comparison. If
we now start from the rightmost point of the graph and increase the curvature progres-
sively, the roll angle of the motorcycle increases as per Fig. 4.6d, which in turn modifies
the load distribution, increasing the load at the front tyre and decreasing it at the rear.
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Figure 4.9: Tyre forces on the road plane. (a) Front longitudinal force. (b) Rear
longitudinal force. (c) Front lateral force. (d) Rear lateral force. Note the different
scale in the front longitudinal force.
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The vertical loads have a big influence on the capability of tyres to generate longitu-
dinal and lateral forces. As a matter of fact, in normal riding conditions, the maximum
force that a tyre can generate is proportional to the normal load applied to it.

Forces and moments at the contact patch

Fig. 4.9 shows the forces generated by the tyres on the road plane. By definition, the
longitudinal force is positive if it tends to accelerate the vehicle and negative if has a
braking effect. The lateral force, on the other hand, is positive if it points towards the
inside of a right corner and negative viceversa.

The longitudinal force generated by the front tyre is depicted in Fig. 4.9a. It is
interesting to note that this tyre generates a small braking force despite no braking
torque is applied to the wheel. The origin of this force lies in the twisting moment. Let’s
remember that this moment, introduced in the previous chapter, is always perpendicular
to the road and tends to rotate the wheel into the corner. Hence, as the motorcycle leans,
the twisting moment is progressively projected on the wheel axis. This projection tends
to brake the wheel, thus generating negative force at the contact patch that increases
with the roll angle.

The rear longitudinal force, also known as driving force, is very sensitive to the
vehicle speed as shown in Fig. 4.9b. This trend is typically caused by the aerodynamic
drag. What is not so intuitive, however, is why the driving force increases slightly with
the curvature. We can use Eq. A.5 to identify the origin of such behaviour. In the
particular case of stationary motion, this equation can be rearranged to yield,

Fxr ≃ Fax +mayβsβ − Fxf c∆ + Fyf s∆ (4.27)

where the first term of the right hand side is the aerodynamic force whereas the last
three represent the projections of the inertial force mayβ and the front tyre forces, Fxf

and Fyf , on the longitudinal axis of the vehicle. According to the above equation, there
are three different reasons why the driving force depends on the curvature:

• Firstly, the most important reason is related to the reference frame used to define
the steady state problem. We can observe in Fig. 4.1 how the lateral acceleration
is imposed in the tangent frame Tβ . Hence, as the sideslip angle β increases, so
does the projection of the term ayβ=v

2
t κ along the longitudinal axis of the vehicle.

According to Fig. 4.6c, the angle β is generally positive and increases with the
curvature. Under these conditions, the second term in the right hand side of
Eq. 4.27 increases the driving force as the curvature increases.
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• Secondly, the longitudinal projection of the front force Fxf produces a braking
effect that increases with the curvature according to Fig. 4.9a. As a result, the
third term in the right hand side of Eq. 4.27 increases the driving force as the
curvature increases, although its contribution is very small.

• Finally, the projection of the front lateral force Fyf on the longitudinal axis of
the vehicle increases with the steering angle. This term can increase or decrease
the driving force depending on the sign of the steering angle, which is shown in
Fig. 4.6b.

The addition of these three terms results in an overall driving force that increases
with the curvature.

The plots of the lateral forces are represented in Figs. 4.9c and 4.9d. Interestingly,
the contour lines follow a pattern similar to that of the roll angle. We can explain this
trend by means of two basic equations. In stationary conditions, the total lateral force
exerted by the tyres can be approximated3 by rearranging Eq. A.6 as follows,

F ∗
yf + Fyr ≃ mayβ = mv2t κ (4.28)

where F ∗
yf is the projection of the front tyre forces on the lateral axis of the vehicle, i.e.

F ∗
yf=Fxf s∆+Fyf c∆. The resulting expression relates the lateral forces to the speed of

the motorcycle and to the curvature of its trajectory. By combining the above equation
with Eq. A.23, we obtain the following expression,

F ∗
yf + Fyr ≃ mg tanϕ (4.29)

which shows why the lateral forces are strongly related to the roll angle.
The geometry of the vehicle and the tyre characteristics ultimately determine how

the lateral forces distribute between the front and rear axles, with the aerodynamic drag
also playing an important role in this respect. As the speed goes up, the load transfer
increases the capability of the rear tyre to generate contact forces, whereas the front
tyre experiences the opposite effect. The lateral force transferred by the aerodynamic
drag is described in Eq. A.17, which reduces to the following expression in stationary
motion:

∆Fy ≃
Faxhsϕ
a+ b

(4.30)

As with the vertical loads, a positive variation indicates a decrease of the front force
and an increase of the rear.

3To simplify the result, we have made cβ≃1 since the sideslip angle β is generally small as shown in
Fig. 4.6c. Then, since axβ=0 in stationary motion, from Eq. 4.3 we can write ayψ≃ayβ .
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Figure 4.10: Tyre twisting moments and grip coefficients. (a) Front twisting moment.
(b) Rear twisting moment. (c) Front grip coefficient. (d) Rear grip coefficient.
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Figs. 4.10a and 4.10b show the twisting moments generated by the front and rear
tyres. Both of them are always positive, which means that the tyres tend to rotate
the motorcycle towards the inside of the corner. In addition to this, the front twisting
moment has a big impact on the steering response. The projection of this moment on
the steering axis significantly decreases (makes more negative) the torque that the rider
must apply to steer the motorcycle. In particular, for the sports motorcycle considered
in this thesis, the front twisting moment is responsible for the steering torque being
negative in a wide range of speeds and curvatures as shown in Fig. 4.6a.

Grip coefficient

To conclude this section, we analyze the grip coefficients of both tyres. The grip coeffi-
cient µ is defined as the ratio of the contact force parallel to the road and the normal
load, i.e.

µ =

√
F 2
x + F 2

y

Fz
(4.31)

Such metric is generally used to quantify the performance of tyres subject to combined
longitudinal and lateral forces.

We can observe in Figs. 4.10c and 4.10d how for a given curvature the grip reaches its
maximum value at the boundary of the contour plot. The same happens if we keep the
speed constant and increase the curvature; we reach the maximum grip at the leftmost
point of the graph, which also lies on the vehicle’s performance limit. In stationary
conditions, the front grip is mainly related to the lateral force as no braking forces are
applied to the wheel. At the rear, however, we have to consider the driving force, which
increases quadratically with the speed. This is the reason why the rear tyre shows
higher grip values, especially at high speeds.

If we plot the lateral grip as a function of the lateral acceleration for several speeds
ranging from 20 to 80 m/s, we obtain the curves shown in Fig. 4.11. The interesting
point here is the slope of the curves, which is almost constant. By combining Eq. 4.25
and Eq. 4.28 we can approximate the overall lateral grip as,

µy =
F ∗
yf + Fyr

Fzf + Fzr
≃ ayβ

g
(4.32)

Interestingly, despite of the simplifying assumptions, the slope predicted by the above
equation, 1/g, matches quite well the results obtained for both tyres with the full
multibody model. The small speed sensitivity shown by the front grip is due to the
steering angle, which reduces the effective lateral force perpendicular to the vehicle axis
at high speeds. The rear grip, on the other hand, shows almost no speed sensitivity.
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Figure 4.11: Grip analysis in function of the lateral acceleration. Each color cor-
responds to a different speed, which range from 20 to 80 m/s. The lowest speed is
represented by a blue line, whereas the highest is represented by a red line. (a) Front
grip coefficient. (b) Rear grip coefficient.

4.4.3 Directional behaviour: oversteering vs understeering

The steering behavior of the motorcycle depends on its geometry; parameters such as
wheelbase, fork offset and caster angle have a big impact on the vehicle’s response.
However, it is usually the tyres that play the most important role in this respect. In the
current section we briefly investigate the steering behavior of the model by comparing
two setups with different tyre properties.

The first setup is the same used in the previous sections of this chapter. Let us
remind the reader that our reference model was defined as having +15% more cornering
stiffness thans Sharp’s reference data at the front tyre whereas the rear stiffness was
scaled down by the same amount. These modifications were made to assure a marked
oversteering behavior of the vehicle, which will be referred to as OS in this section. The
second setup, introduced here for the first time, uses the opposite scaling, with the front
tyre having greater cornering stiffness than the rear. The purpose of this change is to
create a new model with increased understeering behaviour, which will be referred to
as US.

The steering ratio ξ is commonly used in literature to study the steering response
of double-track vehicles. Such metric is defined as the ratio between the kinematic
curvature radius Rc0 and the actual cornering radius of the vehicle Rc. We can write it
as a function of the sideslip angles, λf and λr, and the kinematic steering angle ∆ as
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per [13],

ξ =
Rc0
Rc

=
sin (∆− λf + λr)

cos (∆− λf ) tan∆
≃ 1−

λf − λr
∆

(4.33)

where the last part of the equation applies only if the sideslip angles and the kinematic
steering angle are small; an assumption that is perfectly valid in normal riding conditions.
In view of the above definition, we can distinguish the following cases:

ξ < 1 Understeering response. The sideslip of the rear tyre is smaller than the front,
i.e. the actual cornering radius is greater than the kinematic one.

ξ = 1 Neutral response. The sideslip angles of the front and rear tyres are equal, i.e.
the actual cornering radius is equal to the kinematic one.

ξ > 1 Oversteering response. The sideslip of the rear tyre is greater than the front,
i.e. the actual cornering radius is smaller than the kinematic one.

ξ < 0 Countersteering response. If the sideslip of the rear tyre is much greater than
the front, the rider needs to apply a negative steering angle, i.e. towards the
outside of the corner, which leads to a negative steering ratio.

Fig. 4.12a shows that the steering ratio of the first setup (OS) strongly depends
on the cornering speed. In particular, for low and medium speeds the vehicle exhibits
an oversteering behaviour that becomes more marked as the speed increases. At 26
m/s (94 km/h), however, the steering ratio presents a singularity and its sign changes
from positive to negative. This particular speed, usually known as the critical speed, is
characterized by the fact that the vehicle corners even though the steering angle is null.
After that point, the vehicle exhibits a countersteering behaviour.

It is well known that the critical speed of any double-track vehicle must be well
above its maximum speed [137]. This, however, does not apply to motorcycles as it
is generally possible to control them over the critical point. The main reason of this
difference lies in the method employed to control the vehicle. Double-track vehicles are
controlled in position since their primary input is the angle of the steering wheel. This
kind of control makes it difficult for the driver to stabilize the vehicle near the critical
speed. On the contrary, motorcycles are controlled in force through the steering torque,
with the steering angle being just an effect [157]. The control of the motorcycle in these
circumstances is achieved by countersteering. Such behaviour can be easily observed in
speedway and motard machines and, to a lower extent, also in road racing motorcycles.

The steering ratio of the second setup (US) is shown in Fig. 4.12b. This vehicle is
slightly understeering in the whole speed range, except in the region around 60 m/s,
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Figure 4.12: Steering ratio. Rc = 1/κ = 500m. (a) Oversteering setup. (b) Un-
dersteering setup. It is important to note that, as opposed to double-track vehicles,
the control of the motorcycle over the critical speed vc is possible by performing coun-
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Figure 4.13: Kinematic steering angle comparison. (a) Oversteering setup. (b)
Understeering setup. The locus of the points where the kinematic steering angle is
null, depicted by a bold black line in the above plots, coincides, by definition, with
the critical speed of the motorcycle. At that speed the vehicle corners even though
the steering angle is null.
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where it becomes slightly oversteering. Note that the steering ratio is always finite and
therefore no critical speed can be defined in this case.

To conclude this section, we depict the kinematic steering angle as a function of
the speed and curvature for both setups, see Fig. 4.13. The critical speed, which is
represented by a bold black line, coincides, by definition, with the locus of the points
where the kinematic steering angle is null. Above this line the motorcycle becomes
countersteering, i.e. ∆<0. We can observe how both setups may exhibit a counter-
steering behaviour, although the speed that triggers it is different in both cases. The
critical speed of the OS setup is relatively low and shows a poor sensitivity with respect
to the path curvature, whereas the US setup shows a high critical speed that varies
significantly with the curvature.

The directional behavior of the motorcycle is strongly affected by the presence of
longitudinal forces between the tyres and the road. Any longitudinal force causes a
reduction of the cornering stiffness. When applied to the rear tyre, as it is the case here,
it makes the vehicle more oversteering. This explains why both setups become counter-
steering as the speed increases. It is also worth noting that the countersteering angles
are small even for the OS setup, with ∆ being lower than −2.5 degrees in Fig. 4.13a.

4.5 Quasi-steady state motion: sensitivity study

So far we have studied the steady state motion of the cornering motorcycle by solving
Eq. 4.10. It is obvious, however, that the stationary motion represents only a reduced
subspace of the working domain of the motorcycle. Therefore, in order to extend our
knowledge of the system, we next use Eq. 4.18 to investigate the effect of the most
relevant derivatives, namely the longitudinal acceleration, the roll rate and the roll
acceleration.

4.5.1 Effect of longitudinal acceleration

The accelerated trim of the motorcycle is obtained by imposing the desired longitudinal
acceleration in the quasi-steady state equations. The main difference with respect to
the stationary solution, in addition to the supplementary constraints included in vectors
Φ and Υ, is the configuration of the input vector u. Two possible configurations exist,
being the solution routine that, depending on the acceleration value, selects the most
suitable inputs from Table 4.6.

The first configuration u+ is generally used when the imposed acceleration is pos-
itive (thrust), while the second u− is used for negative accelerations (braking). An
exception occurs when imposing low deceleration levels at very high speeds. In these
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circumstances, the deceleration generated by the drag force is generally higher (more
negative) than the desired target. When this happens, we need to use the engine power
to overcome the drag, meaning that the u+ configuration is required despite the target
acceleration being negative.

As far as the braking distribution is concerned, and according to [158], experienced
riders use mainly the front brake when the grip is good. We can easily reproduce this
behaviour by setting the parameter γ to 1 in Table 4.6.

Next we carry out a sensitivity study to explore the effect that the longitudinal
acceleration has on the behaviour of the motorcycle. In the subsequent figures, the hor-
izontal axis represents the lateral acceleration while the vertical contains the parameter
of interest, e.g. the braking force, the lateral force, etc. It is useful to recall that the
lateral acceleration ayβ is, by definition, positive for right corners. The longitudinal
acceleration axβ, on the other hand, is depicted by means of a chromatic scale that
goes from blue for severe braking (axβ≪0) to red for strong acceleration (axβ≫0). The
stationary motion (axβ=0) is represented by a green line.

Fig. 4.14 shows the effect of the acceleration on the longitudinal forces exerted by
the tyres. To avoid oversaturating the graphs, we will use a single reference speed of
40m/s (144 km/h) throughout this section. There are three points worth mentioning
here:

• First of all, the change in the input configuration between braking u− and thrust
u+ is evident in the results. When the imposed acceleration is negative, the front
longitudinal force is active while the rear is almost negligible. On the other hand,
when the imposed acceleration is positive we observe the opposite behavior, i.e.
the front longitudinal force is negligible while the rear is active. Note that the
front force is always negative whereas the rear is positive, i.e. we are using the
front tyre to brake the motorcycle and the rear tyre to accelerate it.

• Secondly, the combined use of the tyres makes the range of feasible lateral acceler-
ations narrower as the absolute value of the acceleration increases. For example,
note in Fig. 4.14b the width difference between the green curve representing null
acceleration and the red one corresponding to 10m/s2. This is a common feature
of all graphs shown in this section.

• Finally, we can observe how the lateral acceleration has an effect on the longitudi-
nal forces needed to keep the quasi-steady state motion. As the lateral acceleration
increases, the braking forces become less negative while the thrust forces become
more positive. The reasons of this behaviour were discussed in section 4.4.2 when
analyzing Eq. 4.27.
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Figure 4.14: Effect of the longitudinal acceleration at 40m/s : tyre forces in the
longitudinal direction. (a) Front longitudinal force. (b) Rear longitudinal force. Note
that the front tyre is used to brake the motorcycle while the rear is used to accelerate
it.

The longitudinal acceleration has also a big impact on the lateral and vertical forces
as shown in Fig. 4.15. Both sets of forces are closely connected: when the motorcycle
accelerates, there is a transfer of vertical load from the front to the rear axle which, in
turn, increases the lateral force generated by the rear tyre and decreases that of the
front. The opposite happens during braking.

This behaviour can be easily noticed in the graphs by using the green line as a
reference. Let’s remember that this line represents a pure stationary motion. The forces
generated by the front tyre in the lateral and vertical directions, shown in Figs. 4.15a
and 4.15c, decrease with respect to the stationary case when the acceleration is positive
(yellow/red lines) whereas they increase when the acceleration is negative (cyan/blue
lines). We can observe the opposite trend in the forces generated by the rear tyre, see
Figs. 4.15b and 4.15d. As a curiosity, it is interesting to realize that when axβ=10m/s2

it is the rear tyre that generates most of the lateral force needed for cornering since the
front tyre is unloaded and generates almost no lateral force.

As in the previous sections, we can use the reduced model derived in Appendix A
to better understand how the longitudinal acceleration affects the force distribution
between the front and rear tyres. By rewriting Eqs. A.17 and A.20 for the current
quasi-steady state conditions and extracting only the terms related to the longitudinal
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Figure 4.15: Effect of the longitudinal acceleration at 40m/s : tyre forces in the
lateral and vertical directions. (a) Front lateral force. (b) Rear lateral force. (c) Front
vertical force. (d) Rear vertical force.

acceleration, we get4,
∆Fy ≃

maxβ
a+ b

hsϕ

∆Fz ≃
maxβ
a+ b

hcϕ

(4.34)

4We have omitted the contribution of the inertial torques described in Tables A.1 and A.2 since the
effect of the wheel acceleration and the derivative of the yaw rate is generally small compared to that
of the longitudinal acceleration. The above expressions have been derived assuming cβ≃1 since the
sideslip angle of the vehicle β is generally small as shown, for instance, in Fig. 4.6c.
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where a positive variation indicates, by definition, a decrease of the front force with re-
spect to the stationary motion and an increase of the rear. Interestingly, both equations
are identical except for the trigonometric terms involving the roll angle ϕ, which allows
us to conclude the following:

• The longitudinal acceleration modifies the lateral and vertical forces exerted by
a given tyre in the same direction, i.e. if the vertical force increases so does the
absolute value of the lateral force and viceversa.

• The roll angle, on the other hand, has opposite effects on the lateral and vertical
forces due to the sine and cosine terms. Given that the roll angle is monotonically
related to the lateral acceleration5, it follows from Eq.4.34 that the lateral load
transfer is antisymmetric with respect to the lateral acceleration while the vertical
load transfer is symmetric. This explains the trends observed in Fig. 4.15.

Fig. 4.16a shows the steering torque applied to the handlebar. It is useful to re-
call that this torque is defined as positive if the rider tries to rotate the handlebar
towards the right. We observe from the results that the steering torque is very sensitive
to the longitudinal acceleration during braking. The reason lies in the front braking
force, which generates a moment around the steering axis that tends to rotate the wheel
towards the inside of the corner. Moreover, this effect is amplified by the lateral accel-
eration, as the roll angle increases the distance between the front contact point and
the steering axis. An accurate modeling of the cross section of the tyre is essential to
capture this phenomenon.

Interestingly, the roll angle is unaffected by the longitudinal acceleration as shown
in Fig. 4.16b. This angle is, by definition, positive when the motorcycle leans to the
right.

The kinematic steering angle, on the other hand, shows a large sensitivity with
respect to the longitudinal acceleration, see Fig. 4.16c. This angle follows the same sign
convention as the steering torque, i.e. it is positive if the handlebar is rotated to the
right. In order to simplify the analysis, and since the behaviour of the motorcycle is
symmetric, let’s focus on the right corners only, i.e. ayβ>0. We can observe how the
rider steers towards the inside of the corner ∆>0 when the longitudinal acceleration is
highly negative. However, as the acceleration increases, this trend reverses rapidly and
the rider steers towards the outside of the corner ∆<0 to keep the trajectory.

This behavior can be easily explained by means of the steering ratio, depicted in
Fig. 4.16d. Based on the results, the motorcycle is understeering during hard braking,

5This is shown, for instance, in Fig.4.7a.
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Figure 4.16: Effect of the longitudinal acceleration at 40m/s: steering torque and
main kinematic variables. (a) Steering torque. (b) Roll angle. (c) Kinematic steering
angle. (d) Steering ratio.

becomes oversteering in a small range of decelerations and exhibits a countersteering
behavior in the whole range of positive accelerations. Hence, it is clear that the longitu-
dinal acceleration drastically changes the directional behavior of the motorcycle, making
it understeer during braking and oversteer in acceleration. This strong sensitivity is due
to the combined use of the tyres. The presence of longitudinal forces reduces the front
cornering stiffness during braking, hence increasing the understeering character of the
vehicle, whereas the opposite occurs in acceleration.
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Figure 4.17: Effect of the longitudinal acceleration at 40m/s: wheel acceleration.
(a) Front wheel. (b) Rear wheel.

We finish this section by exploring the acceleration constraint defined in Eq. 4.17.
This equation guarantees that the acceleration of the wheels is consistent with the lon-
gitudinal acceleration imposed to the motorcycle. Without it, both wheels would show
no acceleration in the quasi-steady state solution. Essentially, we define the acceleration
of each wheel according to the following expression6

θ̈ = −(1 + κ)
V̇x
ρ

(4.35)

where κ is the slip ratio, ρ is the effective rolling radius, Vx is the forward velocity of the
contact point and θ̈ is the angular acceleration of the wheel with respect to the ground.

Fig. 4.17 shows the acceleration of the front and rear wheels for different values of the
longitudinal acceleration. The solid lines are obtained by using the full constraint while
the dashed lines are obtained by neglecting the longitudinal slip κ. Based on the results,
we can conclude that the effect of the tyre slip is important at high accelerations and
therefore must be considered. The change in the input configuration between braking
and thrust causes the front tyre to slip during braking (axβ<0), whereas the rear tyre
slips during thrust (axβ>0).

6We have adapted the constraint to the current quasi-steady state conditions by removing the term
ρ̇Vx/ρ

2 and replacing Ω by θ̇.
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The small sensitivity with respect to the lateral acceleration is due to the shape of
the tyre. As the lateral acceleration increases, so does the roll angle; this reduces the
rolling radius and consequently increases the acceleration of the wheel as per Eq. 4.35.

