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ABSTRACT

Forward genetic screens have successfully identi-
fied many genes and continue to be powerful tools
for dissecting biological processes in Arabidop-
sis and other model species. Next-generation se-
quencing technologies have revolutionized the time-
consuming process of identifying the mutations that
cause a phenotype of interest. However, due to the
cost of such mapping-by-sequencing experiments,
special attention should be paid to experimental de-
sign and technical decisions so that the read data
allows to map the desired mutation. Here, we sim-
ulated different mapping-by-sequencing scenarios.
We first evaluated which short-read technology was
best suited for analyzing gene-rich genomic regions
in Arabidopsis and determined the minimum se-
quencing depth required to confidently call single nu-
cleotide variants. We also designed ways to discrim-
inate mutagenesis-induced mutations from back-
ground Single Nucleotide Polymorphisms in mutants
isolated in Arabidopsis non-reference lines. In addi-
tion, we simulated bulked segregant mapping popu-
lations for identifying point mutations and monitored
how the size of the mapping population and the se-
quencing depth affect mapping precision. Finally, we
provide the computational basis of a protocol that we
already used to map T-DNA insertions with paired-
end Illumina-like reads, using very low sequencing
depths and pooling several mutants together; this
approach can also be used with single-end reads as
well as to map any other insertional mutagen. All
these simulations proved useful for designing exper-
iments that allowed us to map several mutations in
Arabidopsis.

INTRODUCTION

Whole-genome massive sequencing (WGS) has opened a
new pathway for mutation mapping in organisms both with
and without sequenced genomes (1). Most types of nat-
urally occurring and induced mutations have been suc-
cessfully mapped using WGS: Single Nucleotide Polymor-
phisms (SNPs), small insertions and deletions (indels), in-
sertional elements and structural mutations (2–5). However,
WGS experiments are relatively expensive and require con-
siderable effort to obtain the samples required, to create and
sequence libraries, and to analyze the data produced to ob-
tain meaningful information. Therefore, optimizing the ex-
perimental design is highly important for obtaining the de-
sired biological information on the first attempt. This pro-
cess could involve reviewing the literature for an equivalent
experimental design or performing pilot experiments (6).
However, the former option depends on availability, while
the latter requires an extra investment.

A third option is simulating the experiment in silico (7,8).
For example, a computer text file representing a mutated
genome can be created and WGS reads can be simulated
and analyzed in the same manner as real reads to predict,
for instance, whether a certain read depth (RD) will be suit-
able for a particular purpose. With this information in hand,
the actual experiment can be performed more efficiently.
Other customizable parameters that can be simulated in-
clude the mutagenesis density (point and insertional muta-
tions), type of sequencing library (single-end versus paired-
end reads), insert size in paired-end libraries, read length,
base calling error rate, RD distribution genome-wide, and
so on (9). Furthermore, rather difficult questions might
be raised during the experimental design using particular
mapping strategies: for example, the accuracy of mapping
ethyl methanesulfonate (EMS)-induced mutations via bulk
F2 segregant analysis largely depends on the size of the F2
mapping population, as well as the RD used (10,11). A re-
searcher can perform multiple rounds of a simulation exper-
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iment, progressively modify the values of different parame-
ters as desired, and analyze the outcome.

Simulations can also be used to validate an analysis work-
flow (12). For instance, a FASTA genome with a transpo-
son inserted in a known position can be created and mas-
sively sequenced in silico, and the resulting reads can be
used as a substrate to compare the ability of different anal-
ysis workflows to determine the insertion position (the so-
called known-truth approach; 13). This approach expands
the usefulness of simulated data to test if a certain experi-
mental design will be suitable for answering a research ques-
tion. Finally, benchmarking of computational tools such as
variant-calling software also depends on the use of simu-
lated data (14–16).

The rapid development of novel software tools has in-
creasingly facilitated the simulation of Next Generation
Sequencing (NGS) experiments (reviewed in 17). Simu-
lated experiments performed to date include those sim-
ulating DNA structural variation (18), RNA-sequencing
(RNA-seq) differential-expression studies (19,20), bisulfite
sequencing (21), studies based on tumor sequencing data
(22) and data from Quantitative Trait Loci (QTL) analy-
sis (23), sequencing of heterogeneous populations (7), and
de novo genome assembly (8). A combination of simula-
tions and pilot experiments can also be performed. Such a
two-step approach has been successfully used to improve
the power of RNA-seq experiments for assessing differen-
tial gene expression (24–26).

The motivation for performing the current study emerged
from questions that arose daily in our laboratory while de-
signing WGS experiments to identify mutations induced
in wild-type genetic backgrounds of the model plant Ara-
bidopsis thaliana (hereafter, Arabidopsis). Here, we describe
how we used simulations to aid in the design of actual
WGS experiments, in which we successfully identified sev-
eral genes causal for phenotypes of interest, which carried
mutations induced by EMS. We also describe simulations
for mutant genomes carrying multiple insertional muta-
tions.

MATERIALS AND METHODS

Simulations

To simulate mutant genomes, FASTA files containing ref-
erence Arabidopsis sequences (27,28) were obtained from
the National Center for Biotechnology Information (NCBI)
and modified by making single base changes or by inserting
long sequences at random positions. The density of natu-
ral SNPs used was that observed between the Arabidopsis
accessions Columbia-0 (Col-0) and Landsberg erecta (Ler).
The density of EMS-induced SNPs used was 4–14 per Mb
of reference sequence, as described previously (29,30). To
simulate meiotic recombination and artificial selection, two
FASTA files representing homologous chromosomes were
used as input to generate sets of recombinant sequences.
Crossover frequency distribution in Arabidopsis was ob-
tained from Salomé et al. (31), and crossover positions were
randomly distributed. Short reads were simulated by tak-
ing substrings at random positions from the input sequence,
and GC content bias in libraries was created by counter-
selecting reads with a probability proportional to their dis-

tance from neutral GC content and a strength parameter
ranging from 0 to 1, as in the following formula: strength ×
2 × (|GC% – 50|). Library fragment sizes in paired-end li-
braries and read lengths in Ion Proton-like libraries were as-
sumed to follow a normal distribution. The base calling er-
ror frequency used was 0–1% (32,33). In all scripts, random
numbers were simulated using the Mersenne Twister algo-
rithm (34). These procedures were implemented in Python2
and are available under the GPL-3.0 license (Scripts S1–
S3). The arguments required by the programs and the values
used in all simulations are detailed in Supplementary Table
S1.

