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Abstract We have investigated the stability of the choline-bind-
ing module C-LytA against sodium dodecyl sulphate (SDS)-in-
duced unfolding at pH 7.0 and 20 �C. A major intermediate
with an unfolded N-terminal region accumulates at around
0.75 mM SDS, whereas 2.0 mM SDS was sufficient for a com-
plete unfolding. This might be the first report of a protein being
extensively unfolded by submicellar concentrations of SDS,
occurring through formation of detergent clusters on the protein
surface. All transitions were reversible upon SDS complexation
with b-cyclodextrin, allowing the calculation of thermodynamic
parameters. A model for the unfolding of C-LytA by SDS is pre-
sented and compared to a previous denaturation scheme by gua-
nidine hydrochloride.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Choline-binding proteins (CBPs) constitute a family of pro-

karyotic polypeptides that can be found in a number of micro-

organisms such as the pathogen Streptococcus pneumoniae [1].

They account for a wide range of functions [2,3], but all of

them share the property of recognizing the presence of choline

in the cell wall by means of a choline-binding module (CBM)

(Pfam ID code PF01473: http://www.sanger.ac.uk/cgi-bin/

Pfam/getacc?PF01473). The major representative of the CBM

family is C-LytA, the C-terminal module of the pneumococcal

LytA autolysin. This 135-aa polypeptide is a repeat protein,

built up from six conserved b-hairpins that configure four cho-

line-binding sites [4]. Binding of choline induces a significant

stabilization, together with dimerization through the C-termi-

nal hairpin [4–6]. The structure of the unligated form is not yet

know. The affinity of C-LytA for choline and structural ana-

logs allows its use as an affinity tag for single-step purification

of recombinant proteins in amine-containing chromatographic

resins upon specific elution with choline [7–9].
Abbreviations: CBM, choline-binding module; Gdn-HCl, guanidine
hydrochloride; CD, circular dichroism; c.m.c., critical micellar con-
centration; DPH, 1,6-diphenyl-1,3,5-hexatriene; LEM, linear extrapo-
lation method
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The stability of the C-LytA module has been studied by ther-

mal [5] and chemical [6] denaturation experiments. Both

approaches showed co-operativity in unfolding and unveiled

the accumulation of partly folded intermediates, allowing the

calculation of thermodynamic stability parameters. However,

despite the absence of a definite hydrophobic core, the protein

cannot be completely unfolded by guanidine hydrochloride

(Gdn-HCl) or guanidine isothiocyanate at neutral pH and

room temperature [6]. This has been ascribed to the unusual

stability of the C-terminal hairpins. Therefore, in order to cal-

culate the overall stability of C-LytA, the use of a stronger

denaturant is necessary. In this sense, sodium dodecyl sulphate

(SDS) is a very well known surfactant that is mostly used for

the thorough denaturation of proteins and their analysis by

polyacrylamide gel electrophoresis (SDS–PAGE) [10]. Pro-

tein–SDS interaction has been well established by binding

isotherms studies. It has been described that an specific, non-

cooperative binding takes place at low SDS concentrations,

mainly guided through ionic interactions. An increase in sur-

factant concentration is subsequently responsible for the

unfolding of the protein by means of hydrophobic forces

[11,12]. There are several models accounting for the structure

of unfolded protein–SDS complexes, although the ‘‘necklace’’

model seems to be supported by most experimental techniques

[12,13]. According to this model, the unfolded polypeptide

chain wraps around SDS micelles like beads in a string. On

the other hand, it should be remarked that many proteins

are highly resistant to SDS denaturation [14], and in some

cases, partly folded states may be stabilized by the detergent

(e.g. [15,16]). There are only few examples of thermodynamic

analyses on the equilibrium unfolding of proteins by SDS

[17–19], despite the fact that SDS denaturation has been dem-

onstrated to be reversible by the addition of cyclodextrins [20]

and that unfolding kinetics are similar to those obtained with

other chemical denaturants [21].