4.5.2 Effect of roll motion

In this section we assess the effect of the roll rate ϕ̇ and its derivative, the roll acceleration
ϕ̈. It is clear that both represent a non-stationary condition as the vehicle cannot
roll indefinitely. Therefore, as with the longitudinal acceleration, we need to solve a
quasi-steady state problem. To do so, we only have to modify the vector of imposed
derivatives ξ by setting ξ4 and ξ5 according to Table 4.4. It is convenient, however, to
study each parameter independently in order not to combine their effects, which would
unnecessarily complicate the interpretation of the results. For the same reason, we also
set the longitudinal acceleration to zero in the subsequent analysis.

Roll rate

When the motorcycle leans, the roll angle goes through three successive phases: accelera-
tion, constant speed and deceleration. Consequently, since the roll motion is continuous,
the highest roll rate always occurs when its derivative vanishes. This condition is, in
fact, a good choice for the present analysis since the roll rate is maximum and there is
no roll acceleration.

Generally, the maximum roll rate is reached at low roll angles. For instance, in a
direction change the motorcycle rolls from left to right or viceversa. In this type of
maneuver the maximum rate is reached in the vicinity of the upright condition. During
a corner entry, on the other hand, the motorcycle rolls from the upright position to a
final inclination that can reach up to 60 deg. In this case, the maximum rate is usually
observed halfway between the initial and final roll angles. After this point, and as the
motorcycle approaches the desired inclination, the roll rate reduces progressively until
it eventually vanishes. In view of this, and for the sake of simplicity, we can restrict
our analysis to roll angles lower than 30 deg. It also important to note that the effect
of the roll rate is not symmetric with respect to the lateral acceleration, i.e. a positive
roll rate has a different effect on right and left corners.

Next we perform a sensitivity study by increasing the roll rate from 0 to 120 deg/s
as the motorcycle travels at a constant speed of 25m/s. It is useful to recall that the
roll rate is defined as positive when the motorcycle rolls from left to right.

Fig. 4.18 shows the effect that the roll rate has on the tyre forces. We can use the
reduced equations derived in Appendix A to interpret the results. Unlike the longitudi-
nal acceleration, the roll rate not only affects the load transfer but also the total force
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Figure 4.18: Effect of roll rate at 25m/s: tyre forces. (a) Total lateral force applied
by the tyres. (b) Front lateral force. (c) Rear lateral force. (d) Total vertical force
applied by the tyres. (e) Front vertical force. (f) Rear vertical force.
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exerted by the tyres. By removing the terms that are not significant for the current
analysis from Eq. A.6, we get the following expression7,

Fyf + Fyr = macgy ≃ m(ayβ − ϕ̇2hsϕ) (4.36)

which states that the sum of the lateral forces generated by the front and rear tyres is
equal to the mass of the vehicle times the lateral acceleration of its center of gravity.

Let’s examine the right hand side in detail. The first term inside the parenthesis
stands for the lateral acceleration of the path point P, see Fig.4.2. The second term, on
the other hand, represents the centripetal acceleration associated to the roll rate. These
two terms allow us to explain Fig. 4.18a, where the sum of the lateral forces is depicted
as a function of the lateral acceleration for different values of the roll rate. Firstly, it
follows from the above expression that the slope of the stationary solution (ϕ̇=0) is
equal to the mass of the vehicle. And secondly, we can also conclude that the roll rate
reduces the total lateral force required to reach a given lateral acceleration.

The lateral force is distributed between the front and rear tyres according to the
distance between the centre of gravity and the respective contact patches, which leads
to a static force distribution close to 50% for our reference motorcycle. In addition
to this, there exists a load transfer between the front and the rear axles that can be
approximated by the following expression,

∆Fy ≃
Faxhsϕ
a+ b

−m
2ψ̇ϕ̇h2cϕsϕ
a+ b

−
(Irw θ̇rw + Ifw θ̇fw )ϕ̇cϕ

a+ b
(4.37)

which can be derived by simplifying Eq. A.17 to suit the current analysis conditions.
Note that a positive variation indicates an increase in the rear force and a reduction of
the front. The amount of force that is transferred depends on three different factors:
the aerodynamic drag, that does not depend on the roll rate; the coriolis effect, which
originates due to the combined rotation around the yaw and roll axis; and the gyroscopic
moment induced by the rotation of the wheels. This last term is dominant, especially
near the upright position, and tries to turn the motorcycle towards the right if the roll
rate is positive and viceversa8.

The effect of the roll rate on the lateral forces depends therefore on whether the
vehicle is entering or exiting a turn as observed in Figs. 4.18b and 4.18c. Note that
the roll rate is always positive in the graphs. When the motorcycle rolls into the

7We have assumed that c∆≃1 and cβ≃1 since the effective steering angle ∆ and the sideslip angle
of the vehicle β are generally small according to Figs. 4.6b and. 4.6c.

8Let’s remember that the wheel speeds, θ̇rw and θ̇fw , are always negative by definition. As a result
the term −(Irw θ̇rw + Ifw θ̇fw )ϕ̇cϕ has the same sign as the roll rate.
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corner (ayβ>0) the gyroscopic moment decreases the front lateral force and increases
the rear. This has an important implication on the directional behavior of the vehicle,
which becomes more oversteering. The opposite effect is observed when the motorcycle
rolls out of a corner (ayβ<0). The steering ratio, shown in Fig. 4.19d, confirms this
conclusion.

As far as the vertical forces are concerned, we can derive the following expression
from Eq. A.7,

Fzf + Fzr = mg −macgz = mg −mϕ̇2hcϕ (4.38)

that states that the sum of the vertical loads is equal to the difference between the
weight of the vehicle and the centrifugal force generated by the roll rate. It is clear
from the above that the roll rate reduces the tyre loads. This effect is symmetric with
respect to the lateral acceleration and increases quadratically with the roll rate as shown
in Fig. 4.18d, where the sum of the vertical forces is depicted as a function of the lateral
acceleration for multiple values of the roll rate.

Similarly to the lateral forces, the distribution of the vertical loads depends mainly
on three factors, namely the aerodynamic drag, the coriolis term associated to the
motion around the yaw and roll axis, and the gyroscopic moment generated by the
wheels.

∆Fz ≃
Faxhcϕ
a+ b

−m
2ψ̇ϕ̇h2c2ϕ
a+ b

+
(Irw θ̇rw + Ifw θ̇fw )ϕ̇sϕ

a+ b
(4.39)

As with the lateral forces, a positive value indicates an increase in the rear force and a
reduction of the front. The last two terms of the above expression have the same sign
and their effect depends on whether the vehicle is entering or exiting a turn. When the
motorcycle rolls into the corner (ayβ>0) the load transfer is negative, meaning that the
front vertical force increases while the rear decreases. The opposite effect is observed
when the motorcycle rolls out of a corner (ayβ<0). This can be noticed in Figs. 4.18e
and. 4.18f, where the symmetry shown in Fig. 4.18d is broken due to the load transfer.

The roll rate has also a big impact on the steering torque applied by the rider.
The gyroscopic effect of the front wheel generates a positive torque around the steering
axis that tends to rotate the handlebar towards the right when the roll rate is positive,
thus helping the motorcycle to change direction. As a consequence, the reaction torque
exerted by the rider τ becomes more negative with respect to the steady state conditions
as shown in Fig. 4.19a. The projection of the gyroscopic moment on the steering axis
yields,

∆τ ≃ −Ifw θ̇fw ϕ̇cϵ (4.40)

where ϵ is the caster angle of the motorcycle. We can observe how the torque variation
increases linearly with the wheel speed and the roll rate; furthermore, its value is not
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Figure 4.19: Effect of roll rate at 25m/s: steering torque and main kinematic vari-
ables. (a) Steering torque. (b) Roll angle. (c) Kinematic steering angle. (d) Steering
ratio.

affected by the roll angle. We can conclude that the effect of the roll rate is considerable
even at moderate speeds as this example is carried out at 25 m/s (90 km/h). It is
therefore essential to consider it in order to obtain an accurate prediction of the steering
torque.

Fig. 4.19b shows that the roll angle ϕ is not very sensitive to the roll rate. The
directional behaviour of the motorcycle, on the other hand, is strongly influenced by
the roll rate as shown in Figs. 4.19c and. 4.19d. Reading each graph from left to right,
we can interpret the results as a quasi-steady state direction change, i.e. a maneuver
where the motorcycle goes from a left to a right corner at a constant roll rate. We
observe how the steering angle ∆ becomes more negative as the roll rate increases. This
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means that during the left corner (corner exit), the roll rate has an understeering effect
as the rider has to increase the rotation of the handlebar towards the inside of the corner.
The opposite happens during the right corner (corner entry). In this case, the roll rate
has an countersteering effect, meaning that rider has to increase the rotation of the
handlebar towards the outside of the corner. This behaviour is reflected in the steering
ratio, which changes sign when the motorcycle goes through the vertical position.

Roll acceleration

In this case, unlike the roll rate, we cannot restrict the analysis to small roll angles. For
instance, during a slalom maneuver the maximum roll deceleration takes place when the
roll angle is maximum and the roll rate changes sign, e.g. when the motorcycle stops
rolling towards the right and starts rolling in the opposite direction. We can use this
condition, i.e. high roll acceleration and null roll rate, to investigate the effect that the
roll acceleration has on the behaviour of the motorcycle.

Next we perform a sensitivity study by varying the roll acceleration from 0 to
−480 deg/s2 during a right corner. In other words, we study the effect of the roll
acceleration when the motorcycle is inclined to the right and starts rolling to the left.
In the subsequent analysis we use a speed of 25m/s.

The main effect of the roll acceleration is a reduction in the roll angle needed to
obtain a given lateral acceleration as observed in Fig. 4.20. Remember that the term ayβ

does not represent the lateral acceleration of the centre of mass but the acceleration of
the path point P, i.e. the point that follows the imposed trajectory as shown in Fig.4.2.



4.5 Quasi-steady state motion: sensitivity study 159

 

 

φ̈ = −480 ◦/s2
φ̈ = −400 ◦/s2
φ̈ = −320 ◦/s2
φ̈ = −240 ◦/s2
φ̈ = −160 ◦/s2
φ̈ = −80 ◦/s2
φ̈ = 0 ◦/s2

F
z
f
+
F
z
r
[k
N
]

φ [deg]

F
y
f
+
F
y
r
[k
N
]

φ [deg]

0 20 40 600 20 40 60
2.6

2.8

3

3.2

3.4

3.6

3.8

0

1

2

3

4

5

6

(a) (b)

Figure 4.21: Effect of roll acceleration at 25m/s: tyre forces. (a) Total lateral force
applied by the tyres. (b) Total vertical force applied by the tyres.

Hence it follows from the results that, for the same roll angle, higher roll accelerations
lead to tighter local trajectories as the lateral acceleration of point P increases.

It is possible to explain this behaviour by means of the reduced equations derived
in Appendix A, and, in particular, by making use of Eq. A.21. If we neglect the
gyroscopic terms, which are of secondary importance in this case, and assuming that
the sideslip angle of the vehicle β is small, i.e. axψ=0 and ayψ=ayβ , we obtain the
following expression,

ayβ ≃ −
(
1 +

Ix
mh2

)
h

cϕ
ϕ̈+ g tanϕ (4.41)

where Ix is the overall roll inertia of the motorcycle. It follows from the above that,
for a given roll angle, the lateral acceleration of the path point ayβ depends linearly
on the roll acceleration ϕ̈, which is consistent with the results obtained with the full
model in Fig.4.20. As a matter of fact, note that all the lines in the graph are uniformly
distributed along the x-axis.

As far as the tyre forces are concerned, the roll acceleration does not produce any
load transfer. It simply modifies the overall force generated by the tyres along both
lateral and vertical directions. Fig. 4.21 depicts the tyre forces as a function of the roll
angle to allow for a more meaningful comparison. From the reduced model, Eq. A.17,
we get the following expression for the overall lateral load

Fyf + Fyr = macgy ≃ m(ayβ + ϕ̈hcϕ) (4.42)

which increases with the roll deceleration as the effect of the lateral acceleration ayβ,
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defined in Eq. 4.41, is dominant. For the overall vertical load, on the other hand, we
can write the following expression by simplifying Eq. A.17

Fzf + Fzr = mg −macgz ≃ mg −mϕ̈hsϕ (4.43)

which shows why the vertical loads also increase with the roll deceleration.
Due to the absence of load transfer, the effect of the roll acceleration on the direc-

tional behaviour of the motorcycle is very small. There exists, however, a small effect
on the steering torque. As the front lateral force increases, so does the aligning moment,
which becomes more negative, and forces the rider to slightly increase the torque on the
handlebars in the opposite direction.

4.6 Concluding remarks

The quasi-steady state equilibrium of complex vehicle models may be computed in time
domain by increasing the vehicle speed and the steering angle until the desired condition
is reached [99, 100]. This approach, however, presents one significant drawback when
it comes down to single track vehicles. Vehicles such as bicycles and motorcycles are
intrinsically unstable and, consequently, a steering controller is required to stabilize the
solution [51]. Furthermore, this process is slow and does not guarantee that all desired
conditions (e.g. curvature, velocity, etc) are accurately met at the same time.

As an alternative to the time integration approach and other existing methods, in the
first part of this chapter we introduced a methodology for the quasi-steady state analysis
of motorcycles that avoids the drawbacks mentioned above. Basically, given a specific
set of motion conditions, we solve the quasi-steady state equilibrium by transforming
the differential equations that govern the motion of the motorcycle into an equivalent
system of algebraic equations.

Depending on how the motion conditions are chosen, the solution may represent
a pure steady state equilibrium, also known as stationary solution, or a generic quasi-
steady state trim. The stationary solution is fully defined by the radius of the corner
and by the speed of the motorcycle. In particular, it refers to the situation where the
motorcycle travels along a circular path at constant speed. The quasi-steady state trim,
on the other hand, represents a generic set of states and derivatives that fulfill the
motion equations at a certain time instant. The prefix quasi is used to emphasize that
the solution does not represent a pure stationary condition as the equations include
general velocity and acceleration terms, e.g. roll rate, longitudinal acceleration, etc.

The steady state motion of the motorcycle model was thoroughly studied in the
second part of the chapter. Results show how the most relevant variables (e.g. steering
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angle, tyre forces, etc) vary as a function of the speed of the vehicle and of the curva-
ture of the trajectory. Of particular interest is the high sensitivity of the lateral and
longitudinal control variables with respect to the cornering conditions.

We have shown that the steering torque required to follow a given trajectory changes
drastically with the vehicle speed and the corner radius, with the map that relates this
three variables being highly nonlinear. In addition to this, a power balance analysis
has allowed us to determine how the engine power is dissipated. Results show that
the aerodynamic forces dissipate most of the power at high speeds, whereas the power
dissipated by the tyres becomes only significant at low speeds and high curvatures. It is
especially interesting that the tyre aligning/twisting moments of each tyre may dissipate
more than 3 kW at high speeds.

The last part of the chapter focuses on the quasi-steady state motion of the motor-
cycle. In this section we assessed the effect of the most relevant derivatives, namely
the longitudinal acceleration and the roll derivatives. The aim of this analysis was to
determine to what extent these three terms modify the solution obtained in stationary
conditions.

Results show that the longitudinal acceleration not only has a great impact on the
longitudinal control of the motorcycle, as it is evident, but also on the steering torque.
This happens especially during braking. The reason lies in the front braking force, which
generates a moment around the steering axis that tends to rotate the wheel towards the
inside of the corner. An accurate modeling of the cross section of the tyre has proven
to be essential in order to capture this phenomenon.

Another important effect of the longitudinal acceleration is related to the combined
use of the tyres, which tends to increase the understeering character of the motorcycle
in braking and makes it more oversteering in acceleration. In addition to this, the lon-
gitudinal acceleration has a significant impact on the tyre loads. Motorcycles generally
exhibit a significant load transfer due to their high center-of-gravity-to-wheelbase ratio.
As the loads change, so do the driving and sideslip stiffness of the tyres, which in turn
have a big effect on the dynamic response of the vehicle.

As far as the roll derivatives are concerned, they have a strong effect on the lateral
control of the vehicle. In particular, the steering torque is highly sensitive to the roll
rate. When the motorcycle approaches a corner, the gyroscopic effect of the front wheel
tends to rotate the handlebar towards the inside of the corner, thus helping the vehicle
to change direction. This effect increases with the roll rate. The roll acceleration, on
the other hand, affects mainly the roll angle. It follows from the quasi-steady state
analysis that, for the same roll angle, higher roll accelerations allow the motorcycle to
follow tighter trajectories.
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The sensitivity analysis performed in this chapter provides an insight on how chal-
lenging the control of the motorcycle is. Additionally, it permits us to anticipate some
preliminary requirements of the virtual rider. It is essential that the controller adapts
to the actual conditions of the motorcycle, hence accounting for the corner radius, the
speed of the vehicle, its acceleration and the roll derivatives. Furthermore, given the
variability of the control actions, it is expected that a feedforward term will be of great
benefit to the control strategy. In the next chapter we extend the quasi-steady state
approach to solve the motion of the motorcycle along continuous manoeuvres, thus pro-
viding a suitable feedforward term as well as a reference manoeuvre around which we
will build the control strategy in Chapter 6.



In automotive design, a straight line
is the most awkward path to follow
between two points.

Maurice Olley

Chapter 5

Quasi-steady state analysis of
continuous manoeuvres

Here we extend the methodology introduced in the previous chapter with the aim of
solving the quasi-steady state motion of the motorcycle along continuous manoeuvres.
Fundamentally, this means that, instead of finding the vehicle trim for a predefined set
of conditions, in this chapter we find the control inputs needed to drive the vehicle along
a given path in a quasi-steady state fashion. The curvature of the trajectory and the
speed profile of the motorcycle constitute the main inputs of this new problem.

The chapter is structured in two parts. In the first part we use a dynamic inversion
approach to estimate the roll dynamics of the motorcycle along the target trajectory.
The results of the estimation problem are then used in the second part of the chapter
to develop a solution procedure for the quasi-steady state analysis of continuous ma-
noeuvres. The resulting strategy is demonstrated by solving two different manoeuvres,
a slalom test and a chicane. Finally, some conclusions regarding the application of
the proposed methodology to the development of the virtual rider are presented and
discussed.
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5.1 Roll dynamics estimation

According to the sensitivity study presented in Section 4.5.2, the effect of roll dynamics
may become significant and cannot be generally neglected when studying the behaviour
of the motorcycle. This is especially true for aggressive manoeuvres where the direction
of travel changes quickly, e.g. slalom tests, lane change manoeuvres, etc.

Let’s recall that such study was performed for a predefined set of roll rates and roll
accelerations, which were selected to cover the working range of the motorcycle. In this
chapter, in contrast, we consider the solution of continuous manoeuvres, i.e. the target
is to solve the quasi-steady state equilibrium of a motorcycle that travels along a generic
path. The most significant difference in this case is that the roll motion of the vehicle
is not known a priori. Hence, as part of the novel solution procedure introduced in this
chapter, it is necessary to estimate the roll dynamics of the motorcycle.

To that end, we can exploit the fact that the trajectory, the speed of the motorcycle
and its roll motion are strongly related. Essentially, we are interested in the following
question. Given an arbitrary path and a feasible speed profile, how would the roll angle
evolve if the motorcycle perfectly follows the desired targets? In the following sections
we consider that both the trajectory and the speed profile are known; they constitute
the inputs of the extended quasi-steady state problem.

5.1.1 Problem formulation

We can pose the estimation of the roll rate and the roll acceleration as a dynamic
inversion problem [47,159]. The inversion consists in determining a set of feasible states
and controls such that the system follows a preassigned reference trajectory. For that
purpose, we use the simplified model shown in Fig. 5.1 as, despite its simplicity, it
includes the most important terms that govern the roll dynamics of the motorcycle.
The main advantage of such a simple model is that it leads to a fast and efficient
implementation of the inversion problem while providing a good estimation of the roll
angle and its derivatives.

NOTE: Sections 5.1.1, 5.1.2, 5.1.3 and 5.2 are protected by a confidentiality agreement,
according to the decision of the Doctorate Commission of the University Miguel Hernán-
dez dated September 19, 2016.



5.2 Quasi-steady state solution of continuous manoeuvres 177

5.2.1 Results: slalom test

Generally, a slalom test consists of multiple lined-up cones that must be avoided by
the motorcycle. In our case, let’s assume that such cones are equally distributed along
a straight line at a distance of 12.5m from one another. In order to complete the
manoeuvre, the vehicle is driven along the trajectory depicted in Fig. 5.6a at a constant
speed of 23.5m/s as shown Fig. 5.6b.

The acceleration of the motorcycle is depicted in Fig. 5.6c, where a
xβ

and a
yβ

are
the longitudinal and lateral acceleration of the vehicle as defined in Fig. 4.1. There are
two points to be noted here. First, the lateral acceleration reaches significant values
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during the manoeuvre, exceeding 14m/s2 at the points of maximum curvature. And
second, its value varies quickly, changing sign every 12.5m. These two points make the
slalom test an aggressive manoeuvre as far as the lateral behaviour of the vehicle is
concerned.

Under these circumstances, it is essential to consider the roll rate and the roll ac-
celeration in the quasi-steady state solution of the motion equations. To prove this,
we compare two different sets of results. The first is the legitimate solution obtained
by including the roll derivatives as per Table 5.1. The second solution, on the other
hand, is obtained by neglecting their effect. The imposed values of the roll rate and
roll acceleration are shown in Figs. 5.6d and 5.6e for both cases. Note that the legiti-
mate solution is depicted in blue, whereas the solution obtained by neglecting the roll
derivatives is depicted in red. Let’s first focus on the legitimate solution, ignoring for a
moment the fact that the red curves are not complete.

The response of the vehicle to this particular manoeuvre is clearly periodic, with
a fundamental period equal to two times the distance between cones. In Fig. 5.6f we
can observe that the motorcycle rolls to the right (ϕ>0) in order to avoid the first cone,
then it rolls to the left (ϕ<0) at the second, and so on. As a consequence, the sign of
the roll angle alternates during the manoeuvre, with the maximum roll angle matching
the position of the cones. These are placed at 62.5m, 75m, 87.5m, 100m, etc. Similarly,
the lateral displacement of the motorcycle is also maximum at these points. However,
its phase is shifted 180 degrees with respect to the roll angle, i.e. the vehicle moves to
the right at the same time it rolls to the left and viceversa.