Plant materials and preparation of DNA for sequencing

Seeds of the wild-type accessions Col-0 and Ler of Ara-
bidopsis thaliana L. Heynh. were first obtained from the
Nottingham Arabidopsis Stock Center (NASC) and then
propagated by self pollination in our laboratory. The EMS-
induced mutants angulata1-1 (anu1-1), anu12-1, denticu-
lata3 (den3), den6-1, ondulata4 (ond4) and scabra1-1 (sca1-
1), as well as 19 other mutants derived from the same mu-
tagenesis used to create background SNP masks, belong to
the Micol collection of leaf mutants, which were obtained
previously in our laboratory in the Ler background (35).
The T-DNA mutants were obtained from the SALK col-
lection (36), and the specific lines were previously analyzed
and described in Wilson-Sánchez et al. (37). Isolation of the
ago1-25 mutant (EMS; Col-0) was described in Morel et al.
(38). Plants were grown and crossed as described previously
(37). To create mapping populations, the mutants were ei-
ther backcrossed or pseudo-backcrossed (see Results) and
the F2 progeny of the selfing of a single F1 plant was used.
Leaf tissue from F2 individuals exhibiting the phenotype of
interest was combined in approximately equal amounts (by
weight) to obtain approximately equimolar DNA popula-
tions. Total genomic DNA was purified using Mini or Midi
DNA Plant Kits (Qiagen, Venlo, The Netherlands). DNA
concentration was determined with a Qubit dsDNA HS As-
say Kit in a Qubit 2.0 fluorometer (Thermo Fisher Scien-
tific, Waltham, MA, USA), and its integrity was confirmed
by gel electrophoresis.

Library preparation and sequencing

Short read data were generated in-house with an Ion Proton
sequencer or externally on the HiSeq2000 and HiSeq2500
platforms at BGI (Beijing Genomics Institute, Hong Kong)
and STAB-VIDA (Caparica, Portugal), respectively. For
the samples sequenced with the Ion Proton, all devices
and reagents were obtained from Life Technologies (now
Thermo Fisher Scientific). DNA libraries were prepared
with Ion Shear Plus and Ion Xpress Plus kits, amplified via
five PCR cycles, and assessed for quality with a Bioanalyzer
2100 using a DNA High Sensitivity Chip (Agilent Tech-
nologies, Santa Clara, CA, USA). Sequencing templates
were created with an Ion OneTouch and an Ion ES instru-
ment using an Ion PI OT2 200 Kit v3 and analyzed with a
Qubit 2.0 fluorometer using an Ion Sphere Quality Control
Kit. Sequencing was performed with an Ion PI 200 Kit v3
in an Ion PI Chip v2.
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Data analysis

DNA sequence complexity was measured using SeqCom-
plex (http://caballero.github.io/SeqComplex/). Read data in
FASTQ format obtained from simulations and from the
HiSeq and Ion Proton sequencers were analyzed identically
(Supplementary Figure S1). Assessment of raw read quality
was performed with FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Nucleotide calls at the 3′
ends of reads with Phred scores < 15 were trimmed.

Alignments were performed with Bowtie2 (39) or BWA-
MEM (40), most often using default parameters for single-
and paired-end reads. Analyses and routine tasks with
SAM/BAM alignments were performed with tools from
the SAMtools (41), BAMtools (42), BEDtools (43), and
QualiMap (44) suites. SNP calling was performed with
GATK Unified Genotyper (45) or SAMtools mpileup and
BCFtools call (41,46). SNP datasets were filtered by the
QUAL field (47) according to the needs of each experiment.
To create the masks of natural SNPs (Supplementary Tables
S2–S4), the VCF files from the individual mutants were fil-
tered on RD (≥7) and alternative allele frequency (≥0.4)
and merged using custom scripts developed for Easymap, a
mapping-by-sequencing program for which a manuscript is
in preparation. Finally, variants were filtered according to
the number of samples in which they appeared.

Availability of read and variant data

The short read data from some samples analyzed in this
work are available from the NCBI Sequence Read Archive
database (http://www.ncbi.nlm.nih.gov/sra) or from the au-
thors upon request: the anu1-1 and anu12-1 mutants (ac-
cession SRP043639; 48); den3 mutant (upon request); sca1-
1 mutant (SRP050297; 49); two libraries, one created from
the pooled DNA of 100 phenotypically mutant plants of the
F2 progeny of an ago1-25 × Col-0 cross (SRX3510107) and
the other from the Col-0 parental line (SRX3510106); a li-
brary created from the pooled DNA of 109 double mutant
plants selected from the F2 progeny of a den6-1 × ond4 cross
(SRX3510108); and two libraries from pools of five SALK
T-DNA mutant lines (SRX473258; 37).

The short read data from the mutants used to create SNP
masks (35) were not deposited at NCBI. However, the con-
sensus lists of Col-0-Ler SNPs that were created are shown
in Supplementary Tables S2–S4.

RESULTS

The first decision in WGS: choosing a sequencing platform
and RD for SNP analysis

During the course of a forward genetics project to study leaf
development, we wanted to use WGS to identify the causal
genes for several Arabidopsis leaf-shape mutants isolated
in a forward genetics screen of a population derived from
EMS mutagenesis. Two sequencing platforms were avail-
able to us: HiSeq2000 (Illumina) and Ion Proton (Life Tech-
nologies, now Thermo Fisher Scientific), which yield ∼100-
bp paired-end reads and ∼200-bp single-end reads, respec-
tively. Using a custom Python script (Script S1 and Supple-
mentary Figure S1), we simulated reads from these two plat-
forms (Simulation 1, in Supplementary Table S1) and tested

the ability of two common aligner programs, Bowtie2 (39)
and BWA-MEM (40), to align the reads to a reference se-
quence. We used a 5-Mb sequence from gene-rich regions of
the Arabidopsis Col-0 accession genome (complexity ∼10;
50) as a template reference sequence, as such regions are
the usual targets of gene cloning experiments, and repeti-
tive low-complexity regions reduce the performance of the
aligners (51). The percentage of unaligned reads from the
two platforms was similar regardless of the aligner used (Ta-
ble 1). The number of reads that could not be mapped un-
ambiguously was also comparable. Since we concluded that
these two types of reads are equally suitable for analyzing
gene-rich regions from Arabidopsis, we considered both se-
quencing platforms in subsequent cloning experiments.