In this work we carry out a thermodynamic equilibrium

study on the unfolding of C-LytA by SDS. We show that sub-

micellar concentrations of SDS are able to extensively unfold

the protein, and that partly folded states also accumulate at

intermediate concentrations of surfactant. Moreover, we pro-

pose a thermodynamic model for the SDS-induced equilibrium

denaturation of this choline-binding module.
2. Materials and methods

2.1. Materials
b-Cyclodextrin and pyrene were purchased from Fluka.

Sodium dodecyl sulphate, 1,6-diphenyl-1,3,5-hexatriene (DPH),
blished by Elsevier B.V. All rights reserved.
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N-acetyltryptophanamide, choline chloride and DEAE-cellulose were
from Sigma–Aldrich. Due to the hygroscopic properties of choline,
concentrated stock solutions were always prepared from a freshly
opened bottle and stored in aliquots at �20 �C.

2.2. Proteins
C-LytA was purified from crude extracts of the overproducing Esch-

erichia coli strain RB791 [pCE17], following the details previously de-
scribed [22] and optimized using the materials and protocols contained
in the C-LYTAG� expression and purification kit (Biomedal). Puri-
fied samples were subsequently dialyzed at 20 �C against 20 mM
sodium phosphate buffer, pH 7.0, to remove the choline used for
elution. Protein concentration was determined spectrophotometrically
[23]. The C-LytA(D32) truncated form was obtained by limited prote-
olysis as described before [6].

2.3. Circular dichroism
Circular dichroism (CD) experiments were carried out in a Jasco J-

810 spectropolarimeter equipped with a Peltier PTC-423S system. Iso-
thermal wavelength spectra were acquired at a scan speed of 50 nm/
min with a response time of 2 s and averaged over at least six scans
at 20 �C. Protein concentration was 12 lM unless otherwise stated,
and the cuvette path-lengths were 0.1 cm (far-UV) or 1 cm (near-
UV). Ellipticities ([h]) are expressed in units of deg cm2 (dmol of resi-
dues)�1.

2.4. Fluorescence
Emission scans were performed at 20 �C on an Aminco SLM8000

spectrofluorimeter using a 5 · 5 mm path length cuvette and a protein
concentration of 12 lM. Tryptophan emission spectra were obtained
using an excitation wavelength of 280 nm, with excitation and emission
slits of 4 nm and a scan rate of 60 nm min�1. The critical micellar con-
centration (c.m.c.) of SDS in 20 mM sodium phosphate, pH 7.0, at
20 �C was determined according to the procedure of Chattopadhyay
and London [24], using DPH as a fluorescence probe. The cuvette path
length was 10 · 10 mm, and excitation and emission slits were set to
1 nm. Formation of SDS clusters or micelles was followed by measur-
ing the ratio of I3 to I1 fluorescence bands of pyrene at 385 and 373 nm,
respectively, using the method described by Turro et al. [12]. Excitation
wavelength was 335 nm, with excitation and emission slits of 0.4 and
1 nm respectively.

2.5. Thermodynamic analysis
For SDS titrations, aliquots from a 4.0 mM stock solution of deter-

gent in 20 mM phosphate buffer, pH 7.0 (plus the corresponding addi-
tions), were added stepwise and incubated for 5 min prior to record the
spectra (this waiting time was sufficient for the system to reach equilib-
rium). Experiments were repeated at least three times. Unfolding of
monomeric C-LytA (i.e., in the absence of choline) was assumed to
occur through a three-step process:

F¡I¡U ð1Þ

where F, I and U represent the folded, intermediate and unfolded
species. Data were fitted by least squares to two consecutive two-state
processes according to the linear extrapolation method of Greene and
Pace [25], using the SigmaPlot utilities (SPSS Science):

DGXY ¼ DG0
XY � mXY½SDS� ð2Þ

where DGXY and DG0
XY are the free energies of unfolding of state X rel-

ative to state Y in the presence and absence of denaturant, respectively,
and mXY represents the dependence of DGXY with respect to [SDS].
From Eq. (2), it follows:

DG0
XY ¼ mXY½SDS�ð1=2ÞXY ð3Þ

being [SDS](1/2)XY the denaturant concentration at which the equilib-
rium constant KXY equals 1. In this case, it corresponds to the mid-
point of the transition.

