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A B S T R A C T   

Prenatal arsenic exposure is associated with an increased risk of lung cancer along with multiple non- 
carcinogenic outcomes, including respiratory diseases in arsenic-contaminated areas. Limited epidemiologic 
data exist on whether in utero arsenic exposure influences lung development and subsequent respiratory health. 
We investigated the association between gestational arsenic exposure and childhood lung function in the New 
Hampshire Birth Cohort Study. Urinary arsenic speciation including inorganic arsenic (iAs), monomethylarsonic 
acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine was measured in maternal urine samples collected 
during pregnancy and spirometry was performed in offspring at a median age of 7.4 years. Forced vital capacity 
(FVC), forced expiratory volume in the first second of exhalation (FEV1), and forced expiratory flow between 
25% and 75% of FVC (FEF25-75) standardized z-scores were assessed in linear models as dependent variables 
with the log2-transformed summation of urinary arsenic species (ΣAs = iAs + MMA + DMA) corrected for 
specific gravity as an independent variable and with adjustment for maternal smoking status, children’s age, sex 
and height. Among the 358 children in the study, a doubling of ΣAs was associated with a − 0.08 (ß) decrease in 
FVC z-scores (95% confidence interval (CI) from − 0.14 to − 0.01) and − 0.10 (ß) (95% CI from − 0.18 to − 0.02) 
decrease in FEV1 z-scores. The inverse association appeared stronger among those mothers with lower secondary 
methylation index (urinary DMA/MMA), especially among girls. No association was observed for FEF25-75 z- 
scores. Our results suggest that gestation arsenic exposure at levels relevant to the general US population during 
the vulnerable period of lung formation may adversely affect lung function in childhood.   

1. Introduction 

Arsenic is an element ubiquitously present in our water, food and air 
from both natural and anthropogenic activities. Human exposure to 
arsenic comes through inhalation, dermal absorption, and ingestion (Al 
osman et al., 2019). Consumption of contaminated drinking water is the 
predominant exposure pathway (IARC, 2012). However, ingestion of 
arsenic from food is also a significant source of exposure of growing 
concern, particularly for populations non-occupationally exposed and 
with access to drinking water with relatively low arsenic levels (Nach
man et al., 2018). 

Inorganic arsenic (iAs), including arsenite (AsIII) and arsenate (AsV), 
is a well-established toxic chemical form, and its exposure is of major 

public health concern (ATSDR, 2009; Shih et al., 2019). Chronic iAs 
exposure is associated with an increased risk of different cancers 
including skin, lung, and bladder among others (IARC, 2012; Smith 
et al., 2006). Exposure to iAs is also associated with other health effects 
among populations exposed to highly contaminated drinking water, in 
particular, respiratory outcomes (Mazumder, 2007; Olivas-Calderón 
et al., 2015; Parvez et al., 2013; Ramsey et al., 2013; Recio-Vega et al., 
2015; Sanchez et al., 2016; Von Ehrenstein et al., 2005). In arsenic- 
contaminated areas, fetal and early childhood exposure has been asso
ciated with increased risk of lower respiratory tract infections and 
prevalence of respiratory symptoms (e.g., shortness of breath, chronic 
cough, and wheeze) during childhood, as well as reduced lung function 
and mortality from lung cancer, bronchiectasis, and tuberculosis in 
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adulthood (Dauphiné et al., 2011; Rahman et al., 2011; Raqib et al., 
2009; Smith et al., 2006, 2011, 2013). However, the possibility that 
even relatively low iAs exposure levels early in life may alter both 
childhood and adulthood respiratory health requires further epidemio
logic and mechanistic investigations (Farzan et al., 2016; Hsu et al., 
2020; Miller and Marty, 2010; Postma et al., 2015; Steinmaus et al., 
2016). 

