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Abstract: Due to the infeasibility of large-scale electrical energy storage, electricity is generated and
consumed simultaneously. Therefore, electricity entities need consumption forecasting systems to
plan operations and manage supplies. In addition, accurate predictions allow renewable energies on
electrical grids to be managed, thereby reducing greenhouse gas emissions. Temperature affects elec-
tricity consumption through air conditioning and heating equipment, although it is the consumer’s
behavior that determines specifically to what extent. This work proposes an automatic method of
processing and selecting variables, with a two-fold objective: improving both the accuracy and the
interpretability of the overall forecasting system. The procedure has been tested by the predictive sys-
tem of the Spanish electricity operator (Red Eléctrica de España) with regard to peninsular demand.
During the test period, the forecasting error was consistently reduced for the forecasting horizon,
with an improvement of 0.16% in MAPE and 59.71 MWh in RMSE. The new way of working with
temperatures is interpretable, since they separate the effect of temperature according to location and
time. It has been observed that heat has a greater influence than the cold. In addition, on hot days,
the temperature of the second previous day has a greater influence than the previous one, while the
opposite occurs on cold days.

Keywords: accuracy; interpretability; short-term load forecasting; temperature analysis; temperature
processing

1. Introduction

On a national scale, it is not feasible to store energy on electrical grids before transmit-
ting it to consumers. Therefore, electrical operators maintain a real-time balance between
produced and consumed energy. To maintain this balance, it is necessary to forecast the
future electric load. Forecasting is necessary in the very short-term for the control of gen-
erators, and in the short and medium term for resource supply and operations planning.
In addition, long-term forecasting is required for the construction and maintenance of
facilities. This paper focuses on short-term load forecasting (STLF), ranging from hours
to several days in advance, being necessary for energy and the economic management in
electrical companies, such as marketers, demand aggregators, generators, etc.

Predicting demand accurately is crucial to reliably operating power generation, trans-
mission and distribution. Making decisions based on inaccurate predictions can lead to
additional costs, breakdowns and even blackouts. Furthermore, accurate forecasts allow
better management of renewable energies, so load forecasting can help reduce greenhouse
gas emissions indirectly.

The electrical load depends on many variables, such as time of the day, temperature,
day of the week or industrial activity, and it even has a random component, so there is
always some error. In addition, these variables show interaction among them. For example,
temperature has a greater effect during the afternoon than during early morning, since air
conditioning units are generally less used while people sleep. This paper deals specifically
with temperature variables and how they can be automatically selected and processed to
properly capture their effect on load and, therefore, forecast electrical load more accurately.
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1.1. Literature Review

Over the last decades, many works have been published developing predictive models,
and so a wide variety of models have been built. Some of them are based on statistical
models, such as ARIMA and the Hidden Markov Model [1], the autoregressive [2,3], ex-
ponential smoothing grey model [4], the exponential smoothing model [5], or a single
ARIMA [6]. Other models are based on machine learning, such as the radial basis function
neural network [7], fuzzy interaction regression [8] or convolutional neural network with
long short-term memory [9]. There are also hybrid forecasting systems that combine artifi-
cial intelligence with statistical techniques like ARIMA and support vector machine [10],
state-space models combined with a neural network [11] or multivariable regression with a
long short-term memory network [12].

In recent years, machine learning techniques have received more attention than sta-
tisticals. For example, ref. [13] designs a deep-learning model to forecast wind speed and,
consequently, electric energy generation; a long short-term memory neural network and
a convolutional neural network are combined as a core of the forecasting system. A long
short-term memory model is used with a hyperparameter adjustment in [14]. Another
work [15] employs a neural network to forecast the load of individual families. Convolu-
tional neural networks can extract non-linear features to feed support vector machines as
forecasting systems [16]. An artificial neural network is integrated with an evolutionary
algorithm to avoid local optima and obtain convergence [17].

The number of forecasting hybrid techniques has also increased recently. As an
example, a fuzzy c-means clustering is employed in [18] using a random forest model
and a deep neural network. In [19], an exponential smoothing state-space model and an
artificial neural network are combined. The system from [20] combines a SARIMAX with a
long-short term memory network to obtain a better forecasting performance.

During the last years, smart grids received more attention due to increased access
to data through smart meters. For example, ref. [21] employed a multivariable linear
regression to forecast trend and a long short-term memory neural network to model
nonlinear behavior of an electric load. In [22], k-means clustering is employed to divide data
into sets, they are divided into training and test sets, and a convolutional neural network is
finally trained and employed to forecast the load. Another example is [23], which evaluates
different machine-learning models for smart grids. In [24], a list of methods for low voltage
forecasting are also compared, which mainly consist of kernel density estimation, simple
seasonal linear regression, and autoregressive and exponential smoothing.

