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Abstract
Background Experimental data suggest that bacterial translocation (BT) promotes systemic inflammation, portal hyperten-
sion, and circulatory dysfunction in advanced chronic liver disease (ACLD).
Methods Patients with ACLD undergoing hepatic venous pressure gradient (HVPG) measurement and absence of acute 
decompensation or infections were included (n = 249). Serum biomarkers of BT (lipopolysaccharide [LPS], lipoteichoic acid 
[LTA], bacterial DNA [bactDNA]), systemic inflammation and markers of circulatory dysfunction were assessed. T-cell 
subsets in intestinal biopsies (n = 7 ACLD, n = 4 controls) were analyzed by flow cytometry.
Results Patients had a median HVPG of 18 (12–21) mmHg and 56% had decompensated ACLD. LPS (0.04 [0.02–0.06] vs. 
0.64 [0.30–1.06] EU/mL), LTA (4.53 [3.58–5.97] vs. 43.2 [23.2–109] pg/mL), and detection of bactDNA (≥ 5 pg/mL; 5% 
vs. 41%) were markedly higher in patients with ACLD than healthy controls (n = 40; p < 0.001) but were similar between 
different clinical stages of compensated and decompensated ACLD and displayed no meaningful correlation with HVPG 
and systemic hemodynamics. TNF-α and IL-10 correlated with LPS (Spearman’s rs = 0.523, p < 0.001/rs = 0.143, p = 0.024) 
but not with LTA. Presence of bactDNA was associated with higher LPS (0.54 [0.28–0.95] vs. 0.88 [0.32–1.31] EU/mL, 
p = 0.001) and TNF-α (15.3 [6.31–28.1] vs. 20.9 [13.8–32.9] pg/mL). Patients with ACLD exhibited a decreased CD4:CD8-
ratio and increased  TH1-cells in the intestinal mucosa as compared to controls. During a median FU of 14.7 (8.20–26.5) 
months, bacterial antigens did not predict decompensation or liver-related death (in contrast to HVPG, IL-6, and MAP) as 
well as infections at 24 months.
Conclusion BT occurs already in early ACLD stages and triggers a systemic inflammatory response via TNF-α and IL-10. 
Interestingly, BT markers showed no clear correlation with portal hypertension and circulatory dysfunction in patients with 
stable ACLD.
Clinical trial number NCT03267615.
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LTA  Lipoteichoic acid
MAP  Mean arterial pressure
MELD  Model of End Stage Liver Disease
NAFLD  Non-alcoholic fatty liver disease
PAMPs  Pathogen-associated molecular patterns
PCR  Polymerase chain reaction
PCT  Procalcitonin
PH  Portal hypertension
SBP  Spontaneous bacterial peritonitis
TNF-α  Tumor necrosis factor-alpha

Introduction

Recent research endeavors in the field of cirrhosis have 
indicated that bacterial translocation (BT) from the 
intestines plays a decisive role in advanced chronic liver 
disease (ACLD) [1]. Gut-derived bacteria and their products, 
i.e. pathogen-associated molecular patterns (PAMPs) may 
subsequently induce an immune response in the liver 
and other organs and promote systemic inflammation, 
portal hypertension, and circulatory dysfunction as key 
pathophysiological mechanisms in cirrhosis [1, 2].

Considering that BT requires disruption of multiple 
defense mechanisms  [3], experimental animal studies 
suggested that BT in cirrhosis is related to dysbiosis, 
impaired antimicrobial peptide secretion, reduced mucus 
thickness, and downregulation of tight junction protein 
expression in the intestinal epithelium [4–6]. Concordantly, 
detection of bacterial DNA in mesenteric lymph nodes, 
blood and ascitic fluid of rats with cirrhosis was linked to 
serum levels of inflammatory cytokines [7]. Consequently, 
BT promotes a proinflammatory phenotype that is (at least 
partially) responsible for the association between systemic 
inflammation and liver-related complications in ACLD [2].

The onset of BT in cirrhosis was traditionally considered 
to parallel with the development of ascites, as suggested 
in early experimental studies [8, 9]. Accordingly, previous 
studies in humans investigating the link between circulating 
PAMPs and systemic inflammation and circulatory 
dysfunction have mostly focused on patients with ascites. 
For example, bacterial DNA in the blood of patients with 
ascites correlated with markers of systemic inflammatory 
response (e.g., tumor necrosis factor-alpha [TNF-α]) and 
endothelial or circulatory dysfunction [10]. However, 
other experimental and clinical studies found that bacterial 
antigens were already detectable in non-cirrhotic liver 
disease and compensated cirrhosis [11, 12]. Therefore, 
the presence and impact of BT across compensated and 
decompensated ACLD stages remain poorly characterized, 
particularly in stable patients without acute decompensation.