Respiratory abnormalities can be identified from patterns of pul
monary function measured by spirometry such as obstructive or 
restrictive airflow (Camargo et al., 2014; Martinez-Pitre et al., 2020; 
Miller and Marty, 2010). A recently published meta-analysis and sys
tematic review of studies mainly among highly exposed adult pop
ulations reported an association between arsenic exposure and 
respiratory health, especially in relation to restrictive lung function 
(Sanchez et al., 2016, 2018). Among school-age children consuming 
contaminated water in rural Bangladesh, gestational arsenic exposure 
also related to airflow restrictive patterns with a decrease in forced vital 
capacity (FVC) and forced expiratory volume in the first second of 
exhalation (FEV1) (Ahmed et al., 2017). Further, arsenic-induced al
terations in inflammatory biomarkers in children in Mexico were related 
to the development of restrictive lung diseases (Olivas-Calderón et al., 
2015; Recio-Vega et al., 2015). In animal models, arsenic in drinking 
water during pregnancy increased resistance in the peripheral airway 
and markers of tissue stiffness in the offspring (Lantz et al., 2009; 
Ramsey et al., 2013). 

Ingested iAs is metabolized in the liver through a multistep process 
via the one-carbon metabolism cycle that results in the formation of 
monomethylarsonic acid (MMA) followed by dimethylarsinic acid 
(DMA) that are primarily excreted in urine within a few days (Antonelli 
et al., 2014; Challenger, 1951; Tseng, 2009). Thus, the sum of iAs and its 
methylated arsenic species (MMA and DMA) in urine is used as a 
biomarker of ingested iAs exposure (Powers et al., 2019; Signes-Pastor 
et al., 2017a). Methylation of iAs is an important mechanism in the 
metabolism of iAs, and the ratio between urinary MMA/iAs and DMA/ 
MMA can be used as markers of iAs methylation capacity (McCarty et al., 
2007; Niedzwiecki et al., 2014). Arsenic easily crosses the placenta and 
enters the fetus such that maternal blood levels positively correlate with 
infant cord blood levels (Concha et al., 1998; Hall et al., 2007; Ramsey 
et al., 2013). Therefore, we investigated arsenic exposure during preg
nancy in a general US population, and evaluated maternal arsenic 
methylation capacity in relation to the pulmonary function among 
children in the New Hampshire Birth Cohort study (NHBCS) to test the 
hypothesis that fetal exposure to arsenic affects lung development ulti
mately impacting lung function in school-aged children. 

2. Methods 

2.1. Study population 

Our study comprised infants enrolled in the NHBCS, a longitudinal 
pregnancy cohort designed to examine the impacts of toxicants in 
drinking water and diet on maternal–child health. Since 2009, the 
NHBCS recruited pregnant women 18–45 years of age at approximately 
24–28 weeks of gestation from prenatal clinics in the rural state of New 
Hampshire. Eligibility criteria include English literacy, the use of a 
private, unregulated water system at home (e.g., private well), not 
planning to move during pregnancy and a singleton birth as described 
previously (Gilbert-Diamond et al., 2016; Karagas et al., 2016; Signes- 
Pastor et al., 2020). The Committee for the Protection of Human Sub
jects at Dartmouth College approved this study, and all participants 
provided written informed consent. 

2.2. Samples collection 

Mothers provided a spot urinary samples at approximately 24–28 
weeks of gestation during the enrollment period in polyethylene sterile 

containers. Samples were processed and frozen at − 80 ◦C within 24 h 
until analysis (Karagas et al., 2016). We also collected household tap 
water samples at enrollment to analyze their arsenic concentrations 
(Gilbert-Diamond et al., 2016). 

