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ABSTRACT A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This

modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes

characteristic equations as a function of the SI and, second, we need to obtain the surface impedance

values using either analytical or numerical methods. We validate the technique by comparison with well-

known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we

analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating

our results by comparison with reported values. Finally, we show the potential of our formulation with the

analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including

material losses in our formulation.

INDEX TERMS Surface Impedance, hollow-core waveguide, surface-relief grating.

I. INTRODUCTION

WAVEGUIDES with special microstructured bound-

aries are being proposed to improve guidance of

electromagnetic waves, particularly in the frequency ranges

where materials’ absorption is a critical drawback. The in-

terest on the design and fabrication of THz waveguides is

continuously growing in the last years [1]. THz waveguides

can benefit from the use of gratings [2], antiresonant [3]

and bandgap [4] effects. Thus, attenuation and dispersion

properties of hollow-core waveguides with microstructured

boundaries have been investigated with different geometries,

materials and numerical methods [5]– [8]. Among the the-

oretical tools that are being used for the simulation of THz

waveguides we can point out the analytical methods [3], [5]

based on some basic ray-optics approximations and the pure

numerical approaches based on vector finite element methods

[9]. On the other hand, commercial electromagnetic simula-

tors (for instance [10], [11]) have the tools to fully analyze

these waveguide structures. However, in hollow-core waveg-

uides with microstructured boundaries and large transverse

dimension, the needed run-time may be considerable on the

one hand, and on the other hand, their driven modal solvers

provide the first propagating modes of the waveguide, which

requires a huge amount of memory (there are a great number

of solutions which are bounded to the dielectric waveguide

walls), and they are not well suited for analyzing the low-

loss propagating mode in the air region of such waveguides.

By contrast, the eigenmode solvers in these packages are

much faster but they provide systematically the frequency

behavior of only the real part of the complex propagation

factor (an eigenvalue problem is defined by imposing a given

phase shift between the boundaries of the unit cell, and

the corresponding eigenfrequency is then computed [12]),

and thus, the attenuation constant in this kind of hollow-

core waveguides with microstructured boundaries cannot be

obtained with such electromagnetic simulators.

The main contribution is summarized as follows.

1) Here we propose a modal approach for the modelling

of planar waveguides in which the walls that define the

core of the waveguide are described in terms of the surface
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impedance (SI). This technique is inspired by the most basic

impedance matching methods [13] and the concept of SI

[14]. Our approach follows a generalization of the surface

impedance method, and is fully rigorous provided that we

have an accurate knowledge of the SI. We propose to solve

frequency domain Maxwell equations, in order to obtain the

modes of the planar waveguide, in two steps. First we will

write the characteristic equations for the modes of planar

waveguides in terms of the SI. Then, in a second step, we

will need to provide the actual values of the SI in order to

obtain the propagation constant of the modes. Depending on

the particular problem, we might be able to provide analytical

expressions for the SI. Alternatively, we will require a numer-

ical technique to obtain the SI values, which is rather simpler

than trying to solve the modes of the waveguide directly. In

addition, by splitting the problem in two steps we can gain

some important physical insights.

2) There are already previous more rigorous methods for

the analysis and application in design of hollow-core THz

dielectric waveguides with certain simple configurations, like

the one in [3], consisting of dielectric tube waveguides with

absorptive cladding, or like photonic crystal-based hollow-

core waveguides [15], all of them showing an important

difference to the one analyzed in our work, which is the

translational symmetry of such waveguide configurations.

Although different rigorous methods can be applied for an-

alyzing such type of hollow-core waveguides with transla-

tional symmetry, they show a waveguide loss which is typ-

ically two orders of magnitude higher than that proposed in

this work because the field penetration depth in such hollow-

core waveguides is significantly higher, and consequently,

its attenuation loss factor gets increased. Alternatively, the

use of a hollow-core waveguide with special microstructured

boundaries along the propagation direction is proposed here

to improve guidance of electromagnetic waves in a frequency

range where materials’ absorption is a critical drawback, like

at THz frequencies, whose design is based on high reflectivity

gratings constituting the waveguide walls (there are many

works based on different methods that can be employed to

this end, like the well-known coupled wave analysis, or the

modal method employed in this work [16]). Nevertheless, to

the knowledge of the authors, the rigorous calculation of the

waveguide loss in this type of sub-wavelength HCG-HW has

not been previously done. While rigorous methods have been

recently developed for computing the dispersion diagrams of

periodic guiding structures with different unit cell configu-

rations [17], [18], whose analysis procedure systematically

provides their first Floquet propagating modes, they are not

well suited for analyzing the low-loss propagating mode we

are interested in of the proposed waveguide. The reason is

because there are a great deal of solutions which are bounded

to the dielectric waveguide walls, which will appear before

the one we are interested in, because they have a higher

propagation constant, so this is not an easy task, and most of

all, it is not as straightforward as in the proposed technique

in this work.

3) The proposed method presents an important contribu-

tion to the analysis and design of hollow-core waveguides

formed by lossy dielectric gratings, and especially, to the

calculation of their propagation loss, which has not been

previously published. The use of a vectorial modal method

in combination with a novel developed surface impedance

formulation, allows to rigorously obtain the complex prop-

agation factor of the fundamental mode propagating in this

kind of waveguides (including not only the reflection losses

but also the dielectric losses of the grating materials). This

has not been done in previous works that have analyzed sim-

ilar waveguides in the optical regime (e.g., in [5], [6]), whose

techniques use some basic ray-optics approximations based

on the computation of the power reflection coefficient on the

gratings constituting the waveguide walls, being thus limited

to lossless dielectric materials (this fundamental limitation is

discussed for example in [19]). Such limitation, which is not

important at optical wavelengths, where dielectric losses can

be negligible, cannot be ignored at THz frequencies, where

dielectric losses are higher.