Next, we wanted to know how mean RD affects cover-
age (CN), i.e. the percentage of the template sequence with
RD ≥ N (52); the latter condition is critical for reliable
genome-wide base calling. A chosen mean RD cannot en-
sure that all bases are read at that depth (Supplementary
Figure S2), as fragment libraries are largely random, and
several biases commonly arise during library preparation
(such as the preference for DNA fragments with neutral GC
content during library PCR amplification) (53–56), which
in turn further increases the RD variance of a given sam-
ple. We simulated libraries with increasing degrees of GC
bias strength (Simulation 2, in Supplementary Table S1)
and found that a 100% strength yielded an RD distribution
that closely matched that of real Illumina libraries (Supple-
mentary Figure S2). Consequently, in all subsequent simu-
lations involving RD as a variable, we used a 100% GC bias
strength.

We then simulated several datasets with increasing mean
RD (10× to 100×) and analyzed the resulting C15, a thresh-
old that we established arbitrarily, because RD ≥ 15 is ex-
pected to allow confident base calling and variant analy-
sis (Simulation 3, in Supplementary Table S1). Increasing
the mean RD also increased C15 (solid line in Figure 1A).
When using ∼40× mean RD, >99.7% of the template se-
quence passed the C15 threshold, and further reduction of
the number of under-read nucleotides required a substan-
tial increase in RD and costs. To test how RD would affect
C15 in a non-reference genome, we repeated this experiment
with reads simulated from Ler (28) and aligned to Col-0.
Saturation was observed at ∼40–50× RD (dashed line in
Figure 1A), although the maximum was at 88.6%, likely due
to large chromosomic stretches present only in Col-0.

Accurate base determination and variant detection also
require a minimum RD to minimize the impact of errors
generated during library preparation, sequencer base call-
ing errors (0.1–1% for different sequencing platforms), or
reads misaligned to the reference sequence (32,33), which
when combined interfere with the statistical models that
variant callers employ to determine DNA bases (57,58).
First, we sought to determine the minimum RD needed
to call SNPs systematically with a standard variant calling
workflow. We simulated a 10 Mb high-complexity template
from a Col-0 gene-rich region and a polymorphic version
with 10 000 (0.1%) random SNPs (Script S2 and Supple-
mentary Figure S1). Next, we simulated read datasets from
10× to 150× mean RD and a 1% base calling error rate
(Simulation 4, in Supplementary Table S1), and investigated

http://caballero.github.io/SeqComplex/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ncbi.nlm.nih.gov/sra
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Table 1. Percentage of simulated HiSeq2000-like and Ion proton-like reads aligned

Sequencing platform simulated Aligner Reads

Not aligned Aligned once Aligned more than once

HiSeq2000-likea Bowtie2 0.01 96.65 3.33
BWA-MEM 0.50 98.08 1.41

Ion Proton-likeb Bowtie2 0.01 97.03 2.96
BWA-MEM 0.60 97.79 1.62

aFixed-length (100 nt), paired-end library.
bVariable length (200 nt average), single-end library.
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Figure 1. Effect of read depth on variant calling in gene-rich regions in Arabidopsis. (A) Effect of mean read depth (RD) on template coverage (C15,
percentage of template sequence read with RD ≥ 15×). (B, C) Effect of mean RD on the (B) precision and (C) sensitivity of the analysis. Precision is
calculated as TP/(TP + FP), and sensitivity as TP/(TP + FN). TP: True positive SNPs. FP: False positive SNPs. FN: False negative SNPs.

how RD affects the precision and sensitivity of SNP call-
ing (14) using Samtools with default parameters (41). Pre-
cision (fraction of reported SNPs that are not false posi-
tives) and sensitivity (fraction of SNPs in the sample that are
detected) showed an asymptotic response to RD increase,
reaching their maximum (∼100% and ∼99%, respectively)
at ∼40× and ∼80× RD, respectively (solid lines in Figure
1B, C). To study how RD affects SNP calling in a non-
reference genome, we repeated the previous simulation but
generated reads from a 10-Mb high-complexity Ler tem-
plate with 0.1% random SNPs (28) and aligned them to Col-
0. Natural variants were subtracted using both experimen-
tal and simulated control data (Supplementary Table S2,
600× RD Ler reads aligned to Col-0). Precision increased
with RD up to 30× and then did not respond further. At any
given RD, it was always lower than in the reference genome,
due to false positives derived from misalignments in diver-
gent regions. Sensitivity again showed an asymptotic pat-
tern but approached the maximum later than in the refer-
ence genome, again likely due to the higher rate of misalign-
ments and unaligned reads.

False negatives, which reduce sensitivity, are mainly due
to the presence of stretches without aligned reads. However,
shallowly read stretches coupled with sequencing or align-
ment errors can cause both false negatives and false posi-
tives, which reduce precision. This issue can be mitigated by
filtering out low-quality SNPs, but at the expense of missing
some true positives (13). Our results show that increasing
the mean RD is effective to reduce both false positives and
false negatives in gene-rich regions of Arabidopsis. Based
on the results of C15 analysis (Figure 1A) and SNP calling
(Figure 1B, C), we decided that 40–50× RD provided the

best compromise between cost and accuracy for our WGS
genetic analyses in gene-rich genomic regions in Arabidop-
sis.

