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1 Department of physiology, Miguel Hernandez University, San Joan d´Alacant, Alicante, Spain
2 Institute of Neurosciences, Spanish National Research Council- Miguel Hernandez University, San Joan d´Alacant, Alicante, Spain
∗ Author to whom any correspondence should be addressed.

E-mail: charly.joa@umh.es

Keywords: attention-deficit/hyperactivity disorder, functional near-infrared spectroscopy, machine learning, classification,
mental arithmetic, logistic regression, linear discriminant analysis

Abstract
Objective. Computer-aided diagnosis of attention-deficit/hyperactivity disorder (ADHD) aims to
provide useful adjunctive indicators to support more accurate and cost-effective clinical decisions.
Deep- and machine-learning (ML) techniques are increasingly used to identify
neuroimaging-based features for objective assessment of ADHD. Despite promising results in
diagnostic prediction, substantial barriers still hamper the translation of the research into daily
clinic. Few studies have focused on functional near-infrared spectroscopy (fNIRS) data to
discriminate ADHD condition at the individual level. This work aims to develop an fNIRS-based
methodological approach for effective identification of ADHD boys via technically feasible and
explainable methods. Approach. fNIRS signals recorded from superficial and deep tissue layers of
the forehead were collected from 15 clinically referred ADHD boys (average age 11.9 years) and 15
non-ADHD controls during the execution of a rhythmic mental arithmetic task. Synchronization
measures in the time-frequency plane were computed to find frequency-specific oscillatory
patterns maximally representative of the ADHD or control group. Time series distance-based
features were fed into four popular ML linear models (support vector machine, logistic regression
(LR), discriminant analysis and naïve Bayes) for binary classification. A ‘sequential forward
floating selection’ wrapper algorithm was adapted to pick out the most discriminative features.
Classifiers performance was evaluated through five-fold and leave-one-out cross-validation (CV)
and statistical significance by non-parametric resampling procedures.Main results. LR and linear
discriminant analysis achieved accuracy, sensitivity and specificity scores of near 100% (p< .001)
for both CV schemes when trained with only three key wrapper-selected features, arising from
surface and deep oscillatory components of very low frequency. Significance.We provide
preliminary evidence that very-low frequency fNIRS fluctuations induced/modulated by a
rhythmic mental task accurately differentiate ADHD boys from non-ADHD controls,
outperforming other similar studies. The proposed approach holds promise for finding functional
biomarkers reliable and interpretable enough to inform clinical practice.

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD)
is recognized as a highly prevalent neurodevelop-
mental disorder in school-age children worldwide,
often persisting into adolescence and adulthood,
and frequently overlapped with other psychiatric
comorbidities [1–3]. PeoplewithADHDexhibit three

core behavioral symptoms, inattention, hyperactivity
and impulsivity, although each displayed to a varying
degree [4]. ADHD is a highly heterogeneous impair-
ing condition, extensively researched overmany years,
that is probably the best known childhood-onset
disorder [5]. Based on the last 10–20 years of sci-
entific evidence, updated information on ADHD was
recently summarized by the ‘World Federation of
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ADHD’ as an international consensus statement [6]
and reviewed by Posner et al in [7], covering epi-
demiology, etiology, pathophysiology, diagnosis and
treatment. It is currently accepted that ADHD is a
complex, heterogeneous disorder, in which different
expressions of impairment along with variable tra-
jectoriesmust be recognized in order to adopt person-
alized approaches that best target an individual. This
is of crucial importance because, even despite serious
distress/impairments, many patients lead rewarding
and productive lives when properly managed.

Diagnosis of ADHD is event today based mainly
on clinical signs and symptoms that require a detailed
evaluation by an expert clinician through interviews
with parents/caregivers and/or the patient himself,
if applicable [8]. Noteworthy, diagnosis cannot be
solely based on rating scales, neuropsychological test
or brain imaging. Despite the criticisms that argue a
risk of subjectivity, the current consensus supports
the validity of the diagnostic criteria applied by well-
trained professionals [6]. However, even for a special-
ist, clinical evaluation is quite time-consuming and
requires several visits to be thoroughly performed
[9]. Besides, the significant shortage of trained pro-
fessionals also contributes to a frequent delay in dia-
gnosis or even to overlook some cases. From a devel-
opmental perspective, an early diagnosis is very likely
to be of value for more effective pharmacological and
psychosocial interventions [10]. In this view, there is
a need for objective biomarkers as useful adjunctive
indicators to alleviate the workload of diagnoses and
treatment follow-up.

Numerous studies have tried to assess ADHD
through different objective diagnostic tools, most
using functional (fMRI) or structural magnetic res-
onance imaging (MRI) and electroencephalography
(EEG), with other modalities (magnetoencephal-
ography (MEG), electrocardiography (EKG), etc)
being deployed less frequently, and with an increas-
ing use of artificial intelligence (AI) techniques (for
reviews, see [11, 12]). Noticeable efforts in MRI and
fMRI were made under the initiatives of the ‘ADHD-
200Consortium’ [13]. Despite significant advances in
understanding abnormalities related to brain matur-
ation and function, neuroimaging findings in ADHD
research cannot yet be used to support clinical prac-
tice due to a variety of concerns [7, 11]. Likewise,
though promising, studies devoted to single-subject
prediction of ADHD via deep- and machine-learning
(ML) methods have reported quite variable results
[12, 14], raising certain methodological concerns
[15]. In actual practice, even if useful neuroimaging
indicators were available to support clinical decisions,
the availability of these diagnostic tools and their
associated costs would represent a major barrier to
their regular use, further increasing the burden on
healthcare resources.

An alternative tool to assess ADHD worth to
explore is functional near-infrared spectroscopy

(fNIRS), which is characterized by being noninvas-
ive, wearable, cost-effective, and deployable in more
friendly/ecological settings (for a review, see [16]).
fNIRS has shown its usefulness in monitoring func-
tional hemodynamic changes associated with cortical
brain activation (for a review, see [17]). Compared
to other neuroimaging modalities, few fNIRS studies
have been conducted to discriminate children with
ADHD from non-ADHD controls, some of them try-
ing to improve classification by combining different
modalities (e.g. EEG + fNIRS) as in [18]. Even fewer
studies focused on single unimodal approaches by
using ‘exclusively’ fNIRS data. For example, Monden
et al reported a classification accuracy of 85% with
a sensitivity of 90% by analyzing Receiver Operat-
ing Characteristic (ROC curves obtained from right
prefrontal oxy-Hb activation data during a go/no-
go task [19]. Using prefrontal cortex (PFC) activation
measures during anN-back task, Crippa et al achieved
mean accuracies of 78%with 72% sensitivity and 82%
specificity when a support vector machine (SVM)
classifier was trained on data from deoxy-Hb [20].
Also employing an N-back task and an SVM, Gu et al
reached 86% of accuracy with oxy-Hb data measured
in the prefrontal and temporal cortex [21]. It is worth
noting that no correction for components of non-
cerebral origin was applied to the fNIRS signals in the
aforementioned studies, which is especially import-
ant when scanning the PFC through the forehead [22,
23], since functional extra- and cerebral responses are
interrelated processes that overlap in fNIRS record-
ings andwith a greater confounding effect for oxy-Hb
[24–26]. Notwithstanding this known drawback of
fNIRS, classification algorithms can achieve appre-
ciable performance by learning some type of feature
representation from the uncorrected NIRS data, but
uncertainty about the nature and origin of the fea-
tures hampers the interpretability of predictive mod-
els. We also note that, in these studies, the features
were based on some kind of measurement from the
averaged fNIRS data across trials/epochs, a classic
approach that, while often providing robust results,
fails to uncover finer distinctive patterns embedded
in the data.

In a previous study involving non-ADHD young
adults, our research team showed that a rhythmic
mental arithmetic task successfully induced cyclical
hemodynamic fluctuations coupled to the task fre-
quency (33 mHz), and that the oscillatory patterns
were consistent across individuals both in superficial
and deep fNIRS signals recorded in the frontopolar
region [27]. Spectral analysis also showed oscillatory
activity at lower frequencies (<33 mHz) seen at rest
and during mental task, and with a prominent peak
around 5–10 mHz. Resting-state fMRI studies have
reported that ADHD patients show significant differ-
ences in the low-frequency oscillations (10–80 mHz)
band across multiple brain regions [28–30], with sep-
arable contribution of specific frequency sub-bands
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including extra-low frequencies (0–10 mHz) [31].
These differences have been related to abnormalit-
ies in the salience, attentional and default-mode net-
works (DMNs) functioning, but the inconsistences
observed across many studies point to a large hetero-
geneity in spontaneous brain activity in ADHD [32].
Despite this, evidence suggests that some character-
istics of ADHD brain activity are sensitive to specific
frequency bands.

We hypothesized that a rhythmic mental task
might induce/modulate fNIRS-measurable oscillat-
ory activity in particular sub-bands within the
0–80 mHz range, which might be distinctive enough
to discriminate ADHD at the individual level. Thus,
in the present study, we explored frequency-specific
hemodynamic patterns during a cyclicalmental arith-
metic task administered to a homogeneous sample
of 10- to 13-year-old boys with ADHD and non-
ADHD controls. A data-driven approach, based on
synchronization measures, guided us in selecting the
relevant frequencies to extract discriminative fea-
tures and assess the performance of four commonly
used supervised ML methods. Analysis were per-
formed on superficial and regression-corrected deep
fNIRS signals recorded from the forehead through
a recently introduced multi-distance, multi-channel
device [27]. The present work aims to contrib-
ute to the objective assessment of ADHD through
computer-aided affordable tools deployable in many
clinical settings.

