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Abstract 

Background Gut metabolites are key actors in host‑microbiota crosstalk with effect on health. The study of the 
gut metabolome is an emerging topic in livestock, which can help understand its effect on key traits such as animal 
resilience and welfare. Animal resilience has now become a major trait of interest because of the high demand for 
more sustainable production. Composition of the gut microbiome can reveal mechanisms that underlie animal resil‑
ience because of its influence on host immunity. Environmental variance  (VE), specifically the residual variance, is one 
measure of resilience. The aim of this study was to identify gut metabolites that underlie differences in the resilience 
potential of animals originating from a divergent selection for  VE of litter size (LS). We performed an untargeted gut 
metabolome analysis in two divergent rabbit populations for low (n = 13) and high (n = 13)  VE of LS. Partial least 
square‑discriminant analysis was undertaken, and Bayesian statistics were computed to determine dissimilarities in 
the gut metabolites between these two rabbit populations.

Results We identified 15 metabolites that discriminate rabbits from the divergent populations with a prediction 
performance of 99.2% and 90.4% for the resilient and non‑resilient populations, respectively. These metabolites were 
suggested to be biomarkers of animal resilience as they were the most reliable. Among these, five that derived from 
the microbiota metabolism (3‑(4‑hydroxyphenyl)lactate, 5‑aminovalerate, and equol, N6‑acetyllysine, and serine), 
were suggested to be indicators of dissimilarities in the microbiome composition between the rabbit populations. 
The abundances of acylcarnitines and metabolites derived from the phenylalanine, tyrosine, and tryptophan metabo‑
lism were low in the resilient population and these pathways can, therefore impact the inflammatory response and 
health status of animals.

Conclusions This is the first study to identify gut metabolites that could act as potential resilience biomarkers. The 
results support differences in resilience between the two studied rabbit populations that were generated by selec‑
tion for  VE of LS. Furthermore, selection for  VE of LS modified the gut metabolome, which could be another factor that 
modulates animal resilience. Further studies are needed to determine the causal role of these metabolites in health 
and disease.

Background
Gut metabolites are key actors in host-microbiota 
crosstalk and can have either beneficial or detrimen-
tal effects on the host [1–3]. They can act in the gut 
or travel through the plasma to reach the host’s tis-
sues, i.e. they can influence the functions of the liver, 
brain, and immune system [4]. Gut metabolites can 
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be derived from (i) the microbiota, due to the conver-
sion of non-digestible components from the diet or 
to de novo synthesis, (ii) the host, and (iii) the diet. 
Metabolites from the host can also be modified by the 
gut microbiota [5, 6]. In livestock, the study of the gut 
metabolome is an emerging topic. Recently, differences 
in the gut metabolome have been found to be associ-
ated with traits such as feed efficiency [7, 8] and milk 
yield protein [9]. Thus, the study of the gut metabo-
lome can help to expand the knowledge on the interac-
tions between the gut and peripheral tissues, and also 
to understand its effect on key traits such as methane 
emission and animal resilience.

Animal resilience has become a major trait of inter-
est in livestock because of the high demand for more 
sustainable livestock systems. Resilience is the ability 
of animals to maintain or quickly recover their pro-
duction performance when an environmental per-
turbation occurs [10]. Since environmental variance 
 (VE) is highly correlated with animal resilience, it is 
an interesting trait for measuring resilience [10–12]. 
Indeed, animals with a low  VE for a given trait seem 
to cope better with environmental disturbances [11, 
12]. Quantitative genetics and genomic studies in dif-
ferent species underline the importance of the immune 
system in modulating animal resilience [13–16]. The 
gut metabolome is closely related to the modulation of 
the immune system [3, 17], thus its study could pro-
vide insight into the mechanisms that underlie animal 
resilience.

A previous metagenomic study found that microbi-
ome composition (genes and species) differs between 
two rabbit populations that had been selected for high 
and low  VE of litter size (LS) [18]. These two lines 
showed a notable genetic response to this selection, 
and also correlated responses in resilience indicators 
that were measured after a vaccination challenge [12] 
or immediately following first parity [14]. The present 
study is an extension of a previous metagenome study 
[18] and its aim was to identify gut metabolites that are 
related to the resilience potential of these rabbit pop-
ulations. The gut microbiome is a complex ecosystem 
that is strongly influenced by environmental factors 
[19, 20] and the origin of metabolites [6]. Reducing the 
impact of confounding factors is necessary to correctly 
decipher variability in the gut metabolome that under-
lies complex traits. The rabbit populations used in this 
study are coetaneous and were selected under the same 
environmental conditions and diet for 13 generations, 
and also showed differences in resilience potential [12, 
14]. Thus, they constitute an exceptional resource to 
identify gut metabolites that can act as biomarkers of 
animal resilience.

