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Abstract: The objectives of improving the efficiency, and integration, of renewable sources by
2030–2050 are complex in practice and should be linked to an increase of demand-side flexibility.
The main challenges to achieving this flexibility are the lack of incentives and an adequate framework.
For instance, customers’ revenue is usually low, the volatility of prices is high and there is not any
practical feedback to customers from smart meters. The possibility of increasing customer revenue
could reduce the uncertainty with respect to economic concerns, improving investments in efficiency,
enabling technology and thus, engaging more customers in these policies. This objective could be
achieved by the participation of customers in several markets. Moreover, Demand Response and
Energy Efficiency can share ICT technologies but this participation needs to perform an aggregation
of demand. The idea of this paper is to present some methodologies for facilitating the definition
and evaluation of energy versus cost curves; and subsequently to estimate potential revenues due
to Demand Response. This can be accomplished by models that estimate: demand and energy
aggregation; economic opportunities and benefits; impacts on customer convenience; customer
feedback and price analysis. By doing so, we would have comprehensive information that can help
customers and aggregators to define energy packages and their monetary value with the objective of
fostering their market participation.

Keywords: demand response; load modelling; energy efficiency; economic dr models; information
and communication technology; electricity markets; load disaggregation

1. Introduction

Small customer segments (residential and commercial consumers) are important vectors that will
drive and explain future energy demand (specifically, electricity demand) and its associated emissions.
For this reason, the European Union (EU) and other advanced countries, consider that future markets
should promote a higher engagement of customers and other “new” participants (energy aggregators),
which would benefit the efficiency and sustainability of markets and hence of energy. On the other hand,
the consumer can also obtain interesting benefits from their participation in electricity markets, basically
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in cooperation with other consumers through “energy aggregators”. For instance: Demand Response
(DR) to Price, Demand Response to Power System Events, the provision of resources (including Energy
Efficiency policies, EE) in Capacity Markets, or the contribution to reserves in Ancillary Service
Markets. The main problems for customers are educational (the complexity of the markets and a lack
of experience due to the scarce participation in markets in the past), legislative (minimum size of offers,
forcing the same ICT requirements for supply and demand sides, the possibility to aggregate resources,
the participation as Direct Customers in Markets) and economic barriers (for example, the expected
income for certain DR policies is low and this response usually needs the use of enabling technologies
and these ICT requirements sometimes involve important capital costs for small customers).

The point of view of the European Commission (EC) (see [1]) is that the future electricity market
should have at its core an active consumer taking advantage of new technologies (enabling technologies
such as ICT) to reduce their costs and allowing that customers to fully participate in the energy
transition. From the economic point of view, the Energy Commissioner of the EC stated in 2015 [2] that,
“... the business case for more active participation of demand is clear-demand side response alone could
save our economy up to 100,000 Million Euros per year ...” The EC also reported that the potential of
DR on a European Union scale is enormous: peak demand could be reduced by 60 GW, approximately
10% of the EU peak demand. In short, such potential, if tapped, can lead to a number of direct benefits:
a better use of power system resources (capacity factors) while deferring investments, lower electricity
costs (through elasticity in peak periods), greater system reliability and greater indirect benefits such as
lower CO2 emissions and the contribution to a greater penetration of renewable sources. The situation
in other countries is similar. For instance, in the USA, Demand Response potential reaches up to 11%
of peak demand in some systems (see Table 1, for example MISO) whereas in the EU this potential
ranges 5% in average.

Table 1. Estimated DR potential as a percent of System Peak in three US ISO (2015).

DR Resource PJM ISO-NE MISO

Overall potential 9.0 8.8 11.0
Capacity DR 1 7.5 6.5 -
Economic DR 1 0.9 0.6 -

1 Commercial and Industrial DR Resources.

However, despite this considerable potential for DR&EE, electricity markets remain primarily
driven by supply-side characteristics (for example, minimum level of energy offers and bids, or the
requirements for monitoring and reporting energy changes). The idea being presented in this paper
is that customers can benefit from future market opportunities and increased participation in retail
(price-response with dynamic or critical price pricing tariffs [3]) and wholesale markets (incentive based
DR and EE through, for instance, availability payments [4]) through aggregation while contributing to
energy policies, market competitiveness and social welfare. The hypothesis is that demand resources
should participate in the market on an equal footing as supply resources. This involves the possibility
of participation in several markets and services to maximize their benefits and make the necessary
investments to develop EE and DR cost-effective. The problem is that this participation is complex
and it requires a detailed analysis of the value and possibilities of complex products in one or several
markets. To overcome these barriers, some tools and methodologies will be presented, revisited
and some other tools should be specifically developed. Customers and also energy aggregators,
need to be aware of the potential benefits of DR and EE and this can be realized with the help
of technology (the society usually claims for hardware technology but some software tools are
also needed). This is particularly the case for small/medium customer segments and some interesting
DR policies (price-based DR).

The aim of the paper is to illustrate how the integration of several tools is carried out (economic and
demand models) and how synergies can be established among them to help small/medium size
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consumers (specially the residential segments, through aggregators) to participate and maximize
benefits in Electricity Markets. Firstly, in Section 2, customer participation in Energy and Capacity
markets is revisited to establish methodology requirements. In Section 3, Price-Response Policies are
analysed and an economic model based on end-uses is presented. Then, in Section 4, a model for
Capacity markets is revisited and the pros and cons of some complex DR&EE policies are discussed.
In Section 5, results of price and event DR policies, with the help of some necessary feedback from other
DR methodologies, are illustrated throughout some simulations. Finally, in Section 6, some conclusions
are stated.

2. Requirements for Demand Response Participation in Markets

The participation of small/medium customers in the markets is limited (e.g., direct access to
wholesale markets), constrained to certain specific conditions or framework (e.g., participation if power
system events are declared) or, in some cases, it is non-existent (this is the case of some EU countries,
such as Spain and Portugal according to recent literature surveys [5]). In this section, the framework
for DR is explored but also some interesting tools that have been used in the literature are reviewed.

2.1. Small Customers and Aggregation

The deployment of DR resources for small/medium customers has some important drawbacks:
educational and regulatory barriers, technical complexity, low revenue and the aggregation of different
loads or customers. For instance, reference [5] in its analysis throughout EU-28 countries, lists
some regulatory barrier and reports that “major sections of the market are still closed off and they
lack a viable regulatory framework for Demand Response overall.” The complexity of DR is also
recognized by retailers, distributors and System Operators [6]; for example, the requirements for
aggregation, monitoring, evaluation of customer response (baselines) or the communication with
DR buyers. These technical concerns can be facilitated with automation or by delegating the DR
process from the consumer to a company (i.e., the aggregator) [7]. Educational barriers are also
important. The Smart Grid Investment Grant (SGIG) program aims to accelerate the modernization
of the electric transmission and distribution systems in the USA [8]. This initiative specifically
considers “the progress in advancing customer capabilities, including information and education
for understanding and managing demand and costs”. Customer need to learn and develop new skills
and capacities in using new technologies to engage and develop DR&EE policies in a successful way.
Experimentation through pilots is also critical to adapt new tools and technologies to existing
regulations but also to explore the societal impacts of these “new” solutions [9]. A good example
in the EU is Finland, with a government which pledges to introduce a culture of experimentation,
specifically in the use Distributed Energy Resources (DER). Some examples, conclusions and customer
feedback related with Finish pilots are reported in [9]. As a complement to pilots (experimentation
and feedback) and the initiatives to change regulatory barriers, users, aggregators and technology
developers needs technology tools to anticipate cost-effectiveness of DR&EE policies and the flexibility
attributable to them. The methodologies proposed in this paper contribute to the achievement of
this last objective from three points of view: training (experimentation with DR&EE), planning
(of additional DR resources in short and medium term) and the operation of these resources.

On the other hand, small/medium segments also have some important advantages: different
kinds of ability and availability; geographical distribution of the load resource and an overlooked
capacity with respect to the supply-side: its reliability (a large amount of resources). To overcome
those drawbacks, some problems need to be solved and some tools need to be developed. For instance:
the selection of demand-side resources (identification of demand patterns or segmentation of demand);
the validation of the flexibility of those resources (modelling, validation and control of loads); or in the
medium term, the conversion of the consumer into “prosumer”.