The proposed technique has been formulated for a guiding

structure which is invariant along the z− and y−axes. In or-

der to extend the SI formulation to the case of a guiding struc-

ture with periodicity along the z−axis and invariant along

the y−axis, in the most general case, it would be required

to expand the fields in terms of N Floquet orders, making

the SI matrix formulation unapproachable. For this reason,

in this paper, the proposed technique has been restricted to

the modelling of planar waveguides with microstructured

boundaries, which is the problem with practical interest, in

which the periodicity of the structure is subwavelength, i.

e., for zero-th order gratings, in which case, the SI can be

represented by a 2 × 2 matrix. The subwavelength period

restriction affects the SI formulation, although the periodic

nature of the gratings constituting the planar waveguide has

been rigorously considered in the analysis of the dispersion

characteristics of the gratings, as fully explained in [16].

After this introduction, we will develop in detail the the-

oretical formulation for the modes characteristic equations

of planar waveguides in terms of the SI. Then, we will

illustrate how the method is applied for two basic cases in

which analytical expressions for the SI are available: (a)

parallel-plate waveguide defined by good conductors and (b)

dielectric slab waveguide. This will provide a first valida-

tion of the proposed formulation. Next, we will apply our

approach to a hollow-core slab THz waveguide defined by

two subwavelength gratings. In this case, since the SI values

are obtained numerically, we will require to implement an

iterative method. Our technique will be validated by com-

parison with the numerical results published previously by

other authors that use alternative techniques. Finally, we will

conclude and highlight the advantages and new possibilities

provided by our technique. It is worthwhile to point out

that although we will consider here only planar waveguides,

our approach could be extended to cylindrical waveguides

following the fundamentals developed in [14].
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FIGURE 1. Schematic of a waveguide with planar symmetry.

II. SURFACE IMPEDANCE FORMULATION IN A PLANAR
WAVEGUIDE
In this work we present a generalization of the concept

of surface impedance of planar boundaries by means of

a second-order tensor magnitude, which is called surface

impedance [14]. As we will briefly show, the SI technique

accurately provides the characteristic equations for planar

waveguides formed by conductor-dielectric and dielectric-

dielectric planar interfaces considering losses. Thus, this

formulation can be extended to analyze waveguides with

periodic micro-structured surfaces or subwavelength grating

interfaces, as it will be shown.

We begin our analysis with the definition, in Fig. 1, of

the waveguide geometry which will be used throughout the

text. The planar waveguide is formed by a homogeneous

medium of dielectric permittivity ε1, magnetic permeability

μ1 and thickness a, surrounded by an external homogeneous

medium, and in which the upper and bottom boundaries have

planar symmetry. The z−axis corresponds to the propagation

direction, while the x−axis is perpendicular to the waveguide

boundaries, and the y−axis is parallel to the boundaries. The

fields of the modes will be written in the conventional form:

E(x, z, t)=[ex(x)ux + ey(x)uy + ez(x)uz] e
j(ωt−βz) (1)

H(x, z, t)=[hx(x)ux + hy(x)uy + hz(x)uz] e
j(ωt−βz)(2)

where j =
√−1 is the imaginary unit, the functions ex, ey ,

ez determine the field components of the electric field, the

functions hx, hy , hz determine the field components of the

magnetic field, β is the complex propagation factor, and ω is

the angular frequency.

The tangential field components of the guided modes in

the waveguide boundaries (x = ±a/2) satisfy the following

boundary conditions [14]:

Et = j χ · (u×Ht) (3)

where Et and Ht are, respectively, the electric and mag-

netic field components tangential to the interfaces, u is a

unit vector normal to the interfaces, pointing outwards the

waveguide, and χ is a tensor called the SI, which can be

written as:

χ =

(
χ11 χ12

χ21 χ22

)
. (4)

In this analysis, only the tangential field components are

needed to satisfy the boundary conditions given by (3). For a

planar waveguide, such tangential field components are:

ez = A sin(kxx) +B cos(kxx) (5a)

hz = C sin(kxx) +D cos(kxx) (5b)

ey = ((jωμ1)/kx)[C cos(kxx)−D sin(kxx)] (5c)

hy = ((−jωε1)/kx)[A cos(kxx)−B sin(kxx)] (5d)

−a/2 < x < a/2

where A, B, C and D are constants, and kx is the transverse

propagation factor.

Taking into account the geometry defined in Fig. 1 and

(5a-5d), (3) can thus be rewritten as:[(
ey
ez

)
= j

(
χ11 χ12

χ21 χ22

)( ∓hz

±hy

)]
x=±a/2

, (6)

where u = ±ux at ±a/2. We can substitute (5a-5d) into (6),

which yields a new set of four equations which can be solved

as a system of linear equations considering coefficients A, B,

C and D in (5) as the system unknowns. In order to have a

solution other than the trivial one (A = B = C = D = 0),

its determinant must be zero, which yields the characteristic

equations of a planar waveguide in terms of the SI elements,

whose expressions can be found in the Appendix. More-

over, this set of equations determine the field components

by expressing, for example, the coefficients B, C and D
as a function of the coefficient A. In the presence of the

off-diagonal elements in the SI tensor, the obtained modes

are the well-known E-type and H-type modes [20], which

correspond to off-plane (out of the xz plane) propagation,

also called conical incidence.