When it comes to predicting demand, selecting and processing exogenous variables
may be more important than the mathematical model used. Other previous works have
focused on processing temperature data to accurately forecast load. An example to this
is the regressive algorithm of [25], which uses the climate data from five previous days
in a model. It is updated with similar previous days employing the shortest Euclidean
distance. Fuzzification has also been applied to the temperature before using it in a multi-
layered LSTM [26]. This allows the model to adapt to temperature changes and improve
its performance. The heat island effect has been taken into account by means of satellite
images to correct the temperature before using it in an Elman Neural Network [27], also
using the temperature of previous days; however, real predictive systems do not usually
have satellite data. A predictive system was developed in Nepal [28] with a feed-forward
neural network that uses temperature, working days, holidays, time of the day, month,
and previous data. Previously, they analyzed the demand/temperature sensitivity and
obtained different values for the cold and hot degree days, then the difference between
room heating and cooling systems is obtained.

Mentioned works [25–28] offer a treatment of climatic variables in order to improve
accuracy, but leave interpretability on the background or do not mention it. In contrast,
other research has focused on the analysis of the relationship between temperature and de-
mand, such as the use of a linear regression model to extract the correlation in Vietnam [29],
where it was observed how the relationship varies throughout the year. In Beijing [30], the
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relationship was analyzed with linear regression using two demand/temperature lines.
One of them is used above a temperature threshold value while the other one is used
below. This provides two demand-temperature equations depending on whether it is
cold or hot. For this, a threshold temperature is established to separate both behaviors;
however, the possibility of an intermediate range of temperatures is not contemplated. In
the United Kingdom, the effect that cold temperatures have on demand due to the use of
heat pumps was studied [31]. This allowed the calculations of demand forecasts for heat
pumps according to temperature.

In Spain, a predictive system that uses differentiated temperature and the effects
of daylight at each hour of the day was developed in [32]. The model, called “smooth
transition regression model with double threshold”, allows for the distinguishing of the
demand/temperature sensitivity for periods of economic activity and rest. Therefore, the
predictive model also allows analytical conclusions to be drawn, this being its focus. In this
paper we work with an interpretable approach to use temperature by linearizing it with
three demand-temperature lines. On the contrary, in [32], temperature was preprocessed by
means of a third degree polynomial function against logarithmic demand. In addition, our
system works with a model for each hour of execution and forecast, which also considers
the cycles of economic activity; this data together with the month implicitly considers
daylight; there are also 54 variables that define type of day, reinforcing the information
about economic activity as well as allowing the types of day to be distinguished.

In the literature there are also works about the automation of STLF. In 1997, a predic-
tive regressive system was programmed for the Irish Electricity Supply Board [33]. The
forecasting calculation and the periodic updating of the model are automated, and the STLF
system uses backward elimination to discard temperature variables that are not useful
and an algorithm to rule out outliers. More presently, an automatic predictive system that
updates and uses a specific model, such as the Stochastic Hour Ahead Proportion Analy-
sis Trained by Multivariable Regression, is presented in [34], which includes a graphical
user interface.

Currently, automation can go a step further through open-source libraries that auto-
mate the process of generating predictive models, which allows building prediction systems
without a need for experts. For example, Auto-Sklearn and Python’s TPOT generate ma-
chine learning models. They were used to build models that predicted the consumption
levels of appliances in a household and of an industrial office building [35].

There is also the possibility of working at an intermediate point of automation using a
library of already defined models. This was the case of the creation of an automatic model
selection system using a semi-Markov process and a modified hidden Markov chain [36].

1.2. Paper Contributions

According to [37], there is already a large number of STLF models, each one being the
best according to the circumstances. Therefore, a new model is not offered in this paper.
Instead, a model-independent temperature data preprocessing technique is developed. In
the same way, the model used is also not dependent on the temperature preprocessing.
All this allows the proposed technique to by applied to any other forecasting engine using
temperature information

By applying this processing technique, this paper seeks to improve the STLF system
implemented in the Spanish Transmission System Operator, Red Eléctrica de España
(REE) (Municipality of Alcobendas, Spain) and developed by the Miguel Hernández
University [38]. The system has been operating for more than five years, and during this
time REE and the university have been working on improvements [39,40]. The forecasting
system is considered as an adequate benchmark for load forecasting in Spain due to its
continuous use and enhancement by the Spanish Transmission System Operator (TSO).