This change in traditional roles due to a continuous rise in energy costs, the increasing availability
of ICT at affordable costs and the political incentive of renewable sources explains the fact that
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some segments such as institutional buildings, commercial buildings, factories and also households
are becoming energy actors who consume, produce, store and control their energy use (the so
called “prosumer”). In this way, one of the biggest areas of opportunity to trim operating costs is
self-generation. But this option is not free of risks because the volatility of renewable generation makes
more difficult the management of energy (for instance, energy flows to or from distribution networks).
A potential solution is that demand is able to follow renewable supply, i.e., the implementation
of demand flexibility options such are the policies analysed in this paper. Notice the growth of
photovoltaic generation which is appearing in some countries such are the USA or Germany, making
the prediction of demand and generation necessary but also their effective management to make this
integration credible and possible [10].

Moreover, other concerns arise: the provision of some feedback to customers; to guarantee
the security of that information (education and cyber-security concerns [11]); the way to build
demand packages, enabling the performance of aggregators; their relationship with Curtailment
Service Providers (CSP), Balance Responsible Parties (BRP) or Load Serving Entities (LSE) [12]; and,
finally, the improvement of DR cost-effectiveness (response optimization, ICT management, price
prediction, market synergies between DR and Energy Efficiency, ...). Due to the aforesaid arguments,
DR is so complex that it is difficult to achieve an optimal solution. This complexity is recognized by
different actors in energy markets [6]. It is necessary to develop incremental solutions to solve this
complexity and encourage a willingness from consumers to make demand resources available. This is
the idea and main concern of this paper.

Figure 1 shows an overview of the problems dealing with Demand Response and Distributed
Energy Resources for residential segments proposed by REDYD 2050 Spanish research network [11],
which are developed in this paper through an approach focused on the concerns faced by aggregator
and customers. As it has already mentioned customer and aggregators need methodologies to
anticipate cost-effectiveness of DR&EE policies and the flexibility of demand attributable to them.
The problem is that these methodologies usually have considered socio-economic models but the
demand of a customer must be explained through the consideration of physical mechanisms
(and limits) of devices and appliances and of course, some boundary conditions (for instance, climate
conditions). In this way, some feedback is necessary from load and economic models (see Figure 1).
Some of these problems (Figure 1) have been presented in the literature but some integration and
feedback could improve the portfolio of DR&EE methods and tools.

From the point of view of load aggregation, customers with similar characteristics must be
selected (the same segment, a similar behaviour, the same geographical area, a similar income level,
the enforcement of specific tariffs or the availability of enabling technology).
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This problem is usually solved through the use of segmentation (clustering) methodologies taking
into account boundary conditions, i.e., the basic information available from the customer: daily or monthly
load curves (in the literature, customer grouping on the basis of demand pattern similarity is likely to
provide effective results, see [13]). For DR evaluation, the customer needs an assessment of end-uses
(percentage) and the time of use of these loads, i.e., their behaviour (for example, in Emergency Demand
Response programs the time periods for response are specified [4]). Non-Intrusive Load Monitoring
(NILM) is well-suited for this task [14] but it is limited due to the availability of data (ICT requirements)
in residential segments [15]. Lack of information about the current purposes for which energy is used at
different times of the day makes any modelling more difficult and reduces the ability to change load/use
patterns. This fact may risk the achievement of foreseen benefits of DR&EE (see [6]).

The efficient use of DR is based on an economic choice between the value of consumption and
the market value of electricity [7]. This choice arises when the consumer is exposed to variable prices
through Price-based Demand Response (PDR). It is noticeable that energy prices change throughout the
day and it is necessary to establish price profiles in advance to provide the necessary time to commit
DR resources [16] and recover end-use service after DR commitment (i.e., dwelling temperature,
hot water availability). Finally, the response depends on load behaviour (and its environment, that’s to
say, household dwellings for thermostatically controlled loads, TLC). An interesting way to evaluate
this response is through Physically Based Load Models (PBLM), a methodology first proposed to solve
cold load pickup in [17]. This is the same idea proposed in thermal design software such as EnergyPlus
or eQuest [18] but this approach is too complex to evaluate load response (EnergyPlus works high
order state-space models, e.g., model order around 30–40) and it needs some simplification to make
costs affordable and efforts feasible to engage DR. Some software, for example the toolbox BRCM is
proposed in the VIRGIL platform, to simplify thermal models from EnergyPlus software, see [19].

Another concern is load aggregation of elemental models. As mentioned previously, the aggregation
process involves selecting individual loads with similar weather characteristics (the so called
quasi-homogeneous control group [20]). Right now, the first alternative for the aggregation problem is to
solve the elemental model for each load in the selected group and obtain an average demand (and service
characteristics of such loads, i.e., internal temperature for space heating, or water temperature for
water heaters) of the aggregated load (for example through Monte Carlo simulation). This procedure
needs the simulation of large numbers of loads (1000–10,000) and a lot of computation time [21] (this time
could be an important concern in some markets, for example from the point of view of Ancillary
Services [11,22]).

Different proposals for aggregation have been proposed by Callaway [23], Perfumo [24], Mathieu [25],
Alvarez [20] and Gomes [21]. The diversity in the approaches is related not only to the aggregation
processes but to the modelling approach selected to characterize elemental loads. With respect to
elemental models, the main difference is the physical phenomena being considered: [24–27] follow a
model that only reproduce a simplified and inaccurate heat balance (heat losses/gains due to temperature
gradient and electrical power conversion) or discard important inputs (solar radiation), whereas [20] and
specially [21] take into account the main changes in sensible and latent heat that affects the behaviour
of the load: i.e., solar radiation, internal sources (inhabitants, appliances), the losses/gains from other
dwellings, the renewal of indoor air, or bidirectional heat fluxes [28]. The problem is that solar radiation
through windows and walls are not a negligible factor in the modelling process of TCL. The balance
response accuracy versus load modelling complexity should be considered but PBLM models without
physical sense or tested in steady-state conditions for verification of results should be avoided [24,27].
Some examples will be considered in the following sections to exemplify these problems.

Other relevant problems for DR are performance and scoring (i.e., customer feedback and
income levels). With respect to DR performance, NILM appears interesting if enabling technology has
been deployed. At the elemental level, the application of integral transforms can help to evaluate DR
performance [15] whilst a statistical sample of customers is equipped with Smart Meters (SM). In the
last decade SM deployment reached about 33% of customers in the USA [29] and similar trends can be
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found in other countries. For example, in Spain, with a deployment of 14.5 million SM at the end of
2015, which constituted over 50% of customers, a considerable investment but without any possibility
for a broad use of data [30] or for carrying out aggregation [5].

The evaluation of Customer Baseline (CBL) is another option available when feedback from
accurate measurement sources (SM with 1 to 5 min pacer) is difficult to obtain from the customer.
For example, ISO and CSP usually work with “dynamic” baselines. CBL are usually based on previous
daily demand and the use of adjustment factors [31,32]. In other cases, they include the temperature
as a factor in the adjustment process but without any link to load behaviour (i.e., it lacks some
bidirectional feedback with respect to other DR tools, such as PBLM models, or demand database).

Finally, it is necessary to consider the risks associated with DR for these customers in the short
and medium term. Price forecasting but also price volatility tools [33] should be considered to some
extend to properly drive DR investments, especially when renewable sources become more and more
important in the generation mix [10].

2.2. Characteristics of the Customers: End-Uses

A group of residential customers in Spain have been selected for simulation purposes. This group
corresponds to real residential customers in Europe, with a rated power per customer ranging from
3 to 8 kW. Winter temperatures range from 0 to 15 ◦C and in summer from 20 to 40 ◦C. Figure 2a shows
the winter and summer loads for two selected workdays monitored at the distribution transformer
(CT) that supplies power at 400 V to the group of customers (basically residential and some small
commercial supply). Figure 2b shows the outside temperature.
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The evaluation of DR potential must be based on the knowledge of end-uses. A first approach,
presented in the literature to investigate energy conservation potential, is to obtain activity patterns
of customers, at the aggregate level, to identify customer activities (the so called “functional model”
defined in [17]), for instance, customers requesting high amounts of energy and thus might have a
significantly potential market for efficiency [34]. An alternative is the use ICT and NILM technologies,
see for example [15]. This last approach involves exploiting available technology for home automation
and from the broad deployment of SM in industrialized countries, whose real potential is underutilized
(a concern already reported in the literature [30]).

