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This is a paper in the intersection of time series analysis and complexity theory that
presents new results on permutation complexity in general and permutation entropy in
particular. In this context, permutation complexity refers to the characterization of time
series by means of ordinal patterns (permutations), entropic measures, decay rates of
missing ordinal patterns, and more. Since the inception of this “ordinal” methodology,
its practical application to any type of scalar time series and real-valued processes have
proven to be simple and useful. However, the theoretical aspects have remained limited
to noiseless deterministic series and dynamical systems, the main obstacle being the
super-exponential growth of allowed permutations with length when randomness (also
in form of observational noise) is present in the data. To overcome this difficulty, we take
a new approach through complexity classes, which are precisely defined by the growth
of allowed permutations with length, regardless of the deterministic or noisy nature of
the data. We consider three major classes: exponential, sub-factorial and factorial. The
next step is to adapt the concept of Z-entropy to each of those classes, which we call
permutation entropy because it coincides with the conventional permutation entropy on
the exponential class. Z-entropies are a family of group entropies, each of them extensive
on a given complexity class. The result is a unified approach to the ordinal analysis of
deterministic and random processes, from dynamical systems to white noise, with new
concepts and tools. Numerical simulations show that permutation entropy discriminates

time series from all complexity classes.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Complexity in symbolic times series, symbols being taken from a finite alphabet .4, has to do with the number of

different sequences (strings, words, blocks, ...) of a given length n and how this number increases with n. The perhaps
simplest approach consists in counting the number of such sequences. In this case, the complexity of periodic sequences
is a bounded function of n [1], while the complexity of arbitrary sequences grows as |.A|" (|-| denotes cardinality). Take the
logarithmic growth rate, namely log |.A|, to obtain the Shannon entropy of a memoryless process that outputs the symbols
of A with equal probabilities. The positivity of the entropy differentiates then exponential from sub-exponential growth.
Other approaches to the concept of complexity of sequences and the processes producing them have been proposed in
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different fields. Thus, in information theory complexity is usually related to compression [2,3]. Here one counts the number
of new words arising as one parses the whole message (ideally, a one-sided infinite binary sequence). In dynamical systems
and symbolic dynamics, the main tool is the dynamic entropy, both in its metric and topological versions [4]. In computer
science, algorithmic (or Kolmogorov) complexity refers to the shortest computer code that generates the sequence at hand,
while computational problems are grouped into (polynomial, exponential, ...) complexity classes according to how the
amount of resources (time, memory, ...) needed to solve them using a computation model (Turing machine, probabilistic
Turing machine, quantum computer, ...) depends on the “size” of the input (usually, the number of bits) [5]. In number
theory and cryptography there are also several proposals, some of them going deep into the concepts of randomness,
compressibility and typicality [6-8].

This paper deals with the concept of permutation complexity of real-valued time series introduced in [9-11], so
our symbols will be ordinal patterns or permutations of length L [12]. As we will see more precisely in the following
sections, the count of permutations grows exponentially with L in the case of (noiseless) deterministic signals, while it
grows super-exponentially for noisy deterministic and random signals, sometimes called noisy signals hereafter for brevity.
This different growth behavior of the ordinal patterns and, therefore, of the permutation complexity makes possible to
distinguish deterministic signals from noisy signals but, at the same time, it poses a challenge for a unified quantification
of permutation complexity for a simple reason: the usual tools for measuring complexity (say, Shannon and Kolmogorov-
Sinai entropies) are designed for exponential growths of the symbols they are defined upon, thus diverging when applied
to super-exponential growths. This occurs, in particular, with permutation entropy, which is the Shannon entropy of a
time series in its ordinal representation, i.e., its symbolic representation via ordinal patterns.

As a result, the tools of permutation complexity are applied to time series analysis in different ways. In theoretical
applications, where the time series are deterministic and may be assumed to be infinitely long, one uses entropic measures
such as metric and topological permutation entropy, or the like. In practical applications, where the time series are noisy
and finite, one typically resorts to permutations entropies of finite order (Section 2.1), causality-complexity planes [13,14],
the decay rate of the missing patterns [15,16], and ordinal networks [17], to mention some typical techniques. This being
the case, the objective of the present paper is to propose an integrating and overarching approach as follows.

The main character of this new approach is the logarithmic growth of allowed (or visible) ordinal patterns with
increasing length. Depending on that growth, processes are collected in the exponential, sub-factorial and factorial
complexity classes, whether they are deterministic or random. This procedure was inspired by similar ideas in complexity
theory, where systems are usually classified according to the state growth rates of the states with the number of
constituents N. For each of those classes there is a particular group entropy, called Z-entropy, that is extensive for the
systems in the class, meaning that it is finite over the uniform probability distributions in the limit N — oo [18,19].
In our context, system translates into process, the extensive parameter N into the length L of the ordinal patterns, Z
-entropy into (generalized) permutation entropy, and extensivity into the convergence of the corresponding topological
permutation entropy rate. Nevertheless, the introduction of the key concepts will be self-contained and will concentrate
on time series and processes, so that the reader can understand their rationale and properties without further reference.
The result is a characterization of time series in the ordinal representation that focuses on complexity rather than data
generation. This way we extend the realm of the standard permutation entropy from deterministic processes (dynamical
systems) to random processes, thus filling a conceptual gap in permutation complexity. A first step in this direction was
taken in [20], where we used the Z-entropy of the factorial complexity class to define a generalized permutation entropy
for noisy signals without forbidden patterns, i.e., noisy dynamics and random processes such that all ordinal patterns of
any length are allowed; these are the kind of signals encountered in practice. Our approach here is more general and
comprehensive.

Regarding the notion of group entropy mentioned above, it was introduced in [21] and discussed, e.g., in [18,19,22-25].
Essentially, a group entropy is a functional defined on a probability space which satisfies several important properties,
such as the first three Shannon-Khinchin axioms (Section 4) and a so-called composability axiom: the entropy of a
system compound by two statistically independent systems is expressed by a formal group law [20]. By construction,
group entropies have a direct interpretation as information measures [18,25]. In particular, they can be used to define
divergences and Riemannian structures over statistical manifolds.

The ordinal approach, where the information contained in the ordinal patterns is exploited via probability distributions,
entropies, etc., is quite popular in time series analysis for a number of reasons, including its computational simplicity
and speed. Applications to biomedicine where among the first and include epilepsy [26], cardiopathies [27], heart rate
variability [28], and more [29]. Further applications include dynamical change detection [30], signal characterization [ 16,
31,32], and image processing [33,34]. Currently, ordinal techniques, alone or complemented by other methods, are being
applied in plenty of fields, e.g., chaotic dynamics, earth science, computational neuroscience, and econophysics; see [35]
for examples, and [36] for a recent survey.

The rest of this paper is organized as follows. Section 2 contains the mathematical setting for the subsequent discussion,
in particular, metric and topological permutation entropies as well as the concepts of allowed and forbidden patterns. In
doing so, we cover the full range of discrete-time, real-valued time series envisaged in this paper, namely: noiseless
deterministic, noisy deterministic, and random signals. This section is partially based on our paper [20]. Section 3 is
devoted to the permutation complexity function and classes. Here we introduce the exponential, sub-factorial and factorial
permutation complexity classes that are further analyzed in the subsequent sections. In Section 4 we briefly review the
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general concept of entropy (based on the Shannon-Khinchin axioms), before extending permutation entropy from the
exponential class to the factorial and sub-factorial classes. Numerical simulations is the subject of Section 5. In this section,
the discriminatory power of the permutation entropy (Section 5.1) and the permutation complexity function (Section 5.2)
is put to the test with a battery of seven noisy processes from the factorial class. In Section 5.3 we study numerically and
analytically a toy model for sub-factorial processes. The conclusions are summarized in Section 6 .

2. Permutation complexity

Real-valued time series typically result from sampling analog signals or observing dynamical flows at discrete times. A
further step in the analysis of such series can be the discretization of the data, a procedure that is usually called symbolic
representation. The information provided by a symbolic representation may be sufficient for the intended application
while simplifying the mathematical tools needed for the analysis. In this regard, ordinal patterns [12] are becoming
increasingly popular to represent symbolically real-valued time series. Some reasons for this is their mathematically sound
relation to Kolmogorov-Sinai entropy via permutation entropy [37-40] and their ease of computation. Ordinal patterns
and permutation entropies are the main ingredients of permutation complexity.