2.3. Laboratory analysis 

Urine-specific gravity was analyzed using a handheld refractometer 
with automatic temperature compensation (PAL-10S; ATAGO Co Ltd). 
The urine samples were thoroughly thawed, centrifuged, and the su
pernatant pipetted into 0.6 ml vials before arsenic speciation analysis. 
The Trace Element Analysis Core at Dartmouth College carried out 
arsenic speciation using anion exchange chromatography inductively 
coupled plasma mass spectrometry (HPLC-ICP-MS) (Signes-Pastor et al., 
2020). It was an Agilent LC 1260 equipped with a Thermo AS7, 2 × 250 
mm column and a Thermo AG7, 2 × 50 mm guard column interfaced 
with an Agilent 8900 ICP-MS in oxygen reaction cell mode to remove 
polyatomic interferences. We measured concentrations of urinary AsIII, 
AsV, MMA, DMA, and arsenobetaine (AsB). A gradient mobile phase was 
prepared starting with 200 mM ammonium carbonate. Authentic stan
dards from SPEX Certiprep and Sigma-Aldrich were used to calibrate the 
arsenic concentrations under each chromatographic peak. Several NIST 
reference materials 2669 level I and level II were also analyzed in each 
analysis batch, with recoveries close to 100%. The arsenic species limit 
of detection (LOD) ranged from 0.01 to 0.39 µg/L across batches. We 
calculated the LODs as the mean of the blank concentrations plus three 
times their standard deviation multiplied by the dilution factor. We did 
not observe urinary DMA concentrations below the LOD. However, there 
were 149 (41.6%), 76 (21.2%), 83 (23.2%), and 83 (23.2%) observa
tions with concentrations of AsIII, AsV, MMA, and AsB below the LOD. 
We applied the value of LOD/√2 when concentrations were < LOD 
(Lubin et al., 2004). Total arsenic in tap water samples was measured 
with the Agilent 8900 ICP-MS in direct solution acquisition mode with a 
LOD of 0.04 µg/L. 

2.4. Lung function 

Children’s lung function was assessed with spirometry along with 
ascertainment of children’s age, height and weight. The spirometry was 
performed according to the American Thoracic Society and European 
Respiratory Society criteria in a single testing session by trained 
personnel (Beydon et al., 2007; Crapo et al., 1995). Trained staff per
formed pulmonary function testing and pre-testing education. All flow- 
volume curves were post hoc inspected for quality assurance by a pedi
atric pulmonologist (MG). The highest measurement obtained of each 
lung function parameter from a series of three technically acceptable 
flow-volume curves was used for statistical analysis (Miller et al., 2005). 
The FVC, FEV1 and forced expiratory flow between 25% and 75% of 
FVC (FEF25-75) were each measured. In addition, we calculated the 
ratio FEV1/FVC and the standardized z-scored for FVC, FEV1, and 
FEF25-75 (Culver et al., 2017; Harris et al., 2018). We computed the z- 
scores as the absolute values minus predictive values divided by stan
dard deviation of predictive values. 

2.5. Covariates 

We selected a priori based on previous studies and directed acyclic 
graphs using the DAGitty software: maternal smoking status during 
pregnancy (never smoker, former smoker, and current smoker), 
maternal highest attained level of education (<11th grade or high 
school graduate or equivalent, junior college graduate or some college 
or technical school, college graduate, and any post-graduate schooling) 
were collected from self-administered questionnaires, maternal age at 
enrollment (years, continuous) and maternal body mass index (BMI) 
calculated using maternal pre-pregnancy weight combined with height 
(kg/m2, continuous) were collected from prenatal medical records, and 
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child’s sex from the delivery medical records. As mentioned, child’s age 
(years, continuous), weight (kilograms, continuous), and height at 
spirometry test (centimeters, continuous) were assessed at the visit 
(Farzan et al., 2016; Powers et al., 2019; Stick et al., 1996). 

2.6. Statistical analysis 

We examined urinary iAs (AsIII + AsV), MMA, DMA and the sum
mation of the species (ΣAs = iAs + MMA + DMA) concentrations. They 
were positively skewed and thus were log2-transformed for the analyses. 
Spirometry parameters showed symmetric distributions. For the main 
statistical analysis, we followed a case-complete approach. A total of 410 
children (excluding 9 with missing spirometry parameters) had com
plete data from the pulmonary function test. We excluded children with 
spirometry parameter values out of the acceptable range (n = 2), 
without maternal urinary arsenic species concentrations (n = 2) and 
specific gravity (n = 21) leaving 385 participants. Our final dataset 
contained 358 maternal-child pairs after excluding those with missing 
values in maternal smoking status (n = 27) (Figure S1). We evaluated 
maternal urinary methylation capacity during pregnancy by calculating 
their primary methylation (PMI = urinary MMA/iAs) and secondary 
methylation indices (SMI = urinary DMA/MMA) (Niedzwiecki et al., 
2014). 