In some cases, and, from a practical point of view, it is quite possible that customers in small segments
do not have any SM, or the aggregator does not have access to detailed meter data. There may be some
concerns with respect to data confidentiality between the retailer/commercializer of energy and the
aggregator, because the assumption of several roles can be problematic with regard to market competition
legislation in some countries, for example in the EU [35]. In this way, an alternative access to demand
data should be considered by aggregators for the evaluation of DR potential from their customers.
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This second alternative is based on periodic surveys performed by National Energy Agencies.
For example, end-uses for a residential “average” EU customer can be estimated according to European
Union EU-28 data (The Institute for Energy and Transport of the Joint Research Centre, Ispra, Italy,
see [36]), or in the Spanish case (the simulation scenario in Section 4) through the data available in
reports from IDAE (Institute for Energy Diversification and Energy Savings, Madrid, Spain) and
Spanish Government [37]. Main end uses according to annual energy consumption are: Electrical
Heating (42.9%), Cooking (7.69%), Lighting (4.85%), Water heaters (17.96%), Air Conditioning (0.98%)
and other appliances (25.5%), see Table 2 (i.e., typical targets for DR programs in small/medium
segments). A similar share can be established for other countries, such are Canada or the USA, see [38].
Notice that in European Mediterranean regions, the Air Conditioning load represents a higher percent
(66% of households have this appliance and the trend is quite solid in this decade: 713,000 new units
in Spain, 80% in the residential sector [39], a 12% of the EU market) and the assumption of those
percentages [37] could be a critical error for simulation purposes (summer periods) because this picture
sometimes represents an average continental climate. Due to this fact, the winter period has been
selected for simulation purposes in the following paragraphs.

Table 2. Main End-Uses and consumption in the residential sector according to Spanish Government
Estimates [37] and proposed flexibility of demand by authors.

End-Use Thermal Energy
(ktep)

Electrical Energy
(ktep) % Proposed Flexibility of Demand

El. Heating (EH) 5863 448 42.9 Own/substitution
Water Heater (WH) 2179 454 17.9 Own/substitution

Cooking (CO) 566 565 7.6 NA/substitution
Lighting (LIG) - 714 4.8 Own */NA

Air Conditioning (AC) 2 142 0.98 Own/substitution
Appliances - 3758 25.6 (Additional details in Table 6)

Other 1 - 0 -
Overall 8611 6081 100 -

* Usually in the case of dimmable lights.

To obtain some representative end-use profiles, it seems necessary to study load dynamics and the
service the customer obtains from them. Figure 3a,b show some end-use load profiles for a household
belonging to the aggregate residential demand, previously shown in Figure 2. It can be seen that the
pattern for fridges is “constant” whereas WH demand is bounded to some hours throughout the day.
This behaviour has been taken into account together with overall demand to define approximate end-use
profiles (notice that it is important to give customers and aggregators a broad portfolio of options, ranging
from simple DR&EE options to more complex options). In this case, feedback from everyday activities [34]
of the customer is important to refine profiles, improve DR&EE success and gain customer interest in
energy concerns. Figure 4 shows the proposed end-use profiles for an average customer.
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household belonging to the aggregate residential demand, previously shown in Figure 2. It can be 
seen that the pattern for fridges is “constant” whereas WH demand is bounded to some hours 
throughout the day. This behaviour has been taken into account together with overall demand to 
define approximate end-use profiles (notice that it is important to give customers and aggregators a 
broad portfolio of options, ranging from simple DR&EE options to more complex options). In this 
case, feedback from everyday activities [34] of the customer is important to refine profiles, improve 
DR&EE success and gain customer interest in energy concerns. Figure 4 shows the proposed end-use 
profiles for an average customer. 
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2.3. Physically Based Load Modelling (PBLM) for End-Uses

The method proposed for the evaluation of response levels (flexibility in kW, kWh) and its
economic value (currency/kWh), i.e., offer curves, involves the use of several tools and methods from
different areas but especially the use of load simulation models. The methodology is based on PBLM
philosophy and the objective is to obtain load behaviour, achievable flexibility and energy payback
(rebound effects) after change of pattern has been applied. This approach was proposed by Ihara
and Schweppe [17]. A more detailed information about formulation and the physical meaning of the
parameters of this kind of model can be found in [20,21,28,40] with simulation examples, coefficient
values and data for EH, HVAC and WH loads. Summarizing, these models apply physical laws
on loads and their environment (e.g., heat gains, heat losses, heat generation, heat storage, water
or process flows), to determine the load behaviour according to the change of inputs in the system
(in our case, electricity supply). The model is adapted (through real data measurements or NILM,
including control response) to cover actual or future energy response. The advantage of these models
is that they are “white box” or “grey box” [41] models and can evaluate the effect of a non-electrical
input/parameter/variable (e.g., the effects of roof and floor insulation, window glazing envelope
replacement, change of insulation materials, or solar radiation levels) to estimate demand and energy
savings in new construction projects.

This section presents two PBLM elemental models for residential heating (cooling) devices with
and without thermal storage (e.g., ceramic bricks) that involves the development of an equivalent
model (a) lumped RC network, usually called 3R2C, 2R2C, 2R1C or 1R1C depending on the number of
lumped RC parameters that have been chosen to reproduce the admittance or transmittance of each
wall for the overall model: 3, 2 or 1 [41]), very close to [18,19] but simplified in complexity (the order of
state space Equations) to suit DR requirements and make possible a further aggregation of elemental
models [40], a condition “sine qua non” for small segments. RC networks (2R1C model is chosen for
the walls, ceiling and ground) in Figure 5a,b represent the energy balance between an appliance/load,
the dwelling where the load renders the service (indoor) and the environment. All of these PBLM are
made up of several components (sub-models) to allow an optimal flexibility in modelling. PBLM uses
thermal-electrical analogies, for example:

- Dwelling/environment submodels (indoor, environment): parameters that represent heat
losses/gains (conduction/convection through walls: ha, aw; the floor: arg; windows, (ag),
ventilation losses/gains (HV); as well as heat gains: solar radiation (Hsw, Hw); internal gains due
to inhabitants (Hr) or appliances (H(a). Also, the model takes into account heat storage from the
specific heat of external walls (Cw), indoor mass (C(a) or roof/ground (Crg).
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- Energy conversion submodel (the appliance): electrical energy conversion into heat (space
heating), “cold” (air conditioning), or hot water. This is represented by a current source (Hch)
and is independent of the dwelling submodels, see Figure 5a,b, where the same dwelling model
can “host” different appliances with the same or similar service (heating/cooling).

- Control mechanisms which drive the demand according to load service: thermostats in heating
loads (m(t) in Figure 5a and m(t) and g(t) in Figure 5b and provide feedback among different
submodels).
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Figure 5. Example of PBLM for the living room of a household. (a) Appliance: EH, Heat Pump or Air
Conditioning load; (b) Appliance: Thermal Energy Storage (TES) load (ceramic bricks). Adapted from
previous works by authors [20,40].

The state variables are usually temperatures: indoor (X), walls (Xw) and roof/ground (Xrg). In the
case of TES appliances, a fourth state variable is of interest: the state of charge of storage, in this case the
temperature of ceramic bricks (Xac). In WH is the temperature of water. Inputs are external/internal
sources (other appliances, loads, inhabitants) and are labelled with “H”.

An example of EE policy for simulation purposes through PBLM is the effect of improving the
thermal transmittance of windows. In the base case, the efficiency gains due to the replacement of
the glazing envelopes through the thermal transmittance coefficient (also called U-value) with a new
window (usually a change from 2.3 W/m2K to 1.3–1.4 W/m2K) can be evaluated for the customer.
This parameter (thermal losses or gains through glazing envelope) is represented by “ag” conductance
in Figure 5a,b. The cost-effectiveness of a change of appliance through the use of storage (Hch) and the
size of its reservoir (Cac) are also options available for customers and aggregators through PBLM.