As an alternative to the linear extrapolation method, we attempted
data fitting using the denaturant binding model by Aune and Tanford
[26], assuming discrete, equivalent and noninteracting binding sites for
the denaturant:

DGXY ¼ DG0
XY � DnRT lnð1þ kaÞ ð4Þ
where Dn is the difference in the number of binding sites between Y and
X, k is the SDS binding constant and a is the activity of the denaturant.

Unfolding of dimeric, choline-ligated C-LytA was assumed to occur
via a dimeric intermediate that further denatures following an unfold-
ing-dissociation coupled equilibrium:

ðFÞ2¡ðIÞ2¡2U ð5Þ

In this case, the unfolding of the intermediate depends on protein con-
centration according to

fu ¼ ½ðK2
UI þ 8KUIP tÞ1=2 � KUI�=4P t ð6Þ

where fu is the fraction of unfolded protein, KUI is the equilibrium con-
stant and Pt is the total protein concentration. fu can be calculated
from the relative change in ellipticity at any SDS concentration with
respect to the total change in ellipticity upon denaturation. On the
other hand, DGUI is related to KUI and, therefore, the mUI and
[SDS](1/2)UI parameters (Eqs. (2) and (3)) can be directly calculated:

KUI ¼ expð�DGUI=RT Þ ¼ expf�mUIð½SDS�ð1=2ÞUI � ½SDS�Þ=RTg ð7Þ

It should be noted that, in this case, due to the change in molarity upon
denaturation, [SDS](1/2)UI does not correspond to the midpoint of the
transition.
3. Results and discussion

