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Abstract: Artificial intelligence (AI) has recently intensified in the global economy due to the great
competence that it has demonstrated for analysis and modeling in many disciplines. This situation
is accelerating the shift towards a more automated society, where these new techniques can be
consolidated as a valid tool to face the difficult challenge of credit fraud detection (CFD). However,
tight regulations do not make it easy for financial entities to comply with them while using modern
techniques. From a methodological perspective, autoencoders have demonstrated their effectiveness
in discovering nonlinear features across several problem domains. However, autoencoders are opaque
and often seen as black boxes. In this work, we propose an interpretable and agnostic methodology
for CFD. This type of approach allows a double advantage: on the one hand, it can be applied
together with any machine learning (ML) technique, and on the other hand, it offers the necessary
traceability between inputs and outputs, hence escaping from the black-box model. We first applied
the state-of-the-art feature selection technique defined in the companion paper. Second, we proposed
a novel technique, based on autoencoders, capable of evaluating the relationship among input and
output of a sophisticated ML model for each and every one of the samples that are submitted to
the analysis, through a single transaction-level explanation (STE) approach. This technique allows
each instance to be analyzed individually by applying small fluctuations of the input space and
evaluating how it is triggered in the output, thereby shedding light on the underlying dynamics of
the model. Based on this, an individualized transaction ranking (ITR) can be formulated, leveraging
on the contributions of each feature through STE. These rankings represent a close estimate of the
most important features playing a role in the decision process. The results obtained in this work were
consistent with previous published papers, and showed that certain features, such as living beyond
means, lack or absence of transaction trail, and car loans, have strong influence on the model outcome.
Additionally, this proposal using the latent space outperformed, in terms of accuracy, our previous
results, which already improved prior published papers, by 5.5% and 1.5% for the datasets under
study, from a baseline of 76% and 93%. The contribution of this paper is twofold, as far as a new
outperforming CFD classification model is presented, and at the same time, we developed a novel
methodology, applicable across classification techniques, that allows to breach black-box models,
erasingthe dependencies and, eventually, undesirable biases. We conclude that it is possible to
develop an effective, individualized, unbiased, and traceable ML technique, not only to comply with
regulations, but also to be able to cope with transaction-level inquiries from clients and authorities.
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1. Introduction

As already stated in the companion paper [1], the rapid development of e-commerce
online payment has become more and more popular, and therefore it also represents a
challenge, not only to secure the transactions but also to avoid false positives in fraud
detection algorithms. According to a report by The Alan Turing Institute [2], the number
of transactions wrongly rejected due to suspected fraud can pose an equivalent threat to
actual fraud in the industry of the financial services. Another study stated that transactions
that were wrongly declined due to suspected fraud account for USD 118 billion in retail
losses [3]. As a consequence, the banks are now forced to devote an increasing amount of
resources to discriminate among legitimate transaction and fraud to cope with the difficult
dilemma of avoiding impostors’ actions while not limiting e-commerce’s inexorable growth.
However, this is not an easy task, since scammers try their best to ensure that the profiles
of the transactions differ as little as possible from the real ones, trying to model extremely
assimilated behavioral profiles [4]. To cope with this emerging new reality, financial
institutions hire skilled expert fraud software engineers, who develop full packages of new
and sophisticated strategies to pursue this purpose.

Fraud detection primitive strategies, such as expert systems, were very much related
to checklists of risk factors, e.g., repeated declined transactions, multiple failed attempts to
enter a credit card number, or living beyond means. However, the emergence of machine
learning (ML) techniques has allowed the creation of new schemes capable of providing
more adequate and precise alternatives to respond to the potential (or actual) security
threats based on historical transactional records. From a mathematical perspective, credit
fraud detection (CFD) could be seen and analyzed as a novelty detection problem [2]. In
this direction, a possible approach could be to find lower dimensional embeddings to
model the original dataset, where anomalies are expected to be detached from normal
data [5].