2. Method

In this study, we focused solely on fNIRS recordings
to find distinctive hemodynamic information by fol-
lowing a data analysis pipeline consisting of: (i) sig-
nal preprocessing; (ii) delimitation of the frequency
range of interest by spectral power analysis; (iii) iden-
tification of relevant sub-bands by time-frequency
synchronization analysis; (iv) definition of group-
representative oscillatory patterns; (v) computation
of features by distance measures; (vi) selection of dis-
criminative features and (vii) classification of indi-
viduals using ML linear models.

2.1. Participants
Sixteen clinically referred boys meeting the American
Psychiatric Association’s DSM-V criteria for the com-
bined ADHD presentation (i.e. inattention + hyper-
activity/impulsivity) and 17 age-matched typically
developing (TD) control boys were initially recruited.
All participants were Caucasian, native Spanish
speakers, right-handed, had normal or corrected-
to-normal vision and none had other major med-
ical/psychiatric diagnoses. The study was approved
by the Ethics Committee of the University Miguel
Hernandez according to the Declaration of Helsinki.
Written consent was obtained from the parents/-
guardians of all participants prior to enrollment, none

of whom received any financial compensation. Boys
diagnosed with ADHD were recruited from a local
ADHD support association, while school psycholo-
gists referred the control group as TD boys with no
history ofmental disorder ormedication use. Since all
ADHD participants were on methylphenidate treat-
ment, they were assessed during the ‘drug holiday’
period prescribed by the referring clinician, with a
minimum four day washout in all cases. One boy
from the ADHD group and two from the TD con-
trol group were excluded due to NIRS signal quality
issues. Therefore, the study ultimately included 15
participants with ADHD (mean age 11.9, SD 1.4,
range 10–13 years) and 15 TD controls (mean age
11.6, SD 1.1, range 10–13 years).

2.2. Experimental protocol
In a quiet room, participants sat in a comfortable
chair and were asked to relax and keep their eyes on a
computer screen 80 cm away. Visual cues and instruc-
tions were presented on the screen throughout the
experiment. They underwent a slightly modified ver-
sion of a rhythmic mental arithmetic task described
in a previous work [27]. Briefly, the task comprised
10 consecutive 30 s trials, each starting with 15 s of
mental calculation followed by a 15 s pause of relax-
ation. During mental math, participants were asked
to iteratively add a small number (5–9) to a three-
digit number (100–199) (both numbers randomly
chosen), silently and as quickly and accurately as pos-
sible. The pause then begins by presenting the ques-
tion ‘Result?’ for 5 s, prompting for the voicing of
the final result reached, followed by a black screen
indicating mental relaxation until a 2 s fixation cross
announced the start of the next trial. The task las-
ted 300 s and was uninterruptedly preceded by 300 s
of baseline recording in resting state and followed by
another 300 s of recovery in relaxed state (figure 1). To
check whether participants engaged with the task well
enough, we assessed behavioral performance using
two simple scores, total iterations and total exact res-
ults achieved throughout the entire task. Note that the
30 s period of the trials corresponds to a frequency
of 0.033 Hz, which we will refer to as the task fre-
quency throughout the text. We also note that this
design minimizes speech during the task, thus avoid-
ing significant changes in breathing that could affect
cerebral hemodynamics [33].

2.3. fNIRS recordings and preprocessing
In this work, we used a newly developed NIRS
device (Tehia,Newmanbrain, S.L., Elche, Spain), light
and easy to use, which was recently introduced in
[27]. In short, it is a multichannel continuous-wave
NIRS device that has four emitters and ten detectors
arranged in a rectangular patch of 80× 20 mm, each
emitter housing two LEDs at wavelengths 740 nm and
850 nm. Through its duty cycle, the device combines
pairs of optodes at different separation distances to
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Figure 1. Schematic representation of the experimental procedure.

Figure 2. Probe geometry and placement (yellow squares= emitters; white circles= detectors), providing 16 short-channels
(black lines with numbers) and 12 long-channels (green lines with letters). White dashed rectangles depict the three
regions-of-interests (ROIs) explored in this work.

provide multi-distance recordings through 16 short-
channels (14 mm) and 12 long-channels (32 mm).
It also corrects for ambient light interference and
records motion activity using a 3-axis accelerometer.
Data is transferred via Bluetooth at a sample rate of
10 Hz. The NIRS probe was placed on the forehead
centered on AFpz according to the international 10-5
system, mainly covering the frontopolar area (Brod-
mann area 10) of the PFC (figure 2).

To identify recordings suffering from poor signal-
to-noise ratio, saturation or unphysiological interfer-
ences, we checked the raw optical data to identify
those that exhibited extreme values (<5% or >95%
of the device’s dynamic range) or an excessive coeffi-
cient of variation (>7.5%) [34, 35]. Furthermore, by
visually inspecting sudden changes in signals aligned
with sharp shifts in accelerometer data, we identi-
fied recordings degraded by motion artifacts. As pre-
viously mentioned, three participants were excluded
due to signal quality issues.

Relative concentration changes in oxy- (HbO)
and deoxy-hemoglobin (HbR) were computed via
the modified Beer–Lambert law [36, 37], using func-
tions of the Homer2 NIRS package [38] based in
MATLAB (Version R2021b, Mathworks, Natick, MA,
USA). A differential pathlength factor of 6 was used

for both wavelengths. HbO and HbR data were then
digitally low-pass filtered with a zero-phase, 5th-
order Butterworth filter, cut-off 0.08 Hz (MATLAB
Signal Processing Toolbox); no high-pass filtering
was applied. Thus, we remove blood-pressure, res-
piratory, cardiac and high frequency instrumental
components while preserving the band of very-low-
frequency oscillations [39]. As a result, for each chro-
mophore we achieved 16 time-series from the short-
channels plus 12 from the long-channels that we call
shallow- (SSs) and deep-signals (DSs), respectively.
SS contains non-cerebral components recorded from
superficial layers, whereasDS combines both shallow-
and deep-components [24].

Since DS is contaminated by confounding ele-
ments unrelated to functional brain activity, such
as systemic hemodynamics and inhomogeneous
blood flow changes in the superficial tissue layers
[22, 26, 40], a cleanup step was necessary to high-
light the task-induced cortical response. The NIRS
device provides us with multi-distance measure-
ments, where each DS has three candidate SS that
can be used as spatially close references to remove
contamination [41–43]. As suggested in [44], we
applied a ‘double SS’ approach in which each DS
was regressed on the sum of the two SSs recorded
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closest to the emitter and detector of the corres-
ponding long-channel. We solved linear regression
by using theMATLAB function ‘robustfit’, which uses
an algorithm less sensitive to outliers than ordinary
least-squares [45]. After regression, the raw resid-
uals represent a clean (or corrected) signal (CS) that
likely contains the actual neuronal signal but perhaps
mixedwith other unpredictable components not fully
removed.

Due to variability in head shape and size [46],
channel positions are not fully consistent across indi-
viduals, and thus interpretation of isolated chan-
nels can be misleading. To improve signal reliability
by spatial clustering [47, 48], for every single parti-
cipant we averaged across the SSs and CSs belong-
ing to three regions of interests (ROIs), left, medial
and right (figure 2). Therefore, the data for each
ROI is now reduced to just two average signals
which, for consistency, we will continue to denote
as SS and CS. All further processing was done on
these signals, which show a comparable signal-to-
noise ratio in all three ROIs because they were
obtained by averaging the same number of neigh-
boring signals in each region. Finally, to operate on
the same scale, all signals were standardized into
z-scores.

2.4. Spectral power distribution during task
Cognitive tasks may affect fNIRS signal compon-
ents at multiple frequencies, reflecting the interlinked
contribution of multiple factors arising from sys-
temic, superficial tissue layers and neuronal activity
[34, 49, 50]. As a preliminary step, we aimed to
identify the most relevant oscillatory components
present during the math task, regardless of whether
they were spontaneous or task-evoked. To this end,
we conducted a power spectral density (PSD) ana-
lysis using theWelch’s averaged periodogrammethod
[51]. PSD was obtained from the signal segment
between 30 s before the task onset and 30 s after
the end of the task, which yields a data vector of
30 + 300 + 30 = 360 s in length (3600 samples at
sampling rate = 10 Hz). Additional 30 s on both
sides were included to account for potential anticip-
atory or persistence task-related effects. To improve
frequency resolution, we extended the data to the
next power-of-two (4096 samples) by symmetrical
reflection. PSDs were then computed via the MAT-
LAB ‘pwelch’ function with FFT length= 4096, Han-
ning window = 2000 samples and overlap = 80% to
account for spectral smoothness and reduced noise
variance [52]. To allow comparisons, the PSDs were
normalized to relative percentage values by calcu-
lating the power ratio of each frequency bin to the
total power of the entire spectrum [53]. This pro-
cedure was applied to the SS and CS data of each
participant.