3.1. Equilibrium denaturation of C-LytA by SDS

Far-UV CD is a suitable technique for monitoring the

degree of structure of C-LytA [6,27]. The spectrum of the pro-

tein at 20 �C in 20 mM sodium phosphate, pH 7.0, is domi-

nated by positive aromatic contributions centered around

223 nm (Fig. 1A), as described before [23]. As shown in the

figure, addition of 2.0 mM SDS induces the loss of the positive

peak, rendering an spectrum comparable to that of the ther-

mally, fully unfolded protein. This suggests that such a concen-

tration of surfactant might induce the unfolding of the

polypeptide. On the other hand, the intrinsic fluorescence

emission spectrum of C-LytA displays a peak around 342 nm

(Fig. 1B). In this case, the presence of 2.0 mM SDS induces

a decrease in the intensity together with a small blue-shift to

339 nm, that reflects both an enhanced quenching by the sol-

vent and a decrease in the polarity of the environment sur-

rounding the tryptophan residues. An inspecific effect of the

SDS-containing solvent on the intrinsic tryptophanyl fluores-

cence can be ruled out since a spectrum of N-acetyltryptoph-

anamide recorded in the presence or in the absence of

2.0 mM SDS showed no significant differences (data not

shown). To check whether the mentioned blue-shift in fluores-

cence might arise from the burial of tryptophanyl side chains

in a hydrophobic core, we recorded the near-UV CD spectrum

of the protein in the same conditions. It can be seen in Fig. 1C

that 2.0 mM SDS yields a featureless spectrum throughout the

wavelength range, again similar to that of the unfolded pro-

tein, indicating the absence of a rigid environment around

any aromatic residues despite the abundance of these and their

regular distribution throughout the sequence. The spectrum

did not change upon addition of 20 mM SDS (data not

shown). Therefore, we can assume that the protein is exten-

sively unfolded in 2.0 mM SDS, and that the blue-shifted fluo-

rescence spectrum may be originated from the influence of

nearby hydrophobic SDS molecules adsorbed onto the poly-

peptide chain. Moreover, the c.m.c. of SDS in the above

conditions was determined experimentally to be 3.25 mM. To

our knowledge, this is the first reported case of a compact,
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Fig. 2. Equilibrium denaturation of C-LytA by SDS. (d), ellipticity at
222 nm; (s), fluorescence intensity at 340 nm. Solid lines are least
square fits to a three-state model according to Eq. (2).
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Fig. 1. Spectroscopical features of C-LytA. (A) Far-UV CD spectra of
C-LytA in phosphate buffer (——) and upon addition of 0.75 mM
SDS (–––), 2.0 mM SDS (m) and 2.0 mM SDS plus 4.0 mM b-
cyclodextrin (s). The spectra of thermally unfolded C-LytA at 95 �C
(h) and the I1 intermediate accumulated in 2.0 M Gdn-HCl (d) [6] are
also displayed. (B) Intrinsic fluorescence spectra of C-LytA in
phosphate buffer (——) and upon addition of 0.75 mM SDS (–––),
2.0 mM SDS (m) and 2.0 mM SDS plus 4.0 mM b-cyclodextrin (s).
(C) Near-UV CD spectra in phosphate buffer at 20 �C (——), upon
addition of 0.75 mM SDS (–––), upon addition of 2.0 mM SDS (m),
and in phosphate buffer at 95 �C (h).
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folded protein that is fully denatured below the c.m.c. It should

be mentioned that Gudiksen et al. [28] by means of an exhaus-

tive study using capillary electrophoresis, have previously sug-

gested the possibility of the denaturation of several proteins

below the c.m.c., although in their study there is no biophysical

characterization of the degree of unfolding.
Fig. 1A and B also show that SDS denaturation is promptly

reversible by the addition of a 2:1 molar ratio of b-cyclodex-

trin, as described for other proteins [21]. This makes the

SDS unfolding of C-LytA amenable to be analyzed by equilib-

rium thermodynamics. It should be pointed out that detergent

dilution was also an effective method for renaturation,

although in a much higher time scale (data not shown).

Fig. 2 displays the equilibrium denaturation profiles monitored

by far-UV CD and fluorescence. In both cases a clear biphasic

transition is detected, with a plateau around 0.75 mM SDS,

suggesting the accumulation of an intermediate (ISDS). The

CD and fluorescence spectra of ISDS are shown in Fig. 1.

The spectral characteristics are somehow intermediate between

those of the native and the fully denatured protein, indicating a

significant loss of secondary and tertiary structure. We also

performed a near-UV CD-monitored titration, with similar

results to those showed in Fig. 2 when plotting the ellipticity

at 265 nm (data not shown). However, trying to follow the

tyrosine and tryptophanyl signals in the 280–295 range failed

to yield good curves, due to the low difference in intensity be-

tween the spectra of the folded and unfolded states in this

region (Fig. 1C). The unfolding transitions were independent

of protein concentration in the range 2–12 lM (data not

shown), indicating that the [SDS]/[C-LytA] ratio is not a signif-

icant parameter. Moreover, as described above, the far-UV

CD spectrum of C-LytA contains contributions from aromatic

side-chains. Nevertheless, we checked that the CD-monitored

denaturation transitions were independent of the wavelength

at least in the 210–235 nm range (data not shown). Since the

aromatic contributions strongly depend on the wavelength

[27], this result suggests that secondary and tertiary structures

unfold jointly.

Free energies of unfolding were determined by the linear

extrapolation method (LEM) described by Greene and Pace

[25]. The results of the fittings are shown in Table 1. As an

alternative, we tried to use the Eq. (4) developed by Aune

and Tanford [26], that assumes the presence of a discrete num-

ber of binding sites in the protein for the denaturant. However,

in this case, fittings were always poor and very dependent on

initial estimates when applying least squares methods (data

not shown). According to our calculations (Table 1) both

CD and fluorescence-monitored transitions display similar

energetics. While the denaturation midpoints are precisely

calculated, the major errors affect to the m values, which affects

the calculation of the partial free energies (DG0
IF and DG0

UI)