Mapping EMS-induced mutations in non-reference back-
grounds with prior linkage analysis information

We previously isolated 255 Arabidopsis mutants after EMS
mutagenesis (35). Linkage analysis using molecular markers
allowed us to delimit candidate intervals for the mutations
that cause the phenotypes of these mutants (59). Since these
mutants are in the Ler genetic background, their genome se-
quences have hundreds of thousands of SNPs with the refer-
ence accession Col-0 (60, and our unpublished data), mak-
ing it difficult to discriminate between natural and EMS-
derived SNPs. A Ler genome sequence is available (28), but
whether its quality is high enough for reliable SNP calling
has not been tested. Moreover, wild-type lines used in any
laboratory harbor up to a few thousand SNPs compared
to other lines considered to be the same accession (61–65).
Therefore, the parental line of the mutants should always
be sequenced to create an SNP mask. However, it is diffi-
cult to capture all SNPs in a single sequencing run (Figure
1C; 13,57). Alternatively, if several mutants obtained from
the same parental line must be analyzed, their SNPs can be
combined to create more comprehensive multi-sample lists
of natural SNPs. These datasets can subsequently be used
as SNP masks to analyze individual mutants (Figure 2A;
48,66,67).

To assess how this approach could be applied to our mu-
tants in the Ler background, we simulated mutant popula-
tions (Supplementary Figure S1) with an increasing num-
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Figure 2. SNP calling in non-reference genomes. (A) Procedure used to create a natural (parental) SNP mask by integrating the data from different mutants
obtained from the same mutagenesis (see also Supplementary Figure S3). N indicates any nucleotide. Nucleotides represented by a P shaded in green are
SNPs between the reference sequence (Reference) and the sequence of the line that was subjected to mutagenesis (Parental). Nucleotides shown as 1, 2 and
3 (shaded in blue, yellow and magenta, respectively) are specific of each mutant line and are absent from the genomes of other mutants or the reference
and parental lines. The computed mask only includes the SNPs shaded in green. (B) Effect of masking natural SNPs with different population sizes (X-
axis, bottom) and SNP selection stringencies (minimum number of samples in which the SNPs were detected; X-axis, top) (n = 3). Error bars indicate
standard deviation. (C, D) Number of remaining SNPs in the candidate intervals of the anu1-1 (0.216 Mb), anu12-1 (0.754 Mb), den3 (2.539 Mb) and
sca1-1 (0.760 Mb) mutants after filtering with different single-sample (red and blue) and multi-sample (green) SNP masks, or direct alignment of the reads
to the Ler genome assembly (orange) (28). The Ler (Micol lab) data correspond to the parental line of the mutants analyzed. The multi-sample masks
were constructed from 19 sibling mutants and include all SNPs present in at least 3, 2 or 1 samples. (C) Number of all remaining GC→AT transitions. (D)
Number of remaining protein-modifying GC→AT transitions.

ber of individuals to create different SNP masks (mask-
ing populations), as well as three additional mutants rep-
resenting problem individuals to be analyzed. Each mutant
consisted of a 5-Mb gene-rich sequence carrying 50 000
parental SNPs (common to all three samples, introduced
to simulate natural SNPs between the reference accession
and the mutated lines) and 60 GA→CT random transitions
(unique to each sample, to simulate EMS-induced SNPs;
68,69) (Simulation 5, in Supplementary Table S1). We sim-
ulated reads with 40× RD and called SNPs. We then cre-
ated SNP masks using masking populations of varying sizes
and stringencies (i.e. the minimum number of mutants in the
masking population where a given SNP has to be detected in
order to include it in the mask) (Supplementary Figure S3;
67). Finally, we used these masks to filter the SNPs of the
three simulated problem individuals and to evaluate their
performance.

As shown in Figure 2B, we observed contaminating natu-
ral SNPs, but increasing the size of the masking population
reduced its number. On the other hand, increasing the pop-
ulation size did not significantly increase the number of in-
correctly filtered EMS-induced SNPs. For each population
size, we created masks of three different stringency levels
(Supplementary Figure S3; 67). The least stringent masks
(those that included all SNPs detected in at least one indi-
vidual of the masking population) were best able to filter
out contaminating natural SNPs but did not significantly
increase the number of incorrectly filtered EMS-induced

SNPs (Figure 2B). Therefore, the larger the masking pop-
ulation and the less stringent the SNP selection criteria, the
greater the ability of the resulting SNP mask to filter out
natural SNPs; at the same time, such a mask will very rarely
filter out an EMS-induced SNP.

Using the previous results as a benchmark, we set out
to create an SNP mask between our current Ler labora-
tory line and Col-0 (TAIR10). We used WGS data from 19
sibling non-allelic mutants derived from the same mutage-
nesis (35), created SNP masks with low stringency (SNPs
detected in ≥1, ≥2 or ≥3 of the 19 samples; Supplemen-
tary Tables S2–S4), and applied the masks to four mu-
tants that we previously isolated from the same mutagene-
sis (48,49). We compared our simulation-derived approach
(multi-sample masks) to simply subtracting SNPs from the
Ler 1001 genome data (70) or from a single sequencing
run of the Ler parental line (single-sample masks). We also
compared the masks with direct alignment to the Ler as-
sembly by Zapata et al. (28). As shown in Figure 2C, D,
multi-sample masks outperformed single-sample masks for
filtering out natural SNPs, and they did not incorrectly fil-
ter out the causal mutations. Alignment to the Ler assem-
bly (28) gave comparable results (Figure 2C, D; Table 2).
However, for the vast majority of non-Col-0 accessions no
assembly information is available. Overall, our results sug-
gest that multi-sample masking is a powerful, background-
independent approach for analyzing mutants in all non-
reference backgrounds. The masks developed in this exper-
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Table 2. Number of reliable SNPs in chromosome 2 called using the multi-
mask approach and the Ler genome assembly of Zapata et al. (2016)

Mutant
Multi-sample
masking (19–1 mask)

Alignments to the Ler
assembly of Zapata
et al. (2016)

anu1-1 254 233
anu12-1 72 189
den3 118 121
sca1-1 223 207
Total 667 750

Reliable SNPs are those with an allele frequency >0.75 in a high-
complexity genomic region: Col-0 chromosome 2 segment ranging from
8 000 000 to 18 585 056 bp in TAIR10, which corresponds to 7 348 758 to
19 037 554 bp in the Ler assembly of Zapata et al. (28).

iment are currently being used to filter out natural SNPs
in mutants whose causal genes are in the process of being
identified.