The torque applied by the rider during the manoeuver is shown in Fig.5.6g. Let’s
remember that the steering torque is defined as positive if the rider tries to steer towards
the right. Due to the high roll rate, the steering torque is dominated by the gyroscopic
effect of the front wheel and therefore, in agreement with Eq. 4.40, its magnitude is
proportional to the wheel speed and to the roll rate, while its phase is shifted 180

degrees with respect to the latter.
Figs. 5.7a and 5.7b show the control torques needed to follow the desired speed

profile. By definition, negative torques tend to accelerate the vehicle while positive
torques have the opposite effect. Interestingly, we can observe that such torques are
not constant despite the fact that the imposed longitudinal acceleration a

xβ
is null. In

order to understand this behaviour, we must recall that a
xβ

represents the acceleration
of the path point P, which is located at the road level as per Fig. 4.2. However, it is not
the acceleration of this point what decides the control torques but that of the centre
of gravity. In essence, the control torques are calculated so that the resulting longitu-
dinal forces at the tyres balance the product of the vehicle mass times the longitudinal
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ṡ
[m

/
s]

s [m]

50 100 150 200 25050 100 150 200 250

50 100 150 200 25050 100 150 200 250

50 100 150 200 250−2 −1 0 1 2

50 100 150 200 250

−100

0

100

−50

0

50

−200

0

200

−500

0

500

1000

1500

−20

−10

0

10

20

0

50

100

150

200

250

20

22

24

26

(b)

(a) (c)

(d) (e)

(f) (g)

Figure 5.6: Quasi-steady state results: slalom test. a) Trajectory. b) Curvilinear
speed. c) Acceleration on the tangent frame Tβ . d) Roll acceleration. e) Roll rate. f)
Roll angle. g) Steering torque.
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Figure 5.7: Quasi-steady state results: slalom test. a) Chain torque. b) Brake
torques. c) Front tyre longitudinal force. d) Rear tyre longitudinal force. e) Front
tyre lateral force. f) Rear tyre lateral force. g) Front tyre vertical force. h) Rear tyre
vertical force.
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acceleration of its centre of gravity.
We can use the reduced model developed in Appendix A to explain why the control

torques fluctuate during the slalom manoeuvre. By using Eq. A.1, and since a
xβ

is null,
we can write the acceleration of the centre of gravity of the vehicle along its longitudinal
axis as the sum of three different terms.

acgx = a
yβ
sβ − ψ̈hsϕ − 2ψ̇ϕ̇hcϕ (5.19)

The first is simply the projection of a
yβ

on the longitudinal axis of the motorcycle,
the second represents the contribution of the yaw acceleration ψ̈ and the last is the
Coriolis effect generated by the combined motion of the motorcycle around the yaw and
roll axes. Although all terms contribute to the fluctuation of the control torques, the
Coriolis effect is dominant over the other two.

Before each apex4 the yaw rate and the roll rate have the same sign, thus causing
the Coriolis term to be negative. After the apex, the sign of the roll rate changes and
the Coriolis term becomes positive. This change in the acceleration is the main cause
of the torque fluctuation. The rider, in order to keep constant the tangential speed,
applies a braking torque before each apex and a thrust torque afterwards. As far as the
brake distribution is concerned, and given that the required breaking force is small, it
is convenient to brake only with the rear tyre as it helps to turn in the vehicle. This is
achieved by setting γ=0 in Table 5.3.

The last six figures depict the forces applied to the tyres in the longitudinal, lateral
and vertical directions. The following sign convention is used: longitudinal forces are
defined as positive if they tend to accelerate the motorcycle and negative if they have
a braking effect; lateral forces are positive if they push the vehicle to the right and
negative if they point in the opposite direction; vertical forces are always positive. The
longitudinal forces are depicted in Fig. 5.7c and 5.7d. The lateral forces are shown in
Figs. 5.7e and 5.7f for the front and rear tyres respectively. Note that both of them
are in phase with the roll angle, i.e. large roll angles require large lateral forces and
viceversa. Lastly, the vertical forces are depicted in Figs. 5.7g and 5.7h.

If we now focus on the red curves, obtained by neglecting the roll rate and the roll
acceleration, the first thing we notice is that the quasi-steady state solution does not
exist for the whole manoeuvre. This is due to several factors. In first place, the lateral
forces exerted by the tyres increase notably when the roll rate and the roll acceleration
are not considered. Such increase in the lateral forces, together with the fact that the

4The word apex denotes those points of the trajectory where the curvature presents a local max-
ima/minima. In the slalom test the trajectory presents an apex at every cone.
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vertical loads follow the opposite trend, make it impossible to solve the quasi-steady
state problem as the tyres are not able to generate the required tyre forces. Furthermore,
we can observe clear differences in the steering torque and in the roll angle.

It is worth noting that the roll acceleration ϕ̈ is shifted 180 degrees with respect to
the lateral acceleration of the path point a

yβ
, i.e. the lateral acceleration always points

towards the inside of the corner while the roll acceleration goes in the opposite direction.
This generates an additional tilting torque around the roll axis that tends to reduce the
roll angle. Consequently, when the roll acceleration is neglected, the resulting roll angle
increases drastically as shown in Fig. 5.6f. The steering torque, on the other hand, is
dominated by the roll rate and therefore, when we neglect it, the torque required to
perform the manoeuvre drops significantly as shown in Fig. 5.6g.

The slalom manoeuvre is a clear example of the big effect that the roll rate and the
roll acceleration may have on the quasi-steady state analysis of the motorcycle.

5.2.2 Results: chicane

The second set of results presented here represents a racing manoeuvre along a chicane.
As opposed to the slalom test, which is characterized by an aggressive lateral accelera-
tion profile, this manoeuver is introduced to assess the behaviour of the vehicle during
combined conditions, including also an abrupt transition from acceleration to braking.
In order to complete the manoeuvre, the motorcycle is driven along the trajectory shown
in Fig. 5.8a at the speed specified by Fig. 5.8b.

Basically, the manoeuvre is composed of two successive corners, one to the right and
one to the left. Likewise, each of these corners can be divided in two parts, which we
will referred to as corner entry and corner exit. During the entry phase the longitudinal
acceleration is negative and the (absolute) lateral acceleration increases. On the other
hand, during the exit phase the longitudinal acceleration is positive and the (absolute)
lateral acceleration decreases. These four phases are clearly shown in Fig. 5.8c. The
most critical point of this manoeuvre is the transition between corners, where the motor-
cycle stops accelerating and starts braking. Note the discontinuity in the longitudinal
acceleration at s=250m.

The imposed values of the roll rate and the roll acceleration are shown in Figs. 5.8d
and 5.8e, while the resulting roll angle is shown in Fig. 5.8f. We can observe that the
motorcycle rolls to the right in the first corner and to the left in the second. Unlike
the slalom test, the differences between the legitimate solution (blue curves) and that
obtained by neglecting the roll rate and the roll acceleration (red curves) are not so
obvious in most of the graphs of Figs. 5.8 and 5.9.
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Figure 5.8: Quasi-steady state results: chicane. a) Trajectory. b) Curvilinear speed.
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Figure 5.9: Quasi-steady state results: chicane. a) Chain torque. b) Brake torques.
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There are however important differences, especially during the transition between
corners (s ∈ [200, 300]m) as the roll derivatives reach their highest values in this region.
We can observe in Fig. 5.8f that the roll angle computed by neglecting the roll derivatives
is up to 8 degrees larger than that of the quasi-steady state solution. Such difference is
mainly caused by the roll acceleration. The roll rate, on the other hand, has a significant
effect on the steering torque as shown in Fig. 5.8g. It is interesting to notice that the
difference between both solutions is proportional to the roll rate.

The steering torque is also very sensitive to the front braking force during the entry
phase. Such force generates a twisting torque that tends to steer the vehicle towards the
inside of the corner. The rider, in order to keep the trajectory, has to counteract this
effect by applying a torque in the opposite direction. Hence, this leads to a negative
steering torque in the first corner and a positive torque in the second. When the roll
derivatives are not considered, the steering torque is dominated by this effect.

The control torques needed to follow the desired speed profile are depicted in
Figs. 5.9a and 5.9b. As shown in the graphs, the engine (chain force) is used during the
exit phase to accelerate the motorcycle, while the brakes are used to decelerate it in the
entry phase. The braking distribution is kept constant during the whole manoeuvre,
with the front tyre generating the 80% of the total braking torque.

The last six figures represent the tyre forces along the longitudinal, lateral and
vertical directions. The longitudinal forces exerted by the tyres, depicted in Figs. 5.9c
and 5.9d, are directly related to the control torques. The lateral forces, on the other
hand, are dominated by the lateral acceleration as shown in Figs. 5.9e and 5.9f. Finally,
the vertical forces from Figs. 5.9g and 5.9h show the load transfer that takes place when
the motorcycle stops accelerating and starts braking. Note that at that point more than
2 kN are transferred from the rear to the front tyre, which highlights the severity of the
manoeuvre.

The effect of the roll derivatives is also noticeable in the lateral and vertical forces.
The quasi-steady state solution requires up to 400N less lateral force, whereas the
difference in terms of vertical load ranges between −250N and +200N. Such differences
are not negligible, especially if they occur in the transition between corners, which is
the most critical part of the manoeuver.

NOTE: Section 5.2.3 is protected by a confidentiality agreement, according to the deci-
sion of the Doctorate Commission of the University Miguel Hernández dated September
19, 2016.
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5.3 Concluding remarks

We have shown in this chapter that the quasi-steady state solution of the motion equa-
tions represents an efficient way to study the behaviour of the motorcycle along contin-
uous manoeuvres.

In the first part of the chapter we set the basis to estimate the roll motion of the
motorcycle along any target manoeuvre. In essence, the problem comes down to the
following question: given an arbitrary path and a feasible speed profile, how would the
roll angle evolve if the motorcycle perfectly follows the desired targets? To answer it,
we applied a dynamic inversion approach to a simplified motorcycle model, created by
synthesizing the most important terms that govern the roll dynamics of the vehicle.
The main advantage of such model is that it leads to a fast and efficient implementation
of the inversion problem while providing a good estimation of the roll angle and its
derivatives.

In the second part of the chapter we combined the results of the inversion problem
with the methodology introduced in Chapter 4 to solve the quasi-steady state motion
of the motorcycle along continuous manoeuvres. This new approach was successfully
tested on two different manoeuvres, a slalom test and a chicane. Interestingly, the roll
derivatives proved to be essential for the feasibility of the solution. In particular, it
was shown that the slalom maneuver becomes unfeasible when the roll rate and the roll
acceleration are neglected, which highlights the importance of these two terms.

Despite the successful results obtained with the quasi-steady state method, it is
worth noting that such solution only considers the gross motion of the vehicle. Specifi-
cally, the current solution does not capture, by definition, any transient effect associated
to the vibration modes of the motorcycle.

In order to study the dynamic response of the vehicle, we need to integrate the
differential equations that govern its behaviour. However, this is not straightforward as
we have to overcome two major drawbacks. In first place, the motorcycle is unstable
and tends to fall sideways during the dynamic solution. In second place, the speed of
the vehicle and its trajectory cannot be directly imposed as in the quasi-steady state
solution.

Therefore, it is indispensable to stabilize the motorcycle during the integration pro-
cess and, in addition to that, we also need to apply the appropriate actions so that
the vehicle follows the predefined path at the desired speed. In the real world, these
tasks are performed by the rider, while in the simulation world we may mimic the rider
actions by using an appropriate control algorithm. Such controller, which will be re-
ferred to as the virtual rider, is introduced in the next chapter, where the quasi-steady
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state solution will prove to be an excellent reference to derive the internal model of the
controller.





The vehicle and driver constitute a
complex feedback system. The
behavior of the vehicle results in
certain reactions by the driver.
Inversely, the behavior of the driver
affects the behavior of the vehicle.
This man-machine system cannot, in
many instances, be separated into the
purely mechanical and the purely
human components. The system must
be treated as a whole.

N. Rashevsky, Neglected Factors in
Highway Safety (1966)

Chapter 6

A rider model for the dynamic
simulation of motorcycles

This chapter introduces a new methodology for the dynamic simulation of motorcycles
based on Model Predictive Control (MPC). In particular, we develop an algorithm to
drive a nonlinear motorcycle model along a control target, defined by a reference path
and a given speed profile. The first part of this chapter deals with the linearization
of the motion equations along the quasi-steady state solution of the problem. The
outcome is a family of state space models that represent the rider’s mental model of the
vehicle at every point of the reference path. The second part of the chapter describes
the underlying equations of the rider model and the details of its implementation. In
the third part, a series of maneuvers are simulated and their results are thoroughly
discussed. Finally, the robustness of the developed methodology is shown by including
the road unevenness in the simulations. To finish, some remarks and conclusions on the
performance of the rider model are presented.

6.1 Introduction

The introduction of computer-controlled chassis components during the last decades of
the twentieth century initiated a technological revolution that is completely changing the

189
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motorcycle market nowadays. Recently, terms such as ABS (Antilock Braking System),
TCS (Traction Control System), CBS (combined braking system) are becoming more
and more known among motorcycle riders. These acronyms designate mechatronic
devices aimed at improving the stability, manoeuvrability and comfort of motorcycles,
helping thus the rider and ultimately enhancing safety.

It is well known that motorcycle manufacturers are continuously investigating how
to improve road safety and vehicle comfort. However, despite the huge effort they
have put forward in this respect, their current technology still lags behind that of the
automotive industry. In general, the knowhow related to cars cannot be directly reused
in motorcycles as both vehicles differ in many aspects: motorcycles are intrinsically
unstable; they reach large roll angles; there is less space for sensors/actuators and less
power available; and what is most important, motorcyclists are less prone than car
drivers to accept a system that interferes with the dynamics of the motorcycle and their
personal riding style.

Furthermore, most of the present devices involve the enhancement of one single
feature at a time, not considering the vehicle as a whole. Current technology has reached
the point where, to further improve the performance of the motorcycle, a global and
multidisciplinary understanding of the vehicle is essential; it is indispensable to consider
the interaction of such diverse elements as road, suspensions, chassis, engine, driver,
sensors and electronics in the design process of new devices.

It is in this challenging framework where simulation takes a crucial role in the evo-
lution and development of new ideas and concepts. The use of virtual models allows
to reduce costs, decreases the development time and limits the number of prototypes
needed to validate a new design. Additionally, computer simulations permit conducting
experiments in conditions that would not be feasible in the real world. A fundamen-
tal element of this complex process is the mathematical algorithm employed to mimic
the behaviour of the human rider within the simulation environment, also know as
rider model or virtual rider. Existing rider models have not reached it maturity yet as
discussed in Chapter 2, which motivated the development of the current PhD thesis.

In this chapter we extend the work presented by Cole in [101] to propose a novel
rider model for motorcycles. His work is considered one of the first applications of Model
Predictive Control (MPC) to driver modelling. Based on the control theory introduced
by Maciejowski in [125], he derived a virtual driver to steer a linear car model along a
target path at constant speed. Cole’s model was based on the standard bicycle model,
which comprises four states and one control input. Several methods to transform the
controller gains from global to vehicle-fixed axes were comprehensively discussed follow-
ing [112], where it was stated that the driver views the road relative to the longitudinal
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axis of the vehicle instead of relative to the ground-fixed axes. Despite the simplicity
of Cole’s model and the limitation imposed by the constant speed assumption, the re-
sults obtained were very promising and showed a great potential for developing more
advanced vehicle controllers based on MPC.

The approach presented here features three new contributions with respect to Cole’s
work. In first place, the new control strategy is able to successfully drive the motorcycle
in a wide range of speeds. For this purpose, the internal model of the controller is
constantly updated as the vehicle travels along the reference path. Thus, the controller
gains are always optimized for the current dynamics of the motorcycle. Secondly, in
this case the controlled vehicle is a nonlinear multibody model composed by twenty
two states and four control inputs. The internal model of the controller is obtained by
linearizing the system along the quasi-steady state solution of the problem. Finally, the
use of curvilinear coordinates makes unnecessary any transformation from ground-fixed
axes to vehicle-fixed axes as the gains are directly derived with respect to the reference
path.

6.2 The rider model as a control problem

In this section, which is structured in five parts, we pose the task of modeling the
human rider as an unconstrained predictive control problem. We start by providing an
overview of the control scheme and by introducing some important definitions. Then,
we derive the internal model of the controller by linearizing the system equations along
a nominal manoeuvre, defined as the quasi-steady state solution of the problem. After
that, we use the resulting set of linear models to study the stability of the system and
to formulate a prediction model, which constitutes the core of the controller. Finally,
we obtain the control gains by solving a series of quadratic optimization problems.

6.2.1 General structure of the controller

The structure of the simulation environment employed in this chapter is shown in Fig. 6.1
including both the motorcycle and the rider models. The former is the nonlinear multi-
body model of the vehicle introduced in Chapter 3 and needs no further discussion here,
whereas the latter represents the control strategy that mimics the human rider.

Essentially, the task of the rider model is to compute the necessary control actions
u to guide the motorcycle model along a target path at the desired speed. These two
elements, i.e. the path and the speed profile, constitute the control target, denoted
by the capital letter Yd. The control strategy is divided in three main blocks as we
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−

Figure 6.1: Rider model control scheme. The control strategy is divided in three
main blocks, depicted in white: the quasi-steady state nominal manoeuvre, the family
of internal models and the control law. The block depicted in grey represents the
nonlinear plant, i.e. the multibody model of the motorcycle.

can notice in the figure: solution of the nominal manoeuvre, definition of the family of
internal models and computation of the control law.

We define the nominal manoeuvre as the quasi-steady state solution of the problem,
i.e. as the state vector x∗ and the input vector u∗ obtained according to the methodology
introduced in Chapter 5. An asterisk is employed to differentiate the nominal values
from the actual states x and inputs u.

The concept of internal model is used here to denote the rider’s mental model of
the motorcycle, i.e. a representation of the inverse dynamics of the vehicle that the
human mind constantly tunes based on experience. Humans use this stored knowledge
while riding to estimate the future behaviour of the vehicle and then act accordingly
to achieve the desired goal, e.g. to follow a predefined path. The controller works in
a similar way. It uses the internal model to formulate a prediction model, which is
subsequently optimized in order to minimize the error between the system’s output and
the control target. Such optimization procedure is carried out by the last block, the
control law, according to the MPC theory.

It is essential that the controller takes into account that the dynamic response of the
motorcycle changes along the reference path. For that purpose, we obtain the internal
model as the linearization of the system equations along the nominal manoeuvre. We
use the bar symbol on the input ū and state vectors x̄ to denote variations with respect
to the nominal values x∗ and u∗. Hence, this approach remains valid as long as the
motorcycle tracks the nominal manoeuvre and the variations remain small. Although
the control law is based on a family of linear models, the overall control action provided
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by the rider is nonlinear due to the feedforward action u∗ and due to the fact that the
gains vary during the simulation.

6.2.2 The internal model

We derive the internal model starting from the state-space equations defined in Eq. 3.124,
which are reproduced below for convenience,

ẋ = f(x,u)

y = g(x,u)
(6.1)

where x, u and y are the state, input and output vectors respectively. Since we want
the motorcycle to remain in the neighborhood of the nominal manoeuvre, we can ap-
proximate its dynamics by linearizing the above equations around the nominal solution
defined by x∗ and u∗. Provided that f is differentiable in its two arguments, we obtain

ẋ = f(x∗,u∗) +
∂f

∂x

∣∣∣∣
(x∗,u∗)

(x− x∗) +
∂f

∂u

∣∣∣∣
(x∗,u∗)

(u− u∗) (6.2)

where quadratic and higher order terms in x and u have been neglected. The same
applies to the output equation g, which yields

y = g(x∗,u∗) +
∂g

∂x

∣∣∣∣
(x∗,u∗)

(x− x∗) +
∂g

∂u

∣∣∣∣
(x∗,u∗)

(u− u∗) (6.3)

In order to simplify the notation, we denote the Jacobian matrices as follows,

Ac(s) =
∂f

∂x

∣∣∣∣
(x∗,u∗)

Bc(s) =
∂f

∂u

∣∣∣∣
(x∗,u∗)

Cc(s) =
∂g

∂x

∣∣∣∣
(x∗,u∗)

Dc(s) =
∂g

∂u

∣∣∣∣
(x∗,u∗)

(6.4)

where Ac ∈ Rnx×nx , Bc ∈ Rnx×nu , Cc ∈ Rny×nx and Dc ∈ Rny×nu . The subindex
c stands for continuous system. All four matrices can be written as functions of the
curvilinear coordinate s as the nominal manoeuvre is parameterized according to this
variable, i.e. x∗ = x∗(s) and u∗ = u∗(s).

The structure of the state matrix Ac and the input matrix Bc depends on the
subsystems that compose the motorcycle model and how they are related. Essentially,
the model comprises three different sets of equations, namely the multibody model, the
tyre model and the track model. They were assembled in Eq. 3.123, which is reproduced
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below for ease of reference.

f(x,u) =


M−1(qp)Q(qv,qp,pλ,u)

Apqv

fλ(pλ,qv,qp)

ft(pt,qv)

 with x =


qv

qp

pλ

pt

 (6.5)

The first two lines of the above expression represent the multibody equations, the third
corresponds to the tyre dynamics and the fourth contains the track equations. Note
also that the state vector x comprises the local states of all subsystems, whereas the
input vector u appears only in the multibody equations. In consequence, the Jacobians
of f with respect to the states x and the inputs u present the following structure,

Ac(x,u) =



∂(M−1Q)

∂qv

∂(M−1Q)

∂qp

∂(M−1Q)

∂pλ
0

Ap 0 0 0

∂fλ
∂qv

∂fλ
∂qp

∂fλ
∂pλ

0

∂ft
∂qv

0 0
∂ft
∂pt


Bc(x,u) =



∂(M−1Q)

∂u

0

0

0


(6.6)

where 0 denotes a null matrix of appropriate dimensions.
The output vector y, on the other hand, is defined in terms of the track coordinates.

It contains two elements. The first is the lateral position of the motorcycle with respect
to the reference path n, while the second is the curvilinear speed ṡ. These variables,
which will be used in a later section to define the cost function of the controller, depend
on the vehicle states qv and on the track coordinates pt, i.e.

g(x,u) =

[
n(pt)

ṡ(pt,qv)

]
(6.7)

Hence, the output matrix Cc becomes,

Cc(x,u) =

[
∂g

∂qv
0 0

∂g

∂pt

]
(6.8)

while the feedthrough matrix Dc vanishes as the output vector y does not depend
directly on the input u.

