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a b s t r a c t

Spatio-temporal point process data have been analysed quite a
bit in specialised fields, with the aim of better understanding
the inherent mechanisms that govern the temporal evolution of
events placed in a planar region. In particular, in the last decade
there has been an acceleration of methodological developments,
accompanied by a broad collection of applications as spatio-
temporally indexed data have become more widely available in
many scientific fields.

We present a self-contained review describing statistical
models and methods that can be used to analyse patterns of
points in space and time when the questions of scientific interest
concern both their spatial and their temporal behaviour.We revisit
moment characteristics that define summary statistics, as well as
conditional intensities which uniquely characterise certain spatio-
temporal point processes. We make use of these concepts to
describe models and associated methods of inference for spatio-
temporal point process data.

Three new motivating real-data examples are described and
analysed throughout the paper to illustrate the most relevant
techniques, discussing the pros and cons of the different considered
approaches.
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1. Introduction

The term spatio-temporal/spatial–temporal point pattern reveals two main pieces of information
(regarding space and time) about the data considered. We are considering a collection of data which
may be treated as (1) the realisation of a random collection of points, which (2) somehow evolves in
space and time. The notion of something evolving in space and time is rather vague in the sense that it
is not directly revealed how that evolution actually occurs. Consulting the literature, it becomes clear
that the term spatio-temporal point pattern or, the term spatio-temporal point process if referring to
the data generatingmechanism, has been used for an array of different entities. As indicated in e.g. Cox
and Isham (1980) and Illian et al. (2008), considering a non-discrete spatial study regionW and a time
frame/temporal study period T , wemay roughly put them into the followingmain categories inwhich
we refer to the locations as events:

1. The data {(ui, vi)}
n
i=1 ⊆ W × T are treated as being generated as a snapshot in space–time.

More specifically, the data are treated as a collection of instantaneous events, each occurring at
a given spatial location ui, with a given associated time point/event time vi. In other words, at a
given time point we observe at most one event. A point is thus not considered to remain in W
after its occurrence. Typical applications include earthquakes and disease outbreaks. Essentially,
this category may be viewed as a spatial point process with a further (temporal) dimension (see
e.g. Diggle et al., 1995; Daley and Vere-Jones, 2003; Schoenberg et al., 2006; Vere-Jones, 2009;
Greenspan, 2013). The questions posed are in many ways the same as those posed in the study of
spatial point patterns, as well as those in the study of events occurring according to a temporal
point process; two main factors in the analysis are related to intensity variations and (spatio-
temporal) interaction.

2. During T weobserve a total of n points {ui}
n
i=1 ⊆ W . The ith point arrives at some given time vi ∈ T ,

obtains a spatial location ui ∈ W and stays there for some given period of time li > 0, after which
it is removed fromW . Hence, we may express the data generating process as Z(t) ⊆ {ui}

n
i=1 ⊆ W ,

t ∈ T . Here there are, in essence, two things of interest. Firstly, one is interested in understanding
the mechanisms behind the arrivals of new points as well as those behind the removals of points
(births and deaths). This basically boils down to modelling the total number of points present in
W , |Z(t)| ∈ {0, 1, . . .}, at any time point t ∈ T ; this is done by means of some stochastic process.
Secondly, there is an interest in the probabilistic laws governing the spatial aspects of additions and
removals of points. The latter part hasmore of a spatial point process nature. Typically such a set-up
is governed by a spatial jump process, where a subclass is given by the family of spatial birth–death
processes; thesemodels have been used extensively e.g. to simulate spatial point processes (Møller
and Sørensen, 1994; van Lieshout, 2000; Berthelsen andMøller, 2002; Møller andWaagepetersen,
2004; Daley and Vere-Jones, 2008).
Such an approach has been employed for e.g. the modelling of forest stands, where vi refers to the
birth time of the ith tree and li refers to its life time.

3. Objectsmove (more or less) continuously through the spatial domainW and formpaths Yi(t) ∈ W ,
t ∈ T , i = 1, . . . ,m. By sampling these movements at discrete times T1, . . . , Tk ∈ T we obtain as
end result the collection {ui}

n
i=1 =

m
i=1
k

j=1 Yi(Tj) ⊆ W . Typical applications can be found in
e.g. movement ecology (Preisler et al., 2004).
Here one is mainly interested in understanding the underlying movement processes, which often
aremodelled as spatial stochastic processes (Cressie andWikle, 2011). This analysis helps us clarify
e.g. migratory patterns of animals. Statistically, the analysis is basically focussed on fitting spatial
stochastic processes to discretely sampled paths.
Note that this setting may be fitted into both of the above categories: in the latter case we let each
li be so large that we do not remove any of the points during T and in the former case we include
the associated sampling times as vi, i = 1, . . . , n.

As already indicated, there are naturally intersections between the three categories, i.e. there are
situations where the modelling approach of one category fits the data of another. However, as we
have indicated, the questions of interest and the methods employed are essentially different in the
three categories. Throughout we will focus on category one.
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It is the intention of this review to give a thorough overview of the different tools and methods
available to analyse andmodel spatio-temporal point patterns {(ui, vi)}

n
i=1 ⊆ W ×T . Themain reason

for producing this summary at this moment is to emphasise important contributions delivered in the
last years, such as Cronie and van Lieshout (2015), as well as providing a catalogue of sort, which
may be employed for the statistical analysis of the many interesting datasets appearing nowadays;
the ‘‘new’’ datasets presented in this paper highlight this. After such an explosion of methodological
and practical developments in the field of spatio-temporally indexed data, we aim at presenting a
self-contained review describing statistical models and methods that can be used to analyse spatio-
temporal point patterns when the questions of scientific interest concern both their spatial and
temporal behaviour.

Note that many purely spatial datasets often in fact have an evolutionary nature, being the result
of temporally evolving processes; spatial point patterns can appear quite differently over disjoint
time windows and explaining these differences may be an essential aspect of the analysis. In essence,
this aspect could be resolved by aggregating the patterns over time (Banerjee et al., 2014). Hence,
adding a temporal dimension to the study of spatial point patterns can reveal many interesting
and important features, which help us understand the inherent data generating mechanisms. Many
datasets can be analysed as purely spatial data only if andwhen in so doingwe can address interesting
scientific questions. Despite this importance of spatio-temporal analysis, studies of spatio-temporal
models have lagged a bit behind those of simple temporal models, as well as those of purely spatial
models. Undoubtedly, the reasons have been largely practical, notably the difficulty lying in combining
good spatio-temporal datasets and the heavy computations needed to analyse them. The scope of
our discussions throughout the paper is to treat distributions in two-plus-one-dimensional space
and time, i.e. W being two-dimensional (planar) and T being one-dimensional. Paraphrasing Diggle
(2013), it should be emphasised that in this context two plus one does not equal three, since the time
dimension is fundamentally different from either of the two spatial dimensions. This equally happens
in the marked and 3D cases, i.e. the cases 2D space + time and 2D space + marks are similar in the
sense that the third dimension differs from the spatial dimension. However, the 3D case is different
since all three directions are spatial and, indeed, in this case two plus one would equal three. This
observation is key, even in the mathematical formulation of different related methods.

As already indicated, in the last decade there has been an acceleration of methodological
development, accompanied by a diverse array of application as spatio-temporal indexed data have
become more widely available in many scientific fields. Book-length treatments are now beginning
to appear, including the edited collection by Finkenstadt et al. (2007), several chapters of Gelfand
et al. (2010), Cressie and Wikle (2011) and, most recently, Diggle (2013) and Banerjee et al. (2014). It
is evident that spatio-temporal point process techniques have covered a wide spectrum of scientific
research. Environmental problems such as wildfires, earthquakes, lightning-caused fires, tornadoes
and radioactive particles, among others, which represent important aspects of e.g. ecology, economy
and social damage, have beenwell studied bymany authors (see, for instance,Møller and Díaz-Avalos,
2010; Clements et al., 2011; Karpman et al., 2013; Pereira et al., 2013; Altieri et al., 2015 and the
many references therein). Awealth of epidemiological problems have also been handled by employing
spatio-temporal point process methodologies. Good and complete accounts of methods and models
can be found in e.g. Diggle (2013) and Banerjee et al. (2014), where an impressive number of problems
and data coming from the study of the spread of infections in animals and humans, and public health
are treated.

Turning to some of the specifics discussed in the body of the text, we first note that in certain
situations, where we treat the spatial locations ui as marks of a purely temporal point process
{vi}

n
i=1 ⊆ T , it is possible to define a given point process through its so-called conditional intensity

function, which, heuristically, is the function governing the expected number of future events at some
fixed time point, given all the previously observed events. Note that additional characteristics of an
event, such as size, magnitude, spatial extent, or even duration, can be added as marks (additional
dimensions). Daley and Vere-Jones (2003, Chapter 7) give a rather extensive overview of the history
of conditional intensities, as well as a good probabilistic coverage of the theory.

Following the terminology of Diggle (2013), we will refer to conditional intensity-based models
as mechanistic models. This set-up may be considered the somewhat classical approach to analysing
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spatio-temporal point patterns (see e.g. Cox and Isham, 1980; Karr, 1991; Snyder and Miller,
1991; Daley and Vere-Jones, 2003; Vere-Jones, 2009; Diggle, 2013 and the references therein for
details). Note that since the distribution of such a process is completely governed by its conditional
intensity function, most of the statistical analysis and inference here reduce to analysis of conditional
intensity functions. Hence, this approach presents one possible route to statistical analysis, and in
particular likelihood analyses, of spatio-temporal point processes. Ogata (1998) wrote a summary
paper on parametric and maximum likelihood techniques. Furthermore, regarding non-parametric
estimation of the conditional intensity function, Choi and Hall (1999) considered a kernel estimation
approach. The employment of mechanistic models has been considered extensively in the context
of e.g. earthquake data (Choi and Hall, 1999). To exemplify the treatment of other applications,
e.g., Rathbun and Cressie (1994) discuss spatio-temporal point processes in the context of tree growth
and Tamayo-Uria et al. (2014) analyse the spatio-temporal distribution of rat sightings, which are
directly related to rat infestation.

The arguably most prominent class of mechanistic models are the Epidemic-Type Aftershock
Sequence (ETAS) models (see e.g. Ogata, 1988; Ogata, 1998, Daley and Vere-Jones, 2003; Ogata and
Zhuang, 2006), which have become somewhat the main tool for the analysis of earthquakes (Marsan
and Lengliné, 2008; Adelfio and Ogata, 2010; Marsan and Lengliné, 2010; Mohler et al., 2011; Adelfio
and Chiodi, 2015); they belong to the more general family of Hawkes processes (see e.g. Daley
and Vere-Jones, 2003; Marsan and Lengliné, 2008, 2010). In particular, hazard maps, declustering,
diagnostic methods and other methods have been developed within the framework of ETAS models
(Musmeci and Vere-Jones, 1992; Zhuang et al., 2002; Peng et al., 2005; Adelfio and Chiodi, 2010; van
Lieshout and Stein, 2012). Also, regardingmechanisticmodels in general, spatio-temporal separability
is a key issue (see Ogata, 1988; Schoenberg, 2003; Schoenberg, 2004; Assunção andMaia, 2007; Chang
and Schoenberg, 2011; Díaz-Avalos et al., 2014). Here separability refers to the conditional intensity
function being expressed as the product of a purely spatial and a purely temporal component.

For reasons that will be noted, it is not always possible and/or convenient to treat spatio-temporal
point processes by means of conditional intensities. Instead, it is often more suitable to treat them
in the way they are defined, as a random collection of (dependent) points, observed in some region,
where one of the dimensions represents time. This leads us to the other approach for analysing spatio-
temporal point patterns. This approach is very similar to that of purely spatial point processes, as
opposed to the conditional intensity approach, which is more of an extension of the purely temporal
point process approach, exploiting the natural ordering of time.