Autoencoders have recently emerged as a resourceful deep learning family of methods
for dimensionality reduction and feature extraction. According to the literature, these
techniques have shown to offer improvements in accuracy, computational efficiency, and
the subsequent user satisfaction in their applications [6]. Even so, one of the big challenges,
and a potential barrier, for autoencoders is the lack of visibility of the underlying model
in the encoding and decoding sides. Therefore, these data-driven models are frequently
considered as black boxes, meaning that although inputs and outputs are known, and
regardless of the good results provided in many problems, the model itself exhibits relevant
limitations to show the role played by each of the features in the final outcome. That is
why the authorities and regulatory bodies have shown, to date, significant reluctance to
accept a generalized use of these modern techniques [7]. Although this reality becomes a
clear limitation, the wide consensus among researchers and financial institutions suggests
that ML still has great potential, even though a number of challenges still require special
attention [8]. As an example, in the case of the United States and in order to avoid any
discrimination, the features such as race, sex, or marital status, or any related one, should
be very carefully applied or even not used according to existing regulations [9]. Moreover,
an algorithm to lend money could be found in violation of this prohibition even if the
algorithm does not directly use any of the prohibited categories, but instead it uses data that
can be highly correlated with the protected categories. Lack of transparency is becoming a
real challenge in fact in the European Union, as the General Data Protection Regulation
adopted in 2018 gives its citizens the right to receive an explanation of decisions based on
automated processing [8]. The justification for this type of regulation lies in the potential
bias that the hidden stages of the model could be applying, thus leaving the individual, the
regulatory body, and the risk assessment entity devoid of tools to identify any undesirable
situations that finally might be reproducing [6,10]. Even more, the data used to train the
ML models may not be representative for the problem [8], sometimes driving eventually to
inaccurate models, with limited generalization capabilities. Having said that, and returning
to regulatory restrictions, the entities understand the need for a regulation that ensures that
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the use of technology cannot inadvertently cause discriminatory treatment of people, but
they also agree on the need for a clearer guidance from the authorities that offer a reasonable
path towards the necessary and effective application of AI in this field [11]. Considering
that regulatory bodies and administrative authorities will not allow financial institutions
to adopt AI models without addressing the necessary description of the decision process
being followed [7], a suitable way to overcome the regulatory issues and the mistrust with
respect to the algorithms being used is to provide the regulators, authorities, and financial
entities with supplemental environments and tools that contribute in an effectual way
to the real interpretability. Therefore, we can state that decision models should be easy
to understand, meaningful, and traceable. This last one means that each initial variable
or feature needs to be linked to final decision score through a visible value, process, or
function [7,9,12].

To accomplish this challenging goal, state-of-the-art methods in novelty detection
such as autoencoders can be extremely useful, as well as a new set of strategies to offer
interpretability on what was traditionally considered a black-box model. Under this per-
spective, the contribution of this work is a novel methodology to address the mentioned
complexity. The methodology proposed in this work has a triple objective: First, to reduce
the dimensionality by selecting the informative features; second, to efficiently compress and
encode data to isolate fraud transactions from non-fraudulent ones; third, to propose, and
eventually evaluate, novel techniques to offer a comprehensive explanatory model in CFD.
To achieve this, we propose an explanation at the level of a single instance artificially gener-
ating a set of data around said instance (through random sampling and using controlled
perturbations), and finally, applying a linear learning model to the distance between the
instance and the sampling data. This last step represents the main difference with respect
to previous applications in terms of the ability to tie input features to the outputs, thus
providing the desirable interpretability. To approach the dimensionality reduction, we use
the positive results included in the companion paper [1] where we applied a novel feature
selection technique, the informative variable identifier (IVI) [13], which can distinguish
among informative, redundant, and noisy variables or features.

This work is organized as follows. A short review of the vast literature in the field
of CFD and ML-based systems is presented in Section 2. In Section 3, a summary of
new nonlinear ML algorithms used in this work is described, as well as explanatory
strategies to convey an effective interpretation, as single transaction-level explanation
(STE) and individual transaction rankings (ITR) are introduced and formally described. In
Section 4, the different datasets are defined, and we present the qualitative and quantitative
benchmarking over different datasets while maintaining the interpretability. Finally, in
Section 5, discussion and observations are given, and conclusions are summarized.

2. Related Work

CFD is the process or the set of techniques followed in order to classify a transaction
as fraudulent or not, in contrast to legitimate operations. This process could be understood
from a methodological perspective as under the novelty detection category of data-driven
problems. Nowadays, a large number of the transactions take place digitally, by means
of credit cards and other electronic payment systems, increasingly challenging the fraud
control systems of financial institutions worldwide. Although the fraud accounts only
for 0.1% of the total transactions, the large and growing volume of the electronic market
has forced the industry to devote tremendous efforts aimed to secure this new and almost
indispensable way of working [14].