In the following, the cases that are discussed can be

described in a simplified framework in which χ12 and χ21

are zero. However, we find interesting to give the general

formulation, having in mind future developments to deal with

rectangular cross section waveguides, as well as inhomoge-

neous waveguides, in which all four coefficients are likely to

be non-zero.

These expressions give the characteristic equations of the

well-known TM and TE modes when χ12 = χ21 = 0, after

a simple analysis of the above mentioned system of four

equations. In particular, TM modes require hz = 0 (i. e.,

C = D = 0), thus ey = 0 (see (5c)), and, according to (6),

χ12 must be zero since hy will have to be different from zero.

Additionally, TE modes require ez = 0 (i. e., A = B = 0),

thus hy = 0 (see (5d)), and, according to (6), χ21 must

be zero since hz will have to be different from zero. The

characteristic equation for the symmetric TM (TMS) modes,

with hz = 0, ez = A sin (kxx), and B = C = D = 0,

and for the antisymmetric TM (TMA) modes with hz = 0,
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ez = B cos (kxx), and A = C = D = 0, are derived from

(A.34, A.35), respectively:

TMS ⇒ (χ22ωε1)/kx = tan(kxa/2) (7a)

TMA ⇒ (χ22ωε1)/kx = − cot(kxa/2) (7b)

while the characteristic equation for the symmetric TE (TES)

modes, with ez = 0, hz = C sin (kxx), and A = B = D =
0, and for the antisymmetric TE (TEA) modes with ez = 0,

hz = D cos (kxx), and A = B = C = 0, are derived from

(A.36, A.37), respectively:

TES ⇒ (χ11kx)/(ωμ1) = − cot(kxa/2) (8a)

TEA ⇒ (χ11kx)/(ωμ1) = tan(kx(a/2). (8b)

It should be mentioned that a given mode is classified as

symmetric or antisymmetric depending on the symmetry of

the transverse field component, hy and ey for the TM and the

TE modes, respectively.

Next, in order to validate the obtained set of characteristic

equations (7a)-(8b), we will apply the SI approach to some

examples of planar waveguide structures with well-known

analytical solution. In particular, we will study a parallel-

plate waveguide and a dielectric slab waveguide.

A. PARALLEL-PLATE WAVEGUIDE
Here it is shown how the SI concept provides the charac-

teristic equations of the TE and TM modes of the parallel-

plate waveguide with finite conductivity, whose propagation

region of permittivity ε is delimited by two parallel metallic

sheets separated by a fixed distance a (the perfect conductor

case can be derived as a particular solution by imposing

infinite conductivity on the metallic sheets).

In this case, the procedure is straightforward. We only

have to write the surface impedance tensor χ in terms of

the surface impedance of a good conductor (ZS) which is

determined by the Leontovich boundary condition [21]:

Et = ZS(n×Ht) (9)

where n is a unitary vector, normal to the surface of the

conductor and pointing outwards the conductor (in our case:

n = −u, and ZS is the conductor characteristic impedance,

given by the expression:

ZS = (1 + j)

√
ωμ

2σ
(10)

where μ and σ are the magnetic permeability and the electric

conductivity of the conductor, respectively. Rewriting (9) in

the form of (6), we find the actual value of χ in the case of

the parallel-plate waveguide:

χ11 = χ22 = jZS χ12 = χ21 = 0 (11)

Being χ12 = χ21 = 0, we can confirm that the solution

splits into the two families of TM and TE modes. In addition,

taking into account the actual values of χ11 and χ22, we

obtain the characteristic equations for the TM and TE modes

of the parallel-plate waveguide:

TMS ⇒ (jZSωε1)/(kx) = tan((kxa)/2) (12a)

TMA ⇒ (jZSωε1)/kx = − cot(kxa/2) (12b)

TES ⇒ (jZSkx)/(ωμ1) = − cot(kxa/2) (13a)

TEA ⇒ (jZSkx)/(ωμ1) = tan(kxa/2) (13b)

In the case of perfect conductors plates, ZS = 0, so we

obtain the expected values for the transverse and axial prop-

agation factors (kx0,m and β0,m) of TMm and TEm modes

kx0,m =
πm

a
→ β0,m =

√
k2 − k2x0,m (14)

where m > 0: the odd values of m correspond to the TMA

and TES modes, and the even values to the TMS and TEA

modes.

In the case of good conductor plates, we can obtain a first

order approximation for the transverse and axial propagation

factors (kx,m and βm), using (12-13) and assuming that the

actual value of ZS will be extremely small:

TMm ⇒ kx,m = kx0,m + (j2ωε1ZS)/(akx0,m), (15)

βm = β0,m − (j2ωε1ZS)/(aβ0,m)

TEm ⇒ kx,m = kx0,m + (j2kx0,mZS)/(aωμ1), (16)

βm = β0,m − (j2k2x0,mZS)/(aωμ1β0,m)

The above first order approximations for βm only apply

far away from the cut-off frequency, when β0,m �= 0. Thus,

the real part of ZS will determine the imaginary part of

βm, i. e., the attenuation coefficient, while the imaginary

part of ZS gives a small correction of the real part which

is mainly determined by β0,m. The analytical expression of

the attenuation coefficient αm is:

TMm ⇒ αm = (2ωε)/(aβ0,m)
√
(ωμ)/(2σ) (17)

TEm ⇒ αm = (2k2x0,m)/(aωμβ0,m)
√
(ωμ)/(2σ) (18)

Exactly the same expressions are obtained by calculating

the losses in the conductors and the total power flux with the

fields of the ideal case, following the conventional perturba-

tive technique [21].