This study aimed to assess the link between circulating 
PAMPs and systemic inflammation, circulatory dysfunction, 

portal hypertension and clinical disease stages in a large 
cohort of consecutively recruited patients with stable ACLD 
undergoing liver vein catheterization. Furthermore, we 
analyzed the association between BT markers and disease 
progression and infections during follow-up.

Patients and methods

Study design, patient selection and clinical 
characterization.

Patients underwent hepatic venous pressure gradient 
(HVPG) measurement between 01/2017 and 08/2020 at the 
Vienna Hepatic Hemodynamic Lab, Medical University 
of Vienna, Austria, and were prospectively recruited in 
the Vienna Cirrhosis Study (VICIS). Portal hypertension 
(PH) and, thus, presence of ACLD was defined by an 
HVPG ≥ 6 mmHg. Patients with liver transplantation, pre/
posthepatic/non-cirrhotic PH, transjugular intrahepatic 
portosystemic shunt, active extrahepatic malignant 
diseases, hepatocellular carcinoma out-of-Milan, non-
selective betablockers, bacterial infection or non-elective 
hospitalization were excluded, resulting in a study cohort 
of 249 patients with stable ACLD (Supplementary fig. S1). 
Clinical disease stages were determined adapted to D’Amico 
et al. [13] and guidelines by the European Association for 
the Study of the Liver (EASL) [14]: stages (S) were defined 
as subclinical PH (S0; HVPG 6–9  mmHg), clinically 
significant PH (CSPH; S1-2; HVPG ≥ 10 mmHg without 
varices or presence of varices), previous variceal bleeding 
(S3), one non-bleeding decompensation event (S4), and ≥ 2 
decompensation events (S5). Forty sex- and age-matched 
healthy individuals served as a control group for assessment 
of bacterial antigens in the systemic circulation.

Measurement of hepatic venous pressure gradient 
and systemic hemodynamics

HVPG was assessed by liver vein catheterization in 
accordance with a standard operating procedure, as 
published previously [15]. Distinct steps of the procedure are 
outlined in the Supplementary material. Heart rate (HR) and 
non-invasive systolic, diastolic, and mean arterial pressure 
(MAP) were measured within the same session.

Biomarker measurements

Biomarkers of BT and systemic inf lammation (all 
patients), as well as circulatory dysfunction (i.e. renin 
and copeptin; available in 218 patients) were measured 
in serum and plasma obtained through the catheter 
introducer sheath during HVPG measurement. Personnel 
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performing biomarker measurements was blinded to patient 
characteristics. C-reactive protein (CRP), interleukin-6 
(IL-6), procalcitonin (PCT), lipopolysaccharide-binding 
protein (LBP), renin and copeptin levels were measured 
by the ISO-certified Department of Laboratory Medicine, 
Medical University of Vienna, following the manufacturers’ 
instructions. TNF-α and IL-10 were measured with 
commercially available ELISA kits (Human TNF-alpha 
and IL-10 Quantikine ELISA Kits from R&D Systems, 
Minneapolis, MN) with a detection limit of 6.23 pg/mL and 
3.9 pg/mL, respectively, according to the manufacturer’s 
instructions. Lipopolysaccharide (LPS) levels were 
quantified using a quantitative chromogenic limulus 
amebocyte lysate (LAL) test (BioWhittaker, Nottingham, 
UK). Lipoteichoic acid (LTA) levels were assessed by 
Human LTA ELISA kit (Abbexa Ltd., Cambridge, UK). 
Bacterial DNA (bactDNA) was determined by broad-range 
polymerase chain reaction (PCR) of the 16S rRNA gene 
according to the methodology described elsewhere [16]. 
The presence of bactDNA was defined by a concentration 
of ≥ 5 pg/mL, while LPS and LTA detection limits were set 
at 0.25 UE/mL and 2.5 pg/mL, respectively [12]. Further 
details are outlined in the Supplementary material.

Characterization of T‑cell subsets in intestinal 
mucosa biopsies

Biopsies from the small intestine (duodenum) were 
obtained in seven patients with ACLD and four liver-
healthy individuals undergoing endoscopy of the upper 
gastrointestinal tract with a standard biopsy forceps (Boston 
Scientific, MA, USA). T-cell subsets in the intestinal mucosa 
were characterized by multi-color flow cytometry analysis. 
Briefly, samples were digested, dissociated, and stained 
for multi-color flow cytometry to identify different T-cell 
subsets (αβT, γδT, CD8, CD4,  TH1,  TH2,  TH17, Treg). More 
detailed information on sample processing and analysis is 
presented in the Supplementary material.

Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics 
27 (IBM, Armonk, NY, USA) or GraphPad Prism 9 (GraphPad 
Software, La Jolla, CA, USA). Standard statistical methods 
were applied for descriptive statistics and comparison of cat-
egorical and continuous variables, as depicted in the Supple-
mentary material. Correlation between continuous variables 
was determined by Spearman correlation coefficients (95% 
confidence interval). Kaplan–Meier curves with log-rank test 
as well as Cox proportional hazard models were used to assess 
determinants for the composite endpoint of first/further decom-
pensation (incidence/worsening of ascites or hepatic encepha-
lopathy, or development of variceal bleeding) or liver-related 

death, as well as the incidence of infections, at 24 months of 
follow-up. Patients were censored at the end of follow-up or 
liver transplantation. A two-sided p value < 0.05 denoted sta-
tistical significance for all analyses. Further information on 
statistical analyses is provided in the Supplementary material.

Compliance with ethical standards

The study was conducted in accordance with the principles 
of the Declaration of Helsinki and its amendments, was 
approved by the local ethics committee of the Medical 
University of Vienna (EK1262/2017) and registered at 
clinicaltrials.org (NCT03267615). All patients provided 
written informed consent for liver vein catheterization and 
participation in the VICIS study. Patients and liver-healthy 
individuals undergoing endoscopy and duodenum biopsy 
gave written informed consent for endoscopic procedures 
and participation in the VICIS study and the VICIS control 
group, respectively. Healthy controls for measurement of 
bacterial antigens were recruited from the TraffEC study 
that was approved by the Ethics Committee of the Hospital 
General Universitario de Alicante, Spain.

Results

Patient characteristics

The study cohort of 249 patients had a median age of 59 
(50–67) years, median HVPG of 18 (12–21) mmHg, median 
MELD of 11 (9–14) points, and the majority had male sex 
(n = 163, 65%). At the timepoint of HVPG measurement, 
110 (44%) had compensated ACLD (cACLD), with 24 
(9%) patients in S0 and 86 (34%) in S1-2. Furthermore, 
139 (56%) patients had decompensated ACLD (dACLD), 
and 12 (5%) were in S3, 68 (27%) in S4, and 59 (24%) 
in S5 (Table 1; Supplementary table-S1). From patients 
classified as S5, 12 had refractory ascites, 6 had ascites and 
hepatic encephalopathy (HE) as well as history of variceal 
bleeding, 35 had ascites and HE, and 6 patients had history 
of variceal bleeding in combination with either ascites or 
HE. Twenty (8%) patients in the study cohort reported the 
intake of antibiotic prophylaxis at inclusion: 15 reported 
rifaximin intake for HE treatment, 4 patients norfloxacin 
for secondary spontaneous bacterial peritonitis (SBP) 
prophylaxis (SBP > 3 months prior to HVPG measurement), 
and 1 patient cotrimoxazole for pneumocystis prophylaxis.

Bacterial translocation across disease stages 
of advanced chronic liver disease

Patients displayed significantly elevated levels of bacte-
rial antigens as compared to healthy controls: median 
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LPS concentration was 0.64 (0.30–1.06) EU/mL (vs. 0.04 
[0.02–0.06] EU/mL in controls; p < 0.001), median LTA 43.2 
(23.2–109) pg/mL (vs. 4.53 [3.58–5.97] EU/mL in controls; 
p < 0.001), and bactDNA was detected in 101 (41%) patients 
(vs. 5% [n = 2] in controls; p < 0.001). Circulating LPS, LTA, 
and bactDNA were not related to disease stage, indicating 

that BT already occurs early in cACLD and that the amount 
of circulating bacterial antigens is not clearly contingent on 
disease severity (all p > 0.05; Fig. 1). None of the evaluated 
antigens could be detected in 9 (4%) patients, whereas 1 anti-
gen was detected in 61 (24%), 2 antigens in 119 (48%), and 
3 antigens in 60 (24%) patients (Supplementary Table S1). 