The resulting linear time-varying system can be expressed as a perturbation with
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respect to the nominal trajectory. By using the bar symbol to represent variations with
respect to the nominal values, we obtain the standard state-space representation,

˙̄x = Ac(s)x̄+Bc(s)ū

ȳ = Cc(s)x̄
(6.9)

where
x̄ = x− x∗

ū = u− u∗

˙̄x = ẋ− f(x∗,u∗)

ȳ = y − g(x∗,u∗)

(6.10)

Eq. 6.9 will be referred to as the internal model of the controller in continuous time.

6.2.3 Stability analysis

If the motorcycle performs a stationary motion, either in straight line or in cornering
conditions, the system matrices remain constant over time and the internal model be-
comes time-invariant. Consequently, we can simplify Eq. 6.9 to the following set of
linear differential equations with constant coefficients,

˙̄x = Acx̄+Bcū

ȳ = Ccx̄
(6.11)

which represents the motion of the vehicle around a stationary equilibrium point.
It is well known from modern control theory [79] that the eigenvalues of the state

matrix Ac characterize the stability of time-invariant systems against external pertur-
bations. In general, the eigenvalues may be represented by complex numbers of the
form,

s = σ ± jωd (6.12)

where the real part σ and the imaginary part ωd are respectively the attenuation and the
damped natural frequency of the associated eigenvectors, also known as modal shapes
or vibration modes.

The attenuation σ gives information about the stability of the modes, which are
said to be stable if the attenuation is negative and unstable if the attenuation is zero or
positive. The damped frequency ωd, on the other hand, is the frequency at which each
mode would oscillate in free vibration conditions. The damping ratio ξ is commonly
used to characterize how fast the oscillations decay after the system is perturbed. It
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can be defined as a function of the attenuation and the damped frequency as follows,

ξ = − σ√
σ2 + ω2

d

(6.13)

with its value ranging from 0 to 1. Vibration modes with a ratio close to 1 attenuate
the effects of external perturbations very quickly, whereas modes with ratios close to 0
show little attenuation.

Since the eigenvalues of the motorcycle are very sensitive to the equilibrium con-
ditions, namely the travelling speed and the lateral acceleration, we split the stability
analysis into straight running and cornering conditions. The first provides a good in-
sight into the effect of speed while the second allows us to understand the effect of
lateral acceleration.

Straight running

Fig. 6.2 shows the nonlinear1 root locus of the motorcycle in straight line conditions
as the speed increases from 5m/s up to 70m/s. The horizontal axis of the graph
represents the attenuation σ in rad/s whereas the vertical axis represents the damped
natural frequency fd=ωd/2π in Hz.

Note that the graph is divided in two different regions. The eigenvalues associated
to stable modes fall in the left-half plane, which is in turn divided in function of the
damping ratio ξ. The right-half plane, on the other hand, is depicted in grey to empha-
size the fact that the system becomes unstable in the case any eigenvalue falls in this
region.

Each trace of the root locus represents one vibration mode of the motorcycle. Their
names have been assigned according to existing literature [11,13,18]. We can distinguish
two groups of modes in Fig. 6.2. All the vibration modes that do not involve lateral
motion, i.e. bounce, pitch and wheel hops, are usually classified as in-plane modes. On
the contrary, the remaining modes, i.e. capsize, weave, wobble and rear wobble, are
classified as out-of-plane modes. The in-plane modes are generally related to the ride
and comfort performance of the motorcycle, whereas the out-of-plane modes are linked
to its stability.

The vibration modes of the motorcycle are depicted in Fig. 6.3 by means of polar
graphs. Each set of arrows represents the amplitude and phase of the multiple degrees
of freedom that compose the specified vibration mode. The longitudinal motion of the

1The root locus is nonlinear since each point of the graph is obtained by linearizing the equations of
motion around a different equilibrium point. In particular, the steady state solution is first computed
for all the speeds and the equations of motion are then linearized around the resulting equilibrium
points.
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Figure 6.2: Root locus in straight line conditions. The horizontal axis of the graph
represents the attenuation σ in rad/s whereas the vertical axis represents the damped
natural frequency fd=ωd/2π in Hz. The speed is represented by the color scale, which
goes from 5m/s (blue) up to 70m/s (red).

vehicle and the wheel rotations are not included as their contribution to the displayed
modes is insignificant. Hence, we define the mode shapes in function of eight degrees of
freedom, five rotational (χ, ϕ, µ, δ, µr) and three translational (n, z, df).

In order to visualize all the degrees of freedom in one graph, we have transformed
the translational degrees of freedom into fictitious angular quantities. In particular,
we have divided the lateral displacement n, the fork deformation df and the vertical
displacement z by the length of the swingarm. This adimensionalization leads to three
new angles (n∗, z∗, d∗f ) that can be directly compared to the other rotational degrees
of freedom. Finally, it is to be noted that the eigenvectors are normalized so that the
magnitude of their maximum component is equal to one. A brief description of each
mode is provided below:

• Weave (out-of-plane). The weave mode is characterized by low frequency oscilla-
tions of the following degrees of freedom: lateral displacement of the sprung mass
n∗, trajectory angle χ, roll angle ϕ and steering angle δ. We can observe that the
roll angle is 90 degrees out of phase with respect to the track angle and almost
180 with respect to the lateral displacement. For the motorcycle under analysis,
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as the phase reference in all cases.

this mode is unstable at low speeds, gets slightly stabilized at medium speeds and
becomes progressively less damped at very high speeds.

• Bounce (in-plane). The bounce mode shows a large vertical movement of the
sprung mass z∗ that is in phase opposition with respect to both the pitch angle
of the rear suspension µr and the fork deformation df . Basically, when the sprung
mass moves up and down the unsprung masses move in the opposite direction to
keep the contact with the ground. There is also a small rotation of the sprung
mass µ that indicates that pitch and bounce are not fully decoupled.

• Pitch (in-plane). The pitch mode is characterized by a large rotation of the
sprung mass µ. Such rotation is in phase with the fork deformation df and in phase
opposition with respect to the pitch angle of the rear suspension µr. This means
that when the sprung mass pitches forward, the fork compresses and the swingarm
extends. Similarly to the bounce mode, there is also a small displacement of the
sprung mass in the vertical direction z that indicates that pitch and bounce are
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not decoupled.

• Rear wobble (out-of-plane). The rear wobble is characterized by oscillations of
the trajectory angle χ and the roll angle ϕ that are in phase with one another,
and in phase opposition with respect to the lateral displacement n∗. The steering
angle δ is almost 90 degrees out of phase with respect to the lateral displacement.
This mode is not particularly interesting as far as the lateral stability is concerned
since it is highly damped.

• Front and rear hops (in-plane). The front hop shows mainly fork deformation
df with small rotations of the sprung mass µ and the swingarm µr around the
y-axis. The rear hop, on the other hand, shows a large rotation of the swingarm
µr together with small motions of the sprung mass µ and the fork df .

• Wobble (out-of-plane). The wobble mode is characterized by large oscillations of
the steering angle δ. This mode is is qualitatively similar to the well-known wheel
shimmy on aircrafts and cars [12] and tends to become unstable at high speeds.

There is an additional out-of-plane mode that is non-oscillatory, the capsize. It
consists mainly in a roll motion combined with a lateral displacement where the whole
vehicle behaves as an inverted pendulum that falls laterally. This mode evolves very
slowly, on the order of seconds, being easy for the rider to control it. For the motorcycle
under analysis, the stability of the capsize mode decreases with the speed and the real
part becomes almost null over the speed of 30m/s.

Cornering conditions

The most important difference between cornering and straight running conditions is the
coupling between the in-plane and out-of-plane modes. The roll angle of the motorcycle
plays an important role in this phenomenon.

When the motorcycle is upright all tyre forces are either contained in the mid-plane
of the vehicle or orthogonal to it. Thus, the vertical loads can only excite the in-plane
modes whereas the out-of-plane modes are only affected by the lateral forces. This
causes the in-plane and the out-of-plane modes to be fully decoupled, i.e. capsize,
weave and wobble do not involve suspension motion whereas pitch and bounce do not
involve lateral motion.

This situation changes drastically in cornering conditions as both lateral and vertical
forces possess in-plane and out-of-plane components. Hence, when the motorcycle is
inclined all modes involve both suspension and lateral motions at different extents. The
effect of such coupling is shown in Fig. 6.4, which depicts the root locus of the motorcycle
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Figure 6.4: Root locus in cornering conditions. The horizontal axis of the graph
represents the attenuation σ in rad/s whereas the vertical axis represents the damped
natural frequency fd=ωd/2π in Hz. The speed range goes from 5m/s up to 70m/s.
Note that each color represents a different acceleration and that the initial speed is
indicated by a circle (◦).

at three different levels of lateral acceleration. Note that each color represents a different
acceleration and that the initial speed is indicated by a circle (◦).

The most coupled modes are generally the weave and the bounce since their frequen-
cies are not far off. As a matter of fact, we can observe how the traces associated to
these modes change significantly with respect to the straight running case. In particular,
the bounce frequency now depends on the speed and the weave frequency increases. As
far as the damping is concerned, the damping of the weave mode increases with the
lateral acceleration, especially at low speeds, while that of the bounce increases at low
speeds and shows the opposite behaviour at high speeds.

It is worth noting that the frequency of the wobble decreases with the lateral acceler-
ation. This trend is maximum at low speeds and becomes less pronounced as the speed
increases. Interestingly, the lateral acceleration has a destabilizing effect on the wobble
mode, causing its eigenvalues to move towards the instability region. As a consequence,
this mode becomes clearly unstable at high speeds.

The stability of the capsize mode is also greatly influenced by the lateral acceleration.
It is stable in straight running for all speeds, but becomes progressively more unstable
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Figure 6.5: Family of internal models. Each internal model represents the dynamics
of the motorcycle at one point of the reference path. The family internal models
comprisesm+1 discrete models, which are obtained by linearizing the system equations
around the nominal manoeuvre

(
x∗,u∗) followed by a subsequent discretization.

as the lateral acceleration increases.
The lateral acceleration does not have a big effect on the frequency of the wheel hop

modes but it does increase their damping ratio slightly. In effect, when the motorcycle
is inclined and any of the wheel hop modes gets excited, the contact patch of the corre-
sponding tyre slides on the road surface. Such motion dissipates energy and increases
the effective damping.

The effect of the lateral acceleration on the two remaining modes is small. It slightly
decreases the damping ratio of the pitch mode and tends to reduce the frequency of the
rear wobble.

In this section we have shown that the dynamic response of the motorcycle varies
significantly with the speed and the lateral acceleration. In particular, there are two
lightly-damped vibration modes, namely wobble and weave, that may become unstable.
Furthermore, such modes involve both in-plane and out-of-plane dynamics in cornering
conditions. This highlights the importance of designing the rider model so that it takes
into account the actual dynamics of the motorcycle.

NOTE: Sections 6.2.4, 6.2.5, 6.3, 6.3.1, 6.3.2 and 6.3.3 are protected by a confidentiality
agreement, according to the decision of the Doctorate Commission of the University
Miguel Hernández dated September 19, 2016.
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6.3.4 Results: slalom test

Let’s recall that the slalom test consists of multiple line-up cones that must be avoided
by the rider, leaving the first at the right, the second at the left and so on. Such cones
are equally distributed along a straight line at a distance of 12.5m from one another.
To complete the manoeuvre, the motorcycle is driven along the trajectory depicted in
Fig. 6.15a at a constant speed of 23.5m/s.

The tracking performance of the controller can be assessed by looking at the path
error and by comparing the actual and target speeds. These two metrics are depicted
in Figs. 6.15b and 6.15c respectively, where we can observe that the performance of the
controller is remarkable: the maximum path deviation is lower than 2.5 cm whereas the
speed difference is almost insignificant, of the order of 0.1m/s.

The slalom test is very demanding as far as the lateral control of the motorcycle is
concerned. In particular, the lateral acceleration of the vehicle measured at the path
point P reaches peaks of 17.5m/s2 at the cones according to Fig. 6.15d. The complexity
of this manoeuvre is also observable from the lateral forces exerted by the tyres, see
Fig. 6.15f. Note that not only they reach values over 1.3 kN but their rate of change is
also significant. As a matter of fact, the rear force goes from −1.3 kN to +1.3 kN as the
vehicle travels between to consecutive cones.

The most interesting point of this simulation, however, is that the combination of
cone spacing and travelling speed is selected so as to excite the bounce mode. Such
excitation occurs at the following frequency

fc =
ṡ

dc
=

23.5m/s

12.5m
= 1.88Hz (6.52)

where ṡ is the constant travelling speed whereas dc represents the distance between cones.
The resulting frequency fc matches the bounce frequency of the motorcycle as per the
root locus of Fig.6.2. This leads to severe in-plane oscillations of the motorcycle that
were not captured by the quasi-steady state solution of the problem. We can observe in
Fig. 6.15g that the load variation surpasses 2.2 kN peak to peak, with a minimum value
of 250N. Interestingly, the rider model is able to successfully deal with such a big load
variation.

In general, the longitudinal control of the motorcycle tends to be less challenging
than the lateral. Nevertheless, in this case the coupling between the lateral and lon-
gitudinal dynamics leads to interesting results. We can observe in Fig. 6.15e that the
longitudinal forces oscillate, becoming even negative, despite the velocity of the vehicle
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being constant throughout the manoeuver. The same behaviour is observed if we look
at the the slip ratios, Fig. 6.16a, especially as far as the rear tyre is concerned.

According to Fig. 6.16d, the slalom manoeuver is characterized by an extreme roll
rate that oscillates between ±130 deg/s. Under these conditions, the combined motion
of the vehicle around the yaw and roll axes tends to accelerate the vehicle before the
apex, i.e. when the roll angle increases, and has the opposite effect after it4. Thus, in
order to keep the speed constant, the rider has to brake before each apex and open the
throttle afterwards. This behaviour is confirmed by Fig. 6.16f, where the longitudinal
controls are depicted. Note that the brake distribution is fully biased towards the rear
in order to help the motorcycle rotation into the corner.

The lateral dynamics are mainly controlled by the steering torque, depicted in
Fig. 6.16e. It is important to note that the steering angle, which is shown in Fig. 6.16g
is not directly determined by the rider. In fact, the steering dynamics depend not only
on the steering torque exerted by the rider but also on all the external forces applied to
the steering system, e.g. tyre forces, gyroscopic effects, etc.

The frequency content of the control actions is summarized in Fig. 6.16h, where
we can observe that the frequency of the steering torque is fc/2, i.e. half of the cone
frequency, whereas the longitudinal controls oscillate at fc. Both frequencies are feasible
for human riders.

The sideslip angle of the tyres, Fig. 6.16b, and the pitch response of the motorcycle,
Fig. 6.16c, are also included for completeness. The first is directly related to the lateral
forces while the second shows that the pitch dynamics are significantly excited during
the manoeuvre.

6.3.5 Results: chicane

As opposed to the slalom test, which is characterized by an aggressive lateral acceler-
ation, a chicane is used here to assess the behaviour of the rider model under severe
combined conditions. In this case the motorcycle is ridden along the s-shaped trajectory
depicted in Fig. 6.17a, which is a typical feature of racing courses. The combination
of high longitudinal and lateral accelerations, together with the abrupt transition from
acceleration to braking, make this manoeuver a challenging test for the rider model.

According to Figs. 6.17b and 6.17c, which show the path error and the vehicle speed
respectively, the tracking performance of the virtual rider is also remarkable along the
chicane. We can observe that the maximum path error is 4.5 cm whereas the speed
error lies below 0.05m/s.

4The coupling between the lateral and longitudinal dynamics was detailed during the quasi-steady
state solution of the slalom manoeuver in section 5.2.1.
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Figure 6.17: Chicane results. a) Trajectory. b) Path error. c) Curvilinear speed.
d) Acceleration on the tangent frame Tβ . e) Tyre longitudinal forces. f) Tyre lateral
forces. g) Tyre loads.
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Due to the fact that the lateral acceleration changes slowly, the quasi-steady state
solution obtained in section 5.2.2 and the results presented here show no significant
differences. This is true for the whole manoeuvre except for the oscillations caused by
the aggressive braking at s=250m. This point corresponds to the center of the chicane,
where the rider stops accelerating and brakes before entering the second corner. Note
the discontinuity exhibited by the longitudinal acceleration in Fig. 6.17d and also by
the longitudinal tyre forces in Fig. 6.17e.

We will therefore focus on this part of the manoeuver. We can observe from
Fig. 6.17d that the aggressive braking causes small out-of-plane oscillations of the vehi-
cle. These oscillations are also noticeable from the lateral forces in Fig. 6.17f, from the
sideslip angles in Fig. 6.18b and, to a lower extent, from the roll rate in Fig. 6.18d. It
is clear from this last figure that the braking occurs at the point where the roll rate is
maximum. This favours the coupling between the braking forces and the out-of-plane
motion of the motorcycle.

The largest oscillations, however, are related to the in-plane dynamics of the vehicle.
When the rider brakes, the rear tyre unloads and more that 2.3 kN are quickly trans-
ferred to the front tyre, see Fig. 6.17g. This load transfer triggers the pitch dynamics
of the vehicle, which in turn cause the tyre loads to oscillate. The pitch angle and its
derivative are shown in Fig. 6.18c, where we can observe how the pitch rate reaches its
maximum value at the beginning of the braking phase and then damps out quickly.

The oscillations described above, both in-plane and out-of-plane, together with the
fact that the motorcycle is not perfectly upright during load transfer cause the fast
steering oscillations shown in Fig. 6.18g. However, they do not represent a major
problem for the rider model, which successfully manages to stabilize the vehicle along
the desired trajectory. The steering torque applied by the rider for this purpose is shown
in Fig. 6.18e. Its spectrum, depicted in Fig. 6.18h, additionally shows that the control
of the motorcycle along this manoeuvre requires a limited bandwidth that is perfectly
feasible for human riders.

6.3.6 Results: corner exit

The third example represents an aggressive corner exit manoeuvre, similar to those
performed by racing riders. We can observe the target trajectory in Fig. 6.19a. The ma-
noeuver starts with the motorcycle cornering in steady state conditions, i.e. travelling at
constant speed along a circular trajectory. As the end of the circular section approaches,
the rider progressively opens the throttle and the motorcycle accelerates. Consequently,
the load at the front tyre decreases and the motorcycle eventually wheelies5. If the tyre

5The term wheelie is usually employed to denote the loss of contact between the front wheel and
the track
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grip is high enough, this condition determines the maximum longitudinal acceleration
of the vehicle as any further increase would cause it to flip backwards. Such manoeuver
is especially challenging for the rider model due to the high acceleration reached both in
the longitudinal and lateral directions and, in particular, due to the low load available
at the front tyre.

We can observe from Fig. 6.19b how the maximum path error is around 9 cm, slightly
larger than those obtained in the previous simulations. Errors of that order of magnitude
can be considered very small, especially if we compare them with the width of the track.
The speed comparison shows also excellent results according to Fig. 6.19c, with the
biggest difference between the actual and target speeds being lower than 0.05m/s.

The acceleration of the motorcycle clearly reflects the severity of the manoeuver. The
longitudinal and lateral components are depicted in Fig. 6.19d, where we can observe
how the maximum longitudinal acceleration exceeds 10.5m/s2 while the lateral reaches
12m/s2. It is important to notice that longitudinal component builds up progressively
as the lateral decreases. The same trend can be observed in the longitudinal and lateral
components of the tyre forces from Figs. 6.19e and 6.19f. Since we are simulating a
rear-powered motorcycle, only the rear tyre generates thrust force whereas both tyres
generate lateral forces.

One of the most interesting plots in this case is that of the tyre loads, depicted
in Fig. 6.19g, as it shows how the load is transferred from the front to the rear tyre.
Furthermore, the wheelie can be easily identified from this graph as the point where the
front load vanishes. This occurs at s=75m. Note that the front load shows a value of
about 75N after that point. This small load is required so that the motorcycle can follow
the target trajectory6. For this reason, the target speed profile has been designed so as
to keep a small residual load at the front wheel during the last part of the manoeuvre.

The slip of the front tyre reaches significant values during the acceleration phase.
The longitudinal slip, shown in Fig. 6.20a, is automatically generated as the front wheel
is dragged by the rest of the vehicle. In fact, we can note from Fig. 6.20f that the rider
does not apply any torque to the front wheel. It is also interesting to observe from
Fig. 6.20h that the rotational speed of the front wheel stays constant for a short period
of time, which corresponds to the point where the front load vanishes. The sideslip
angle, on the other hand, is deliberately increased by the rider in order to build up
the lateral force required to keep the trajectory, see Fig. 6.20b. This is achieved by
significantly increasing the steering angle as shown in Fig. 6.20g.

6The load available at the front tyre is related to the controllability of the vehicle. As a matter
of fact, null load implies that the rider cannot correct eventual errors in the motorcycle trajectory by
applying realistic steering inputs. The control of the motorcycle with the front wheel in the air requires
further investigation, including additional control inputs such as the motion of the rider’s torso, which
are outside the scope of the present thesis.
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The torque applied by the rider to steer the motorcycle is shown in Fig. 6.20e. Due
to the high roll rate achieved during the manoeuvre, the steering torque is dominated
by the gyroscopic effect of the front wheel, i.e. its magnitude is proportional to the
product of the wheel speed and the roll rate whereas its phase is shifted 180 degrees
with respect to the latter. Note indeed that the steering torque and the roll rate, shown
in Fig. 6.20d, have the same shape with opposite sign.

The evolution of the pitch angle during the manoeuvre is also included for complete-
ness. We can observe in Fig. 6.20c that the pitch angle increases with the longitudinal
acceleration and then stabilizes, exhibiting some oscillations around the point where
the front wheel losses contact with the ground.

6.3.7 Results: corner entry on uneven road

The fourth and last example represents a corner entry simulation where the rider decel-
erates aggressively as the vehicle rolls into a right corner. As opposed to the previous
simulations, where the road was assumed to be perfectly flat, in this case we use an
extended tyre model that allows us to consider road irregularities.

Wheeled vehicles are generally subject to two types of road perturbations: a uni-
formly distributed excitation, usually referred to as road unevenness, and a series of
single features, such as bumps and potholes, which can be considered road anomalies.
The former represents a permanent source of excitation whereas the latter result in
short-lived vehicle vibrations. In the following analysis the road unevenness will allow
us to assess the robustness of the rider model in presence of external noise.

A widespread method to model the road profile is by using a stochastic approach [137,
150]. This technique is based on the fact that the road unevenness can be statistically
characterized in spatial domain by its power spectral density. The following equation
is frequently used in literature to represent the road,

Φ(Ω) = Φ0

(
Ω0

Ω

)ω
(6.53)

where Φ is the power spectral density in m2/(rad/m) and Ω is the spatial angular
frequency (wave number) given in rad/m. The terms Φ0, Ω0 and ω are just constants
that represent the degree of unevenness of a given road. The wave number can be also
expressed as a function of the wave length λ as Ω = 2π/λ.