To predict the demand of the Spanish peninsula, the previous REE system had temper-
ature data available from 28 meteorological stations, of which five were used. Stations were
chosen by expert advice, following subjective criteria of demography and climatological
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regions of Spain. This implies that the previous system was not built in an automatic and
repeatable way, nor did it have an interpretable way of processing temperatures. As a con-
sequence, many coefficients of the autoregressive models had opposite signs to what was
expected, compensating for other effects. In addition, there were 30 variables to represent
the temperatures of the forecast day and the two previous ones, which, as shown in this
paper, is an unnecessary amount.

Three improvements are offered regarding temperature management:

• Final prediction accuracy.
• Variable selection automation.
• Interpretability of variables.

The new approach consists of working with the following new temperature variables:

• Average temperature from chosen stations.
• Temperature averages from previous days.
• Individual temperatures from chosen stations.
• Individual temperatures from previous days.

The new predictive system starts from the same database, however it is capable of
automatically determining how many stations to use, which ones to use, and how many
previous days should be considered.

This new way of constructing the temperature variables has replaced the one previ-
ously used by the predictive system. To test it, it has been trained with the years from 2012
to 2018, after which 2019 was predicted. An execution of the predictive system has been
simulated with the same data availability as under normal conditions. In the simulation,
the current day and the following nine days were predicted, executing the system in each
of the 24 h of the day. Different ways of processing temperatures have been tested, and the
best one obtained higher and more consistent accuracy than the old system.

The new way of working with temperatures is more interpretable since it separates the
effects of temperature, according to location and time. Based on the zones, lags and training
coefficients, the regions that affect demand can be deduced along with their temperature,
how many previous days of temperature affect demand, and by how much.

The new predictive system is also intended to be the test subject for future studies of
the temperature-demand relationship.

This paper is organized as follows: Section 2 explains the prediction system used to
test the processing of temperature data, Section 3 exposes an updated version of the tested
system, Section 4 explains the rest of preprocessing methods tested, Section 5 presents
the execution of the simulations to test the preprocessing methods, Section 6 shows the
simulation results, and Section 7 presents the conclusions. Section Nomenclature shows
variable meanings.

2. Previous Forecasting System

This section explains important aspects to bear in mind from the previous REE system.
Design details are shown in the previous work [38].

2.1. Data Employed

Temperature data is taken from the State Meteorological Agency, which consists of
measurements and forecasts up to nine days in advance of daily temperatures.

The previous predictive system and the proposed modifications use the same variables
except for temperature: holiday information and historical electrical load of the Spanish
national network. Holiday information was acquired from the official state gazette (BOE),
whilst historical load was provided by REE.

Data are classified into three sets according to purpose: training, validation and testing.
Training data are used to calculate internal coefficients of predictive models. Some input
data are not applied directly to models, but they are pre-processed using coefficients called
hyperparameters. Validation data is used to test and correct these hyperparameters after
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training models. Test data are used to test trained models. The test data set must be
independent and not have any matches with other datasets to ensure generalizability.

2.2. Forecasting Models

The REE forecasting system [38] uses two different model types: an exogenous autore-
gressive model and a group of exogenous autoregressive networks. Both models employ
identical inputs to forecast the peninsular load. They use the following inputs in the
same way:

• Temperature predictions for current and the next nine days.
• Peninsular load from the previous hour to calculate the forecast.
• Average load of 52 previous weeks.
• Calendar information, which distinguishes different national and regional holidays

including Christmas, weekdays, previous and following days after the time change,
month of the year and August week.

The output is the forecasted load for an hour of one of the following nine days or the
current one. To obtain multiple forecasted hours, multiple models are then trained with
their available inputs and expected output.

Both types of models are employed to calculate forecasts. Their individual results are
then combined into a weighted average to obtain final predictions for the operator, so two
coefficients from zero to one are applied to each forecast. Both coefficients are calculated to
minimize the Mean Absolute Percentage Error (MAPE) of the last 30 days. The forecast
horizon spans from the current day up to the next ninth day.

Each neural model is made up of ten feed-forward neural networks with feedback.
Every neural network generates its own forecast. The highest and lowest values are then
discarded and, finally, the average is calculated to obtain the final neural prediction.

Equation (1) represents the autoregressive model.

ln(yt) =
d

∑
i=1

ct−i βi +
n

∑
k=1

Xk t Ψk + εt (1)

where y is the time series of forecast load for an hour of the day, t is the day whose demand
is forecast, c is the time series of errors made by the model itself (difference between real
value and prediction), β is the series of coefficients associated with the errors, d is the
number of previous days that are taken into account, X is the exogenous input vector to
predict a day t composed of a number k of variables, Ψ are their respective coefficients and
ε is a Gaussian random variation with zero mean.