3. Demand Response to Price (PDR): Energy Markets

Current tariff structures usually fail to reflect the real costs of electricity supply and this uncoupling
between wholesale and retail markets inhibits price-response in customers and consequently reduces
demand flexibility. This lack of flexibility has serious drawbacks in electricity markets (volatility in
energy prices, use of peak power plants, or the optimal integration of renewable sources).

A research on market data (see for example PJM [4]) shows that customer activity in price
response options is very low, both in terms of capacity of response and in revenue. For example,
in 2016 the estimated revenue for Load Management in Capacity Market was around $640 million
in the PJM system, whereas price-response revenue was around $3 million (and this participation
shows a significant decrease since Capacity Market was established in 2007). The main reason is that
an adequate price response needs the support of enabling technology for an appropriate response
to market prices (customers cannot be expected to be continually looking for price signal and react
accordingly). The problem is that “enabling” technology (e.g., Smart Meter, communications and
data infrastructure, installation and maintenance) can be expensive for a small customer (from $100
to $600) with respect to revenue. For instance, in the same period, 2016, PJM enrolled 2560 MW in
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Economic Programs (but only 146 MW were used [22]). If the customer is fully active and competitive
in the markets, reaching the clearing for all its offers, the estimated revenue is around $2000/MW-year
($2/kW-year). Usually, the commitment of load resource is very limited.

Capacity Payments can reach $120/MW-day and $160/MW-day (i.e., $45,000/MW-year), with a
minimum level of $4/kW-year, excluding additional energy payments. So, it is pretty obvious that
price-response DR is less interesting (from an economic point of view), more complex and involves a
higher risk than incentive-based options. Another side of the problem is market efficiency and the
benefits for society that involve the availability of some price responsive demand (e.g., the mitigation
of the power market or a better use of power infrastructures). Good examples of a successful customer
participation in price responsiveness policies are a variety of capital intensive industries and services
such as airlines, railways, hotels or rental car firms. Or, in other economic segments, such as sport or
variety, tickets price-response applies. Table 3 shows the benefits attributable to these price-response
policies in the capacity utilization index amongst these economic segments.

Table 3. Some examples of Capacity Factors (Utilization) in capital intensive industries and services
with respect to Power Systems.

Capacity Utilization (%) Economic Sector (Country, Year)

95 DB Schenker, North Rail Freight line (Germany, 2013)
85 Air Berlin (Germany, 2013)
78 Industrial Segment, average (USA, 2013)
76 Manufacturing (USA, 2013)
64 Power System (Japan, 2009)

62.5 Power System (USA, 2013)

For these reasons, many organizations worldwide (for example, the European Network of
Transmission System Operators, ENTSO-E [7], or PJM in the USA [22]) are concerned with the task
of promoting customer flexibility to prices through several methods, for example, by linking retail
and wholesale markets, a problem that requires a knowledge of customer demand and its potential
flexibility. Another problem to be considered is that price spread should be considerable and that
aggregators (or customers) need some tools to perform price forecasting in the short/medium term
(two day-ahead horizons in Day-Ahead markets, see for instance Reference [42]).

3.1. Evaluation of PDR: An Economic Model to Evaluate the Size of Demand Packages

The ability of customers to react to prices is evaluated through the concept of elasticity. Several
kinds of elasticity can be defined (own, substitution, cross) but usually, the models are focused on own
and, sometimes, on substitution elasticity.

Own price elasticity Eii: the percentage of change in demand (Di) at time t = i as a result of a percentage
of price change (Pi) at the same time t = i (remark: own elasticity should be a negative number):

Eii(Di) =
∆D/Di
∆P/Pi

(1)

Elasticity of substitution Eik: is a measure of the percentage of change in the ratio of the peak
(hour i) to peak-off (hour k) demand, as a result of a percentage of change in the ratio of the peak to the
off-peak prices (this coefficient should be a positive number).

Eik(Di) =
∆D/Di
∆P/Pk

(2)

It is important to highlight some considerations with respect to these concepts. Firstly, price
elasticity of demand is non-linear (i.e., it needs some threshold to achieve a change in the customer
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pattern and the magnitude of change in demand varies with the price incentive and the time period).
Second, the responsiveness to price changes is not symmetrical, i.e., Eik 6= Eki.

Over the last few decades, many studies and pilots have been developed to analyse customer
elasticity. Table 4 presents a detailed review of data from these studies for relevant customer segments.
Perhaps, the main conclusions from these studies are qualitative: customer response is alive, DRP
has its own “black legend” (these legends always stand in the way but they are far from the reality)
and response has persisted in long-lived periods [43], for example in France. The main problem
that research faces with these values, is that results of studies do not converge in values and this
is a problem for the development of an economic model of response without the deployment of a
PDR pilot (it is interesting to remark that the majority of these studies were based on customers that
did not have any possibility, or experience, to react to prices due to tariffs or regulation concerns,
i.e., direct access to markets. For example, in the USA, only 1% of customers are on time-based
rates [43]. In some cases, DR was unknown).

Table 4. Price Elasticity of Electricity Demand by segments (R: Residential; C: Commercial; I: Industrial).

Authors
(Country, Year)

Segment
(R/C/I)

Own-Price Elasticity
(Short-Run)

Own-Price
Elasticity

(Long-Run)

Substitution
Elasticity Source

Houthakker&Taylor
(USA, 1970) R −1.13 −1.89 - [44]

Anderson
(USA, 1973) R - −1.12 0.30 [44]

Houthakker et al.
(USA, 1975) R −1.9 - - [44]

Lyman (USA, 1978) R −1.10 - - [44]I −1.40

Bohi&Zimmerman
(USA, 1984)

R −1.2 −1.7
- [45]C 0 −1.26

I −1.11 −1.26

Baker et al.
(UK, 1989) R −1.79 - 0.19 [44]

Beenstock et al.
(Israel, 1999)

R
I - −1.58

−1.44 - [44]

Filippini
(Switzerland, 1999) R −1.30 - - [44]

Filippini&Pachauri
(India, 2004) R −1.45 (winter)

−1.29 (summer) - −1.27 (winter)
0.26 (summer) [44]

Hondroyiannis
(Greece, 2004) R 0 - - [44]

Faruqui&Sergici
(USA, 2003-04) 1 R [−1.019, −1.054] - [0.077, 0.111] [3]

Kamerschen&Porter
(USA, 2004)

R
I

−1.93
−1.35 - 0.34

0.01 [44]

Bernstein et al.
(USA, 2005) −1.24 −1.32 [46]

Labandeira et al.
(Spain, 2006) R −1.78 0.05 [44]

Neenan et al.
(USA, 2008)

R −1.3 −1.9
[47]C −1.3 −1.1

I −1.2 −1.2

Labandeira et al.
(Spain, 2010)

R
I

−1.254
−1.052 [44]

Fan&Hyndman
(South Australia, 2011) 2 R [−1.26, −1.51] (Winter)

[−1.27, −1.44] (Summer) [48]
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Table 4. Cont.

Authors
(Country, Year)

Segment
(R/C/I)

Own-Price Elasticity
(Short-Run)

Own-Price
Elasticity

(Long-Run)

Substitution
Elasticity Source

Rai et al.
(Australia, 2014) R −1.447 −1.748 0.121 [49]

Burnett (AEP,
USA, 2016)

R −1.08 −1.14
[50]C −1.10 −1.27

I −1.23 −1.26
1 CPP pilots in California; 2 Depending on the hourly period.

The proposed model for PDR is based on previous works in the literature but modified, fixed
in some details and, in general, the model has been improved with real data for prices. The main
differences with other models are: First, the proposed model considers now the load disaggregated by
end-uses (the models in literature usually consider the overall load but the flexibility of loads is not a
homogeneous pattern and depends on their service and control mechanisms). Second, real elasticity
values from pilots designed to evaluate dynamic pricing in residential segments have been considered.
And finally (perhaps it is the most important difference), the proposed model considers some relevant
feedback from PBLM models (for instance, the available rates for demand change, the change of
service driven by the application of DR policies, the effectiveness of a load reduction), giving a
comprehensive view of technical aspects of DR (see Figure 1) and a necessary feedback for the
customers and aggregators.