Table 1  Patient characteristics across advanced chronic liver disease stages

p-values < 0.05 are indicated in bold
ALD alcohol-related liver disease, bactDNA bacterial DNA, CRP C-reactive protein, HR heart rate, HVPG hepatic venous pressure gradient, 
IL-6/-10 interleukin-6/-10, LBP lipopolysaccharide binding protein, M male sex, MAP mean arterial pressure, MELD Model of End Stage Liver 
Disease, NASH non-alcoholic steatohepatitis, PCT procalcitonin, TNF-α tumor necrosis factor-alpha, WBC white blood cell

Compensated ACLD
(n = 110)

Decompensated ACLD
(n = 139)

p value

Stage 0
(n = 24)

Stage 1–2
(n = 86)

Stage 3
(n = 12)

Stage 4
(n = 68)

Stage 5
(n = 59)

Definition HVPG 6–9 CSPH Bleeding Non-bleeding 
decom p-
ensation

Further decompensation

Age (years) 53 (45–65) 60 (53–69) 60 (52–67) 59 (50–66) 58 (49–65) 0.572
Sex (M, %) 19 (79) 52 (61) 10 (83) 41 (60) 41 (70) 0.209
Etiology (n, %)  < 0.001
 ALD 5 (21) 21 (24) 6 (50) 44 (64) 37(63)
 Viral 6 (25) 29 (34) 2 (17) 2 (3) 8(14)
 ALD + Viral 2 (8) 3 (4) 0 (0) 3 (4) 5(9)
 NASH 3 (13) 18 (21) 0 (0) 3 (4) 1(2)
 Cholestatic 0 (0) 5 (6) 0 (0) 4 (6) 1(0)
 Other 8 (33) 10 (11) 4 (33) 12 (18) 8 (14)

HVPG (mmHg) 7 (6–8) 15 (12–19) 17 (13–19) 20 (15–22) 20 (17–24)  < 0.001
MELD Score (points) 8 (7–11) 10 (8–12) 10 (9–12) 12 (10–14) 13 (10–16)  < 0.001
HR (bpm) 78 (73–83) 75 (67–87) 70 (63–75) 80 (69–92) 72 (66–89) 0.152
MAP (mmHg) 109 (97–117) 106 (97–113) 106 (98–118) 98 (87–109) 97 (88–104)  < 0.001
HR/MAP ratio 0.75 (0.67–0.83) 0.73 (0.60–0.89) 0.66 (0.58–0.79) 0.79 (0.70–0.91) 0.78 (0.67–0.92) 0.021
Detectable bacterial antigens 

(n, %)
0.641

 None 0 (0) 2 (2) 1 (8) 1 (2) 5(9)
 1 7 (29) 23 (27) 3 (25) 15 (22) 13(22)
 2 12 (50) 43 (50) 6 (50) 31 (46) 27(46)
 3 5 (21) 18 (21) 2 (17) 21 (31) 14 (24)

LPS (EU/mL) 0.96 (0.47–1.28) 0.68 (0.31–1.03) 0.43 (0.19–1.16) 0.70 (0.31–1.15) 0.57 (0.21–1.02) 0.347
LTA (pg/mL) 36.8 (23.7–190) 34.5 (21.0–76.8) 39.8 (30.3–114) 51.8 (26.1–109) 48.3 (23.6–113) 0.324
BactDNA (n, %) 8 (33) 38 (44) 2 (17) 30 (44) 23 (39) 0.373
WBC (G/L) 5.53 (3.87–6.83) 4.74 (3.31–6.02) 3.12 (2.39–5.13) 4.69 (3.29–5.94) 3.99 (3.17–5.46) 0.047
CRP (mg/dL) 0.14 (0.06–0.29) 0.20 (0.09–0.39) 0.15 (0.09–0.26) 0.36 (0.14–0.74) 0.37 (0.15–0.75)  < 0.001
IL-6 (pg/mL) 4.25 (2.76–8.26) 5.56 (3.43–8.74) 5.48 (3.38–7.64) 8.40 (5.26–12.6) 10.8 (6.90–22.8)  < 0.001
IL-10 (pg/mL) 13.2 (9.05–18.7) 13.3 (9.95–18.0) 14.0 (11.9–17.5) 11.6 (8.98–15.5) 11.4 (8.70–14.7) 0.152
TNF-α (pg/mL) 22.9 (14.2–34.2) 19.9 (12.9–31.5) 29.6 (6.79–32.5) 16.0 (10.7–24.7) 15.7 (8.10–25.4) 0.080
Procalcitonin (ng/mL) 0.04 (0.03–0.07) 0.07 (0.05–0.11) 0.05 (0.04–0.09) 0.10 (0.05–0.15) 0.11 (0.06–0.16)  < 0.001
LBP (µg/mL) 7.30 (5.73–9.53) 6.55 (5.38–8.40) 7.30 (5.52–9.35) 6.96 (4.66–8.32) 6.39 (4.92–8.33) 0.559
Copeptin (pmol/L) 8.90 (4.66–20.7) 5.73 (3.28–13.2) 7.24 (4.36–10.8) 9.20 (4.91–17.5) 11.1 (5.17–16.7) 0.073
Renin (µIU/mL) 17 (8.80–29.5) 11.3 (4.88–33.3) 10.0 (3.83–38.6) 55.5 (15.2–177) 115 (30.2–354)  < 0.001
Antibiotic prophylaxis (n, %) 1 (4) 0 (0) 0 (0) 2 (3) 17 (29)  < 0.001
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Detection of bactDNA was related to a significant increase 
of LPS (0.88 [0.32–1.31] vs. 0.53 [0.28–0.95] EU/mL in 
patients without bactDNA, p = 0.001) but not LTA (43.2 
[24.7–123] vs. 43.4 [22.1–99.9] pg/mL in patients without 
bactDNA, p = 0.471). Furthermore, LPS levels did not corre-
late with LTA in our cohort (p = 0.793; Supplementary Fig. 
S2). Bacterial antigen levels were also statistically similar 
when comparing patients stratified by cACLD and dACLD 
(S0-S2 vs. S3-S5; all p > 0.05; Supplementary Table S2), 
ascites grading (Supplementary Fig. S3), patients stratified 
by etiology (p > 0.05; Supplementary Fig. S4), or when 
excluding patients on prophylactic antibiotic medication 
(all p > 0.05; Supplementary Fig. S5) in further exploratory 
analyses.