Methods
The rabbits used in this study belonged to the 13th gen-
eration of a divergent selection experiment for high 
and low  VE of LS that was carried out at the University 
Miguel Hernández of Elche (Spain) [21]. Cecum samples 
were collected from 28 does (14 from each population) 
that were sacrificed after their first parity by intravenous 
injection of sodium thiopental at a dose of 50 mg/kg of 
body weight (Thiobarbital, B. Braun Medical S. A., Bar-
celona, Spain). The samples were homogenized in 50-mL 
Falcon tubes and aliquoted in 2-mL cryotubes for imme-
diate snap-freezing in liquid nitrogen and storage at 
− 80 °C until they were processed.

Untargeted metabolite analysis of the gut content was 
conducted on the Metabolon Discovery HD4 platform. 
The samples were prepared by the Hamilton Company’s 
automated MicroLab STAR® system. Prior to extraction, 
several recovery standards were added for quality control 
purposes. Proteins in the samples were precipitated with 
methanol under vigorous shaking for two min, followed 
by centrifugation to recover chemically diverse metabo-
lites. The resulting extract was divided into five aliquots 
and the TurboVap® (Zymark) evaporator was used to 
remove organic solvents.

The metabolites in the gut were profiled by Ultrahigh 
Performance Liquid Chromatography (UPLC) and Tan-
dem Mass Spectrometry (UPLC-MS/MS) with nega-
tive and positive ion mode electrospray ionization (ESI). 
All methods used a Waters ACQUITY UPLC system 
(Waters, Milford, MA, USA) and a Q-Exactive high reso-
lution/accurate mass spectrometer (Thermo Fisher Sci-
entific) interfaced with a heated electrospray ionization 
(HESI-II) source and an Orbitrap mass analyser oper-
ated at 35,000 mass resolution. The aliquots were dried 
and resuspended in solvents that are compatible with the 
method used and that contain standards at fixed concen-
trations to ensure injection and chromatographic consist-
ency. Quality control samples were injected throughout 
the platform run to remove artifacts and background 
noise and to distinguish biological variability from pro-
cess/instrument variability.

Among the five aliquots, two were analysed by two sep-
arate reverse phase (RP)/UPLC-MS/MS methods with 
the acidic positive ion mode ESI. One was chromato-
graphically-optimized for more hydrophilic compounds 
and the other for more hydrophobic compounds. To 
detect the former, the aliquot was gradient-eluted from 
a C18 column (Waters UPLC BEH C18-2.1 × 100  mm, 
1.7  µm) using a water and methanol solution that con-
tained 0.05% perfluoropentanoic acid (PFPA) and 0.1% 
formic acid (FA). To detect the latter, the aliquot was 
gradient-eluted from the same C18 column but using an 
overall higher organic solution composed of methanol, 
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acetonitrile, water, 0.05% PFPA, and 0.01% FA. The 
third aliquot was analysed by RP/UPLC-MS/MS with 
the basic negative ion mode ESI using a separate dedi-
cated C18 column and eluted with methanol, water, and 
6.5  mM of ammonium bicarbonate at pH 8. The fourth 
aliquot was analysed via a negative ion mode ESI with a 
HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 
1.7  µm), using a gradient of water and acetonitrile with 
10 mM ammonium formate at pH 10.8. The last aliquot 
was reserved for backup. Raw data files were obtained 
after tandem mass spectrometry analysis by alternat-
ing between MS and data-dependent  MSn scans, using 
dynamic exclusion. The scan range varied slightly 
between chromatography methods but covered a 70 to 
1000 mass to charge ratio (m/z).

Raw data were extracted, peaks were identified, and 
quality control was processed on the Metabolon hard-
ware and software. In total, 765 metabolites were iden-
tified by a library that included three criteria of more 
than 3300 authenticated standard components: retention 
time/index (RI), mass to charge ratio (m/z), and chro-
matographic data, including MS/MS spectral data. All 
three criteria can be used to distinguish and differentiate 
metabolites. Metabolite quantification was based on the 
area-under-the-curve of the detected peaks.