Different models for PDR have been proposed in the literature. In the model proposed in [51] there
is not any consideration about energy recovery and the load is deducted from some periods and shifted
to other period without any technical restriction. A peak reduction of 0.23% is achieved as results and
peak-to-valley is only decreased by 0.31%. These results do not match well with the results obtained in
several pilots with Time-of-Use (ToU) and Critical-Peak Price (CPP) tariffs (about 6% in ToU and up to
20% in CPP, see [3]). In [52] a limit is considered for the so called “deferrable loads.” The maximum
potential for these loads during peak hours is considered 10% of total load and the customers engaged
in DR options are limited to 10% in PDR is limited to 10%. There is not any justification for those limits
(i.e., a classification of load end-uses or the segmentation of customer demand). As a result, the shift
of demand from peak to off-peak periods is irrespective of time-of-use. Reference [53] considers an
economic model that allows the consumer to take decisions based on their own maximum benefits
while satisfying the budget constraints. This is an interesting approach from an economic point of view
because it accounts for monetary constraints. Authors present several simulations changing a high
amount of load from peak to early hours in the day without the consideration of any kind of storage
(i.e., the peak demand is smaller than base-load demand. Any physical model of loads is considered.
In [54] authors consider competition between budget and the consumption when the price changes
and evaluate these scenarios. From the natural structure of living in every society, they conclude that
there is an asymmetry between peak and off-peak consumption due to different services achieved
from end-uses, i.e., they consider to some extent (a qualitative assessment) the different loads and
appliances that explain the overall demand. Finally, for the residential customers, authors state that it
is acceptable to say that the night time load is almost inelastic. This is not true when the residential
customer is aware of dynamic pricing tariffs (for example in France due to the contribution of nuclear
power plants a high percent of users have a peak demand during the night period).

Economic models for DRP are based on classical optimization procedures and the objective is to
maximize customer benefit. It is necessary to consider that the benefit, B, is the income (economic in
the case of commercial and industrial segments and/or load service value in the case of residential
customers) during hour i from the use of Di kWh. Indeed, there is some additional income that should
be considered, for example incentives (INC, when response is effective) and penalties (PEN, when
response fails over demand service level, DSL, agreed with markets’ agent. In practice Firm Service
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Level, FSL or Load Guaranteed Drop, LGD) for participating in some DR program (both problems can
be reported in energy and capacity markets, see for example [4,22]). This response is done through a
change in customer demand (∆Di), i.e., demand flexibility. Mathematically, the overall benefit OB is
done by the formula:

OBi = B(Di) + ∆Di(Pi) + ∆Di INCi − (DSL− ∆Di)PENi (3)

This expression takes into account not only the benefit (service) obtained from the use of energy
but the changes in the customer bill due to savings in energy due to DR policies (∆Di(Pi)), incentives
for changes in demand (∆Di INCi), or penalties if DR objectives are not reached (DSL− ∆Di)PENi.

The benefit function B is the quadratic benefit function previously proposed by Schweppe in [55]:

B(Di) = B0(D0i) + P0i[Di − D0i]

{
1 +

Di − D0i
2EiiD0i

}
(4)

where D0i and Di are demands before and after a price-response is cleared at time i. B0i is the base
benefit at time i, without any DRP policy, i.e., the economic value of the service provided by load
(the service or energy conversion, i.e., heat, cool, processing, mass transport, . . . ). By maximizing
the above benefit B in the Equation with respect to new demand at time i (Di) if a demand policy is
accomplished, we obtain [55,56]:

Pi + INCi + PENi = P0i

{
1 +

Di − D0i
2EiiD0i

}
(5)

It is important to take into account that this expression explains that both INC and PEN act like a
price through elasticity, in the same way Pi does. Moreover, new customer demand due to a change in
the energy price from P0i (average price at t = i) to Pi (forecasted high price at t = i) through PDR is
evaluated by:

DPDR
i = DPDR

0i

[
1 + Eii

Pi − P0i
P0i

]
(6)

If a potential change of demand from peak price periods (time i) to off peak price periods (time k)
is feasible (depending on customer, appliance/load characteristics, service effectiveness of this pattern
change and ICT availability), the modified customer demand should take into account the change of
load from peak to off-peak price (valley/shoulder) hours. For example, for PDR policies, considering
the substitution elasticity Eik, the load shifting from time i to time k (k← i) is:

DPDR
k←i = DPDR

0i

[
Eik

Pi − Pk
Pk

]
; k 6= i (7)

And consequently, the load reduction at time i due to load shifting to time k (k← i) is:

DPDR
i = (DPDR

0i − DPDR
k←i ) (8)

Whereas the load in t = k increases in the same quantity:

DPDR
k = (DPDR

0k + DPDR
k←i ) (9)

Considering again Equations (5)–(8) for DRP, the reader can obtain a conventional economic
response model:

DPDR
k =

[
DPDR

0k

(
1 + Ekk

Pk − P0k
P0k

)
+

24

∑
i=1;i 6=k

DPDR
0i Eik

Pk − Pi
Pi

]
(10)
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Table 5 summarizes the variables involved in Equations (3)–(9). Different variations on Equation (10)
can be found in the literature [56,57] but they present some problems. For example: they do not consider
some constraints in end-use flexibility due to electrical or service characteristics irrespective of energy
price (it is not possible to switch-off or reduce demand for all the loads, for instance in the case of
non-dimmable lights or washing machines, i.e., a change on switching times is possible but not a
modulation of demand); load patterns or service requirements are not the same throughout the day
(see Figure 3, or references [15,34]); some loads need a certain recovery period (to restore steady state
service after control or to recover production schedule in the case of the industrial segment but this process
is usually misunderstand and oversimplified [25,27]); the customer can apply some response previous
to price peak periods but not during all the periods (for example precooling or preheating options are
effective but only in periods near to peak-price response periods, i.e., Eik do not exists for none or many
time periods); or the fact that changes in demand, due to substitution elasticity, involve an additional
use of energy (i.e., thermal losses due to the switching of WH from service periods to 8–10 h before use).
For these reasons, it seems more accurate (and complex) to apply a model for the evaluation of demand
changes on each specific end-use (eu), DPDR

k,eu linked with PBLM models that gives some feedback to
model. The proposed model is driven by the expression:

DPDR
k,eu =

[
DPDR

0k,eu

(
1 + Ekk

Pk−P0k
P0k

)
+

24
∑

k=1;k 6=i
DPDR

0k,euEik
Pk−Pi

Pi

]
+

+
24
∑

i 6=k
LReuDPDR

eu,i←k +
24
∑

i 6=k
LSeuDPDR

eu,i←k

(11)

where LReu, is the load recovery (payback, buyback, rebound effect) for a specific end-use (eu) and
LSeu, are the load “losses” attributable to change of time of use for each end-use (eu) and price-based
DR policy. PBLM simulation outputs can support aggregators and customers through the model given
by Equations (11) and (12) in DR evaluation. Thus, the overall consumer demand at each time k,
is done by:

DDRP
k = ∑

eu
DDRP

k,eu ; eu ∈ [EH, WH, CO, FR, ...] (12)

Table 5. Variables and parameters being considered for the evaluation of demand flexibility.

Acronym Description Equation

OB Overall Benefit (economic and load service) (3)
B(Di) Benefit of customer in time i due to demand Di (3)

Di, D0i Demand in time i (with and without DR) (3)
Pi, P0i Price in time i, peak and “usual” (3)

INC, PEN DR Incentives and penalties (if they exist in markets) (3)
DSL Demand Service Level cleared with third parties/markets (3)
Eik Demand elasticity (see Equations (1) and (2)) (4)–(9)

DPDR
k,eu Demand of end use “eu” in time “k” during PDR (6)–(9)

3.2. Linkage between PDR Economic Model and PBLM

The disaggregation of customer response demand in different end-uses solves some practical
concerns and it also provides some insight on the DRP problem. The idea of the model driven by
Equation (11) is to take into account flexibility trends and report the aggregator a portfolio of DRP
scenarios rather than provide accurate values of demand flexibility (as it has been stated before,
it is difficult to select of exact values of elasticity without carrying out some pilot in the customer
aggregation under study). Some facts support the necessity to have these trends. Firstly, the literature
reports some problems in the case of manual control of demand by customers [58]. Secondly, enabling
technology improves response and flexibility [29,35]. Thirdly, ICT is becoming more and more
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widespread and ICT costs are also falling. In this way, flexibility should be provided by smart
appliances to obtain larger and more predictable demand shifts [58,59]. This enabling technology
needs some inputs from these observed trends of flexible demand.