We next indicate some important aspects thatwill be treated in this paper. Often the analysis starts
by estimating and/or modelling the intensity function, which governs the univariate properties of a
spatio-temporal point process. Diggle (2013) provides an account on fully-, semi-, and non-parametric
approaches to intensity estimation for spatio-temporal point patterns. Turning to the quantification
of higher moments, i.e. the space–time interactions between the points, different summary statistics
have been proposed. Under the assumption of stationarity, Diggle et al. (1995) considered the problem
of detecting and describing spatio-temporal interactions in point process data. They extended existing
second-order methods for purely spatial point process data to the spatio-temporal setting. This
extension allows one to estimate spatio-temporal interaction and express it as a function of spatial
and temporal lags. Furthermore, Gabriel and Diggle (2009) extend the inhomogeneous K -function
of Baddeley et al. (2000) for inhomogeneous spatial point process data to the spatio-temporal
setting, under the assumption of so-called second-order intensity-reweighted moment stationarity.
Extending those ideas, Møller and Ghorbani (2012) study further the inhomogeneous K -function
as well as the pair correlation function, under the assumption of so-called first- and second-order
separability (the first- and second-order moments may be expressed as space–time products) and
clarify the different consequences of such separability assumptions. Ghorbani (2013) proposes a
weak stationarity test for spatio-temporal point processes and Gabriel (2014) presents an intensive
simulation study to show the efficiency of the second-order estimators on different scenarios for
various spatio-temporal edge-corrections. In order to account for possible anisotropy in the spatial
domain, Comas et al. (2015) extend the spatial point pair orientation distribution (see Illian et al.,
2008, Section 6.10) to the spatio-temporal context. The summary statistics just mentioned are all
based on pairwise interaction and thus detect at most second-order interactions. For higher-order
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interactions, higher-order summary statistics, which take the whole point process distribution into
account, are required. The J-function is a key example of these statistics. In the inhomogeneous spatio-
temporal setting, it has been defined by Cronie and van Lieshout (2015), under the assumption of
so-called intensity-reweighted moment stationarity, and it reduces to a homogeneous version under
the assumption of stationarity; cf. van Lieshout and Baddeley (1996). A non-parametric estimator
is also derived in the same paper. The above mentioned statistical methods will be presented in a
stepwise fashion in the text. Note that the above mentioned assumptions of second-order intensity-
reweighted stationarity and intensity-reweighted moment stationarity have not yet been widely
tested or evaluated statistically in the available literature,with the exception ofHahn andVedel Jensen
(2015). Hence, these should be viewed as pragmatic assumptions, which are convenient starting
points, and the related statistical analysis may be treated as an exciting open field of research.

In practice, one often deals with inhomogeneity, which manifests itself through e.g. parts of
the spatial study region having no points and/or time periods where no events are occurring, or
e.g. trends in the form of an increasing number of points in some direction or an increasing/decreasing
number of points over time. Hence, depending on what interactions one is interested in studying, it is
wise to proceed by assuming second-order intensity-reweighted stationarity or intensity-reweighted
moment stationarity. In addition to themechanisticmodels presented above, in this reviewwe further
devote a substantial part of the paper to presenting different parametric spatio-temporalmodels, such
as Poisson processes, Cox processes, hard-core processes and inhibition processes.

Regarding the mathematical treatment of the concepts above, we recall characteristics such as
intensity functions, product densities, conditional intensities, Papangelou conditional intensities and
reduced Palm distributions, since these are all crucial for the development of the statistical methods
presented.We then proceed to reviewingmodels andmethods for spatio-temporal point process data.
To illustrate the relevant techniques presented, we apply most of them to the three new real-data
examples previously mentioned.

It should finally be mentioned that we have purposely chosen not to consider the case where we
include marks in the analysis (although they are mentioned here and there). The reason is twofold;
partly, the paper would become too long and, partly, for the non-conditional intensity-based set-up
the study ofmarked spatio-temporal point patterns is rather limited (there is, however, ongoingwork
on the topic).

The plan of the paper is the following. We start in Section 2 with a description of our datasets
and in Section 3 we present a set-up of spatio-temporal point processes. Section 4 considers some
characteristics of spatio-temporal point processes, discussing summary statistics, product densities,
k-point correlation functions, Palm distributions and Papangelou conditional intensities for spatio-
temporal point processes. Spatio-temporal empirical models are summarised in Section 5, and
mechanistic models in Section 6. The paper ends with an overall discussion and depicts some existing
and ongoing research lines.

2. Datasets

Below we describe the three datasets that are analysed throughout the paper. It should be noticed
that there are cases where we only know the time up to a year and, therefore, several points appear
at the same time.

2.1. Human outbreaks of Ebola

This dataset, obtained from Mylne et al. (2014), collates existing knowledge on the geographic
spread of past Ebola outbreaks in a standardised format. They outlined simple procedures for data
abstraction and each outbreak is summarised with a map and a brief text description. These data are
useful for conducting spatio-temporal analyses of Ebola outbreak spread. They include every outbreak
preceding the atypical 2013 Guinea epidemic which has spread further and faster than any previous
epidemic. We have a temporal period from 1976 to 2012 with 96 records corresponding to the centre
of each outbreak, where the time is reported as the year of the first reported case in the occurrence.
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Fig. 1. Locations of 96 past Ebola outbreaks occurred in a large region of Africa during the years 1976–2012, the region of
interest is formed by the smallest polygon containing all locations (left panel), here time is treated as a quantitative mark; dark
dots correspond to the oldest events and light dots correspond to the most recent outbreaks (right panel).

Three outliers were removed in order to make easier the interpretation of results. The data locations
are depicted in Fig. 1.

2.2. Euphausia glacialis

Euphausia glacialis is a type of Antarctic krill of the family Euphausiidae and a member of the
species Euphausia superba (WoRMS, 2015), which is the dominant herbivore of the Southern Ocean.
It is a small, swimming crustacean that lives in large schools, called swarms, which reach densities of
10000–30000 individual animals per cubic metre (see Hamner et al., 1983).

The Euphausia glacialis dataset is extracted from biodiversity.aq (Van de Putte et al., 2015),
which is the Antarctic biodiversity information system, which gives access to a distributed network
of contributing datasets, according to the principles of the Global Biodiversity Information Facility
(GBIF). It is an international open data infrastructure, funded by governments and available at
http://www.gbif.org/.

We have the locations, given in geographic latitude and longitude coordinates, of 57006 swarms
reported between 1980 and 2008, year by year. Each location has its associated year as a third coordi-
nate. Due to the inherent computing problems when working with such a large number of locations,
we apply a completely random thinning with probability p = 0.13 of retention over the whole set of
spatio-temporal points (see Baddeley et al., 2015), reducing it to 7263 sample points, see Fig. 2.

2.3. Tornadoes in South Carolina

This dataset is provided by the Storm Prediction Center (SPC, http://www.spc.noaa.gov) of the
National Oceanic and Atmospheric Administration (NOAA). It contains information of all starting
locations of tornado records with the year of its respective occurrence along fifty nine years
(1953–2012) occurring in the region of South Carolina. The number of records is 890 and the pattern
associated is displayed in Fig. 3.

3. Fundamentals of spatio-temporal point processes

Throughout the paper we assume every subset of R2 and R to be a Borel set and every function is
assumed to bemeasurable.We also assume thatW ⊆ R2 and that T ⊆ R is an interval and consider as
spatio-temporal point pattern data a collection of points {ξi}

n
i=1 = {(ui, vi)}

n
i=1 ⊆ W × T . Formally, a

http://www.gbif.org/
http://www.spc.noaa.gov
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Fig. 2. Left panel: sampling area of swarms of Euphausia glacialis in the Antarcticmarine environment. Right panel: orthogonal
projection of locations corresponding to a sample of 7263 swarms enclosed by the smallest polygon containing all the events
taken between 1980 and 2008; the darker points correspond to older records.

Fig. 3. Left panel: South Carolina state within US Right panel: starting locations of tornado occurrences reports over South
Carolina between 1953–2012; the darker points correspond to older records.

spatio-temporal point processX is a randomcountable subset ofR2
×R, forwhich |X∩(A×B)| < ∞ for

bounded A×B ⊆ R2
×R (Hereinafter we use | · | to denote both cardinality of a set and absolute value

of a real number). Although we here assume that T is an interval in R, it is still possible to construct
everything considered in this paper for, say, T ⊆ Z. However, we could then instead treat all event
times ti as marks of a purely spatial point pattern/process with locations ui (Daley and Vere-Jones,
2008; Vere-Jones, 2009). Recall that in our datasets we do not have the exact times but only the times
with one year accuracy.

From a practical point of view, we treat a spatio-temporal point pattern observed inW × T either
directly as the realisation of a spatio-temporal point process in W × T or as the realisation of the
restriction of a spatio-temporal point process in R2

× R to W × T . Note that, depending on the
modelling assumptions, one is better suited than the other.

The cylindrical neighbourhood B[(u, v), r, t], centred at (u, v) ∈ W × T with spatial radius r > 0
and temporal radius t > 0, is defined as

B[(u, v), r, t] = B[u, r] × [v − t, v + t] = {(a, b) ∈ W × T : ∥u − a∥ ≤ r, |v − b| ≤ t}, (1)

where B[u, r] = {a ∈ W : ∥u − a∥ ≤ r} is the Euclidean ball, centred at u ∈ W , with radius r . We
set Brt = B[(0, 0), r, t]. Hereby, given our way of measuring spatio-temporal distances (Møller and
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Ghorbani, 2012; Cronie and van Lieshout, 2015), the closed ball B[(u, v), r] of radius r > 0, which is
centred at (u, v) ∈ W × T , is precisely the cylindrical neighbourhood B[(u, v), r, r].

Henceforth N(A × B) denotes the number of points of a set (A × B) ∩ X , where A ⊆ W and B ⊆ T .
As usual (Daley and Vere-Jones, 2003), when N(W × T ) < ∞with probability one, which holds e.g. if
X is defined on a bounded set, we call X a finite spatio-temporal point process.

Next, we turn to the distribution that X induces on the space of point configurations. In particular,
we consider different forms of stationarity and isotropy for a spatio-temporal point process. In the
case of isotropy, we note that some care has to be taken sinceW × T is non-Euclidean.

Definition 1. Let X be a spatio-temporal point process on W × T ⊆ R2
× R. X is called (spatio-

temporally) stationary if the shifted counterpart process (u, v) + X has the same distribution as the
original process X for any (u, v) ∈ W × T . We say that X is (spatially) isotropic if, for any rotation r
around the origin, the rotated point process rX = {(ru, v) : (u, v) ∈ X}has the samedistribution asX .

Note that one can define explicit spatial stationarity or temporal stationarity by assuming,
respectively, that the definition of stationarity holds only for translations (u, 0) + X , u ∈ R2, or
(0, v)+ X , v ∈ R.

When X is a finite spatio-temporal point process or taken as the restriction of a spatio-temporal
point process toW × T , it may be natural, at times, to project X ontoW and T , and thus deal with the
space and time components of X separately. Following Møller and Ghorbani (2012), let

Xspace = {u : (u, v) ∈ X, v ∈ T } , Xtime = {v : (u, v) ∈ X,u ∈ W } .

Note that these projections are not well defined unless we have a finite total number of points. The
rotated version of Xspace will be denoted by rXspace.

4. Characteristics of spatio-temporal point processes

Having established the set-up of spatio-temporal point processes, we next turn to some point
process characteristics that we need in order to define, for instance, the different summary statistics
considered in this paper. Below we define product densities, k-order correlation functions, Palm
distributions and Papangelou conditional intensities for spatio-temporal point processes.

4.1. Product densities

Arguably, the main tools in the statistical analysis of point processes are the product densities λ(k),
k ≥ 1. λ(k) may be defined through the so-called Campbell theorem (see Daley and Vere-Jones, 2008,
p. 268), which states that, given a spatio-temporal point process X , for any non-negative function h
on (R2

× R)k,

E

 
≠

ξ1,...,ξk∈X

h(ξ1, . . . , ξk)


=


R2×R

· · ·


R2×R

h(ξ1, . . . , ξk)λ(k)(ξ1, . . . , ξk)
k

i=1

dξi,

where the left hand side is infinite if and only if the right hand side is. This constitutes an essential
result in spatio-temporal point process theory. Here


≠ indicates that the summation is taken over

distinct k-tuples of spatio-temporal events i.e. points of X .
Since we assume that the point process is simple and that the product density λ(k) exists and is

finite, then

P(N(dξ1) = 1, . . . ,N(dξk) = 1) = P(X ∩ dξ1 ≠ ∅, . . . , X ∩ dξk ≠ ∅)

= λ(k)(ξ1, . . . , ξk)

k
i=1

dξi,

for infinitesimal spatio-temporal regions dξ1, . . . , dξk ⊆ W × T with dξi = dui × dvi and size
|dξi| = duidvi, i = 1, . . . , k. Note that dξi denotes both the infinitesimal spatio-temporal regions
and its Lebesgue measure (Daley and Vere-Jones, 2003). Hence, provided λ(k) exists, it governs the
infinitesimal k-dimensional joint distributions of the points of X in W × T .
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4.2. Intensity functions

We next turn to the intensity measure and intensity function, which govern the univariate
distributions of the points of X in W × T . The first step of a statistical analysis is usually to estimate
and model the intensity function.

Definition 2. Considering the intensity measure µ(A × B) = E[N(A × B)], A × B ⊆ W × T , when
λ = λ(1) exists, we have that

µ(A × B) =


A


B
λ(u, v)dudv,

and we refer to λ(u, v) as the intensity function of X .

When X is stationary, also referred to as X being homogeneous (or completely stationary, see Illian
et al., 2008), then λ(u, v) ≡ λ > 0. This constant is referred to as the intensity of X .

There is an alternative heuristic definition of the spatio-temporal intensity (see Diggle, 2005;
Gabriel and Diggle, 2009), given by

λ(u, v) = lim
|du×dv|→0

E [N(du × dv)]
dudv

.