Backcross mapping-by-sequencing to detect recessive EMS-
induced mutations without prior linkage analysis information

In recent years, we have had to identify the genes underly-
ing several novel Arabidopsis mutants for which there was
no previous knowledge of the position of the causal muta-
tion. WGS can replace the time-consuming process of map-
based cloning (linkage analysis coupled to candidate gene
sequencing) when applied to F2 populations derived from a
cross between a mutant and a polymorphic line (mapping-
by-sequencing; 71–74). In addition, a single backcross and
the use of EMS-induced SNPs as mapping markers has been
successfully employed to map causal mutations in plants
(10,62,75–79). This option makes it easier to detect the SNP
causing the phenotype of interest (the causal mutation),
since the number of natural SNPs is typically reduced from
several hundred thousand to 500–1500 (30,80).

We decided to use backcross mapping-by-sequencing to
accelerate mutation identification. First, to assess how the
size of the F2 mapping population affects mapping preci-
sion, we simulated a version of Arabidopsis chromosome 4
with 109 mutations representing the natural divergence be-
tween the Col-0 reference sequence and a laboratory-grown
Col-0 line (61–65), together with 232 EMS GC→AT tran-
sitions. We then obtained sets of 40, 80, 160 and 320 back-
cross F2 recombinant chromosomes (10 replicates) artifi-
cially selected based on their harboring a single transition
(at position 5 845 220 bp; Script S3 and Supplementary
Figure S1). We then simulated 100× RD reads from each
set, called SNP variants, and characterized the candidate re-
gions obtained (Simulation 6, in Supplementary Table S1).
A plot of the variant allele frequencies (AFs) against their
position on the chromosome forms a concave curve, with its
maximum near the position of the causal mutation (Figure
3A). The number of candidate mutations (arbitrarily estab-
lished as all SNPs with an AF ≥ 0.98) decreased when we
increased the number of chromosomes from 40 to 80 but
remained constant when we further increased the number
of chromosomes from 160 and 320 (Figure 3A, B). This re-
sult suggests that if the number of reads at a given locus
(RD) is lower than the number of recombinant chromo-
somes (i.e. the mapping population size; MPS), read sam-

pling acts as a limiting factor when assessing the allelic fre-
quencies in the population.

To test this hypothesis, we simulated different combina-
tions of MPS × RD in sets of 100 replicates (Simulation
7, in Supplementary Table S1). As shown in Figure 3C, in-
creasing the MPS from 40 to 320 chromosomes while using
a low RD (30×) throughout had a significant but mild ef-
fect on the number of candidate mutations (24% reduction;
P = 0.0001 in a Student’s t-test). Similarly, keeping the MPS
low (40 chromosomes) and increasing RD had a limited im-
pact on the number of candidate mutations, although this
number was greater than in the previous case (37% reduc-
tion, P = 0.0001). The greatest effect was observed when we
simultaneously increased MPS and RD (63% reduction, P
= 0.0001). These results suggest that both parameters can
act as bottlenecks in a mapping-by-sequencing experiment,
as indicated in previous studies (11). Visual inspection of
the results, which is often how mapping-by-sequencing re-
sults are analyzed, revealed that higher MPS renders a
smoother AF curve, while higher RD reduces the noise in
AF sampling (Supplementary Figure S4). The availability
of smooth, low noise curves makes it easier to identify the
candidate mutations.

Achieving RDs such as 200× in genomes of hundreds
of Mb requires large amounts of short read data, which
are normally not acceptable or available for a cloning ex-
periment. Therefore, RD will be the limiting parameter in
mapping-by-sequencing experiments in which it is easy to
obtain large F2 populations. Still, lower RDs can be suffi-
cient if SNP density is not very high. To confirm this notion,
we backcrossed the EMS-induced argonaute1-25 (ago1-25)
mutant, which was isolated in the Col-0 genetic background
and has a characteristic recessive morphological phenotype
(38), and pooled the DNA from 100 phenotypically mutant
F2 plants (200 chromosomes). We sequenced at 60× RD
and determined the positions and AF of all SNPs detected.
We observed clear linkage of the phenotype to a narrow re-
gion in chromosome 1 (Figure 3D), which contained only
11 SNPs with AF ≥ 0.95. Five of these SNPs altered pro-
tein sequences, including a C→T transition at position 17
887 923 bp (Gly760→Ser), which is known to be responsible
for the mutant phenotype of ago1-25 (Figure 3E). We used
these simulations and a real-data experiment as the founda-
tion for other mapping-by-sequencing projects.

M2 populations derived from a single M1 individual have
also been used to map causal mutations in EMS-induced
Arabidopsis mutants (78). An M2 population contains
twice as many EMS mutations as an F2 population derived
from a mutant that has been selfed several times (Supple-
mentary Figure S5A). Only half of these mutations within
the candidate interval will cosegregate with the causal mu-
tation (Supplementary Figure S5A). To compare the out-
come of M2 vs. backcross-F2 mapping-by-sequencing ex-
periments, we simulated both corresponding populations
(Simulation 8, in Supplementary Table S1) and counted the
number of candidate mutations in the candidate intervals
We found no significant differences in the number of candi-
date mutations obtained using these two approaches (Sup-
plementary Figure S5B, C), suggesting that they reach sim-
ilar mapping accuracy. However, while M2 mapping popu-
lations can be obtained faster, F2 mapping populations can
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Figure 3. Mapping-by-sequencing EMS-induced mutations using backcross-derived F2 populations. (A) Variation of SNP allele frequency around the
causal mutation after simulating 100× RD reads from mapping populations of different sizes. Each SNP is represented by 10 dots, each corresponding to
an experimental replicate. (B) Effect of the number of chromosomes analyzed on the number of candidate SNPs (with an allele frequency ≥ 0.98). Data
were computed from 10 simulated replicates of each population size. Error bars indicate standard deviation. (C) Combined effect of mapping population
size and sequencing read depth on the number of candidate SNPs. Each heatmap unit represents a single simulated experiment. (D, E) Identification of
the ago1-25 mutation using mapping-by-sequencing. (D) Positions and allele frequencies of the SNPs detected in the mapping population. The candidate
interval is shown in orange; it is defined based on a cluster of SNPs with allele frequencies ≥0.95. The red line indicates the position of the ago1-25 mutation.
(E) Effect of the GC→AT substitutions found in the candidate interval, including the ago1-25 mutation (red square).

still be preferred to perform complementation analysis prior
to mapping-by-sequencing.