Among many novelty detection methods, the design of low-dimensional embeddings
is becoming a relevant strategy in ML. This method suggests that once the original domain
data, including anomalies and normal samples, are introduced in the model, examples are
squeezed into a lower dimensional space, where these distinctive classes are expected to be
separated. The projection of all samples in the new space, also known as the latent space, is
referred to in the literature as a manifold or as an embedding, and it can represent a useful
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and illustrative plot of the dataset. In a second step, those low-dimensional embeddings are
transferred back to the original space through a process called reconstruction. The training
process which minimizes error or distance among samples from the original space and
reconstructed space will perform the rest. If the training process concludes successfully,
it is expected to yield a picture of the true intrinsic nature of the data in the latent space,
without unnecessary features or noise. In other words, if the high-dimensional dataset is
compressed into a limited number of new features, and it is subsequently reconstructed
into the original space back again with a minimum error, then we can reckon that the
features of the low-dimensional space keep all the relevant features of the initial samples.
Principal component analysis (PCA) could be understood as a low complexity and linear-
type example of this set of techniques, where the new features are ranked by variance [5].
In the same direction and with the advent of deep learning, a new group of techniques is
being opened. On the one hand, specialized embedding approaches for natural language
processing have emerged [15–21], and on the other hand, autoencoders are becoming
among the most promising approaches for feature extraction and dimensionality reduc-
tion [22]. An autoencoder [23,24] is a multiple layer neural network that compresses the
high-dimensional data into a low-dimensional latent representation (encoder), combined
with a later expansion to the original space (decoder). As a result, autoencoders are able to
discover a lower-level representation of a higher dimensional data space [25]. Considering
that the autoencoder training processes tend to minimize the distance among original input
space and the regenerated space through the two-stage encode–decode methodology, it
could be understood that the existing low-dimensional (or latent) space summarizes the
essence of the actual data, as the decoder is capable of expanding those low-dimensional
data to the original dimension. In other words, we could make a case saying that the hidden
layers of the encoder are able to extract the features that better represent the actual data
with the current dimensional constraint. This procedure, although considered a black-box
method, shows good performance in the CFD field according to literature [26,27].

As we introduced in Section 1, financial services and, more specifically, CFD are highly
regulated areas, with almost no room for black boxes, for models which are difficult to
understand, or for architectures without adequate transparency in their use of the data. All
this leads to the need for interpretability as a crucial element when it comes to breaking
the barriers of lack of transparency in traditional ML developments. A good number of
papers have delved into this issue, pointing out how the increase in complexity works
against transparency [11], how regulations of the United States and Europe tighten their
vigilance on the correct use of the features [8], and how the absence of these criteria can
lead to unacceptable bias for the application of ML techniques [11]. An important challenge
in ML is interpretability, which refers to the interpretation of the reasons behind the model
decision in a way that humans can understand, that is, human beings would be able to have
full understanding about the model logic [7]. However, in the field of financial services,
there is no shortage of entities that point out the difficulty of making use of the powerful ML
tools for fraud detection and simultaneously complying with the increasingly restrictive
regulatory requirements. This does not mean that regulation is seen as an unjustified barrier
to ML deployment, although some entities do emphasize the need for a certain guidance on
how to take it into consideration in the context of the CFD architectures [11]. To cope with it,
and according to existing literature, financial institutions rely on using simple interpretable
models, such as decision trees [28] or linear models [12]. These kinds of models are easy to
understand, and their predictions are straightforwardly explained. In the case of decision
trees, for instance, interpretation can be followed through the branches, and in the case of
linear models, interpretations depend on the weights for each feature in the model. In other
direction, new strategies are currently focused on local surrogate models and specifically
on local interpretable model-agnostic explanations (LIME) [29]. In this last method, the
authors, instead of training a global surrogate model, use local surrogates to approximate
predictions of the underlying black-box model. This is performed by modifying a single
instance by tweaking the feature values and observing the impact on the output. This
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procedure is reproduced at a local level, and it effectively generates a valid surrogate model
for a tight environment of the local instances. By doing so, LIME generates an interpretable,
agnostic, and locally meaningful alternative to the original black-box data model. Finally,
other studies have elaborated on the binomial interpretability vs. accuracy. In [30], the
authors elaborate on the trade-off among the cost of interpretability vs. the predictive
capabilities, concluding that currently, in financial services, interpretability is even more
important than accuracy, as it is mandatory to comply with regulations.