4.2.1. First-order spatio-temporal separability
If the first-order intensity function of a spatio-temporal temporal point process can be factorised

(almost everywhere) as

λ(u, v) = λ1(u)λ2(v), (2)

whereby

µ (A × B) =


A
λ1(u)du


B
λ2(v)dv,

where λ1(·) and λ2(·) are non-negative functions, then the process is referred to as first-order spatio-
temporal separability. Note that these functions are not unique.

If this identity is taken as assumption, it implies that effects that are non-separable could
be interpreted as second-order effects, rather than first-order effects (see Gabriel and Diggle,
2009; Møller and Ghorbani, 2012; Gabriel, 2014). We assume this along the paper (unless specific
mentioning of non-separability).

A stationary spatio-temporal point process X is automatically first-order separable since its
intensity λ = λ1λ2 ≥ 0 is constant. If X is space-stationary (recall Definition 1), implying that λ(u, v)
depends only on v, it is also first-order separable with λ1 being a non-negative constant. Similarly,
when X is time-stationary, implying that λ(u, v) depends only on u, first-order separability holds with
λ2 being a non-negative constant. When we have obtained Xspace and Xtime, we may also define the
marginal spatial and temporal intensity functions λspace and λtime, respectively, as

λspace(u) = λ1(u)

T
λ2(v)dv and λtime(v) = λ2(v)


W
λ1(u)du,

whereby λ(u, v) ∝ λspace(u)λtime(v), with λ, λspace, λtime all being constant when X is homogeneous.

4.3. Estimation of first-order intensity functions

When estimating the first-order intensity function we are challenged with the task of finding an
estimate λ̂ : W × T → R, taking into account that usually we have one single realisation. Suppose
we have obtained unbiased estimators given by λ̂space(·) and λ̂time(·). If we assume separability, the
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estimator of the spatio-temporal first-order intensity function is given by

λ̂ (u, v) =
1
n


λ̂space (u) λ̂time (v)


. (3)

This also constitutes an unbiased estimator of the expected number of points. For non-parametric
estimation of the spatial intensity function, it is common to follow Diggle (1985), Berman and Diggle
(1989) and Choi and Hall (1999) in using a kernel estimate,

λ̂space (u) =

n
i=1

κϵ (u − ui)

cWϵ (ui)
, u ∈ W . (4)

Here

κϵ (u) =
1
ϵ2
κ
u
ϵ


,

where κ(·) is a bivariate kernel and ϵ > 0 is the bandwidth, a smoothing parameter, and

cWϵ (ui) =


W
κϵ (u − ui) du

is an edge-correction factor included in the estimation to guarantee that

W λ̂space (u) du = n

(Diggle, 1985; van Lieshout, 2011; Ghorbani, 2013). Similarly, we may also estimate λtime (v) non-
parametrically by means of kernel estimators (Gabriel et al., 2013). Note that the specification of the
bandwidth of the kernel is debatable. It should be emphasised that large values of spatial or temporal
bandwidths produce very smooth estimates, whereas very small values produce noisy and unrealistic
estimates. This is the most problematic aspect of the estimation (see Baddeley et al., 2000; Illian et al.,
2008). Although these non-parametric estimatorsmay only lead to approximately unbiased estimates,
we will still employ Eq. (3) for the estimation of λ (u, v).

In the literature one finds that it is common to model both the spatial and the temporal intensity
components by using either kernel estimators or parametric methods, which in the latter case gives
rise to a semi-parametric estimation approach for λ (u, v). For example, Gabriel and Diggle (2009)
estimate the temporal intensity using a log-linear regression model to analyse the pattern of cases of
human Campylobacter jejuni infections reported in Preston, Lancashire, UK over three years. Incidence
of such infections is sporadic, with a seasonal variation which rises in spring and peaks in summer.
This suggests an annual and four-monthly periodicity, so they fitted a harmonic linear model with
one-year period

log λtime(v) = δd(v) +

3
k=1

(αk cos(kωv)+ βk sin(kωv))+ εv,

where ω = 2π/365, ε denotes the trend and d(v) identifies the day of the week for day v =

1, . . . , 1096. See also Diggle (2013) and Tamayo-Uria et al. (2014).

4.3.1. Estimation of first-order intensities for the considered examples
Following what has been proposed in the literature, we restrict the analysis in this section to the

case of first-order separability. We show the non-parametric estimation of the spatial and temporal
intensities of the Ebola outbreaks described in Section 2.1 by means of kernel smoothing (Diggle,
2013 and references therein). A two-dimensional kernel intensity estimator, with bandwidth ϵ =

(2.64, 0.45) degrees (remember we are dealing with data given in long-lat coordinates here and
later on), with an axis-aligned bivariate Gaussian kernel, evaluated on a square grid, is used for the
spatial intensity. Also, a one-dimensional kernel intensity estimator, with bandwidth δ = 3.13 years,
with a univariate Gaussian kernel is used for the temporal intensity. To choose the bandwidth of the
Gaussian kernel intensity estimator we use a rule of thumb, which defaults to 0.9 times the minimum
of the standard deviation and the interquartile range divided by 1.34 times the sample size to the
negative one-fifth power (Silverman, 1986, p. 48). Fig. 4 illustrates the estimates of the spatial (left)
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Fig. 4. Spatial (left) and temporal (right) kernel-based estimates of the normalised intensity functions for the Ebola outbreaks
data.

and temporal (right) densities, understood as the intensities normalised by the total number of cases.
We can see in Fig. 4 (left), three isolated areas, each one with a high intensity. For example, one of
these areas corresponds to the region around Gabon and the Democratic Republic of Congo; here the
probability of infection is higher. Looking at Fig. 4 (right) we note high rates of infection around the
year 2000 indicating a clear degree of temporal inhomogeneity.

For the estimation of the intensity functions of the Euphausia glacialis dataset described in
Section 2.2, we again use a two-dimensional kernel with an axis-aligned bivariate Gaussian kernel
for the spatial intensity and a bandwidth of ϵ = (13.18, 0.43) degrees. For the temporal intensity we
use a one-dimensional Gaussian kernel for the temporal intensity, with a bandwidth of δ = 0.8 years.
Both intensities (normalised by the total number of cases) are displayed in Fig. 5. In Fig. 5 (left), a fairly
high intensity in the region of Antarctica is observed near the American continental southern part,
i.e., on the Antarctic Peninsula, specifically in Shetland and over the Weddell Sea. Notice an increase
in the number of swarms in the region closest to Oceania. This may be due to the geography of the
ocean floor, in terms of there being better conditions close to the surrounding continents. In Fig. 5
(right), there is a rapid decrease in the last fifteen years that may be due to many factors, including
environmental ones and human intervention.

The corresponding estimated intensity functions for the Tornado dataset described in Section 2.3,
in which we set a spatial bandwidth of ϵ = (0.24, 0.16) degrees and a temporal bandwidth of
δ = 3.70 years, are depicted in Fig. 6. In this case we note that there is small variation throughout the
entire spatial region, meaning that the geography of the state of South Carolina is probably not very
complicated and tornadoes can occur almost anywhere with an almost constant probability. This is
not so in the temporal domain, where we note rapid growth in the last twenty-five years, likely due
to various climatic factors (including global warming). Another possibility is that the measurements
have improved during this period, making possible the reporting of more cases.

4.4. Conditional intensity functions

Assume next explicitly that X is a spatio-temporal point process on W × T ⊆ R2
× [0,∞), such

that Xtime is well defined. X may be treated as a temporal point process with corresponding marks
Xspace and we may define the cumulative process Xtime(t) := |Xtime ∩ [0, t]|, t ∈ T . This is the classical
approach for spatio-temporal point processes, see for example Cox and Isham (1980).

The conditional intensity function λ∗ (u, v|Hv) of a spatio-temporal point process is the expected
rate that points occur around the spatio-temporal location (u, v), conditionally on the history Hv ,
v ∈ T , consisting of the set of locations and times of all events of the process that occur prior to time
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Fig. 5. Spatial (left) and temporal (right) kernel-based estimation of the normalised intensity functions for the Euphausia
glacialis data.

Fig. 6. Spatial (left) and temporal (right) kernel-based estimation of normalised intensity functions for the tornado in South-
Carolina data.

v. In other words, Hv is the family of σ -algebras generated by the events occurring at times up to, but
not including v. Following e.g. Daley and Vere-Jones (2003), Diggle (2013) andMøller et al. (2016), we
have that

λ∗ (u, v|Hv) dudv = E [N(du × dv)|Hv] , (u, v) ∈ du × dv ⊆ W × T .

We are assuming that the underlying process X is orderly in the sense of Diggle et al. (2010a,b), which
means that the probability of observing more than one point in a time interval is decreasing with the
order of the size of the interval. Denoting by l + V and U the time and location, respectively, of the
first event that occurs after time l, it follows that

P(V > v) = exp

−

 l+v

l


W
λ∗ (u, t|Hl) dudt


,

the conditional probability density of U given V = v is proportional to the conditional intensity,
λ∗ (u, l + v|Hl+v), u ∈ W .
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4.5. Papangelou conditional intensities

Analogously to the purely spatial context, the Papangelou conditional intensityλĎ(u, v|X), (u, v) ∈

W × T , of a spatio-temporal point process may be defined through the reduced Campbell–Mecke
formula (see Cronie and van Lieshout, 2015). Heuristically,

λĎ(u, v|X)dudv = P [N(du × dv) = 1| (X \ du × dv)] ,
i.e. λĎ(u, v|X)dudv gives the conditional probability of finding a point of X in the infinitesimal spatio-
temporal region du × dv, with size dudv, given the process outside du × dv.

4.6. Edge-correction

Edge-correction methods/factors have been widely studied in the spatial case (see e.g. Ripley, 1988;
Stoyan and Stoyan, 1994; Baddeley et al., 2000 and Illian et al., 2008). There are some approaches
dealing with three-dimensional data (Baddeley et al., 1993; Jafari-Mamaghani et al., 2010), with
spatio-temporal data (Gabriel, 2014) and with marked and spatio-temporal data (Cronie and Särkkä,
2011). In particular, Gabriel (2014) extends three classical spatial edge-correction factors to the
spatio-temporal context and compares the performance of the related estimators of several second-
order characteristics for stationary/non-stationary and/or isotropic/anisotropic spatio-temporal point
processes. It is common to consider correcting edge-effects separately (Diggle, 2005), thus, the edge-
correction factor is the product of a spatial and a temporal edge-correction factor. The behaviour of the
edge-correction should depend on how well the underlying assumptions hold. However, it is known
that different edge-correction methods provide similar results when they are used in estimation
procedures, in particular the isotropic edge-correction is one of the most widely used in practice (see
e.g. Gabriel, 2014). In general, we denote an edge-correction factor by a weight wij, where i and j
represent two different points of the pattern.

4.6.1. Isotropic correction
In this case, the weight is proportional to the product between the Ripley edge-correction factor

(see Ripley, 1977) for the spatial region, and its one-dimensional analogue, giving

wij = |W × T |w
(u)
ij w

(v)
ij .

Here w(u)ij is the proportion of the circumference of a circle centred at the location ui with radius
∥ui −uj∥ that lies withinW . The temporal edge-correction factorw(v)ij = 1 if both ends of the interval
of length 2|vi − vj| that is centred at vi lie within T , andw(v)ij = 1/2 otherwise (Diggle, 2005).

4.6.2. Border method
Let W⊖r = {u ∈ W : B[u, r] ⊆ W } and T⊖t = {v ∈ T : B[v, t] ⊆ T }, be eroded spatial and

temporal regions, obtained by trimming off a margin of width r ≥ 0 and t ≥ 0 from the borders
of W and T , respectively. Note that W⊖r × T⊖t may be visualised by taking the flat trimmed region
W⊖r × {0} and stretching it in the t-dimension until its height reaches |T | − 2t . This method restricts
attention to those events lyingmore than r units away from the boundary ofW (see Diggle, 1979) and
more than t units away from the boundary of T . For the border method we have that

wij =

n
j=1

1{(uj, vj) ∈ W⊖r × T⊖t}/λ(uj, vj)

1{(ui, vi) ∈ W⊖r × T⊖t}
, r, t ≥ 0.

4.6.3. Modified border method
As an extension of the method proposed by Baddeley and Turner (2000) and Gabriel (2014) gives

a spatio-temporal version of the border method by considering

wij =
|W⊖r | |T⊖t |

1{(ui, vi) ∈ W⊖r × T⊖t}
, r, t ≥ 0.
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This edge-correction considers the eroded domain instead of the whole domain to avoid the edge-
effect of the general term |W × T |.

4.6.4. Translation correction
Ohser and Stoyan (1981) proposed a correction based on the proportion of translation of regions.

