
ORIGINAL RESEARCH PAPER

Design and implementation of an efficient hardware integer
motion estimator for an HEVC video encoder

Estefania Alcocer1 • Roberto Gutierrez2 • Otoniel Lopez-Granado1 •

Manuel P. Malumbres1

Received: 30 September 2015 / Accepted: 26 February 2016 / Published online: 18 March 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract High-Efficiency Video Coding (HEVC) was

developed to improve its predecessor standard, H264/AVC,

by doubling its compression efficiency. As in previous

standards, Motion Estimation (ME) is one of the encoder

critical blocks to achieve significant compression gains.

However, it demands an overwhelming complexity cost to

accurately remove video temporal redundancy, especially

when encoding very high-resolution video sequences. To

reduce the overall video encoding time, we propose the

implementation of the HEVC ME block in hardware. The

proposed architecture is based on (a) a new memory scan

order, and (b) a new adder tree structure, which supports

asymmetric partitioning modes in a fast and efficient way.

The proposed system has been designed in VHDL (VHSIC

Hardware Description Language), synthesized and imple-

mented by means of the Xilinx FPGA, Virtex-7

XC7VX550T-3FFG1158. Our design achieves encoding

frame rates up to 116 and 30 fps at 2 and 4K video formats,

respectively.

Keywords HEVC � FPGA � Integer motion estimation �
Inter-prediction � SAD architecture

1 Introduction

The High-Efficiency Video Coding (HEVC) standard is the

most recent joint video project of the ITU-T VCEG and

ISO/IEC MPEG standardization organizations, working

together in a partnership known as the Joint Collaborative

Team on Video Coding (JCT-VC) [1]. Previous video

coding standards are currently used for many applications

such as broadcast of High-Definition (HD) TV, video

content acquisition, Internet and mobile video streaming,

and real-time conversational applications. However, new

video services with UltraHigh-Definition (UHD) formats

are emerging, which need higher coding efficiency than

previous standards. HEVC has been designed to deal with

these demands, working with higher video resolutions and

adapting its design to allow the use of parallel processing

techniques. It can compress video about twice as much as

its predecessor, H264/AVC, without sacrificing quality,

providing video delivery with higher resolutions and frame

rates, higher dynamic range, and a wider color gamut.

Furthermore, HEVC contains new key features that are

friendly with the use of parallel processing techniques [2].

As in previous video standards, Motion Estimation (ME)

is one of the most critical modules in the video encoding

process since it is able to efficiently remove the temporal

redundancy between successive frames. However, the ME

module is by far the most complex task of the encoder,

requiring more than 90 % of the encoding time [3].

In HEVC, the complexity is even more critical due to

several issues such as (a) a large set of Coding Tree Unit

(CTU) partitioning modes, (b) the presence of multiple

reference frames, and (c) the varying size of Coding Units

(CU) in comparison with its predecessor H264/AVC. In

addition, HEVC adopts Variable Block Size Motion Esti-

mation (VBSME) to obtain advanced coding efficiency,

& Estefania Alcocer

ealcocer@umh.es

1 Physics and Computer Architecture department, Miguel

Hernandez University of Elche, Alicante, Spain

2 Communication Engineering department, Miguel Hernandez

University of Elche, Alicante, Spain

123

J Real-Time Image Proc (2019) 16:547–557

DOI 10.1007/s11554-016-0572-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0572-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0572-4&domain=pdf

which comes at the expense of a huge increase of com-

putational complexity.

For these reasons, several hardware architectures have

been proposed to speed up the HEVCME module, reducing

the overall encoder complexity as much as possible. The

Integer-pel Motion Estimation (IME) block is in charge of

motion estimation and it is composed of (a) an integermotion

search algorithm, and (b) a Rate/Distortion (R/D) opti-

mization procedure that optimally reduces the temporal

redundancy found at the video sequence. In most of the

works found in the literature, the proposed IME hardware

architectures are only focused on the motion search algo-

rithm since it takes most of the computational complexity of

the IME block. There are a lot of motion search algorithms

that can be used to find the motion in video sequences. The

most popular in hardware implementations is the Full Search

(FS) algorithm. It follows greedy behavior by searching for

motion at all points of the established search area of a ref-

erence frame, and, as a consequence, it is able to provide an

optimal result (i.e., a motion vector that minimizes the

residual error of the actual CTU).

The architecture proposals in [3, 4, 6, 7, 9] present an IME

hardware block using FS strategy. In [3], a Sum of Absolute

Differences (SAD) unit on a Field-Programmable Gate

Array (FPGA) is proposed that is able to test all partition

modes of a CTU except the set of asymmetric partition

modes. Authors fixed a search area size lower than the one

established by the standard, being able to run as fast as 30 fps

at 2k video resolutions. The work presented in [4] proposes a

SAD unit that computes all CTU partitions, achieving the

same frame rates as previous work at 4k video formats. In

their proposal, the search area has the same size as the

maximum CTU, being implemented on an Application-

Specific Integrated Circuit (ASIC). In [6], the maximum

CTU size is reduced to 32� 32with a search area size of�23

pixels. This architecture is implemented on an FPGA device

and achieves 30 fps at 1080p video resolutions. Different

configurable search areas are studied in [7], achieving a

maximum frame rate of 57 fps for a 720p video resolution.

Several SAD units implemented on FPGA are described in

[9], with different levels of parallelization, but no data about

search area size, memory management, or how they obtain

the minimum SAD are included.