Pseudo-backcrossing coupled to high RD sequencing

To reduce the sizes of candidate intervals without increasing
the cost per mutant, we designed a novel approach that we
termed pseudo-backcrossing coupled to high RD sequenc-
ing: first, two mutants exhibiting different, monogenic phe-
notypes caused by recessive mutations in non-linked loci,
both arising from the same mutagenesis, are crossed to ob-
tain the F2 progeny; a mapping population of double mu-
tants isolated because of their additive phenotypes is then
constructed, and genomic DNA from these double mutants
is sequenced at a high RD (Figure 4A). The advantage of
this technique is that the higher RD allows for narrower
candidate intervals compared to the conventional technique

(Figure 3C). The cost per mutant does not increase because
only one sequencing library has to be generated (at a total
cost of only a few hundred dollars), and the increased num-
ber of reads analyzed, although more expensive, should be
useful to identify the underlying mutation for two separate
mutants. These approaches will only be useful for mutations
affecting unlinked genes and causing additive and clearly
distinguishable phenotypes.

To determine whether the use of a pseudo-backcross-
derived F2 mapping population would allow us to simul-
taneously map two of our EMS-induced mutants in the
Ler background, we performed the following simulation: we
generated 273 000 random SNPs on Col-0 chromosomes 1
and 2 to simulate the Ler strain, which we then used as a
template to create two sibling mutants, each with 209 ran-
dom EMS-type SNPs; we then generated 240 F2 double-
mutant genomes for positions chr1:2 500 000 and chr2:11
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Figure 4. Mapping-by-sequencing EMS-induced mutations using pseudo-backcrossing-derived F2 populations. (A) Overview of reads simulation from a
pseudo-backcross. Green arrows and labels indicate mutagenesis. Blue arrows denote recombination and selection. Red arrows and labels indicate massive
sequencing. (B–E) Simultaneous identification of two candidate intervals in simulated pseudo-backcross-derived F2 mapping populations. (B) Position
and allele frequency of the SNPs detected in a simulated mapping population derived from a cross of two mutants carrying (B) unlinked and (C) linked
recessive mutations. Orange boxes indicate the locations of the candidate SNPs. (D, E) Overview of chromosome 1 showing only SNPs with a QUAL value
> 200. Note that the application of this filter to remove background SNPs results in the unintentional removal of variants with low allele frequency. (F–H)
Simultaneous identification of two candidate intervals in an F2 mapping population derived from a ond4 × den6-1 cross. (F) Genome-wide positions and
allele frequencies of the SNPs detected in the mapping population after SNP quality filtering. The orange boxes indicate the locations of the candidate
SNPs. (G, H) Positions and allele frequencies of the candidate SNPs on chromosomes (G) 2 and (H) 4. Blue dots: protein-modifying SNPs. Red dots:
non-protein modifying SNPs.

000 000; finally, we simulated 40× RD reads from the Ler
parental line and high-depth reads (120×) for the F2 popu-
lation (Simulation 9, in Supplementary Table S1). Follow-
ing read alignment and variant calling, we subtracted the
SNPs detected in the parental line from the F2 SNP list. As
shown in Figure 4B, the AFs of the SNPs from each sim-
ulated mutant described complementary traces along the

chromosomes and diverged around the positions of the two
causal mutations, allowing us to distinguish two candidate
intervals at the expected positions. This experiment was re-
peated 10 times, yielding comparable results. The detection
of a significant number of SNPs with AF near 1 is due to the
presence of unfiltered background SNPs and to sequencing
and alignment errors in the F2 population.
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Next, we investigated whether this approach can also be
used to define candidate regions for partially linked muta-
tions. We simulated F2 double-mutant genomes selected for
positions chr1:2 500 000 and chr1:20 000 000, which ren-
dered only 1/24 (<1/16) double mutants. Again, visualiz-
ing the AF of the SNPs present in the double mutant pop-
ulation allowed us to determine the locations of the two
candidate regions (Figure 4C). Comparable results were ob-
tained in the 10 replicates performed. Filtering out the SNPs
with a QUAL value < 200 (see Materials and Methods) re-
moved many pericentromeric SNPs; many SNPs with low
AF around the candidate intervals were also removed in this
way (Figure 4D, E).

Taking these results into account, we applied this strategy
to simultaneously map two unlinked Ler mutations: ond4
and den6-1 (35). After crossing the ond4 and den6-1 mu-
tants, we isolated 109 individuals (218 chromosomes) from
the F2 progeny that unequivocally showed both mutant
phenotypes in an additive manner (Supplementary Figure
S6), extracted and pooled DNA from these plants, and se-
quenced it at 120× RD. After removing background SNPs,
plotting the frequencies of all EMS-type SNPs allowed us
to profile two candidate regions, including a region on chro-
mosomes 2 and 4 around positions 11.2 and 10.3 Mb, re-
spectively (Figure 4F). These two candidate regions con-
tained seven and three GC→AT transitions, respectively,
that were predicted to modify protein sequences (blue dots
in Figure 4G, H), as well as ten and five, respectively, that
were conservative (red dots in Figure 4G, H). This result
shows that pseudo-backcrossing offers the advantages of
high RD without an increase in sequencing cost.