Table 1
Thermodynamic stabilities of C-LytA and C-LytA(D32) in 20 mM sodium phosphate buffer, pH 7.0, and 20 �C

Protein Addition Technique mIF

(kJ mol�1 mM�1)
[SDS](1/2)IF

(mM)
DG0

IF

ðkJ mol�1Þ
mUI

(kJ mol�1 mM�1)
[SDS](1/2)UI

(mM)
DG0

UI

ðkJ mol�1Þ
DG0

UF

ðkJ mol�1Þa

C-LytA None CD 33.9 ± 10.9 0.5 ± 0.1 17.5 ± 7.9 23.0 ± 1.3 1.1 ± 0.1 25.1 ± 1.3 42.6 ± 7.9
None Fluorescence 48.9 ± 9.2 0.4 ± 0.1 20.5 ± 5.8 18.8 ± 1.7 1.0 ± 0.1 19.2 ± 1.7 39.7 ± 6.3
100 mM
NaCl

CD 71.3 ± 17.9 0.3 ± 0.1 21.4 ± 9.8 42.1 ± 2.6 0.6 ± 0.1 25.3 ± 2.1 46.7 ± 10.0

3.0 mM
cholineb

CD N.D.c N.D. N.D. 41.2 ± 5.0d 2.0 ± 0.1 41.2 ± 7.1e N.D.

3.0 mM
cholinef

CD N.D. N.D. N.D. 40.1 ± 1.9d 2.3 ± 0.1 46.1 ± 3.0e N.D.

C-LytA(D32) None CD N.D. N.D. N.D. 21.3 ± 0.8 1.0 ± 0.1 21.3 ± 0.8 N.D.

aDG0
UF ¼ DG0

IF þ DG0
UI.

bFittings using Eq. (5); [C-LytA] = 1.2 lM.
cN.D., not determined.
dValues are per mole of dimer.
eValues are per mole of monomer.
fFittings using Eq. (5); [C-LytA] = 12.0 lM.
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(Eq. (3)). An average value of 41.2 ± 9.7 kJ mol�1 was ob-

tained for the overall free energy of unfolding ðDG0
UFÞ, and,

as expected, it was higher than the previous results on the par-

tial unfolding of C-LytA by Gdn-HCl (30.9 kJ mol�1) [6]. It

could be argued that the difference in energies may also be

due to differential charge screening by each denaturant. How-

ever, we have checked by thermal unfolding experiments that

the stability of C-LytA is independent of ionic strength at least

up to 1.5 M NaCl (data not shown), so that screening effects

seem to have little effect on stability.

Previous results have revealed that the N-terminal part of C-

LytA is especially susceptible to thermal and chemical unfold-

ing [5,6]. To check this point in our study, we analyzed the

denaturation of C-LytA(D32), a truncated form of C-LytA

lacking the first b-hairpin and turns [6]. Fig. 3 shows that in

this case the first co-operative transition is drastically dimin-

ished in intensity, whereas the second one fully remains (Table

1). This suggests that the ISDS species involves the unfolding of

the amino-terminal structure of C-LytA. In this sense, it has

been shown that a similar intermediate (I1), lacking structure

in the N-terminal region, may accumulate in the presence of
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Fig. 3. Equilibrium denaturation of C-LytA(D32) by SDS, monitored
by far-UV CD (D). Solid line represents the fit of the second transition
to a two-state model using Eq. (2). Denaturation of full-length C-LytA
(d) is shown for comparison purposes.
2.0 M Gdn-HCl [6]. However, both intermediates must be of

different nature, since the unfolding transition leading to the

accumulation of ISDS is co-operative (Fig. 2), unlike that of

I1 [6], and therefore should be more energetic. Moreover, the

far-UV CD spectrum of ISDS has a lower intensity than that

of I1 (Fig. 1A), suggesting a higher degree of unfolding.