On the other hand, [5, 8, 15] have proposed architectures

which increase the throughput by limiting the number of

searches in the reference frame. In [15], a motion estima-

tion system for the HEVC encoder is presented. This

design includes both integer-pel and fractional-pel motion

estimation, achieving video encoding speeds of

1080p@60fps and 2160p@30fps when implemented over

FPGA and ASIC technologies, respectively. The process in

[15] is interrupted when the number of motion searches

arrives at a limit fixed for a given resolution.

In addition, in [5] and [8], different implementations of

suboptimal motion search strategies called fast ME algo-

rithms, such as new Diamond Search (DS) or new Three Step

Search (TSS), are shown. Similar hardware ME architectures

have alsobeen studied for the previousH264/AVCstandard in

[10–14], which are of interest for our work due to the high

similarity of the IME block architecture in both standards.

Therefore, our purpose is to design a new hardware

architecture that may perform IME computation in a fast

and accurate way to significantly reduce the computation

cost of the overall encoder. We will use FPGA technology,

since it encourages design reuse and can greatly enhance

the upgradability of digital systems. The programmability

of FPGAs is particularly useful for highly flexible encoding

systems that can accommodate a multitude of existing

standards as well as the emergence of new ones [12].

Regarding the novelty of the proposed architecture, we

present both innovative techniques: (a) a new SAD adder

tree structure, and (b) a new memory scan order.

Firstly, we designed a new SAD adder tree structure to

perform the additions at the first level of the tree, starting from

the maximum size of the CTU, and halving the amount of

additions at the next tree levels. This approach is different from

the rest of state-of-the-art works, which divide a CTU into

smaller blocks for consecutive accumulations, keeping the

same additions in each step and thus requiring a higher number

of steps to acquire all SADs. With our proposal, we took

advantageof the resources providedby theFPGA,obtaining the

minimum possible latency when calculating SADs of all levels

and partitions for a CTU. In this way, SADs corresponding to

asymmetric partitions are obtained in a fast and efficient way.

Secondly, regarding the new memory scan order, a

series of reconfigurable shift registers and processing ele-

ments are responsible for storing the necessary pixels of

both reference and current frames, keeping them always

available for calculating the SADs and MVs of a CTU.

With our system, we avoid external memory accesses since

available data are highly reused by reconfiguring the dis-

placement in a more efficient way.

The rest of the paper is organized as follows. Section 2

describes the HEVC ME module. Section 3 presents the

architecture design of the proposed ME system while in

Sect. 4, implementation results are provided in terms of

hardware resources, time encoding, and R/D performance.

Finally, in Sect. 5 some conclusions are drawn.

2 HEVC motion estimation

The motion estimation technique is based on the similarity

between adjacent video frames, predicting the current

frame based on a previous or subsequent reference frame in

order of appearance.

548 J Real-Time Image Proc (2019) 16:547–557

123

The Motion Vector (MV) represents the translational

movement of a picture area in the current frame compared

to its position in the reference frame. This movement is

found inside a defined search area to bound the overall

motion search complexity, as shown in Fig. 1.

In the ME process, each video frame is subdivided and

partitioned into basic coding units called CTUs. The coding

structure in HEVC consists of CUs with a maximum size of

64 � 64 pixels, as large as that of CTUs, which can be

recursively divided into picture squares until achieving a

block size of 8 � 8 pixels. Each CU consists of prediction

units (Intra- or Inter-) and its size can vary from the

maximum size of the CU to 4 � 4 pixels for Intra pre-

diction, or to 4 � 8 or 8 � 4 for inter-prediction, supporting

8 partitioning modes as shown in Fig. 2. Prediction units of

sizes 2N � 2N and N � N are called square motion par-

titions (square); 2N � N and N � 2N as Symmetric Motion

Partitions (SMP); and 2N � nU, 2N � nD, nL � 2N, and

nR � 2N as Asymmetric Motion Partitions (AMP). The

total number of different partitions for a 64 � 64 CTU is

more than 600, and for each of these partitions, the HEVC

encoder performs one ME process to determine the best

CTU partitions in terms of bit rate and video quality.

There are many kinds of algorithms for block-based

IME. The most accurate strategy is the FS algorithm, which

exhaustively finds motion for all prediction unit blocks at

every single point of the established search area. Due to

computational regularity and excellent video quality, FS

motion estimation is commonly employed in hardware

implementations [16]. Therefore, we will focus our work

towards the design and hardware implementation of an FS

algorithm that is able to significantly speed up the motion

estimation process of the HEVC encoder without losing

R/D performance.

3 Hardware architecture

In this section, we present a high-performance IME hard-

ware unit in HEVC that provides the minimum SADs and

associated MVs of all possible partitions from a 64 � 64

CTU for inter-prediction, exploiting parallelism in an

efficient way. The system is composed of memory areas for

current CU and reference search area pixels, 64 Processing

Units (PU), one SAD Adder Tree Block (SATB), and one

comparison block that saves the minimum SAD values and

their corresponding MVs for all CU partitions. Figure 3a

shows the proposed hardware architecture.

As shown in Fig. 3b, one PU consists of 64 Processing

Elements (PEs), where each PE computes the difference of

both the current and the reference pixel (see Fig. 3c). So

each PU calculates the distortion values of a column of 64

pixels. At each clock cycle, current and reference pixel

columns are delivered to the 64 PUs, being able to compute

the pixel distortion values of a 64 � 64 block (maximum

CU size) just in one clock cycle, that is, all distortions

needed to obtain the SAD of a 64 � 64 CU in a particular

position of the search area are calculated in just one clock

cycle. The next block in our system, SATB, computes the

SADs for all the possible prediction units (more than 600)

by properly grouping the 64 � 64 pixel distortions obtained

before.