It is clear, according to the literature [31,32], that dimensionality reduction is more
than needed in order to be able to classify and identify anomalies in a daily growing dataset
environment. It is quite frequent in the artificial intelligence business to think that the
larger the number of features, the more possibilities we must articulate, as a feasible model
that fits the latent reality. This often means a continuous exponential increase in features,
and consequently, the quality of the data required to process ML algorithms gradually
decreases. This effect has long been known as the curse of dimensionality [33,34]. In
fact, higher dimensions lead to the existence of redundant information, noisy samples,
and irrelevant information, which may cause overfitting of the model and may increase
the error rate of the learning algorithms. To handle these problems, direct and previous
dimensionality reduction can be applied. The classical approach to the previous issues is the
use of feature selection (FS) techniques. FS is used to clean up and pre-evaluate the possible
contribution of the features in terms of valid information by removing noisy, redundant,
and irrelevant data [32]. FS methods can improve accuracy, efficiency, effectiveness, and
even interpretability to the learning process. For this reason, a large number of automatic
FS methods have been developed in the past. In FS, a subset of features is selected from
the original set, based on the evaluation of the actual intrinsic information of each feature,
namely, the redundancy and the relevance [31]. During this process, features are classified
into the following four groups according to their eventual effective information: (1) noisy
and irrelevant; (2) redundant and weakly relevant; (3) weakly relevant and non-redundant;
(4) strongly relevant. Popular approaches to carry this out are filter methods, wrapper
methods, and embedded methods. Filter methods analyze the usefulness of each single
feature through the use of relevance techniques, mainly from hypothesis tests or estimates
of mutual information [35]. Wrapper methods solve ML problems to assess the relevance of
each feature in the input space [36]. Finally, embedded methods, such as recursive feature
elimination (RFE) [37], aim to increase their efficiency by combining the FS procedure
with training a subsequent learning machine. Many of these embedded methods impose
a regularization on the solution. A special mention is required for a recently proposed
novel feature selection method, called IVI [1,13]. This technique is capable of isolating
informative, redundant, and noisy features automatically. One of its main characteristics is
being able to transform the distribution of the input variable space into a coefficient feature
space by using existing linear classifiers or efficient weight generators. At this point, it is
necessary to mention that a large number of feature selection methods have been published
in the literature, with uneven results in their application in different disciplines. It is not
the object of this article to carry out a detailed analysis of each and every one of these
techniques, but for the reader’s convenience and with the intention of offering a summary
of the different typologies of published methods, hereafter in Table 1 a schematic summary
is presented for the different types of techniques as published in various reviews [32,38],
including a new category for the informative variable identifier (IVI) that we included in
this paper [13].
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Table 1. Summary table of feature selection methods (FS) present in the literature according to the
basic techniques used [32,38].

FS method Summary

Filter methods They use statistical techniques to evaluate the relation-
ships among characteristics (i.e., Pearson’s correlation, chi-
square) [35].

Wrapper methods They are based on the inferences that we draw from a previ-
ous model, and we decide to add or remove features from
our subset (i.e., forward feature selection and backward
feature selection) [36].

Embedded methods They combine the qualities of filter and wrapper methods.
They are implemented by algorithms that have their own
built-in feature selection methods (i.e., RFE) [37].

IVI It is capable of identifying the informative variables and
their relationships. It transforms the input-variable space
distribution into a coefficient-feature space [1,13].

3. Materials and Methods

This section is structured as follows. First, all datasets are introduced and described.
Second, a brief reference of ML algorithms used in this work is presented. Third, the
FS technique applied here, namely, the IVI algorithm, is described as a novel and key
strategy to pursue interpretability. Next, the proposed methodology developed in this
work is shown, and finally, the explanatory strategies to effective guide interpretability
are presented.

3.1. Datasets

One of the main problems in CFD literature is the lack of information due to the
confidentiality of the data such that it is not easy to find representative, informative, and
open datasets. For this reason, we have first used a synthetic dataset to validate our
proposal [1], thus paving the way for a later analysis over real datasets.