Gabriel (2014) defined the weights for the spatio-temporal case, which are given by the proportion of
translations of ((ui, vi), (uj, vj))which have both (ui, vi) and (uj, vj) insideW × T . More specifically,

wij = |W ∩ Wui−uj | |T ∩ Tvi−vj |,

whereWui−uj and Tvi−vj are, respectively, the translated spatial and temporal regions along the vectors
ui − uj and vi − vj.

4.7. The pair correlation function

Turning to measures of second-order spatio-temporal interaction, in particular in presence of
inhomogeneity, the pair correlation function (Illian et al., 2008; Gabriel and Diggle, 2009; Møller and
Ghorbani, 2012) is defined as

g(ξ1, ξ2) =
λ(2)(ξ1, ξ2)

λ(ξ1)λ(ξ2)
, ξ1, ξ2 ∈ W × T . (5)

For a spatio-temporal Poisson process (i.e. a completely random process, see Sections 5.1 and 5.2
for details), the pair correlation function is identically 1. Hence, larger or smaller values than this
benchmark indicate, informally, how much more or less likely it is that a pair of events will occur at
the specified locations, than in a Poisson process with the same intensity function.

Similarly to the case of first-order separability (Eq. (2)), the pair correlation function is said to be
separable (Møller and Ghorbani, 2012) if

g((u, v), (s, l)) = g1(u, s)g2(v, l), (6)

where g1 and g2 are non-negative functions. Before turning to the different summary statistics used to
quantify interactions in inhomogeneous spatio-temporal point processes, we first consider so-called
second-order intensity-reweighted stationarity, which has to be imposed when we consider some of
the different inhomogeneous summary statistics. Following Baddeley et al. (2000), Gabriel and Diggle
(2009) and Cronie and van Lieshout (2015), we have the following definition.

Definition 3. A spatio-temporal point process X is second-order intensity-reweighted stationary
(SOIRS) if

g((u, v), (s, l)) = ḡ(u − s, v − l),

for any (u, v), (s, l) ∈ W × T , where ḡ is some non-negative function.
If the process is also isotropic, then ḡ(u − s, v − l) = g0(r, t), i.e. g(·, ·) depends only on the

distances r = ∥u − s∥ and t = |v − l|, where g0 is some non-negative function.

The pair correlation function can be extended to general orders k ≥ 2 by defining

g(k)(ξ1, . . . , ξk) =
λ(k)(ξ1, . . . , ξk)

k
i=1
λ(ξi)

, ξ1, . . . , ξk ∈ W × T .

4.7.1. Estimation of the pair correlation function
Non-parametric estimation of pair correlation functions is usually based on kernel methods (see

Stoyan and Stoyan, 1994; Gabriel and Diggle, 2009; Diggle, 2013).
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Given X = {(ui, vi)}
n
i=1, the spatio-temporal pair correlation function defined in (5) can be

estimated by

ĝ(r, t) =
1

4πr

n
i=1

n
j=1
j≠i

κ1ϵ(∥ui − uj∥ − r)κ2δ(|vi − vj| − t)

λ̂ (ui, vi) λ̂

uj, vj


wij

, r > ϵ, t > δ, (7)

where κ1ϵ and κ2δ are one-dimensional kernel functions with spatial and temporal bandwidths ϵ and
δ, respectively. For details see Cressie and Collins (2001), Gabriel et al. (2013), Gabriel (2014) and
Rodríguez-Cortés et al. (2014). As in Section 4.6,wij are edge-correction factors, which correct for the
loss of information regarding the interaction occurring between points close to the border of W × T
and those (unobserved) ones outside.

4.8. The spatio-temporal K-function

Continuing the quantification of interactions between pairs of events, we may also consider the
inhomogeneous spatio-temporal K -function defined in Gabriel and Diggle (2009) and Møller and
Ghorbani (2012). Let X be a SOIRS (according to Definition 3) spatio-temporal point process. Then
define

Kinhom(r, t) =


R2


R
1{(u, v) ∈ Brt} ḡ(u, v)dudv, (8)

for r > 0 and t > 0. Note that in (8), for convenience wewrite u = u− s and v = v− l. This formwas
suggested by Møller and Ghorbani (2012). Note that, as usual, the K -function can be defined based
on the Palm distribution, expectations and first-order intensities (Baddeley and Turner, 2000). There
also exists a weighted version of Kinhom where the first-order intensity λ is replaced by the conditional
intensity functionλ∗, as described in Veen and Schoenberg (2006) andAdelfio and Schoenberg (2009);
this version is only considered for planar point processes and has not been extended to the spatio-
temporal context so far.

Assuming further that the process is isotropic, we obtain the original definition of the spatio-
temporal inhomogeneous K -function, which was given in Gabriel and Diggle (2009),

Kinhom(r, t) = 2π
 r

0

 t

−t
s g0(s, l)dsdl

where g0 is taken as inDefinition 3. Note that Gabriel andDiggle (2009) originally suggested a different
form, which only takes the present and future events into account, but its value only differs from the
present form by a factor of 1/2. For a spatio-temporal Poisson process (see Sections 5.1 and 5.2 for
details),K(r, t) = πr2t , so thatK(r, t)−πr2t can beused as ameasure of spatio-temporal aggregation
or regularity (aggregation and regularity refer to variations in the density of points that cannot be
explained by inhomogeneity alone), using the Poisson process as a reference. Following Møller and
Ghorbani (2012), when Xspace and Xtime are defined, under the assumption of separability we canwrite
the spatial and temporal components of the K -function as

Kspace(r) =


∥u∥≤r

gspace(u) du and Ktime(t) =

 t

−t
gtime(v) dv, r, t > 0,

where

gspace(u, s) = gspace(u − s) =


T


T
p2(v)p2(l)g(u − s, v − l)dvdl,

gtime(v, l) = gtime(v − l) =


W


W

p1(u)p1(s)g(u − s, v − l)duds,

with

p1(u) =
λ1(u)

W λ1(u)du
and p2(v) =

λ2(v)
T λ2(v)dv

.
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Let {P!(u,v)(X ∈ ·) : (u, v) ∈ R2
× R} be the family of reduced Palm distributions of X (see Cronie

and van Lieshout 2015; Daley and Vere-Jones, 2003, 2008); P!(u,v)(X ∈ ·) may be interpreted as the
distribution of X on the (rather abstract) space of point configurations, conditional on there being a
point (u, v) ∈ X , which we neglect. Let E!(u,v)

[·] denote expectation under P!(u,v)(·).
In the stationary case K(r, t) = Kinhom(r, t), i.e. the spatio-temporal version of Ripley’s K -function

(Ripley, 1977), defined in Diggle et al. (1995).λK(r, t) = E!(0,0)
[N(Brt)] is simply the expected number

of further points within distance r and time lag t from the origin, given that X has a point at the origin.
Note thatwhen X is a SOIRS, the pair correlation function is proportional to the derivative of K(r, t)

with respect to r and t (see Rodríguez-Cortés et al., 2014), i.e.

g(r, t) =
1

4πr
∂2K(r, t)
∂r∂t

, r > 0, t > 0. (9)

4.8.1. Estimation of Kinhom(r, t)
Letting X = {(ui, vi)}

n
i=1, a general estimator of Kinhom(r, t) is given by

K̂(r, t) =

n
i=1

n
j=1
j≠i

1
ui − uj

 ≤ r

1
vi − vj

 ≤ t


λ̂ (ui, vi) λ̂

uj, vj


wij

. (10)

Following common practice in the literature of spatio-temporal point processes, if we assume that
wij is Ripley’s spatial edge-correction factor, we obtain an approximately unbiased non-parametric
estimator of Kinhom(r, t) (Gabriel, 2014). We also have an alternative estimator, which matches the
original definition of Gabriel and Diggle (2009) and does not take into account the past of the process.
It is given by

K̂ ∗(r, t) =
n
nt

nt
i=1


j>i

1
ui − uj

 ≤ r

1

vj − vi ≤ t


λ̂ (ui, vi) λ̂


uj, vj


wij

,

where nt is the number of events vi ≤ b − t whenever T = [a, b] ⊆ R+.

4.9. Spatio-temporal nearest neighbour distance distribution and empty-space functions

Second-order summary statistics should be applied mainly when one knows/believes that higher-
order interactions do not exist. Or simply if one wants to quantify second-order effects explicitly.
Hence, to get a general quantification of higher-order interactions aswell, one should not limit oneself
to finite-order interaction summary statistics (Cronie and van Lieshout, 2015). When this is the case,
just as in the SOIRS case we need to consider some form of reweighted stationarity. It turns out that
the assumption of intensity-reweighted moment stationarity (IRMS) is what is needed to be imposed on
X . Note that for the purpose of clarity of exposition, we choose to define things a bit differently than
originally done by Cronie and van Lieshout (2015).

Definition 4. Given a spatio-temporal point process X on R2
× R, if the intensity is bounded away

from 0, i.e. λ = inf(u,v) λ(u, v) > 0, and

g(k)(ξ1, . . . , ξk) = g(k)(c + ξ1, . . . , c + ξk)

almost everywhere for any c ∈ R2
× R and any k ≥ 2, we say that X is intensity-reweighted moment

stationary (IRMS).

Note that stationarity implies IRMS, which in turn implies SOIRS. Throughout this Section we assume
that X is IRMS.
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Under IRMS, Cronie and van Lieshout (2015) defined the inhomogeneous spatio-temporal nearest
neighbour distance distribution function as

Ginhom(r, t) = 1 − E!(a,b)

 
(u,v)∈X


1 −

λ 1{(u, v) ∈ B[(a, b), r, t]}
λ(u, v)


,

and the inhomogeneous spatio-temporal empty space function as

Finhom(r, t) = 1 − E

 
(u,v)∈X


1 −

λ 1{(u, v) ∈ B[(a, b), r, t]}
λ(u, v)


,

for (a, b) ∈ R2
×R and r, t ≥ 0, under the convention that empty products take the value one. It turns

out that under IRMS the above functions are (almost everywhere) constantwith respect to (a, b). Note
that when X is stationary, Ginhom(r, t) and Finhom(r, t) reduce to spatio-temporal versions G(r, t) and
F(r, t) of the classical nearest neighbour distance distribution function and the empty-space function,
respectively.

4.10. The spatio-temporal J-function

The inhomogeneous spatio-temporal J-function is given as the ratio between 1 − Ginhom(r, t) and
1 − Finhom(r, t), i.e.

Jinhom(r, t) =
1 − Ginhom(r, t)
1 − Finhom(r, t)

, (11)

for all r, t ≥ 0 such that Finhom(r, t) ≠ 1. By the reduction of Ginhom(r, t) and Finhom(r, t) to G(r, t) and
F(r, t) under stationarity, Jinhom(r, t) reduces to a spatio-temporal extension J(r, t) of the original
J-function of van Lieshout and Baddeley (1996) under stationarity. Hence, Jinhom(r, t) is truly an
extension of J(r, t) to the inhomogeneous setting.

To see that Kinhom(r, t) is closely related to Jinhom(r, t), it may be shown that

Jinhom(r, t)− 1 = λ(2πr2t − Kinhom(r, t))+ β, (12)

where β represents the interaction terms of order >2 (Cronie and van Lieshout, 2015). Hence, for
Kinhom(r, t)we neglect all interaction terms of order higher than two.

The intuition behind Jinhom(r, t) and J(r, t) is that we look at whether conditioning on having
a point at, say, the origin increases/decreases the probability of finding further points within Brt ,
r, t > 0. Note that for a Poisson process, Jinhom(r, t) = 1. Hence, if Jinhom(r, t) < 1 we conclude
that there is clustering at the spatio-temporal lag pair (r, t). Conversely, Jinhom(r, t) > 1 indicates
regularity.

4.10.1. Estimation of Jinhom(r, t)
Turning next to the estimation of the inhomogeneous spatio-temporal summary statistics above,

assume that we observe X on W × T . In order to simplify the expressions, we first define some
important quantities. For r, t ≥ 0, let L ⊆ W × T be a fine grid, ΨX = X ∩ (W⊖r × T⊖t),
ΨL = L ∩ (W⊖r × T⊖t),

Ω
(s,l)
− = (X \ {(s, l)}) ∩ B[(s, l), r, t],

Ω
(s,l)
+ = X ∩ B[(s, l), r, t].

A minus sampling estimator of 1 − Ginhom(r, t) is defined as

1
|ΨX |


(s,l)∈ΨX


(u,v)∈Ω(s,l)

−


1 −

λ̂

λ̂(u, v)


, (13)
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Fig. 7. Spatio-temporal summary statistics ĝ(r, t) (left) and K̂(r, t)− 2πr2t (right) for the Ebola outbreaks data.

and a minus sampling estimator of 1 − Finhom(r, t) as

1
|ΨL|


(s,l)∈ΨL


(u,v)∈Ω(s,l)

+


1 −

λ̂

λ̂(u, v)


, (14)

where λ̂ = min(u,v) λ̂(u, v). The ratio of the estimators given in (13) and (14) provides an estimator
of Jinhom(r, t). The latter is unbiased and the former is ratio-unbiased (see Cronie and van Lieshout,
2015).