We examined the associations between exposures and the outcomes 
of interest using scatterplots with moving average lowess curves. 
Graphical inspection showed little evidence of non-linear association 
between maternal urinary log2-transformed arsenic concentrations and 
children’s spirometry parameters. Therefore, we conducted linear 
regression analyses to evaluate the association between in utero arsenic 
exposure and children’s standardized z-score spirometry parameters. 
The FVC, FEV1, and FEF25-75 z-scores were fitted in the models as 
dependent variables and the log2-transformed specific gravity-corrected 
urinary arsenic species concentrations as independent variable adjusting 
for potentially confounding factors including maternal smoking status, 
children’s age, sex and height. Further analyses included FEV1/FVC as 
the dependent variable. We performed additional models stratified by 
maternal methylation capacity using the median PMI and SMI as cutoff 
values and by sex. As sensitivity analyses to assess the possibility of 
residual confounding, we ran models restricted to non-smoker mothers 
and included additional adjustment for maternal age at enrollment, 
which was weakly correlated with urinary DMA, FEV1 and FVC z-scores 
(Spearman’s ρ = 0.1) but unrelated iAs, MMA, 

∑
As and the other out

comes, and child’s weight, which correlated with with FEV1 z-score and 
FEV1/FVC (Spearman’s ρ = 0.2) but not associated with iAs, MMA, 
DMA, 

∑
As or other outcomes (data not shown). A threshold of α = 0.05 

was used to define associations as statistically significant. We used the R 
version 4.0 to conduct all statistical analyses and graphics (R Code 
Team, 2015). 

3. Results 

The median maternal age of enrollment was 30.7 years, and about 
90% were not smokers (n = 322). Maternal medians urinary ΣAs, iAs, 
MMA, DMA, and AsB were 3.6 µg/L, 0.3 µg/L, 0.3 µg/L, 2.9 µg/L, and 
0.8 µg/L, respectively. A total of 46% of children were boys (n = 167). 
The spirometry test was performed at children’s median age of 7.4 years 
with a median weight and height of 125.0 cm and 25.6 kg, respectively 
(Table 1). About 80% and 74% of participants with household water 
arsenic concentrations (n = 350) had water concentrations < 10 µg/L (n 
= 288) and < 5 µg/L (n = 259), respectively. The value of 10 µg/L is the 
World Health Organization guideline and the United States Environ
mental Protection Agency standard for drinking water (US EPA, 2012; 
WHO, 2011), and the 5 µg/L is the recently established maximum public 
water arsenic level in the state of New Hampshire (NHDES, 2019). 

A doubling of maternal urinary ΣAs was associated with a decrease of 
− 0.08 (ß) in FVC z-score with a 95% confidence interval (CI) ranging 

Table 1 
Selected characteristics of study mothers and children.  

Variables Original sample 
(n = 419) 

Final sample (n 
= 358)φ 

Excluded sample 
(n = 61)Ψ 

Maternal 
characteristics    

Gestational age 
(weeks) 

39 (29, 
38.4–40.0, 42) 

39.0 (30.9, 
38.4–40.0, 42.0) 

39.1 (29.0, 
38.3–40.0, 42.0) 

Age of enrollment 30.8 (18.9, 
28.1–33.6, 44.3) 

30.7 (19.1, 
28.1–33.4, 44.3) 

31.9 (18.9, 
28.6–34.4, 41.8) 

Maternal BMI 24.8 (16.6, 
21.9–28.8, 48.3) 

24.7 (16.6, 
21.8–28.3, 48.3) 