The process described above is performed for each of

the positions of the search area, delivering the SADs to the

comparison block, which is in charge of storing the mini-

mum SADs with their corresponding MVs for each pre-

diction unit of current CU. Table 1 lists the total number of

different SAD partitions for a 64 � 64 CU.

3.1 Memory read controller block

The memory read controller block is composed of a Block-

RAM (BRAM) memory and a set of shift registers.

(a) Current and reference frames

(b) Obtaining motion vector

Fig. 1 Motion estimation

Fig. 2 Predictions units within a CU

J Real-Time Image Proc (2019) 16:547–557 549

123

A BRAM consists on an embedded memory block within

the FPGA. Pixels belonging to the search area of the ref-

erence frame are stored in the BRAM and current CTU

pixels are saved in each PE. The reference pixels are spread

from BRAM to the set of shift registers that are responsible

for feeding PEs to calculate the distortion of the current

CTU in a particular search area position.

The search area is just centered on the location of cur-

rent CTU and the default search window spans �64 pixels

from the current CTU position, which defines a 128 � 128

search area as shown in Fig. 4, that is, the current CTU will

be matched in 128 � 128 different pixel positions, being

necessary to load on BRAM memory the pixels belonging

to a reference frame area of 191 � 191 pixels.

To provide high data reuse, a snake scan order and a

reconfigurable data path with 64 propagation registers are

adopted. The snake scan order visits all positions of the

search area following a Hamiltonian path composed by

consecutive vertical scans with alternating directions (the

first vertical scan begins from top to bottom, then moves

one pixel to the right and starts the next vertical scan in a

bottom to up direction, and so on) as illustrated in Fig. 4.

So, there are three scanning directions U (upward), D

(downward), and R (rightward).

The current 64 � 64 CTU pixels are stored in the PEs

only once (at the beginning). The reference pixels will also

be loaded to the PEs but instead of loading from BRAM

will be loaded from the shift registers, since they will help

us to perform the snake scan order and as a consequence a

huge reduction of memory load operations will be

achieved.

So, the memory controller will be the one that manages

the shift registers set by loading rows of 64 pixels from the

reference frame area (BRAM) and performing the shift

register operations to cope with the snake scan order.

In Fig. 5, a diagram with the shift register set and the

loading and shifting operations is shown. At the begin-

ning, the register set is empty, so we have to perform

several (64) load and shift operations before calculating

the first SAD. As can be seen in Fig. 5, the first 64 clock

cycles are dedicated to load the first 64-pixel rows start-

ing from the left most upper position of the search area,

following a downward (D) scan direction. In this figure,

each 64-pixel row is labeled with the (x,y) pixel locations

of the reference frame area. After loading the 64x64

reference frame block, all the pixels are sent to the PEs to

compute the SAD in just one cycle (remember that the

actual 64 � 64 CU pixels are already stored in the PEs

waiting for this operation). At this point, the first SAD is

computed. After that, we proceed in the D scan direction

to compute the SAD of the next search area position. For

this purpose, we only need to load an additional 64-pixel

row in the D scan direction. So, in one clock cycle, (a) a

right-shift operation takes place, discarding the first pixel

row stored in the shift register 63, and (b) the new pixel

row is loaded from BRAM in shift register 0. Then, the

64 � 64 pixels stored in the shift registers are sent to the

PEs to compute a new SAD.

After computing the last SAD in the downward scanning

direction, we have to change the scan direction from D to

R, following the snake pattern described before. Moving

the search area position one pixel to the right could be easy

if we simply shift to the left one pixel in all shift registers

(see Fig. 5 at the R scan direction). So, shift registers will

(a) Hardware block architecture

(b) Processing Unit (PU)

(c) Processing Element (PE)

Fig. 3 Proposed IME architecture

550 J Real-Time Image Proc (2019) 16:547–557

123

contain the 64 � 64 search area block corresponding to the

new position, and ready for the corresponding SAD

computation.

After computing this SAD, we again change the scan

direction from R to U, so we need to load a new 64-pixel

row from BRAM, but now the loading is performed in the

last shift register (63) and the register shift operation will

be set to the left, discarding the contents of the first shift

register (0).

The new SAD may now be computed, and as the scan

direction is upwards, loading and shifting operations will

be performed in the same way until a new change in scan

direction is found.

This procedure will iterate until all searching area

positions have been processed, providing one SAD at every

clock cycle to the next module in the proposed architecture,

the SATB.

3.2 SAD adder tree block

The SATB block is in charge of computing the SAD values

for all partitions of each 64 � 64 CTU at every clock cycle.

For inter-prediction, the HEVC standard proposes a parti-

tion size that ranges from 64 � 64 (maximum CU size) to 4

� 8/8 � 4 with different shapes—square, symmetric, and

asymmetric partitions. After receiving the 64 � 64 dis-

tortions associated to the current search area position, a

succession of aggregation stages are performed in this

block to compute the corresponding SAD values for all the

CTU partitions (a total number of 677), as shown in Fig. 6.

At the first stage, Fig. 6a, all pairs of consecutive dis-

tortion columns/rows of the input 64 � 64 SAD block (M =

64) are added, reducing the width/height of the resulting

partition by one-half, until the block size of these added

distortions is reduced to 16 � 16, from which the first

SADs are obtained.