Synthetic Dataset. The first dataset introduces a synthetic linear classification problem
with a binary output variable, and it was developed in the original proposal of the IVI
algorithm [13] with 485 input features. For this work, and for reasons of representability
and execution time, we have used a subset of features while keeping the feature names.
This subset was selected with the first features of each group. The dataset used for this
work includes a set of 23 input features distributed as follows: 11 input features drawn
from a normal distribution, 5 of them are used to linearly generate a binary output variable,
specifically f 0, f 1, f 2, f 3, and f 4. Therefore, these five features will be informative for the
problem. A set of another 12 features are randomly created with no relation to the previous
ones and so they could be considered as noisy and non-informative features. Additionally,
a new group of 6 features are computed as redundant with the informative input features.

German Credit Dataset. This set is known as German Credit Fraud (Stattog) [39],
and it contains real data used to evaluate credit applications in Germany. We used a
version of this dataset that was produced by the Strathclyde University. The German Credit
Dataset contains information on 1000 loan applicants. Each applicant is described by a
set of 20 different features with a binary output variable. Among these 20 features, 17 of
them are categorical while three are continuous. There are no missing values. To facilitate
FS and in order to train the models, the values of the three continuous attributes were
normalized, and for the discrete features they were converted to one hot encoding. After
these preprocessing stages, the final dataset was 61-dimensional. Detailed information for
each feature can be found in [39] and there is a short description in Table 2.

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Table 2. Summary table of features in German Credit Dataset.

Feature Description

Status Status of existing checking account
Duration Credit duration in months
Credit history Credit application history
Purpose Credit propose
Amount Credit amount
Savings Savings account/bonds
Employment Years in last job
Personal status Personal status and sex
Other parties Other debtors/guarantors
Property magnitude Real estate owned or life insurance
Age Age in years
Housing Rent or own
Number of credits Number of existing credits at this bank
Job Current job
Telephone Proprietary telephone
Foreign worker Is foreign worker
Other payment plans Other installment plans
Credit balance Average credit balance
Location Location
Overdraft Historical overdraft

PaySim Dataset. PaySim simulates mobile money transactions based on a sample of
real transactions extracted from one month of financial logs from a mobile money service
implemented in an African country [40]. The original logs were provided by a multinational
company, who is the provider of the mobile financial service which is currently running
in more than 14 countries all around the world. PaySim covers five of the most important
transaction types: cash-in, cash-out, debit, payment, and transfer. The PaySim dataset
contains information on 6,362,620 transactions. Each applicant is described by a set of
11 different features. For performance reasons, in this work we have selected a subset
transaction with 25,867 transactions selected randomly maintaining a distribution with 80%
non-fraud transactions and 20% fraud transactions. Detailed information for each feature
can be found in [40] and there is a short description in Table 3.

Table 3. Summary table of features in PaySim Dataset.

Feature Description

Step Maps a unit of time in the real world. In this case 1 step is
1 h of time

Type Cash-in, cash-out, debit, payment, and transfer.
Amount Amount of the transaction in local currency.
NameOrig Customer who started the transaction.
OldbalanceOrg Initial balance before the transaction.
NewbalanceOrig New balance after the transaction.
NameDest Customer who is the recipient of the transaction.
OldbalanceDest Initial balance recipient before the transaction.
NewbalanceDest New balance recipient after the transaction.
IsFraud This is the transactions made by the fraudulent agents in-

side the simulation.
IsFlaggedFraud The business model aims to control massive transfers from

one account to another and flags illegal attempts. An illegal
attempt in this dataset is an attempt to transfer more than
200,000 in a single transaction.
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3.2. Ml Algorithms

As we have introduced, the origins of the CFD systems date back to around the late
1990s. Initially, these systems were almost always based on experts’ rules, and with the pas-
sage of time until now, ML systems have been developed to enhance the accuracy [2,4,6,41].
In this respect, linear classifiers based on ML are very useful in CFD because they can be
seen as a transformation from the space of the input features to weightings to each of these
features in the decision process [13]. From this point of view, those weights summarize
the contribution of each feature in the decision process, and they can be used to interpret
the models. A detailed analysis of learning methods has been proposed with the efforts
presented in the companion paper [1]. In the following lines, we first introduce the notation
used throughout the paper. Let X ∈ RN×L be the input data matrix, containing the input set
of vectors in rows, with N observations of L features, where xn is a vector with L features for
n = 1, . . . , N. We consider a classification problem with a binary output variable y ∈ RN ,
grouped in the observations in a vector such that yn ∈ {−1,+1} for n = 1, . . . , N. Second,
we present the summary of new nonlinear ML algorithms, such as the autoencoders, which
we use in the rest of the article.