4.11. Estimation of summary statistics for the considered examples

We keep here our assumption of first-order separability, that is, Eq. (2) is assumed to be true, but
it is not required to assume that the separability is satisfied in the second-order terms, i.e., Eq. (6)
is not necessarily true. We use a combination of Gaussian kernels, where the bandwidths are selected
by using the rule-of-thumb, which is specially designed to be used with Gaussian kernels (see
Section 4.3.1). Note that here we are estimating second-order characteristics, whose estimators are
mainly based on distances between points, so that the bandwidths for such descriptors are quite
different in general from those chosen to estimate the first-order intensity function. In addition, we
use other kernels than the Gaussian kernel along this section and the bandwidths here are selected
based on a mean square error minimisation approach (Berman and Diggle, 1989).

Fig. 7 illustrates the estimates of g (left) and K (right) for the Ebola outbreaks pattern described
in Section 2.1. The K -function is illustrated by subtracting the theoretical surface under an
inhomogeneous Poisson process with the same intensity function (see Sections 5.1 and 5.2), i.e.,
K̂(r, t)−2πr2t . For the pair correlation function estimation, we use an Epanechnikov kernel for space
and a biweight kernel for time, with the selected bandwidths being ϵ = 0.99° and δ = 1.57 years
respectively. The ĝ(r, t) surface, which describes the spatio-temporal structure of the pattern, shows
the typical form of a cluster process for small distances, since ĝ(r, t) ≥ 1 for small r and t . We can
see certain regular behaviour when the spatial and temporal distances become large, this is mainly
because the few clusters observed in the spatial window (Section 2.1) tend to be very distant from
each other. This conclusion is also supported by the K̂ -functionwith 2πr2t subtracted, which deviates
positively from the plane K = 0, reinforcing the fact that we have clustering at short distances, and a
tendency towards regularity over long distances.

Analogously, the estimates of the g and K summary descriptors for the Euphausia glacialis dataset
described in Section 2.2 are displayed in Fig. 8. We use a spatial Epanechnikov kernel and a temporal
biweight kernel for the pair correlation estimation, where the bandwidths are ϵ = 0.01° and δ = 1.2
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Fig. 8. ĝ(r, t) (left) and K̂(r, t)− 2πr2t (right) summary statistics for the Euphausia glacialis data.

years. Here the analysis is basically the same, with both graphs describing strong aggregation in the
pattern for short and middle distances, whereas for large distances the interactions seem to be stable
andmore regular. Note that in this analysiswe are assuming riskily that the underlying point process is
isotropic, that is not necessarily true and we can suspect it by inspecting Fig. 2. However, we perform
this analysis as a first descriptive approach to understand the nature of the pattern interactions. In
Section 4.12 we focus in the case in which the isotropy assumption is violated and this dataset is
analysed more deeply.

The estimates of the descriptors g and K for the tornado dataset described in Section 2.3 are
depicted in Fig. 9. We use a spatial Epanechnikov kernel and a temporal biweight kernel with
bandwidths ϵ = 0.12° and δ = 1.55 years for the pair correlation function. The ĝ-function seems
to fluctuate over the plane g = 1 (the plane is shown with the contours in Fig. 9 (left)). We might
think that the proximity of the ĝ function to the plane g = 1 could indicate complete spatio-temporal
randomness (hereinafter CSTR, see Section 5.1 for details). To justify this conclusion, one could plot
envelopes under CSTR and observe the behaviour of the surface with respect to the envelopes.
However, in this case, even the K̂ -function is difficult to interpret because of the jumps. We can
appreciate a small scale of growth on the selected mesh, leading to a reconfirmation of our suspicions
of not having CSTR and reinforcing the notion that there is some degree of clustering in the spatio-
temporal pattern. We conclude that there is enough information in favour of clustering (although not
very strong in this case).

Fig. 10 illustrates the estimated J-function for both the Ebola and tornadoes datasets. Since
for both Jinhom(r, t) < 1 for almost all ranges r and t , we see that both point patterns exhibit
clustering at certain distances, as expected and already seen in the estimatedK -function. Note that the
J-function for the tornadoes case takes values close to one, indicating a Poisson process behaviour (see
Sections 5.1 and 5.2 for details). Note also that the jumps seen are an artefact of the time scale of the
data being discrete and that high peaks in the right plot are an effect of the lags considered being too
large; recall that we are employing a minus sampling estimator.

4.12. Directional second-order summary statistics

In the case of anisotropic planar point processes, Ohser and Stoyan (1981) defined a reduced second
momentmeasure and provided an estimator for the orientation analysis when the intensity is known.
Comas et al. (2015) consider a similar approach but assume a SOIRS and anisotropic spatio-temporal
point process. The directional K -function (hereinafter Kϕ-function) should be proportional to the
mean number of points in a cylindrical sector with spatial distance r , angle φ, and time lag t , centred
at an arbitrary point of the spatio-temporal point process X . Let θ(u, s) be the least angle between
the x-axis and the line connecting the points u and s. The pair (r, φ), where r > 0, 0 ≤ φ ≤ π ,
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Fig. 9. ĝ(r, t) (left) and K̂(r, t) − 2πr2t (right) summary statistics for tornadoes in South-Carolina data. The plane g = 1 is
shown with the contours.

Fig. 10. Ĵ(r, t) function estimated for the Ebola outbreaks (left) data and tornado data (right).

t > 0 denotes the point with polar coordinates r and φ. The definition of Kϕ(r, t, φ) differs from that
of Kinhom(r, t) in that we restrict the points of X to have inter-point angles at most φ. In the stationary
and isotropic case the relation between them is given by K(r, t) = Kϕ(r, t, 2π) = 2Kϕ(r, t, π).

For a SOIRS and anisotropic spatio-temporal point process, we present an approximately non-
parametric edge-corrected estimator of the Kϕ-function, which is a straightforward generalisation of
the presented in Comas et al. (2015). The expression includes a general first-order intensity function
estimator (see Section 4.3) and considers an edge-correction according to the nature of the underlying
process. The estimator is given by

K̂ϕ(r, t, φ) =

n
i=1

n
j=1
j≠i

1{∥ui − uj∥ ≤ r, |θ(ui,uj)| ≤ φ, |vi − vj| ≤ t}

λ̂ (ui, vi) λ̂

uj, vj


wij

, (15)

where wij is the translation edge-correction if the process is stationary, or the border or modified
border edge-corrections for other cases.

It is possible to detect the predominant directions in spatio-temporal point patterns through the
orientation analysis suggested by Ohser and Stoyan (1981). They used the directional distribution of
line segments connecting point pairs of the point pattern. The corresponding distribution function is
called point pair orientation distribution and is equal to the probability that a randomly chosen line
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segment forms an anglewith the x-axis, that is smaller thanφ ∈ [0, π]. A spatio-temporal counterpart
version can be obtained via

ϑ(r1,t1),(r2,t2)(φ) =

 φ
0

 t2
t1

 r2
r1

dKϕ(r, t, ψ) π
0

 t2
t1

 r2
r1

dKϕ(r, t, ψ)
, r2 > r1 ≥ 0, t2 > t1 ≥ 0. (16)

For two suitable positive values t1 and t2, ϑ(0,t1),(r,t2)(φ) describes a short-range spatial directional-
ity in the point pattern, ϑ(r1,t1),(r2,t2)(φ) provides a middle-range spatial orientation for r1 < r2, while
ϑ(r2,t1),(∞,t2)(φ) = limr→∞ ϑ(r2,t1),(r,t2)(φ) describes long-range spatial directionality.

Short-range orientation provides information about the clustering degree of the point pattern
for short distances in a particular direction at some fixed time. This kind of information can be
useful as a first exploratory analysis looking for predominant directions in the spatio-temporal
point pattern. Given the nature of the K -function as a cumulative function, proportional to the
mean number of points in a cylindrical sector, the middle-range orientation reveals whether such
directionality in terms of interaction (aggregation degree) is maintained for middle distances or if it
has changed in a certain range of distances. Finally, long-range orientation describes the asymptotic
orientation (residual orientation) of the point pattern and togetherwith short-range andmiddle-range
orientations provide the whole anisotropic behaviour of the spatio-temporal point pattern.

Furthermore, combinations of spatial and temporal intervals are not worth to be described given
their lack of practical relevance. In the case of isotropy, all these distributions coincide with the
uniform distribution on [0, π]. As (16) is a cumulative measure for a given angle φ, it can be useful
to consider a cylindrical sector instead to better highlight the possible directional components (as in
Møller et al., 2015),

ϑ∗

(r1,t1),(r2,t2)(φ) = ϑ(r1,t1),(r2,t2)(φ + α)− ϑ(r1,t1),(r2,t2)(φ − α), 0 ≤ φ ≤ π, (17)

where 0 < α < φ is a fixed prescribed angle interval, which provides the direction in which
anisotropic effects are tested. Using (15), we obtain estimators of (16) and (17), that is, ϑ̂(r1,t1),(r2,t2)
and ϑ̂∗

(r1,t1),(r2,t2)(φ), respectively.
We consider the Euphausia glacialis dataset and calculate ϑ̂(0,1),(0.1,5) and ϑ̂(0.1,1),(0.3,5), and obtain

the rose histograms (see e.g. Ohser and Stoyan, 1981; Baddeley et al., 2015) depicted in Fig. 11. They
show that the pattern is oriented, with a remarkably clear main direction around 38° (0.21π-rad) and
114° (0.63π-rad), both for short as well as for long distances, i.e. pairs of Euphausia glacialis swarms
in the Antarctic marine environment tend to be either above or below each other. It is noteworthy
that the polar coordinate system (very convenient to visualise) shown in Fig. 5 (left), is not the same
we used here for calculations. Here we worked with a polygon that stretches across the coastline of
Antarctica in the long-lat system. Interestingly these two graphs highlight that there is a grouping
in the direction of about 47° (0.26π-rad), a fact that already was suspected from the intensity in
Section 4.3.1.

5. Spatio-temporal empirical models

5.1. Spatio-temporal homogeneous Poisson processes

Poisson processes are considered benchmark models for spatio-temporal point pattern data. They
are rarely realisticmodels for data but they do, however, provide a proxy for complete spatio-temporal
randomness (CSTR). Explicitly, a spatio-temporal homogeneous Poisson process with intensity λ > 0
is defined as a spatio-temporal point process X satisfying:

i. Given any disjoint A1 × B1, . . . , Am × Bm ⊆ W × T , the corresponding random variables
N(A1 × B1), . . . ,N(Am × Bm) follow independent Poisson distributions with the respective means
µ(Ai × Bi) = λ|Ai × Bi|, i = 1, . . . ,m.

ii. Conditioned on N(A×B), the points falling in A×B form an independent random sample from the
uniform distribution on A × B.
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Fig. 11. Anticlockwise rose histogram of the short and middle orientation distribution ϑ̂(0,1),(0.1,5) (left) and of the middle
range orientation distribution ϑ̂(0.1,1),(0.3,5)(right), for the sample of Euphausia glacialis displayed in the right-side of Fig. 2, and
described in Section 2.2. The blue circle corresponds to themedian of each range. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Simulated realisations of a spatio-temporal homogeneous Poisson point process with λ = 50, λ = 150 and λ = 800
in left, central and right panels respectively inW × T = [0, 1]2 × [0, 1], the darker points correspond to older events.

It follows that all product densities exist and are given by

λ(k)(ξ1, . . . , ξk) ≡ λk, k ≥ 1.

Fig. 12 shows the locations of points in the unit cube (meaning that even the time axes is one unit
long) and their respective projections, according to three homogeneous Poisson process realisations,
with varying intensities.
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5.2. Spatio-temporal inhomogeneous Poisson processes

The spatio-temporal inhomogeneous Poisson process is the simplest non-stationary spatio-
temporal point process. It is obtained by replacing the constant intensity of a homogeneous Poisson
process by a spatially and/or temporally varying intensity function λ(u, s), (u, s) ∈ W × T .
Inhomogeneous Poisson processes are defined by the following postulates:
i. Given any disjoint A1 × B1, . . . , Am × Bm ⊆ W × T , the corresponding random variables

N(A1 × B1), . . . ,N(Am × Bm) follow independent Poisson distributions with the respective means
Ai


Bi
λ(u, v)dudv, i = 1, . . . ,m.

ii. Given N(W × T ) = n, the n events in W × T form an independent random sample from the
distribution onW × T which has density function

f (u, v) =
λ(u, v)

W


T λ(u, v)dudv

.

Clearly, we obtain the homogeneous Poisson process by setting λ(u, v) ≡ λ > 0. Similarly to the
homogeneous case, it follows that the product densities exist and are given by

λ(k)((u1, v1), . . . , (uk, vk)) =

k
i=1

λ(ui, vi), k ≥ 1.