All statistical analyses were done in R [22]. A principal 
component analysis was computed using 480 of the 765 
metabolites that had no missing values. Of the 28 ani-
mals, 13 animals remained in the datasets from both the 
low (resilient) and the high (non-resilient)  VE of LS popu-
lations. Metabolites with more than 20% missing values 
[23] within each population were considered uninforma-
tive and were removed from the dataset. The remaining 
missing values were replaced by half of the minimum 
peak intensity identified by the UPLC-MS/MS method 
to which each metabolite belonged. Due to the compo-
sitional nature of metabolomic data [24], the data on 654 
metabolites from the 26 samples were transformed using 
the additive log-ratio (ALR) transformation, as follows:

where the number of total ALR is j-1, j being the total 
number of variables in the dataset and xref  is the refer-
ence variable (uracil nucleotide) with the lowest coeffi-
cient of variation. Procrustes correlation was performed 
to check for lack of isometry in the transformed dataset 
[25]. ALR-transformed data were auto-scaled to a mean 
of 0 and a standard deviation (SD) of 1.

A partial least square-discriminant analysis (PLS-DA) 
was performed to identify the most relevant metabo-
lites for discriminating rabbits from the resilient and 
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non-resilient populations. The PLS-DA model was 
computed using the mixOmics package in R [26], using 
a categorical vector y that indicates the rabbit popula-
tion for each sample (high or low  VE), and a matrix X 
with the ALR of each metabolite for each sample. The 
optimal number of components was that with the low-
est balance error rate (BER) for Mahalanobis distance, 
computed by fourfold cross-validation repeated 100 
times. Metabolites that had a contribution to model 
prediction or variable important prediction (VIP) less 
than 1 were removed from the dataset, and a new PLS-
DA model was computed [27]. PLS-DA model com-
puting and variable selection were performed until the 
lowest BER was achieved.

The prediction performance of the final model was 
validated using a confusion matrix and a permuted-
confusion matrix. The former was constructed by four-
fold cross-validation repeated 10,000 times using the 
Mahalanobis distance to predict the rabbit populations. 
The accuracy and precision of the model were calculated 
considering that the resilient population was the true 
positive value. We also computed a permuted-confusion 
matrix by randomizing the categorical y vector to check 
whether the prediction performance of the final models 
was spurious, i.e. whether the percentage of true positives 
in the permuted-confusion matrix was far from the 50% 
expected under random assignment of two categories.

Bayesian statistics were used to determine the relevance 
of the difference in the metabolite abundance between 
the two rabbit populations using a model that included 
a single effect for line and flat priors for all unknowns. 
Marginal posterior distributions of the unknowns were 
estimated by Monte Carlo Markov chains (Gibbs sam-
pling) using four chains with a length of 50,000 iterations, 
a lag of 10, and a burn-in of 1000 iterations. The posterior 
mean of the difference in metabolite abundance was esti-
mated as the mean of the marginal posterior distribution 
of the difference between the resilient and the non-resil-
ient populations. These differences were quantified in 
units of SD of each metabolite. The probability of the dif-
ference [28] being greater (if the difference is positive) or 
less (if negative) than 0  (P0) was also calculated. To estab-
lish a threshold for the identification of relevant metabo-
lites an approximation of the false discover rate (FDR) of 
Storey [29] was calculated based on the cumulative pos-
terior error probability (PEP), similar to the q-value. The 
PEP was calculated as (1 − 0)/0.5. We assumed a cumula-
tive PEP of 0.05, meaning that approximately 5% of the 
relevant metabolites identified were allowed to be false 
positives. Then, we performed an analysis for assigning 
the biological origin of each relevant metabolite using the 
metOrigin tool [30]. A full record of the method used is 
in Additional file 1.
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Results
This study included 13 rabbits from a resilient and 13 
rabbits from a non-resilient population, and for which 
765 untargeted metabolites were identified from their 
guts. The Bayesian statistical analysis identified 66 
metabolites with relevant differences (> 0.67 SD units) in 
abundance between the two populations (see Additional 
file 2: Table S1). The PLS-DA model for these 66 metabo-
lites showed a prediction performance of 71 and 90% for 
the non-resilient and resilient animals, respectively. The 
most representative pathways were the long-chain fatty 
acylcarnitines (LCFA) metabolism, histidine metabolism, 
endocannabinoid metabolites, glycine, serine, and threo-
nine metabolism, and tryptophan metabolism (Fig.  1a) 
and (see Additional file 2: Table S1). Of these 66 relevant 
metabolites, 29% were associated with a co-metabolism 
because they can be produced by both the host and the 
microbiota, 12% were associated with the microbiota (de 