At the next three intermediate stages, a similar process

to the one described above is followed. The successive

Table 1 Total number of SADs

for each partition in a 64 � 64

CU

Block size No. of SADs Block size No. of SADs

64 � 64 (2N � 2N) 1 32 � 32 (2N � nU) 8

64 � 64 (2N � N) 2 32 � 32 (2N � nD) 8

64 � 64 (N � 2N) 2 16 � 16 (2N � 2N) 16

64 � 64 (N � N) 4 16 � 16 (2N � N) 32

64 � 64 (nL � 2N) 2 16 � 16 (N � 2N) 32

64 � 64 (nR � 2N) 2 16 � 16 (N � N) 64

64 � 64 (2N � nU) 2 16 � 16 (nL � 2N) 32

64 � 64 (2N � nD) 2 16 � 16 (nR � 2N) 32

32 � 32 (2N � 2N) 4 16 � 16 (2N � nU) 32

32 � 32 (2N � N) 8 16 � 16 (2N � nD) 32

32 � 32 (N � 2N) 8 8 � 8 (2N � 2N) 64

32 � 32 (N � N) 16 8 � 8 (2N � N) 128

32 � 32 (nL � 2N) 8 8 � 8 (N �2 N) 128

32 � 32 (nR � 2N) 8 Total 677

Fig. 4 Scan order of the search area

Fig. 5 Shift registers set: loading and shifting operations

J Real-Time Image Proc (2019) 16:547–557 551

123

sums of different configurations (row–column, column–

column, row–row) are performed to get the SADs of all

partitions of a 64 � 64 CTU. For instance, in the first

intermediate stage, starting with a 16 � 16 block of

intermediate values (M = 16), all pairs of consecutive

values for columns/rows are added as shown in Fig. 6b. So,

both the 16 � 8 (M � M/2) and the 8 � 16 (M/2 � M)

intermediate blocks, each one with 128 SADs, correspond

to 2N � N and N � 2N symmetric partitions of all possible

8 � 8 CUs contained in the current 64 � 64 CTU. This

SAD aggregation process is followed until the last partition

size is reached (1 � 1), i.e., the SAD in the last stage

corresponding to the 2N � 2N partition of 64 � 64 CU (see

Fig. 6c).

A particular case is the way asymmetric partitions are

obtained from SADs corresponding to symmetric parti-

tions. The idea is to repeat the same type of aggregation as

the last one performed. If the start block has been obtained

by the sum of consecutive columns, then the resulting

consecutive columns are added again. The obtained values

are SADs corresponding to asymmetric partitioning (left,

right, up, and down) of the next size of CUs. For instance,

in the last intermediate stage (M = 4, N = 16), after a sum of

consecutive columns, we start with a 4 � 2 block of 8

SADs values corresponding to the 2N � N symmetric

partition of the 4 32 � 32 CUs contained in the current 64

� 64 CTU. Then, all pairs of consecutive columns are

added again as shown in Fig. 6b. Thus, a 4 � 1 block of

SAD values are obtained corresponding to 2N � nU and

2N � nD asymmetric partitions of the current 64 � 64

CTU.

Thus, in the proposed architecture, the SATB module

delivers 677 SADs of the current CTU block every single

clock cycle to the next module, the comparison block.

3.3 Comparison block

The comparison block should keep the minimum SAD

values for each CU partition with their corresponding

motion vectors (search area positions). So, it will compare

all incoming SADs from the SATB with the minimum

SADs previously found. In a clock cycle, the comparison

block receives 677 SADs corresponding to all partitions of

all CUs contained in the current CTU, which is located in a

particular position of the search area. So, in the next cycle,

this module again receives 677 SADs corresponding to the

next position of the search area. Therefore, this block

compares SADs partition by partition, keeping the mini-

mum SADs and the positions of the search area corre-

sponding to those minimums. After comparing the SADs

from the last search area location, the minimum SADs for

each partition and the associated motion vectors are

obtained.

4 Implementation results

The proposed architecture is designed as a pipeline process

shown in Fig. 7. The memory reading process and shift

registers propagation require only one clock cycle. The

PUs use one cycle, the SATB requires twelve additional

clock cycles, and the comparison block needs one addi-

tional clock cycle. So, the proposed architecture requires

63 clock cycles to perform the initial load of the shift

registers, 15 clock cycles to load the pipeline, and then as

many clock cycles as positions the search area has.

Our proposal has been modeled in VHDL, and it has

been synthesized, simulated, and implemented on the Xil-

inx FPGA, Virtex-7 XC7VX550T-3FFG1158. The cor-

rectness of our design was tested and verified with the

HEVC HM 14 reference model [17].

To evaluate the performance and efficiency of our

design, we have parametrized our IME architecture to

(a) First stage: M=64

(b) Three intermediate stages: M=16 and N=4; M=8 and
N=8; M=4 and N=16

(c) Last stage: M=2 and N=32

Fig. 6 Structure of the SAD adder tree block

552 J Real-Time Image Proc (2019) 16:547–557

123

allow different configurations, such as (a) the maximum

CTU size with values of 64 � 64 and 32 � 32, and (b) the

size of the search area of the reference frame with values

defined as the double size of the CTU, 80 % of the double

size of the CTU, and the same size as a CTU.