B. DIELECTRIC SLAB WAVEGUIDE
In the dielectric slab waveguide, the propagation region, char-

acterized by its permittivity ε1 is delimited by two dielectric

frontiers separated by a fixed distance a, each of which is a

planar interface between two dielectric regions. In order to

derive the expressions for the SI of these interfaces, we recall

the incidence of a plane wave on the interface. In Fig. 2(a)

it is represented the geometry of a plane wave incident on a

dielectric interface for the TM case, and in Fig. 2(b) for the

TE case, respectively.
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FIGURE 2. Geometry of a plane wave incident on a dielectric interface. a) TM
incidence and b) TE incidence.

From Fig. 2(a), the continuity equations for the TM inci-

dence at the interface, for the electric and magnetic fields, can

be expressed as:

E1z = Eiz + Erz = E2z (19a)

H1y = Hiy +Hry = H2y (19b)

where the sub-index i and r depict incidence and reflection,

respectively. The surface impedance can thus be defined as

the ratio of the non zero electric and magnetic field tangential

components at either side of the interface:

ZTM =
E1z

H1y
=

E2z

H2y
= η2 cos θt (20)

where η2 is the intrinsic impedance of the outer waveguide

medium, and θt is the transmission angle from medium 1 to

medium 2.

Also, from Fig. 2(b), the continuity equations for the

TE incidence, for the electric and magnetic fields, can be

expressed as:

E1y = Eiy + Ery = E2y (21a)

H1z = Hiz +Hrz = H2z. (21b)

Likewise the TM case, the surface impedance can also be

defined as the ratio of the non zero electric and magnetic field

tangential components at either side of the interface:

ZTE =
E1z

H1y
=

E2z

H2y
=

η2
cos θt

. (22)

We can summarize (20) and (22) in the following matrix
equation:[(

E1y

E1z

)
= −

(
ZTE 0
0 ZTM

)(
H1z

−H1y

)]
x=−a/2

(23)

where the wave impinges from medium 1 to medium 2 at
the lower waveguide boundary. However, the wave can also
impinge from medium 1 to medium 2 at the upper waveguide
boundary, and thus, (23) becomes:[(

E1y

E1z

)
= −

(
ZTE 0
0 ZTM

)( −H1z

H1y

)]
x=+a/2

(24)

The comparison of (23) and (24) with (4) permits to derive

the values of χij for the dielectric interface:

χ11 = jZTE , χ22 = jZTM , χ12 = χ21 = 0 (25)

These values determine the characteristic equations for the

TM and TE modes in combination with (5-6). In order to

make explicit the dependence of the characteristic equations

on the transverse and axial propagation factors, we can

rewrite ZTE and ZTM in the form

ZTM = η2 cos θt = (η0

√
1− [(n1β)/(n2k1)]

2
)/n2 (26)

ZTE = η2/ cos θt = η0/(n2

√
1− [(n1β)/(n2k1)]

2
) (27)

where the impedance of medium 2 has been written as a

function of the impedance of vacuum (η0) and the refractive

index (n2), the transmission angle as a function of the inci-

dent angle, and finally the sine of the incident angle as β/k1,

being k1 the wavenumber in medium 1.

Thus, the characteristic equations (7-8) have the following

expressions for the dielectric slab waveguide:

TMS ⇒ tan ((kxa)/2) = (n2
1

√
β2 − k22)/(n

2
2kx) (28a)

TMA ⇒ cot ((kxa)/2)) = −(n2
1

√
β2 − k22)/(n

2
2kx)

(28b)

TES ⇒ tan ((kxa)/2) =
√
β2 − k22/kx (29a)

TEA ⇒ cot ((kxa)/2)) = −
√
β2 − k22/kx (29b)

where non magnetic dielectrics are assumed (μ1 = μ2 = μ0,

μ0 being the magnetic permeability of vacuum), and k2 is the

wavenumber in medium 2. These expressions match exactly

the analytic characteristic equations of TE and TM modes

of a dielectric slab waveguide, as they are reported in most

common waveguide books (see for example [22]).

After this section, in which we have tested the SI formu-

lation with two analytic cases, we move to more complex

waveguides with non analytical solution. Now, in the next

section, we will study a THz waveguide defined by two sub-

wavelength gratings. In this case only numerical information

on the surface impedance will be available.

III. ANALYSIS AND DESIGN OF A HOLLOW-CORE THZ
WAVEGUIDE BASED ON HIGH-CONTRAST
SUBWAVELENGTH GRATINGS
The purpose of this section is to apply the SI formulation

described above to the analysis of a particular waveguide

with planar symmetry, consisting of a low loss hollow-core

THz waveguide structure, and to compare this formulation

with the ray-optics approximation. The waveguide under

study consists of two reflecting high-index-contrast gratings

(HCGs) that are periodic in the z direction and infinite in

the y direction, in which the period is subwavelength. The

basic principle of this hollow-core waveguide is to guide a

THz beam propagating through air by multiple reflections

on the HCGs, which act as high reflectivity claddings re-

flecting waves at a small glancing angle (see Fig. 3). The

two HCGs are spaced a distance a apart. This hollow-core

waveguide structure was first reported in guided-wave optics

[5], showing an exceedingly low propagation loss associated
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to an ultrahigh reflectivity of the HCGs. In [5], the high-

index material employed in the HCGs was a semiconductor

with relative permittivity εr = 12.96 surrounded by air;

material losses were neglected. However, at THz frequencies,

the material losses must be rigorously accounted for in order

to get accurate results in this waveguide configuration.