In this thesis we use an extension of the previous model from [164],

Φ(Ω) =
b0

a0 + a2Ω2 + a4Ω4
(6.54)
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Figure 6.21: Road profile and statistical properties. a) Power spectral density. b)
road profile.

where the power spectral density is specified as a rational function of two polynomials.
Their coefficients have been selected so that the resulting road represents a smooth
surface similar to that found on racing tracks7.

The resulting power spectral density is represented by the red curve of Fig. 6.21a,
which shows a drop in magnitude as the wave number increases. Such characteristic
shape reflects the fact that the amplitude of road irregularities are larger at long wave-
lengths (e.g. they may reach several meters over the length of hundreds of meters)
whereas they reduce significantly at short wavelengths (e.g. the amplitude only reaches
some millimeters over the length of one meter).

We can use a superposition of N sine waves to build the desired road profile,

zr =
N∑
i=1

Aisin(Ωis−Ψi) (6.55)

where each sine is determined by its amplitude Ai, its wave number Ωi and its phase
offset Ψi. According to [165], the amplitude for each wave number can be determined
from the power spectral density as follows,

Ai =
√

2Φ(Ωi)∆Ω (6.56)

with ∆Ω being the interval used to discretize the frequency range of interest. By re-
stricting the wave lengths to lie between 0.4 and 80 m and using randomly distributed
phase angles, we obtain the profile shown in Fig. 6.21b. Its associated power spectral
density, depicted in blue in Fig. 6.21a, confirms the results. Note that the road profile

7The selected coefficients belong to the category good asphalt concrete. The power spectral density
has been multiplied by an additional scaling factor of 0.1 in order to reach the desired level of unevenness.
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has a maximum amplitude of 1.2 cm peak to peak.
The results of the simulation are summarized in Figs. 6.22 and 6.23. In order to

facilitate their interpretation, the results corresponding to the uneven road (blue) are
shown together with those corresponding to the flat road (red). By comparing both
sets of results it is possible to assess the effect of the road unevenness on the motorcycle
response and on the rider controls.

The present manoeuver is characterized by the J-shaped trajectory shown in Fig. 6.22a
and by the speed profile depicted in Fig. 6.22c. From these two figures it is evident that
the road noise does not have a significant impact on the tracking capabilities of the
rider model. In particular, if we look at the maximum path error in Fig. 6.22c, we can
observe that its value only increases from 4 cm on the flat road to 7 cm on the uneven
road. Such a small error constitutes an excellent tracking performance, especially if we
consider the high acceleration levels to which the motorcycle is subject.

The main difference between both sets of results is that the road irregularities do
not allow the motorcycle to reach a perfect steady state condition. This can be noticed
by looking at the last part of the manoeuvre, where the target speed and the corner
radius remain constant. In principle, the path error should vanish as the motorcycle
travels along the corner but this only happens if we use the flat road. On the other
hand, if we consider the road unevenness, the motorcycle exhibits small oscillations
around the target trajectory. This is due to the combination of two factors, the road
excitation that tends to perturb the vehicle motion and the high camber angle of the
motorcycle, slightly lower than 60 deg, that couples the lateral and vertical dynamics.
As a consequence, the rider has to constantly correct the path in order to follow the
desired trajectory. In any case, the path error remains lower than 7 cm.

The motorcycle reaches very high acceleration levels during the simulated manoeu-
ver as shown in Figs. 6.23d and 6.23e. As a matter of fact, the average longitudinal
acceleration of the vehicle during the braking phase is −11.5m/s2 whereas the lateral
acceleration in the corner reaches more than 12m/s2. Both acceleration profiles are
smooth when the vehicle travels on the flat road and show high frequency oscillations
if the road irregularities are considered. It is interesting to observe that the lateral
acceleration starts oscillating as the vehicle progresses into the corner. This is due to
the coupling effect of the roll angle, which remains small during the initial phase of the
manoeuver and increases as the motorcycle enters the turn.

One of the most interesting results of the corner entry manoeuvre are the tyre loads,
shown in Figs. 6.23f and 6.23g for the front and rear tyres respectively. The load
available at the rear tyre is of particular importance as it allows to measure the severity
of the braking. We can observe that the rear load reaches a minimum value of 60N
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when the road is flat and vanishes repeatedly on the uneven road. Basically, this implies
that the rider cannot brake any harder as the rear wheel is virtually floating over the
road and any additional deceleration could cause the motorcycle to flip over.

The most significant loss of contact happens between s=69m and s=76.3m, meaning
that the wheel is in the air for more that 7m. This interval also coincides with the point
of minimum load in the flat road case. It is worth noting from Figs. 6.23a and 6.23b
that at that point the motorcycle is moderately inclined (20 deg) and that the roll rate
is close to its maximum (40 deg/s). As a consequence, the rear end of the motorcycle
tends to move towards the outside of the corner, thus leading to a high yaw rate that
can be clearly observed in Fig. 6.23c. As a countermeasure, and in order not to lose the
control of the vehicle, the rider applies a negative steering angle, i.e. steers towards the
left, see Fig. 6.23d, which brings the rear end back onto the trajectory. Note also that
the steering angle is larger when the road excitation is considered.

After this stabilization manoeuvre, the rider steers to the right in order to stop the
roll motion and to progressively reach a steady state motion. As discussed earlier, the
road unevenness generates oscillations around the stationary conditions. This can be
observed in both the yaw rate and the steering angle.

The next three figures show the control actions exerted by the rider, namely the
steering torque, the front braking torque and the chain torque. The rear braking torque
is not used in this case due to the low load available at the rear tyre. We can observe
that the blue curves are slightly more oscillatory than the red ones but in general there
are no significant differences between the flat and uneven roads. To conclude, the last
figure shows the frequency content of the rider control actions for the uneven road case.
Interestingly, the frequency content is quite limited despite the high frequency excitation
introduced by the road.

6.4 Concluding remarks

In this chapter we have introduced a novel methodology for the dynamic simulation of
motorcycles. In particular, we have developed a control strategy capable of riding a non-
linear motorcycle model in a wide range of conditions, including extremely demanding
manoeuvres such as those performed by racing riders.

As a dynamic system, motorcycles can be regarded as nonlinear, non-minimum
phase, unstable and underactuated. This makes the design of a virtual rider a rather
challenging task. In this context, the application of Model Predictive Control (MPC)
has proven to be successful, leading to a virtual rider that is at the same time versatile,
efficient and robust.
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The simulation methodology introduced in this chapter combines the main tools
developed throughout the present PhD thesis with a model predictive controller. These
tools comprise a symbolic multibody model, a novel procedure to estimate the roll
dynamics of the vehicle and an extended methodology for the quasi-steady state analysis
of motorcycles.

The multibody model of the motorcycle is employed at two different levels in this
chapter. In first place, it is used as the nonlinear plant to be controlled, i.e. it rep-
resents the real vehicle within the simulation environment. In second place, and most
importantly, it is used to build the internal model on which the controller is based. Such
model symbolizes the rider’s mental image of the motorcycle, i.e. a representation of
the inverse dynamics of the vehicle that the human mind constantly tunes based on
experience. Humans use this stored knowledge while riding to estimate the future be-
havior of the vehicle and then act accordingly to achieve the desired goal, e.g. to follow
a predefined path. The proposed controller works in a similar way. It uses the internal
model to formulate a prediction model, which is subsequently optimized in order to
minimize the error between the system’s output and the control target.

The highly nonlinear character of the motorcycle makes the design of the internal
model a complex task. Variables such as the travelling speed, the curvature of the
trajectory or the longitudinal acceleration have a strong impact on the system dynam-
ics. It is here that the quasi-steady analysis becomes essential. Let’s recall that this
approach allows us to estimate all system states and control inputs along the target
manoeuvre. Based on that, we have built a family of internal models by linearizing
the motorcycle equations around the quasi-steady state solution of the problem. As a
result, the response of the proposed controller changes along the track in order to adapt
to the varying dynamics of the vehicle.

The control actions of the rider model are the result of three different contributions:
feedforward, state feedback and predictive. The feedforward contribution simply con-
tains the quasi-steady state estimation of the control variables. This term, which is
applied in open loop, might be seen as the rider’s idea on how to negotiate the desired
manoeuver before it actually takes place. The other two terms, on the other hand, are
included to compensate the differences between the quasi-steady state solution and the
actual dynamics of the vehicle. Additionally, a learning strategy has been introduced
to iteratively improve the internal model and the feedforward action of the controller,
leading to a significant enhancement in the tracking performance of the rider model.

The tracking capabilities of the rider model have been tested on four aggressive
manoeuvres: a slalom test, a chicane, a corner exit and a corner entry. Excellent results
have been observed in all cases. The speed error has been found to be negligible in all
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manoeuvres whereas the maximum path error varies between 2.5 cm in the slalom test
to 9 cm in the corner exit manoeuvre. Errors of that order of magnitude are considered
small, especially if we take into account the dimensions of the motorcycle and the
extreme conditions to which it is subject.

The slalom maneuver is characterized by an extreme roll rate that oscillates between
±130 deg/s. Under these conditions, both tyres undergo a severe load variation, with
the rear changing more than 2.2 kN at 1.88Hz. The chicane, on the other hand, is char-
acterized by a high combined use of the tyres as the motorcycle corners and accelerates
at the same time. In addition to this, the abrupt transition from acceleration to braking
makes this manoeuver a challenging test for the rider model.

The last two manoeuvres are particularly demanding, not only due to the high
acceleration levels but also due to the low tyre loads reached during the simulation.
The most interesting feature of the corner exit manoeuvre is that the vertical load at
the front wheel vanishes due to the high acceleration. Similarly, the load at the rear
wheel vanishes during the corner entry manoeuvre. Furthermore, in this last simulation,
the road unevenness has been considered, which makes the rider control task highly
demanding due to the presence of external noise.

The rider model has shown an excellent tracking performance in all four manoeuvres,
being able to successfully deal with short-lived discontinuities in the tyre forces such as
wheelie and stoppie events. In addition to that, it has shown to be robust against
external disturbances like, for instance, those introduced by the road profile. The
capability to simulate aggressive motorcycle manoeuvres along uneven roads had, to
the best of the author’s knowledge, never been presented in literature before.





Success can only be achieved with a
kind of pioneer spirit and the repeated
use of three tools: failure, introspection
and courage.

Soichiro Honda

Chapter 7

Conclusions and future work

In this final chapter we summarize the main findings of the present work and their
practical applications. To conclude, we present a series of recommendations for future
research lines.

7.1 Conclusions

The existing literature on motorcycle dynamics and rider modelling was reviewed in
the first part of this thesis. A thorough analysis revealed that current motorcycle
models have reached a high level of applicability. As a matter of fact, simulation is
applied nowadays within the motorcycle industry for a wide range of purposes that go,
for example, from comfort analysis to the design of advanced riding assistance systems.
However, most of these simulations are limited to basic manoeuvres, mainly straight line
and slow cornering. It emerges from the literature that, although significant progress
has been made in the last decade in the field of rider modelling, a satisfactory solution
for the dynamic simulation of motorcycles is yet to be found.

As a dynamic system, motorcycles are highly nonlinear, non-minimum phase, un-
stable and underactuated. This makes motorcycle control a rather challenging task.
Existing rider models work well only under certain conditions, being generally limited
to smooth speed profiles, moderate longitudinal accelerations and low roll angles. Most
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of them also require a great deal of interaction from the user to adjust the controller pa-
rameters. Finally, many of these rider models are based on highly simplified motorcycle
models that do not take into account the main vibration modes of the vehicle (wobble,
weave, etc), which in turn compromises their accuracy.

The lack of tools for the dynamic simulation of motorcycles inspired the development
of the present thesis, which introduces a novel approach for the simulation of complex
manoeuvres based on Model Predictive Control (MPC). The main contribution of this
work is a control strategy capable of riding a nonlinear motorcycle model in a wide range
of conditions, including extremely demanding manoeuvres such as those performed by
racing riders.

Thanks to the literature review, it became clear from the early stages of this thesis
that the development of an advanced rider model would require the implementation of
specific simulation tools not available in any commercial code. Such limitation moti-
vated the in-house development of all necessary tools for the realization of this project.
These include, in addition to the virtual rider, a detailed multibody model of the mo-
torcycle and a new methodology for the quasi-steady state analysis of motorcycles.

The multibody model of the motorcycle

The multibody model, which describes the nonlinear dynamics of a generic road motor-
cycle, comprises several characteristics that make it especially suitable for the purposes
of this thesis. In first place, it is formulated in minimal coordinates as a system of
Ordinary Differential Equations (ODE). This approach makes the state space represen-
tation of the system straightforward and facilitates the design of control systems like the
virtual rider. In second place, the equations of motion have been significantly simplified
by exploiting algebraic manipulation, thus producing an efficient simulation code able
to run in real-time. Finally, the model equations have been augmented by including
three curvilinear coordinates that allow the user to parameterize the target manoeuvre
in a direct and intuitive way.

This last feature represents an improvement with respect to Sharp’s work [100], who
defines the target trajectory in terms of Cartesian coordinates. The shape of the road,
slender along its longitudinal dimension and narrow across it, makes curvilinear coor-
dinates a more appropriate choice for the simulation of road vehicles. One of the main
benefits of this approach is that the computation of the tracking error becomes straight-
forward. As a matter of fact, the lateral and angular deviations of the motorcycle with
respect to the target trajectory are included, by definition, in the vector of curvilinear
coordinates.

However, the most important difference, and what makes curvilinear coordinates
more convenient in this case, is that they significantly simplify the design of the control
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strategy. Basically, Cartesian coordinates require the control gains to be transformed
from the inertial frame on which they were derived to the vehicle frame [119]. This
process, which must be repeated at each time step, is not required when using curvilinear
coordinates.

The multibody model of the motorcycle has been employed at two different levels
throughout the thesis. In first place, it is used as the nonlinear plant to be controlled,
i.e. it represents the real vehicle within the simulation environment. In second place,
and more importantly, the motorcycle model is used to build the internal model on
which the virtual rider is based. Such model symbolizes the rider’s mental image of the
motorcycle, i.e. a representation of the inverse dynamics of the vehicle that the human
mind constantly tunes based on experience. Humans use this stored knowledge while
riding to estimate the future behavior of the vehicle and then act accordingly to achieve
the desired goal, e.g. to follow a predefined path. The proposed controller works in
a similar way. It uses the internal model to formulate a prediction model, which is
subsequently optimized in order to minimize the error between the system’s output and
the desired control targets.

In contrast to other authors, such as Frezza [73–75] and Saccon [76], who use highly
simplified models in their control strategies, the internal model developed in this thesis
possesses a higher level of detail. In particular, it includes a detailed description of the
steering kinematics, nonlinear thick tyres, suspensions, etc. Those features are essential
to implement control strategies based on the steering torque (force control).

Conversely, Saccon’s model possesses only four degrees of freedom and features a
simplified steering geometry. As far as the tyre model is concerned, this author uses thin
linear tyres and neglects the alignign/twisting moments. Due to these simplifications,
models like Saccon’s are only suitable to design control strategies based on the steering
angle (position control). Although such approach has been widely accepted to model
car drivers, it leads to unrealistic vibration modes when applied to motorcycles as it
cancels the steering dynamics [11]. In order to avoid the drawbacks of position control,
a force approach has been used in this thesis at the expense of a higher complexity of
the internal model.

The internal model of the virtual rider

Motorcycle dynamics are known to be notably influenced by the travelling speed, the
curvature of the trajectory and the longitudinal acceleration among other factors. To
deal with such a nonlinear system, the control strategy introduced in this work uses a
varying internal model that continuously adapts to the vehicle conditions. The quasi-
steady state solution of the motion equations has played a fundamental role in the
development of the internal model.
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The study of the stationary motion of vehicles is widespread in the automotive lit-
erature, especially as far as four-wheeled vehicles are concerned. In this thesis we have
extended the method to solve the quasi-steady state motion of motorcycles along con-
tinuous manoeuvres. The proposed approach is based on the reduction of the dynamic
model to a set of nonlinear algebraic equations. Unlike other existing techniques in
literature, the method presented here is not limited to the constant speed analysis of
motorcycles. In addition to the longitudinal acceleration, we also account for the roll
rate and its derivative, the roll acceleration. The inclusion of these two terms has been
found to be essential when the direction of the motorcycle changes rapidly.

Given the manoeuvre specifications, defined in terms of the target trajectory and
the desired speed profile, the solution of the extended problem yields an approximation
of all vehicle states and control inputs along the target path. Such solution provides an
appropriate framework on which to develop the rider control strategy. Based on it, we
have built a family of internal models by linearizing the motorcycle equations around
the quasi-steady state solution of the manoeuvre. This procedure constitutes the core
of the MPC controller and ensures that the rider’s response is always aligned with the
current dynamics of the vehicle.

Another advantage of the quasi-steady state solution is that the estimated control
inputs can be used as a feedforward action during the dynamic simulation. We have
shown that such strategy significantly improves the performance of the rider model. The
reason lies in the fact that the feedforward action takes up most of the control effort
whereas the MPC controller only needs to apply small corrections to compensate the
differences between the quasi-steady state estimation and the actual dynamic behaviour
of the vehicle.

In addition to the above, we have introduced an iterative algorithm that improves
the tracking performance of the controller after each simulation. We can see this it-
erative loop as a learning algorithm where the rider, based on the results of previous
simulations, progressively updates its internal model and its feedforward term until the
desired behaviour is reached. This procedure has allowed to significantly reduce the
trajectory errors down to a few centimeters even during extreme manoeuvres.

In 2010, during the development of the present PhD thesis, Massaro introduced his
rider model based on MPC [166–168]1. The main improvements of this thesis with
respect to Massaro’s work are the procedure employed to obtain the internal model and
the learning algorithm.

1It is important to mention here that that the research to be defended in this thesis was devel-
oped previously to the publication of Massaro’s results and has no relation whatsoever with his work.
Massaro’s work was first published in October 2010 [166], whereas the methodology introduced in this
thesis was first presented in February 2010 [128].
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Specifically, Massaro obtains his internal model by linearizing the equations of mo-
tion around a pure steady state condition, whereas in this thesis we use an extended
quasi-steady state approach. The main difference between both approaches lies in the
longitudinal acceleration and the roll derivatives, which are not considered by the afore-
said author. As we have seen throughout this dissertation, these terms are essential
to simulate aggressive manoeuvres. In fact, we proved that neglecting the effect of roll
dynamics leads to an unfeasible solution in some cases like, for example, the slalom
manoeuver of Chapter 5. This implies that it would not be possible to solve this partic-
ular manoeuvre by using a pure stationary approach like Massaro’s. Additionally, the
learning algorithm presented in this thesis together with a more accurate estimation of
the feedforward term allow us to reach lower tracking errors with respect to Massaro’s
model.

Sensitivity study in quasi-steady state conditions

In addition to the development of the control strategy, the quasi-steady state analysis
has been used as a standalone tool in order to gain insight into the behaviour of the
motorcycle. An extensive sensitivity study in steady state and quasi-steady state condi-
tions was conducted in the initial chapters of this thesis, thus allowing us to anticipate
some of the design requirements of the virtual rider.

The steady state motion of the motorcycle permitted us to explore how the most
relevant variables (e.g. steering angle, tyre forces, etc) vary as a function of the corner
radius and the vehicle speed. Of particular interest is the high sensitivity of the lateral
and longitudinal control variables with respect to the cornering conditions. We have
shown that the steering torque required to follow a given trajectory changes drastically
with the vehicle speed and the corner radius, with the map that relates these three
variables being highly nonlinear.

On the other hand, the quasi-steady state motion of the motorcycle allowed us to
assess the effect of the most relevant derivatives, namely the longitudinal acceleration
and the roll derivatives. The aim of this analysis was to determine to what extent these
three terms modify the solutions obtained assuming pure stationary conditions.

The study of the longitudinal acceleration confirmed well known evidences, i.e. that
the longitudinal acceleration has a great impact on the steering torque during braking
and that the combined use of the tyres tends to increase the understeering character of
the motorcycle in braking and makes it more oversteering in acceleration. As far as the
roll derivatives are concerned, it has been shown that they have a strong effect on the
lateral control of the vehicle and cannot be neglected in the quasi-steady state solution.
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This is especially true in those manoeuvres where the direction of travel changes quickly,
e.g. slalom tests and lane change manoeuvres.

In particular, the steering torque is highly sensitive to the roll rate. When the
motorcycle approaches a corner, the gyroscopic effect of the front wheel tends to rotate
the handlebar towards the inside of the corner, thus helping the vehicle to change
direction. At high roll rates, this effect generally dominates the steering torque. The
roll acceleration, on the other hand, affects mainly the roll angle required to perform a
given manoeuver. Interestingly, higher roll accelerations allow the motorcycle to follow
tighter (local) trajectories.

Performance of the rider model

The performance of the rider model has been tested on four aggressive manoeuvres: a
slalom test, a chicane, a corner exit and a corner entry. Excellent results have been
observed in all cases. The speed error has been found to be negligible in all manoeuvres
whereas the maximum path error varies between 2.5 cm in the slalom test to 9 cm in
the corner exit manoeuvre. Errors of that order of magnitude can be considered small,
especially if we consider the extreme conditions to which the motorcycle is subject.

The slalom maneuver is characterized by a high roll rate that oscillates between
±130 deg/s. Under these conditions, both tyres undergo a severe load variation, with
the rear changing more than 2.2 kN peak to peak at 1.88Hz. The chicane, on the other
hand, is characterized by a high combined use of the tyres as the motorcycle corners and
accelerates at the same time. In addition to this, the abrupt transition from acceleration
to braking makes this manoeuver a challenging test for the rider model.

The corner exit and corner entry manoeuvres are particularly demanding, not only
due to the high acceleration levels but also due to the low tyre loads reached during
the simulation. The most interesting feature of the corner exit manoeuvre is that the
vertical load at the front wheel vanishes due to the high acceleration. Similarly, the
load at the rear wheel vanishes during the corner entry manoeuvre. These phenomena,
usually called wheelie and stoppie in the racing jargon, only happen when the vehicle
approaches its acceleration limit, which gives us an idea of the severity of the manoeuver.
Furthermore, the road unevenness has been considered in the last simulation, which
makes the rider control task even more challenging due to the presence of road noise.