2.1. Ordinal representations and permutation entropy

Given a (finite or infinite) time series (x;);>0 = Xo, X1, ..., X, ..., Wheret = 0,1,...,N < oo is discrete time and
X; € R, its symbolic representation by ordinal patterns of length L > 2 is rg, 11, ..., T;, ..., Where r; is the rank vector of
the string X} := X, Xe41, ..., Xeq—1 (t < N—L+1),ie, 1. = (po, p1. .- ., pr—1) Where {pg, p1, ..., p—1} € {0, 1,...,L—1}
are such that

Xt+p0 < Xt+p1 << Xt‘*'PLf] (1)

(other rules can also be found in the literature). In case of two or more ties, one can adopt some convention, e.g., the earlier
entry is smaller. Sometimes we say that x* defines the ordinal L-pattern r, or that it is of type r;. Ordinal L-patterns can be
identified with permutations of {0, 1, ..., L—1}, i.e., with elements of the symmetric group of degree L, S;; the cardinality
of S;, |5, is L. Symbolic representations of time series by means of ordinal patterns are called ordinal representations.
The algebraic structure of S; was exploited in [11] , which led to the more general concept of algebraic representations.

Furthermore, the time series (x;);>o is assumed to be output by a discrete-time deterministic or random process X
taking values on an interval I C R. By deterministic process we mean a one dimensional dynamical system (I, B, u, f),
where [ (the state space) is a bounded interval of R, B is the Borel o-algebra of I, i is a measure over the measurable
space (I, B) such that u(I) = 1 (i.e,, (I, B, ) is a probability space) and, for the time being, f : I — I is any u -invariant
map (i.e., u(f~'(B)) = w(B) for all B € B); alternatively, we say that u is f-invariant. In this case, the output (x; )i of X
is the orbit of xo, i.e., (X;)e=0 = (f*(X0))e=0, Where fO(xo) = xo € I and f*(x9) = f(f*~'(xo)). An ordinal representation of the
orbits of f by ordinal L-patterns partitions the state space I into the L! bins

Pe=f{xel: (x, f(x),..., fF'(x) is of type r € S). (2)

Therefore, the probability p(r) of the ordinal pattern r € S; to occur in an output of the deterministic process X generated
by the map f is

p(r) = wu(Pr). (3)

Note that, although the outputs (x; );>( are deterministic (“sharp” orbits), their ordinal representations (r;);>o are random
sequences (“pixelated” orbits), as occurs with any symbolic dynamics of a map with respect to a partition of its state
space [9].

The metric permutation entropy (rate) of the process X is defined as

1
h*(X) = lim susz*(Xé), (4)

L—o00

where X} = Xo, X1, ..., X,—1 and

H*(X§) = — Y p(r)Inp(r) (5)

reSy

is the metric permutation entropy of X of order L.

In other words, H*(Xé) is the Shannon entropy of the probability distribution {p(r) : r € S;}. If X is a deterministic
process (and u is known), then p(r) is given as in Eqs. (2)-(3). If X is a random process, the probabilities p(r) can only
exceptionally be derived from the probability distributions of X [41] so, in general, they have to be estimated, e.g. by
relative frequencies:

}{x%oftypereSL:0§t§N—L+l}|

p(r) N—L+2

(6)
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In the theoretical case of an infinite time series, take the limit N — oo in (6). In nonlinear time series analysis, the ergodic
invariant measure defined by u(P;) = p(r) is called the physical or natural measure because it is the only relevant measure
for physical systems and numerical simulations [42]. More about this in Section 5.1.

Remark 1. The limit limy_, o, p(r) exists with probability 1 when the underlying stochastic process fulfills the following
weak stationarity condition: for k < L — 1, the probability for x, < x;, should not depend on t [12] . This is the case
for stationary processes but also for non-stationary processes with stationary increments such as the fractional Brownian
motion [43] and its increments, that is, the fractional Gaussian noise. We will use these random processes, which have
long range dependencies, in the numerical simulations.

Let X be a deterministic or random process that takes values on an interval I C R. We say that an ordinal patternr € S;
is allowed for X if the probability that a string xt of type r is output by X is positive. That is, an L-pattern r is allowed
if there are strings x;, ..., X;+;—1 in some outputs or orbits of X such that the type of those strings is r. Otherwise, the
ordinal L-pattern r is forbidden for X. For example, the ordinal 3-pattern r = (2, 1, 0) is forbidden for the logistic map
f(x) = 4x(1 — x), 0 < x < 1, because there is no string x;, X; 11, X;+» in any orbit of f such that x;., < x,11 < x; all
other 3-patterns r = (po, p1, 02), Where pg, p1, 02 € {0, 1,2} and r # (2, 1, 0), are allowed for the logistic map, that is,
Xttpo < Xt4p, < Xt4p, fOT X, in a suitable subinterval of [0, 1], see [9]. Since we do not consider patterns other than ordinal
patterns in this paper, we speak of allowed and forbidden patterns for brevity.

If A;(X) denotes the number of allowed patterns of length L for X, the topological permutation entropy (rate) of the
process X is then defined as

1
h3(X) = lim supIHS‘(Xé), (7)
L—o00
where
Hi(XE) = In Ay(X) (8)

is the topological permutation entropy of X of order L. Moreover,
H*(X§) < H3(X}) < InLL, (9)

where H*(X§) = H3(X}) for flat probability distributions of the allowed L-patterns, and H}(X}) = InL! if all L-patterns are
allowed.

2.2. Allowed pattern growths for deterministic and random processes

The map f : I — I is called piecewise monotone if there is a finite partition of I such that f is continuous and strictly
monotone on each subinterval of the partition. If the graph of f has n humps, then f is called unimodal (n = 1) or
multimodal (n > 1). Most of the one-dimensional maps encountered in practice are piecewise monotone, so this condition
does not imply any strong restriction for practical purposes. Let ho(f) denote the topological entropy of f, and h(f) its
metric (or Kolmogorov-Sinai) entropy [44]. The following theorem holds [37].

Theorem 2. If f is piecewise monotone, then (a) h*(f) = h(f), and (b) hi(f) = ho(f).

Theorem 2(a) was generalized to countably piecewise monotone maps in [40]. Generalizations to higher dimensional
intervals can be found in [45].
From Theorem 2(b) and Eqgs. (7)-(8) it follows that

In A (X) = In |[{allowed L -patterns for deterministic X}| ~ ho(f)L, (10)

where f is the map generating the outputs of X, the symbol ~ stands for “asymptotically when L — o0”
(ie., lim;— oo In A (X)/(ho(f)L) = 1) and, for the sake of this paper, we assume ho(f) > 0 throughout. Therefore, the
number of allowed L-patterns for a piecewise monotone map f grows exponentially with L. To be more precise, according
to the proof of Proposition 1(b) in [37], AL (X) ~ exp[ho(f)L + In L + const].

Remark 3. More generally, it is easy to show that Inf(L) ~ ¢(L) if and only if f(L) = exp[¢(L) + o(¢(L))], where o(¢(L))
denotes a function such that o(¢(L))/¢(L) — 0 when L — oo. Exponential growth corresponds to ¢(L) linear, as in Eq. (10).
In this case, f(L) = A/ (X), ¢(L) = ho(f)L and, hence, o(¢(L)) = InL 4 const = o(L).

Since, on the other hand, the number of possible L-patterns is L! and
InL! ~LinL (11)

by Stirling’s formula InL! >~ L(InL — 1) + %ln(ZnL), we conclude from Eq. (10) that deterministic processes necessarily
have forbidden L-patterns for L large enough and, in fact, the number of forbidden L-patterns grows super-exponentially
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with L. By deterministic process we mean here and hereafter the dynamics generated by (the iteration of) a piecewise
monotone map so that Theorem 2 is applicable and Eq. (10) holds with ho(f) > 0. Sometimes we write X = f in this case.