26.5 (18.3, 
22.7–30.7, 47.3) 

Maternal education:    
<11th grade or high 

school graduate or 
equivalent 

35 (8.8%) 31 (8.7%) 4 (10.5%) 

Junior college 
graduate or some 
college or technical 
school 

83 (21.0%) 71 (19.8%) 12 (31.6%) 

College graduate 162 (40.9%) 152 (42.5%) 10 (26.3%) 
Any postgraduate 

schooling 
116 (29.3%) 104 (29.1%) 12 (31.6%) 

Parity:    
0 164 (39.5%) 144 (40.7%) 20 (32.8%) 
1 157 (37.8%) 132 (37.3%) 25 (41.0%) 
>1 94 (22.7%) 78 (22.0%) 16 (26.2%) 
Smoking status:    
Never smoker 351 (90.2%) 322 (89.9%) 29 (93.5%) 
Former smoker 19 (4.9%) 18 (5.0%) 1 (3.2%) 
Current smoke 19 (4.9%) 18 (5.0%) 1 (3.2%) 
Urinary arsenic (µg/ 

L):    
iAs (iAsIII + iAsV) 0.26 (0.02, 

0.07–0.48, 
10.51) 

0.25 (0.02, 
0.07–0.48, 
10.51) 

0.39 (0.02, 
0.24–0.65, 6.00) 

MMA 0.32 (0.01, 
0.13–0.55, 3.67) 

0.30 (0.01, 
0.13–0.54, 3.67) 

0.45 (0.02, 
0.23–0.71, 2.96) 

DMA 3.03 (0.15, 
1.39–5.28, 
152.7) 

2.89 (0.15, 
1.30–5.12, 
30.84) 

3.84 (0.16, 
2.29–6.41, 
152.7) 

AsB 0.88 (0.01, 
0.13–5.67, 
693.4) 

0.80 (0.01, 
0.13–5.24, 
693.4) 

2.03 (0.02, 
0.44–8.80, 
259.9) 

ΣAs 3.76 (0.20, 
1.66–6.62, 
154.8) 

3.64 (0.25, 
1.51–6.17, 
38.30) 

4.57 (0.20, 
3.16–7.59, 
154.8) 

Specific gravity 1.013 (1.001, 
1.006–1.019, 
1.037) 

1.012 (1.001, 
1.006–1.019, 
1.037) 

1.017 (1.004, 
1.012–1.022, 
1.028) 

Marital status    
Married 346 (87.4%) 314 (87.7%) 32 (84.2%) 
Single 40 (10.1%) 36 (10.1%) 4 (10.5%) 
Divorced 10 (2.5%) 8 (2.2%) 2 (5.3%) 
Children’s 

characteristics at 
spirometry test    

Male/female 199 (47.5%)/ 
220 (52.5%) 

167 (46.6%)/ 
191 (53.4%) 

32 (52.5%)/29 
(47.5%) 

Age (years) 7.4 (4.9, 7.1–7.9, 
9.5) 

7.4 (4.9, 7.0–7.9, 
9.5) 

7.6 (5.4, 7.1–8.1, 
9.3) 

Height (cm) 124.7 (104.6, 
121.1–129.1, 
142.8) 

125.0 (104.6, 
121.0–129.0, 
152.6) 

123.7 (114.5, 
121.9–130.6, 
142.5) 

Weight (kg) 25.7 (13.0, 
22.7–29.0, 58.0) 

25.6 (13.0, 
22.7–29.0, 60.4) 

26.0 (19.3, 
23.0–28.8, 39.7) 

FEV1/FVC 0.9 (0.6, 0.8–0.9, 
1.0) 

0.9 (0.6, 0.8–0.9, 
1.0) 

0.9 (0.6, 0.8–0.9, 
1.0) 

FVC z-score − 0.5 (-6.3, 
− 1.2–0.0, 2.9) 

− 0.5 (-3.2, − 1.2 
- − 0.1, 3.0) 