The link between systemic inflammation 
and circulating bacterial antigens

Since BT is considered to induce a systemic inflamma-
tory response, we investigated the relation between bacte-
rial antigens and inflammation biomarkers. In line with a 
previous study from our center [17], systemic inflamma-
tion markers CRP, IL-6, and PCT increased across disease 
stages. Conversely, TNF-α, IL-10, and LBP levels were not 
associated with disease severity (Table 1). TNF-α levels 
correlated with LPS (rs = 0.523, 0.42–0.61, p < 0.001) and 
increased significantly in patients with detectable bactDNA 
(20.9 [13.8–32.9] vs. 15.3 [9.31–28.1] in patients without 
bactDNA, p < 0.001), however, TNF-α levels did not corre-
late with LTA (p = 0.869; Fig. 2). Furthermore, LPS exhib-
ited a weak correlation with IL-10 (rs = 0.143, 0.02–0.27, 

p = 0.024). All other inflammatory biomarkers investigated 
in the present study exhibited a largely consistent correla-
tion, however, did not exhibit a meaningful correlation to 
bacterial antigen levels. Interestingly, LBP levels showed no 
association with LPS, LTA, and bactDNA (Fig. 2; Supple-
mentary Figs. S6/S7). TNF-α correlated significantly with 
the anti-inflammatory cytokine IL-10 (rs = 0.395, 0.28–0.50, 
p < 0.001) but was not directly associated with CRP, IL-6, 
procalcitonin or LBP (all p > 0.05; Fig. 2).

Hepatic and systemic hemodynamics and their 
relation with bacterial translocation

Next, we investigated whether HVPG and HR, MAP, and 
the HR/MAP ratio were linked to bacterial antigen levels. 
HVPG increased and MAP decreased across disease stages. 
Renin levels significantly increased across disease stages and 
exhibited a pronounced increase in S4 and S5 (p < 0.001), 
while copeptin tended to increase in S4 and S5 (p = 0.073; 
Table 1). HVPG correlated significantly with HR (rs = 0.196, 
0.07–0.32, p = 0.002), MAP (rs =  − 0.146, − 0.27 to − 0.02 
p = 0.024), HR/MAP ratio (rs = 0.251, 0.13–0.37, p < 0.001), 
consolidating the link between PH severity and hyperdy-
namic circulation. From an overall perspective, BT markers 
showed no meaningful correlation with HVPG and other 
measures of systemic hemodynamics, however, copeptin 
levels were significantly higher in patients with detectable 
bactDNA and LTA showed a statistically significant but very 
weak correlation with renin levels (Fig. 3; Supplementary 
Fig. S8).
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Prediction of disease progression and infections 
by bacterial translocation markers