As mentioned before, r = (2, 1, 0) is the only forbidden 3-pattern for the logistic parabola, while all 3-patterns are
allowed for the shift map x — 2x mod 1 [9]. The respective number of forbidden 4-patterns is 12 and 6 [9]. Each forbidden
pattern of length Ly in a deterministic dynamic is the seed of an infinitely long trail of “outgrowth forbidden patterns”
of lengths L > Ly whose structure can be found in [9]. Let us mention in passing that forbidden patterns there exist
also in higher dimensional dynamics (at least) for expansive maps, ordinal patterns being defined lexicographically [46].
Therefore, projections of higher dimensional dynamics are expected to have forbidden patterns and exponential growths
of allowed patterns as well.

At the other extreme are random processes without forbidden patterns, that is, processes for which all ordinal patterns
of any length are allowed and, hence, their growth is factorial: A;(X) = |S;| = L!. A trivial example of a random process
without forbidden patterns is white noise.

Also noisy deterministic time series may not have forbidden patterns (for sufficiently long series). Indeed, when the
dynamics takes place on a nontrivial attractor so that the orbits are dense, then the observational (white) noise will
“destroy” all forbidden patterns in the long run, no matter how small the noise. For this reason, we sometimes call noisy
deterministic processes and other random processes without forbidden patterns just forbidden-pattern-free (FPF) processes
or signals. Unlike Eq. (10) for deterministic processes, for FPF processes we have

In A (X) = In |{allowed L -patterns for FPF X}| = InL! ~ LInL, (12)

where we used the asymptotic equivalence (11).

To complete the picture, let us point out that random processes can have forbidden patterns too. A conceptually simple
(though impractical) way of constructing such a process is to repeatedly draw x; until the type of the block xg, X1, ..., X;
is allowed, for t = 1, 2, ... By controlling the number of allowed L-patterns, this constrained random process outputs
time series with any feasible growth of allowed L-patterns, in particular, an exponential one (as in the deterministic case).
A more realistic example of a random process with a sub-factorial growth of allowed pattern is the following.

Example 4 (Not-So-Noisy Measurement of a Periodic Signal). Suppose that a periodic time series (y)=0 = (f'(o))t=0 of
prime period p > 2 is observed; so

ve = f* o) = yi

for every t = kmod p, k =0,1,...,p — 1, where yo < y1 < --- < y,—1 for simplicity. Furthermore, suppose that the
points y, are measured with a device whose precision is value dependent, so that only the measurement of, say, y,—1 is
noiseless and, otherwise, the uncertainty intervals of yo, ..., ¥,—» do not overlap. To model this situation, let § > 0 be the
minimum separation between the points of the periodic cycle (yo, 1, ..., ¥y—1) and add white noise to y, with amplitude
less than §/2, except when t = p — 1 mod p. That is, the noisy observations are x; =y + ¢ fort =0, 1,...,p—2 mod p,
where ¢; are independent and uniformly distributed random variables in (—§/2, 6/2), and x; = y; for t = p — 1 mod p,
so that X,, < Xyp41 < -+ < Xw41)p—1 = Yp—1 for all v € N. Choose L = vp for simplicity. Then the number of allowed
L-patterns is given by

AXp) = p )P = pI(L/p)TPTY (13)

where X, is the noisy process that outputs the time series (X;);o. The factor p in Eq. (13) comes from the p different
values of the time index t modulus p. For each such t (say,t = 0,1,...,p — 1), the window xf = Xe, Xea1s ooy Xetl—1
splits in p disjoint groups of v points each as follows:

Xeqj:t+j=0mod p} < {Xeyj:t+j=1modp} <---. < {Xeyj: t+j=p—1mod p}, (14)

where 0 <j <L—1and x;yj =y,—1 forall t +j =p — 1 mod p (last group). As a result, the time indices of the v noisy
points x.; in each of the first p — 1 groups of the splitting (14) can be ordered in any of the v! permutations (v-patterns)
possible, while the time indices of the noiseless points x,; = y, in the last group leads to only one v-pattern, namely: the
permutation consisting of the corresponding time indices in increasing order (according to the convention for repeated
values). This explains the second factor (v!)*~' in Eq. (13). Therefore, as v = L/p increases,

In A(X,) =Inp+ (p — 1)In[(L/p)!] ~ (p — 1)% lné = p;%L(lnL —Inp)~cLInL (15)

where ¢ = (p — 1)/p < 1 and L = vp. Obviously, if the number of “noiseless” measurements of the periodic cycle
(Yo, Y1.--, Yp—1) is generalized to m, then, ¢ = (p — m)/p.

The noisy process presented in Example 4 will be discussed with greater detail in Section 5.3. In particular, the
asymptotic growth of In 4;(X,) depends on L modulus p.

Since real-world data is noisy, one certainly expects super-exponentially growing numbers of allowed patterns in
empirical observations, although sub-factorial growths such as in Eq. (15) seem elusive.
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3. Permutation complexity functions and classes

Next we wish to associate the notion of permutation complexity to processes ranging from deterministically generated
signals to white noise. Unfortunately, the metric and topological permutation entropies are not up to the job. For instance,
h§(X) converges for deterministic processes (Theorem 2) but diverges for forbidden-pattern-free (FPF) signals:

h§(X) = lim 1lnAL(X) = lim InL = 00 (16)
L-oo L L—o00
by (12).
This being the case, we shall rather focus on the permutation complexity (PC) class of the process X, which we define
by the asymptotic growth of In .A4;(X) with respect to L. In view of Eq. (10) for the deterministic processes and Eq. (12)
for the FPF processes, we propose the following definition.

Definition 5. Let g(t) be a positive, invertible and sufficiently regular function of the real variable t > 0. A process X is
said to belong to the PC class g if

In A, (X) ~ g(L) (17)
as L — oo.

The function g(t) will be called the permutation complexity (PC) function of the process X. The name of g(t) is suggested
by Eq. (10) with L = [t], since the topological entropy ho(f) measures the dynamical complexity of the deterministic
dynamic generated by f. In some cases, for convenience or economy, we will group a family of classes under a single
“super-class”, although we will also call them classes.

Remark 6. Two important observations on the PC function of a process:

(1) Regarding regularity, we will assume henceforth that g(t) is bicontinuous, i.e., both g(t) and its inverse g~!(s) are
continuous. The bicontinuity and invertibility of g(t) imply that g(t) and, hence, g~!(t) are strictly monotonic [47],
in fact, strictly increasing in our case.

(2) Regarding uniqueness, the complexity class g depends only on the asymptotic behavior of g(t); any other function
g(t) ~ g(t) (ie., g(t) = g(t) + o(g(t))) will work out as well. Put in other terms, PC classes are defined up to
asymptotic equivalence.

Considering the growth of .4;(X), there is a first clear-cut division of processes: deterministic processes, for which .A;(X)
grows exponentially, and FPF processes, for which .4;(X) grows factorially. Data analysis and numerical simulations show
that the latter are ubiquitous in practice. Processes with super-exponential but sub-factorial growths will be grouped in
a third class. Specifically, we are going to turn our attention to the following three PC classes.

(C1) Exponential class: In A (X) ~ cL (c > 0), i.e,,
&(t) = ct = gexp(t). (18)

Thus, the exponential class is actually a class of classes, one for each c. Each class with a given constant c includes all
deterministic processes X = f with topological entropy ho(f) = c; maps with the same hy(f) are said to be topologically
conjugate. Therefore, deterministic processes with different topological entropies have different permutation complexities,
in line with the concept of dynamical complexity.

Moreover, for each ¢ > 0 the corresponding class is non-empty. Indeed, for every o > 1 there exists a piecewise
monotone map f with ho(f) = Ino > 0, namely, the piecewise linear selfmap of the interval [0, 1] with constant slopes
+o. Therefore, any function of the form g(t) = ct is the PC function of a deterministic processes generated by a piecewise
linear map with o = e°.

(C2) Factorial class: In A (X) ~ LInL, i.e.,
g(t) =tInt = gpc(t). (19)

Regarding the applications, the factorial class is the most interesting since virtually all random processes in practice
are FPF.

(C3) Sub-factorial class: In A (X) ~ g(t), where (i) gexp(t) = 0(g(t)) and g(t) = o(grac(t)) or, else, (ii)
g(t):=ctIlnt with0 <c < 1. (20)
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Unlike the exponential and factorial classes, whose PC functions are defined explicitly, the PC functions of the
sub-factorial class are defined both implicitly (condition C3(i)) and explicitly (Eq. (20)).