In order to obtain the SI of the gratings that define the

waveguide, we can compute the reflection coefficient ρ of

the HCG for plane wave incidence. This calculation is per-

formed by using the vector modal method that we developed

years ago [16]. For example, if we pay attention to the TM

and TE incidence, we find that ρTM,TE defines the surface

impedance ZTM,TE
S through the relations [23]:

ZTM
S = η1 cos(θi)[(1 + ρTM )/(1− ρTM )] (30)

ZTE
S = (η1/ cos(θi))[(1 + ρTE)/(1− ρTE)] (31)

where η1 is the intrinsic impedance of medium 1 and θi is the

angle of incidence on the HCG. As in section II.B, the sine

of the incident angle is equal to β/k1. Thus the SI will be

determined by the actual values of ZTM,TE
S :

χ11 = ZTE
S , χ22 = ZTM

S , χ12 = χ21 = 0 (32)

Although this result expresses the basic concept that we

will exploit for the implementation of the technique by

introducing these values in (7)-(8), we need to go a step

further. Material absorption in the THz range of frequencies

is not usually negligible. Moreover, radiation losses in a

waveguide as that depicted in Fig. 3 are not negligible either.

Therefore, we need to consider that the propagation factor β
will be complex, which is equivalent to say that the incident

angle θi will be also complex. This is not a limitation for

our approach, since we can compute the field components

that define ZTM,TE
S without any intrinsic restriction, as it

was demonstrated in [16]. However, other techniques that

require computing the power reflection coefficient might

find fundamental limitations when trying to include lossy

materials, as it happens with the technique reported in [5].

These fundamental limitations are discussed for example in

[19] (chapter 2 Basic Theory, section The Simple Boundary,

subsection Normal Incidence in Absorbing Media), and are

also the reason for the operator governing the propagation of

electromagnetic waves in waveguides with lossy dielectrics

to be nonself-adjoint [24]. To this end, in the next sub-

section, an iterative method combined with the SI formula-

tion is described for the rigorous calculation of the complex

propagating factor β - i. e., including losses - in this waveg-

uide.

A. DESCRIPTION OF THE ITERATIVE METHOD
In order to obtain the modes of the proposed hollow-core

waveguide, we have to solve the characteristic equations

in which the SI coefficients are an implicit function of the

propagation factor, which has to be numerically solved. We

propose an iterative method, and we will take as the 0-

th iteration solution the modes of the ideal parallel-plate

a

k
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k
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�i
x
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y

(a) (b)

�ra
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t
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FIGURE 3. (a) Schematic of a high contrast grating (HCG) formed by high
index material bars of εrh surrounded by a low index material, typically air
(εra). (b) Schematic of a hollow-core waveguide structure consisting of two
reflecting HCGs.

waveguide (without losses). If we use the superscript (n) to

indicate the iteration order, we will take k
(0)
x and β(0) equal

to the values given by (14). This 0-th iteration corresponds

to the angle of incidence θ
(0)
i , being sin(θ

(0)
i ) = β(0)/k1

. This method can be applied to obtain the different m-

order modes in the hollow-core waveguide. In the following,

we will apply the iterative method to obtain the first TE

mode (m=1 in (14)), given that we have chosen the grating

parameters such that the high reflectivity is only achieved at

glancing angles and TE polarization, which corresponds to

the first TE propagative mode. The iterative method is still

valid for obtaining non-glancing higher order modes present

in the structure, but it will be poorly convergent in this case.

However, we are not interested in them, because they will be

effectively filtered out due to their high reflection losses.

In this 0-th iteration, both k
(0)
x and β(0) are real, and thus

the incident angle θ
(0)
i is real. Then, in the next iterations of

n order, following the analysis described above for obtaining

the modes in a waveguide with planar symmetry, the TE

symmetric characteristic equation (see (8a)) in our waveguide

must be numerically solved (i.e ., the value of k
(n)
x ). To this

end, the value of the incident angle θ
(n−1)
i , which in general

will be complex, has been used to compute the complex

reflection coefficient ρ(n) in the inner face of the hollow-core

waveguide, following the vector modal method developed

in [16]. This reflection coefficient can be related to the TE

surface impedance ZTE
s by using (31), and thus, to the

first element of the surface impedance tensor χ11 = jZTE
s

appearing in (8a). Finally, the numerical solution of (8a)

yields k
(n)
x , and from its value, θ

(n)
i , and also β(n):

β(n) =

√
k20 −

(
k
(n)
x

)
(33)

whose imaginary part is directly related to the attenuation

coefficient α(n) (Np/m) of the waveguide in the n-th iteration.

The iterative process finishes once convergence is reached.

B. COMPARISON WITH RESULTS REPORTED IN THE
TECHNICAL LITERATURE
In order to check the validity of the proposed iterative anal-

ysis method, we have first compared the propagation loss of

a waveguide with planar symmetry with results presented in
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FIGURE 4. Comparison between our results of the TE fundamental mode
propagation loss of the waveguide as a function of wavelength and those
obtained in [5].

the technical literature. We have analyzed an optical ultra-

low loss single-mode hollow-core waveguide using subwave-

length HCGs, which was proposed in [5] for guided-wave op-

tics, with a core size a of 15 μm (corresponding to θi = 870)

at λ = 1.55 μm, with the following grating parameters to

achieve a broad spectral range of operation: D = 730 nm,

tg = 1.04 μm, duty cycle (ratio of grating width to period) η
= 65%, high index grating relative permittivity εrh = 12.96
(corresponding to a semiconductor material), surrounded by

air. Fig. 4 shows the comparison between our results of the

TE fundamental mode propagation loss of the waveguide as a

function of wavelength obtained with (33) and those obtained

in [5], where dielectric losses of the material are negligible.