Firstly, we proceed to test our proposal with the Virtex 7

FPGA technology. In Table 2, we show (a) the resulting

operating frequency (clock), (b) the number of clock cycles

for each CTU (latency), and (c) the system throughput in

terms of the maximum frame rate under different video

formats (1080p, 2K, and 4K), for different configurations

of CTU and search area sizes. Our design can operate at the

frequency of 247 and 318 MHz for a 64 � 64 CTU and a

32 � 32 CTU, respectively. It enables the encoder to carry

out the IME process with a 64 � 64 CTU size and a search

area of 128 � 128 pixels (as the HM14 reference model

[17] establishes), obtaining a throughput of 30 fps at 2K

video formats (2K@30fps). Our proposal is able to process

video in real time for both 1080p and 2K resolutions in all

tested configurations, and also with 4K video formats if the

search area size is the same as the CTU size, as can be seen

in Table 2.

In Tables 3 and 4, we show the resources used to

implement our proposal for maximum CTU sizes of 64 �
64 and 32 � 32, respectively, on a Virtex-7 FPGA. In both

tables, we show the resource usage of each block of the

proposed architecture, as a resource usage profile. As can

be seen, the slice area required by flip-flops and LUTs

increases (�94) linearly with the increase of the maximum

CTU size, as expected. In terms of flip-flops, the SATB is

the block that uses the most amount of them (around 40 %

of the total) in both configurations. This is due to the 12-

stage pipeline design of the SATB. Moreover, calculating

the distortion among pixels needs 50 % of the LUTs, due to

the amount of subtractions in absolute value required in

this process, being 1024 operations performed at each

clock cycle. Regarding the required memory for storing the

search area reference pixels, 36 and 9 kB memories are

used in the case of a 64 � 64 CTU and a 32 � 32 CTU,

respectively. On a Virtex-7, a BRAM block has a capacity

of 36 kb. So, the slice area demanded by the used BRAMs

also increases (�94) when going from 32 � 32 to the 64 �
64 maximum CU size.

An interesting analysis of our design can be observed at

Table 2 when comparing the results of the 64 � 64 search

area size with both CTU sizes. As can be seen, the latency

is nearly the same but the throughput of the 64 � 64 CTU

size is more than triple than the one obtained with the 32 �
32 CTU size. In terms of resource usage, the 64 � 64 CTU

size requires near four times more resources, as shown in

Tables 3 and 4. This implies that the use of more resources

in the design provides higher throughput in a 4:3

relationship.

4.1 Systems evaluation

In Table 5, we compare our proposal with previous state-

of-art architectures implemented on different FPGA plat-

forms for both the 64 � 64 CTU and the 32 � 32 CTU size,

and different search area sizes. We have chosen those

works whose architectures are comparable to our proposal

(i.e., perform the same functionality) and were imple-

mented under FPGA technology. To make the comparison

as fair as possible, we have obtained the performance

results of our proposal with the same technologies, CTU

sizes, and search area sizes as the ones used by the selected

candidates. We will consider the system throughput as the

main performance result of every proposal under

comparison.

Regarding results for the 64 � 64 CTU size, Medhat

et al. [3] present a parallel SAD block for the HEVC

Fig. 7 Pipeline process of the proposed architecture

Table 2 Throughput for

different configurations in

Virtex-7

CTU size 64 � 64 64 � 64 64 � 64 32 � 32 32 � 32 32 � 32

Search area 128 � 128 104 � 104 64 � 64 64 � 64 52 � 52 32 � 32

Clock (MHz) 247 247 247 318 318 318

Latency 16,462 10,894 4174 4142 2750 1070

Fps at 1080p 32 48 124 39 59 151

Fps at 2K 30 45 116 37 55 141

Fps at 4K 8 12 30 10 15 37

J Real-Time Image Proc (2019) 16:547–557 553

123

integer-pel full search architecture without supporting

AMP modes with a search area of 104 � 104 pixels. They

used the Virtex-7 technology, and their design can operate

at the frequency of 458.7 MHz. The operating frequency of

our proposal with the same technology and configurations

is almost two times lower. However, our architecture is

capable of processing 45 fps at 2K video formats instead of

30 fps as obtained by the proposed design in [3]. Therefore,

our proposed architecture is 1.5� as fast as the one pro-

posed in [3] using the same search area size and consid-

ering all the AMP partition modes, contrary to [3], where

AMP partitions are not calculated. This is due to the fact

that our design takes advantage of the minimal latency to

perform the same operations as we have an efficient

pipeline design. Therefore, our system achieves higher

throughput, reaching real-time processing for 2K video

resolutions at 45 fps, and being on the way to accom-

plishing the same goal for 4K video formats, where 12 fps

were obtained.

On the other hand, D’huys [7] proposes a reconfigurable

design for HEVC motion estimation which can operate at

the frequency of 150 MHz. His architecture is compared

with our proposal, setting a common search area size to 64

� 64 pixels and the Virtex-5 technology. The operation

frequency of our proposal is 159 MHz, achieving system

throughput of 20 fps at 4K and 75 fps at 2K video formats.

Our design significantly improves the performance of the

architecture presented in [7], which is able to process a

lower resolution video (720p) at 57 fps. If the video reso-

lution is set to 720p, our architecture is capable of pro-

cessing 173 fps. So, our architecture presents good balance

between the maximum frequency and pipeline processing

design, taking advantage of the low latency by leveraging

all available resources.

Regarding results for the 32 � 32 CTU size, in Table 5,

we show the comparison results between our proposal

(implemented on a Virtex-6 FPGA) and the integer motion

estimation design found in [6], both with a search area size

of 48 � 48 pixels. The most significant feature, worthy of

attention, is that our proposal can provide a higher opera-

tion frequency, achieving throughput of 43 fps at 1080p

and 40 fps at 2K resolution, whereas the architecture pre-

sented in [6] is able to achieve 30 fps at 1080p video

formats, using a similar amount of FPGA resources.