To assess significant PSD differences between
TD and ADHD, we performed a two-sample t-tests

along frequency bins. The observed t-statistics were
corrected for multiple comparisons following the
cluster-based nonparametric approach given in [54].
We computed Monte Carlo cluster tests over 2000
permutations of the same t-test by randomly shuff-
ling the data between classes. Then, we estimated the
permutation p-value from the proportion of random
realizations showing a larger cluster-statistic than the
observed one. We set a critical alpha-level = 0.01 to
identify frequency bins significantly different. PSDs
were finally averaged across the participants of each
class to obtain the average normalized PSD of HbO
and HbR for each signal type and ROI. The 95% con-
fidence interval (CI) for the mean at each frequency
bin was also calculated by bootstrapping over 2000
resamples.

2.5. Time-frequency decomposition
Identification of the frequency components with
potential capacity to discriminate between the two
classes of participants (i.e. TD and ADHD) was a cru-
cial issue. To this end, we needed a suitable method
for locating task-related oscillations on different time
scales (i.e. frequency bands), appropriate for non-
stationary signal analysis, and capable of providing
some measure of similarity to define class mem-
bership. Conventional spectral analysis can resolve
how the signals’ power is distributed along frequen-
cies, but reveals little about how frequency content
changes over time or time-varying patterns. Time-
frequency analysis (TFA) techniques are a better
option for discovering oscillatory patterns at certain
frequencies, particularly when these may vary sub-
stantially over time and/or multiple components are
present in the signal [55, 56]. Furthermore, they allow
for separating the magnitude and phase components
associated with the signal, which is very useful for
capturing transient oscillations alignments [57, 58].
As discussed in [59], the selection of an optimal TFA
technique depends on the knowledge of the signal
characteristic, which allows a better match with the
properties of a particular analysis method. We had
no prior information on the most useful oscillatory
components for classification purposes, and thus the
conventional bandpass filtering + Hilbert transform
method was unreliable due to the likely misidenti-
fication of the passbands to apply; apart from other
inherent limitations [60]. We also avoided signal-
adaptive methods that greatly rely on specific know-
ledge of their parameter settings to find meaning-
ful results, such as empirical or variational mode
decomposition [61, 62]. Hence, we decided to use a
data-driven approach based on complex continuous
wavelet transform (CWT) and time-scale synchron-
ization detection.

CWT is a signal processing method that provides
a time-frequency (or time-scale) representation of the
characteristics of a signal on the basis of the dila-
tion and translation of a mother wavelet function;
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Figure 3. Continuous wavelet transform (CWT) of deep HbO signal from mid-ROI for a representative participant. (left)
Scalogram of the symmetrically extended data with the magenta traced cone-of-influence. White dashed lines enclose the original
signal and the solid black lines delimit the task-period. The red box depicts the scalogram region from which the coefficients for
analysis were extracted. (right) Schematics of the extracted coefficient matrix containing 41 scales and 3600 time points.

theory and mathematical description can be found
elsewhere [63, 64]. CWT can be viewed as a band-
pass filter with varying bandwidths automatically
defined by the wavelet scale [65], which avoids the
drawbacks of using custom filters [60]. To compute
the CWT we made use of the generalized Morse
wavelets, a flexible superfamily of exactly analytic
wavelets particularly useful for analyzing signals with
time-varying amplitude and frequency, i.e. modu-
lated signals [66, 67]. Since Morse wavelets can be
tuned to encompass many other analytic wavelets
commonly used, they provide a unified framework as
reference point. Thus, for example, setting the sym-
metry parameter γ = 3 defines a family members
(‘Airy’ wavelets) that can successfully replace the pop-
ular Morlet wavelet as the default analytic wavelet for
general-purpose use [68]. Besides other applications,
Morse wavelets have been proposed in a variety of
biomedical studies, such as human locomotion [69],
electrocardiography and electromyography [70, 71],
neural oscillations coupling [60, 72], electroenceph-
alographic data classification [73, 74] and fNIRS arti-
factual denoising [75].

To keep the procedure as simple and reproducible
as possible, we computed the CWT using the default
Morse parameters recommended in the MATLAB
Wavelet Toolbox (symmetry = 3, time-bandwidth
product = 60), which yield a perfectly symmetric
wavelet. To obtain the most accurate time-frequency
representation of our time-series data, we accoun-
ted for edge effects produced when the wavelets
extend (‘see’) outside the signal boundaries. Since
such effects depend on the wavelet scale, the so-
called ‘cone of influence’ (COI)must be considered to
avoid possible inaccurate coefficient values. Of note,

in the case of Morse wavelets the equivalent concept
is ‘wavelet footprint’ [76]. In order to reduce edge
effects, we extended the signals through symmetric
reflection of the full signal length prior CWT.

As the preliminary PSD analysis (section 2.4)
showed thatmost of the spectral powerwaswithin the
0–50 mHz band (figure 6), we focused the CWT on
that frequency range. CWT was applied to the sym-
metrically extended signals with the scale discretiz-
ation parameter voices-per-octave = 10, which after
calculation of theminimum andmaximum allowable
bandpass results in 45 scales with approximate fre-
quencies ranging from 2.4 to 50 mHz. Despite signal
extension, we observed that frequencies below 3mHz
were slightly outside the COI boundaries (as estim-
ated by the MATLAB ‘cwt’ function) and more prone
to edge effects, so we exclude them from subsequent
analysis (figure 3). Thus, the number of usable scales
was limited to 41 (3–50mHz), which in turn excludes
any extremely slow trends that were not removed dur-
ing signal preprocessing.

After CWT, we kept the full coefficient matrix for
later computation of the inverse CWT (i.e. includ-
ing the data corresponding to the extended segments)
whereas for the next step we would use only a shorter
portion of the matrix.

2.6. Time-scale synchronization detection
Under the hypothesis that the math task may induce
differentiated fNIRS fluctuations for the TD and
ADHD groups, we set out to identify the frequency
sub-bands that showed higher group synchroniza-
tions during the task. Since group-wise synchroniza-
tion may appear as transient peaks rather than con-
stantly, we performed a time-point-by-time-point
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Figure 4. Schematics of the procedure to compute a representative inter-subject synchronization (ISS) map. Starting with the
coefficient matrices of each individual within a group (left), complex-valued data are put together for each frequency bin
(middle) and the ISS is computed moment-to-moment to obtain a representation of the within-group synchronization strength
at each frequency over time (right colormap). The rightmost red plot depicts the maxima and minima reached by the ISS along
frequencies, which are used to delimit the sub-bands to analyze (horizontal white dashed lines).

analysis, which allows capturing common oscillatory
patterns that evolve dynamically over time. It is worth
noting that this strategy is inspired by the underlying
logic of so-called inter-subject correlation analysis,
a data-driven approach devoted to assessing consist-
ent neural responses to stimuli across individuals
[77, 78].

We measured instantaneous inter-subject syn-
chronization (ISS) using the magnitude and phase
information provided by the complex-valued CWT
coefficients. In fMRI studies, measures as inter-
subject phase synchronization [58] and pairwise
phase consistency [79, 80] have been validated for
the assessment of voxel-wise instantaneous phase syn-
chronization across subjects. The former is similar
to the ‘circular mean resultant length’ in circular
statistics literature [81], also known in EEG event-
related studies as ‘inter-trial phase coherence’ [82],
‘inter-trial phase clustering’ [83], or ‘phase-locking
factor’ [84]. However, these measures rely only on the
uniformity of phase angles, ignoring the magnitude.
Thus, when applied to fNIRS it means that low-
amplitude signals affect the measurement the same
as those with significant amplitude. Therefore, this
approach may not be entirely appropriated for fNIRS
data where amplitude changes are related to the mag-
nitude of the hemodynamic response. Since as amp-
litude increases, the signal-to-noise ratio improves, it
is reasonable to argue that observations with higher
amplitudes can contribute to amore realistic estimate
of phase synchronization [85]. Under this assump-
tion, we decided to use a closely related measure
called ‘inter-trial linear coherence’ that combines
magnitude and phase in the normalization step [82].
Since the measurement here was across subject obser-
vations and not across trials, we call this ISS, omitting
‘linear’ for simplicity and similarly formulated as:

ISS( f, t) =

∑n
k=1 Fk ( f, t)√

n
∑n

k=1 |Fk ( f, t)|
2
,

where Fk ( f, t) is the spectral estimate of observation k
at frequency f and time t, and the modulus || repres-
ents the complex norm. ISS also takes values between
0 (absence of sync) and 1 (perfect sync).

ISS was computed moment-to-moment for each
scale from the CWTs coefficient matrices of each
group (i.e. 15 participant observations per scale). As
done in section 2.4, we limited the analysis only to
the time-interval between −30 s and +30 s around
the task. This procedure was applied independently
to the SS and CS data of each group of boys for each
chromophore and ROI, obtaining an ISS representa-
tion in the time-frequency plane that can also be visu-
alized as a color map (figure 4). Next, we choose the
maximum ISS observed along each scale, which rep-
resents the highest group synchronization achieved at
each specific frequency (figure 4). Please note that in
this work we only take into account the ISS maxima,
regardless of the time point at which they are reached.
We also did not consider calculating any significance
threshold at this step, as we relied on the inherent dis-
criminative power of the subsequent feature selection
and classification procedures.