In this figure it can be checked that both analysis methods

yield identical results when negligible material absorption is

assumed (which is a realistic assumption in the near infrared).

However, it is worth mentioning that the propagation loss in

this waveguide can be greatly dependent on such parameter,

as we will see in the next example at THz frequencies.

C. PROPOSED DESIGN OF A THZ HOLLOW-CORE
WAVEGUIDE USING SURFACE-RELIEF GRATINGS

We have taken advantage of the developed analysis method

to design a realistic THz waveguide, in which the microstruc-

ture is not suspended in air as the one in Fig. 3, but prop-

erly supported by a slab of the same material. It is well

known that material losses at such frequencies can not be

neglected. Therefore, on the one hand, special attention must

be paid when choosing the most appropriate configuration

of a THz guidance system. And, on the other hand, there is

need of using a rigorous method like the one presented in

this work, in order to properly account for material losses.

While other highly reflective structures, such as distributed

Bragg reflectors (DBRs) or photonic crystals (PhCs), re-

quire multiple layers to achieve a high reflectivity, the HCG

structure can achieve a very high field confinement in a

hollow-core waveguide by using a single layer of cladding
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0.95
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t
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t
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FIGURE 5. Reflectivity of the surface-relief grating employed in the THz
hollow-core waveguide as a function of frequency.

grating. Because of this, the field penetration depth in a HCG-

HW cladding is significantly reduced compared to DBR or

PhC based hollow-core waveguides, and consequently, its

attenuation loss factor diminishes. In this case, surface-relief

gratings have been chosen as high reflective structures for

easy-of-fabrication purposes [25]. Thus, the proposed THz

hollow-core waveguide consists of two reflecting surface-

relief subwavelength gratings that are periodic in the z di-

rection and infinite in the y direction (see the figure inset in

Fig. 5). We have chosen our design frequency at 1.8 THz, and

the selected high-index material is high-resistivity crystalline

silicon, which, despite of a higher cost, is known to be an

excellent dielectric material at terahertz frequencies [26]. The

parameters of the grating are as follows: D = 74 μm, th
= 50 μm, tp = 111 μm, duty cycle (ratio of grating width

to period) η = 50%, high index grating relative permittivity

εrh = 11.66, tan δh = 0.0002, a = 1610 μm. In Fig. 5 it is

represented the reflectivity of this surface-relief grating under

TE plane-wave incidence at the angle of the 0-iteration as a

function of frequency. This reflectivity, which is related to the

reflection coefficient ρ, represents the percentage of reflected

power at each frequency under such angle of incidence, and

it has been calculated following the procedure described

in [16]. In this figure, it can be seen that the maximum

reflectivity is achieved at 1.8 THz. The calculated reflection

coefficient can also be related to the TE surface impedance

ZTE
s by using (31).

Following the iterative method described in Subsection

III-A, the TE fundamental mode propagation loss of the

designed THz waveguide has been calculated, including both

reflection and material losses in the surface-relief gratings

constituting the waveguide walls. To this end, first of all, a

convergence study of the obtained results with the iterative

method has been performed with both the real and imaginary

parts of ZS and the propagation factor β at each frequency

value. This analysis was performed with a sufficiently high

number of iterations to guarantee that the results will not

diverge again, revealing that only four iterations were needed

for achieving the convergence, as it can be observed in Fig.
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FIGURE 6. Convergence of the (a) real and (b) imaginary part of ZS

(normalized surface impedance to its converged value) at different frequency
points (in THz).

6 (in such figure, it is represented the normalized magnitudes

Re(ZS) and Im(ZS) to the converged value, respectively,

at such frequencies). It is worth mentioning that a similar

convergence study for a much higher dielectric loss has

shown to require a similar number of iterations for achieving

the convergence of Zs, demonstrating the efficiency of this

method. On the other hand, in Fig. 7 it can be observed the

variation of the real and imaginary parts of ZS as a function

of frequency. In this figure, it can be checked that the real

part of ZS remains nearly constant and equal to zero in the

frequency range from 1.76 to 1.81 THz, which is precisely

the interval where the reflectivity of the surface-relief grating

constituting the waveguide walls represented in Fig. 5 is

high. Likewise, both the real and imaginary parts of ZS have

an almost zero value at the design frequency of 1.8 GHz,

corresponding to the maximum of the reflectivity.