Considering the presented results, our architecture

shows an efficient implementation of available resources in

Table 3 Utilization resources

for 64 � 64 CTU

implementation in Virtex-7

Resources Flip-flops LUTs Memory (kB)

Memory read controller block 36,657 (25.40 %) 36,413 (19.30 %) 36 (100 %)

PUs (distortion computation) 32,768 (22.71 %) 94,208 (49.93 %) –

SAD adder tree block (SATB) 58,727 (40.70 %) 47,063 (24.95 %) –

Comparison block 16,150 (11.19 %) 10,980 (5.82 %) –

Total 144,302 188,664 36

Table 4 Utilization resources

for 32 � 32 CTU

implementation in Virtex-7

Resources Flip-flops LUTs Memory (kB)

Memory read controller block 10,155 (27.55 %) 9812 (20.22 %) 9 (100 %)

PUs (distortion computation) 8192 (22.22 %) 24,541 (50.57 %) –

SAD adder tree block (SATB) 14,580 (39.55 %) 11,445 (23.58 %) –

Comparison block 3937 (10.68 %) 2733 (5.63 %) –

Total 36,864 48,531 9

Table 5 Comparison of the

proposed architecture with

state-of-the-art works

Design Medhat [3] Proposal 1 D’huys [7] Proposal 2 Yuan [6] Proposal 3

CTU size 64 � 64 64 � 64 64 � 64 64 � 64 32 � 32 32 � 32

Search area 104 � 104 104 � 104 64 � 64 64 � 64 48 � 48 48 � 48

Technology Virtex-7 Virtex-7 Virtex-5 Virtex-5 Virtex-6 Virtex-6

Clock (MHz) 458.7 247 150 159 110 200

AMP No Yes No Yes Yes Yes

Throughput 2K@30fps 2K@45fps 720p@57fps 720p@173fps 1080p@30fps 1080p@43fps

Flip-Flops 39,901 144,302 199,682 178,620 19,744 43,531

LUTs 24,957 188,664 210,158 184,288 55,346 45,752

Memory (kB) 44 36 1229 36 148 9

554 J Real-Time Image Proc (2019) 16:547–557

123

FPGA, overcoming the performance of previous state-of-

the-art architectures.

4.2 HEVC R/D performance and time profiling

To better understand the capabilities of IME hardware

devices, we have performed a set of tests to analyze the

benefits of including an IME FPGA-based accelerator, like

the one proposed here, in the HEVC reference software in

terms of speedup and observe how both parameters, the

CTU size, and the search area size impact on the R/D

performance of the HEVC encoder. To perform these tests,

we have used the HEVC HM 14 reference model [17]

working with the main profile and low-delay configuration

mode. The HEVC reference software was compiled with

Visual Studio 2010 with the default compiler options and

run over a PC platform with an Intel Core i7-3770 CPU

3.40 GHz with 16 GB RAM. Three video sequences from

the HEVC common conditions video set were selected:

(s1) Racehorses at 832 � 480 resolution (30 fps), (s2)

Basketball Drive at 1920 � 1080 (50 fps), and (s3) People

On Street at 2560 � 1600 (30 fps).

The experiments were performed using different search

area sizes (128 � 128, 104 � 104, 64 � 64, 52 � 52, and

32 � 32) and CTU sizes (64 � 64 and 32 � 32).

Tables 6 and 7 show all data gathered for CTU sizes of

64 � 64 and 32 � 32, respectively. The first row shows

the total time (in seconds) required to encode each video

sequence (10 frames). The second row shows the per-

centage of the total time needed by the IME software

module using a full search algorithm (% IME time SW).

These percentages vary from 62 to 96 % depending on

the video sequence, the search area size, and the CTU

size. As was expected, the time required by the IME

software module decreases as both the search area size

and the CTU size do. Rows three and four show the

number of CTUs per second that can be computed by

software (CTU/s SW) and hardware (CTU/s HW) ver-

sions of the IME module. As can be seen, these values

also depend on the search area size and maximum CTU

size, and in the case of the IME software module, also

depend on the video sequence.

So by looking at the information provided in Tables 6

and 7, we could assess that the IME module is a bottleneck

in the HEVC reference software. Therefore, if the IME

software module is replaced by our FPGA-based device,

the overall encoding time will be significantly reduced. For

example, for a high-resolution video sequence like Peo-

pleOnStreet (s3) and setting the CTU size to 64 � 64 and

the search area size to 128 � 128 (default values in the

HEVC reference software), the total encoding time (10

frames) will be reduced from 38 h to 2 s, since the motion

estimation module takes around 95 % of the overall

encoding time.

To reduce the hardware complexity, allowing faster

versions with reduced power consumption, the CTU size

and the search area must be reduced as much as possible.

However, this may cause performance degradation in the

encoding process, decreasing the overall video quality and/

or reducing the compression rate. To evaluate this aspect,

we will analyze the impact of these parameters on the R/D

(rate/distortion) performance. In Fig. 8, we show the video

quality of the test video sequence RaceHorses (s1) for each

CTU and search area sizes at different compression levels

(QP values). As can be seen, there are slight differences

between the CTU size, being greater the difference as the

compression rate increases. Differences between search

areas are negligible. Although R/D differences may depend

on the video content, similar results were obtained for the

other two video sequences tested.