The sub-factorial class is also a class of classes. This class is potentially the largest since it fills the gap between the
exponential and the factorial class, although practical examples are hard to find. Examples of functions g(t) such that
ct = o(g(t)) and g(t) = o(t Int) (condition C3(i)) are

gty=tn®t (n=2) (21
where In™ t denotes the composition of the logarithmic function n times. Toy models with PC functions of the form (20)
were presented in Example 4. Prompted by this example, in the forthcoming theorems we will use gq(t) = ctlint,

0 < ¢ < 1, as a prototypical PC function of the sub-factorial class, although the other representatives in Eq. (21) will also
be considered alongside.

Let us mention in passing that g(t) = ctInt with ¢ > 1 is not the PC function of any random process in the ordinal
representation. However, statistical complex systems may have such super-factorial growth rates of the state space as the
number of constituents increases [24].

Of course, the exponential and sub-factorial classes can be thought of as refined in smaller classes whenever
convenient.

To conclude this section, let us return to the asymmetry between deterministic and FPF processes regarding their
PC functions. As already mentioned, gexp(t) = ct distinguishes deterministic processes from each other up to topological
conjugacy, since ¢ = hy(f) in this case. On the contrary, all FPF processes have the same PC function, namely, gg.(t) = t Int,
the reason being that .4;(X) counts the number of allowed L-patterns for L >> 1, and this number is L! for all FPF processes.
The result is that ge.(t) is useless in distinguishing FPF processes from each other. A possible way out of this shortcoming is
to take into account the probability distribution of the allowed L-patterns, e.g., through permutation entropies tailored to
each PC class, as we do in the next section. A different approach, based on the convergence rate of In A;(X) to g (t) = tint
with the length of the time series, will be presented in Section 5.2, when discussing numerical simulations.

4. Generalized permutation entropy

Let p = (p1,p2,---,Pw) be a discrete probability distribution; we denote by Py, the set of all discrete probability
distributions with W entries. From the point of view of information theory, an entropy is a positive functional S(p) defined
on Uy >,Py that satisfies certain properties required by Shannon [48,49] and Khinchin [50] in their uniqueness theorem

for S(p), and nowadays known as the Shannon-Khinchin (SK) axioms. The first three (SK) axioms are:
(SK1) Continuity: S is continuous on Py, for each W.
(SK2) Maximality: For each (p1, p2, ..., Pw) € Pw,

SP1. P20 PW) =S (o o ) -

(SK3) Expansibility: For each (pq,p2,...,pbw) € Pw andi€ {0,1,...,n— 1},
S(p1s -+ Pi> 0, Pit1s - - -» Pn) = S(P1, P25 - - - 5 Pn)-

If S(p) satisfies (SK1)-(SK3) and a fourth axiom called separability or strong additivity (SK4), then S(p) must be the
Boltzmann-Gibbs-Shannon entropy (usually called Shannon entropy in information theory):

w
S(p) = —k Y _ piInpi =: Spas(p). (22)
i=1
where k is an arbitrary positive constant that can be interpreted as the freedom in the choice of the logarithm base. If,
otherwise, S(p) only satisfies the first three SK axioms, then S(p) is called a generalized entropy and its form is only known
under additional assumptions [51,52].

Remark 7. In the case of group entropies, of interest in this work, the strong additivity axiom (SK4) is replaced by the
composability axiom, namely, the requirement that there exists a suitable function of the form &(x,y) = x 4+ y+ higher
order terms, which takes care of the composition process of two independent systems that are described by probability
distributions. Specifically,

S(p x q) = @(S(p), S(q)), (23)

where p, g are any two probability distributions and p x q is their product distribution. Here & is supposed to satisfy
three properties: (i) @(x,y) = @(y, x) (symmetry), (ii) @(x, @(y, z)) = @(P(x,y), z) (associativity), and (iii) ®(x,0) = x
(null-composability), which coincide with those of a formal group law [18]. Thus, a group entropy is a functional satisfying
the first three SK axioms and the composability axiom. Property (23) is actually crucial to generalize the standard notion
of entropy. The entropies of Shannon (22), Rényi (24), and Tsallis [53] belong to this class. A multivariate extension of
the notion of group entropy has been proposed in [19]. An independent axiomatic approach to composable entropies, the
pseudoadditive entropies, has been discussed in [52] (see also the references therein).

7



J.M. Amigé, R. Dale and P. Tempesta Communications in Nonlinear Science and Numerical Simulation 105 (2022) 106077

As it turns out, Spgs(p) is not well suited to deal with the diversity of complex systems, including the thermodynamical
ones. In complexity theory, systems are usually classified in sub-exponential, exponential and super-exponential “com-
plexity classes”, according to the state growth rates of the states with the number of constituents N. For each of such
classes there is a specific group entropy, called Z-entropy, that is extensive for the systems in the class, meaning that it is
finite over uniform probability distributions in the limit N — oo [18,19].

In this section we capitalize on the similarities between this approach and ours to extend the concept of permutation
entropy from deterministic processes to random processes via the Z-entropies for the exponential, sub-factorial and
factorial complexity classes.

4.1. Permutation entropy of finite order

Given a probability distribution p = (p1, ..., pw) and @ € R, @ > 0, the Rényi entropy R,(p) is defined as [54]

kl W"‘ 24
1_an;pi (24)

(k > 0) for « # 1, and

Ra(p) =

w
Ri(p) := lim Ry(p) = —k ) | piInpi = Spcs(p). (25)
i=1
see Eq. (22). In statistical mechanics, k = 1.380649 x 10723 JK'! is the Boltzmann constant; in information theory, k is
usually set equal to 1, as we do from now on.
The following definition is an adaptation to our context of the concept of Z-entropy [18,19]. Remember that, according
to Remark 6 on the PC function g(t) of a process, its inverse g~!(s) is continuous and strictly increasing.

Definition 8. Let g(t) be the PC function of a process X. The (metric) permutation entropy of order L of X is defined as
z: (X =22 (p) = g (Ra(p)) — £ (0), (26)

where o > 0, p is the probability distribution of the ordinal L -patterns of Xé = Xo,X1,...,X_1, and R,(p) is Rényi's
entropy.

The term —g~'(0) in (26) ensures that Zg*ia(Xé) = 0 for singular probability distributions, i.e,, when p;, = 1 and
pi = 0 for i # iy. By the continuity and strictly increasing monotonicity of g~!(s), Z;a(Xé) fulfills the axioms (SK1)-
(SK3), i.e., Zg,a(Xé) is a generalized entropy. In addition, Z;,a(Xé) satisfies the composability axiom (23) with &(x,y) =
x ' (x(x) + x (), where x(t) = g(t +g~'(0)) and, hence, x ~'(s) = g~'(s) — g~ (0).

By its definition (and the increasing monotonicity of g~(s)), Z;a(xé) inherits some of the properties of R,(p). For
instance, Zg*’a(Xé) is monotone decreasing with respect to the parameter « [51],

Z3 (X5) = Z3 y(Xg) fora < B -

and each L > 2.

To formulate the next theorem, we need to introduce the special function £(x), by which we denote the principal
branch of the real W-Lambert function. This is a smooth function, defined as the solution of ye¥ = x, i.e., W(x)e"W® = x,
for x > —e~!. £(x) is the unique solution for x > 0, while for —e~! < x < 0 there is another solution belonging to
a second branch. Some basic properties of £(x) are the following [55]: (i) £(x) is strictly increasing and N-convex; (ii)

£(—e™') = —1 and £(0) = 0; (iii) £(x) > 0 for x > 0; (iv) £(x) > 1 for x > e; and (v) £(x) — oo as x — oo. Moreover,
L(x) satisfies the identity

L£(xInx) = Inx (28)
for x > e 1.

Theorem 9. Given a process X, let p be the probability distribution of the ordinal L-patterns of Xé. For the PC classes (C1)-(C3)
of Section 3, the following holds.

(@) For gexp(t) = ct:

1
Zg*expyot(x(l)-) = EROI(p) = Z:Xp,a(xé) (29)

(b) For gfgc(t) =tint:
Zp, Xy = RN 1 =z (XE). 30)
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(c) For gap(t)=ctint (0 <c < 1):

Zg*sub,a(xé) — eLRa(P)/cl _ 1 —. Zstlb,a(x(li)' (31)

Proof. Eq. (29) follows readily from the definition (26) and

_ S
gexllj(s) = -

c
Ifs=ctlnt (0 <c <1) then £(s/c) = £(tInt) = Int by the identity (28). Hence
gf;cl(s) — pL(s)
forc =1,
g;u;(s) — pLls/0)

forc < 1, and g,/ (0) = g.,+(0) = e“(Y) = 1. Egs. (30) and (31) follow.