Based on the pathophysiological concept that BT promotes 
disease progression in ACLD, we assessed whether bacte-
rial antigens were predictive for the composite endpoint of 
first/further decompensation or liver-related death. Fur-
thermore, it was investigated whether bacterial antigens 
indicated the development of infections. The median fol-
low-up period was 14.7 (8.20–26.5) months. Seven (3%) 
patients were lost to follow-up and not considered for the 
analysis. During the follow-up period, first/further decom-
pensation events or liver-related deaths at 24 months were 
recorded in 66 (27%) patients of our study cohort. Fur-
thermore, incidence of infection was recorded in 36 (15%) 
patients at 24 months: n = 9 patients developed respira-
tory infections, n = 7 SBP, n = 7 sepsis, n = 5 urinary tract 
infections, n = 2 gastrointestinal infections, n = 2 other 
causes (n = 1 secondary peritonitis; n = 1 bacterial vagi-
nosis), and n = 4 had an unknown focus.

Kaplan–Meier curves were drawn in patients stratified 
by presence of bactDNA as well as median LPS and LTA 
levels, respectively. However, log-rank tests indicated no 
difference in decompensation or liver-related death (LPS: 
p = 0.520; LTA: p = 0.106; bactDNA: p = 0.273) and infec-
tions (LPS: p = 0.771; LTA: p = 0.428; bactDNA: p = 0.883; 
Supplementary Fig. S9).

Finally, bacterial antigens and other variables indicating 
disease severity or systemic inflammation were entered into 
a Cox proportional hazard model to determine predictors of 
decompensation or liver-related mortality. Bacterial antigens 
were, again, not predictive for this endpoint. In contrast, 
HVPG (aHR 1.08, 95%CI 1.03–1.12, p < 0.001), MAP (HR 
0.97, 95%CI 0.96–0.99, p = 0.001), and IL-6 (HR 1.03, 

95%CI 1.01–1.04, p < 0.001) exhibited independent prog-
nostic value for this endpoint (Table 2).

T‑cell profile in the intestinal mucosa of patients 
with ACLD

To investigate whether the observation that bacterial anti-
gens exhibited a significant difference between liver-healthy 
individuals and in patients with ACLD aligned with changes 
in the composition of immune cells in the intestinal mucosa, 
we assessed T-cell subsets in duodenum biopsies of patients 
with ACLD and liver-healthy controls (Fig. 4A–C; Sup-
plementary Fig. S10). While no change in the distribution 
of αβT- and γδT-cells was observed between patients and 
controls (Fig. 4D), patients with cirrhosis showed a sig-
nificant decrease in the CD4:CD8 T-cell ratio (Fig. 4E) 
reflecting a higher number of CD8 + T-cells in the intestinal 
mucosa as compared to controls. Furthermore, we observed 
an increase in  TH1-cells and a non-significant increase in 
 TH2-cells. Memory T-cell subsets (CD4 and CD8) remained 
unchanged, although there is a tendency towards a decrease 
in the CD4 + central memory T-cell pool (Fig. 4F). No 
changes were seen in regulatory T-cells (Treg) and  TH17 
cells (Fig. 4G).

Discussion

The present study investigated the link between bacterial 
antigens in the systemic circulation and disease severity, 
portal hypertension, hemodynamic dysfunction, and sys-
temic inflammation in a well-characterized cohort of 249 
patients with different clinical stages of compensated and 
decompensated ACLD undergoing HVPG measurement. 

Table 2  Cox proportional 
hazard regression model 
assessing predictors of first/
further decompensation or liver-
related death

p-values < 0.05 are indicated in bold
bactDNA bacterial DNA, HVPG hepatic venous pressure gradient, IL-6/-10 interleukin-6/-10, MAP mean 
arterial pressure, MELD Model of End Stage Liver Disease, TNF-α tumor necrosis factor-alpha

Overall cohort
(n = 249)