Finally, we also have performed a profile of the IME

HEVC with another motion search algorithm, which is

available in the HEVC reference software (diamond-like

search). This algorithm is used by default in the reference

software and it is about 90 times as fast as the full search

algorithm, with the disadvantage that it does not guarantee

finding optimal MVs, and as consequence video quality

could be affected. As can be seen in Table 8, the inclusion

of our IME hardware module will speed up the IME

computation of diamond-like search algorithm 230 and 700

times for 32 � 32 and 64 � 64 CTU sizes, respectively.

After performing the whole analysis, a trade-off should

be taken to determine which configuration better adapts to

the application requirements (low power consumption,

Table 6 Time profile of the IME HEVC for a 64 � 64 CTU

Search area 128 � 128 104 � 104 64 � 64

Video sequences s1 s2 s3 s1 s2 s3 s1 s2 s3

Encoding time SW (s) 13,670 61,602 135,970 9392 42,050 92,863 4117 17,881 39,933

% IME time SW 95 96 95 90 94 93 83 86 85

CTU/s SW 0.24 0.26 0.23 0.38 0.39 0.35 0.91 1.00 0.89

CTU/s HW 14,993 14,993 14,993 22,625 22,625 22,625 59,172 59,172 59,172

HW gain 62,260 57,767 64,800 59,621 58,312 65,384 64,856 59,115 66,477

J Real-Time Image Proc (2019) 16:547–557 555

123

encoding time, compressed video quality). The use of

hardware accelerators designed in FPGA platforms like the

one proposed here are mandatory when real-time UHD

video encoding is the objective.

5 Conclusion

In this work, we have presented a fast and efficient IME

hardware unit for the HEVC video encoder which (a) sup-

ports AMP modes, (b) both CTU and search area sizes are

configurable, and (c) is implemented on a Virtex-7 FPGA.

The suitability of using FPGAs for implementing the

HEVC IME module has been demonstrated in this paper,

proposing a design that improves the previous results of

other IME hardware systems.

Our FPGA-based design is able to process 2K video

formats at 116 frames per second and 4K video sequences

at 30 fps, which represents a huge complexity reduction of

the HEVC video encoding process, achieving real-time

encoding for high-definition video contents and beyond.

We have also analyzed the impact of the maximum CTU

and the search area sizes over the encoder complexity and

the resulting video quality, showing that the encoder

complexity decreases as both the maximum CTU size and

the search area do. Furthermore, the maximum CTU size

has a minimum impact over the R/D, being more notice-

able at high compression rates. In the test video sequences

analyzed, the impact over the quality of the search are size

is negligible, but it will depend on the video content.

In future work, we are working to include our IME

hardware module in the HEVC reference software and

perform a complete test over an evaluation platform such

as ZYNQ of Xilinx. In addition, we intend to expand the

hardware module to perform the fractional-pel motion

estimation, or even the SAD unit for intra-mode coding.

Acknowledgments This research was supported by the Spanish

Ministry of Economy and Competitiveness under Grant TIN2015-

66972-C5-4-R.

References

1. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of

the high efficiency video coding (HEVC) standard. IEEE Trans.

Circuits Syst. Video Technol. 22, 1649–1668 (2012)

2. Sze, V., Budagavi, M., Sullivan, G.J.: High Efficiency Video

Coding (HEVC) Algorithms and Architectures. Springer,

Switzerland (2014)

3. Medhat, A., Shalaby, A., Sayed, M.S., Elsabrouty, M.: A Highly

Parallel SAD Architecture for Motion Estimation in HEVC

Encoder. In: IEEE Asia Pacific Conf. Circuits Syst. (APCCAS),

pp. 280–283. Ishigaki (2014)

4. Byun, J., Jung, Y., Kim, J.: Design of integer motion estimator of

HEVC for asymmetric motion-partitioning mode and 4K-UHD.

Electron. Lett. 49(18), 1142–1143 (2013)

5. Vidyalekshmi V.G., Yagain D., Ganesh Rao K.: Motion estima-

tion block for HEVC encoder on FPGA. In: IEEE Int. Conf.

Table 7 Time profile of the IME HEVC for a 32 � 32 CTU

Search area 64 � 64 52 � 52 32 � 32

Video sequences s1 s2 s3 s1 s2 s3 s1 s2 s3

Encoding time SW (s) 3652 15,892 35,295 2634 11,303 25,293 1378 5748 12,911

% IME time SW 85 87 86 79 81 81 60 63 62

CTU/s SW 4 5 4 6 7 6 14 17 15

CTU/s HW 76,923 76,923 76,923 115,607 115,607 115,607 297,619 297,619 297,619

HW gain 20,383 17,293 19,457 20,654 17,384 19,675 21,096 17,664 19,912

Fig. 8 R/D performance for different CTU and search area sizes for

the RaceHorses sequence

Table 8 Average CTU IME time with 2 � CTU search area size

CTU size Full search SW Diamond search SW Full search HW

64 � 64 4.11 s 4.65E�02 s 6.67E�05 s

32 � 32 2.48E�01 s 3.05E�403 s 1.30E�05 s

556 J Real-Time Image Proc (2019) 16:547–557

123

Recent Advances and Innovations in Engineering (ICRAIE),

pp. 1–5. Jaipur, (2014)

6. Yuan, X., Jinsong, L., Liwei, G., Zhi, Z., Teng, R.K.F.: A high per-

formance VLSI architecture for integer motion estimation in HEVC.