Remark 10. Regarding Theorem 9, let us highlight the following points.

@)) Ze*xp’a(p) = R,(p) for ¢ = 1, that is, the sub-class that includes the maps with topological entropy 1. Since R,(p)
is defined anyway up to a positive constant k, see Eqs. (24)-(25), we may conclude that Rényi’s entropy (of the
probability distribution of the ordinal L-patterns) is the permutation entropy when dealing with deterministic
processes, regardless of their topological entropy.

(2) In particular (see Eq. (25)),

Zio.1(X5) = Sgos(p) = H*(Xg), (32)

where H *(Xé) is the conventional metric permutation entropy of order L, Eq. (5). In other words, Zg*’a(Xé) reduces
to the conventional permutation entropy under the right assumptions. This justifies calling it a (generalized)
permutation entropy.

3) Zf’gcya(Xé) was used in [20] (with the notation Z;‘(Xé)) to generalize H*(Xé) to FPF processes. There it is proved that

1
Zizc.a(P) = Ra(p) = SRu(P)’ + 003) (33)
if Ry(p) < 1/e. Therefore, when Ry(p) is small, it is a good approximation of Z;;_ ,(p).

As anticipated in Section 3, we have chosen gg,,(t) = ctInt (0 < ¢ < 1) in Theorem 9(c) mainly because of Example 4.
For the choice gqp(t) = tIn™t (n > 2), the other examples of sub-factorial PC functions given in Eq. (21), we need to
generalize the Lambert function £(x). We define the generalized Lambert function £™(x) (n > 1, with £V(x) = £(x) ) by
the functional equation

£Mx)exp™[£M(x)] = x (34)

for x > — exp™(—1), where exp™(x) denotes the composition of the exponential function n times. Hence, £(x) > 0 for
x >0, £M(0) = 0, and the identity (28) generalizes to

L£M[x1In™ x] = In™ x (35)
for x > exp™(—1) (since £M[— exp™(—1)] = —1). It follows that the inverse of g(t) = t In" t is
g7 '(s) = exp™[£M(s)], (36)

so that g‘(l()O) = 1 since £(0) = 0. Therefore, the permutation entropy of order L of the sub-factorial class defined by
g(t)=tIn"™tis

zz (X5) = exp™ LRy (p))] — 1 (n = 2). (37)

For n = 1 we recover Zf’;C’Q(Xé), Eq. (30).
4.2. Permutation entropy rate

According to axiom SK2, entropies reach their maxima over uniform probability distributions. Sometimes these upper
bounds are called the topological versions of the corresponding entropies or simply topological entropies. Thus, the
topological version of Zg*ya(Xé) is its tight upper bound, which is obtained over the uniform distribution p, of the allowed
ordinal L-patterns for X. This means that p, = (py, ..., py) with

| 1/A(X) if the ith ordinal L -pattern is allowed for X
' 0 if the ith ordinal L-pattern is forbidden for X

9

(38)
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fori=1,..., L. Note that
Ro(pu) = In Ay (X) (39)
for @ > 0. Plugging Eq. (39) into (26), we are led to the following definition.

Definition 11. The topological permutation entropy of order L of a process X of class g is defined as
Z3 o(X5) = Z3 o(pu) = g~ (In AL(X)) — g7 1(0), (40)
where p, is the uniform probability distribution of allowed L -patterns for X as defined in Eq. (38).

The notation Z; o for the topological permutation entropy is justified because In 4;(X) is formally obtained from Eq. (24)

by setting @ = 0; indeed,

Ro(p1,....pu)=Inl{pi : pi > 0, 1 <i < L!}| = In A(X) (41)
for all p = {p1, ..., pu}. It follows,

Ro(p) = Ro(p) (42)
for all @ > 0, so that

Z5 o(X5) = Z7 ,(X5) (43)

for all & > 0 since g~(s) is a strictly increasing function (see Remark 6).

Uniform probability distributions are special for several reasons. From the viewpoint of statistical mechanics, they
correspond to the most disordered state, hence to equilibrium in the microcanonical ensemble. From the point of view
of information theory, they amount to the principle of insufficient reason or maximum entropy principle [56] under null
knowledge (maximum ignorance). Most important for us, the concept of extensivity (inherited from thermodynamics)
also refers to such probability distributions: we say that an entropy S(p) is extensive if it scales linearly with the number

of constituents (degrees of freedom, etc.) N of the system over the uniform probability distribution p = (1/N, ..., 1/N),
ie,
S(E, .o,
lim (y W) const > 0. (44)
N—oo N

Therefore, extensivity depends on how the number of states grows with N, the sub-exponential, exponential and
super-exponential regimes (or classes) being the most important ones.

Theorem 12. The permutation entropy Zg (XL) is extensive with respect to the parameter L. In fact, for all « > 0,

Zg o(Du) Z; o(X5)
L L

~1. (45)

Proof. From definition (40) and In A4;(X) ~ g(L), Eq. (17), we obtain

Zio(Xp) =g (InA(X) —g~'(0) ~ g (g(L)) —g~'(0) =L —g~'(0) ~ L.
This proves Eq. (45).

To get rid of the dependence of Zg*.a(Xé) on L, we turn to the entropy rates per variable, Zg‘,a(Xé)/L, and take the limit
when L — oo.
Definition 13. The permutation entropy rate (or just permutation entropy) of a process X of class g is defined as
* . 1 * L

2z} (X) = nggo zZgﬂ(xo), (46)
where o > 0: z;(X) is the topological permutation entropy of X, and z}(X) with & > 0 is the metric permutation entropy
of X.

The permutation entropy rate z; ,(X) quantifies an intrinsic property of the process X. The existence of the limit (46)
follows from Theorem 12. As a matter of fact, the existence of z; ,(X) amounts to the extensivity of Zg*,a(Xé). Note that

1
7z0X) = lim ~Z;o(Xg) = 1 (47)
by Theorem 12, hence,

75 (X) <25 (X) =1 (48)

for each complexity class g and o > 0, by Eq. (43).

10
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Theorem 14. Given a process X, let p be the probability distribution of the ordinal L-patterns of Xé. The permutation entropy
rate of X is given as follows.

(a) For the exponential class:

o1
ZopaX) =25, (X) = LILTC aRa(p). (49)
In particular, if X = f and o = 1, then
h(f)
Zpp 1(X) = <1 (50)
exp,1 ho(f)

where h(f) is the Kolmogorov-Sinai entropy of f and ho(f) is its topological entropy.
(b) For the factorial class:

o1
ZoeaX) =275, o(X) = lim —eFlRa(P] (51)
(c) For the sub-factorial class (defined by gsp(t) = ctlnt, 0 <c < 1):

1
Zipo(X) =25, (X)= lim —eFMRa(p)/cl, (52)

Proof. Use the definition (46) and

‘Zexp

1

Zg aX0) ™~ Zgop aXg) = —Ru(P)
for X in the exponential class (Theorem 9(a)),

Zg’a(xé.) ~ Z;fac’a(xé) — eﬁ[Ra(P)] -1
for X in the factorial class (Theorem 9(b)), and

Zg*;a(x(lj) ~ Z;suly,ll(x(l)-) = eL[Ra(P)/C] - 1
for X in the sub-factorial class defined by gs,(t) = ctInt, 0 < ¢ < 1 (Theorem 9(c)), to derive Eqgs. (49), (51) and (52),
respectively.

As for Eq. (50), use (i) Ri(p) = Spes(p) = H*(X}), (ii)

1 1
lim —Ry(p) = lim zH*(xg) = h(f)

L—o00 L—oo

(Theorem 2(a)), and (iii) gexp(t) = ct = ho(f)t in Eq. (49). Moreover h(f) < ho(f).

Remark 15. A few closing observations on permutation entropy rates.