The first problem is the classification of loads according to the flexibility and the possibilities of
substituting their service. Tables 2 and 6 show the authors’ perspective based in their experience in
field and laboratory tests with ICT, NILM feedback and household monitoring [40].

Table 6. Consumption structure in the Electrical Appliances End-Use according to Spanish Government
Estimates [37] and their proposed flexibility.

End-Use/Appliance Share (%) Flexibility

Refrigerators 31.3 Own/substitution
Freezers 6.3 Own/substitution

TV 11.9 None
Washing Machines 11.8 Substitution

Dishwasher 5.8 Substitution
Oven 7.4 Substitution

Computers 7.8 Substitution (laptop)
Dryers 4.2 Substitution

Standby 10.7 -
Other equipment 2.7 -

The second problem to be solved is to define E (elasticity matrix) and its coefficients.
The evaluation of non-zero values outside the diagonal (i.e., substitution elasticity Eik) is based
on PBLM simulations. To illustrate the procedure, an EH load (rated power 1800 W), working
for conditioning (heating) a living room (30 m2) of a household is used for simulation purposes.
For the sake of simplicity, Figure 6 only shows two out of twenty simulations: steady state in winter
(aggregated daily profile already shown in Figure 2b and a preheating policy followed by a three-hour
control period with 25% of a forced duty cycle (and the energy payback period due to this control).
Other preheating times and forced duty cycles (from 10 to 50%) have been simulated, taking into
account the values of Xi state variable (see Figure 6a,c) to maintain a minimum level of comfort in the
dwelling being conditioned. The conclusion is that Eik values are only effective in the two immediate
hours prior to PDR control period (from 16 to 19 h, see Figure 6) and in the two hours following the
end of the control period. Otherwise, preheating does not have any positive result (more comfort
during the control period, more flexibility in the control period, indirect energy storage in walls).
The simulation also establishes and fixes LReu and LSeu values (eu = EH) in Equation (11) (Figure 6d).
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4. Demand Response to System Events (EDR): Capacity Markets

The qualification of DR&EE resources and bidding rules in Energy and Capacity Markets (CM)
were initially proposed for supply-side resources only. However, the decision of regulators to allow
the participation of demand resources [1] means the necessity to adapt future markets (in some EU
countries) to the different characteristics of each resource. For example, customer and aggregator
should consider:

- Typical time period for events: time of the day (and season) considered as peak periods by ISO.
For example, some ISOs (e.g., NE-ISO) define peak periods on summer and winter weekdays,
whereas other ISOs (e.g., PJM) focused only on summer peak periods. The future trend will be to
consider all the seasons and broader peak periods.

- The types of DR&EE policies that can participate: almost any policy that generates savings at
the time of interest for the ISO. According to some ISO manuals [4], some policies do not meet
the CM definition if new devices do not improve present baselines, the demand is reduced by a
change of behaviour, or the user switches an appliance or process from electricity to gas.

- The operational lifetime of DR&EE policies (in markets): This item is a cumbersome for customer
participation in CM, because the future income largely depends on the decision whether new
investments in EE and DR are engaged or not. The framework is quite different in each specific
market. From four years in PJM to twenty in other markets.

- The aggregation of demand: A minimum resource size is usually required in markets. In the
UK, the minimum proposed size is 2 MW whereas US markets usually allow a minimum size of
100 kW for bidding.

- Resource qualification: the sponsors of DR&EE projects should submit documentation to ISO
to justify the policies being used for energy and demand savings. The DR/EE “supplier” must
demonstrate that their resource is reliable and will accomplish savings at the times considered as
critical periods by ISO. For these M&V plans, it is necessary to know a customer baseline and
then to propose a method that involves the analysis of the impact of a measure.

- Credit requirements, payments and penalties: resources cleared in the market are paid at the
clearing price for the year in question. The pacer of payments can be monthly or weekly. In some
representative US markets, CM prices per kW and month are around $4/kW-year.
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4.1. Evaluation of DR&EE in CM: An Economic Model to Evaluate and Build Demand Packages

It is necessary, in order to fully define the offers resulting from EE&DR (for the participation in CM
markets but also in energy markets), to determine the related costs and revenues, so that the price for
these offers can be set up (the change in energy patterns has been presented in Section 3.1). The value
of each kW package (€/kW-year) to be offered in CM markets can be obtained for a pre-feasibility
study (without taking into account escalation rates, for simplicity) by the Equation (13):

OFP =

[(
CAP + INC ∗ cic + ∑

k
(ICTk ∗ citck) + AGG ∗ li f e + FIN + BAL

)
−

−
(

li f e
∑

i=1
(ENER ∗ pricei) + AIC + OM ∗ li f e + INC

)]
1

PWR∗myears

(13)

The parameters of model (13) are presented in Table 7.

Table 7. Items being considered for the evaluation of energy packages, revisited from [60].

Description Acronym in
(12) Cost Revenue

Energy equipment and costs for any other
miscellaneous items CAP Initial -

Installing DR&EE equipment IC Installing -

Installing a baseline equipment during the lifespan
of EE measures AIC Avoided installing

Installing the load/appliance. If the old appliance
reached the end of its lifespan or lifetime, the

coefficient is 0, otherwise is 1.
cic Installing coefficient

Operation and maintenance of DR&EE policies OM Operation&Maintenance

Adjustments in energy balance between BRP, LSE
and aggregator/customers due to DR BAL Energy balance

Energy savings, losses and payback due to the
application of EE&DR portfolio ENER ∆Energy (savings) ∆Energy

(payback)

Demand clipping due to EE or DR policies PWR ∆Power -

Revenue from utilities or governmental authorities INC - Incentives
subsidies

Revenues in markets if the offer is cleared Cmr Clearing price

N◦ of years that a Demand-Side policy receives the
qualification into the markets (market lifetime). myears Operational lifetime

Operational lifetime of the equipment Life Lifespan

The price of electricity €/kWh (*) price Retail price of electricity

The cost of monitoring, control and communication
devices ICT ICT costs

ICT equipment that can be shared by DR and EE
policies in different markets Cict (0, 1) ICT cost coefficient

The debt interest rate (%) FIN (annual) Financial costs

Estimated costs associated with project design and
management AGG (annual) Aggregator management

5. Results and Discussion

Simulations of residential DR&EE policies through an aggregator, both in energy and capacity
markets, have been performed and are described in this section. This theoretical aggregator manages a
number of residential users (see customer characteristics in Section 2.2) high enough (up to 10 CT with
loads very closed to the load shown in Figure 2a to obtain a minimum level of response of 100 kW
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(minimum size for energy packages. Moreover, it is assumed that around 20–30% of customers are
engaged in DR).

The average price for winter 2015 has been selected. Taking into account that the Spanish Market
does not allow DR policies for small segments, a Capacity Market does not exist (capacity payments
are limited to price-based mechanism to reward supply-side investments) and aggregation is not
allowed [5], PJM prices [4] in CM and Day-Ahead markets are used as a reference for price changes
(see Figure 7a,b. So, they have been used for the proposed models described in Sections 3 and 4.Sustainability 2018, 10, x FOR PEER REVIEW  18 of 27 
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variables/temperatures with and under DR control (Xw: external walls; Xi: indoor; Xrg: roof/ground); 
(b) Demand or an EH average load (1800 W) in steady state and under two control scenarios. 