As an example, we consider a time-stationary, spatially inhomogeneous Poisson process with

λ(x, y, v) = a sin

π

 3π
2 x − 2

2
+
 3π

2 y − 2
2

− 1


+ 2, (18)

where the Cartesian horizontal and vertical coordinates (x, y) ∈ W , the time v ∈ T and a is a constant
governing the average number of points lying in [0, 1]2. Note that the intensity is separable and
λtime(v) ≡ 1. For a = 1000, in Fig. 13 we find the intensity together with a realisation of such a
process and its cumulative times. We are aware that this form of intensity function is hardly realistic
in practice. However some intensities coming from rare phenomena, couldwell be fitted by thismodel
through a good parameter choice.

5.2.1. Likelihood inference for inhomogeneous spatio-temporal point processes
An instance where the likelihood function is tractable is the inhomogeneous Poisson process

with intensity function λ(u, v). Essentially, the distribution associated with a partial realisation of
X on a bounded region W × T can be factorised as the product of a Poisson distribution with mean
W


T λ(u, v)dudv for the number of events n, and a set of mutually independent spatio-temporal

locations (ui, vi) whose common distribution has density λ(u, v)/

W


T λ(u, v)dudv. Following

Daley and Vere-Jones (2003) and Diggle (2013), the likelihood may be defined as the probability
of obtaining a given number of points in the spatio-temporal observation window, times the joint
conditional density for the locations of those points, given their number. Suppose that there are n
observations onW × T at spatio-temporal points {(ui, vi)}

n
i=1. Since the distribution of the number of

points is Poisson, then the probability of obtaining single points in some differential volume∆ centred
at (ui, vi) and no points on the remaining part ofW × T is given by

exp

−


W


T
λ(u, v)dudv

 n
i=1

λ(ui, vi)∆.

Hence, dividing by∆n, letting∆ → 0 and taking logs, we have that the log-likelihood for λ(·, ·) based
on data is given by

L(λ) =

n
i=1

log λ(ui, vi)−


W


T
λ(u, v)dudv.
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Fig. 13. Simulated realisation of a spatio-temporal inhomogeneous Poisson point process inW × T = [0, 1]2 × [0, 1], with λ
given by (18). On the upper left-side panel the spatial intensity function is displayed, the points of the realisation on the right-
side panel represented in a three-dimensional plane with darker points being older. The projection in the plane is displayed in
the down left-side panel. Cumulative distribution of times is displayed in the right-side panel.

In practice, it is particularly useful if λ(u, v) can be specified through a regression model, e.g.

log λ(u, v) =

p
j=1

βjzj(u, v), (19)

where the zj(u, v) are covariates that may vary in space and time (Diggle, 2013).

5.3. Spatio-temporal Neyman–Scott processes

We define a spatio-temporal Poisson cluster process as the following direct generalisation of its
spatial counterpart (Gabriel and Diggle, 2009):

i. Parents form a Poisson process with intensity λp(u, v).
ii. The number of offspring per parent is a random variable Nc with meanmc , realised independently

for each parent.
iii. The locations and times of the offspring relative to their parents are independently and identically

distributed according to a trivariate probability density functionΦ : R2
× R → R.

iv. The final process is composed of the superposition of the offspring only.

Analogously to the spatial case, the process formed by the parents is taken as an auxiliary
construction, and the parents are an unobservable part of the resulting pattern. The shape of a cluster
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Fig. 14. Three examples of spatio-temporal Neyman–Scott cluster patterns over the rectangular region [0, π]
2 and along the

unit temporal interval [0, 1], darker points correspond to older occurrences, and mc = 8. The distributions of offspring are:
normal (left patterns), exponential (middle patterns), and uniform (right patterns).

depends on the probability distribution of the offspring so, for example, in a generalisation of the
Matérn cluster process to the spatio-temporal domain, the offspring are independently and uniformly
distributed on disks with a fixed radius around each parent for a fixed time. If the process is time-
stationary, the shape of the whole cluster would be cylindrical. In a possible generalisation of the
modified Thomas process, the offspring locations follow a normal distribution around each parent for
each time, so if the process is time-stationary, then the shape of the cluster would also be cylindrical
but with a tendency to accumulate along the temporal axis of the cylinder.

Some examples of patterns which follow this kind of spatio-temporal structure are illustrated in
Fig. 14, where we set an intensity for parents of λp(x, y, v) = 6v | cos(x + y)|, where x, y ∈ [0, π]

and v ∈ [0, 1]. We use different distributions for the offspring: normal, exponential and uniform,
respectively. Note that in this case we have no time-stationary process.

5.4. Spatio-temporal geometric anisotropic Poisson cluster processes

This type of process is defined as a spatio-temporal stationary Poisson cluster process
(Neyman–Scott process) with pair correlation function given by

g(u, v) = g0
√

uΣ−1u′, v

,

where u′
∈ R2 is the transpose of u ∈ R2 and g0 : R×R → [0,∞] satisfies the integrability condition r

0

 t
0 sg0(s, l)dsdl < ∞, for r, t ∈ (0,∞). The matrixΣ is 2 × 2 symmetric positive definite and has

the form Σ = ω2Uθdiag(1, ζ 2)U ′

θ , with ζ being the anisotropy factor. The ellipse E = {u : uΣ−1u′
}

has semi-major axis ω corresponding to the angle θ and semi-minor axis ωζ corresponding to the
angle θ + π/2 and

Uθ =


cos(θ) − sin(θ)
sin(θ) cos(θ)


.

The processes here have a shape of an ellipse at each fixed time. If, further, the process is time-
stationary, we have spatio-temporal elliptical cylinder shapes. For details see Gabriel (2014) and
Møller and Toftaker (2014).
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Fig. 15. Realisations of geometric anisotropic Poisson cluster processes inW ×T = [0, 1]2 ×[0, 1]. The three cases correspond
to ζ = 0.05, 0.30, 0.80 and left, central and right patterns, respectively. Dark dots correspond to older events in time.

Fig. 15 shows a set of three realisations of an anisotropic Poisson cluster process with an average
number of parents of 14, and an average of offspring of mc = 17, and using a normal distribution for
the locations of offspring with a standard deviation of σ = 0.13. Here we fix ω = 5 and a rotation
angle of θ = π/8, and we vary the anisotropy factor ζ ∈ {0.05, 0.30, 0.80}.

5.5. Spatio-temporal inhibition processes

Spatio-temporal inhibition processes were presented by Gabriel et al. (2013). They either prevent
(strict inhibition) ormake unlikely the occurrence of pairs of close events, resulting in patterns that are
more regular in space and/or in time than a Poisson process of the same intensity. In a spatial simple
sequential inhibition process, also called RSA as an abbreviation for ‘‘random sequential adsorption’’
(a term used in physics and chemistry Chiu et al., 2013), which gives strict inhibition, let δu denote
the minimum permissible distance between events and λspace the spatial intensity of the process. The
proportion of the plane covered by non-overlapping discs of radius δu/2 is

λp =
λspaceπδ

2
u

4
,

which Gabriel et al. (2013) call the packing density. The maximum achievable packing density is
obtained for a pattern of points in a regular triangular lattice at spacing δu, for which λp =

√
3/2.

Depending on how the points are generated, even this value of δu may not be feasible. Simple
sequential inhibition processes in space and time are defined by the following algorithm. Consider
a sequence ofm events (ui, vi) ∈ W × T . Then,

i. u1 and v1 are uniformly distributed inW and T , respectively.
ii. At the kth step of the algorithm, k = 2, . . . ,m, uk is uniformly distributed onW ∩∆space, where

∆space =

u :

u − uj
 ≥ δu, j = 1, . . . , k − 1


,

and vk is uniformly distributed on T ∩∆time, where

∆time =

v : |v − vj| ≥ δv, j = 1, . . . , k − 1


.
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Fig. 16. Simulated realisations of simple sequential spatio-temporal inhibition point processes with (δu, δv, n) =

(0.04, 0.001, 300) (left), (δu, δv, n) = (0.07, 0.005, 150) (centre) and (δu, δv, n) = (0.10, 0.001, 75) (right) in W × T =

[0, 1]2 × [0, 1]. The darker points correspond to older locations.

To obtain a larger class of inhibition processes, it is possible to extend condition (ii) of the above
algorithm definition by introducing functions pu (s) and pv (l) that together determine the probability
that a potential point at location u and time v will be accepted as a point of the process. Fig. 16 shows
examples of three different single realisations of simple sequential inhibition point processes.

5.6. Spatio-temporal Strauss processes

Cronie andvan Lieshout (2015) define the spatio-temporal hard-core process as a stationary spatio-
temporal point process, specified by the Papangelou conditional intensity

λĎ(u, v|X) = β 1{X ∩ B[(u, v), RW , RT ] = ∅}

= β

(s,l)∈X

1{(s, l) ∉ B[(u, v), RW , RT ]},

where (u, v) ∈ W × T , β > 0 is a model parameter, and RW > 0 and RT > 0 are, respectively,
the spatial and the temporal hard core distances. Hence, we have inhibition since P!(0,0)(N(B[(0, 0),
RW , RT ]) > 0) = 0.

The authors further introduce inhomogeneity into the spatio-temporal hard-core process by
applying independent thinning. They show that it is IRMS and that both for the thinned and the
original hard-core process the corresponding J-functions are increasing and larger than 1, given
certain set-ups of RW > 0 and RT > 0. This was finally verified numerically and it was shown that the
hard-core distances RW , RT were well estimated through the inhomogeneous J-function.

Since the spatial hard-core process is a particular case of a spatial Strauss process (van Lieshout,
2000), it is easily realised that we may define spatio-temporal Strauss process by

λĎ(u, v|X) = β γ N(B[(u,v),RW ,RT ]), β > 0, γ ∈ [0, 1].

Note that this replacing of Euclidean balls by spatio-temporal cylindrical neighbourhoods clearly
provides a recipe for extending certain spatial Gibbs/Markov processes to the spatio-temporal context.
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5.7. Spatio-temporal Cox processes

Cox processes are natural models for point patterns that are thought to be determined by
environmental variability (see Cox, 1955; Diggle, 2013; Diggle et al., 2013 for a nice exposition of
definitions and properties of Cox processes).

A Cox process is a ‘‘doubly stochastic’’ process formed as an inhomogeneous Poisson process with
an intensity function coming from some stochastic mechanism. A spatio-temporal Cox process can be
defined by the following two postulates:

i. {Λ(u, v) : (u, v) ∈ R2
× R} is a non-negative-valued stochastic process.

ii. Conditionally on {Λ(u, v) = λ(u, v) : (u, v) ∈ R2
× R}, the events form an inhomogeneous

spatio-temporal Poisson process with intensity function λ(u, v).

The moment properties of a Cox process are inherited from those of the process Λ(u, v), and thus
first- and second-order properties are obtained from those of the inhomogeneous Poisson process
by taking expectations with respect to {Λ(u, v)}. Assuming that the covariance structure γ (r, t) =

Cov{Λ(u1, v1),Λ(u2, v2)}, for r = ∥u1 − u2∥ and t = |v1 − v2|, is stationary, a convenient
reparametrisation is

Λ(u, v) = λ(u, v)S(u, v), (20)

where S(u, v) is a stationary process with expectation 1 and covariance function γ (r, t) = σ 2s(r, t),
where σ 2 is the variance of S(u, v) and s(·, ·) is a spatio-temporal correlation function. It follows that
λ(u, v) is the first-order intensity of the point process, and the stationarity of S(u, v) implies that the
point process is intensity-reweighted stationary (Diggle, 2013).

Given the parametrisation (20), we can say that Λ(u, v) is first-order separable if (2) holds, and
second-order separable if γ (r, t) = σ 2s1(r)s2(t), where s1(r) and s2(t) can be chosen as any pair of
valid correlation functions in R2 and R, respectively. Following Møller and Díaz-Avalos (2010) and
Diggle (2013), the assumption of first-order separability can be supported from a practical point
of view. However, the assumption of second-order separability is more difficult to deal with, but
undeniably convenient.

The K -function of an intensity-reweighted stationary Cox process, parametrised according to (20),
is given by

K(r, t) = πr2t + 2πλ−2σ 2
 t

0

 r

0
xs(x, y)dxdy.

5.8. Spatio-temporal log-Gaussian Cox processes

Møller et al. (1998) introduced the class of log-Gaussian Cox processes. The construction has an
elegant simplicity. One of its attractive features is that the tractability of the multivariate Normal
distribution carries over, to some extent, to the associated Cox process.

A spatio-temporal log-Gaussian Cox process is a spatio-temporal Poisson process, conditional on
the realisation of a stochastic intensity function logΛ(u, v) (see Diggle et al., 2013). In the intensity-
reweighted stationary case with the parametrisation (20), for a log-Gaussian Cox process it is possible
to write S(u, v) = exp{Y (u, v)}, where Y (u, v) is a Gaussian process with expectation −τ 2/2,
variance τ 2 and correlation function ğ(r, t). It follows that S(u, v) has variance σ 2

= exp{τ 2} − 1.
Diggle et al. (2013) state that, any valid family of spatio-temporal correlation functions can be

used to define a valid class of spatio-temporal log-Gaussian Cox processes. The study of such families
is reviewed in Gneiting and Guttorp (2010), where they make a distinction between physical and
empirical formulation.