Fig. 8 shows the real propagation factor β of the TE

fundamental mode of the designed waveguide at 1.8 THz

obtained with the developed method (dashed line), and it

is compared with results provided by the commercial elec-

tromagnetic simulator HFSS (crosses) with the eigenmode

solver, showing a perfect agreement (the driven modal solver

failed to solve more than 25 modes, which was not enough

to reach the desired mode). However, as explained in Sec-
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FIGURE 7. Variation of the real and imaginary parts of ZS as a function of
frequency.

tion I, the eigenmode solver only provides the frequency

behavior of the real part of the complex propagation factor

of the propagating modes in the designed periodic hollow-

core waveguide. More in detail, a unit cell of the waveguide

defined by one period D surrounded by an air box with

appropriate boundary conditions is analysed, including a suf-

ficiently high number of modes in order to reach the mode we

are interested in, which propagates in the air region delimited

by the dielectric gratings constituting the waveguide walls

-i.e., with low propagation losses-. Thus, this comparison

validates the obtained results. In this figure, it has also been

included with solid line the real propagation factor obtained

with the ray-optics approximation used in [5] for comparison,

whose results are slightly different, as expected. Finally, in

Fig. 9, the TE fundamental mode propagation loss of the

designed THz waveguide as a function of frequency obtained

with the ray-optics approximation [5] (solid line) is compared

with that obtained with the surface-impedance formulation

presented here, for different values of the loss tangent of the

dielectric material, assuming no air propagation losses (this

is a common assumption in hollow-core THz waveguides, in

which air-filled THz devices are usually purged with nitrogen

in order to avoid the possible wave attenuation associated to

strong resonances of the H2O molecules around 1.8 THz).

These results show the importance of considering dielectric

losses in this waveguide at THz frequencies. For the case

of high-resistivity crystalline silicon (tan δh = 0.0002), this

waveguide shows a very low propagation loss of 0.1 dB/m at

the design frequency (although including the dielectric losses

of the grating material), compared to other THz waveguides

proposed in the technical literature [27], whereas a higher

loss tangent of tanδh = 0.02 yields a significantly higher

propagation loss (7.3 dB/m at 1.8 THz in this case). Thus, a

special attention must be paid to the selection of the material

to be employed in the implementation of the waveguide.

IV. CONCLUSION
A rigorous SI formulation for planar waveguides has been

presented. This formulation provides a relatively simple, but
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rigorous, modal solution for planar waveguides defined by

special boundary conditions, as it is the case of waveguides

with subwavelength gratings or microstructured surfaces.

Thus, any available numerical or analytical analysis of mi-

crostructured surfaces and special interfaces can be exploited

to obtain the SI. Then, the modes can be obtained solving

the characteristic equations, for example with an iterative

method as the one reported here. The present formulation

appears to have a high potential for the analysis of THz

waveguides in which microstructured surfaces are commonly

proposed to guide the electromagnetic waves, and require a

full-wave vector analysis including material absorption and

radiation losses. Future work can exploit the SI formulation,

on the one hand, to model in the THz domain waveguides,

couplers, and other components that are being developed

in the optical domain using the concept of one-dimensional

high-contrast metastructures [32], and, on the other hand, the

extension of the present formulation to cylindrical symmetry,

following the basic formulation reported in [14], will provide

an interesting alternative for the study and design of THz

cylindrical waveguides based on the antiresonant [3] and

bandgap [4] concepts.

.

APPENDIX A CHARACTERISTIC EQUATIONS OF A
PLANAR WAVEGUIDE IN TERMS OF THE
SURFACE-IMPEDANCE ELEMENTS
In this appendix, there are shown the characteristic equations

of a planar waveguide in terms of the SI elements. Such

equations are:

tan(kx
a
2 ) =

(k2
xχ11−k2χ22)−[(k2

xχ11+k2χ22)
2+4k2

xk
2χ12χ21]

1/2

2kxωμ (A.34)

tan(kx
a
2 ) =

(k2
xχ11+k2χ22)+[(k2

xχ11−k2χ22)
2+4k2

xk
2χ12χ21]

1/2

2kxωε[χ12χ21−χ11χ22]
(A.35)

tan(kx
a
2 ) =

(k2
xχ11+k2χ22)−[(k2

xχ11−k2χ22)
2+4k2

xk
2χ12χ21]

1/2

2kxωε[χ12χ21−χ11χ22]
(A.36)

tan(kx
a
2 ) =

(k2
xχ11+k2χ22)+[(k2

xχ11−k2χ22)
2+4k2

xk
2χ12χ21]

1/2

2kxωμ (A.37)

where k2 = ω2με.

APPENDIX B CALCULATION OF THE REFLECTION
COEFFICIENT OF THE GRATING THAT CONSTITUTE
THE HOLLOW-CORE WAVEGUIDE FOR PLANE WAVE
INCIDENCE
Here it is briefly described how to obtain the reflection coef-

ficient of a dielectric grating like the one defining the hollow-

core waveguide under study in this work for plane wave

incidence (see Figs. 3 or 5). To this end, the electromagnetic

fields must be evaluated in all regions of the structure. Then,

the general solutions are requested to satisfy the boundary

conditions at the planar interfaces separating the constituent

layers. Note that the coordinate reference system employed

in this Appendix is different with respect to that in the

main text: the periodicity D is chosen in the Y direction,

being the grating homogeneous in the X axis. The grating

is illuminated from the air region by an arbitrary linearly

polarized plane wave which, in the most general case of 3D

incidence (also called conical incidence), has a wave vector

given by

k = k0 sin θ cosφ x̂+ k0 sin θ sinφ ŷ + k0 cos θ ẑ

where k0 = ω
√
μ0ε0 is the wavenumber in free space, and θ

and φ are the elevation and azimuthal angles of the three-

dimensional incident plane wave, respectively. In order to

obtain the modal spectrum in all regions of the structure,

the fields are assumed to have a harmonic time dependence,

exp (jωt), and since each region of the structure has transla-

tional symmetry in the Z direction, the propagating modes in

this direction have an exponential dependence exp (−jβz),
where β is the modal propagation constant. Following [28],

the modes in the homogeneous regions are the well known
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Floquet harmonics with E-type or TMy polarization (de-