First/further decompensation or liver-related mortality during follow-up

Univariate analysis Multivariate analysis

Patient characteristics HR 95%CI p value HR 95%CI p value

Age (per year) 1.00 0.98–1.02 0.876
MELD (per point) 1.10 1.04–1.17  < 0.001 1.05 0.97–1.13 0.235
HVPG (per mmHg) 1.09 1.05–1.14  < 0.001 1.08 1.03–1.12  < 0.001
MAP (per mmHg) 0.97 0.95–0.98  < 0.001 0.97 0.96–0.99 0.001
IL-6 (per pg/mL) 1.02 1.01–1.02 0.002 1.03 1.01–1.04  < 0.001
LPS (per EU/mL) 0.75 0.47–1.18 0.212
LTA (per 10 pg/mL) 1.01 0.99–1.02 0.138
BactDNA + (≥ 5 pg /mL) 1.31 0.81–2.14 0.275
TNF-α (per pg/mL) 0.99 0.97–1.01 0.259
IL-10 (per pg/mL) 0.99 0.94–1.04 0.625
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Notably, patients with acute hepatic decompensation or bac-
terial infections were excluded to determine the significance 
of circulating bacterial antigens in patients with a rather sta-
ble steady state of ACLD. The underlying hypothesis for the 
present study is based on the significance attributed to BT 
in ACLD, as it is considered to occur due to impairment of 
multiple intestinal defense mechanisms, thus, enabling the 
crossing of pathogens and PAMPs across the intestinal bar-
rier into the portal venous system [1, 18]. Consequently, BT 
may promote systemic inflammation, portal hypertension, 
circulatory dysfunction, and thus, directly impact on disease 
progression [2, 3].

We found that bacterial antigens in the systemic 
circulation were markedly higher in patients with ACLD, 
as compared to a sex-/age-matched control group, which 
confirms the concept that BT is an important feature of 
ACLD. LPS levels in patients with ACLD were higher in 
the presence of bactDNA, indicating that certain PAMPs 
tend to occur simultaneously in the systemic circulation. 
The concurrent presence of different bacterial antigens 
was also reported by Gómez-Hurtado et al. in patients with 

non-alcoholic fatty liver disease (NAFLD), particularly 
in patients with advanced fibrosis [12]. The absence of a 
correlation between LTA (primarily a component of gram-
positive bacteria) and LPS as well as bactDNA may also 
reflect the relatively more abundant colonization of gram-
negative as compared to gram-positive bacteria in cirrhosis 
[19]. Interestingly, our study found that the concentrations 
or presence of bacterial antigens were statistically similar 
between patients with cACLD and dACLD (and the 
respective subgroups), suggesting that BT may already 
occur in early (compensated) stages of ACLD and exhibits 
no apparent dynamics across the spectrum of (d)ACLD. At 
the first glance, these results seem in conflict with the widely 
propagated concept that BT primarily occurs in dACLD 
[2], as suggested by animal studies that demonstrated the 
occurrence of BT in cirrhotic rats with ascites [8, 9, 20], but 
also earlier studies in humans that suggested an elevation 
of LPS levels in patients with ascites [21–23]. Of note, 
these and other previous studies had a considerably smaller 
sample size [21–23], and in the study by Albillos et al., the 
reported increase of LPS was only restricted to a subgroup of 

Fig. 4  T-cell subsets in the intestinal mucosa from patients with cir-
rhosis. Legend and statistical analysis: A-C Representative FACS 
plots of the distribution of αβT and γδT cells (A), CD4 and CD8 
T cells (B) and TH1/2 cells (C). D Quantification of αβT and γδT 
cells, 2-way ANOVA with multiple comparison, Sidak-adjusted. E 

CD4:CD8 ratio in patients vs. control, unpaired t test (F). Quantifi-
cation of memory CD4 and CD8 T cells, 2-way ANOVA with mul-
tiple comparison, Sidak-adjusted. G Quantification of helper T cell 
subsets, 2-way ANOVA with multiple comparison, Sidak-adjusted. 
Patients n = 7, liver-healthy controls n = 4
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patients with ascites [22]. In our study, patients stratified by 
the presence or severity of ascites displayed similar bacterial 
antigen levels. Concordantly, a study by Genesca et al. also 
reported no association between LPS levels and presence 
of ascites or disease severity in patients with ACLD [24]. 
Similar to aforementioned studies, our study is limited by 
not reporting bacterial antigen levels from portal venous 
blood, thus, not being able to quantify hepatic clearance 
of PAMPs originating from BT in the intestines — which 
might be quite functional even in the setting of chronic 
liver disease [25]. Furthermore, we acknowledge that some 
subgroups of clinical disease stages had relatively small 
sample sizes, which may relate to limitations towards the 
robustness of the results in certain disease stages (e.g. in S3). 
Nevertheless, exploratory analyses on the comparison of 
cACLD and dACLD patients, and after exclusion of patients 
on prophylactic/poorly absorbable antibiotics, displayed the 
same results. Therefore, our results indicate that the concept 
of BT being an exclusive feature of dACLD (or patients with 
ascites) should be revisited.