To conclude, we can say that the rider model has shown an unprecedented tracking
performance even in the presence of road noise. To the best of the author’s knowledge
there is no rider model in the literature that shows a similar performance.
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7.2 Summary of the main contributions

We can summarize the main contributions of this dissertation in the following four
points, with the first three being intermediate steps needed to reach the fourth.

• A symbolic multibody model of the motorcycle. This model provides a suitable
framework for the development of simulation tools aimed at the study of motor-
cycle dynamics. Some of these applications are exploited in the research, others
are only suggested. The model comprises several characteristics that make it
unique. In first place, it is formulated in minimal coordinates as a system of Ordi-
nary Differential Equations (ODE), which simplifies the design of rider’s control
strategy. In second place, the model equations have been augmented with three
curvilinear coordinates that allow to parameterize the desired manoeuvre in a di-
rect and intuitive way. In addition to that, the equations of motion have been
significantly simplified by exploiting algebraic manipulation, thus producing an
efficient simulation code.

• An extended methodology for the quasi-steady state analysis of motorcycles. Given
target trajectory and the desired speed profile, the solution of the extended quasi-
steady state problem allows us to obtain a suitable estimation of the model states
and control inputs along the target manoeuvre. Unlike other existing techniques
in literature, the methodology presented in this thesis is not limited to the sta-
tionary analysis of motorcycles. In addition to the longitudinal acceleration, we
account for the roll rate and its derivative, the roll acceleration. These two terms
have been shown to be fundamental when simulating quick direction changes.

• An extensive sensitivity study of the motorcycle behaviour in steady state and
quasi-steady state conditions. The steady state analysis has shown how the most
relevant variables (e.g. steering angle, tyre forces, etc) vary as a function of the
speed of the vehicle and the corner radius. The quasi-steady state analysis, on
the other hand, has shown the effect of the longitudinal acceleration and the
roll derivatives. Despite the simplifying assumptions, this analysis is capable of
predicting important aspects of vehicle behaviour; limitations have been discussed
and analysed.

• A novel rider model for motorcycles based on Model Predictive Control. As the
major contribution of the present thesis, we present a nonlinear controller capable
of driving a multibody motorcycle model along extremely demanding manoeuvres.
Such controller is assisted by a learning strategy that builds a feedforward action
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based on previous results, thus iteratively improving its performance. The pro-
posed rider model shows an unprecedented tracking performance, with the max-
imum path deviation being of the order of a few centimeters during aggressive
manoeuvering. Excellent results have also been obtained when the road uneven-
ness is considered in the simulations.

7.3 Practical application of the results

Motorcycle performance has reached a point where, to make further improvements, a
global and multidisciplinary understanding of the vehicle is essential. The interaction of
such diverse elements as road, suspensions, chassis, engine, driver, sensors and electron-
ics cannot be neglected in the design process of new devices. It is in this challenging
framework where the rider model introduced in this thesis can contribute to the evolu-
tion and development of new concepts.

One potential application of the virtual rider is the development and validation of
active safety devices for motorcycles such as antilock braking systems (ABS), combined
braking systems (CBS), electronic steering dampers, slipper clutches, traction control
systems (TCS) and wheelie protection systems. In this case, computer simulations
not only decrease the development time and limit the number of prototypes needed
to validate a new design, but they also permit conducting experiments in dangerous
conditions with no risk for the human rider.

For example, ABS enhances motorcycle safety by reducing the likelihood of the
brakes locking in an emergency situation. The concept is basically the same as for
passenger cars; when a wheel is about to lock during hard braking, the caliper pres-
sure is automatically decreased through a modulator. However, the large roll angles
achieved during cornering make the application of ABS to motorcycles a more challeng-
ing task. Some manufacturers also combine ABS and CBS, which introduces additional
complexity to the problem.

The virtual rider enables us to simulate emergency braking situations in both straight
line and cornering conditions. By integrating the ABS/CBS strategy into the simula-
tion loop, the rider model can provide valuable information to assess new strategies.
Simulations can also highlight undesired interactions between the braking strategy, the
steering system and lightly damped modes such as wobble and weave. In addition to
this, we can use the rider model to investigate the response of these devices on bumpy
roads. The robustness of the rider model becomes essential in this last case.

Most of the systems listed above are also used at the racing track for different
purposes. In particular, slipper clutches, traction control systems and anti-wheelie
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systems are broadly used in modern racing machines to enhance their performance.
The development and tuning of these devices is a complex task that is usually based on
the subjective opinion of the rider.

In this context, the virtual rider allows racing engineers to assess the performance
of new devices from an objective point of view. A typical application would be the
assessment of anti-wheelie systems, which are designed to prevent the front wheel from
lifting-off during acceleration. To do so, one simply has to request the rider model to
accelerate over the wheelie limit and investigate the response of the wheelie controller
when it kicks in. As with the ABS, the road profile plays an important role in the
performance of the controller as bumps tend to push the front wheel up. A similar
approach could be used to assess the performance of traction control systems.

Too much engine brake during corner entry can lead to instability problems, e.g.
wheel hop, chatter, traction loss, etc. In order to prevent them, racing motorcycles
are fitted with slipper clutches. Such devices disengage the clutch when the engine
brake overcomes a predefined threshold. Hence, the setting of the clutch is usually
a compromise between maximizing the deceleration and improving braking stability.
By adding a powertrain model to the existing simulation framework, it is possible to
evaluate the effect of clutch settings on both vehicle performance and stability.

In addition to the development of the control strategies described above, the rider
model can also be used to study the impact of standard setup changes in the response of
the vehicle, e.g. suspension tuning, mass distribution, etc. In conclusion, the versatility
and robustness shown by the rider model presented in this thesis opens the door to a
wide range of applications.

7.4 Future research lines

It is worth noting that we have not considered the neuromuscular limits of human
beings in the development of the virtual rider. More specifically, the controller includes
no delays and its bandwidth is only bounded by the model dynamics. Although the
frequency content of the rider controls seems realistic in the time domain simulations of
Chapter 6, an accurate representation of the rider’s neuromuscular behavior is desirable.
This is especially important for the simulation of those active safety devices that interact
with the steering system. An extensive work on the neuromuscular behavior of car
drivers has been carried at the University of Cambridge [169–171] and could be used as
a reference point for future research lines.

Experimental evidence [172] suggests that the rider rolls and moves laterally on the
saddle during weave oscillations. In addition to this, the assumption that the rider is
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rigidly connected to the chassis is no longer valid at high frequencies. This is especially
important for the ride analysis of two wheeled vehicles, where the effect of the rider’s
mass can be significant. It is considered that a detailed model of the human body
could be highly beneficial in this case. Further research in this direction is strongly
recommended.

The application of the virtual rider to assess the effect of chassis flexibility is also
suggested. As a matter of fact, the consequences of structural modifications on motor-
cycle performance are yet to be fully understood. This is one of the most challenging
topics in modern motorcycle racing. Several tests performed by the author outside the
scope of this thesis have shown very promising results. It should be emphasized that
most of the effort to go from rigid to flexible simulations concerns the nonlinear plant.
The internal model, on the other hand, requires only minor modifications as we are not
interested in controlling the high frequency dynamics related to body flexibility.

Also related to motorsports, it could be interesting to investigate the applicability
of the rider model to laptime optimization. The current model requires the target
path and the desired speed profile to be provided. Ideally, only the track boundaries
should be needed to optimize the travelling time around any given track. To that end,
a constrained MPC formulation is recommended. Constraints are necessary to model
the different factors that limit the performance of the vehicle, e.g. track boundaries,
engine power, tyre grip, etc. The work presented in [173] on the laptime optimization
of Formula 1 cars could be a good starting point for this research. Following the same
research line, it would be of great interest for motor racing teams to quantify the effect
of the road profile on both rider effort and vehicle performance.

As far as the quasi-steady state analysis is concerned, it would be straightforward
to extend it for optimization purposes. In particular, acceleration envelopes and op-
timal speed profiles could be computed with minor modifications of the methodology
introduced in Chapters 4 and 5. An example of the acceleration envelope is shown in
Fig. 7.1a. These kind of figures, also know as g-g diagrams, are obtained by maximizing
the combined acceleration of the vehicle at a given speed. They are especially helpful
to understand the performance limits of the vehicle and how they vary as the speed
changes. For example, the concave regions at the top and bottom parts of the diagram
reveal that at 20m/s this specific motorcycle is slightly limited in acceleration by the
lifting of the front wheel (wheelie) and strongly limited in braking by the lifting of the
rear end (stoppie). Likewise, the quasi-steady state optimization of the speed profile
would require a limited effort. As an example, Fig. 7.1b shows the optimal speed profile
along Mugello track, where the braking and acceleration traces can be clearly identified.

Some other topics of interest are the following: a comprehensive study about the
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Figure 7.1: Future research lines: applications of the symbolic motorcycle model
to performance analysis and optimization. a) Example of g-g diagram at 20m/s. b)
Optimal speed profile for Mugello track.

learning algorithm introduced in Chapter 6 and how to improve its convergence rate; the
development of more efficient continuation strategies for the quasi-steady state analysis
of Chapter 5; the introduction of new constraints to enhance the definition of the roll
axis in the quasi-steady state formulation of Chapter 4; and the use of more appropriate
tyre models for the simulation of uneven roads, e.g. MF-SWIFT [12].

Finally, it could also be interesting to verify the capabilities of the virtual rider within
a hardware-in-the-loop system and to validate it against experimental data. This would
permit us to evaluate the response of embedded systems (e.g. safety systems, ECUs,
control systems, etc.) prior to track testing. Additional work on the model efficiency
would be beneficial in this context. This should try to exploit the latest advances in
the field of parallelization and GPU computing.





Appendix A

Reduced model

In Chapter 3 we introduced the multibody model of the motorcycle used throughout
this thesis for quasi-steady state and dynamic simulations. Such model is composed of
6 rigid bodies, possesses 11 degrees of freedom and includes a relaxation model for the
lateral dynamics of the tyres. Its complexity is perfectly suited for the purposes of this
thesis. However, it is usually difficult to interpret simulation results by looking at the
symbolic equations due to their large size, e.g. to investigate how the roll rate and the
tyre loads are linked. In order to overcome this limitation, we introduce in this appendix
a reduced model that captures the fundamental motion of the motorcycle. This new
model is not intended for simulation purposes but to provide a simple set of equations,
useful to interpret simulation results, particularly in quasi-steady state conditions.

A.1 Newton-Euler equations

The reduced model, shown in Fig. A.1, is composed of one main body plus the rotational
effect of the wheels. Next we describe the main assumptions used to derive its equations
of motion.

The equations are derived by lumping the inertial properties of the vehicle at its
centre of gravity G with the exception of the rotational inertia of the tyres. The distance
between the centre of gravity of the vehicle G and the ground point P is assumed
constant and equal to h. The motorcycle is directly controlled by the kinematic steering
angle ∆. Due to the simplified steering geometry and the absence of suspensions, the
pitch motion is not considered. The tyre forces are applied at the contact points, Cf

and Cr, which are located at a constant distance from the centre of gravity. We denote
with the letter a the distance from the front contact point to point P and with b the
distance from the rear contact point to point P. Lastly, the tyres are modelled as thin
discs, i.e. we do not consider the shape of their cross section in the reduced model.

253
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Figure A.1: Reduced model. The model is composed of one main body plus the
rotational effect of the wheels. The distance between the centre of gravity of the
vehicle G and the ground point P is constant and equal to h. We denote with the
letter a the distance from the front contact point to point P and with b the distance
from the rear contact point to point P.

We use here the same reference frame employed to derive the equations of the full
model, i.e. the vehicle frame Tψ has its origin at the reference point P, ı̂ψ is aligned
with the longitudinal direction of the vehicle, ȷ̂ψ points to the right side and κ̂ψ points
downwards. The motion of the main body is parameterized by the Cartesian position
of the reference point P with respect to the inertial frame (x, y) and by the rotations
associated to the roll ϕ and yaw ψ degrees of freedom. Based on the above, we can
write the acceleration of the centre of gravity as

acgx = axψ − ψ̈hsϕ − 2ψ̇ϕ̇hcϕ (A.1)

acgy = ayψ + ϕ̈hcϕ − ψ̇2hsϕ − ϕ̇2hsϕ (A.2)

acgz = ϕ̈hsϕ + ϕ̇2hcϕ (A.3)

where a
xψ

and a
yψ

are the longitudinal and lateral acceleration of the reference point P
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expressed in the vehicle frame, i.e.[
a
xψ

a
yψ

]
=

[
cψ sψ

−sψ cψ

][
ẍ

ÿ

]
=

[
u̇− vψ̇
v̇ + uψ̇

]
(A.4)

The Newton equations in the vehicle frame Tψ are straightforward,

macgx = Fxr − Fyf s∆ + Fxf c∆ − Fax (A.5)

macgy = Fyr + Fxf s∆ + Fyf c∆ (A.6)

macgz = mg − Fzr − Fzf (A.7)

whereas the Euler equations are computed as the equilibrium of moments about the
three axes of Tψ, which yields:

m(−ϕ̈h+ ψ̇2hcϕsϕ − ayψcϕ + gsϕ)h+MI
x = 0 (A.8)

macgx hcϕ + Faxhcϕ − bFzr + aFzf +MI
y = 0 (A.9)

macgx hsϕ + Faxhsϕ − bFyr + aFxf s∆ + aFyf c∆ +MI
z = 0 (A.10)

They are expressed in implicit form for convenience. The terms MI
x , MI

y and MI
z

comprise the moments related to the inertia matrix of the main body (Ix, Iy, Iz) and
to the axial inertia of the wheels (Ifw , Irw ). They are summarized in Tables A.1 and
A.2.

axis gyroscopic inertial

MI
x −(Iz − Iy)ψ̇2cϕsϕ −Ixϕ̈

MI
y +

(
2(Iz − Iy)c2ϕ − Iz + Iy − Ix

)
ψ̇ϕ̇ (Iz − Iy)ψ̈cϕsϕ

MI
z +2(Iz − Iy)ψ̇ϕ̇cϕsϕ −

(
(Iz − Iy)c2ϕ + Iy

)
ψ̈

Table A.1: Gyroscopic and inertial torques generated by the main body.

axis gyroscopic inertial

MI
x +(Irw θ̇rw + Ifw θ̇fw )ψ̇cϕ -

MI
y +(Irw θ̇rw + Ifw θ̇fw )ϕ̇sϕ −(Irw θ̈rw + Ifw θ̈fw )cϕ

MI
z −(Irw θ̇rw + Ifw θ̇fw )ϕ̇cϕ −(Irw θ̈rw + Ifw θ̈fw )sϕ

Table A.2: Gyroscopic and inertial torques generated by the wheels.
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Note that, in order to be consistent with the full model, the wheel speeds of the reduced
model, θrw and θfw , are defined as negative. Therefore, it is important to consider their
sign when evaluating the gyroscopic and inertial effects described in Table A.2.

A.2 Tyre longitudinal forces

From Eq. A.5 we can determine the total force needed to drive the vehicle as,

F ∗
xf + Fxr = macgx + Fax (A.11)

where
F ∗
xf = Fxf c∆ − Fyf s∆ (A.12)

is the force exerted by the front tyre along the longitudinal axis of the motorcycle ı̂ψ

and Fax represents the aerodynamic drag. It is interesting to observe how the front
lateral force Fyf generates a braking effect. In addition to the above terms, the effect
of the rotating inertias such as the wheels or the engine may be accounted for by using
an augmented mass m̄, defined as

m̄ =
∑
i

Iiη2i (A.13)

where Ii is the ith rotating inertia and ηi is the motion ratio between its angular speed
and the forward velocity of the vehicle. Hence, based on the modelling assumptions of
the reduced model, we can say that the overall longitudinal force exerted by the tyres
is used to brake/accelerate the vehicle and to overcome the aerodynamic drag and the
braking effect induced by the front wheel.

A.3 Tyre lateral forces

We can solve the lateral forces from the equation system formed by Eqs. A.6 and A.10.
If we define the total force exerted by the front tyre along the lateral axis of the vehicle
ȷ̂ψ as

F ∗
yf = Fxf s∆ + Fyf c∆ (A.14)

we can express the front and rear lateral forces as follows

F ∗
yf =

b

a+ b
macgy −∆Fy (A.15)

Fyr =
a

a+ b
macgy +∆Fy (A.16)
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where macgy represents the total lateral force applied by the tyres, i.e. macgy = F ∗
yf+Fyr ,

and ∆Fy is the force transferred between tyres due to the aerodynamic drag Fax and
to the inertial moment MI

z about κ̂ψ.

∆Fy =
(macgx + Fax )hsϕ +MI

z

a+ b
(A.17)

A.4 Tyre vertical forces

Similarly, starting from Eqs. A.7 and A.9 we can solve for the vertical forces,

Fzf =
b

a+ b
(mg −macgz )−∆Fz (A.18)

Fzr =
a

a+ b
(mg −macgz ) +∆Fz (A.19)

where mg−macgz represents the total vertical load, i.e. mg−macgz =Fzf+Fzr ,

∆Fz =
(macgx + Fax )hcϕ +MI

y

a+ b
(A.20)

and ∆Fz is the load transfer originated by the aerodynamic drag Fax and by the inertial
moment MI

y about ȷ̂ψ.

A.5 Roll dynamics

We have not used Eq. A.8 yet. Such equation, which represents the equilibrium of
moments about the longitudinal axis of the motorcycle ı̂ψ, gives a good insight into the
roll dynamics of the motorcycle.

The term ψ̇2hsϕ represents the lateral acceleration of the centre of gravity G with
respect to the reference point P due to the yaw rate ψ̇. Its value is small compared
to the absolute lateral acceleration of P, denoted by ayψ, and hence it can be safely
neglected. Such term would become relevant only for very small curvature radius of
the same order of magnitude of h. Similarly, the moment −(Iz − Iy)ψ̇2cϕsϕ can be
neglected since its value is small compared to the other components of the equation.

Consequently, we can rewrite Eq. A.8 as:

(mh2 + Ix)ϕ̈ = −mayψhcϕ +mghsϕ + (Irw θ̇rw + Ifw θ̇fw )ψ̇cϕ (A.21)

Each term in the right hand side represents a moment about ı̂ψ: the first term is the
restoring moment originated by the inertial force mayψ that tends to return the vehicle
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Figure A.2: Reduced model: equilibrium of moments about the longitudinal axis of
the vehicle ı̂ψ.

to the upright position, the second is the tilting moment originated by the weight of the
motorcycle mg and the last represents the gyroscopic effect of the wheels. The effect
of the last term depends on the sign of the roll rate. All contributions are depicted in
Fig. A.2.

The classical equation from [13] that approximates the roll angle of the motorcycle
in steady state cornering may be obtained by simply neglecting the gyroscopic effect in
Eq. A.21, which yields

ϕ = arctan

(
ayψ
g

)
(A.22)

since in stationary motion ϕ̈=0. If, as in [13], we assume that the vehicle axis ı̂ψ is
aligned with the trajectory, i.e. if we neglect the vehicle sideslip angle β, we can write
the roll angle as a function of the longitudinal speed of the vehicle vt and the curvature
of the trajectory κ:

ϕ = arctan

(
v2t κ

g

)
(A.23)
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Model parameters

In the present appendix we summarize the parameters of the multibody motorcycle
model employed throughout this thesis. In particular, the vehicle represents a modern
sports motorcycle composed of six bodies: the front and rear wheels, the main assembly
(including the frame, the engine and the fuel tank), the rear assembly (including the
swingarm and the rear brake calipers), the upper part of the front assembly (including
the sprung part of the forks, both triple clamps, the steering column, and the handlebar),
and the lower part of the front assembly (including the unsprung part of the forks and
the front brake calipers).

The geometric and inertial properties of the vehicle have been extracted from two
papers [43, 51] together with the non-linear elastic and damping characteristics of the
suspensions. As far as the tyre model is concerned, Pacejka’s Magic Formula has been
employed. The equations used in this thesis as well as the full parameter set come
from [40,51]. The most relevant parameters of the model are reproduced below for the
sake of completeness.

Body Frame mi [kg] ri [m] Iii [kgm2]

Front wheel Tfw 12.0 ( 0, 0, 0 ) ( 0.22, 0.47, 0.22 )

Rear wheel Trw 16.2 ( 0, 0, 0 ) ( 0.33, 0.66, 0.33 )

Main assembly Tm 223.0 ( 0.255, 0,−0.020 ) ( 24.4, 26.2, 30.3 )

Rear assembly Tr 10.0 ( 0.275, 0,−0.052 ) ( 0.20, 0.80, 0.80 )

Front assembly (uf) Tuf 8.8 ( 0.023, 0,−0.098 ) ( 0.29, 0.14, 0.21 )

Front assembly (lf) Tlf 7.0 (−0.029, 0,−0.189 ) ( 0.22, 0.18, 0.07 )

Table B.1: Inertial properties of the motorcycle. For each body the following prop-
erties are specified: mass (mi), centre of gravity position (ri) and inertia matrix (Iii).
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Description Name Value Units

Swingarm length lr 0.535 [m]

Frame length lm 0.730 [m]

Fork offset lf 0.034 [m]

Front sprocket radius r 0.041 [m]

Rear sprocket radius R 0.104 [m]

Front sprocket x-coordinate xsp 0.080 [m]

Front sprocket z-coordinate zsp -0.030 [m]

Castor angle ε 24.6 [deg]

Fork length (fully extended) lfrk 0.517 [m]

Shock length (fully extended) lshk 0.300 [m]

Maximum fork stroke smax ,f 0.130 [m]

Maximum shock stroke smax ,r 0.055 [m]

Fork main stiffness kf 25 [N/mm]

Shock main stiffness kr 140 [N/mm]

Steering damper coefficient bδ 10 [Nms]

Drag force coefficient cx 0.47 [-]

Lift force coefficient cz 0.08 [-]

Pitch moment coefficient cµ 0.19 [-]

Reference frontal area A 0.6 [m2]

Air density ρ 1.225 [Kg/m3]

Front tyre lateral stiffness Kyf 84.4 [N/mm]

Front tyre vertical stiffness Kzf 130.0 [N/mm]

Front tyre vertical damping Czf 50 [Ns/m]

Rear tyre lateral stiffness Kyr 92.0 [N/mm]

Rear tyre vertical stiffness Kzr 141.0 [N/mm]

Rear tyre vertical damping Czr 50 [Ns/m]

Table B.2: Motorcycle model parameters.