An autoencoder [42] is a specific type of neural network, which is designed to encode
the input into a compressed and meaningful representation, and then to decode it back
such that the reconstructed input is as similar as possible to the original one. The potential
of autoencoders is to compress high-dimensional data into latent representations, that is
why they are defined as two parts: an encoder and a decoder, where the encoder learns
to map the high-dimensional input space to a latent vector space, and the decoder maps
the latent vector space to the original uncompressed input space. Overall, the output data
matrix X̂ is the result of reconstructing the original input data matrix X. We can see the
architecture of a basic autoencoder in Figure 1.

Figure 1. Architecture of an undercomplete autoencoder with a single encoding layer and a single
decoding layer.

The problem, as formally defined in [43], consists of the transformation from an L
dimensional domain or RL toward a lower dimensional space, RP, recalled as encoder,
followed by a second transformation from the latent space RP to the reconstructed space
RL, recalled as decoder. This problem is defined to minimize the reconstruction error after
the encoding–decoding procedure.
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Variational Autoencoders

Over time, autoencoder models have emerged with different approaches, one of which
are the variational autoencoders (VAEs) [43]. VAE are autoencoders whose encoding
distribution is regularized during their training in order to ensure that its latent space has
good properties, allowing us to generate new samples that are consistent with actual data.
Formally, VAEs are generative models that attempt to describe how the data might be
generated through a probabilistic distribution. Specifically, given an observed dataset X,
we assume a generative model for each datum xi conditioned to an unobserved random
latent variable zi, where θ are the parameters governing the generative distribution. This
generative model is also equivalent to a probabilistic decoder. Symmetrically, we assume an
approximate posterior distribution over the latent variable zi given a datum xi denoted by
recognition, which is equivalent to a probabilistic encoder which is governed by parameters
φ. Finally, we assume a prior distribution for the latent variables zi denoted by p0(zi). The
observed latent variables zi can be interpreted as a code given by the recognition model
qφ(z||x). The marginal log-likelihood is expressed as a sum over the individual data points
as expressed next,

log p0(xi) = DKL
(
qφ(z|xi)||(p0(z|xi)

)
+ φ(θ, φ; xi) (1)

where the first term is the Kullback–Leibler divergence of the approximate recognition
model from the true posterior and the second term is called the variational lower bound on
the marginal likelihood, defined as expressed next:

φ(θ, φ; xi)
.
= Eqφ(z|xi)

[
−log qφ(z|x) + log (pθ(z, x)

]
(2)

Variational inference follows by maximizing φ(θ, φ; xi) for all data points with respect to θ
and φ.

With the intensive use of autoencoders, new techniques have been developed and
techniques commonly used in other algorithms have been adapted to improve their per-
formance, one of which is known as fine-tuning. The goal of fine-tuning is to adjust the
weights of the trained model from the final phase to improve the prediction outcome. This
procedure, based on the concept of transfer learning [44], includes the step of pretraining
neural networks with a generative objective followed by additional training procedures
with a discriminative objective on the same dataset [45], but some other studies follow the
process of reusing weight values from large datasets as initialization in applications with
limited access to labeled data [46]. Let X ∈ RN×L be the input data matrix, containing the
input set of vectors in rows, with N observations of L features. We consider latent space
output variable Y ∈ RP×N , with P being the size of the reduction feature space or latent
space. The algorithm is summarized as shown in Algorithm 1, where an autoencoder is
fitted to obtain the weights, after which the encoder weights are frozen and the softmax
layer is added for readjustment.

3.3. Informative Variable Identifier

In our proposal, we use a recently proposed feature selection method, called IVI [13],
which is capable of classifying the features according to their contribution to the selected
method. Mathematically, IVI methodology is based on the statistical distribution of the
weights of each feature across different ML using a particular resampling technique, such
as bootstrap. The joint statistical distribution of the weights of every input feature is used
to define the features itself, and thus to classify each of them as informative, redundant,
noisy, or not informative. Form a conceptual standpoint, we could state that it transforms
the input-feature space distribution into a coefficient-feature space using existing linear
classifiers or a more efficient weight generator. IVI selects the informative features and then
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it passes them to some linear or nonlinear classifier. Experiments have shown that IVI can
outperform state-of-the-art algorithms in terms of feature identification capabilities, and
even in classification performance when subsequent classifiers are used. A detailed analysis
and the results obtained for IVI algorithm are presented in the companion paper [1].