Based on the observed maxima, on each ISS map
we identify several peaks within specific frequency
sub-bands that contain oscillatory components show-
ing some synchronization at the group level. Since
we expected such components to provide informa-
tion to differentiate between groups, it was necessary
to locate the sub-bands exhibiting more discriminat-
ive power. To simplify the procedure, for each case we
averaged the ISS data across the three ROIs to obtain
the mean ISS maxima per frequency. Thus, we sim-
plified the analysis to only one common ISS pattern
by chromophore and signal type for each of the two
groups, i.e. 2 groups (TD, ADHD)× 2 chromophores
(HbO, HbR) × 2 signal types (SS, CS) = 8 ISS pat-
terns. Finally, to reduce noise, the ISS patterns were
smoothed by moving average using a sliding window
of length half the voices-per-octave (i.e. 10/2 = 5).
These patterns were examined in the following steps
to identify the most relevant frequency components.
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2.7. Determination of frequency sub-bands and
feature extraction
Like the other aforementioned synchronization
measures, ISS is a compound measure that does not
exist on its own at a single-subject level but rep-
resents a summary statistic of group synchroniza-
tion. Therefore, to disentangle the contribution to
ISS of each individual is not a straightforward issue
[86]. However, ISS peaks suggest that some frequency
components show similar time courses across indi-
viduals, at least within certain time intervals. In other
words, there are sequential patterns common to the
group that can provide distinctive information to
define class membership. This concept falls into the
interdisciplinary and much-studied field of time-
series classification, which encompasses a variety of
techniques for identifying those properties (features)
that have sufficient discriminating power to distin-
guish between different classes of time series (for a
review, see [87]). In the context of the present work,
a well-suited technique could be the one based on
the shapelet framework, which addresses the classi-
fication problem by discovering primitive time-series
sequences (shapelets) that are used to quantify the
(dis)similarity between classes of time series [88, 89].
Shapelets provide directly interpretable information
about patterns (shapes) that are important for under-
standing how data classes differ, a desirable property
for clinical decision support systems [90].

Here we applied the basics of the shapelets tech-
nique, but instead of looking for phase-independent
subsequences similar in shape (i.e. subsequences may
be located anywhere in the series) we performed
the analysis within a fixed time-interval, all sub-
sequences having the same length. We did not apply
any subsequence translation over time, which implies
that time-series similarity also depends on the phase
(i.e. on a consistent time-alignment). Therefore,
instead of local, we captured global patterns present
over a whole time interval. Under this approach,
the term ‘shapelet’ may not be appropriate; however,
since it relies on comparable principles and is easy
to conceptualize, we will keep it here but in terms of
a pattern that is maximally representative of a class
within a specific timeframe.

At this point, we need to extract the time-series
to be used for identifying representative shapelets.
The average ISS patterns suggest us the frequen-
cies that are likely to contain synchronized oscilla-
tions. By computing the inverse CWT within the
specific sub-band defined by the bounds of an ISS
peak, we can reconstruct such band-limited compon-
ents in the time-domain. To reduce edge-effects, the
inverse CWT was computed from the extended coef-
ficient matrix that we reserved in a previous step
(see section 2.5). Then, the resulting time-series were
truncated to the interval between −30 s and +30 s
around the task. After applying this procedure to the
CWT of all the individuals belonging to a group, a set

of time-series (n= 15) is available to find a reference
shapelet for that group in a particular sub-band.

Since all the time-series have the same length and
are within the same timeframe, a suitable reference
shapelet can be obtained simply by averaging. If the
time-series share a common pattern, their average
should represent the group well enough. To quantify
similarity with the reference shapelet, among other
possibilities, a simple measure as Euclidean distance
can be computed:

D(S,T) =

√√√√ n∑
i=1

(Si − Ti )
2

where S denotes the reference shapelet and T a time-
series, both of length n. Note that S and T should be
standardized to have mean 0 and standard deviation
1, which ensures to operate on the same scale. Stand-
ardization also allows us to relate the Euclidean dis-
tance to the correlation coefficient (r= 1− D2/2n).

In order to assess the capability of the shapelet
to discriminate between groups, we can contrast the
distances obtained from one group with those of the
other group. For example, a shapelet that is represent-
ative of the TD group should have smaller distances to
members of this group than tomembers of theADHD
group, and vice versa. Among other quality measures,
the F-statistic for analysis of variance can be used to
assess the discriminative power of a shapelet [89]. This
statistic indicates the ratio of the between-group vari-
ability to the within-group variability as:

F=

∑C
i=1

(D̄i− D̄)2

C−1∑C
i=1

∑
dj∈Di

(dj− D̄i)
2

n−C

where C is the number of classes (or groups; in our
case = 2), D̄ is the overall mean of all distances, D̄i

is the mean of the distances within class i, and n is
the number of time-series. The better the shapelet the
greater the F value, because the difference between-
groups increases while it decreases within a group.
The corresponding p-value can be calculated from the
F-distribution.

Based on the average ISS patterns, we identi-
fied four candidate sub-bands in each of them that
were labeled A, B, C and D in decreasing order of
frequency. Each sub-band contains a peak (local-
maximum) flanked by two troughs (local-minima)
that delimit the frequency boundaries. For each ISS
pattern, each belonging to a target group (TD or
ADHD), we performed the following procedure for
each sub-band (figure 5): (i) compute the inverse
CWT within the sub-band from the extended coef-
ficient matrices of both groups to obtain the corres-
ponding time-series (n = 15 + 15 = 30). (ii) Trun-
cate time-series to the time-interval of interest. (iii)
Generate the reference shapelet by averaging only the
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Figure 5. Schematic example of the procedure to extract reference shapelets for the TD group and contrast them with the ADHD
group. Per-participant time-series within a specific frequency sub-band are obtained from their band-limited inverse-CWT and
averaged only for the TD group to get the shapelet. Euclidean distances to the shapelet are computed for the time-series of both
groups and then within- and between-group variances are contrasted to obtain the F-stat value.

time-series of the target group (n = 15), a variabil-
ity measure such as the standard error of the mean
can also be computed. (iv) Calculate distances to the
shapelet for the time-series of both groups. (v) Calcu-
late F and p-value from the 15 + 15 = 30 distances.
Because each ISS pattern and its sub-bands are com-
mon to all three ROIs, this procedure was applied
separately to each ROI data but using the same sub-
bands. Thus, for each ISS pattern we obtain a mat-
rix of 30× 12 distances, where each row contains the
distance measures of an individual and columns cor-
respond to the 4 sub-bands× 3 ROIs. Since there are
eight ISS patterns, the finalmatrix was of size 30× 96,
48 columns for SS and 48 forCS, while 15 rows corres-
pond to the TD group and 15 to ADHD. Please note
that each columnhas an associated F-stat and p-value,
indicating howwell a particular shapelet differentiates
the groups.

In summary, we employed the shapelet approach
to transform data observations at different time-
scales into a simple feature space of Euclidean dis-
tances, which are the only feature type used in the
present work.

2.8. Classification algorithms and feature selection
To assess the feasibility of the proposed procedure
to differentiate between TD and ADHD, we tested it
with fourwell-suitedmachine learning algorithms for
supervised binary classification, namely linear SVM
[91], logistic regression (LR) [92], linear discrimin-
ant analysis (LDA) [93] and Gaussian naïve Bayes
(NB) [94]. We chose these algorithms because they
are well known, inherently interpretable, computa-
tionally efficient, and can work with relatively small
sample sizes. Under a variety of flavors (different
kernel, regularization, etc), SVM is very frequently

present in neuroimaging-based studies of brain dis-
orders, with LDA and LR being the other most popu-
lar choices [14]. Noteworthy, a similar usage scenario
occurs in the ADHD research field [12]. Although
less commonly used, we included NB because its
ease of application and good performance in a vari-
ety of applications despite the assumption of feature
independence [95].

Although based on different models, discriminat-
ive (LR&SVM) vs generative (LDA&NB), all four are
within the linear classifier category, i.e. to make pre-
dictions, the classifiers try to learn the line that best
separates the points of the two classes [96, 97], which
depends on a linear combination of the explanatory
variables. Thus, it is possible to know to what extent
each feature influences the prediction, which greatly
improves its interpretability. In this sense, we avoided
more complex classifiers such as those using artifi-
cial neural networks or non-linear kernels, wherein
the relationship between features and prediction is
less transparent. We used MATLAB’s implementa-
tions of the classifiers (Machine Learning Toolbox)
with default settings for simplicity and reproducib-
ility. To minimize the risk of the algorithms over-
fitting the available data and losing generalizability,
hyperparameter optimization was not applied [98].
As usually recommended, the features were stand-
ardized using the corresponding column mean and
standard deviation.