novo synthesis), 27% were associated with other sources 
(24% food related and 3% drug related), and 32% could 
not be traced back to their origin (Fig. 1b).

We also performed an optimized PLS-DA to identify 
the most relevant metabolites, i.e. those that reached the 
highest prediction performance, and found 15 metabo-
lites with a prediction performance of 99.2 and 90.4% 
for, respectively, animals from the resilient and the non-
resilient populations (Fig.  2a), i.e. behenoylcarnitine 
(C22), arachidoylcarnitine, ethyl beta-glucopyranoside, 
3-(4-hydroxyphenyl)lactate, 5-aminovalerate, glycer-
ophosphoglycerol, succinylcarnitine, equol, cysteine 
s-sulfate, betaine, serine, palmitoyl dihydrosphingomy-
elin, thiamine, and aconitate. These 15 metabolites are 
proposed as potential resilience biomarkers due to the 
low error achieved by the model to predict the divergent 
population that they belonged to. Thirteen of these 15 
metabolites matched with those that were identified in 

Fig. 1 Pathway and biological origin of metabolites with a relevant difference in abundance between the divergent rabbit populations. a Pathways 
of the 66 metabolites identified with a relevant difference in abundance between the resilient and non‑resilient rabbit populations. b Biological 
origin of the 66 metabolites with a relevant difference in abundance between the two rabbit populations. “Co‑metabolism” refers to metabolites 
that are shared between the host and the microbiota. “Microbiota” are microbiota‑derived metabolites. “Food related” are metabolites obtained from 
the diet. “Drug” refers to drug‑related metabolites. “Unknown” refers to metabolites with unknown biological origin
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the Bayesian analysis as differing in abundance between 
the rabbits from the divergent populations (see Addi-
tional file 2: Table S1). The two non-overlapping metab-
olites, aconitate and thiamine, showed the lowest 
contribution to the optimized PLS-DA model (Fig.  2b) 
and a difference in abundance of 0.5 units of SD. Of the 
13 most reliable metabolites, five appeared to be derived 
from the diet (behenoylcarnitine, arachidoylcarnitine, 
succinylcarnitine, betaine, and palmitoyl dihihydrosphin-
gomyelin), three from the microbiota (3-(4-hydroxyphe-
nyl)lactate, 5-aminovalerate, and equol), and two from 
the co-metabolism between the host and the micro-
biota (N6-acetyllysine, and serine). For the remaining 
three metabolites, ethyl beta-glucopyranoside, glycer-
ophosphoglycerol, and cysteine s-sulfate, no origin was 
determined.

Discussion
The study of the gut metabolome can help unravel its 
effects on key traits in livestock. In this study, we found 
differences in the metabolite profile (see Additional 
file 2: Table S1) between rabbits from divergent popula-
tions for  VE of LS with differences in resilience poten-
tial [12]. The Bayesian analysis identified 66 metabolites 
with differences in abundance between rabbits from 
the divergent populations and good PLS-DA prediction 

performance to classify population origin. However, 13 
of these 66 metabolites achieved the highest prediction 
performance to classify the resilient from the non-resil-
ient animals. Hence, these metabolites were proposed 
as potential biomarkers for resilience. Our study also 
showed that 27 of the 66 metabolites and five of the 13 
candidate resilience biomarkers (see Additional file  2: 
Table S1) originated from the microbiota (Fig. 1b). These 
results suggest that the microbiome composition differs 
between the two rabbit populations, in agreement with a 
previous metagenomic study for genes and taxa using the 
same populations [18]. In addition, we found that 16 of 
the 66 metabolites and (5 of the 13 candidate resilience 
biomarkers (see Additional file 2: Table S1) showed a bio-
logical origin related to the diet (Fig.  1b). These results 
suggest that the rabbits from the resilient and non-resil-
ient populations differ in their feeding behaviour and/or 
the use of dietary compounds, either because of the host 
itself or their microbiota.