(1) The hierarchical order (27) and (43) carries on trivially to permutation entropy rates:
2 o(X) = 27 4(X) (53)
for0 <o < B.
(2) For the sub-factorial subclasses defined by g(t) = tIn™¢t, n> 2, use Eq. (37) to obtain

1
7 o(X) = lim - exp™ L7 Ro(P)]]. (54)

(3) For white noise (WN), the probability distribution of the L-patterns is uniform for every L. Therefore,
Zfheo(WN) = 25, o(WN) = 1 (55)
for every @ > 0 by Eq. (47).

5. Numerical simulations

One of the most important applications of permutation complexity to data analysis is the characterization and, hence,
discrimination of time series. In this section we illustrate the discrimination power of permutation complexity in time
series analysis. For this purpose, we are going to use permutation entropy in Section 5.1 and (perhaps surprisingly) the PC
function in Section 5.2. Both tools are used in Section 5.3 to further dissect the sub-factorial “not-so-noisy measurement of
a periodic signal” introduced in Example 4. Numerical receipts for computing ordinal patterns and permutation entropies
can be found, e.g., in Refs. [57,58].

Since real time series analysis have finite length, some allowed ordinal patterns can be missing in random time series
simply for statistical reasons. Therefore, practitioners prefer to speak of visible patterns and missing patterns rather than
allowed patterns and forbidden patterns, respectively, as we will sometimes do as well.

11
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5.1. Time series discrimination using permutation entropies

In Section 4 we have explicitly constructed a permutation entropy Zg*_u(Xé) for each PC class g such that the
corresponding entropy rate z; o(X) is finite. However, real-world data is noisy, which seems to exclude the exponential
class — but not quite.

In nonlinear time series analysis, it is good practice to test for determinism first. Underlying determinism in noisy
time series can be unveiled by several techniques [59], including forbidden ordinal patterns [9]. If the noise to signal
ratio is sufficiently small, then the data can be denoised, which allows the analyst to work with time series as good as
noiseless deterministic. This is the exponential class, and the realm of the conventional permutation entropy Z%, ,(Xg) =
R.(p) (or H*(Xé) for « = 1, Eq. (32)) and its rate Zayp.«(X). Since real-world time series are finite, the entropy rate

Zeyp.o(X) can only be estimated if the convergence of Ze*xp.a(Xé)/L is sufficiently fast. This can be checked, e.g., by plotting

ijp‘a(Xé)/L = R,(p)/L vs 1/L; if there is an interval where the curve is linear (before undersampling sets in), then fit a

straight line to the linear segment of the curve and the sought limit z, ,(X) = lim; o Z *equa(Xé)/L is the intercept of the
straight line with the vertical axis [10, Sect. 2.1]. If desired, the parameter ¢ that appears in Eq. (29) can be estimated by
Hg(Xé)/L = In A;(X)/L (see Egs. (7) and (8)), because H;(Xé)/L is a proxy of ¢ = hy(f) for L large enough by Theorem 2(b)
with f = X. For the purpose of time series discrimination, however, ¢ can be dispensed with, which amounts to setting
¢ = 1. The estimation of 4;(X) is usually done by just counting visible patterns in a sample of time series or even in a
single, sufficiently long time series. This procedure can be justified if the orbits densely visit the state space, a property
that goes by the name of transitivity. By the way, this is the first property in Devaney’s definition of chaos and, in fact, it
implies the other two properties (density of periodic points and sensitivity to initial conditions) for interval maps [60].

Furthermore, in nonlinear time series analysis, the dynamics of the (often unknown) system under observation is
assumed to settle down on a low dimensional attractor, where it is transitive. However, for the asymptotic dynamics to
be accessible to finite precision observations and numerical simulations, it is necessary that the physical measure (see
Eq. (6)) is smooth (or absolutely continuous in technical terminology [44]). Typically, the physical measure of chaotic
attractors has a smooth density in the stretching, or unstable, directions of the dynamics, while it has a discontinuous
(e.g., Cantor set-like) structure transversally to those directions [42]; think of the Hénon attractor. Finite precision smooths
out the physical measure when the attractor is viewed transversally to the stretching directions.

Otherwise, if there is no good reason to assume determinism, the data are handled as random. Moreover, numerical
simulations and empirical observations show that virtually all random time series encountered in practice are FPF. This
entails that Zf‘;c_a(Xé) and zg,. ,(X) are the appropriate tools to characterize random time series in the absence of more
information. However, the factorial growth of the L-patterns and the associated computational cost restrict L to moderate
values (say, L < 7) in practice, which makes the numerical estimation of z*%, ,(X) an open question in general.

For the above reasons, we have selected seven random processes from the factorial class to illustrate the discrimination
power of permutation complexity with numerical simulations. This is also a particularly difficult case because all processes
belong to the same complexity class in strict sense (there are no parameters in gec(t) = t Int). Those seven processes are
the following.

(Fac1) White noise (WN) in the form of an independent and uniformly distributed process on [0, 1];
(Fac2) Fractional Gaussian noise (fGn) with Hurst exponent H = 0.2 [43];

(Fac3-5) Fractional Brownian motion (fBm) with H = 0.2, 0.4 (anti-persistent processes), and H = 0.6 (persistent
process) [43];

(Fac6) Logistic map with additive white noise of amplitude 0.30 (noisy LM), i.e., x; = y; + z;, where y; = 4y;_1(1 — y;_1)
with yo = 0.2002, and (z;);>o is WN with —0.30 < z; < 0.30;

(Fac7) Schuster map with exponent 2 [61] and additive white noise of amplitude 0.25 (noisy SM), i.e., x; = y; + z;, where
Ye =Yr— +yi1 mod 1 with y; = 0.2002, and (z;);>0 is WN with —0.25 <z, < 0.25.

Arguments for this specific pick include that (i) the processes (Fac1)-(Fac7) cover a diversity of interesting cases (white
noise, random processes with long dependence ranges, deterministic dynamics contaminated with observational noise);
(ii) they are relevant to time series analysis and familiar to the analysts; and (iii) there are well-tested numerical routines
available for simulations.

Fig. 1 shows (Z;fac.a(Xé)/L), the average of Z;;C_a(Xé)/L over 35 time series for the random processes (Fac1)-(Fac7) and
3 <L <7 wherea = 0.5 (a), « =1 (b)and ¢ = 1.5 (c). For calculation purposes, the maximal length of the time
series was set at Tax = 50,000 (3> 7! = 5040), but the computational loop is actually exited as soon as the probability
distribution of the L -patterns stabilizes, so that the numerical routine is the same for all 3 < L < 7. We see in all panels of
Fig. 1 that (Zf*ac_a(Xé) /L) follows a distinct and seemingly convergent trajectory for each process as L grows, upper bounded
by the white noise. In agreement with (27), (Z_,s(X4)/L) > (Ze 1 (X§)/L) = (Zf:. 1 5(X5)/L) for each process. For white

fac,0.5
noise, (Zf:. ,(X§)/L) — 1 as L grows by Eq. (55).
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Fig. 1. The averages (Z};. ,(X5)/L) of Zf:. o 5(X§)/L (), Zfi. ((X5)/L (b) and Zf:. , 5(X§)/L (c) over 35 realizations of the random processes listed in the
inset are plotted vs L for 3 <L <7.

The effect of o on the discriminatory power of Zfam(Xé) clearly depends on the probability distribution p of the L
-patterns through the Rényi entropy R, (p). In particular, for « < 1 the central part of the distribution is flattened, i.e., high-
probability events are suppressed, and low-probability events are enhanced. This effect is more pronounced for smaller
«. The opposite happens when o > 1: low-probability events are suppressed while high-probability events are enhanced.
Our choices « = 0.5, 1, 1.5 are meant to include both situations « < 1 and o > 1, along with the Shannonian case o = 1.
In Fig. 1, this results in a higher discriminatory power of Zfac,a(Xé) with increasing «, i.e., the larger « the further apart the
curves (Zf’;c,a(xé)/L) are, which shows that the parameter « is an asset in applications. Similar choices of « give similar
results (not shown).

Note also that the curves of different processes may cross. The reason is that Zf”;c’a(Xé) can only capture ranges of
interdependence up to L. Put another way, larger window sizes L unveil dependencies between farther variables that can
be measured by Zéc,a(xé)- Therefore, as L grows, Zf’gcya(Xé) can become larger for a noisy chaotic signal, such as the noisy
logistic map, than for a process with a longer, or an infinite, span of interdependence between its increments, such as the
fractional Brownian motion with H = 0.40; this can be see more clearly in panel (c).