Algorithm 1 Fine-tuning.
Require: Training set X and result class Y,

1: Initialize the autoencoder AE = { } .
2: Fit AE. AE← AE. f it(X)
3: Freeze all the weights
4: Separate AE in encoder (enc) and decoder (dec)
5: Add Softmax layer to enc

enc′ ← enc + so f tmaxlayer
6: Fit enc′ all layer’s weight freeze except softmax layer

enc′ ← enc′. f it(X, Y)
7: Fit enc’ with unfreeze layer

enc′ ← enc′. f it(X, Y)

3.4. Kendall Rank Correlation Coefficient

In order to evaluate the similarity between different transactions, we have used the
Kendall rank correlation coefficient. Kendall rank correlation coefficient is a statistic used to
measure the ordinal association between two measured quantities. Let (a1, b1), . . . , (an, bn)
be a set of observations of the joint random variables A and B, such that all the values of
(ai) and (bi) are unique. Any pair of observations (ai, bi) and (aj, bj), where i < j, are
said to be concordant if the sort order of (ai, aj) and (bi, bj) agrees: that is, if either both
(ai > aj) and (bi > bj) holds or both (ai < aj) and (bi < bj), otherwise they are said to be
discordant. The Kendall τ coefficient is defined as

τ =
nc − nd
(n

2)
(3)

where the nc is the number of concordant pairs, nd is the number of discordant pairs, and
(n

2) is the total number of pair combinations. In Kendall rank correlation coefficient, the
denominator is the total number of pair combinations, so the coefficient must be in the
range −1 ≤ τ ≤ 1. If the agreement between the two rankings is perfect (i.e., the two
rankings are the same), the coefficient has value 1. If the disagreement between the two
rankings is perfect (i.e., one ranking is the reverse of the other), the coefficient has value −1.
If a and y are independent, then we would expect the coefficient to be approximately zero.

3.5. Interpretability Methodology

This section briefly describes the four stages and five steps of the proposed method-
ology for the interpretability implementation. In Figure 2, we graphically depict the
proposed architecture of the process. This methodology is sequentially described step by
step, as follows.

• Step 1: IVI feature selection. Common informative features are extracted with the
IVI algorithm.

• Step 2: Application of the MIFF filter [1].
• Step 3: Latent representation. Compress high-dimensional to a latent space in order to

isolate fraud transactions.
• Step 4: STE interpretability. Feature weight evaluation for individual transactions.
• Step 5: Clustering through ITR.
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Figure 2. Methodology applied to formulate interpretability. The five steps are schematically
depicted here, namely: (I) selection of variables using IVI; (II) filtering of variables through
MIFF (maximally informative feature filter); (III) latent space evaluation; (IV) STE modeling; and
(V) ITR characterization.

For the first step of our methodology, we focused on FS. To achieve this, we applied
a recently proposed FS technique called IVI [13], capable of identifying the informative,
redundant, and noisy features. The IVI algorithm introduced in the original work was
implemented with CME as a weight generation method designed to be competitive with the
standard linear algorithms. In our methodology, we expanded the weight generator using
different classification algorithms, SVM, LDA, LR, and GB (see the companion paper [1]).

It is common for FS to fall into two biases, on the one hand due to biases in the training
data and on the other hand the biases are due to the intrinsic characteristics in the ML
algorithms used. In this sense, the second step of our methodology focused on feature
selection extension, reducing the bias and obtaining a global view of the problem. Using
the IVI algorithm, we resampled the data to train ML algorithms, and in this setting, we
minimized the training data bias. In the case of the bias in other ML algorithms, we used
and combined different ML algorithms, aiming to discover which of these features were
truly informative in all cases. For that purpose, the features needed to be subjected to a
filtration process, at the end of which only the features that appeared as consistent were
included in our model. In the companion paper [1], we had established two kinds of filters
over the relevant features extracted by using IVI and leaving aside the redundant and noisy
features: maximallyinformative features filter (MIFF) and the recurrent features filter (RFF).
In this work, we focused on MIFF because we obtained the best result using this filter in
the companion paper. The MIFF filter consists of selecting those features that at least have
been retrieved in two of the ML algorithms used. This filter is less restrictive and provides
moderate feature reduction compared with the RFF. In contrast, this filter is able to identify
relationships among features achieving higher prediction accuracy.