To operate with the natural logarithm instead of the directly forecast load, it is ex-
pressed according to (2).

yt = eεt e∑d
i=1 ct−i βi ∏n

k=1 eXk t Ψk (2)

In (2) the entire expression is made up of a series of multiplications of e raised to two
multiplied elements, so the effect of an exogenous variable can be isolated according to (3).
Therefore, each input variable can be interpreted as a load variation proportional to the
Euler number (e) raised to the variable by its coefficient.

yt = y′t eA Ψa (3)

Being A any exogenous variable desired to analyze, Ψa its respective coefficient and
yt
′ the demand without taking said variable into account. That is, variable yt

′ is calculated
as shown in (1) or (2) discarding the variable A and its respective coefficient Ψa.

The autoregressive model predicts the natural logarithm of the demand in (1) for
interpretability reasons. In this way, the demand can be expressed as a series of multipli-
cations in (2) and isolate the influence of the variable to be analyzed in (3), that is, as a
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multiplication factor for the demand. For example, given a variable A and its respective
coefficient Ψa, if the result of eA Ψa is 1.05, the variable A increases demand by 5%.

2.3. Use of Temperature

For measurements and forecasts, there exist daily maximum and minimum values.
The daily temperature is then represented by the mean of both values.

The old predictive system does not use this average temperature directly, but pre-
processes it with a linearization. To do this, two thresholds are first calculated, and they
separate temperature into three intervals: cold, hot and warm. Equations (4) and (5) are
then applied, resulting in two new variables that indicate the degree of cold and heat.

CDz =

{
0, Tz ≥ Thcz
Thcz − Tz, Tz < Thcz

(4)

HDz =

{
0, Tz ≤ Thhz
Tz − Thhz, Tz > Thhz

(5)

where CD is the cold degree, T is the temperature, Thcz is the cold threshold for zone z, HD
is the heat degree and Thhz is the heat threshold for zone z. There is then only a pair of
thresholds for each zone.

These two thresholds are the hyperparameters used to process temperature. All
variables have subscript z because they are specific for each zone.

To calculate thresholds Thcz and Thhz for each weather station, the method from the
same paper where the forecasting system is explained [38] has been used. The method
consists of creating a demand-temperature curve divided into three straight lines (cold,
warm and hot), so that the three lines are delimited by the thresholds. Thresholds and line
coefficients are then calculated by minimizing the Root Mean Square Error (RMSE) of the
triple curve with respect to the real demand. After applying minimization, the thresholds
obtained are the results.

The heat degree and cold degree of each region are used as inputs to the prediction
system, the selected regions being Zaragoza, Madrid, Biscay, Seville, and Barcelona. In
addition, these variables are also used for the temperature data of the previous day and the
previous one. There are then a total of 30 variables: five regions for two degree variables
for 3 days.

3. Updated Forecasting System

As an alternative benchmark, a modified version of the old REE system has been
tested which is called the Updated Forecasting System. It still works with variables CD and
HD from (4) and (5), but the difference lies in using a pair of thresholds Thcz and Thhz for
each hour of each zone z. This method then forecasts load in a similar way to the original
system, following the next steps:

Step 1, calculate Thcz and Thhz for each hour of each zone, with historical data.
Step 2, calculate CD and HD with temperatures from the training dataset.
Step 3, train models with CD, HD and the rest of inputs, which are not tempera-

ture data.
Step 4, calculate CD and HD with temperatures from the test dataset.
Step 5, forecast with CD, HD and the rest of inputs, which are not temperature data.
Although temperatures are daily values, a pair of thresholds is used for each hour of

the day. Pairs of thresholds are updated with data from 2011 to 2018; no special days or
holidays are considered to minimize the effect of other factors on load. For each hour of the
day, a couple of thresholds have been obtained using the demand for that same hour.

When discarding days of the data, they become discontinuous, but this is not an
inconvenience, since the procedure to obtain thresholds does not use the autoregressive
model, as explained in the previous section.
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4. Alternative Processing Methods

This section explains the different alternative methods of temperature processing. All
procedures use variables presented from (6) to (14).

TMt =
1

nz

nz

∑
z=1

Tz t (6)

HNt =

{
0, TMt ≤ Thhn
TMt − Thhn, TMt > Thhn

(7)

CNt =

{
0, TMt ≥ Thhn
Thhn − TMt, TMt < Thhn

(8)

where TM is the time series for the mean national temperature, t is the forecasted day,
and Tz is the time series for temperature from zone z. As an example, T2 3 represents the
temperature during the third day in the second zone. The number of zones is nz, CN is the
cold degree time series for the national mean, Thcn is the cold national threshold, HN is the
heat degree time series for the national mean, and Thhn is the heat national threshold. As in
the updated version, there are a few different thresholds depending on the time of the day.