3.2. Mechanism of SDS-induced denaturation

Unfolding by SDS is thought to occur by formation of SDS

clusters or ‘‘hemi-micelles’’ on the protein surface, onto which

the polypeptide chain wraps [12,13]. To check whether this

model could be applied to C-LytA denaturation below the

SDS c.m.c., we used the pyrene assay described by Turro

et al. [12]. Briefly, the insertion of pyrene in hydrophobic envi-

ronments such as detergent micelles is detected by the increase

in the ratio of fluorescence bands I3/I1 (Fig. 4A). As shown in

Fig. 4B, the maximum of the I3/I1 ratio in phosphate buffer

was achieved at approximately 3 mM SDS, in agreement with

the c.m.c. value of 3.25 mM obtained with the DPH probe as

mentioned above. On the other hand, when the titration was

performed in the presence of C-LytA, the ratio I3/I1 increased

even at the lowest SDS concentrations tested, and saturation

was achieved at approximately 1.3 mM (Fig. 4B). This result

is in agreement with the hypothesis of protein-induced SDS

clusters as responsible for C-LytA denaturation, even though

the bulk SDS concentration is below the c.m.c.

Investigation of the importance of ionic interactions in the

SDS binding by C-LytA was first attempted by performing

denaturation titrations at acidic pH. However, below pH 6

the solubility of the protein substantially decreased, so that

spectroscopical measurements were not feasible. Alternatively,

we tried to use cationic analogs of SDS at pH 7.0 such as dode-

cylamine and dodecyltrimethylammonium, but it was not use-

ful either, due to the very low solubility of the former and the

peculiar structure of the latter compound which, as a tertiary

alkylamine, acted at low concentrations as a choline analog

rather than as a detergent. Finally, we carried out unfolding

experiments in the presence of 100 mM NaCl. We checked that

the transitions occurred in a SDS range below the c.m.c. in the

presence of the salt (1.25 mM) (data not shown). Table 1

shows that this moderate ionic strength induces a significant

increase in the mIF and mUI parameters, concomitant with a
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decrease in the [SDS]1/2 values. Nevertheless, the stabilization

energies of both the native and the intermediate states remain

unaltered within experimental error, in accordance with the

stability of C-LytA not being affected by ionic strength (see

above). This result seems to confirm the formation of SDS

clusters or hemi-micelles on the surface that are promoted at

lower concentrations of detergent due to the salt effect. More-

over, this finding supports the use of the LEM procedure for

the calculation of unfolding energies using SDS, with the cau-

tion that the m and [SDS]1/2 parameters may be extremely

dependent on the experimental conditions (Table 1). The true

importance of the protein-detergent electrostatic component

should better be evaluated in the future using C-LytA mutants

with a modified surface charge but with the same stability than

the wild-type protein.

3.3. Unfolding of choline-ligated C-LytA

The four choline-binding sites of C-LytA display both high-

and low-affinity characteristics, being the high-affinity ones

responsible for the dimerization of C-LytA through its C-ter-

minal hairpin [5,27]. Fig. 5A displays the CD-monitored

unfolding of C-LytA in the presence of 3.0 mM choline, a con-
centration that specifically saturates the high-affinity binding

sites [5,27]. Two major transitions were detected, although

shifted to higher SDS concentrations with respect to the free

protein (Fig. 2), and in accordance with a significant stabiliza-

tion of C-LytA by choline [5,6]. A plateau is visible at around

1.0 mM SDS, suggesting the accumulation of an intermediate

(ISDScho). On the other hand, when the experiment was re-

peated using a 10-fold less concentrated sample, only the tran-

sitions occurring at the higher SDS concentrations were

affected (Fig. 5A). This suggests that the ISDScho species is di-

meric, like the choline-bound native state, and that its denatur-

ation by SDS involves a coupled dissociation-unfolding

process that should be dependent on protein concentration.