noted as ′), and H-type or TEy polarization (denoted as ′′)
which are described as follows [29]

e
′h
p =

e−j(kxx+kypy)√
Dβhp

ωεh

[
−kxkyp x̂+ (k2h − k2yp

)ŷ
]

h̃
′h
p =

−e−j(kxx+kypy)√
D

x̂

ẽ
′′h
p =

ωμβhp√
D(k2h − k2yp

)
e−j(kxx+kypy)x̂

h̃
′′h
p =

e−j(kxx+kypy)√
D

[
−kxkyp

(k2h − k2yp
)
x̂+ ŷ

]
(B.38)

where εh = εrhε0 is the permittivity of the outer medium,

kh = k0
√
εrh, βhp =

√
k2h − k2x − k2yp

, and kyp is the

Floquet wavenumber given by

kyp = k0 sin θ sinφ+
2π

D
p ; p = 0,±1,±2, ... (B.39)

Note that the geometry is homogeneous in the X direction,

therefore kx = k0 sin θ cosφ.
The modes in the periodic region are obtained using

a vectorial modal method [16], which has been extended

for considering the three-dimensional incidence case [28].

In such method, the vector wave equation satisfied by the

transverse components of the magnetic field in the periodic

medium is expressed as an eigenvalue problem shown next[
∇2

t + k20εr +

(∇tεr
εr

)
× (∇t × ◦)

]
h = β2h

⇒ Lhn = β2
nhn (B.40)

where L represents the differential operator governing the

evolution of the transverse magnetic field of the n-th mode

along the Z axis, being βn the modal propagation constant

of such mode, and εr is the complex relative permittivity of

the medium, which is a function depending on the transverse

coordinates. Following the standard Method of Moments

[30], this eigenvalue equation can be expressed in a matrix

form if the modes in the periodic medium are expanded in

terms of an auxiliary system whose eigenvectors satisfy an

orthogonality relation of the form

〈ẽp|h̃q〉 = δpq . (B.41)

Thus, the modes of the real problem can be expanded in terms

of the auxiliary system as

hn =
∑
q

cqnh̃q (B.42)

where cqn are the complex coefficients of the modal expan-

sion for the transverse magnetic field of the n-th mode.
For the auxiliary basis we have used the modes corre-

sponding to a homogeneous medium (B.38) of relative di-

electric permittivity ε̃rb, which has been adequately normal-

ized for satisfying the following orthogonality relationship:

〈ẽp|h̃q〉 =
∫
CS

(ẽ∗p × h̃q) · ẑ dS = δpq (B.43)

where CS represents in this case the cross section of the pe-

riodic cell. Then, the application of the Method of Moments

yields the following linear matrix eigenvalue problem:∑
q

Lpqcqn = β2
ncpn (B.44)

where Lpq are the matrix elements of the L operator, which

are obtained as follows:

Lpq = 〈ẽp|Lh̃q〉 =
∫
CS

(ẽ∗p × L h̃q) · ẑ dS . (B.45)

Note that the standard Galerkin’s procedure has not been

employed.

In the described theory, when all modes are included, the

[L] matrix is infinitely-dimensional. In order to develop a

realistic method, a finite set of well-known auxiliary modes

must be chosen to expand the modes of the periodic dielectric

layer in terms of the modes of the auxiliary basis functions, so

a numerical convergence test must be performed by sweeping

the number of auxiliary modes over meaningful ranges, and

then studying the stability of the numerical solutions pro-

vided by the algorithm.

The numerical diagonalization of (B.44) yields the propa-

gation constants and the magnetic fields of the modes in the

periodic medium at each frequency point. Finally, the trans-

verse electric fields of the modes are related to the magnetic

ones through constraints directly derived from Maxwell’s

equations [22], resulting

en =
j

ωε
ẑ ×

[
1

jβn
∇t[∇t · hn] + jβnhn

]
. (B.46)

For the particular case of 2D incidence (φ = 900), the

problem can be substantially reduced, given that there is no

coupling between E-Type and H-Type Floquet modes, so the

modes guided by the periodic medium are E-Type or H-

Type modes, or equivalently, TM or TE modes, and thus,

the TE and TM incidence cases can be analysed separately.

Additionally, (B.46) is reduced to:

eTE,TM
n = ZTE,TM

n (hTE,TM
n × z). (B.47)

After specifying the fields in all regions of the structure,

both homogeneous and periodic, the problem is reduced to

obtain the scattering parameters of the structure. To this

end, the boundary conditions between adjacent layers will be

imposed, obtaining the generalized scattering matrix (GSM)

at each interface between adjacent layers of the structure, i.e.,

the amplitudes of reflected and transmitted modes. Then, we

construct the GSM of the global structure by means of the

cascaded connection of the individual GSMs of the interfaces

and the scattering matrices corresponding to the propagation

through the layers, following the technique described in

[31]. The global GSM yields the amplitudes of the scattered

modes, which are reflected and transmitted by the structure,

considering an incident plane wave with a unit amplitude.

Finally, we have to consider that the multimode scatter-

ing matrix is infinitely-dimensional. In order to reduce the

VOLUME 4, 2016 11



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

scattering problem to a computationally tractable form, the

individual multimode scattering matrices should be reduced

at a finite size. Such a size must be large enough to allow

for accurate calculation of the scattered modes which are

significant in the overall solution, but at the same time small

enough for efficient numerical calculation. Then, for each

particular case, a study of convergence must be performed

in order to reach an accurate solution for both the propaga-

tion characteristics in each periodic layer, and the scattering

parameters of the overall structure.
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