In: IEEE 10th Int. Conf. ASIC (ASICON), pp. 1–4. Shenzhen (2013)

7. D’huys, T.: Reconfigurable data flow engine for HEVC motion

estimation. In: IEEE Int. Conf. Image Processing (ICIP),

pp. 1223–1227. Paris (2014)

8. Davis, P., Sangeetha, M.: Implementation of motion estimation

algorithm for H.265/HEVC. Int. J. Adv. Res. Elect. Electron.

Instrum. Eng. 3(3), 122–126 (2014)

9. Nalluri, P., Alves, L.N., Navarro, A.: High speed SAD architec-

tures for variable block size motion estimation in HEVC video

coding. In: IEEE Int. Conf. Image Processing (ICIP),

pp. 1233–1237. Paris (2014)

10. Chen, C.Y., Chien, S.Y., Huang, Y.W., Chen, T.C., Wang, T.C.,

Chen, L.G.: Analysis and architecture design of variable block-

size motion estimation for H.264/AVC. IEEE Trans. Circuits Syst

I: Reg. Papers 53(3), 578–893 (2006)

11. Elhamzi, W., Dubois, J., Miteran, J.: An efficient low-cost FPGA

implementation of a configurable motion estimation for H.264

video coding. Springer J. Real-Time Process. 9(1), 19–30 (2014)

12. Moorthy, T., Ye, A.: A scalable architecture for variable block

size motion estimation on field-programmable gate arrays. In:

IEEE Canadian Conf. Electrical and Computer Engineering

(CCECE), pp. 1303–1308. Niagara Falls (2008)

13. Kthiri, M., Kadionik, P., Levi, H., Loukil, H., Atitallah,,B.,

Masmoudi, N.: An FPGA implementation of motion estimation

algorithm for H.264/AVC. In: IEEE 5th Int. Symp. I/V Com-

munications and Mobile Network (ISVC), pp. 1–4. Rabat (2010)

14. Pastuszak, G., Jakubowski, M.: Adaptive computationally scal-

able motion estimation for the hardware H.264/AVC encoder.

IEEE Trans. Circuits Syst. Video Technol. 23(5), 802–812 (2013)
15. Pastuszak, G., Trochimiuk, M.: Algorithm and architecture

design of the motion estimation for the H.265/HEVC 4K-UHD

encoder. J. Real Time Image Process (2015)

16. Lin, Y.L.S., Kao, C.Y., Kuo, H.C., Hen, J.W.: VLSI Design for

Video Coding-H.264/AVC Encoding from Standard Specification

to Chip. Springer, New York (2010)

17. HEVC software repository HM–14.0 reference model. https://

hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-14.0. Acces-

sed 2 May 2014 (2014)

Estefania Alcocer was born in Bigastro, Spain, in 1986. She received

her M.S. degree in telecommunication engineering in 2010 from the

Miguel Hernandez University, Elche, Spain, and she joined the

GATCOM research group as Ph.D. student in 2012. Currently, she is

an assistant professor in the Department of Physics and Computer

Architecture at Miguel Hernandez University, Elche since 2012. Her

current research activities are related to image processing, the design

of FPGA-based systems and video coding.

Roberto Gutierrez was born in Orihuela, Spain, in 1977. He received
his M.Sc. degree in telecommunication engineering in 2003, and the

Ph.D. degree in electronic engineering in 2011, both from the

Universidad Politecnica de Valencia, Spain. He is an associate

professor in the Department of Communication engineering at

Universidad Miguel Hernandez, Elche since 2003. His current

research interests include the design of FPGA-based systems,

computer arithmetic, VLSI signal processing and digital

communications.

Otoniel Lopez-Granado received his M.S. in Computer Science

from the University of Alicante (Spain) in 1996. Between 1997 and

2003 he worked as programmer analyst in an important industrial

informatics firm. In 2003, he joined to the Computer Engineering

Department at Miguel Hernandez University (UMH), Spain, as an

assistant professor. Then, he received the Ph.D. degree in Computer

Science in 2010. In 2012, he was promoted to associate professor.

Currently, he leads the GATCOM research group (atc.umh.es) at

Miguel Hernandez University. His research and teaching activities are

related to multimedia networking (audio/video coding and network

delivery).

Manuel P. Malumbres received his B.Sc. in Computer Science from

the University of Oviedo (Spain) in 1986. In 1989, he joined to the

Computer Engineering Department (DISCA) at Technical University

of Valencia (UPV), Spain, as an assistant professor. Then, he received

M.S. and Ph.D. degrees in Computer Science from UPV, in 1991 and

1996, respectively. He is a TC member of IEEE Multimedia

Communications Group and associate editor of the Signal, Image

and Video Processing journal. He was serving as TPC member of

several relevant international Conferences related with his main

research interests. He is author of more than 160 conference and

journal publications and several networking books for undergraduate

CS courses. Currently, his research and teaching activities are related

to multimedia networking (image/video coding and network delivery)

and wireless network technologies (MANETs, VANETs and WSNs).

J Real-Time Image Proc (2019) 16:547–557 557

123

https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-14.0
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-14.0

	Design and implementation of an efficient hardware integer motion estimator for an HEVC video encoder
	Abstract
	Introduction
	HEVC motion estimation
	Hardware architecture
	Memory read controller block
	SAD adder tree block
	Comparison block

	Implementation results
	Systems evaluation
	HEVC R/D performance and time profiling

	Conclusion
	Acknowledgments
	References