In particular, Fig. 1 shows that, although all seven processes (Fac1)-(Fac7) belong to the same PC class, namely, the
factorial class, the finite rates Zf*;c,a(xé)/L can distinguish them, evidencing as expected that Zf*;cqa(xé) is a finer measure
of permutation complexity than g(t). This does not mean that the growth rate of allowed patterns cannot be utilized for
that objective, as we explain in Section 5.2.

5.2. Time series discrimination using permutation complexity functions

It was noticed in [15] that the number of missing L-patterns for a white noise series of length T > L decreases
exponentially with T. This result was generalized in [16] to different sorts of FPF processes (f ~* power spectrum (PS),
fractional Brownian motion (fBm), fractional Gaussian noise (fGn)) by setting

My r(X) = |{missing L-patterns in x;~'}| = Ce™"", (56)
where x(T)’l is a typical realization of X of length T > L, and C and the decay rate R are constants that depend on L
and the parameters of the random process (k for f—* PS, or the Hurst exponent H for BM and fGn). From Egq. (56) and
M (X) =L — 1, it follows C = (L! — 1)ef", hence

My r(X) = (L — 1)e RT-1), (57)

Clearly, the decay rate of missing patterns in random time series is not indifferent to the dependencies between the
variables of the process, either due to an underlying functional dependence (noisy deterministic signal) or to a statistical
correlation.

This being the case, we let the permutation complexity function g depend on T too, i.e., g = g(L, T), and generalize
Eq. (17) to

In A 7(X) := In |{visible L -patterns in x;~'}| = g(L, T) (58)
so that g(L) ~ g(L, T), where now L >> 1 implies T > 1 because T > L. Therefore,
Apr(X) + My p(X) = L! (59)
13
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Fig. 2. The averages (g(L, T)) of the permutation complexity function g(L, T) over 35 realizations of the random processes listed in the inset (the
same as in Fig. 1) are plotted vs T (the time series length) for L = 6. The right panel (6 < T < 3000) is a zoom of the left panel (6 < T < 7000).

Table 1

The decay exponent R in Egs. (61)-(62) for L = 4,5,6, T = 7000, and the random processes plotted in
Fig. 2.

Series L=4 L=5 L=6
White Noise 4.43 x 1072 8.47 x 1073 1.40 x 1073
fGnH = 0.20 4.93 x 1072 8.17 x 1073 1.21 x 1073
fBmH = 0.20 4.20 x 1072 7.52 x 1073 1.13 x 1073
fBmH = 0.40 3.76 x 1072 6.32 x 1073 8.12 x 1074
fBmH = 0.60 3.24 x 1072 4.07 x 1073 5.05 x 1074
Noisy LM 3.36 x 1072 5.55 x 103 7.54 x 1074
Noisy SM 4.43 x 102 8.09 x 103 1.30 x 103

for every 2 < L < T. Since there are two parameters L and T, we can fix L (= Lg) and vary T so that the allowed
patterns have a chance to become visible. Correspondingly, we can distinguish (i) a transient phase (T “small”), where
the allowed patterns become progressively visible, and (ii) a stationary phase (T “large”), where all the allowed patterns
are visible. Generally speaking, the transient phase discriminates random signals while the stationary phase discriminates
deterministic signals, so both phases complement each other in the analysis of permutation complexity.

Indeed, in the deterministic case X = f,

8(Lo, T) = In Agy r(X) /" In Ay, (X) = hg 1 (F)Lo (60)

as T increases, see Egs. (7) and (8). Here, the symbol " means that the convergence is monotone increasing. The limit is
achieved in finite time, namely, once all allowed Ly-patterns are visible. For FPF processes, though,

ALr(X) =L — My r(X) > LI (1 — e *T7D) (61)
for every L by Egs. (57) and (59). Instead of the limit (60) for X = f, for FPF processes we have
8(Lo, T) > InLo! +In (1 — e RT=10)) 7 In [y (62)

as T increases and it remains constant once all Ly-patterns are visible. Therefore, contrarily to the deterministic case (60),
the limit of g(Lo, T) as T grows is the same for all FPF processes, namely, In Ly!.

A direct application of the “finite length” PC function g(L, T) is to discriminate different FPF processes by the different
convergence rates of g(L, T) to InL! as T increases. Numerical evidence is shown in Fig. 2 for L =6 and 6 < T < 7000
in the left panel; the right panel is a zoom of the left panel with 6 < T < 3000. Here we used the same 35 time series,
random processes (Fac1)-(Fac7) and numerical results as in Fig. 1, and plotted (g(6,T)) = <1r1 AGYT(X)) every AT = 50
points, where (-) denotes again the average over the 35 samples. For all those processes (and any other FPF process for
that matter), (g(6, T)) converges to In6! >~ 6.5793 as T grows.

The decay exponents R in the approximation (62) are listed in Table 1 for L = 4,5,6, T = 7000 and the random
processes (Fac1)-(Fac7) shown in Fig. 2. Due to the different correlation lengths, the curves g(Lo, T) may intersect as a
result of the different decay rates of the missing patterns.

Let us finally mention that Eq. (56) has recently been generalized to [31,32]

My n(X) = Cexp (—RNF). (63)

14
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Fig. 3. The averages (g(6,T)) of the permutation complexity function g(6,T) over 35 realizations of the sub-factorial processes X, of periods
2 < p <6 are plotted vs T (the time series length) for 6 < T < 50.

The stretching exponent 0 < B8 < 1 depends on L as well as on the underlying random process; for 8 = 1 one recovers
(56).

5.3. The sub-factorial class

To wrap up this numerical section, we consider the sub-factorial class as well. To this end, we revisit X, = (X;)t>o,
the “not-so-noisy measurement of a periodic signal” of period p > 2 introduced in Example 4, since this is the only
instance of a sub-factorial process that we know of. As compared to the factorial processes studied in Sections 5.1 and
5.2, X, has two peculiarities: (i) its conceptual simplicity makes most details amenable to analytical scrutiny, and (ii) it
is a cyclostationary process, i.e., its statistical properties vary periodically with time, so that it can be viewed as a random
process composed of p interleaved stationary processes (Xyp4,)v=0, 0 < u < p — 1. Likewise, it turns out that the ordinal
representations of X, decompose into p sequences of representations by means of (vp + p)-patterns, v € N, such that X,
has a PC function g(L) for each of those sequences.

We start our numerical analysis of X, with the finite length PC function g(L, T) for L = 6. Fig. 3 depicts g(6,T) vs T
for 6 < T <50and 2 < p < 6. Here we already recognize that these processes are not factorial because g(6,T) < 2.5
in all cases, whereas g(6,T) ' In6! >~ 6.58 for factorial processes (see Section 5.2). Since they are not deterministic
either (which can be simply checked by a return map), then they must be sub-factorial. The curves g(6, T) in Fig. 3
are visibly distinct, although the ones corresponding to the periods p = 2, 3,4 run close to each other. The reason
for this is that g(6,50) = InAg(X,), where, according to Table 2, In 44(X,) = In12 =~ 2.485 for p = 2, 3,4, while
In A5(Xs) = In9 =~ 2.197 and In A45(X5) = In6 =~ 1.792. Also, contrarily to Fig. 2 for the factorial processes (Fac1)-
(Fac7), the curves g(6, T) in Fig. 3 do not follow the exponential ansatz (62) but rather oscillate before leveling off. This
is due to the periodicity of the probability distributions of the L-patterns (in particular, of the 6-patterns) as the window
Xe, Xt41, - --> Xeqs Slides fromt =1tot =T — 5.

According to Eq. (31), to compute the generalized permutation entropy Z, a(Xé) of a sub-factorial process X = (X;)r>0
with PC function g(L) = cLInL, 0 < ¢ < 1, we need to know the constant c. With this objective, let L = vp + u, where
v=|L/pl] eNandyu =L modp € {0,1,...,p—1}; u =0 (i.e.,, L = vp) is the case considered in Example 4. An argument
similar to the one used there shows that Eq. (13) generalizes to

AlXy) = Ni(v, ) + No(v, ) (64)
where

Ni(v, ) = (p — s)[(v + DI Ny(w, ) = pl(v + DI ! Pe (65)
Note that N,(v, 0) = 0 for all v, so that we recover Eq. (13),

Aup(Xp) = Ni(v, 0) = p(v!)'~", (66)
from Eq. (64). Table 2 summarizes A;(X,) for moderate values of p and L.