Diggle et al. (2005) used the spatio-temporal Ornstein–Uhlenbeck process approach proposed
by Brix and Diggle (2001) to model the underlying spatio-temporal stochastic process component
Y (u, v). However, this model only accommodates separable covariance functions. As an example
of a physically motivated construction, Brown et al. (2000) propose models based on a dispersion
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Fig. 17. Spatial intensities (left), realisations (two central panels), and cumulative distributions of times (right) of log-Gaussian
Cox processes. Non-separable (top) and the separable (bottom) cases.

process. Other parametric families of non-separable models are studied in Cressie and Huang (1999),
Gneiting (2002), Ma (2003, 2008) and Rodrigues and Diggle (2010). Alternatively, Rodrigues and
Diggle (2012) use a class of low-rank, convolution-based models proposed by Rodrigues and Diggle
(2010) to alleviate the computational burden involved in applying likelihood-based methods to full-
rank models.

As an illustration, we generated realisations of two log-Gaussian Cox processes, both separable and
non-separable. For the separable case, the spatial and temporal covariances are assumed to belong to
the class of exponential covariance functions. For the non-separable models we have chosen the so-
called Gneiting covariance function (see details and options in Gabriel et al., 2013). In Fig. 17we display
the realisations together with the spatial random intensities of two log-Gaussian Cox processes.

Spatio-temporal log-GaussianCoxprocesses are quite generally easy-going for statistical inference.
The literature provides three different parameter estimation methods: moment-based estimation,
maximum likelihood estimation, and Bayesian estimation.

Moment-based estimation. In the stationary case, moment-based estimation consists of minimising
a measure of the discrepancy between the empirical and theoretical second-moment properties. One
class of such measures is a weighted least squares criterion (Diggle et al., 2013). In the intensity-
reweighted case, this criterion can still be used after separately estimating a regression model for a
spatially varying λ(u, v) under the working assumption that the data are a partial realisation of an
inhomogeneous Poisson process. In any case, this method of estimation has an obvious ad hoc quality
and depends on appropriate choices of several tuning parameters.

Maximum likelihood estimation. The general form of the Cox process likelihood associated with a
point pattern X = {(ui, vi) ∈ W × T : i = 1, . . . , n} is given by (Diggle, 2013; Diggle et al., 2013)

ℓ(θ; X) = EΛ|θ (ℓ
∗(Λ; X)), (21)

where

ℓ∗(Λ; X) =

n
i=1

Λ(ui, vi)


W


T
Λ(u, v)dudv

−n

is the likelihood for an inhomogeneous Poisson process with intensityΛ(u, v). The evaluation of (21)
involves integration over the infinite-dimensional distribution of Λ. Diggle et al. (2013) describe an
implementation in which the continuous region of interest is approximated by a finely spaced regular
lattice, hence replacingΛ by a finite set of values covering the region. Even so, the high dimensionality
of the implied integration presents obstacles to analytic progress. One solution is to use Monte-Carlo
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methods. A crude Monte-Carlo method is proved to be inefficient in practice (Diggle et al., 2013), and
a better approach is to use the method of Geyer (1999) (as cited in Diggle et al., 2013).

Bayesian estimation. One way to implement Bayesian estimation would be directly to combine
Monte-Carlo evaluation of the likelihood with a prior for θ (Diggle et al., 2013). However, it turns
out to be more efficient to incorporate Bayesian estimation and prediction into a single MCMC
algorithm. Rodrigues and Diggle (2012) adopt a Bayesian approach to parameter estimation and
spatial prediction using low-rank, convolution-based models. Diggle et al. (2013) provide a nice
account of the pros and cons of implementing Bayesian inference, MCMC or INLA (integrated nested
Laplace approximations, see Rue et al., 2009). See also Taylor and Diggle (2014) for a comparison of
the performance of MCMC and INLA for a spatial log-Gaussian Cox process.

Prediction. Diggle et al. (2013) depict very nicely a comparison between plug-in and Bayesian
prediction. Suppose that data Z are to be used to predict a target T under an assumed model
with parameters θ . Then, plug-in prediction consists of a series of probability statements within
the conditional distribution [T |Z; θ̂ ], where θ̂ is a point estimate of θ , whereas Bayesian prediction
replaces [T |Z; θ̂ ] by

[T |Z] =


Θ

[T |Z; θ ][θ |Z]dθ, (22)

whereΘ is the domain of the parameter vector θ . Thus Bayesian prediction is a weighted average of
plug-in predictions, with different values of θ weighted according to the Bayesian posterior for θ . The
Bayesian solution (22) incorporates parameter uncertainty in a way that is both natural and elegant.

5.9. Spatio-temporal stationary Poisson cluster and shot-noise Cox processes

These cluster processes are built as follows. The spatial distribution of the offspring is zero-mean
bivariate, diagonalwith identity diagonal entries, normally distributedwith standard deviation σ . The
temporal distribution is exponential with rate α. The expected number of offspring per parent follows
a Poisson distribution with mean mc . This process has an interpretation as a spatio-temporal shot-
noise Cox process (see Møller and Díaz-Avalos, 2010, and Gabriel, 2014). We consider Cox processes
in Section 5.7. Here, the residual process S(·) in Eq. (20) is given by

S(ζ ) =
1
λ


ξ∈X

ϕ(ζ − ξ).

Here X is a stationary Poisson process in R2
× R with intensity λ and ϕ is a density function given by

ϕ(ζ ) = ϕ(u, v) = φσ 2(∥u∥)Eα(v),

whereφσ 2(∥u∥) is the density of a zero-mean bivariate isotropic normal distributionwith variance σ 2

and Eα is the density of a exponential distribution with rate α. For such a process, the main summary
statistics are

g(u, v) = 1 +
α

8πσ 2λ
exp


−

∥u∥
2

4σ 2
− α|v|


,

and

K(r, t) = 2πr2t +
1
2λ
(exp{αt} − exp{−αt})


1 − exp


−

r2

4σ


.

From the above, we see that K(r, t) ≥ 2πr2t , thus we have clustering by construction.
Spatio-temporal Cox processes show enough flexibility to adapt to a variety of practical situations

driven by data. For instance, Prokešová andDvořák (2013) introduce a flexible inhomogeneous spatio-
temporal shot-noise Cox process model where the inhomogeneity is estimated by means of a Poisson
score estimating equation. They use minimum contrast estimation based on second-order properties
to obtain estimates of the clustering parameters. These authors suggested a non-separable model and
use the spatial and temporal projections of the process for parameter estimation.
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Now, let L be a Lévy basis, which is defined as an independently scattered, infinitely divisible
randommeasure (Hellmund et al., 2008). It can be shown that Lévy basis include Poisson, Gaussian and
mixed Poisson randommeasures, among others. When we consider a spatio-temporal Cox process in
which the random field {Λ(ξ), ξ ∈ W × T } has a driving field of the form

Λ(ξ) =


W×T

κ(ξ, η)L(dη),

where κ is a kernel function (weight) and L is a non-negative Lévy basis (see Hellmund et al.,
2008; Beneš et al., 2015), we have a spatio-temporal Lévy-driven Cox process. Under some regularity
conditions, Λ has an equivalent shot-noise representation (Møller, 2003) with additional random
noise.

6. Spatio-temporal mechanistic models

6.1. Poisson processes

For a Poisson process, by the independence of the events, we have that

λ∗ (u, v|Hv) dudv = E [N(du × dv)|Hv] = E [N(du × dv)] = λ (u, v) dudv,
i.e., the conditional intensity function and the first-order intensity function are the same.

We recall from Section 4.2 that the intensity function can be estimated either by smoothing the
observations or by fitting some parametric model, and here the situation is similar. In the conditional
intensity setting, the non-parametric estimation procedure of the first-order intensity (see Eq. (3)) is
directly followed (see Choi and Hall, 1999).

6.2. Self-exciting processes

Stationary spatio-temporal point processes are sometimes described by the covariance between
the number of points in some spatio-temporal regions A × B and A × B + (u, v) (A × B shifted by
(u, v)). A spatio-temporal point process X is called self-exciting (underdispersed) if

Cov[N(A × B),N(A × B + (u, v))] > 0

for small values of (u, v); on the other hand, X is self-correcting (overdispersed) if such covariance is
negative. Thus the occurrence of points in a self-exciting point process causes other points to be more
likely to occur in space–time, whereas in a self-correcting process, the points have an inhibitory effect
(see Schoenberg et al., 2010). These models are commonly used in seismology.

6.2.1. Hawkes processes
Hawkes processes (Marsan and Lengliné, 2008, 2010; Schoenberg et al., 2010), are of interest in

general point process modelling. There are some alternative ways to define a Hawkes process, here
we follow Møller and Rasmussen (2006). Let X = {(ui, vi)} be a Poisson cluster process with events
(ui, vi) ∈ R2

× R. The cluster centres of X are given by certain events known as immigrants, while the
other events are known as offspring. A spatio-temporal Hawkes process X satisfies:
i. The immigrants follow a Poisson process with intensity function ψ(u, v).
ii. Each immigrant (ui, vi) generates a cluster Ci, which consists of events of generations of order

m = 0, 1, . . . with the following branching structure. We first have (ui, vi), which is said to
be of generation 0. Given the 0, . . . ,m generations in Ci, each (ui, vi) ∈ Ci of generation m
recursively generates a Poisson process Xj of offspring of generationm+ 1 with intensity function
κi(u, v) = κ(u − ui, v − vi). Here, κ is a non-negative function defined on (0,∞).

iii. Given the immigrants, the clusters are independent.
iv. X consists of the union of all clusters.

Marsan and Lengliné (2008, 2010) used such processes to investigate how aftershocks are spatially
distributed relative to the mainshock. They analysed a regional earthquake dataset, using non-
parametric estimations of probabilities of finding aftershocks relative to mainshocks.
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6.2.2. Epidemic-Type Aftershock Sequence (ETAS) processes
The Epidemic-Type Aftershock Sequence (ETAS) model is considered the main tool for the spatio-

temporal analysis of earthquakes. These models are Hawkes processes and were introduced by Ogata
(1988) to describe the times and magnitudes of earthquakes and they were extended to the spatio-
temporal setting by Ogata (1998), Ogata and Zhuang (2006), and have since then been widely used to
describe earthquakes (see, for instance, Marsan and Lengliné, 2008, 2010; Adelfio and Ogata, 2010;
Mohler et al., 2011; Adelfio and Chiodi, 2015 and references therein).

A wealth of analysis techniques have been developed, taking as a starting point an ETAS model;
for example Hazardmaps, declustering, diagnostic methods, among others (Musmeci and Vere-Jones,
1992; Zhuang et al., 2002; Peng et al., 2005; Adelfio and Chiodi, 2010; van Lieshout and Stein, 2012).

The magnitude of an earthquake is treated as a markMi, associated with its event (ui, vi), and the
conditional intensity becomes λ∗(u, v,M|Hv) = j(M)λ∗(u, v|Hv), where

λ∗(u, v|Hv) = ψ(u)+


{i:vi<v}

κ(u − ui, v − vi|Mi).

Note thatwehere have deviated from the previously indicated omission ofmarks. Hence, ETASmodels
work by dividing earthquakes into two categories: background events, which occur independently
by means of a stationary Poisson process ψ(u), with magnitudes distributed independently of ψ(·)
according to the density j(M), and aftershock eventswhich represent the risk of aftershocks where the
increased risk spreads in space and time following the kernel κ(·, ·).

Zhuang et al. (2002) dealt with estimation of the spatial intensity function of the background
earthquake occurrences from an earthquake catalogue that includes numerous clustered events in
space and time. An ETAS model is used for describing how each event generates offspring events.
They combined a parametric maximum likelihood estimate for the clustering structures using the
space–time ETAS model with a non-parametric estimate of the background seismicity.

6.3. Likelihood inference

We assume that the process is orderly (see Diggle et al., 2010a,b and the references therein). It
follows that for data {(ui, vi)}

n
i=1 ⊆ W × T , the log-likelihood is given by

L(λ∗) =

n
i=1

log λ∗

ui, vi|Hvi


−


T


W
λ∗ (u, v|Hv) dudv. (23)

Hence, likelihood-based inference is quite straightforward for any model for which the conditional
intensity is specified. It is only required that λ∗ (u, v|Hv) is non-negative and integrable over W , for
any possible history at any time l ∈ T . For a counterexample, see Diggle (2013).

To make inference two further assumptions must be hold (for an example see Peng et al., 2005).
First, if a model is not directly specified through its conditional intensity, we must have an explicit
expression for λ∗ (u, v|Hv), and this may be difficult, even impossible. Secondly, the integrand of the
integral term on the right-hand side of Eq. (23) is often a complicated functionwithmany localmodes,
so the accurate evaluation of the integral becomes very complicated.