From a practical point of view, q-hcg aggregations of EH end-uses need to be lagging with 
different intervals to achieve a “flat profile” during the control period. Figure 9 presents some 
simulation results and Table 8 shows in detail outputs from PBLM and load aggregation tools [40]. 
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5.1. Effects of Elasticity: Feedback from PBLM Simulation

Electric heating (EH) loads managed by the aggregator are split in twenty quasi-homogeneous
control groups (q-hcg), with similar sizes and demand. The aggregator energy-management system
is programmed to apply a preheating policy (one and a half hours before peak price period), then
ON/OFF control policies are fitted during the high price periods, taking into account energy paybacks
after control of EHs. The time period selected for control starts at 16 h. Figure 8a,b present some
detailed results in preheating, control and payback periods (assumed baseline profiles in steady-state
and temperature, for simulation purposes, are the curves previously displayed in Figure 2a,b. It can
be seen that preheating has some advantages with regards to conventional control during the control
period (from 16 to 19 h:), that’s to say, increased customer comfort (see Xi in Figure 8a, a lower energy
buyback (see PP-ctr dynamics in Figure 8b and a small increase of indirect storage in building envelope
materials (see Xw in Figure 8a.
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Figure 8. Example of three PBLM simulations: steady state (ss), control from 16 to 19 h (ctr), preheating
from 14–16 h (preh) and a further control (16 a 19 h). Duty cycle 25%. (a) State variables/temperatures
with and under DR control (Xw: external walls; Xi: indoor; Xrg: roof/ground); (b) Demand or an EH
average load (1800 W) in steady state and under two control scenarios.

From a practical point of view, q-hcg aggregations of EH end-uses need to be lagging with different
intervals to achieve a “flat profile” during the control period. Figure 9 presents some simulation results
and Table 8 shows in detail outputs from PBLM and load aggregation tools [40].
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Table 8. Customer load-service state evaluated by the simulation of PBLMs, with several policies.
The load service was the temperature inside living room Xi (◦C).

PBLM State Variable Steady State Preheating DR as Usual DR with Preheating

External Wall temp (Xw) 14.2–14.8 15–14.3 14.8–14.1 15–14.2
Indoor temp (Xi) 19.5–19.1 20.8–19.1 19.5–17.7 20.8–18.0

Ground-roof Temp (Xrg) 18–17.3 18.2–17.3 18–17.1 18–17.3Sustainability 2018, 10, x FOR PEER REVIEW  19 of 27 
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Figure 7b. 
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price-based response for the customer. For this evaluation, a ToU tariff was selected for the 
customer. For simplicity, this tariff has two periods: off peak, from 10 p.m. to 12 a.m. and on peak 
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used in Figure 11b give the changes in demand attributable to PDR. In this table, the reader can 
assess the overall revenue for an average customer. This revenue is due to the benefit from energy 

Figure 9. PBLM simulations for twenty q-hcg groups: (a) EH aggregated demand without and under
DR control (DR: control from 16 to 19; DR&preh: preheating + control); (b) Effects of control in CT curve
in steady state (see Figure 2a and under two control scenarios: preheating and conventional control.

5.2. Effects of Elasticity: PRD Simulation

All the data obtained from PBLM simulations are ready to feed PDR and CM models as input
vectors. The model presented in Section 3.1 has been implemented in Matlab. Several values for
elasticity have been tested. Figure 10 presents values for own elasticity applied to EH end-use and
areas with non-zero values in E matrix in the case of substitution elasticity (for Eik, values from 0.01 to
0.05 have been selected). Remember that this model also takes into account preheating and energy
recovery periods.
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With these values, the model presented in Section 3.1 gives the output shown in Figure 11a,b.
Figure 11a shows the performance of the model for the specific end-use EH (eu = EH) given by
Equation (10). It is important to note that Equation (10) for eu = EH presents coherent results from
the point of view of load flexibility behaviour obtained from PBLM models (see Figures 9 and 11 in
the time interval from 14 to 21 h). Figure 11b shows results for the overall demand of the customer
group (the results for an average customer representative of the aggregation of residential households
in CT load, see Figure 2a.
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It is interesting to evaluate PDR results from an economic point of view to assess the interest of
price-based response for the customer. For this evaluation, a ToU tariff was selected for the customer.
For simplicity, this tariff has two periods: off peak, from 10 p.m. to 12 a.m. and on peak from 12 a.m.
to 10 p.m. During Off-Peak hours, energy would cost a low €0.10 per kilowatt-hour. Between the Peak
hours of 5 p.m. to 8 p.m., the price would be $0.18 per kWh. The energy price in the markets follows
the price shown in Figure 7 but in euros (for simplicity). Table 9 and the data used in Figure 11b give
the changes in demand attributable to PDR. In this table, the reader can assess the overall revenue
for an average customer. This revenue is due to the benefit from energy bids in the energy market,
the change in tariff costs due to the change of demand from on-peak to off-peak and in some case
(preheating) the cost due to the increase in demand or rebound effects (after DR periods as shown
in Table 9). The PJM energy prices in winter from 2014 to 2016 [4] have been used for simulation
purposes, if and only if the prices in the energy market are greater than customer retail price.
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As can be seen in Table 10, the savings due to DR are of limited interest from the point of view
of the customer and the aggregator. The change of revenue due to the flexibility in EH only or in the
overall demand does not justify the complexity in the management of all the customer load. Obviously,
for the energy market, the flexibility and the elasticity of demand-side are an important concern to
improve efficiency, reduce volatility [22,30,43] and to avoid market power from supply-side. Assuming
20 days per season in which the customer (aggregator) can offer DR and also considering these offers
are cleared in the market, the revenue due to DPR (taking into account data in Table 10) reaches
around €15 per season (winter/summer periods). This revenue alone, does not justify the necessary
investments in enabling technology to perform PDR (load monitoring, control and communication).
This fact explains the decrease in PDR revenue in several markets during the last decade [22].

Table 9. Conditions during (control period) and after (payback period) DR policies applied to EH
(HVAC) end-use. Notice m(t) is the ratio (avg) on time vs. on + off switching times for EH [40].

Indicator Steady State DR as Usual Preheating with DR Preheating w/o DR

First payback period (h) - 0.75 0.6 -
Energy during payback (avg., kWh) 3.80 4.39 4.12 -

Operating state during control period, m(t) (%) 57.1 * (1027 W) 25 (514 W) 25 (514 W) 46.62 * (839 W)
Operating state during preheating, m(t) (%) 55.5 - 100 100

Operating state during payback, m(t) (%) 70 77.6 71.6 -
Daily Energy EH (kWh) 16.75 15.65 16.95 17.25

* Load without control, values are shown for comparison purposes.
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Table 10. Economic results for the customer PDR (data: 23 February 2015. Offer period from 16 to 19 h).

Policy Offer (EH
only) (kWh)

Revenue from
Markets (EH) (€)

Change in Tariff
Costs (EH) (€)

Energy Payback 1

(EH) (€)
Offer (Overall

Demand) (kWh)
Revenue from

Markets (€)

DR as usual 1.5 0.37 −0.3 0.1 2.1 0.45
DR with preheating 1.5 0.37 −0.35 0.05 2.1 0.45

1 after DR event.

5.3. Assignation of an Economic Value to DR&EE in Energy Offer Curves

For simulation purposes and to test the model proposed in Section 4.1, four EE&DR policies have
been considered. The labels correspond to EE1: the improvement of window insulation (U factor);
EE2: replacement of two CFL lamps; EE3: the change of a conventional WH with a more efficient
Heat Pump Water Heater (HPWH) and DR1: the management of EH end-use (in a similar way to the
one described in Section 5.1). To determine the size of packages, it is considered that the aggregator
manages 2000 residential customers in Spain (10 CT groups, see Figure 2a). Incentives, subsidies,
ICT costs and CM clearing prices and Day-Ahead prices in the USA and UE have been considered in
some cases [61–64] to improve the significance of results. The substitution of technology is considered
(change of lighting to LED lamps and WH to Heat Pump WH) because it offers an opportunity for DR
(the establishment of synergies between DR and EE). Tables 11 and 12 show some values of coefficients
in Equation (13) for the four DR&EE policies being considered.

Table 11. Example of enabling technology costs: ICT coefficient in Equation (12).