Mapping T-DNA insertions in pooled samples

The annotated T-DNA insertions from mutant collections
such as SALK (36) and SAIL (81) are not always responsi-
ble for an observed phenotype due to the presence of multi-
ple insertions per line. Indeed, we previously faced this situ-
ation with several Arabidopsis mutants from the SALK col-
lection, which we subjected to mapping-by-sequencing (37),
since we aimed to analyze by WGS small groups of T-DNA
mutant lines using a simple method compatible with DNA
pooling that takes advantage of paired-end read properties
and prior knowledge of the insertion sequence (37,82; Fig-
ure 5A). We reasoned that aligning paired-end reads from
these mutants to the T-DNA sequence in paired-end mode
would result in a portion of the read pairs, i.e. those span-
ning the junctions between the plant DNA and the T-DNA
insertion, with only one of the two mates aligned. Thus, se-
lecting these read pairs and aligning them to the Arabidop-
sis reference sequence would generate output comprising
clusters of alignments around the T-DNA positions (blue
rectangles in Figure 5A). A similar approach could be used
with single reads aligned in local mode, in which the nu-
cleotide positions immediately adjacent to the T-DNA in-
sertions would show a signature consisting of clipped align-
ments (red rectangles in Figure 5A).

To validate this protocol prior to sequencing our mutants
we performed simulations that we did not describe in (37);
these simulations are provided here. We simulated a 1-Mb
genome from the Arabidopsis reference sequence and in-

serted a 4.2 kb T-DNA sequence from the pBIN-pROK2
vector (36). We simulated 100× paired-end reads (Simula-
tion 11, in Supplementary Table S1) and analyzed them as
described above. As predicted, a very small portion of the
total read pairs was discordantly aligned at the ends of the
T-DNA sequence. In addition, the unaligned mates, when
filtered and realigned to the 1-Mb Arabidopsis reference se-
quence, clustered around the position of the in silico inserted
T-DNA (Figure 5B). Forward reads were clustered together
on the left flank and reverse reads on the right flank. Af-
ter the local alignment, we identified a set of alignments
that unambiguously pinpointed the insertion bp coordinate
(Figure 5C).

To test the reliability of this workflow on an Arabidop-
sis genome-wide scale, we simulated a whole genome with
100 randomly positioned T-DNA insertions and attempted
to map them with paired-end reads at a common RD (40×;
Simulation 12, in Supplementary Table S1). We classified
the unpaired alignments to the Arabidopsis sequence in bins
of 10 kb and managed to obtain one signal peak for ev-
ery T-DNA insertion simulated (Figure 5D). The number
of reads supporting each insertion was homogenous (190.1
± 18.5 reads per insertion), suggesting that this method is
highly reliable at 40× RD. Moreover, 100% of the insertion
positions accumulated locally aligned reads that precisely
indicated the insertion position (72.2 ± 11.4 reads per in-
sertion; Figure 5E). However, local alignments occurred in
other parts of the genome as well, due to sequence similarity
between different regions of the genome (e.g., the leftmost
peak in Figure 5E), preventing us from using them without
prior paired-end read information. One way to overcome
this problem in the absence of paired-end reads would be to
use >100 nt reads and only consider rather long local align-
ments.

For our previous study (37), we found it necessary to de-
termine the minimum RD needed to safely map all inser-
tions in a single sample, consisting of a pool of T-DNA lines.
To this end, we made a preliminary simulation of our work-
flow, which is extended here (Simulation 13, in Supplemen-
tary Table S1), of sets of paired-end reads with decreasing
RD down to 1× and characterized the number of support-
ing reads for each insertion. As shown in Figure 5F–G, in
our simulations the number of supporting reads depends on
the RD used, and very low RD values are sufficient to map
insertions in a pool of T-DNA lines. From the results shown
in Figure 5G and H, we arbitrarily set 5× as the lowest RD
advisable for our purposes. The knowledge gained in this
simulation experiment allowed us to design the actual ex-
periment that we described in reference 37: we pooled the
genomic DNA from 10 T-DNA mutants in two samples,
which were sequenced on an Illumina HiSeq2000 at 25×
RD per sample (∼5× per individual genome). We were able
to unambiguously map 11 previously annotated insertions
in these lines, together with 8 additional, non-annotated in-
sertions, suggesting that most or all T-DNAs had been de-
tected in our analysis (37 and Figure 5H–I).

DISCUSSION

In this study, we showed how simulated data could be
used to help optimize the experimental design of mutation



e140 Nucleic Acids Research, 2019, Vol. 47, No. 21 PAGE 10 OF 14

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Lo
ca

l a
lig

nm
en

ts

G

0

10

20

30

40

1 2 3 4 5 6 7 8

U
np

ai
re

d
al

ig
nm

en
ts

0
20
40
60
80

100

0 5 10 15 20

Lo
ca

l
al

ig
nm

en
ts

0
50

100
150
200
250

U
np

ai
re

d 
al

ig
nm

en
ts

A B C F
Plant DNAT-DNA

T-DNA

Unpaired
alignments Local

alignments

Reference
sequence

E

D

H

0 5 10 15 20 25 30

1

2

3

4

5

Pool 1
Pool 2

Physical position (Mb)

I

2000
80

60
40
20
0

250
200
150
100

50
0

Read depth (×)

40

30

20

10

0

Read depth (×)

50

40

30

20

10

0

Physical position in chromosome 3 (Mb)

a b
a b

Unpaired
alignments

Local
alignments

C
hr

om
os

om
e

Figure 5. Mapping T-DNA insertions with WGS paired-end reads. (A) Procedure devised to map T-DNA insertions with massive paired-end reads. Total
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cloning projects that make use of WGS. We made useful
predictions using relatively simple programs because the
processes simulated, namely DNA mutagenesis, chromo-
somal recombination, and short-read sequencing, were as-
sumed to be random for our purposes (31,36,69,83). We suc-
cessfully accomplished three tasks: comparing short read
technologies, evaluating experimental designs, and testing
our analysis workflows. Our approach allowed us to ob-
tain highly meaningful results for some experiments while
quickly discarding dead-end approaches, saving laboratory
resources (for example, regarding dominant mutations, we
discarded the use of phenotypically mutant individuals
from an F2 mapping population to define a sharp candidate
interval).