PCnl t = CNt−nl − CNt (9)

PHnl t = HNt−nl − HNt (10)

where PCl is the previous cold degree time series for nl previous days and PHl is the
previous heat degree time series.

ICz t = CDz t − CNt (11)

IHz t = HDz t − HNt (12)

where ICz is the individual cold degree difference of zone z and IHz is the individual heat
degree difference of zone z. For example, IC2 3 represents the cold degree difference during
the third day in the second zone.

PICz zl t = CDz t−zl − CNt−zl (13)

PIHz zl t = HDz t−zl − HNt−zl (14)

4.1. Combinatorial Brute Force

This method looks for the best zone and lag combination so that all possible combina-
tions are tested.

4.1.1. Steps

Step 1, individual thresholds. Individual thresholds (Thcz and Thhz) are obtained for
all available zones.

Step 2, number and zone selection. All possible choices that include five zones are
tried. For each combination of zones, the R squared for a linear model is calculated between
temperature matrix and peninsular demand, this matrix is made up of time series CDz and
HDz. Next, the combination of zones with the highest R squared is chosen. The whole
process is repeated for one, two, three and four zones, so that five zone lists are obtained.
This step is summarized in Figure 1.
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Step 3, peninsular thresholds. For each zone list, Thcn and Thhn are calculated.
Step 4, peninsular and individual lags. For each list, all possible combinations of

individual lags zl for each zone and national nl are tested, which can be 0, 1 or 2. During each
iteration, an autoregressive model is trained with all the exogenous variables simulating
real training (for the fourth day before, executing at 10:00 a.m. and predicting at 6:00 p.m.).
The combination with the lowest MAPE in the validation period is chosen as the result.
This step is summarized in Figure 2.
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4.1.2. Datasets

For steps 1, 2 and 3, only days that are not holidays or special weekdays are considered,
in order to minimize the effect of other factors on demand. Data from 2011 to 2018 have
been used.

For step 4, every day from 2011 to 2017 has been used as a training period and data
from 2018 have been taken as the validation to calculate error and compare combinations.

4.2. Sequential Brute Force

This algorithm follows the same steps as the combinational one, but it searches for the
best thermal zones one by one instead of all possible combinations. To do this, step 2 is
changed to the following:

For each zone, the matrix composed with time series CDz and HDz is created, obtaining
a matrix composed by two time-series. Then, R squared is calculated with respect to load,
employing a linear model and the matrix itself; this process is repeated for all the rest of the
zones. The first registered zone is the one with the highest squared. After that, the second
zone is searched. Then, the R squared is calculated by concatenating the matrix of the first
registered zone with each matrix of the other zones. The second registered zone will be the
one that offers the best correlation between the load and the concatenated matrices. This
loop is repeated up to five times, adding the registered zones one by one to the previous
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matrices, thus obtaining a list of the five best zones. Since zones were added in correlation
order, the list can be shortened to use less zones by removing the last elements. This step is
summarized in Figure 3.
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4.3. Combinatorial Completeness

This technique follows the same steps and datasets as the Combinatorial Brute Force,
but it uses all possible variables to take advantage of all the information. To do this, step 2
only obtains the list of five zones, and step 4 automatically chooses two previous individual
days, zl and nl, since it is the maximum possible value.

4.4. Sequential Completeness

This method is also analog to the Sequential Brute Force, with the difference that this
method takes advantage of all the information. Therefore, it results as follows:

Step 1, individual thresholds. Individual thresholds (Thcz and Thhz) are obtained for
all available zones.

Step 2, number and zone selection. For each zone, the matrix composed of time series
CDz and HDz is created. Then, R squared is calculated with respect to load with a linear
model. This process is then repeated for the rest of the zones and, finally, the one that
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achieves the highest R squared is selected and the first zone is registered. Subsequently,
the second zone is searched. The R squared is calculated by concatenating the matrix of
the first zone with each one of the others. The second registered zone will be the one that
offers the best combination. This process is repeated up to five times, adding the registered
zones one by one, thus obtaining a list of the best five zones. This step is also summarized
in Figure 3, since it is identical to Sequential Brute Force, but it is explained again to show a
general view.

Step 3, peninsular thresholds. Thcn and Thhn are calculated for the list of zones obtained.
Step 4, peninsular and individual lags. Two previous individual days, zl and peninsu-

lar nl, are chosen since it is the maximum value.

5. Forecasting Simulation

The REE models have been trained and used to forecast 2019 in a simulation with
each preprocessing option. The only difference between models is the input temperature
variables set, which has been explained in previous sections.