− 0.5 (-5.6, 
− 1.1–0.0, 1.0) 

FEV1 z-score 0.4 (-5.5, 
− 0.4–1.0, 4.5) 

0.4 (-2.5, 
− 0.4–1.0, 4.6) 

0.4 (-5.3, 
− 0.4–1.0, 2.6) 

FEF25-75 z-score − 0.3 (-8.4, 
− 2.0–1.2, 8.3) 

− 0.2 (-8.4, 
− 2.0–1.4, 8.3) 

− 0.8 (-6.6, 
− 2.0–0.7, 4.9) 

Other characteristics    
Tap water As (µg/L):    
<1 198 (50.0%) 175 (50%) 23 (50%) 
1–10 129 (32.6%) 113 (32.3%) 16 (34.8%) 
>10 69 (17.4%) 62 (17.7%) 7 (15.2%) 
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from − 0.14 to − 0.01. We also observed a reduced FVC z-score with 
maternal urinary iAs and DMA (ß = − 0.06, 95% CI from − 0.12 to − 0.01; 
ß = − 0.07, 95% CI from − 0.14 to − 0.01, respectively). We found a 
borderline statistically significant association between urinary MMA 
concentrations and FVC z-score (ß = − 0.05, 95% CI from − 0.10 to 0.00). 
Similarly, a doubling of urinary ΣAs, iAs, MMA, and DMA related to a 
reduction in FEV1 z-scores (ß = − 0.10, 95% CI from − 0.18 to − 0.02; ß =
− 0.09, 95% CI from − 0.16 to − 0.02; ß = − 0.07, 95% CI from − 0.12 to 
− 0.01; and ß = − 0.08, 95% CI from − 0.17 to − 0.01, respectively). The 
inverse associations between maternal urinary arsenic and FVC and 
FEV1 z-scores were stronger among participants with lower SMI. For 
example, a doubling of urinary MMA related to a reduction in FVC and 
FEV1 z-scores of ß = − 0.18 and 95% CI from − 0.29 to − 0.07 and ß =
− 0.20 and 95% CI from − 0.33 to − 0.06, respectively (Fig. 1). We 
observed comparable findings when including additional potential 

φ Participants after excluding those with missing values in any spirometry 
parameters of interest, spirometry values out of acceptable range, missing spe
cific gravity, without maternal urinary arsenic species concentration, maternal 
smoking status, children’s sex, age, and height.  

Ψ Excluded participants. Continuous values are reported as median (mini
mum, interquartile range, maximum), and categorical values as relative and 
absolute frequencies. The total count of missing values in the original sample is 5 
in maternal BMI, 23 in education, 4 in parity, 30 in smoking status, 24 in urinary 
arsenic speciation and specific gravity, 23 in marital status, 3 in child’s height, 1 
in weight, 1 in FEV1/FVC, 1 in FVC z-score, 3 in FEV1 z-score, 8 in FEF25-75 z- 
score, and 23 in tap water arsenic. The total count of missing values for the final 
sample is 1 in maternal BMI, 4 in parity, and 8 in tap water.  

Fig. 1. Association between maternal urinary arsenic species concentration and standardized z-scores from children’s spirometry. Oval = overall (n = 358); LP = low 
primary methylation index (PMI < median; n = 179); HP = high primary methylation index (PMI > median; n = 179); LS = low secondary methylation index (SMI <
median; n = 179); HS = high secondary methylation index (SMI > median; n = 179). Linear regression models with spirometry parameters standardized z-score as 
dependent variables and log2-transfomed maternal urinary arsenic species concentrations specific gravity corrected as independent variables adjusted for maternal 
smoking status, children’s age, sex, and height. Notice that the scale of the y-axis vary in order to facilitate the visualization of the estimates in each plot. 
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confounding factors in the models such as maternal age of enrollment 
and children’s weight (Figure S2). We had similar results when 
restricting our analyses to mothers never smoker (Table S2). Findings 
from the stratified analysis by sex were also persistent but suggested 
somewhat stronger associations among girls (Figure S3); however, in 
the overall regression models, the interaction term between child’s sex 
and maternal urinary arsenic concentrations did not reach statistical 
significance with a range of p-values from 0.281 to 0.933 (Table S2). We 
did not observe any clear association between maternal urinary arsenic 
species concentrations and children’s lung function z-scores in any of the 
other conducted models using FEV1/FVC as the dependent variable 
(Table S1). 