Relevant functions were identified for four of the five 
resilience biomarkers that were related to microbiota-
derived metabolites (equol, 3-(4-hydroxyphenyl)lac-
tate, 5-aminovalerate, N6-acetyl lysine, and serine). 
Equol (0.93 SD unit difference between the two popu-
lations), which derives from the daidzein metabolism, 
can develop neuroprotective effects [31] and trigger an 

Fig. 2 Final PLS‑DA model. a Representation of the first (Comp 1) and second (Comp 2) components of the PLS‑DA used to discriminate rabbits 
from the resilient (red) and non‑resilient (blue) populations. b Representation of posterior mean differences in units of standard deviation (SD) and 
variable importance on prediction (VIP) of metabolites included in the final PLS‑DA model. Blue dots are relevant metabolites identified as more 
abundant in the non‑resilient population. Red dots are the relevant metabolites identified with greater abundance in the resilient population. Black 
dots are metabolites included in the final PLS‑DA model but that did not exceed both VIP > 1 and a posterior mean of the differences > 0.5 SD
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immune response since it enhances macrophages and 
protects from oxidative stress [32]. As the rabbits were 
sacrificed after their first parity, the high levels of equol 
in the resilient animals may have helped to reduce the 
inflammatory response triggered by farrowing, which 
is a highly stressful event for the dam. Farrowing may 
also have increased the levels of the 3-(4-hydroxyphe-
nyl)lactate biomarker (− 1.04 SD units difference) in 
the rabbits from the non-resilient population, which is 
a metabolite that derives from the degradation of tyros-
ine and has been associated with non-alcoholic hepatic 
liver diseases [33]. This metabolite could be involved in 
a gut-liver crosstalk based on differences found in the 
plasma levels of cholesterol and triglycerides between 
the animals of these two populations (after a challenge) 
[12, 14]. The 5-aminovalerate and N6-acetyl lysine 
metabolites are products of the degradation of lysine 
(KEGG ID: C00431); 5-aminovalerate in the presence 
of betaine, which is another resilience biomarker iden-
tified in our study (Fig.  2b) acts as a methyl substrate 
donor to form 5-aminovaleric acid betaine [34]. 5-ami-
novaleric acid betaine may not be identified correctly, 
thus its role in health and disease is still unclear (see 
Haikonen et  al. [34] for more information). We did 
not find any evidence for the implication of N6-acetyl 
lysine in pathways related to animal resilience. How-
ever, catabolism of the identified resilience biomarker 
serine (-0.69 unit of SD) was suggested to be related to 
adaptation of pathogens during the inflammation pro-
cess [35]. To support the relevance of this pathway, gly-
cine, an interconverted molecule to serine (KEGG ID: 
C00037), was identified with a difference of − 0.68 SD 
unit between the two populations. Although it is not 
known how the serine levels act in the non-resilient 
population, it would be relevant to study its implication 
in animal resilience given its role in modulating bacte-
rial pathogenesis.

We also identified other metabolites derived from the 
aromatic amino acids (AAA) metabolism (such as the 
abovementioned 3-(4-hydroxyphenyl) lactate) (Table  1). 
This is consistent with the differences in AAA biosyn-
thesis genes (chorismite mutase and lyase) found in a 
previous metagenomic study using the same rabbit pop-
ulations [18]. AAA metabolisms can control health and 
disease [36], by acting directly on the gut or on distal 
organs (i.e. liver, kidney or brain) [37], as well as modu-
late inflammatory bowel [37–39] and liver diseases such 
as hepatic inflammation and steatosis [37, 40]. Our 
results showed high levels of kynurenine and anthranilate 
(Table  1) in the rabbits from the non-resilient popula-
tion, which showed higher levels of CRP (an inflamma-
tion biomarker) [12]. High levels of these two metabolites 
were also found in individuals that were under stress 
with inflammation [41]. As the animals were sacrificed 
after their first parity, the higher levels of kynurenine 
and anthranilate in the animals from the non-resilient 
population could pinpoint higher susceptibility to stress 
and inflammation in this population. Unexpectedly, the 
level of indole was found to be lower in the resilient rab-
bits (Table  1). This metabolite has protective functions 
in the gut by maintaining the intestinal barrier integrity 
and immune homeostasis, thus limiting dysbiosis dur-
ing an inflammation response [42, 43]. An in-depth study 
would be needed to understand the role of the metabo-
lites derived from the tryptophan metabolism on animal 
resilience.