5.1. Training

All models have been trained with data from 2012 to 2018. Seven years of training
have been used to ensure that all possible special days are included, offering better accuracy
in the process [39].

When training the models, there are two options regarding temperature data. One
option is to use only real measurements. The second option uses forecasted values along
with measurements, respecting the data availability of real time.

An example of the second option is the case of a model that forecasts the current day
and uses the real temperature from the previous day. It would use the temperature forecast
as data for the current day and real measurements from the previous day.

If the first training option is used, some weight will be assigned to the temperature
variables to deal with precise temperature data. If the second option is used, the tempera-
ture data will be based on forecasts, so there will be some error. Consequently, they will
have less correlation with the real demand and lower weights will be assigned to them. If a
predictive model is trained with measurements only, although it will actually work with pre-
dictions, the error induced in the temperature forecasts will affect the accuracy of the load
forecast. Therefore, training is executed with the second option for this work. In addition,
coefficients of autoregressive models will reflect the temperature-demand correlation.

5.2. Forecasting

The tests of this work have been carried out with Matlab R2020a with Windows
10 Home as operating system on a computer with an Intel Core i7-8700 as CPU and
16 GB RAM.

The year 2019 has been used as the test dataset, so it has been predicted to calculate
the errors of all systems. To calculate forecasts, a predictive system execution has been
simulated throughout the year, so the current and the following nine days have been
forecasted during every hour of the year. Therefore, the 24 hours of the day have been
predicted for the whole year every hour since nine days before the forecasted day.

Data availability has been considered. Therefore, during the simulation, data that
would be available at each moment has been used. For example, to forecast an hour of the
following day, temperature measurements are not used. Instead, temperature forecasts
from one day in advance are used. The data employed on this work have been provided by
REE and the Spanish State Meteorology Agency (AEMET).

Figure 4 is a summary of the process carried out in this paper to obtain forecasts
and analyses.
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6. Results

Regardless of temperature processing, a predictive system is made up of autoregressive
and neural models, so final forecasts are obtained from the combination of both results.
The performance of results (combinatorial) is analyzed to evaluate the usefulness of the
system from the point of view of an electrical operator. On the other hand, the performance
of the autoregressive approach is analyzed to validate it as an analytical model to study the
temperature-demand relationship in the future.

MAPE is used as an accuracy indicator since it represents the average of relative error
and it is easy to interpret from an analytical perspective. RMSE is also used as a global
accuracy indicator, because it employs the quadratic error and it reports higher error in
case of higher variability; therefore, it represents more precisely the real costs suffered by
the operator.

6.1. Autoregressive Model Accuracy

Figure 5 shows the MAPE for all of the hours of the year from every autoregressive
system; in other words, from the autoregressive models with each preprocessing method,
including the original standard system, which is named as Previous. Each MAPE value is
displayed according to how long in advance the load has been predicted, from one hour
to nine days before. The abscissa axis represents the order of execution in chronological
order, so that the first execution is the one carried out at 12:00 a.m. on the previous ninth
day. Temperature data arrive at 9:00 a.m. each day, and these moments are reflected in the
graph with vertical dotted lines.
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Table 1 shows the average error for each forecasting system from all forecast horizons,
including RMSE.

Table 1. Error Average of Autoregressive Models.

Name MAPE (%) RMSE (MWh)

Previous 2.149 863.33
Updated Forecasting System 2.069 831.48
Combinatorial Brute Force 1.964 789.86

Sequential Brute Force 2.010 802.82
Combinatorial Completeness 2.002 804.94

Sequential Completeness 2.039 815.67

All processing methods outperform Previous with 4 or more days in advance. During
that interval, the Combinatorial Brute Force is consistently the best, considering MAPE and
RMSE. The accuracy for the remaining days is very similar for all methods.

6.2. Autoregressive Error Difference vs. Time Ahead of the Forecast

On the sixth day of execution, at 9:00 a.m. (execution 130) there is a very pronounced
error jump on the previous version. At the time of the jump there are only two factors that
vary: temperatures and last recorded load. To check which of these factors causes the jump,
two versions of the old REE system have been trained: one acts as if temperature at the
jump time was known in earlier forecasts; on the other hand, the second acts as if it was the
load at jump time that was known. The respective simulation is shown in Figure 6.
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Figure 6 allows us to conclude that it is temperature that lowers the accuracy during
the first execution days, because the model using temperature from later days shows a very
similar pattern until the seventh day.