Moreover, we investigated whether bacterial antigens 
were associated with systemic inflammation levels in patients 
with ACLD. BT is considered a major factor contributing 
to systemic inflammation [2], which commonly increases 
in patients with dACLD and holds an important prognostic 
value in patients with both stable and acutely decompensated 
ACLD [17, 26, 27]. The detrimental pathophysiological role 
of BT on the induction of hepatic and systemic inflammatory 
processes in the setting of liver cirrhosis has been 
documented by numerous experimental studies in animals 
[28–31]. LPS and the presence of bactDNA correlated 
significantly with the inflammatory cytokine TNF-α, which 
is in line with a previous study focusing on patients with 
ascites [32], and displayed a weak correlation with IL-10. 
Surprisingly, no meaningful correlation between bacterial 
antigens and other inflammation markers (e.g., CRP, IL-6, 
…) were observed in our study. The results suggest a 
selective systemic inflammatory response in the presence 
of PAMPs, but also indicate that commonly used systemic 
inflammation parameters such as CRP or IL-6, that have 
been linked to disease severity/progression and prognosis in 
multiple previous studies [17, 27, 33–35], do not necessarily 
reflect the—at least momentary—presence of BT antigens 
in patients with (rather stable) ACLD.

Two contributing factors help explain this. First, CRP 
and IL-6 are acute-phase proteins that are secreted by 
the liver in response to hepatic damage, independently 
of other inflammatory triggers such as bacterial antigens 
(therefore independent of them). In second place, BT 
episodes have been described as recurrent events during 
advanced chronic liver disease. A sequential study following 
cirrhotic patients every eight hours for three days revealed 
a highly dynamic clearance of bacterial DNA in blood [16] 

and suggested that transversal studies may be biased by 
the highly flexible rate and time interval of BT episodes. 
Furthermore, a compensatory tolerogenic response is also 
mounted to balance bacterial antigen-driven inflammation 
[36]. Nevertheless, we acknowledge that that our study may 
not capture certain confounding factors promoting BT or 
influencing the presence of bacterial antigens in the systemic 
circulation (including the use of non-/poorly absorbable 
antibiotics).

On the background that BT may promote portal 
hypertension and circulatory dysfunction in ACLD [3], 
our study addressed whether bacterial antigens were linked 
to hepatic and systemic hemodynamics. Experimental 
studies have demonstrated that BT is directly linked to the 
development of sinusoidal endothelial dysfunction and 
portal hypertension [37, 38], and also studies in humans 
have linked the detection of bacterial antigens or LBP to 
portal hypertension and systemic hemodynamic dysfunction 
[22, 39, 40]. Conversely, no clinically meaningful link 
between bacterial antigens and HVPG, MAP, HR/MAP 
ratio, or soluble markers of circulatory dysfunction were 
observed in our study. Considering the comparatively large 
sample size of the present study cohort, one may speculate 
that bacterial antigens are simply not well-suited to represent 
these measures in a relatively stable patient population. 
Concordantly, bacterial antigens were also not indicative of 
disease progression, in contrast to well-established measures 
such as HVPG, IL-6, or MAP. Furthermore, bacterial 
antigens did not predict the development of infections. In 
this context, a plausible hypothesis would establish that 
in patients with stable ACLD, BT challenges are better 
controlled, and antigen clearance mechanisms start a 
moderate systemic inflammatory response that in early stages 
do not correlate with the loss of hepatic function. During 
decompensation, the recurrent systemic inflammatory 
response further increases due to a significantly altered gut 
permeability, correlating with a deranged hepatic immune 
clearance and the general failure of liver functional activity 
[36].

Finally, we characterized T-cells in small intestinal 
biopsies of patients with ACLD and liver-healthy controls 
and found a relative abundance of CD8 T-cells (in relation 
to CD4 T-cells) and increased  TH1 cells. Considering 
previous reports on changes in gut barrier integrity in the 
small intestine of patients with cirrhosis [41] and the link 
between TNF-α and the stimulation of T-cells [42], our 
results provide novel translational evidence on changes of 
the immune cell profile in the intestinal mucosa that may 
be related to BT. Therefore, further translational studies are 
needed to better understand immunological changes in the 
gut-liver axis and their link to the microbiota composition 
and BT in ACLD.
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In summary, our study demonstrates that BT may already 
occur in compensated ACLD, and seems to trigger a selec-
tive inflammatory response, independent of hepatic damage 
progression. In fact, BT markers were not linked to disease 
stages and not suited to indicate portal hypertension, sys-
temic inflammation, or circulatory dysfunction. Future stud-
ies need to investigate the longitudinal presence and dynam-
ics of BT in patients with ACLD.
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