In addition to the putative functional response,
fNIRS signals also contain components originat-
ing from common systemic forces and unpredict-
able local activity. Therefore, it is very likely that
our feature matrix also contains redundant and/or
irrelevant data that can degrade classifier perform-
ance by cause of overfitting and noise issues. Model
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regularization can be applied to some algorithms
to account for statistical overfitting, however that
raises the problem of choosing a suitable technique
(e.g. lasso) and finding appropriate regularization
parameters. To avoid increasing the complexity of
the models, we addressed the problem by redu-
cing the feature space. Feature selection is a com-
monly used tool to obtain a smaller subset of the
most relevant features, reducing complexity while
improving classification accuracy and generalization
capacity [99]. A reasonable hybrid approach is to
first apply a filter method, before modeling, to select
some features based only on their intrinsic proper-
ties. Then more sophisticated methods such as wrap-
pers may be employed to find the best subset of fea-
tures, using the classifier itself as evaluator [100].
Among others, a benefit of such selection is an easier
explanation of the prediction because the models are
simpler [101].

Despite the ample offer of filter methods [102],
and after trying some of the popular ones (relief,
minimum redundancy-maximum relevance and chi-
square; results not shown), we settled on a fairly
straight option based on the F-statistic. We simply
selected the features that showed p-values < .01,
assuming that their generating shapelets were very
unlikely to separate the groups by chance. In this way,
we significantly reduced the features from 48 to 5 for
SS and from 48 to 10 for CS.

The classification methods were first applied to
filter-selected features separately for SS and CS, and
then for all of them together (SS + CS). To assess
the predictive performance, we applied two cross-
validation (CV) techniques for comparison purposes,
namely leave-one-out (LOO) and stratified 5-fold. In
the first, data was partitioned into 30 folds where
each observation was used once as a test set and the
remaining ones formed the training set. In the latter,
five partitions were randomly chosen, each with 24
observations as the training set and 6 as the test set;
folds were repartitioned over 20 Monte-Carlo repeti-
tions (5 × 20 = 100 models) to reduce CV variance
[103], while stratification ensured that sets had the
same proportion of classes (50% in our case). We
used 5- instead of 10-fold because with the latter
the test set size = 3 would be too close to that of
LOO = 1. Since we are dealing with only two classes
and our datasets are well-balanced (i.e. equal propor-
tion of both classes), accuracy, specificity and sens-
itivity can be used as metrics to assess performance
[104, 105], as obtained from the corresponding con-
fusion matrices and then averaged across folds. At
this point, we focused on accuracy (a commonly used
metric in practice) to test the statistically significant
classification performance. Thus, we computed the
theoretical above-chance accuracy threshold based on
the binomial cumulative distribution at p< 10−3 for
2-classes (probability = 0.5) and a sample size = 30
[106].

Afterwards, we applied a wrapper method to
fine-tune the feature selection. We used a custom-
made MATLAB wrapper function that implements
a sequential forward floating selection (SFFS)
algorithm [99, 107]. SFFS starts with an empty set and
sequentially adds one feature at a time to create can-
didate subsets that are evaluated by CV. After that, the
best feature is added to the set. When the size of the
selected set is>2, a backward step tries to optimize it
by removing one or more features. This procedure is
repeated until there is no performance improvement.
The two aforementioned CV techniques were also
applied independently to each classifier. Noteworthy,
the input order of the finally selected features allows
us to know their relative importance. It is also worth
mentioning that our wrapper can rank features by
multiple metrics at the same time, and that in this
work we used two criteria to select/remove features,
specificity and then accuracy. Thus, if two (or more)
features equally improve the specificity, the one with
the best accuracy is selected.

Once the best subset of features was selected for
each classifier, we estimated the statistical signific-
ance of the observed performance through a non-
parametric label permutation procedure that does
not assume any particular statistical property of the
data [106, 108, 109]. We generated 5000 resamples,
each of which randomly permuted the labels of the
two classes; realizing the null hypothesis that fea-
tures do not define class membership. For each res-
ampled data, the classification performance was eval-
uated using the same CV scheme as for the real
data. The observed performance metrics were ranked
against the corresponding null-distribution to estim-
ate a p-value. In addition, a 95% bias corrected per-
centile interval was estimated as CI for each metric
by bootstrapping (with replacement) over 2000 res-
amples, with each realization keeping the same pro-
portion of classes (50%) and at least three distinct
observations in each class [110].

Finally, we checkedwhether thewrapper perform-
ance might have been biased due to the use of a pre-
filtered feature set that included all data in the selec-
tion process, i.e. the ‘peeking’ effect [15, 111]. To this
end, we repeated thewrapper procedure but using the
full feature set (i.e. 96 features), then comparing the
performance outcomes.

3. Results

3.1. Behavioral performance
On average, TD participants achieved slightly higher
scores for iterations (MTD = 36.20; SDTD = 16.48;
MADHD = 29.66; SDADHD = 14.01) and precision of
results (MTD = 7.26; SDTD = 1.79; MADHD = 7.00;
SDADHD = 2.32) than the ADHDgroup. However, the
unpaired t-test did not show significant differences in
iterations (t(28) = 1.169; p = .252) or in precision
(t(28)= 0.351; p= .728).
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Figure 6. Average normalized power spectral density (PSD) for each ROI (right, medial and left), chromophore and signal type in
the frequency range 0–80 mHz. Thick colored curves refer to TD group (HbO in red and HbR in blue) while thick black ones
correspond to ADHD group. Thin lines depict the 95% CI of the mean. Magenta rectangles delimit the frequency ranges that
show significant differences between groups. Panel SS shows the PSDs for shallow-signals and CS for clean-signals.

Figure 7. Inter-subject synchronization (ISS) color maps for shallow-signals (SS) within each ROI. Upper rows correspond to
HbO for TD and ADHD groups, while lower rows refer to HbR. The small plots to the left of each map depict the ISS maxima
across frequencies for each case. Vertical black lines delimit the task-interval. Horizontal white dashed lines delimit the common
sub-bands obtained by averaging ISS maxima across ROIs. Labels (A)–(D) identify each of these sub-bands.

3.2. Spectral power analysis
Figure 6 shows the average PSD distribution of fNIRS
signals for the TD and ADHD group within each
ROI. A common pattern can be observed, with a peak
around 33 mHz corresponding to the task frequency
and a most prominent peak around 4 mHz. Smaller
secondary peaks are also present around 17, 24 and
67 mHz, for example. The cluster-based permuta-
tion test only showed significant differences between
groups at 33 mHz for CS-HbO in the right-ROI. In
all cases, most of the spectral power can be allocated
roughly within the 0–50 mHz frequency range.

3.3. Time-frequency ISS maps
Figure 7 shows the ISS representation in the time-
frequency plane obtained from the complex CWTs of
the SS data for both groups; within the range of 3–
50 mHz.

Similarly, figure 8 depicts the ISS maps corres-
ponding to the CS data. At first glance, well-defined
synchronization zones can be seen within certain fre-
quency sub-bands, some similar in both groups and
others clearly differentiated. Here we highlight some
of them as examples. Regarding SS, strong synchron-
ization can be seen in all ROIs around 33 mHz for
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Figure 8. Inter-subject synchronization (ISS) color maps for clean-signals (CS). The description of the drawn elements is the
same as in figure 7.

Table 1. Frequency bounds of each average sub-band A–D for shallow-signals (SS) and clean-signals (CS), and for each chromophore
and group.

Frequency sub-band (mHz)

Signal type Chromophore Group A B C D

SS
HbO

TD 50–21.8 21.8–11.7 11.7–4.7 4.7–3.0
ADHD 50–23.3 23.3–14.3 14.3–6.7 6.7–3.0

HbR
TD 50–23.0 23.0–14.3 14.3–5.4 5.4–3.0
ADHD 50–23.0 23.0–14.3 14.3–7.7 7.7–3.0

CS
HbO

TD 50–21.8 21.8–11.7 11.7–5.4 5.4–3.0
ADHD 50–20.3 20.3–7.7 7.7–4.7 4.7–3.0

HbR
TD 50–21.8 21.8–11.7 11.7–6.7 6.7–3.0
ADHD 50–16.5 16.5–8.2 8.2–5.8 5.8–3.0

HbO of TD group, and in right- and mid-ROI at
7 mHz and below 4 mHz. Noteworthy, the ADHD
group presents even stronger ISS around 4 mHz in
all ROIs, but much less evident at 7 or 33 mHz.
Regarding CS, albeit to a lesser extent, TD group
also synchronizes at 33 mHz while TD group does
so in a more diffuse and weak way. Furthermore,
TD group seems to be more synchronized during the
first part of the task at 7 mHz (mid- and left-ROI),
whereas the ADHD group is synchronized in the last
part around 17 mHz. Yet another remarkable sync is
observed for the HbR of TD group at 4 mHz. Overall,
ISS analysis reveals a plurality of sub-bands that can
carry information about similarities and differences
between groups.

3.4. Frequency sub-bands and reference shapelets
Table 1 shows the common synchronization sub-
bands estimated from the average ISS maxima across
ROIs, labeled A, B, C and D by decreasing frequency,
with A corresponding to the task frequency. Figure 9
illustrates how these sub-bands were delineated by

locating the ISS minima surrounding each peak.
Higher peaks can be seen in sub-bands A and C for
HbO of TD group in both SS and CS, while ADHD
group shows notable peaks in D for SS and B for CS.
Regarding HbR, it shows clear peaks in A andD in all
cases. Note that within the same assigned sub-band,
in some cases the peaks are clearly shifted in frequency
depending on the group (e.g. C sub-band for CS-
HbO). It is evident again that the ISS maxima also
reveal differences at certain frequencies. These aver-
age sub-bands are also depicted in the ISS maps of
figures 7 and 8 by white dashed lines.