4. Discussion 

In this study, we found that maternal gestational urinary arsenic 
concentrations at levels common to the general US population were 
associated with reduced children’s FVC and FEV1 z-scores. We also 
found evidence of potential modification of these effects by maternal 
methylation capacity and sex-specific effects. 

A study from Mexico with 358 children of 6–12 years of age exposed 
to arsenic mainly from drinking water (mean 152.1 µg/L) starting in 
utero and until early childhood and with an average urinary arsenic of 
141.2 µg/L, reported a reduced FVC and FEV1. Higher urinary arsenic 
concentrations were found among children with restrictive spirometry 
patterns (prevalence of 57%) compared with children with normal 
patterns (Recio-Vega et al., 2015). The MINIMat cohort in rural 
Bangladesh investigated the association between maternal urinary ΣAs 
during pregnancy with an average (range) of 76 (2, 2063) µg/L and lung 
function in 540 9-year-old children. They reported an inverse associa
tion with FVC and FEV1 in volumetric units (β = − 12; 95% CI from − 22 
to − 1.5 ml, and β = − 12; 95% CI from − 22 to − 1.9 ml, respectively) 
(Ahmed et al., 2017). In our study population, we did not observe an 
association between arsenic exposure and FEV1/FVC but a reduced FVC 
and FEV1 supporting potentially restrictive effects on pulmonary airflow 
(Sanchez et al., 2018). While our analysis was based on z-scores so are 
not directly comparable, our exposure levels being far lower than 
Bangladesh resulted in smaller effect sizes compared to those found in 
children from the MINIMat cohort (Ahmed et al., 2017). 

Arsenic can disrupt the highly complex signaling between embryonic 
lung tissue of mesenchymal and endodermal origin and can permanently 
alter lung structure and function in experimental studies (Miller and 
Marty, 2010). In mice, arsenic exposure during pregnancy at relatively 
low levels (10 and 100 µg/L) from drinking water caused impaired 
postnatal lung function in particular abnormal stiffening of the lung 
parenchyma in the offspring, along with impeded development of the 
distal airways and alveolar tissue (Ramsey et al., 2013). In humans, the 
lung formation starts with the development of the lung bud from the 
fetal foregut at 6 weeks’ gestation. Airway generation down to the 
bronchiolar level are formed by the end of the first trimester of preg
nancy. During childhood airways continue to grow, then lung size in
creases with chest wall growth until adolescence, reaches a plateau at 
20–25 years of age and then declines (Merkus et al., 1996). Failure to 
reach a normal plateau affects airway function (Camargo et al., 2014; 
Lange et al., 2015; Postma et al., 2015). A prior study suggested sex- 
specific differences in response to arsenic exposure, such as male mice 
offspring more susceptible to the effects of arsenic on lung growth and 
performance than females. However, these lung mechanics alterations 
were not persistent in adulthood (Ramsey et al., 2013). Our study shows 
that girls may be more susceptible to the toxic effects of arsenic during 
gestation on lung function, which could relate to an increased over
expression of genes related to estrogen (Shen et al., 2007). We need 
further studies to understand the mechanisms by which effects of arsenic 
may manifest differently in males and females. 