This is also in agreement with the observation that the spec-

trum of the ISDScho state shows distinct characteristics with re-

spect to the unligated ISDS (Fig. 5B and C), probably as a

consequence of its oligomerization state and/or bound choline

molecules, and reinforces the hypothesis that the C-terminal

moiety of C-LytA, involved in dimerization, constitutes the

region of maximum stability of the protein [5,6]. Whereas

the Folded) ISDScho transition is complex and reveals a series

of kinks that suggests the accumulation of other minor inter-

mediates, the denaturation of dimeric ISDScho could be fitted

to a coupled unfolding-dissociation model (Eqs. (6) and (7)).

Results were similar when using two different concentrations

of the protein (Table 1), adding a new argument in favour of

the use of LEM for SDS denaturation. An average value of

43.7 ± 7.7 kJ(mol of monomer)�1 for DGUI accounts for the

increased stability of the C-LytA intermediate, acquired upon

dimerization together with the filling of the high-affinity cho-

line-binding sites.

Fig. 5D shows the SDS denaturation of C-LytA in the pres-

ence of 25 mM choline, a concentration sufficient to saturate

all choline-binding sites of C-LytA [5] and to induce a further

increase in the thermal and chemical stability of the protein

[5,6]. Nevertheless, contrary to the denaturation by Gdn-HCl

[6], the unfolding pattern displays similar characteristics than

in the presence of 3.0 mM ligand, i.e., accumulation of multi-

ple intermediates followed by a cooperative transition, but all

processes taking place at higher SDS concentrations. A dena-

turation carried out at 50 mM followed the same trend (data

not shown). We did not attempt to fit the data to LEM

equations as we determined that the c.m.c. of SDS at this con-

centration of choline was 1.0 mM, so that the state of aggrega-

tion of SDS in the bulk solution indeed varied throughout the

titration range.
3.4. A model for C-LytA denaturation

We propose the scheme in Fig. 6 to account for the unfold-

ing of the C-LytA protein. Partly folded intermediates accu-

mulate at low concentrations of surfactant either in the

presence or in the absence of choline. Such intermediates

may contain an unfolded N-terminal moiety, similarly to those

accumulated in low concentrations of Gnd-HCl [6]. SDS dena-

turation allowed the calculation of thermodynamic parame-

ters, avoiding the uncomplete and irreversible steps that are

found when using Gnd-HCl as denaturant [6]. The calculated

overall stability of the unligated protein is 41.2 kJ mol�1, a va-

lue that is in the usual range for compact, fully folded proteins

[29]. However, despite its thermodynamic stability, extensive

unfolding takes place below the SDS c.m.c (3.25 mM), in what
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Fig. 5. Unfolding of dimeric C-LytA by SDS in the presence of choline. (A) Equilibrium titration monitored by far-UV CD in the presence of
3.0 mM choline. Protein concentration was 1.2 lM (s) or 12 lM (d). Solid lines indicate fits of the second transitions to Eqs. (6) and (7). (B) Far-UV
CD wavelength spectrum of the ISDScho intermediate stabilized in 1.0 mM SDS plus 3.0 mM choline (s). The spectrum of the ISDS intermediate in
0.75 mM SDS (d) is shown for comparison. (C), Near-UV CD spectra of the ISDS and ISDScho intermediates. Same scheme as in (B); (D) Equilibrium
titration monitored by far-UV CD in the presence of 25 mM choline. Protein concentration was 12 lM.
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Fig. 6. A proposed denaturation scheme of C-LytA by SDS and Gdn-
HCl. (A) in the absence of choline; (B) in the presence of 3.0 mM
choline. Dashed arrows indicate steps that cannot be accomplished at
20 �C and pH 7.0. Data about Gdn-HCl denaturation are taken from
[6].
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it seems to be the first reported case of a full denaturation at

such low concentrations of detergent. The mechanism of

unfolding follows similar patterns than those described for

other proteins, i.e., formation of SDS clusters on the protein

surface [12,13]. This might represent a widespread mechanism

of SDS-induced unfolding. We believe that C-LytA, and pos-

sibly other related choline-binding modules, may constitute

good systems to study in detail the mechanism of protein dena-

turation by SDS.
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