Figure 10 shows the reference shapelets obtained
in each sub-band for SS data and figure 11 those
corresponding to CS data. A rich variety of patterns
can be seen, some similar across groups and others
clearly different. Thus, for example, TD group exhib-
its rhythmic fluctuations in the A sub-band of SS-
HbO, which are very consistent across participants as
reflected by the high ISS (dashed traces); in contrast,
ADHD group shows greater inter-subject variability.
Another example is visible in CS-HbR-D, were TD
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Figure 9. Average inter-subject synchronization (ISS) patterns across frequencies. The top row corresponds to shallow-signals
(SS) and the bottom row to clean-signals (CS). Red and blue traces relate respectively to HbO and HbR of the TD group, while
ADHD data is always plotted in black. Horizontal labeled rectangles identify each sub-band, whose boundaries are defined by the
minima marked by vertical dashed lines.

Figure 10. Shallow-signals (SS) reference shapelets for each sub-band (A–D) within each ROI. Upper rows show the HbO patterns
(red traces) for TD and ADHD groups, while lower rows refer to HbR (blue traces); thin traces depict the shapelet’s SEM. Dashed
lines show the inter-subject synchronization (ISS) time-course in each sub-band (scale on the right axis); in magenta color those
corresponding to shapelets with an F p-value< .01. The colored boxes identify the shapelets chosen by the wrappers (see
figure 12). Gray shaded rectangles indicate each of the 15 s of mental math during task.

group shows a consistent pattern of increasing then
decreasing, whereas ADHD group does not. It can
also be seen that the ADHD group synchronizes CS-
HbO-B towards the end of the task, while TD does
so visibly earlier. Once again, certain shapelets seem
to represent well the average response of their group,
while they do not fit the other one.

3.5. Classification performance
Table 2 shows the performance achieved by classi-
fiers trained with the features selected by filtering,
i.e. those with an F p-value < .01. Five and ten

shapelets, respectively for SS and CS, generated fea-
tures that met the filter criteria, each identified in
figures 10 and 11 by the magenta color of their ISS
traces. Overall, performance improves for all clas-
sifiers when SS and CS features are combined. All
of them reached accuracy values ⩾76.7% with both
CV schemes, which is the above-chance threshold at
p< 10−3 according to the theoretical binomial cumu-
lative distribution for 2-classes and a sample size= 30.
Regarding to specificity, LDA showed the highest
values (88.7% and 93.3%, respectively for five-fold
and LOO). When SS and CS features were used
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Figure 11. Clean-signals (CS) reference shapelets. The description of the drawn elements is the same as in figure 10.

Table 2. Performance scores achieved by each classification model trained with the subset of filter-selected features for shallow-signals
(SS), clean-signals (CS) and SS+ CS.

Signal type P. metric

SVM LR LDA NB

5-FO LOO 5-FO LOO 5-FO LOO 5-FO LOO

SS 5 features
Accuracy 73.3 70 80 80 74.5 73.3 80.5 80
Sensitivity 78.7 73.3 85.7 86.7 80.7 80 88.7 86.7
Specificity 78.7 73.3 85.7 86.7 80.7 80 88.7 86.7

CS 10 features
Accuracy 81.2 80 83.5 80 78.7 80 85.5 86.7
Sensitivity 82.3 80 82 80 81.7 80 84.7 86.7
Specificity 82.3 80 82 80 81.7 80 84.7 86.7

CS & SS 15 features
Accuracy 88.7 86.7 88.2 90 85.7 83.3 85.7 86.7
Sensitivity 91.3 93.3 91.7 93.3 82.7 73.3 84 86.7
Specificity 86 80 84.7 86.7 88.7 93.3 87.3 86.7

Note: LOO= leave-one-out; 5-FO= 5 folds; SVM= support vector machine; LR= logistic regression; LDA= linear discriminant

analysis; NB= naïve Bayes.

independently, performance was worse, although all
classifiers still showed above-threshold accuracies for
CS, while only LR and NB did so for SS. These pre-
liminary findings suggest that SS and CS together
contain valuable information to discriminate groups
independently of any classification model, CS being
probably the more relevant.

Figure 12 demonstrates how performance was
greatly improved by using the wrapper for feature
selection. Note that, in all cases, the classification
models were very parsimonious and no more than
three features were used. When compared separately,
wrapper-selected CS features perform better than SS
overall. Regarding the input order, for SS the first-
in feature always belongs to TD group, A sub-band,
HbO, left- or right-ROI depending on the classifier
(‘TD-A-HbO-L’ magenta box or ‘TD-A-HbO-R’ red
box in figure 12). It should be noted, regarding CS,
that all the classifiers agree on the first two features
‘AD-B-HbO-R’ and ‘TD-D-HbR-L’ (green and yellow

boxes, respectively, in figure 12). Once again, the best
results were obtained with SS + CS. In fact, LR and
LDA scored over 99%on all threemetrics for both CV
schemes, which is really high performance. NB scored
lower, from 91.3% to 93.3% overall while SVM was
the weakest classifier when all metrics are considered.

When evaluating SS + CS, the wrapper selec-
ted the same features for LR and LDA in both CV
cases. Noteworthy, the first-in feature was ‘AD-B-
HbO-R’, which was also the first for CS. The second
one was ‘TD-A-HbO-L’, the first for SS. Finally, ‘TD-
D-HbR-M’ from CS completed the set. Looking at
the wrapper history, we observed that ‘AD-B-HbO-
R’ alone achieves about 80% of the accuracy, sens-
itivity and specificity, which is not surprising since
it has the highest F (19.6, p-value < .0001). The
addition of ‘TD-A-HbO-L’ improves the scores up to
90% and with ‘TD-D-HbR-M’ they approach 100%.
Therefore, the most powerful feature comes from
the CS-HbO data of ADHD group, specifically from
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Figure 12. Performance scores achieved by each classification model using the subset of wrapper-selected features for
shallow-signals (SS), clean-signals (CS) and SS+ CS. Colored rectangles on the right identify the chosen features and their input
order. Each specific feature has a different color and its label is the combination ‘Group-Band-Chromophore-ROI’, being
TD= TD group, AD= ADHD, L= left, M=mid and R= right.

band B in which a prominent ISS peak can be seen
(figure 9). TD group provides the next best feature
in form of consistent HbO fluctuations at task fre-
quency in the SS data (see the ISS peak in sub-band

A). Finally, a very-slow CS-HbR component of TD
group optimizes the classification (see the peak in
D). The shapelets that generated these features are
respectively identified by green, red and blue boxes
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in figures 10 and 11. Noteworthy, NB also shared the
first feature while the second and third come from the
same group, sub-band and chromophore but from an
adjacent ROI.

Table 3 summarizes the results obtained by wrap-
pers with SS + CS features. In all cases (except for
SVM in sensitivity with five-fold) permutation test-
ing indicated significance at p < .001. LR and LDA
showed the highest scores in all metrics and also
the narrowest CIs. Although highly significant, NB
showed lower performance and larger ICs, whereas
SVM performed the worst.

Noteworthy, when the full feature set (48 SS+ 48
CS) was used to feed the wrappers for LR and LDA,
we got exactly the same feature sub-set for both CV
schemes and, hence, the same scores and statistics.
Therefore, feature pre-selection did not lead to more
optimistic solutions with inflated performance, albeit
it did reduce computational cost.

4. Discussion

The present study aimed to assess the ability of
a rhythmic mental math task to induce/modulate
fNIRS oscillatory patterns (referred to here as shape-
lets) maximally representative of the ADHD or TD
condition, and the feasibility of using them in auto-
mated classification of individuals. For this purpose,
distinctive shapelets were first located on the basis of
group synchronization strength at certain frequen-
cies, and then simple measures of similarity were
computed per-subject as features to train four pop-
ular machine learning algorithms suitable for bin-
ary classification. We found that with proper feature
selection, classifiers achieved truly high predictive
statistics when defining class membership from the
individual oscillatory components. Noteworthy char-
acteristics of the study are that it is based on a unim-
odal approach that focuses on data drawn exclusively
from the fNIRS domain, uses Euclidean distance as
the only type of feature to build the classification
models, and features are linked to visually identifiable
waveforms. In addition, we have limited ourselves
to ready-to-use, inherently interpretable supervised
linear algorithms (as available in MATLAB) without
hyperparameter optimization. Therefore, we did not
seek high performance at the expense of combining a
variety of feature types and/or tuning classifiers, but
rather explore the feasibility of proposing a meth-
odological framework as a starting point for identi-
fying hemodynamic biomarkers, in a way access-
ible and interpretable enough as to inform clinical
practice.