261

Par. Front tyre Rear Tyre Par. Front tyre Rear Tyre

Cx 1.6064 1.6064 qBz1 10.486 10.041

pDx1 1.3806 1.3548 qBz2 -0.00115 -1.61e-8

pDx2 -0.0414 -0.0603 qBz5 -0.68973 -0.76784

pEx1 0.0263 0.0263 qBz6 1.0411 0.73422

pEx2 0.2706 0.2706 qBz9 27.445 16.39

pEx3 -0.0769 -0.0769 qBz10 -1.0792 -0.35549

pEx4 1.1268 1.1268 qDz1 0.19796 0.26331

pKx1 25.939 25.940 qDz2 0.06563 0.030987

pKx2 -4.2327 -4.2330 qDz3 0.2199 -0.62013

pKx3 0.3369 0.3369 qDz4 0.21866 0.98524

Cy 0.8327 0.9 qDz8 0.3682 0.50453

pDy1 1.3 1.3 qDz9 0.1218 0.36312

pDy2 0 0 qDz10 0.25439 -0.19168

pDy3 0 0 qDz11 -0.17873 -0.40709

pEy1 -1.2556 -2.2227 qEz1 -0.91586 -0.19924

pEy2 -3.2068 -1.669 qEz2 0.11625 -0.017638

pEy4 -3.9980 -4.288 qEz3 1.4387 3.6511

pKy1 22.841 15.791 qHz3 -0.00379 -0.028448

pKy2 2.1578 1.6935 qHz4 -0.01557 -0.009862

pKy3 2.5058 1.4604 rBx1 13.476 13.476

pKy4 -0.08088 0.669 rBx2 11.354 11.354

pKy5 -0.22882 0.18708 rBx3 0 0

Cγ 0.86765 0.61397 Cxα 1.1231 1.1231

pKy6 0.69677 0.45512 rBy1 7.7856 7.7856

pKy7 -0.03077 0.01329 rBy2 8.1697 8.1697

Eγ -15.815 -19.99 rBy3 -0.05914 -0.05914

Ct 1.0917 1.3153 Cyκ 1.0533 1.0533

Table B.3: Tyre model parameters.





Appendix C

Extended literature

The current PhD thesis has been developed throughout a long period of time, starting
from 2006 until 2016. The original literature review presented in Chapter 2 was carried
out during the initial stages of the thesis and contains bibliographic references up to
2010. Therefore, an update is deemed necessary prior to the release of this manuscript.
This is the aim of the current Appendix, where we summarize the most important
publications not included in the original analysis of the state of the art.

One of the most relevant works in the field of rider control was presented between
2010 and 2012 by Massaro, who also developed a rider model based on MPC. Taking
the work of Cole [101] as a starting point, two different approaches were introduced
by the above-mentioned author. In [168] the rider target was defined in terms of the
vehicle path whereas in [174] the controller was rearranged in order to follow a given roll
profile, thus making it easier to reproduce experimental measurements. Path tracking
simulations showed good results for roll angles up to 50 deg and moderate longitudinal
accelerations slightly lower than 8m/s2. However, the resulting roll rate was small in
all cases, of the order of 25 deg/s. Differences between the present PhD thesis and
Massaro’s work have already been discussed in Chapter 7. They are repeated below for
completeness.

The main improvements of this thesis with respect to [168] are the procedure em-
ployed to obtain the internal model and the learning algorithm. Specifically, Massaro
obtained his internal model by linearizing the equations of motion around a pure steady
state condition, whereas in this thesis we used an extended quasi-steady state approach.
The main difference between both approaches lies in the longitudinal acceleration and
the roll derivatives, which were not considered by the aforesaid author. As we have
seen throughout this dissertation, these terms are essential to simulate aggressive ma-
noeuvres. In fact, we proved that neglecting the effect of roll dynamics leads to an
unfeasible solution in some cases like, for example, the slalom manoeuver of Chapter 5.
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This implies that it would not be possible to solve this particular manoeuvre by using a
pure stationary approach like Massaro’s. Additionally, the learning algorithm presented
in this thesis together with a more accurate estimation of the feedforward term allow
us to reach smaller tracking errors.

Another relevant work in the field of rider modelling was presented in 2012 by Sharp
[175]. In this publication the controller first introduced in [99, 100] was applied to the
simulation of a racing motorcycle near to its cornering limits. Essentially, Sharp used a
linear quadratic controller with multiple preview points to develop both longitudinal and
lateral control strategies for a two-wheeled machine. In order to ensure the alignment
between the controller gains and the current conditions of the vehicle, Sharp proposed a
scheduling strategy based on the vehicle speed and its lateral acceleration. As opposed
to this thesis, the longitudinal acceleration of the vehicle and its roll derivatives were
not considered when computing the trim states of the controller. Good tracking results
were obtained for two slow-varying manoeuvres, with the maximum roll rate being
around 15 deg/s and the maximum longitudinal acceleration being lower than 4m/s2.
Optimal gains and closed-loop system frequency responses were also illustrated. As
part of the conclusions, Sharp stated that further work was needed to provide good
tracking performance during aggressive braking, referring to the need to improve the
trim conditions used to develop the controller.

In 2013 Saccon published an update of his previous works [176] regarding manoeuver
regulation. In this publication there were no significant changes as far as the internal
model and the control approach are concerned, which were already introduced in Chap-
ter 2. However, new results were presented, where a multibody model of a modern sport
motorcycle was driven through a portion of a racing track. Results were limited to roll
angles below 50 deg and moderate longitudinal accelerations, with their maximum ab-
solute value being lower than 6m/s2. An excellent tracking performance was observed
for the vehicle speed whereas the path error reached values up to 0.6m in the neigh-
bourhood of the corner apexes, where the lateral acceleration is maximum. It is worth
noting that the simplified internal model used in this approach limits its application as
far as the simulation of weave and wobble phenomena is concerned, which are of special
interest in the racing world.

In addition to the above works, there have not been any other major contributions
to the field of rider control in the last years. Next we review several publications about
the topological modelling of the rider’s body and its influence on motorcycle stability.

In 2012 Massaro presented a detailed study of the passive effect of the rider’s body
on the weave mode [172]. The compliance of the human body influences the vibration
modes of the motorcycle, being difficult for the rider to control his/her own oscillations.
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In order to simulate this phenomenon, a (passive) anthropometric rider model was built,
which included torso and steering impedances based on the rider’s height, weight and
posture. A method for the quantitative evaluation of on-road stability was discussed
and then used to compare simulation results against experimental measurements for two
riders in hands-on and hands-off configurations. Results showed differences in weave
stability in function of the rider stature and also in function of the hands configuration,
with smaller stature and hands-on condition leading to worse weave stability. This work
was later expanded by Doria in 2013 [177].

Following a completely different approach, Sequenzia proposed in 2014 an elaborated
multibody model of the rider’s body [178]. The model was composed of 15 bodies,
according to the proportions established in AMVO (Anthropometric Specification for
Mid-Sized Male Dummy) [179], with a a total of 5 degrees of freedom. The main scope of
this research project was to study the effect of the rider movements in racing conditions.
For this purpose, the rider body was coupled to a racing motorcycle model in ADAMS.
A PID controller with constant look-ahead distance was used to control the steering
torque whereas no details were given about the stabilization of the rider’s body. As it
could be expected, results indicated that both the roll angle and the steering torque
decrease when the rider model is allowed to move laterally. Sequenzia did not present
any conclusions regarding the effect of the rider motion on vehicle stability.

This work was later continued in 2015 by the same research group at the University
of Catania [180]. In this new publication, the model complexity was increased, including
the steering impedance of the rider’s arms and a variable drag map in function of the
rider’s position (up/down). Results were presented for a full lap around Monza track.
However, the vehicle speed and its roll angle, which reached a maximum value of 40 deg,
indicate that the vehicle was far from its performance limit during the simulation.

Another topic that has been gaining interest in the recent years is the study of com-
ponent flexibility on motorcycle dynamics. An example of this research was presented
by Cossalter in 2015 [181], where an experimental/numerical study was performed to
investigate the effect of fork compliance on vehicle stability. Several forks, from both
enduro and sport motorcycles, were characterized with the aim of developing a lumped
element model of this component. Their modal analysis showed one main mode of vi-
bration in the frequency of interest, referred to as the lateral mode. In order to simplify
the simulation of the flexible fork, the concept of wheel twisting axis was proposed.
A lumped rotational stiffness was placed around the static twist axis whereas a pure
moment of inertia was added to the front assembly in order to obtain the same natural
frequency of the identified lateral mode. Simulations confirmed the effect of the front
assembly deformability on the weave and wobble vibration modes.
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This line of research is of special interest within the motorsport industry since it is
yet to be understood how the chassis flexibility affects motorcycle performance. Several
tests performed by the author of this thesis revealed that the rider here presented
successfully works with FE flexible models, thus allowing the user to perform detailed
investigations on the effect of component flexibility (chassis, arm, etc) on motorcycle
dynamics.



References

[1] Konig, J., Pérez-Magallón, B., Pieve, M., Galliano, F., and Ducci, I. Report on
analyses of motorcycles accidents databases. Technical report, Safety In Motion
(SIM), European Union Framework Programme FP6, 2007.

[2] http://www.mymosa.eu, 2006.

[3] Haug, E. J. Computer aided kinematics and dynamics of mechanical systems,
volume 1. Allyn and Bacon Boston, 1989.

[4] Smith, R. and Haug, E. DADS - Dynamic analysis and design system. In Multibody
systems handbook, pages 161–179. Springer, 1990.

[5] Rankine, W. J. M. On the dynamical principles of the motion of velocipedes. The
Engineer, 28 (79), pp. 129, 1869.

[6] Whipple, F. J. W. The stability of the motion of a bicycle. Quarterly Journal of
Pure and Applied Mathematics, 30 (120), pp. 312–321, 1899.

[7] Carvallo, E. Théorie du mouvement du monocycle et de la bicyclette. Paris:
Gauthier-Villars, 2 (5), pp. 119–188, 1899.

[8] Sharp, R. S. The lateral dynamics of motorcycles and bicycles. Vehicle System
Dynamics, 14 (4-6), pp. 265–283, 1985.

[9] Limebeer, D. J. N. and Sharp, R. S. Bicycles, motorcycles, and models. Control
Systems, IEEE, 26 (5), pp. 34–61, 2006.

[10] Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L. Linearized
dynamics equations for the balance and steer of a bicycle: a benchmark and re-
view. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, 463 (2084), pp. 1955–1982, 2007.

[11] Sharp, R. S. The stability and control of motorcycles. Journal of mechanical
engineering science, 13 (5), pp. 316–329, 1971.

267



268

[12] Pacejka, H. B. Tyre and vehicle dynamics. Butterworth-Heinemann, 2006.

[13] Cossalter, V. Motorcycle dynamics. Race Dynamics, 2002.

[14] Fajans, J. Steering in bicycles and motorcycles. American Journal of Physics, 68
(7), pp. 654–659, 1999.

[15] Sharp, R. S. The influence of frame flexibility on the lateral stability of motorcy-
cles. Journal of Mechanical Engineering Science, 16 (2), pp. 117–120, 1974.

[16] Kane, T. R. The effect of frame flexibility on high speed weave of motorcycles.
SAE, Technical Paper 780306, 1978.

[17] Jennings, G. A study of motorcycle suspension damping characteristics. SAE,
Technical Paper No. 740628, 1974.

[18] Sharp, R. The influence of the suspension system on motorcycle weave-mode
oscillations. Vehicle System Dynamics, 5 (3), pp. 147–154, 1976.

[19] Koenen, C. The dynamic behaviour of a motorcycle when running straight ahead
and when cornering. PhD thesis, Delft University, 1983.

[20] Koenen, K. and Pacejka, H. Vibrational modes of motorcycles in curves. 1980.
HS-029 684.

[21] Koenen, C. and Pacejka, H. The influence of frame elasticity, simple rider body
dynamics and tyre moments on free vibrations of motorcycles in curves. In Pro-
ceedings of the 7th IAVSD Symposium on the Dynamics of Vehicles on Roads and
Tracks, held in Cambridge, September 7-11, 1982.

[22] Eaton, D. J. Man-machine dynamics in the stabilization of single-track vehicles.
PhD thesis, University of Michigan, 1973.

[23] Weir, D. H. and Zellner, J. W. Experimental investigation of the transient behav-
ior of motorcycles. SAE, Technical Paper No. 790266, 1979.

[24] Sharp, R. Variable geometry active rear suspension for motorcycles. In Proc.
AVEC, volume 5, pages 22–24, 2000.

[25] Limebeer, D. J., Sharp, R., and Evangelou, S. The stability of motorcycles under
acceleration and braking. Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, 215 (9), pp. 1095–1109, 2001.

[26] Weir, D. H. and Zellner, J. W. Lateral-directional motorcycle dynamics and rider
control. SAE, Technical Paper No. SP-428, 1978.



269

[27] Nishimi, T., Aoki, A., and Katayama, T. Analysis of straight running stability of
motorcycles. In 10th International Technical Conference on Experimental Safety
Vehicles, pages 1080–1094, 1985.

[28] Katayama, T., Aoki, A., and Nishimi, T. Control behaviour of motorcycle riders.
Vehicle System Dynamics, 17 (4), pp. 211–229, 1988.

[29] Sharp, R. Vibrational modes of motorcycles and their design parameter sensitiv-
ities. In Institution of Mechanical Engineers Conference Publications, volume 3,
pages 107–107, 1994.

[30] Sharp, R. and Alstead, C. The influence of structural flexibilities on the straight-
running stability of motorcycles. Vehicle system dynamics, 9 (6), pp. 327–357,
1980.

[31] Bayer, B. Flattern und pendeln bei krafträdern. Automobil Industrie, 2, pp.
193–197, 1988.

[32] Sharp, R. The application of multi-body computer codes to road vehicle dynamics
modelling problems. Proceedings of the Institution of Mechanical Engineers, Part
D: Journal of Automobile Engineering, 208 (1), pp. 55–61, 1994.

[33] Gani, M., Sharp, R., and Limebeer, D. Multi-body simulation software in the
study of two-wheeled road vehicles. In Decision and Control, 1996., Proceedings
of the 35th IEEE, volume 3, pages 2804–2805. IEEE, 1996.

[34] Mechanical Simulation Corporation, 709 West Huron, Ann Arbor MI. Autosim
Reference Manual, 1998. http://www.carsim.com.

[35] Imaizumi, H., Fujioka, T., and Omae, M. Rider model by use of multibody
dynamics analysis. JSAE Review, 17 (1), pp. 75–77, 1996.

[36] Imaizumi, H. and Fujioka, T. Motorcycle-rider system dynamics by multibody
dynamics analysis: Effects of frame stiffness and tire characteristic on weave mode.
JSAE, 28, pp. 131–136, 1997.

[37] Imaizumi, H. and Fujioka, T. Motorcycle-rider system dynamics by multibody
dynamics analysis: Effects of the rear load on wobble motions and the control
assembly. JSAE, 19 (1), pp. 54–57, 1998.

[38] Imaizumi, H. and Fujioka, T. Motorcycle-rider system dynamics by multibody
dynamics analysis. the 4th report: Analysis of rider control behavior and motorcy-
cle dynamics. In Proceedings. JSAE Annual Congress, number 54-99, pages 9–12,
1999.



270

[39] Cossalter, V., Doria, A., and Lot, R. Steady turning of two-wheeled vehicles.
Vehicle system dynamics, 31 (3), pp. 157–181, 1999.

[40] Evangelou, S. Control and Stability Analysis of Two-wheeled Road Vehicles. PhD
thesis, Imperial College London, 2003.

[41] Sharp, R. S. and Limebeer, D. J. A motorcycle model for stability and control
analysis. Multibody System Dynamics, 6 (2), pp. 123–142, 2001.

[42] Mechanical Simulation Corporation, 709 West Huron, Ann Arbor MI. Bikesim
Reference Manual, 2006. http://www.bikesim.com.

[43] Cossalter, V. and Lot, R. A motorcycle multi-body model for real time simulations
based on the natural coordinates approach. Vehicle System Dynamics, 37 (6), pp.
423–447, 2002.

[44] Lot, R. A motorcycle tire model for dynamic simulations: theoretical and experi-
mental aspects. Meccanica, 39 (3), pp. 207–220, 2004.

[45] Waterloo Maple Inc, Waterloo, ON. Maple 14 Reference Manual, 2010. http://
www.maplesoft.com.

[46] Lot, R. and Da Lio, M. A symbolic approach for automatic generation of the
equations of motion of multibody systems. Multibody System Dynamics, 12 (2),
pp. 147–172, 2004.

[47] De Jalon, J. G. and Bayo, E. Kinematic and dynamic simulation of multibody
systems. Springer-Verlag New York, USA, 1994.

[48] Cossalter, V., Da Lio, M., and Berritta, R. Studio e realizzazione di una macchina
per la determinazione delle caratteristiche di rigidezza e smorzamento di un pneu-
matico motociclistico. V Convegno di Tribologia, 1998.

[49] Da Lio, M., Doria, A., and Lot, R. A spatial mechanism for the measurement of
the inertia tensor: Theory and experimental results. Journal of dynamic systems,
measurement, and control, 121 (1), pp. 111–116, 1999.

[50] Bortoluzzi, D., Doria, A., Lot, R., and Fabbri, L. Experimental investigation and
simulation of motorcycle turning performance. In 3rd International Motorcycle
Conference, pages 175–191, 2000.

[51] Sharp, R., Evangelou, S., and Limebeer, D. J. Advances in the modelling of
motorcycle dynamics. Multibody system dynamics, 12 (3), pp. 251–283, 2004.



271

[52] De Vries, E. d. and Pacejka, H. Motorcycle tyre measurements and models. Vehicle
System Dynamics, 29 (S1), pp. 280–298, 1998.

[53] De Vries, E. and Pacejka, H. The effect of tyre modeling on the stability analysis
of a motorcycle. Proc. AVEC’98, pages 355–360, 1998.

[54] Tezuka, Y., Ishii, H., and Kiyota, S. Application of the magic formula tire model
to motorcycle maneuverability analysis. JSAE review, 22 (3), pp. 305–310, 2001.

[55] Evangelou, S., Limebeer, D. J., Sharp, R. S., and Smith, M. C. Steering compen-
sation for high-performance motorcycles. In Decision and Control, 2004. CDC.
43rd IEEE Conference on, volume 1, pages 749–754. IEEE, 2004.

[56] Evangelou, S., Limebeer, D. J., Sharp, R. S., and Smith, M. C. Control of motor-
cycle steering instabilities. Control Systems, IEEE, 26 (5), pp. 78–88, 2006.

[57] Donida, F., Ferreti, G., Savaresi, S. M., Tanelli, M., and Schiavo, F. Motorcycle
dynamics library in modelica. In Proceedings of the Fifth International Modelica
Conference, volume 5, pages 157–166, 2006.

[58] Tanelli, M., Schiavo, F., Savaresi, S. M., and Ferretti, G. Object-oriented multi-
body motorcycle modelling for control systems prototyping. In Computer Aided
Control System Design, 2006 IEEE International Conference on Control Appli-
cations, 2006 IEEE International Symposium on Intelligent Control, 2006 IEEE,
pages 2695–2700. IEEE, 2006.

[59] Donida, F., Ferretti, G., Savaresi, S., and Tanelli, M. Object-oriented modelling
and simulation of a motorcycle. Mathematical and Computer Modelling of Dy-
namical Systems, 14 (2), pp. 79–100, 2008.

[60] Mavroudakis, B. and Eberhard, P. Analysis of alternative front suspension sys-
tems for motorcycles. Vehicle System Dynamics, 44 (sup1), pp. 679–689, 2006.

[61] Cossalter, V., Lot, R., and Massaro, M. The influence of frame compliance and
rider mobility on the scooter stability. Vehicle System Dynamics, 45 (4), pp. 313–
326, 2007.

[62] Cossalter, V., Lot, R., Sartori, R., and Massaro, R. A motorcycle riding simulator
for the improvement of the rider safety. Proceedings of the FISITA 2008 World
Automotive Congress, pages 11–015, 2008.

[63] Sharp, R. and El-Nashar, M. A generally applicable digital computer based math-
ematical model for the generation of shear forces by pneumatic tyres. Vehicle
System Dynamics, 15 (4), pp. 187–209, 1986.



272

[64] Fujioka, T. and Goda, K. Discrete brush tire model for calculating tire forces with
large camber angle. Vehicle system dynamics, 25 (S1), pp. 200–216, 1996.

[65] Fujioka, T. and Goda, K. Tire cornering properties at large camber angles: mech-
anism of the moment around the vertical axis. JSAE Review, 16 (3), pp. 257–261,
1995.

[66] Bakker, E. and Nyborg, L. Tyre modelling for use in vehicle dynamics studies.
SAE paper, 870421, 1987.

[67] Versteden, W. Improving a tyre model for motorcycle simulations. Master’s thesis,
Eindhoven University of Technology, 2005.

[68] Cossalter, V., Doria, A., and Ruffo, N. Testing of motorcycle tires by means of
a rotating disc machine. In Tyre Tecnology EXPO 2002 Conference, Hamburg,
pages 20–22, 2002.

[69] Cossalter, V., Lot, R., and Maggio, F. The influence of tire properties on the
stability of a motorcycle in straight running and curves. In SAE Conference
Proceedings, pages 87–94. SAE, 2002.

[70] Rashevsky, N. Neglected factors in highway safety. Technical report, University
of Michigan Mental Health Research Institute, 1966. Grant GM-12032-01.

[71] Guo, K. and Guan, H. Modelling of driver/vehicle directional control system.
Vehicle System Dynamics, 22 (3-4), pp. 141–184, 1993.

[72] Getz, N. H. Dynamic inversion of nonlinear maps with applications to nonlinear
control and robotics. PhD thesis, University of California, Berkeley, 1995.

[73] Frezza, R. and Beghi, A. Simulating a motorcycle driver. In New trends in
Nonlinear Dynamics and Control and their Applications, pages 175–186. Springer,
2003.

[74] Frezza, R., Beghi, A., and Saccon, A. Model predictive for path following with
motorcycles: application to the development of the pilot model for virtual proto-
typing. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 1,
pages 767–772. IEEE, 2004.

[75] Frezza, R. and Beghi, A. A virtual motorcycle driver for closed-loop simulation.
Control Systems, IEEE, 26 (5), pp. 62–77, 2006.

[76] Saccon, A. Maneuver regulation of nonlinear systems: The challenge of motorcycle
control. PhD thesis, University of Padova, 2006.