The metabolites behenoylcarnitine, arachidoylcarni-
tine, steroylcarnitine, palmitoylcarnitine, and formimi-
noglutamate, were also highlighted. Behenoylcarnitine 
and arachidoylcarnitine were identified as potential resil-
ience biomarkers by PLS-DA, while the other three 
only showed relevant differences in their abundance 
between the divergent populations (see Additional file 2: 
Table S1). The first four metabolites are long-chain fatty 

Table 1 Metabolites from the aromatic amino acids (AAA) metabolism that had relevant differences between the non‑resilient and 
resilient populations

µH‑L: posterior mean of the differences between the non‑resilient and resilient populations

P0: probability of the difference being greater (if the difference is positive) or less (if negative) than 0

HPD95: high posterior density interval of 95%

Pathway Metabolite µH-L P0 HPD95

Tyrosine metabolism 3‑(4‑hydroxyphenyl)lactate − 1.04 99.67 [− 1.55, − 0.22]

Phenylalanine metabolism N‑acetylphenylalanine − 0.82 98.17 [− 1.57, − 0.04]

Phenyllactate 0.71 96.38 [− 0.04, 1.52]

Tryptophan metabolism Kynurenine − 0.79 97.80 [− 1.55, − 0.22]

Anthranilate − 0.75 97.27 [− 1.51, 0.04]

Oxindolylalanine − 0.74 96.91 [− 1.51, 0.03]

Indole − 0.69 95.77 [− 1.49, 0.10]
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acylcarnitines (LCFA), which are biomarkers of gut 
dysbiosis [44] and it has been shown that high levels of 
LCFA in the gut are a biomarker for inflammatory bowel 
diseases due to mitochondrial dysfunction in the colo-
nocytes [45]. Correct integrity and functionality of the 
intestinal epithelial barrier and colonocytes are essential 
to gut immunity homeostasis and pathogenesis [46–48]. 
These results suggest that differences in the assimilation 
of long-chain fatty acids by the gut for energy purposes 
could influence gut integrity and immunity. The fifth 
metabolite, formiminoglutamate, belongs to the histidine 
catabolism to l-glutamate pathway. Lower abundance of 
this metabolite was found in the resilient animals (see 
Additional file  2: Table  S1), which is in line with a pre-
vious metagenomic study that reported higher levels of 
glutamate formiminotransferase in animals from the 
resilient population [18]. Our findings suggest that there 
are differences in l-glutamate metabolism between the 
two rabbit populations. Glutamate is an important neu-
rotransmitter that can act in the gut, spinal cord, and 
brain, participates in the gut-brain axis, and influences 
inflammatory response [49].

For the potential resilience biomarker metabolites 
palmitoyl dihydrosphingomyelin, ethyl beta glucopyra-
noside, glycerophosphoglycerol, and cysteine-s-sulfate 
(Fig.  2b), no hypotheses about biological mechanisms 
affecting animal resilience can be made because their 
effects on the host are still unclear. However, we sug-
gest that these metabolites are important for predicting 
and classifying the rabbits into the two rabbit divergent 
populations.

Conclusions
This is the first study to identify gut metabolites that 
could act as potential biomarkers for resilience. Our 
results agree with the differences in resilience potential 
of these two rabbit populations, which were generated by 
divergent selection for  VE of LS. These differences could 
be due to the levels of acylcarnitines and of metabolites 
derived from amino acid metabolism, such as aromatic 
amino acids (tryptophan, phenylalanine and tyrosine), 
glycine, serine, and glutamate metabolism. Moreover, 
relevant metabolites, such as 3-(4-hydroxyphenyl)lactate 
could be involved in host-gut microbiota crosstalk. Selec-
tion for environmental variance has modified the gut 
metabolome, which could thus be another contributor 
to the differences in resilience between the rabbits from 
these divergent populations. However, further studies 
are needed to properly determine the origin and mode 
of action of each metabolite to unravel their causal role 
in health and disease, as well as in host-gut microbiota 
crosstalk.
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