ICT Average of Control Technology ($/kW) Communication and HW Costs ($/Site)

Energy monitoring (SM, NILM) 100–600 2080 1

Lighting control 220–380 1 2080 1

1 see [61].

Table 12. Example of different coefficients in Equation (13).

DR/EE Policy Power Baseline
(kW; kWh/day) PWR (kW) ENER

(kWh/day) CAP €
Price

(€/kWh) INC (€/$)

U factor window 1.3 (W/hm2◦ K) 1.29; 17.94 −0.04 −0.36 100 0.15 $20
LED replacement (2 lamps) 0.080; 0.09 −0.068 −0.033 10 0.15 50% 1

Heat Pump WH 1.2; 2.38 −0.6 −1,19 1100–1800 0.09–1.15 $500
EH peak clipping 1.027; 16.75 −1.502 −1.15 - 1 NA

1 Replacement of 5 or more lamps.

Results from Equation (13), after consideration of the values of coefficients in Tables 11 and 12,
energy market prices and in the case of a market operational lifetime (mlife in Equation (13)) of four
years, are shown in Table 13. The economic model driven by Equation (13) allows analysis of the
sensitivity of energy offers with respect to relevant parameters such as market price, market lifetime
and especially ICT/enabling technology investments.

Table 13. Value of energy offers from Equation (12).

EE/DR Policy Offer Price OFP (€/kW-Year)

EE1: Dwelling insulation (Window U factor) 5
EE2: WH replacement (HPWH) 760
EE3: CFL replacement (LED) <0
DR1: EH management 3
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It is interesting to note that DR1 policy is a candidate to be cleared in the market. To improve the
possibilities of market clearing in the capacity market and to improve the potential in PDR, the use of
Thermal Storage loads is considered (TES), in this case through the use of ceramic bricks as the heat
reservoir. This load is well known in the EU (continental climate areas in Spain, Germany and UK)
and also in the USA. It is an interesting option to EE from an economic point of view and it is also
interesting to deploy mixed policies (EE&DR). Several reports in the literature discuss barriers to the
coordination of energy efficiency and demand response programs [65]. Different residential TES have
been considered from a reputed EU manufacturer [66]. The power of TES loads range from 800 W
to 3200 W (with a storage capacity from 6.4 to 25.6 kWh). The PBLM load model (see Figure 5b has
been used to select the TES demand and the size of the reservoir and for evaluating load response and
customer comfort. Some results are shown in Figure 12. Figure 12a corresponds to the simulation of
a 3.2 kW TES load that only stores in the off-peak period. Figure 12b corresponds to the simulation
of a 2 kW load with two storage policies: in “bid 1” policy the load stores heat only during the
night whereas in “bid 2” strategy the load stores heat during two periods (off-peak and on-peak
periods). In the last case, TES load covers partially the service and support the principal heating
load (for instance a heat pump load, this can be justified because during cold periods heap pumps
suffer from a loss of performance due to low outdoor temperatures during winter season and need an
auxiliary source of heat).
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Figure 12. A simulation of the main TES State variables (see Figure 5b: (a) TES for full storage. Rated
power 3.2 kW, storage capacity 25.6 kWh (b) TES for partial storage. Rated power 2 kW, storage
capacity 16 kWh. The main characteristics of load can be found in [66]. Note that, for the sake of clarity,
the graphic for Xac state (temperature of ceramic bricks, i.e., the heat reservoir) is made to a scale of
1:100.

Table 14 shows five DR policies to evaluate offers (OFP) in the capacity markets through
Equation (13). It has been considered the initial state (conventional EH load), the change of this
load by TES loads and the change of the load by a heat pump and TES load to profit from the ToU tariff.
All the possibilities are cost-effective for the customer because it can reduce both demand charges
(the shift of the customer demand from peak to off-peak hours that shaves peaks in daily load curve)
and energy terms (through the higher efficiency of the heat pump, or by the change of consumption,
from peak to off-peak ToU periods, in the case of TES). In this case, the net benefit obtained from the
participation in the CM ranges from 12 to 24 €/year (demand and energy savings make cost-effective
the deployment of ICT, see these costs in Table 11). The participation in both markets means a net
benefit that reaches 40 €/year without regard to energy savings due to tariffs and other “benefits” for
the customer: the information of cost of each energy use and their management, the contribution to the
sustainability of the power system or the improvement of the service rendered by loads and appliances.
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Table 14. Coefficients in Equation (13) for DR policies.

DR Power Baseline
(kW; kWh/day)

PWR
(kW)

ENER
(kWh/day) CAP €

Price
(€/kWh) Myears OFP

TES 3.2 kW 3.2;18.85 −1.027 +1.15 465 0.15 4 <0
TES 2.0 kW + HVAC 3 kcal/h 2.0; 18.85 −1.502 +1.15 342 0.15 4 <0
TES 0.8 kW + HVAC 3 kcal/h 1.0; 9.75 −1.502 −1.0 231 + 700 0.15 4 <0

EH peak clipping 1.027; 16.75 −1.502 −1.15 - 1 4 <0

6. Conclusions

The improvement of the efficiency in Electricity Markets and the correct operation of Power
Systems can be partially achieved from a more active participation of the demand-side, such as
recognized by regulators worldwide. Moreover, the integration of new renewable resources needs an
increase of the flexibility in the demand-side and small and medium customer segments must develop
a more important role in the future according to their share in the system demand. The engagement of
these segments in DR&EE can benefit from ICT and new tools that make easier the birth, development
and consolidation of new customer skills to answer to markets opportunities and fulfil with power
systems requirements, while managing their energy costs. The flexibility of demand depends on:
the capability of technology to implement DR&EE, the electrical behaviour of loads (i.e., the dynamic
behaviour of loads that explain its demand) and the functional model of load (i.e., the use the consumers
make of loads and their willingness to change their patterns of consumption in response to prices,
incentives or penalties).

A revisited methodology which allows considering customer response to prices through demand
elasticity, customer energy patterns (daily end uses) and elemental and aggregated load dynamics
(trough PBLM models) has been presented in this work to evaluate demand flexibility ranges. The main
advantage of this methodology it that it considers and integrates customer and load behaviours and
not only one of these aspects. Moreover, the method considers the advantages of the disaggregation of
overall demand into elemental end-uses and, in this way, taking into account the boundary conditions
of each appliance/load to provide response. Finally, the model integrates interesting possibilities
such are preheating/precooling policies, demand recovery (energy buyback) or additional demand
(demand losses) explained as a consequence of loss or change of service due to the implementation of
demand response. Summarizing, PBLM provides feedback to customers/aggregators and improve
their right response.

Another concern for customers and aggregators is to determine the value of the energy.
Supply-side has deployed along the years a strong methodology to fix and optimize costs. This is not
an easy task for small size segments, because energy is not the main concern for these users. The paper
proposes a relatively simple model that takes into account the main factors that explain the costs
of demand flexibility and the cost-effectiveness of DR policies. This method also makes possible to
perform a sensitivity analysis of the main parameters that explain DR&EE cost to evaluate potential
risks attributable to those policies: incentives, market prices, capital investments or ICT costs.

The proposed methodology is applied to the case of a group of residential customers in Spain
and focused to the most important and flexible end-use: electric heating/conditioning. Due to
regulatory barriers, the paper also assumes the hypothesis that customer has access to advanced
DR policies and aggregation is allowed at low levels, i.e., one hundred of kW (threshold being used
in several US markets) and uses price of energy and capacity markets which allow aggregation.
The simulations performed are oriented both to define demand offers as well as to simulate the results
of its implementation. Also, some examples of EE policies are considered to test the flexibility of
the methodology.

Medium term objectives of authors in future works are: First the integration of ICT models, with
the support of REDYD2050 Spanish research network, to take into account the requirements of these
technologies in the load response. Second, to refine PBLM models to take into account more loads in
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the models, specially WH, including heat pumps WH. Third, to consider the possibility to include
renewable generation in the demand-side (i.e., prosumers) and finally to adapt the model to consider
new markets and specifically Ancillary Services Markets, where faster and automated models are
required to aggregate and provide response requirements.
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