Once the temperature is located as a factor that causes this difference in precision,
the correlation between temperature and demand was analyzed. For this, the time series
of training temperature has been isolated; that is, variables CD, HD and their lagged
versions. Subsequently, R squared values of these time series have been calculated. Finally,
the R squared average for each anticipation has been drawn in Figure 7. The process is
performed for the previous and updated system. Vertical lines indicate the moments when
temperature data arrives. It has only been used on weekdays and working days to avoid
the influence of other variables.
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Correlation is constant between data collection moments, since during these intervals
temperature time series do not change. Correlations behave similarly to precision. At
9:00 a.m. on the sixth day there is a jump. Previous to this jump, the updated system offers
a better performance, while later there is no appreciable difference between systems. There-
fore, a simple change to using hourly thresholds considerably improves the relationship
between temperature and demand.

In conclusion, between available temperature variables and load, there is a correlation
jump on the sixth day. This correlation variation causes the abrupt accuracy improvement,
since accuracy depends on the accuracy of available temperature data.

6.3. Hybrid Systems Accuracy

Figure 8 shows the MAPE of hybrid systems, since these produce the final forecasts
for the operator, while Figure 9 shows the RMSE. To summarize data from Figures 8 and 9,
Table 2 shows the error average of hybrid systems from all advances, also known as
run orders.
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Table 2. Error Average of Hybrid Systems.

Name MAPE (%) RMSE (MWh)

Previous 1.953 767.98
Updated Forecasting System 1.906 767.92
Combinatorial Brute Force 1.793 708.27

Sequential Brute Force 1.850 727.11
Combinatorial Completeness 1.878 737.28

Sequential Completeness 1.914 750.41
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Regarding both metrics, the Combinatorial Brute Force version is more accurate
than the rest overall. It also offers better accuracy with almost all forecast horizons, so
it consistently performs better. Combinatorial Brute Force is thus considered as the best
preprocessing method for the REE forecasting system.

6.4. Autoregressive Interpretability

Once an autoregressive model has been obtained, it can be used to read its coefficients
and draw conclusions from the training period.

The winner procedure for the autoregressive model (Combinatorial Brute Force) has
obtained three zones:Córdoba, Tarragona and Getafe. It has also obtained two previous
days of temperature used at a peninsular level (nl), while at the local level it has obtained
zero previous days in each of the zones (zl).

To quantify the change that one variable undergoes when another varies, sensitivity is
calculated. Applying it to the autoregressive model of (3) through (15).

SA =
∂yt

∂A
= y′t eA Ψa Ψa = yt Ψa (15)

where SA is the sensitivity of any exogenous variable A. Since sensitivity depends on
forecasted load, for each demand value there is a different sensitivity, instead of a fixed
value, as would result from a linear model that predicts the demand directly, as shown in
(16) and (17), which is not the case.

yt =
d

∑
i=1

ct−i βi +
n

∑
k=1

Xk t Ψk + εt (16)

SA =
∂yt

∂A
= Ψa (17)

Once the autoregressive models have been trained with Sequential Brute Force, all
hours of 2019 have been predicted, simulating the calculations that were made 9 days
before at 5:00 p.m. The resulting demands have been multiplied by coefficients of their
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respective models, and then the sensitivities of 2019 have been obtained. Finally, sensitivity
averages have been calculated, and they have been drawn on Figures 10–12.
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Figure 12. Sensitivity of local variables for every forecasted hour. (a) Individual cold degree difference
(IC). (b) Individual heat degree difference (IH).

Since there are no previous individual days, sensitivities of their respective variables
PICz l and PIHz l do not exist. According to the algorithm used, individual previous days
are not obtained because they do not improve forecasting accuracy. Therefore, they do not
provide relevant information.

The sensitivities of peninsular heat are greater than cold (Figure 10); therefore, the
heat effect is more influential than cold. In addition, both peninsular variables have lower
values during the early morning hours, so temperature has less influence on rest periods.

On Figure 11 there are positive values. Therefore, on a peninsular scale, if it has been
colder or hotter on previous days, the load will increase. In addition, in hot seasons the
temperature of the second previous day has a greater influence than the previous one,
while the opposite occurs for cold seasons.

Figure 12 represents the effect of one area being colder or hotter than the rest.



Sustainability 2022, 14, 13339 18 of 22

7. Conclusions

In this paper, a method has been developed to preprocess temperature data which
improves the accuracy of forecasting electricity demand on a national scale. To do that,
the peninsular demand of Spain for 2019 has been predicted. Preprocessing has been
tested with the STLF system of the Spanish electrical operator REE. Forecasts have been
made simulating the execution of the system with the same data availability that would
be available under normal operating conditions. Simulations have been carried out for all
horizons with the REE predictive system; therefore, its performance can be evaluated as
the forecasted moment approaches.