Therefore,
AXy) = [0 4+ DI (g — i)(v + 1!+ po!]

= [0+ DI o — v+ D14 ey | (67)
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Table 2
The number of allowed L-patterns .A;(X,) for periods 2 <p <6 and p <L < 14.

Allowed patterns

p Window width (L)
2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 3 4 8 12 30 48 144 240 840 1,440 5,760 10,080
3 - 3 5 8 12 28 60 108 324 864 1,728 6,336 20,160
4 - - 4 7 12 20 32 80 192 432 864 2,808 8,640
5 - - - 5 9 16 28 48 80 208 528 1,296 3,024
6 - - - - 6 11 20 36 64 112 192 512 1,344
and
InA(X,) = (£ — 1)In(v + 1)1 + (p — st — 1)Inv! + In(p — 1) + In(v + 1)! + In [1 n m] . (68)

Use now Stirling’s formula (11) to derive
InAX,) ~(u—1Dw+DInv+1D+@E—-—pn—Tvinv+(v+1)In(v + 1)
=puv+Dnv+1)+@p—pn—1vinv (69)
when v — oo (u is bounded by p — 1). Eq. (69) leads to the following two cases.
(1) If w =0, ie.,, L = vp, then
In Awp(Xp) ~ (p — IvInv = (p — i In L ~ %LlnL. (70)
This means that
g(L:vp):cLlanithc:”;%, (71)

in accordance with Example 4. Numerical simulations confirm that, as expected, the N{(v, i) allowed L-patterns
for X, are equiprobable, hence

Ra(pu) = Ro(pu) = InNy(L/p, 0) = (p — 1) In[p(L/p)!] (72)
for all @ > 0, see Eq. (66).
2Q)f1<u<p-—1,ie,L=vp+ pu with u # 0, then
I Aup (%) ~ v+ DInew + 1) = (52 + 1) In (52 + 1)
~ M% 1n§ ~ &LInL. (73)
This means that

g(L:vp+M):cLlanithc:%e{%,%,...,%}. (74)

Numerical simulations and theoretical insight show that, in this case, the probability distribution of the allowed

L-patterns for X, is composed of Nq(v, u) L-patterns of probability Py = (p — w)/pNy, and Ny(v, ) L -patterns of
probability P, = u/pNs. It follows,

Ri(p) = —N1P1InP; — NoP, InP,, and Ry(p) = L In (N1P§ + N2P%) (75)
for o > 0, o # 1, where p is the probability distribution of the allowed ordinal L-patterns for X,,.
From Egs. (71) and (74) we obtain
:% for L=0,p — 1 mod p. (76)

In particular, c = 1/2 for p = 2 and ¢ = 0, 1, i.e., the process X; has a unique PC function g(L) = (1/2)LInL, regardless
of whether we use ordinal patterns of even or odd lengths.

In conclusion, X, generates p sub-factorial processes X, ,, 0 < i < p—1, according to the ordinal representations used
to discretize the realizations of X,. Thus, if we use ordinal patterns of lengths L = vp, v € N, the result is a sub-factorial
process X, o with

In A= (X,0) ~ %Lln L. (77)

Otherwise, if we use ordinal patterns of lengths L = vp + u, with v € Nand 1 < u < p — 1 fixed, the result is a
sub-factorial process X, ,, with

I Ap—upu(Xp) ~ LLINL. (78)
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Fig. 4. The averages (Z%,, ,(X§)/L) of Z%, os(X¢)/L (a), Ziy, ;(X§)/L (b) and Z%, ,(Xg)/L (c) over 35 realizations of the sub-factorial processes Xy,
Xo,1, X3,0, X3,1 and X3, are plotted vs L for 2 < L < 14. By definition, each process X, ,, 0 < u < p — 1, uses ordinal representations S; of lengths
L=vp+pu, veN, to calculate the corresponding complexity function g(L) = cLInL. Here, c = 1/2 for X, and X; 1, ¢ = 2/3 for X3 and X3, and
¢ =1/3 for X3 5.

More formally, we say that the cyclostationary process X, generates the processes (X, {Syp+p}v=1) = Xp 0, 0 < 0 < p—1,
where {S,,4,}y=1 is the subsequence of ordinal representations used to compute the PC function g(L). In our case, the
choices {S,,+,}v>1 with u fixed are justified because then the corresponding PC function exists.

Fig. 4 shows the average (Z5, ,(X§)/L) of the permutation entropy ZS*ub LX5)/L = (eFR®)/cl —1)/L over 35 realizations
of the sub-factorial processes Xz,ﬂ, X3, and 2 < L < 14, where a = 0. 5(a), « = 1(b) and & = 1.5 (c). According to
Egs. (71) and (74), ¢ = 1/2 for X0 and X3 1, ¢ = 2/3 for X3, and X3, while ¢ = 1/3 for X3 ;. At variance with Fig. 1,
the curves in Fig. 4 are further apart the lower « is. In particular, we see overlaps of the processes X3 ¢ and X3, in panels
(b) and (c) that, however, are resolved in panel (a). This again illustrates how the parameter « can help when it comes
to applications.

6. Conclusion

Permutation entropy is a popular tool for characterizing time series that depends on the size of the sliding window
used to define the permutations its name refers to. If the data has been output by a dynamical system, the conventional
permutation entropy rate (4) converges with increasing window sizes to the Kolmogorov-Sinai entropy of the dynamics
(Theorem 2(a)). But if the process is noisy deterministic or random, then that entropy rate diverges in general because
the number of visible ordinal patterns (permutations) can grow super-exponentially, see Eq. (12). This different growth
behavior of the ordinal patterns and, hence, of the permutation complexity makes possible to distinguish (noiseless)
deterministic processes from noisy processes but poses a challenge for a unified formulation of permutation complexity
and its measurement across the entire range of processes.

In view of this fact, the objective of this paper was to propose such a unified formulation. Our approach consisted of
two steps. First, we introduced the permutation complexity (PC) function g(t) in Section 3. The asymptotic behavior of
g(t) defines the exponential, sub-factorial and factorial PC classes, the latter being the most interesting in the application
of the ordinal methodology to real-world time series. A “finite-length” version of the PC function, g(L, T), where T is the
length of a time series and L < T is the length of the ordinal patterns, was used in the numerical simulations, Section 5.2,
to discriminate random processes via its convergence rate to In L! with satisfactory results (see Fig. 2).

Second, we borrowed the concept of Z-entropy from statistical mechanics and complexity theory to generalize
permutation entropy from the exponential PC class (the realm of conventional permutation entropy) to the sub-factorial
and factorial PC classes. For this reason, the generalized permutation entropies go by the name Zg , (Eq.(26)), where the PC
function g(t) defines the corresponding class. Z-entropies are group entropies [18,19] that are designed to be extensive on
the various complexity classes, including classes not considered here such as the sub-exponential and the super-factorial.
Precisely, the extensivity of the Z-entropy entails in our context that the rate of the generalized permutation entropy, z;a
(Eq. (46)), converges for the processes in the sub-factorial class and, foremost, in the factorial class. The discriminatory
power of Z; , was numerically tested in Section 5.1 with seven processes belonging to the factorial class, i.e., g(t) =t Int.
The results, shown in Fig. 1, were satisfactory as well. For completion we also analyzed in Section 5.3 the particularities
of a toy model for sub- factorlal processes introduced in Example 4. This model is of limited practical interest but it has
the virtue of revealing some subtleties such as the role of cyclostationarity.

In conclusion, we have presented in this paper an integrating approach to the study and characterization of real-valued
processes, whether deterministic or random, in the ordinal representation. Regarding the methodology of this approach,
the processes are sorted into the exponential, sub-factorial and factorial complexity classes. Regarding the tools, the
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permutation complexity of the processes in each class is measured by the corresponding permutation entropy, which is
the Z-entropy of that class. The result is a “class-wise” generalization of conventional permutation entropy, one per class,
whose rate also converges in the sub-factorial and factorial classes. These entropic measures of permutation complexity
have both fine theoretical properties and potential in practical applications, in addition to closing the conceptual gap
between deterministic and noisy signals in the ordinal analysis of time series.
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