6.4. Partial likelihood

As a direct adaptation of an efficient method originally proposed by Cox (1975), for proportional
hazard modelling of survival data, which is much more convenient for computing (Diggle, 2013;
Tamayo-Uria et al., 2014), we have a variant of the log-likelihood given in Eq. (23) called partial
likelihood.

Conditioning on the times vi and considering the resulting log-likelihood for the observed time-
ordering of events 1, . . . , n, the individual contribution to the partial likelihood is (Diggle et al., 2010b)

pi =
λ∗

ui, vi|Hvi


W λ

∗

x, vi|Hvi


dx
, (24)
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and the partial log-likelihood is given by

Lp(λ∗) =

n
i=1

log pi.

Usually, the integral in Eq. (24) is not tractable from the analytical point of view, but it can be
approximated by using somenumerical integration technique.Whenwehave a spatio-temporal point
process in which W is a finite set of locations uj with j = 1, . . . ,N for some N ≥ n, Lp(λ∗) becomes
(see Møller and Sørensen, 1994; Diggle, 2006)

Lp(λ∗) =

n
i=1

log
λ∗

ui, vi|Hvi


j∈Ri

λ∗

uj, vi|Hvi

 ,
where Ri denotes the risk set at time vi, and typically Ri = {i, i + 1, . . . ,N}.

6.5. Separability of conditional intensities

Separability in the context of mechanistic models assumes, similarly to the first-order intensity
case (Eq. (2)), a multiplicative form for the conditional intensity function

λ∗(u, v|Ht) = λ∗

1(u|Ht)λ
∗

2(v|Ht), (u, v) ∈ W × T ,

where λ∗

1(·|Ht) and λ∗

2(·|Ht) are two non-negative given functions. This hypothesis is especially
convenient since each component of a separable processmay bemodelled and estimated individually,
and this greatly facilitatesmodel building, fitting, and assessment. Díaz-Avalos et al. (2014) considered
non-parametric kernel-based estimators; their approach calculates thinning probabilities under the
conditions of separability and non-separability and compares them through divergence measures.

The separability assumption is, in fact, quite restrictive. However, few works have addressed
a rigorous analysis of separability. Some authors, e.g. Ogata (1988) and Schoenberg (2003), used
parametric methods to analyse departures from separability in the ETAS models, for earthquake
occurrences. Schoenberg (2004), Assunção and Maia (2007), Chang and Schoenberg (2011) and Díaz-
Avalos et al. (2014) developed non-parametric separability tests for the conditional intensity of spatio-
temporal point processes. The two latter authors developed Monte-Carlo separability tests based
on the comparison between the separable and non-separable kernel estimators of the conditional
intensity function, which should match if the point process is separable. These tests have been
developed for spatio-temporal marked point processes and for point processes that depend on
covariates, but we consider the particular case of separability between the spatial and temporal
components of unmarked spatio-temporal point processes.

Assuming that |{i : vi < t}| = n, consider a three-dimensional kernel estimator of the non-
separable spatio-temporal conditional intensity function λ̂∗

NS(u, v|Ht), and its separable counterpart
estimator λ̂∗

S(u, v|Ht) consisting of the product of two kernels (two-dimensional and one-
dimensional, respectively). Schoenberg (2004) proposes separability tests based on the standardised
maximum and minimum absolute distances, a Cramér–Von-Mises type statistic, and a log-likelihood
separability test. Díaz-Avalos et al. (2014) take advantage of the fact that the ratio between the
intensity and its integral over the whole spatio-temporal region is a density. They consider

p̂NSi =
λ̂∗

NS(ui, vi|Ht)
n

j=1
λ̂∗

NS(uj, vj|Ht)

and p̂Si =
λ̂∗

S(ui, vi|Ht)
n

j=1
λ̂∗

S(uj, vj|Ht)

.

Under the null hypothesis of separability we have that p̂NS = p̂S, and the Kullback–Leibler and
Hellinger divergences (see Deza and Deza, 2009) are given by

KL =

n
i=1

log

p̂NSi
p̂Si


p̂NSi and H =

2
n

i=1


p̂NSi −


p̂Si

2

,
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respectively. They found that KL and H are competitive with the former tests. In particular, for both
Poisson and clustered point processes, they found that when testing for separability between the spa-
tial and temporal components, the probability of type II error for the Monte-Carlo tests, KL and H
decreased faster than for any other test statistic.

7. Graphical means of assessing goodness-of-fit

Some recent model evaluation tools in the assessment of spatio-temporal point process models
include, in addition to the spatio-temporal summary statistics, residual point process methods such
as thinning, superposition and rescaling, comparative quadrat methods such as Pearson residuals
and deviance residuals, and weighted second-order statistics for assessing particular features of
a model such as its background rate or the degree of spatial clustering. We present here some
examples.

Clements et al. (2011) reviewed modern model evaluation techniques for spatio-temporal point
processes and demonstrated their use and practicality on earthquake forecasting models.

Schorlemmer et al. (2007) proposed originally an L-test, which works by simulating some fixed
number m of realisations from the forecast model. The log-likelihood L is computed for the observed
earthquake catalogue (Lobs) and each simulation (Lj, for j = 1, 2, . . . ,m). The quantile score, ΥL, is
defined as the fraction of simulated likelihoods that are less than the observed catalogue likelihood

ΥL =
1
m

m
j=1

1{Lj < Lobs}.

IfΥL is close to zero, then themodel is considered to be inconsistentwith the data, and can be rejected.
Otherwise, the model is not rejected and further tests are necessary. In the N-test, the quantile score
examined is instead the fraction of simulations that contain fewer points than the actual observed
number of points in the catalogue, Nobs. The quantile score ΥN is defined in a similar way, and the
model is rejected if ΥN is close to 0 or 1.

Methods for residual analysis of spatial point processes have been introduced by Baddeley et al.
(2005). Such methods extend readily to the spatio-temporal case. Consider a model λ̂Ď (u, v|X) for
the Papangelou intensity at any location u and time v. Raw residualsmay be defined as the difference
between the number of observed points and the number of expected points in any set A×B ⊆ W ×T ,
that is,

R(A × B) = N(A × B)−


A


B
λ̂Ď (u, v|X) dudv.

Zhuang (2006) extended the definition to the spatio-temporal case using the conventional conditional
intensity function.With the purpose of having raw residualswithmean 0, it is possible to rescale them
so that Pearson’s residuals are defined as

RP(A × B) =


(ui,vi)∈X∩(A×B)

1
λ̂Ď (ui, vi|X)

−


A


B


λ̂Ď (u, v|X)dudv,

for all λ̂Ď (u, v|X) > 0. These residuals constitute an analogue for spatio-temporal point patterns of the
comprehensive strategy formodel criticism in the linearmodel, which uses tools such as residual plots
and influence diagnostics to identify unusual or influential observations, to assessmodel assumptions
one by one, and to recognise forms of departure from the model (Baddeley et al., 2005). In analogy
with deviances defined for generalised linear models, a good option for comparing models is using
deviance residuals (Clements et al., 2011). The spatio-temporal window is divided into evenly spaced
bins, and the differences between the log-likelihoods within each bin for the two competing models
are analysed. Given two models for the conditional intensity, λ̂∗

1 and λ̂∗

2 , the deviance residual in each



540 J.A. González et al. / Spatial Statistics 18 (2016) 505–544

binΠi = (A × B)i, of λ̂∗

1 against λ̂∗

2 is given by

RD(Πi) =


i:(ui,vi)∈Πi

log λ̂∗

1 (ui, vi|Hv)−


Πi

λ̂∗

1 (u, v|Hv) d(u, v)

−


i:(ui,vi)∈Πi

log λ̂∗

2 (ui, vi|Hv)+


Πi

λ̂∗

2 (u, v|Hv) d(u, v).

Positive residuals imply that the model λ̂∗

1 fits better in the given bin and negative residuals imply
that λ̂∗

2 provides a better fit. By taking the sum of the deviance residuals, one gets a log-likelihood
ratio score, which gives an overall impression of the improvement in fit from the best fitted model.

As Clements et al. (2011) established, the distribution of raw and Pearson residuals tends to be
skewed when the spatio-temporal bins are small. When bins are larger, a drawback of bins-based
residuals is that considerable information is lost in aggregating over the bins. Instead, it can be possible
to look at how the data and model agree, without relying on such aggregation. One way to perform
such an assessment is to transform the points of the process, by rescaling, thinning, superposition or
super-thinning, to form a new point process that should be a homogeneous Poisson process if and
only if themodel used to govern this transformation is correct. The residual points can be assessed for
inhomogeneity as a means of evaluating the goodness-of-fit of the underlying model.

8. Discussion and ongoing research

This paper presents a review of known developments for spatio-temporal point process statistics.
We have covered aspects of summary statistics, assumptions often considered in this context,
statisticalmodels and inference. Howeverwe have not entered into details ofmarked spatio-temporal
point process as these still needquite a bit of additional development.Wehave resisted the temptation
of considering novel ideas and concepts, and we have focused on writing a paper which aims at
providing the state-of-the-art in the analysis of spatio-temporal point patterns. Another point that we
have not covered in the paper is providing a deep modelling framework for the considered datasets.
This would have enlarged the present paper, and it is itself the core of another papers.

It is easy to see that all concepts and contexts referred to in this review are closely interconnected.
Together, they play an important role in application and current development of spatio-temporal
point processes. Of course, they do not represent the only fields where statistical methods in spatio-
temporal point processes have been applied with success.

Of the spatial data types, as recently recognised by Banerjee et al. (2014), spatial and spatio-
temporal point patterns are the least developed in terms of the use of Bayesian methodology and
its application. In this recent and updated book, the authors specifically outline the hierarchical
approach through fully Bayesian modelling, which has received much less attention. The emphasis
on hierarchical modelling through the Bayesian paradigm in the context of spatio-temporal point
processes opens new avenues for future research.

Current open topics of interest, some of them suggested in Banerjee et al. (2014), are the following:
(a) Handling measurement error in spatio-temporal point patterns, although this is a quite unstudied
area even in the purely spatial context; one of the few papers in which this measurement error is
discussed is due to Lund and Rudemo (2000). Consider the setting where the observed locations are
measured with error perhaps in both space and time, and we seek to assess the effect on the intensity
function or on second-order summary statistics; (b) Presence-only spatio-temporal data. Analysis of
presence-only data (see examples in Chakraborty et al., 2011) has become popular in recent years, and
model-based strategies are needed; (c) Preferential sampling. The choice of the sampling locations in
a spatio-temporal point pattern rises the question of how to adapt this concept (originally born in the
geostatistical field) into the context of point patterns. Once again, preferential sampling has not been
discussed so much in the spatial case, even though some studies exist (see e.g. Ho and Stoyan, 2008;
Diggle et al., 2010c).

For completeness, we do not want to finish this discussion without mentioning some ongoing
research that is performed in parallel to the writing of this review paper. In this last section of the
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paper wewant to both indicate incoming papers in the field and indicate current trends that will help
researchers in identifying new interesting areas for future developments.

A recent unpublished paper by Ghorbani et al. (unpublished) presents an extension of the non-
parametric edge-corrected Ohser-type kernel estimator of the spatio-temporal second-order product
density function. They derive some properties and perform a simulation study to compare the
approximation of the variance with Monte-Carlo outputs and they apply the resulting estimator
to analyse the spatio-temporal distribution of the invasive meningococcal disease in the Rhineland
Regional Council in Germany.

Since little research has been conducted for replicated point patterns, even though they are
becoming quite common, we find some analysis of variance in the spatial case (see e.g. Diggle et al.,
1991; Baddeley et al., 1993; Hahn, 2012). There is also forthcoming research related to replicated
point patterns and comparisons in the spatio-temporal context; González et al. (unpublished) provide
some techniques for the analysis of spatio-temporal complex datasets in the presence of approximate
replication. Classical inference for spatio-temporal point patterns is difficult so they propose a
bootstrap procedure and a permutation test for attaching p-values to observed group differences
between the pattern descriptor functions, in a method which has analogies to classical ANOVA. The
validity of hypothesis testing procedures is demonstrated through simulation experiments under the
null and several different alternative hypotheses. This approach is used in the analysis of tornado
locations in the US along some temporal intervals and irregular pixels.

Stoyan et al. (unpublished) consider completely stationary spatio-temporal point processes
transformed into two stationary marked point processes by taking the times or locations as marks.
For these marked point processes, mark variograms are defined. These variograms give important
information about the spatio-temporal behaviour of the original process, and the authors provide
theoretical forms for suchmark variograms, for someparticular spatio-temporal point processmodels.

Finally, following the initial work on determinantal point process introduced by Lavancier et al.
(2015), Ghorbani (unpublished) extends this methodology to the spatio-temporal scenario.
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