4.1. Feature selection and classifiers performance
We corroborated that efficient feature selection
greatly improves/stabilizes correct classification,
being particularly important when the number of
features exceeds the number of observations, as is

often the case with small sample sizes [102]. Feature
selection aims to discard irrelevant/redundant pre-
dictors, which improves predictive ability by redu-
cing overfitting, leads to simpler classification mod-
els with less computational cost, and makes models
easier to understand by knowing the most important
variables. Since finding the optimal subset of features
by exhaustively searching among all possible ones
is often impractical, suboptimal selection methods
are commonly used as workarounds, even with the
awareness that they might not be optimal. Numerous
studies have proposed different strategies to select
features, however, no single method has been found
that works best in all scenarios [99, 112]. Here, we
employed a combined approach that consists of first
obtaining a candidate set of features using a simple
univariate statistical test (i.e. each feature is scored
independently) to select the top ranked ones, and
then applying a wrapper method to find the best
subset among those features using the classification
algorithm itself as evaluator. Given that the available
data was relatively small and that complex search
methods might be more prone to overfitting, we
settled on a simpler strategy fully independent of
any learning method [113]. Thus, for the first filter-
ing step, we ranked the features by F-stat and then
those with p < .01 were chosen. Despite its simpli-
city, the filter was good enough to achieve statistically
significant accuracies (based on the binomial law at
p < 10−3) for all classifiers and CV schemes when
CS and SS + CS features were used. In fact, with
SS + CS the accuracies ranged between 83.3% and
90% depending on the case, which are comparable
(some even better) to the previously reported val-
ues in [19–21]. Therefore, the features seemed to be
intrinsically distinctive and worked well regardless of
the different algorithmic architecture of the classifiers
and CV partitioning.

Despite these promising results, some irrelevant
features could potentially degrade performance and
add unnecessary complexity. We addressed such a
possibility by applying a wrapper to fine-tune feature
selection. Specifically, we use an SFFS algorithm that
is supposed to overcome simple sequential-selection
by controlling the ‘nesting effect’ when, once selec-
ted, a feature cannot be dropped [99, 107]. In fact,
we checked that our SFFS algorithm successfully con-
ducted the backward steps to find better solutions.
Remarkably, wrappers yielded very simple models
with no more than 3 features, meaning a feature-to-
sample ratio of 3/30 which is very unlikely to lead to
overfitting [114]. Performance was particularly high
when LR and LDA were trained on SS + CS fea-
tures, achieving scores of around 100% on all met-
rics andCVs, both classifiers pointing to the same fea-
ture subset.While showing slightly lower scores, albeit
>91%, NB also agreed in the same first feature and
the other two shared similar properties as LR andLDA
(figure 12). These results suggest that selected features
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Table 3. Performance scores achieved by each classification model using the best subset of wrapper-selected features obtained from
shallow- (SS) plus clean-signals (CS). Statistical significance is indicated by p-values and performance 95% CIs are represented within
square brackets.

SVM LR LDA NB

Signal P. metric 5-FO LOO 5-FO LOO 5-FO LOO 5-FO LOO

CS &
SS

Accuracy

82.5
p< .001
[68.2, 95.7]

93.3
p< .001
[80.0, 100]

99.3
p< .001
[95.8, 100]

100
p< .001
[96.7, 100]

99.5
p< .001
[96.7, 100]

100
p< .001
[96.7, 100]

92.2
p< .001
[80.3, 98.0]

93.3
p< .001
[83.3, 100]

Sensitivity

72.3
p= .046
[56.0, 73.3]

86.7
p< .001
[66.7, 100]

99.7
p< .001
[93.3, 100]

100
p< .001
[93.3, 100]

99.7
p< .001
[92.0, 100]

100
p< .001
[93.3, 100]

91.3
p< .001
[73.3, 99.7]

93.3
p< .001
[80.0, 100]

Specificity

92.7
p< .001
[78.2, 100]

100
p< .001
[86.7, 100]

99.0
p< .001
[91.8, 100]

100
p< .001
[93.3, 100]

99.3
p< .001
[90.4, 100]

100
p< .001
[93.3, 100]

93.0
p< .001
[80, 100]

93.3
p< .001
[80.0, 100]

Features 2 3 3 3 3 3 3 3

Note: LOO= leave-one-out; 5-FO= 5-fold; SVM= support vector machine; LR= logistic regression; LDA= linear discriminant

analysis; NB= naïve Bayes.

are quite stable and survive different classification
algorithms and CV schemes. Such stability can also
be seen in the CS case, in which an even wider con-
sensus is shared across classifiers (figure 12). There-
fore, it appears that the observed performance was
not due to an over-selection effect [115], but to the
true distinctive nature of the features.

Surprisingly, SVM performed the worst in the
SS+CS case, particularly with the five-fold CVwhere
it achieved the lowest scores and also the widest CIs.
In contrast, the other classifiers were not affected by
the CV, reaching similar scores and CIs with both
schemes (table 3). Most likely, SVM performance
degraded due to lack of proper regularization, leading
to insufficient penalty for misclassification. As men-
tioned, one of the goals was to avoid any hyperpara-
meter tuning and therefore we preferred to rule out
SVM in the context of the present study.

As can be seen from figure 12 and table 3, LR and
LDA won in the classification task when trained with
SS+CS features. They both agreed on the samewrap-
per solution, which was exactly the same for the fea-
tures preselected by filtering and for the full set. Also,
they achieved comparable scores (>99%) in all met-
rics (significant at p < .001, but now using permuta-
tion tests to define the null hypothesis). In addition,
the 95% CIs were similarly narrow, although skewed
due to scores being close to the 100% ceiling. CV is
known to tend towards narrower confidence bounds
as accuracy approaches 100% but increasingly wide
and asymmetric as sample size decreases, which can
lead to under-estimate prediction errors and specially
with LOO CV [116]. Despite having only 30 samples,
we found that the lower limit of the CI for accur-
acy was never <95.8% and was less than 5% away
from themean in all cases, a deviation below the over-
all 15% expected for a binary classification with this
number of samples [116]. The results suggest that the
few selected features meet the statistical assumptions
required by LR and LDA to make observations highly
separable into 2-classes. The rest of this discussion

focuses on LR and LDA and their three wrapper-
selected shared features.

4.2. CV agreement
As reported in [12], LOO and k-fold are the most
commonly adopted CV methods in ADHD studies;
plus hold-out which seemsmore appropriate for large
datasets. Some researchers have suggested that LOO
may bemore useful in a diagnostic scenario [98, 117],
whereas others recommend k-fold or repeated ran-
dom splits for more stable estimates [97, 118]. In
either case, it is known that CV is compromised by
small sample sizes, particularly if there are many pre-
dictors, which tend to overestimate predictive accur-
acy to a variable degree depending on the particular-
ities of the study [14, 119]. In light of this, we tested
LOO and five-fold expecting differences in perform-
ance, with LOO showing more optimistic scores and
larger confidence bounds [116]. However, we found
that both gave very similar results with LR and LDA
(table 3), suggesting that the three chosen features are
good enough predictors to yield stable CV measures
regardless of method.

4.3. Contribution of SS and CS to classification
The present work did not rely on activation/deactiv-
ation measures as usual in fNIRS studies, but rather
on the distinctive information content of frequency
components. Among others, this is one of the reas-
ons why we cautiously prefer to consider CS as clean/
corrected DSs, without further assumptions about
their true nature. On another hand, we did not con-
sider SSs as nuisance components to be discarded,
but as potential carriers of representative informa-
tion due to the close interaction between cognitive
and autonomic functioning [120–122]. In fact, we got
accuracies close to 100% when SS and CS features
were combined, which out-perform other classifica-
tion studies using unimodal fNIRS data.

Remarkably, the first-selected feature came from
CS of the ADHD group in form of a consistent HbO
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pattern in the B band (7.7–20.3 mHz) of right-ROI
(figures 11 and 12). Notably, this pattern increas-
ingly synchronizes across participants as mental task
progresses and peaks near the end, while TD group
peaks faster and decreases towards the end (sim-
ilar time-courses can be seen in all three ROIs).
It seems that some kind of underlying hemody-
namic activity works differently in ADHD at that fre-
quency. Resting-state fMRI (rs-fMRI) studies have
reported frequency-specific ADHD abnormalities in
local spontaneous activity of multiple brain regions,
detected not only in the conventional fMRI range
of 10–80 mHz [29], but also in narrower sub-bands
such as 0–10, 10–27 and 27–73 mHz among others
[31]. However, probably due to the high heterogen-
eity of ADHD presentation, consistent conclusions
have not yet been reached [32]. Nevertheless, together
with the findings from rs-fMRI connectivity studies
[123, 124], evidence suggests that low-frequency fluc-
tuations analysis could provide valuable insights into
the dysfunction of brain-networks that has been
observed in many ADHD studies (for reviews, see
[7, 125]). As can be deduced from the studies men-
tioned, few agreed conclusions can be drawn from
the large number of heterogeneous reports. Never-
theless, reports frequently concur on the key role of
the PFC in the altered relationships between DMN
and attention/salience networks observed in ADHD,
likely related to a delayed cortical maturation [126,
127]. Since our NIRS probe interrogates part of the
PFC, there is a possibility that this distinctive ADHD
pattern we found is due to delayed/interfered DMN
deactivation during the task, which is reflected as a
specific frequency component. In line with this find-
ing, Salmi et al [128] found increased impulsivity-
associated synchronization in the medial PFC of
ADHD patients during a naturalistic attention task.