Different data processing methods for temperature have been tested. The most accu-
rate method selects five combinations of zones with the highest R squared with respect
to the peninsular demand. Then, for each zone combination, all the combinations of the
number of previous days of individual temperatures and their average are tested. Finally,
we get the one that offers the best precision to predict the prior year to the one we wish
to forecast.

The method of processing temperatures is automatic, so it selects the zones and vari-
ables with the greatest estimated influence on demand. Consequently, the implementation
on a national scale does not require additional studies and the interpretability of the chosen
zones is straightforward.

Incorporating temperature data preprocessing globally improves MAPE by 0.16% and
RMSE by 59.71 MWh, as can be seen in Table 2. In addition, said improvement is consistent
with respect to how early the forecasts are made, as shown in Figures 8 and 9.

The new variables that are incorporated into the system are interpretable. The sig-
nificance is expressed in Section Nomenclature, which allows for analysis with statistical
models such as the REE autoregressive ones. These models also show an improvement in
accuracy. The impact of the variables on the demand is obtained as the sensitivity expressed
in (15). In addition, the sensitivity is expressed with an interpretable unit (MWh/◦C). In
the Spanish peninsula, the variable sensitivities show that hot temperatures influence load
more than cold ones, but both have a lower influence on rest periods. According to the re-
sults, load is affected by the temperature of previous days, so heat from the second previous
day has a notorious influence in the same way that cold from the previous day does.

It has been observed that the availability of temperature forecasts notably affects the
accuracy of electricity demand, since there is a close relationship between how early a
thermal forecast is made and the load forecasts. In conclusion, the most recent thermal
forecasts for the forecasted moment should be used.

This paper is focused on predictive and non-analytic applications. In terms of future
work, we propose to incorporate this new approach for processing temperatures into
statistical models, and to use them as a tool to analyze relationships between temperature
and electrical demand on both a national and regional scale, including smart grids. Another
proposed future work is the implementation of the proposed methodology in other large-
scale predictive system, in order to improve their accuracy and compare the employed
preprocessing methods with different systems.

The sustainability of the energy systems is linked to the management of renewable
resources, which, in turn, have a stochastic component that make them unreliable. The
ability to forecast not only electric demand but also electric generation is key to ensuring
an effective way to harness renewable energies. The preprocessing techniques described
can also be applied to these fields where multiple climatological temperatures are used as
input; for example, wind forecasting and, consequently, energy generation forecasting for
wind generators and, therefore, can get us closer to a sustainable energy system.
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Nomenclature

Input Variables

Symbol Name Explanation

CN Cold degree for national mean. Cold effect for the entire peninsula

HN Heat degree for national mean. Heat effect for the entire peninsula

PCl Previous cold degree. Effect of previous day l being colder than today.

PHl Previous heat degree. Effect of previous day l being hotter than today.

ICz Individual cold degree difference. Effect of region z being colder than the nation.

IHz Individual heat degree difference. Effect of region z being hotter than the nation.

PICz l Previous individual cold degree.
Effect of region z being colder than the nation, for one
previous day.

PIHz l Previous individual heat degree.
Effect of region z being hotter than the nation, for one
previous day.

Hyperparameters

Symbol Name Explanation

Thhz Heat threshold for zone z.
Above this temperature, it is hot and people tend to use
refrigeration equipment. For the zone z.

Thcz Cold threshold for zone z.
Below this temperature, it is cold and people tend to use
heating equipment. For the zone z.

Thhn Peninsular heat threshold.
Above this temperature, it is hot and people tend to use
refrigeration equipment. For the entire peninsula.

https://www.esios.ree.es/es/analisis/1293?compare_indicators=545,544&start_date=10-07-2021T00:00&geoids=
https://www.esios.ree.es/es/analisis/1293?compare_indicators=545,544&start_date=10-07-2021T00:00&geoids=
https://opendata.aemet.es
https://opendata.aemet.es
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Thcn Peninsular cold threshold.
Below this temperature, it is cold and people tend to use
heating equipment. For the entire peninsula.

nz Number of zones employed.
Number of zones whose temperature influences
peninsular load.

z Zones employed.
Which zones have temperature that influences
peninsular load.

nl Number of previous days for peninsular temperature.
Number of previous days whose average peninsular
temperature influence load.

zl Number of previous days for local temperature.
Number of previous days whose temperature at zone z
influences load.

Other variables

Symbol Name

y Time series of forecasted load

c Time series of errors

B Series of coefficients associated with the forecasting errors

X Exogenous input vector

Ψ Exogenous coefficients

εt Gaussian random variation with mean zero

A Exogenous variable desired to analyze

y’ Time series of load without a variable considered

Tz Time series of temperature from zone z

TM Time series of mean national temperature

CDZ Cold degree for zone z

HDZ Heat degree for zone z
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