273

[77] Cofelice, N., Locatelli, D., Zanni, R., Toso, A., Moreno, D., Kang, J., and Donders,
S. A multibody virtual dummy for vibrational analysis in car and motorcycle envi-
ronments. In Proceedings, ISMA conference on Noise and Vibration Engineering.
Katholieke Universiteit Leuven, 2010.

[78] Bennett, S. A History of Control Engineering, volume 47. IET, 1993.

[79] Ogata, K. Modern control systems. Prentice Hall, 1998.

[80] McRuer, D. T. and Jex, H. R. A review of quasi-linear pilot models. Human
Factors in Electronics, IEEE Transactions on, (3), pp. 231–249, 1967.

[81] McRuer, D. and Weir, D. H. Theory of manual vehicular control. Ergonomics, 12
(4), pp. 599–633, 1969.

[82] Iguchi, M. A study of manual control. Journal of mechanic Society of Japan, 62
(481), 1959.

[83] Iguchi, M. and others,. A fundamental study of driver behaviour for automobile
simulation. Symposium of SAE-Japan, 1960.

[84] Ashkenas, I. L. and McRuer, D. T. A theory of handling qualities derived from
pilot-vehicle system considerations. Institute of the Aerospace Sciences, 1962.

[85] McRuer, D. T. and Klein, R. H. Comparison of human driver dynamics in simu-
lators with complex and simple visual displays and in an automobile on the road.
In Proceedings of the 11th Annual Conference on Manual Control, 1975.

[86] McRuer, D. and Klein, R. Effects of automobile steering characteristics on
driver/vehicle performance for regulation tasks. In Proceedings of the 11th Annual
Conference on Manual Control, 1975.

[87] Kondo, M. and Ajimine, A. Driver’s sight point and dynamics of the driver-vehicle-
system related to it. SAE, Technical Paper No. 680104, 1968.

[88] Yoshimoto, K. Simulation of driver/vehicle system including preview control.
Journal of Mechanics Society Japan, 7, 1968.

[89] Weir, D. Motorcycle Handling Dynamics and Rider Control and the Effect of
Design Configuration on Response and Performance. PhD thesis, University of
California at Los Angeles, 1972.



274

[90] Weir, D. A manual control view of motorcycle handling. in second international
congress on automotive safety. In Proceedings of the Second International Congress
onAutomotive Safety, Dept. of Transportation. July 16 - 18, San Francisco, num-
ber 73018, 1973.

[91] Zellner, J. W. and Weir, D. H. Development of handling test procedures for
motorcycles. SAE, Technical Paper No. 780313, 1978.

[92] Prem, H. and Good, M. A rider-lean steering mechanism for motorcycle control.
Vehicle System Dynamics, 12 (1-3), pp. 29–32, 1983.

[93] Berritta, R., Biral, F., and Garbin, S. Evaluation of motorcycle handling with
multibody modelling and simulation. In Proc. 6th Int. Conf. on High Tech. En-
gines and Cars, Modena, 2000.

[94] Lot, R. and Cossalter, V. A non linear rider model for motorcycles. In Proceedings
of the FISITA 2006 World Automotive Congress, pages 22–27, 2006.

[95] Massaro, M. and Lot, R. Application of laplace transform techniques to non-linear
control optimization. Proc of the multibody dynamics, pages 25–28, 2007.

[96] Lot, R., Massaro, M., and Sartori, R. Advanced motorcycle virtual rider. Vehicle
System Dynamics, 46 (S1), pp. 215–224, 2008.

[97] Cossalter, V., Da Lio, M., Lot, R., and Fabbri, L. A general method for the eval-
uation of vehicle manoeuvrability with special emphasis on motorcycles. Vehicle
system dynamics, 31 (2), pp. 113–135, 1999.

[98] Cossalter, V., Da Lio, M., Biral, F., and Fabbri, L. Evaluation of motorcycle
maneuverability with the optimal maneuver method. SAE transactions, 107 (6),
pp. 2512–2518, 1998.

[99] Sharp, R. S. Optimal linear time-invariant preview steering control for motorcy-
cles. Vehicle system dynamics, 44 (sup1), pp. 329–340, 2006.

[100] Sharp, R. S. Motorcycle steering control by road preview. Transaction American
Society of Mechanical Engineers. Journal of Dynamic Systems, Measurement, and
Control, 129 (4), pp. 373, 2007.

[101] Cole, D., Pick, A., and Odhams, A. Predictive and linear quadratic methods
for potential application to modelling driver steering control. Vehicle System
Dynamics, 44 (3), pp. 259–284, 2006.



275

[102] Naidu, D. S. Optimal control systems. CRC Press, 2003.

[103] Bryson, A. E. and Ho, Y.-C. Applied optimal control: optimization, estimation,
and control. Taylor & Francis, 1975.

[104] Baron, S., Kleinman, D., and Levison, W. An optimal control model of human
response part ii: prediction of human performance in a complex task. Automatica,
6 (3), pp. 371–383, 1970.

[105] Kleinman, D., Baron, S., and Levison, W. An optimal control model of human
response part i: Theory and validation. Automatica, 6 (3), pp. 357–369, 1970.

[106] MacAdam, C. C. An optimal preview control for linear systems. 1980.

[107] MacAdam, C. C. Application of an optimal preview control for simulation of
closed-loop automobile driving. Systems, Man and Cybernetics, IEEE Transac-
tions on, 11 (6), pp. 393–399, 1981.

[108] Peng, H. Evaluation of driver assistance systems–a human centered approach.
AVEC proceedings, 2002.

[109] Bertolazzi, E., Biral, F., and Da Lio, M. Symbolic–numeric indirect method for
solving optimal control problems for large multibody systems. Multibody System
Dynamics, 13 (2), pp. 233–252, 2005.

[110] Bertolazzi, E., Biral, F., and Da Lio, M. Symbolic-numeric efficient solution of
optimal control problems for multibody systems. Journal of computational and
applied mathematics, 185 (2), pp. 404–421, 2006.

[111] Bertolazzi, E., Biral, F., and Da Lio, M. Motion planning algorithms based on
optimal control for motorcycle-rider system. FISITA, 2006.

[112] Sharp, R. and Valtetsiotis, V. Optimal preview car steering control. Vehicle
System Dynamics, 35, pp. 101–117, 2001.

[113] Sharp, R., Casanova, D., and Symonds, P. A mathematical model for driver
steering control, with design, tuning and performance results. Vehicle System
Dynamics, 33 (5), pp. 289–326, 2000.

[114] Sharp, R. S. Driver steering control and a new perspective on car handling qual-
ities. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 219 (10), pp. 1041–1051, 2005.



276

[115] Antos, P. and Ambrósio, J. A. A control strategy for vehicle trajectory tracking
using multibody models. Multibody System Dynamics, 11 (4), pp. 365–394, 2004.

[116] Huyge, K., Ambrósio, J., and Pereira, M. A control strategy for the dynamics of a
motorcycle, including rider. In Proceedings of EUROMECH Nonlinear Dynamics
Conference (ENOC 2005), Eindhoven, The Netherlands, 2005.

[117] Sharp, R. S. Optimal preview speed-tracking control for motorcycles. Multibody
System Dynamics, 18 (3), pp. 397–411, 2007.

[118] Thommyppillai, M., Evangelou, S., and Sharp, R. Car driving at the limit by
adaptive linear optimal preview control. Vehicle system dynamics, 47 (12), pp.
1535–1550, 2009.

[119] Thommyppillai, M., Evangelou, S., and Sharp, R. Advances in the development
of a virtual car driver. Multibody System Dynamics, 22 (3), pp. 245–267, 2009.

[120] Banaszuk, A. and Hauser, J. Feedback linearization of transverse dynamics for
periodic orbits. Systems & control letters, 26 (2), pp. 95–105, 1995.

[121] Hauser, J. and Hindman, R. Maneuver regulation from trajectory tracking: Feed-
back linearizable systems. In Proc. IFAC Symp. Nonlinear Control Systems De-
sign, pages 595–600, 1995.

[122] Hauser, J. and Meyer, D. G. The trajectory manifold of a nonlinear control
system. In Decision and Control, 1998. Proceedings of the 37th IEEE Conference
on, volume 1, pages 1034–1039. IEEE, 1998.

[123] Hauser, J. A projection operator approach to the optimization of trajectory func-
tionals. In IFAC world congress, 2002.

[124] Abate, A. Nonlinear predictive control for a nonholonomic nonminimum phase
system. Master’s thesis, University of Padova, 2002.

[125] Maciejowski, J. Predictive control with constraints. Harlow, England: Pearson
Educatoin, 2002.

[126] Moreno, D. and Manka, M. Motorcycle dynamic models for virtual rider design
and cornering analysis. In Proceedings of the ASME 2009 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference IDETC/CIE 2009, August 30 - September 2, San Diego, California,
USA. ASME, 2009.



277

[127] Moreno, D., Kang, J., and Manka, M. A “corner solver” for motorcycles as a
tool for the development of a virtual rider. In Vehicle Power and Propulsion
Conference, VPPC’09, September 7-11, 2009, Dearborn, MI, USA, pages 1110–
1117. IEEE, 2009.

[128] Moreno, D. Latest advances on the virtual rider. In MYMOSA open workshop,
Eindhoven, February, 2010. http://www.mymosa.eu.

[129] Moreno, D., Toso, A., Cofelice, N., and Kang, J. Motorcycle dynamics in virtual.
lab motion. In Proceedings of the ASME 2010 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference,
IDETC/CIE 2010, August 15-18, 2010, Montreal, Quebec, Canada. ASME, 2010.

[130] Moreno, D., Cofelice, N., Toso, A., and Kang, J. Steady turning analysis of
motorcycles in lms virtual.lab motion. In The 1st Joint International Conference
on Multibody System Dynamics, May 25-27, Lappeenranta, Finland, 2010.

[131] Blundell, M., Harty, D., and others,. The multibody systems approach to vehicle
dynamics. Elsevier, 2004.

[132] Milliken, W. F., Whitcomb, D. W., and others,. General introduction to a pro-
gramme of dynamic research. Proceedings of the Institution of Mechanical Engi-
neers: Automobile Division, 10 (1), pp. 287–309, 1956.

[133] Nikravesh, P. E. Computer-aided analysis of mechanical systems. Prentice-Hall,
Inc., 1988.

[134] Jain, A. Robot and Multibody Dynamics: Analysis and Algorithms. Springer, 2011.

[135] Schwerin, R. V., Schlick, T., Keyes, D., Nieminen, R., Griebel, M., and Roose,
D. Multibody system simulation: numerical methods, algorithms, and software.
Springer-Verlag New York, Inc., 2000.

[136] Jalón, J. G. Twenty-five years of natural coordinates. Multibody System Dynamics,
18 (1), pp. 15–33, 2007.

[137] Popp, K. and Schiehlen, W. O. Ground Vehicle Dynamics. Springer, 2010.

[138] Wanner, G. and Hairer, E. Solving Ordinary Differential Equations II: stiff and
differential-algebraic problems. Springer-Verlag, Berlin, 1996.

[139] Laulusa, A. and Bauchau, O. A. Review of classical approaches for constraint
enforcement in multibody systems. Journal of computational and nonlinear dy-
namics, 3 (1), pp. 011004, 2008.



278

[140] Bauchau, O. A. and Laulusa, A. Review of contemporary approaches for con-
straint enforcement in multibody systems. Journal of Computational and Nonlin-
ear Dynamics, 3 (1), pp. 011005, 2008.

[141] Baumgarte, J. Stabilization of constraints and integrals of motion in dynamical
systems. Computer methods in applied mechanics and engineering, 1 (1), pp. 1–16,
1972.

[142] Eich-Soellner, E. and Führer, C. Numerical methods in multibody dynamics, vol-
ume 45. Teubner Stuttgart, 1998.

[143] Samin, J.-C. and Fisette, P. Symbolic modeling of multibody systems, volume 112.
Springer, 2003.

[144] Shabana, A. A. Computational dynamics. Wiley, 2001.

[145] Wolfram, S. The mathematica book 4th edition (champaign, il: Wolfram media;
cambridge, uk, 1999.

[146] Kreuzer, E. and Schiehlen, W. NEWEUL - software for the generation of symbol-
ical equations of motion. In Multibody systems handbook, pages 181–202. Springer,
1990.

[147] Fisette, P. and Samin, J. Robotran: Symbolic generation of multi-body system
dynamic equations. In Advanced Multibody System Dynamics, pages 373–378.
Springer, 1993.

[148] Cossalter, V., Lot, R., and Massaro, M. The chatter of racing motorcycles. Vehicle
System Dynamics, 46 (4), pp. 339–353, 2008.

[149] Wittkopf, A. Automatic code generation and optimization in maple. JNAIAM J.
Numer. Anal. Indust. Appl. Math, 3, pp. 167–180, 2008.

[150] Genta, G. Motor vehicle dynamics: modeling and simulation, volume 43. World
Scientific, 1997.

[151] Wong, J. Y. Theory of ground vehicles. Wiley, 2001.

[152] Cossalter, V., Lot, R., and Maggio, F. The modal analysis of a motorcycle in
straight running and on a curve. Meccanica, 39 (1), pp. 1–16, 2004.

[153] Powell, M. J. A FORTRAN subroutine for solving systems of nonlinear algebraic
equations. Numerical Methods for Nonlinear Algebraic Equations, 1970.



279

[154] More, J. J., Garbow, B. S., and Hillstrom, K. E. User guide for MINPACK-1.
Argonne National Laboratory, Rept. ANL-80-74, 1980.

[155] Jarzebowska, E. Model-based tracking control of nonlinear systems. CRC Press,
2012.

[156] Dixon, J. Suspension Analysis and Computational Geometry. John Wiley & Sons,
2009.

[157] Cossalter, V., Lot, R., and Peretto, M. Steady turning of motorcycles. Proceed-
ings of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, 221 (11), pp. 1343–1356, 2007.

[158] Cossalter, V., Doria, A., and Lot, R. Optimum suspension design for motorcycle
braking. Vehicle system dynamics, 34 (3), pp. 175–198, 2000.

[159] Bastos Jr, G., Seifried, R., and Brüls, O. Inverse dynamics of serial and parallel
underactuated multibody systems using a dae optimal control approach. Multibody
System Dynamics, 30 (3), pp. 359–376, 2013.

[160] Betts, J. T. Practical methods for optimal control and estimation using nonlinear
programming, volume 19. Siam, 2010.

[161] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. Nonlinear programming: theory
and algorithms. John Wiley & Sons, 2013.

[162] Chengxian, X. and de Jong, J. Sequential quadratic programming methods for
optimal control problems with state constraints. Applied Mathematics-A Journal
of Chinese Universities, 8 (2), pp. 163–174, 1993.

[163] Fritsch, F. N. and Carlson, R. E. Monotone piecewise cubic interpolation. SIAM
Journal on Numerical Analysis, 17 (2), pp. 238–246, 1980.

[164] Mitschke, M. and Wallentowitz, H. Dynamik der kraftfahrzeuge. Springer, 1990.

[165] Rill, G. Vehicle dynamics. Hochschule Regensburg, University of Applied Sciences,
2006.

[166] Massaro, M., Cossalter, V., and Lot, R. A virtual rider for reproducing experi-
mental manoeuvres. In Proceedings, Bicycle and Motorcycle Dynamics 2010, Sym-
posium on the Dynamics and Control of Single Track Vehicles, 20 - 22 October,
Delft, The Netherlands. Delft University, 2010.



280

[167] Massaro, M. and Lot, R. A virtual rider for two wheeled vehicles. In Decision
and Control (CDC), 2010 49th IEEE Conference, pages 5586–5591. IEEE, 2010.

[168] Massaro, M. A nonlinear virtual rider for motorcycles. Vehicle System Dynamics,
49 (9), pp. 1477–1496, 2011.

[169] Cole, D. J. Influence of steering torque feedback and neuromuscular dynamics on
driver and vehicle response to lateral force disturbance. Driver-Vehicle Dynamics
Group, University of Cambridge, 2011.

[170] Cole, D. J. A path-following driver–vehicle model with neuromuscular dynamics,
including measured and simulated responses to a step in steering angle overlay.
Vehicle System Dynamics, 50 (4), pp. 573–596, 2012.

[171] Na, X. and Cole, D. J. Linear quadratic game and non-cooperative predictive
methods for potential application to modelling driver–afs interactive steering con-
trol. Vehicle System Dynamics, 51 (2), pp. 165–198, 2013.

[172] Massaro, M., Lot, R., Cossalter, V., Brendelson, J., and Sadauckas, J. Numer-
ical and experimental investigation of passive rider effects on motorcycle weave.
Vehicle System Dynamics, 50 (sup1), pp. 215–227, 2012.

[173] Timings, J. and Cole, D. Robust lap-time simulation. Proceedings of the Insti-
tution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228
(10), pp. 1200–1216, 2014.

[174] Massaro, M., Lot, R., and Cossalter, V. A virtual motorcycle driver to simulate
real manoeuvres from experimental data. Proceedings of the Institution of Me-
chanical Engineers, Part D: Journal of automobile engineering, pages 1211–1219,
2012.

[175] Sharp, R. Rider control of a motorcycle near to its cornering limits. Vehicle
System Dynamics, 50 (8), pp. 1193–1208, 2012.

[176] Saccon, A., Hauser, J., and Beghi, A. A virtual rider for motorcycles: Maneuver
regulation of a multi-body vehicle model. Control Systems Technology, IEEE
Transactions on, 21 (2), pp. 332–346, 2013.

[177] Doria, A., Tognazzo, M., and Cossalter, V. The response of the rider’s body
to roll oscillations of two wheeled vehicles; experimental tests and biomechanical
models. Proceedings of the Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering, 227 (4), pp. 561–576, 2013.



281

[178] Sequenzia, G., Oliveri, S., Fatuzzo, G., and Calì, M. An advanced multibody
model for evaluating rider’s influence on motorcycle dynamics. Proceedings of
the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,
2014.

[179] Robbins, D. Anthropometric specifications for mid sized male dummy, volume 2.
Technical report, 1983.

[180] Barbagallo, R., Sequenzia, G., Oliveri, S., and Cammarata, A. Dynamics of a
high-performance motorcycle by an advanced multibody/control co-simulation.
Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-
body Dynamics, 230 (2), pp. 207–221, 2015.

[181] Cossalter, V., Doria, A., Massaro, M., and Taraborrelli, L. Experimental and
numerical investigation on the motorcycle front frame flexibility and its effect on
stability. Mechanical Systems and Signal Processing, 60, pp. 452–471, 2015.





Curriculum Vitae

Personal data

Name David Moreno-Giner
Birth 18th of March 1980, Alicante (Spain)
Contact david.morenoginer@gmail.com
Interests Multibody Dynamics, Control Theory, Optimization, Vehicle Dynamics.

Professional experience

Jun 2012
to present

Simulation Engineer at Yamaha Motor Racing, Lesmo (Italy).

Research and development of tools for the dynamic simulation of racing
motorcycles. Rider modelling for aggressive manoeuvring.

Jun 2010
Jun 2012

Simulation and Analysis Engineer at Red Bull Racing F1, Mil-
ton Keynes (UK).

Research, development and implementation of mathematical models,
simulation tools and analysis algorithms to determine the optimum per-
formance of F1 cars. Inboard suspension tuning (i.e. spring, dampers
and k-dampers) for ride optimization. Track data analysis. 7-poster
tests pre/post processing.

Jul 2007
Jun 2010

R&D Engineer at the Simulation Division of LMS international
(Siemens PLM), Leuven (Belgium).

Development and optimization of efficient motorcycle multibody models
based on the symbolic approach. Development of a novel rider model
based on on Model Predictive Control. Rider behaviour investigation.

Aug 2006
Jul 2007

R&D Engineer at the Department of Mechanical Engineering
of the University of Ferrara (Italy) in collaboration with Ducati
Corse.

Kineto-Elastodynamic modelling and simulation of the desmodromic
valve train of the Ducati MotoGP engine. In particular, the research

283



284

focused on the development of a flexible multibody model of the desmod-
romic valve train to study the effect of rocker compliance at high speeds.

Dec 2004
Aug 2006

Associate Lecturer (part-time) at the Polytechnic School of En-
gineering, Miguel Hernández University (Elche, Spain).

Lectures on mechanics, vibration theory and technical drawing.

Academic background

2007 Diploma de Estudios Avanzados (DEA). Polytechnic School of
Engineering, Miguel Hernández University (Spain).

Dissertation title: Multobody simulation of the desmodromic valve train
(MotoGP engine GP06).

2004 - 2006 Master in Theory and Practical Application of Finite Ele-
ment Method and Mechanical Simulation. UNED University,
Madrid (Spain).

Thesis Title: Study and optimization of the external geometry of a car
by means of computer fluid dynamics.

1998 - 2004 MSc. in Industrial Engineering (specialization in mechanical
and control engineering). Polytechnic School of Engineering,
Miguel Hernández University (Spain).

Award: Premio Extraordinario de Fin de Carrera for the best academic
record in the Industrial Engineering degree.
Thesis Title: Design and simulation of an innovative suspension system
for downhill bicycles.

Selected publications

May 2010 Steady Turning Analysis of Motorcycles in LMS Virtual.Lab
Motion. Proceedings of the 1st Joint International Conference on Multi-
body System Dynamics May 25 − 27, 2010, Lappeenranta, Finland. D.
Moreno, N. Cofelice, A. Toso and J. Kang.

Sep 2009 A "corner solver" for motorcycles as a tool for the development
of a virtual rider. Proceedings of IEEE Vehicle Power and Propulsion
Conference (IEEE VPPC, Dearborn, MI, USA, Sept. 7 − 10, 2009. D.
Moreno, M. Manka and J. Kang.

Sep 2009 Motorcycle dynamic models for virtual rider design and corner-
ing analysis. J.Proc. ASME 2009. International Design Engineering



285

Technical Conferences & Computers and Information in Engineering Con-
ference IDETC/CIE 2009, San Diego, CA, USA. Aug. 30− Sept. 2, 2009.
D. Moreno and M. Manka.

Jun 2007 Multibody analysis of the desmodromic valve train of the
Ducati MotoGP engine. ECCOMAS Thematic Conference on Multi-
body Dynamics (ECCOMAS), Milano (Italy). June 2007. D. Moreno,
E. Mucchi, G. Dalpiaz and A. Rivola.

Dec 2004 Analysis of the influence of pedalling on the performance of
suspension systems for mountain bikes. Journal of the Spanish
Association of Mechanical Engineering. Vol. 3, No. 15, December 2004.
pp. 1679-1684. ISSN - 0212-5072. D. Moreno, M. Sánchez and M.A.
Oliva.