Benchmarking

The use of simulated data is sometimes the only option
available when performing a benchmarking experiment. For
example, we assessed the percentage of HiSeq2000-like and
Ion Proton-like reads that mapped unambiguously to gene-
rich chromosomal regions. This experiment could not have
been performed with experimental (real) reads, as these are
obtained from whole nuclear DNA and it is therefore im-
possible to determine which reads originated from these re-
gions. Similarly, we calculated the precision and sensitivity
of an SNP calling workflow at different RDs. This analysis
cannot easily be performed with real read data because it
is impossible to know the positions of all SNPs in a given
sample prior to sequencing (15).
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Discriminating EMS-induced SNPs in backgrounds with
high SNP density

For robust analysis of mutants derived from EMS mutage-
nesis, it is critical to obtain SNP call sets with the minimum
number of false positives and false negatives. We found that
in our typical analysis target, Arabidopsis gene-rich regions,
a value of 50× RD is convenient for calling SNPs, since at
this depth, both precision and sensitivity reached a plateau
level.

Analyzing EMS mutants obtained from a non-reference
accession leads to the detection of hundreds of thousands
of background SNPs (28), making it more difficult to iden-
tify the mutation that causes the phenotype of interest. We
demonstrated that using a background mask that integrates
data from different samples rather than simply sequencing
the parental line of a given mutant not only makes it unnec-
essary to sequence the parental DNA, but it also facilitates
the elimination of background SNPs (Figure 2). This is be-
cause a single sequencing run on the background line at a
commonly used RD never uncovers all variant positions, as
revealed by our simulations. We also showed that the higher
the number of samples used to create the mask and the lower
the stringency to include SNPs in the mask, the greater its
capacity to filter out background SNPs. However, the fol-
lowing tradeoff should always be considered: very lenient
masks may include false SNPs (read errors or misalign-
ments), whereas very stringent masks may discard some nat-
ural SNPs. As a result, very lenient masks may wrongly fil-
ter out EMS-induced SNPs in the problem sample, and very
stringent masks may not filter out many natural SNPs (67).
The high density of background SNPs in a typical analy-
sis involving two different accessions (28) stresses the need
for a powerful method for eliminating these SNPs. For ex-
ample, not eliminating 1% of the background SNPs in a
sample containing 500 000 such SNPs would result in re-
taining 5000 undesired variants in the analysis. We have
shown that our SNP masking approach gives similar results
to the direct variant calling using non-reference genome as-
semblies as a template (Figure 2). However, it should be
taken into account that high-quality genome assemblies for
non-reference lines are generally not available, and that the
multi-mask approach is background independent.

Mapping EMS-induced causal mutations with an F2 recom-
binant mapping population

The ultimate goal of mapping-by-sequencing experiments
is to define a candidate interval containing the phenotype-
causing mutation as narrow as possible (71). In agreement
with previously published results (11), we found that in the
ranges normally used in actual experiments, both the num-
ber of chromosomes in a mapping population and the se-
quencing RD act as limiting factors for narrowing down a
candidate interval. The effect of the first factor is obvious,
since the number of recombination events near the causal
mutation depends on the total number of chromosomes
present. We also found that large mapping populations, in-
dependently of RD, produced lower variability in the num-
ber of candidate SNPs between simulation replicates, con-

tributing to more predictable results (Figure 3B). We found
that sequencing RD is a limiting factor to narrowing down
a candidate interval when it is below the number of unique
recombinant chromosomes, as parts of the chromosomes
are never read under these conditions (first column in Fig-
ure 3C). For example, considering a mapping population of
200 chromosomes with only 20 reads overlapping a given
polymorphic marker, most of the information available for
this marker in the population is never extracted. On the con-
trary, increasing RD over the size of the mapping popula-
tion did reduce the number of candidate mutations (bot-
tom row in Figure 3C). The most likely explanation for this,
given that sequencing is a random sampling process (83),
is that not all chromosomes are read an equivalent num-
ber of times at a given locus. For example, for a particu-
lar marker in a population with 30 chromosomes read at
30× RD, some chromosomes could be read more than once,
while others remain unread, whereas at 300×, these differ-
ences would likely be neutralized due to deeper sampling.

Also, increasing RD produces more accurate AF values
and results in less noisy AF graphs (Supplementary Figure
S4), which help delimit a candidate interval. In traditional
linkage analysis, hundreds or even thousands of individu-
als are genotyped for markers close to the causal mutation,
allowing even very low-frequency recombinant markers to
be detected. Reminiscent of this approach, Hartwig et al.
(10) used very high RD to resolve the candidate interval
of an EMS-induced mutant: after 40× RD sequencing of
a mapping population of 540 chromosomes, they detected
apparent complete linkage between three candidate muta-
tions (AF = 1). Next, they performed 20 000× RD tar-
geted sequencing and found a recombination rate of >2%
for two of the loci, which led them to establish the remaining
mutation as the causal one.

Sequencing a whole genome with high RD and perform-
ing targeted sequencing are not always possible due to
cost constraints. Using simulated data, we showed that two
EMS-derived mutants could be mapped using a single map-
ping population obtained from a pseudo-backcross. This
method produced twice the usual number of reads with-
out increasing the cost per mutant. This approach is fea-
sible only if the two mutants are not totally linked and if
the double mutant is easy to score. By crossing the ond4
and den6-1 recessive mutants, we successfully defined two
candidate intervals with very few candidate mutations (Fig-
ure 4G, H). To our knowledge, this is the first report of this
approach, which could be useful for other researchers who
wish to identify several mutated genes derived from a single
EMS mutagenesis.

Mapping large DNA insertions

While attempting to map T-DNA insertions in Arabidop-
sis, we demonstrated how performing simulations allowed
us to easily validate and optimize a simple pipeline for map-
ping the insertions using high-throughput read data. Al-
though novel tools to map insertions are constantly be-
ing released (84–86), our approach is very simple and re-
quires only a standard read aligner that supports single-
and paired-end reads and both end-to-end and local align-
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ments. The method used here is suitable for use with low RD
reads and pooled DNA, as demonstrated using both simu-
lated and real data. One drawback of this method is that
it requires prior knowledge of the sequence being mapped,
which might not always be available. Overall, the results
presented here suggest that simulating WGS mapping ex-
periments is a useful procedure to design better real experi-
ments.
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