In humans, there is large inter-individual variation in methylation 
capacity of iAs and is characterized by the formation of DMA (60–70%) 

and MMA (10–20%) excreted in urine along with unmetabolized iAs 
(10–30%) (Signes-Pastor et al., 2017b; Vahter, 2002). Altered profiles of 
urinary arsenic species in urine appear to reflect differences in the ef
ficacy of iAs metabolism and are genetically driven (Agusa et al., 2011). 
There is evidence that this influences individual susceptibility to the 
adverse effects of iAs including risks of skin, bladder, and lung cancer 
among highly exposed populations (Chen et al., 2003; López-Carrillo 
et al., 2014; Steinmaus et al., 2006; Yu et al., 2000). In this study, 
gestational arsenic exposure related to a reduced lung function in the 
offspring of women with decreased iAs methylation capacity. On 
average, we observed a 2.6-fold decrease in FVC and FEV1 z-scores in 
children whose mother had a low SMI compared to those with a high 
SMI. An earlier study from the MINIMat cohort also found a stronger 
inverse association between maternal urinary arsenic and children’s 
FVC and FEV1 among those whose mother had higher percentages of 
MMA and lower percentages of DMA (Ahmed et al., 2017). 

There are limitations in our study. Our study population was healthy 
overall, and the prevalence of airflow obstruction and restrictive pat
terns was low. Indeed, <2% of children would be classified with clinical 
airflow obstruction (FEV1/FVC < 0.70) or restrictive (FVC < 80% pre
dicted together with FEV1/FVC ≥ 0.70) patterns (Powers et al., 2019). 
We adjusted our primary models for known risk factors selected from a 
minimally sufficient set of potential confounders; however, residual 
confounding is still possible. Therefore, we performed sensitive analysis 
adding in the models maternal age at enrollment and children’s weight. 
The results were consistent with those from the main analyses. AsB is a 
putative non-toxic form of arsenic excreted in the urine unchanged 
related to fish/seafood consumption, which may cause exposure 
misclassification of iAs when total urinary arsenic serves as exposure 
biomarker (Navas-Acien et al., 2011; Signes-Pastor, et al., 2017a, 2019). 
In our study population, urinary AsB concentrations with a median < 1 
µg/L suggest a limited fish/seafood consumption. However, we 
measured urinary arsenic speciation and calculated the summation of 
iAs, MMA and DMA excluding AsB (ΣAs), but did not consider urinary 
DMA from direct ingestion or from the metabolism of other organo
senical compounds (e.g., arsenosugars and arsenolipids) also related to 
fish/seafood intake (Molin et al., 2015). We used single maternal urine 
samples; however, urinary arsenic concentrations show temporal sta
bility with consistent patterns of exposure (Signes-Pastor et al., 2021). 
Our findings suggest sex-related differences in the strength of the effects 
of gestational arsenic exposure. However, in the sex-stratified analyses 
we had limited statistical precision, and thus the results need to be 
interpreted carefully. Also, it is important to recognize that our study did 
not consider postnatal arsenic exposure, which is expected to be domi
nated by ingestion of household water and food (Signes-Pastor et al., 
2018). Thus, additional studies are needed with repeated postnatal 
measurements of arsenic exposure. 

Our study indicates an association between arsenic exposure at 
relatively low levels during pregnancy and reduced lung function in 
childhood that may be important later in life. Additional prospective 
research is needed to confirm our observations, including potential sex- 
related and metabolic differences. Our findings support efforts to 
minimize gestational iAs exposure to reduce the risks of adverse effects 
on lung formation during this vulnerable window to prevent the po
tential onset of respiratory diseases throughout the lifespan. 
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Signes-Pastor, A.J., Vioque, J., Navarrete-Muñoz, E.M., Carey, M., García de la Hera, M., 
Sunyer, J., Casas, M., Riaño-Galán, I., Tardón, A., Llop, S., Amorós, R., Amiano, P., 

Bilbao, J.R., Karagas, M.R., Meharg, A.A., 2017b. Concentrations of urinary arsenic 
species in relation to rice and seafood consumption among children living in Spain. 
Environ. Res. 159, 69–75. https://doi.org/10.1016/j.envres.2017.07.046. 

Signes-Pastor, A.J., Vioque, J., Navarrete-Muñoz, E.M., Carey, M., García-Villarino, M., 
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