Similar discussion could be applied to the third
feature that also arose from CS, but from an HbR
shapelet in the ultra-low D-band of TD group (also
visible in all ROIs). It can be seen a consistent pat-
tern of increasing at task onset, slowly returning to
lower levels and raising again at the end (figure 11),
which is absent in the ADHD group.Whether the ini-
tial effect is due to sustained oxygen consumption,
deactivation, or both being interrelated, is inherently
difficult to elucidate with fNIRS data alone. Interest-
ingly, it has been reported that ultra-slow BOLD sig-
nals (0-10 mHz) seem to better differentiate ADHD
from TD [31]. While more research is needed, the
importance of assessing both HbO and HbR should
not be underestimated.

The second-selected feature arose from an SS
shapelet of HbO in the task frequency A-band and
contributed significantly to improving classification
(figure 12). Obviously, this oscillatory pattern is not
of cerebral origin but rather reflects a coordinated sys-
temic (even local) hemodynamic activity recorded in

superficial tissue layers. Specifically, this SS feature
pertains to TD boys who show greater within-group
synchronization than the ADHD group, visible also
in the other two ROIs (figure 10). This finding is
in line with other studies using thermal imaging
[129] or EKG entropy measures [130] to differen-
tiate ADHD with promising accuracy. This lack of
synchrony probably reflects the inability of ADHD
boys to coordinate autonomic resources with cognit-
ive demands [131].

4.4. Accuracy, sensitivity and specificity
We instructed the wrappers to favor specificity first
and accuracy second. The rationale behind is that,
by favoring specificity, classifiers are less prone to
false positives and so more reliable when predicting
ADHD. Marking a child as ADHD when it is not true
can lead to risky drug treatments, social stigma and
other annoyances. Conversely, without major draw-
backs, a false negative can be easily ruled-out through
a complementary evaluation and/or follow-up over
time. However, since the specificity scored so high
and the sample was exactly balanced, the accuracy
(and sensitivity) rose correspondingly, with very little
difference between the metrics. Although useless in
the present work, we believe that defining the order
of importance of the metrics could lead to a better
selection of relevant data when considering the goals
and particularities of clinical trials. On another hand,
albeit not predictive measures (prevalence was not
considered), the metrics used here suffice as a proof-
of-concept, as they are considered useful for eval-
uating screening/diagnostic tests in clinical research
[132, 133].

4.5. Limitations and future work
The current study is not intended to validate an
ADHD diagnostic tool for use in a clinical setting,
but to propose a methodological framework as a
proof-of-concept to find functional biomarkers to
help develop such a tool. However, some issues need
to be addressed in order to properly frame the cur-
rent findings. First, despite the high scores achieved,
the limited sample size could have led to overestim-
ating the performance of the classification. However,
since ours is a fairly pure sample of only boys within
a narrow age range and focused on combined ADHD
subtype, the effective sample size is comparable or
greater than those of other classification studies. The
homogeneity of our sample can be seen as a limita-
tion that would prevent generalizing the findings to
other groups, but we feel that it is rather a strength of
the study. ADHD condition is so heterogeneous that
trying to find an all-in-one solution can be a difficult
goal to achieve. We believe that tailoring functional
biomarkers for specific use-case samples (e.g. women,
drug-naïve children, adolescents, etc) may be more
productive and easily implementable as a decision
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tree. Obviously, the approach proposed here can be
easily applied to those other use-cases, work that we
currently have under way. Whether this approach can
benefit from extended multi-distance measurements
with partial path length correction, as proposed in
[134], will require future research.

Second, the unavailability of a separate dataset for
validation may cast doubt on the generalizability of
the models. Therefore, to test the usefulness of the
current method in clinical decision support, further
research with a larger sample size and external valid-
ation will be necessary.

5. Conclusion

Over the last decade, considerable efforts have been
made in the development of AI-based models to aid
clinical decisions in brain disorders such as ADHD,
but with little impact on the healthcare workflow.
Despite promising results in the field of neuroima-
ging, substantial problems remain that make it dif-
ficult to bridge the gap between research and daily
clinic. Among other challenges, finding reliable bio-
markers via technically feasible and explainablemeth-
ods is essential to enable AI implementations as trust-
worthy clinical decision support systems.

To contribute to the objective assessment of
ADHD, we provide a proof-of-concept that very-low
frequency fNIRS fluctuations induced by a rhythmic
mental task accurately differentiate ADHD boys
(average age 11.9 years) from non-ADHD controls
at an individual level. We propose a method, based
on synchronization analysis in the time-frequency
plane, to find distinctive oscillatory patterns from
which to extract simple distance-based features fol-
lowing a shapelet-like approach. We also propose an
SFFS wrapper algorithm combined with ML linear
models as evaluators for efficient feature selection.
The results showed that with only three key features,
LR and LDA classifiers achieved accuracy, sensitivity
and specificity scores of nearly 100%, outperforming
other fNIRS studies. An advantage of this proposal is
greater transparency of the classification outcomes,
since LR and LDA models are linearly interpretable
and key features are visualizable as physiologically sig-
nificant hemodynamic patterns. We also suggest that
predictive models can be improved by targeting spe-
cific samples of ADHD patients. Our observation of
altered specific frequency components is compatible
with previous studies pointing to ADHD-associated
abnormalities in cortical maturation and neural net-
works connectivity, particularly those related to PFC
functioning and autonomic-cognitive interaction. To
our knowledge, themethodological approach presen-
ted here has not been previously tested in fNIRS-
based ADHD studies. It could also be used to assess
other types of brain disorders. Despite our promising
results, we emphasize that further rigorous valida-
tion is required to confirm the ability of the method

to provide robust biomarkers as adjunct indicators
applicable into the clinical practice.
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Joaquín Ibañez-Ballesteros https://orcid.org/0000-
0001-8606-4221

19

https://orcid.org/0000-0001-8606-4221
https://orcid.org/0000-0001-8606-4221
https://orcid.org/0000-0001-8606-4221


J. Neural Eng. 20 (2023) 036018 S Ortuño-Miró et al

References

[1] Biederman J 2005 Attention-deficit/hyperactivity disorder:
a selective overview Biol. Psychiatry 57 1215–20

[2] Canals J, Morales-Hidalgo P, Jané M C and Domènech E
2018 ADHD prevalence in Spanish preschoolers:
comorbidity, socio-demographic factors, and functional
consequences J. Atten. Disord. 22 143–53

[3] Thapar A and Cooper M 2016 Attention deficit
hyperactivity disorder Lancet 387 1240–50

[4] Gadow K D, Drabick D A G, Loney J, Sprafkin J,
Salisbury H, Azizian A and Schwartz J 2004 Comparison of
ADHD symptom subtypes as source-specific syndromes J.
Child Psychol. Psychiatry 45 1135–49

[5] Campbell S B 2000 Attention-deficit/hyperactivity
disorder: a developmental view Handbook of Developmental
Psychopathology (Boston, MA: Springer) pp 383–401

[6] Faraone S V et al 2021 The world federation of ADHD
international consensus statement: 208 evidence-based
conclusions about the disorder Neurosci. Biobehav. Rev.
128 789–818

[7] Posner J, Polanczyk G V and Sonuga-Barke E 2020
Attention-deficit hyperactivity disorder Lancet 395 450–62

[8] American Psychiatric Association 2013 Diagnostic and
Statistical Manual of Mental Disorders (Arlington, VA:
American Psychiatric Association)

[9] Adesman A R 2001 The diagnosis and management of
attention-deficit/hyperactivity disorder in pediatric
patients Prim. Care Companion J. Clin. Psychiatry 3 66–77

[10] Halperin J M, Bédard A C V and Curchack-Lichtin J T 2012
Preventive interventions for ADHD: a neurodevelopmental
perspective Neurotherapeutics 9 531–41

[11] Pereira-Sanchez V and Castellanos F X 2021 Neuroimaging
in attention-deficit/hyperactivity disorder Curr. Opin.
Psychiatry 34 105–11

[12] Loh HW, Ooi C P, Barua P D, Palmer E E, Molinari F and
Acharya U R 2022 Automated detection of ADHD: current
trends and future perspective Comput. Biol. Med.
146 105525

[13] ADHD-200-Consortium 2012 The ADHD-200
Consortium: a model to advance the translational potential
of neuroimaging in clinical neuroscience Front. Syst.
Neurosci. 6 62

[14] Arbabshirani M R, Plis S, Sui J and Calhoun V D 2017
Single subject prediction of brain disorders in
neuroimaging: promises and pitfalls Neuroimage
145 137–65

[15] Pulini A A, Kerr W T, Loo S K and Lenartowicz A 2019
Classification accuracy of neuroimaging biomarkers in
attention-deficit/hyperactivity disorder: effects of sample
size and circular analysis Biol. Psychiatry Cogn. Neurosci.
Neuroimaging 4 108–20

[16] Mauri M, Nobile M, Bellina M, Crippa A and Brambilla P
2018 Light up ADHD: I. Cortical hemodynamic responses
measured by functional near infrared spectroscopy (fNIRS)
J. Affect. Disord. 234 358–64

[17] Pinti P, Tachtsidis I, Hamilton A, Hirsch J, Aichelburg C,
Gilbert S and Burgess P W 2018 The present and future use
of functional near-infrared spectroscopy (fNIRS) for
cognitive neuroscience Ann. New York Acad. Sci. 1464 1–25

[18] Güven A, Altınkaynak M, Dolu N, İzzetoğlu M, Pektaş F,
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