3.6. Latent Representation

Latent space refers to a latent multi-dimensional space that contains feature values that
we cannot interpret straightforwardly, but which encodes a meaningful internal representa-
tion of externally observed events, that is, it is simply a representation of compressed data
in which similar data points in the latent space are also closer together in the input space.
In our methodology, we built an autoencoder with an encoder and a decoder stage, where
the encoder compresses the real space into a latent space in 3D for visual representative
reasons. With this in mind, the autoencoder was built with a first layer with the number
of cells being the number of features selected in the IVI method with the MIFF filter. The
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second layer has three cells (to achieve 3D representations), and finally the third layer is
the reconstruction with latent space to the input space again. As it can be appreciated, the
encoder is built with the first and second layers, and the decoder corresponds with the
third layer. The activation functions between layers used were rectified linear units. Once
we have defined the autoencoder architecture, we fit the autoencoder with the training
dataset and the results for the stacked neural network can be improved by performing
back propagation on the whole multilayer network. This process is often referred to as
fine tuning. In this way, and to obtain a higher dispersion in the latent space, we applied a
fine-tuning by adding a last softmax layer to the encoder and we fit again while freezing
the encoder layers and only allowing the gradient to backpropagate through the softmax
layer. We should recall at this point that the compression process runs from the initial
domain of each dataset defined in Section 3.2 (of 23, 61, and 14 variables) to a latent space
of only three dimensions. For a better understanding, Figure 3 represents an overview of
the fine-tuning process.

Figure 3. Fine-tuning process. (a) Represents the autoencoder architecture. (b) Represents the encoder
with an additional softmax layer. In this stage, we freeze the encoder layers and fit, allowing the
gradient to backpropagate only through the softmax layer. (c) We again train the encoder and softmax
layer, unfreezing the encoder layers. (d) We remove the softmax layer and we train the encoder and
decoder freezing the encoders layers.

3.7. Interpretability

This section describes how to achieve interpretability over the decision process. First,
problem formulation is defined. Second, we introduce the transaction-based interpretability,
by developing a single transaction-level explanation strategy (STE). Third, we present the
details of the individual transaction rankings (ITR) algorithm, which allows us to sort features
by significance. Fourth, we explain how to build global profiles based on Kendall correlation
between ITR.

3.7.1. Problem Formulation

The following lines describe the credit fraud detection interpretation system (CFDIS).
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Notation 1. Let CFDIS = 〈T, F, C〉 be an interpretability system for CFD, where:

• T = {t1, . . . , tn} is the set of transactions participating to the system;
• F = {f1, . . . , fm} is the set of relevant features in a transaction;
• C = {c1, . . . , cg} is the set of classes in a CFD (fraud, non-fraud).

Thus, we formally define a transaction Tij ∈ T as Tij = 〈ti, cj, Wij, F〉 where the
transaction ti is classified as cj and its interpretability is based on the numerical weights Wij
for all features in F. Typically, cj is defined as the classes for fraud or non-fraud, assuming
that they are known. We define a ranking function � as the ordering of a subset of features
according to their contribution to the decision process. Taking into consideration this
definition, we make the following assumption:

Assumption 1. Each transaction ti ∈ T has a set of ordered features in the decision process,
denoted by ρi = (Fi,�Oi ), with Fi ⊆ F and representing its features. This means that the
transaction ti has a partial ordering of a subset of features Fi ⊆ F according to a certain ordering
function �Oi , such that �Oi : Fi → R allows the transaction ti to assign a value to a certain feature
in Fi, representing its weight in the decision process, regarding this particular transaction.

Example 1. For instance, let F1 = {living beyond means, lack or absence of transaction trail,
car loans} be the set of features, which are made up of transaction t1’s informative features in the
decision process. Transaction t1 runs its ordering function �Oi , obtaining the weight Wij:

• �Oi (Living beyond means) = 4.9.
• �Oi (Lack or absence of transaction trail) = 4.7.
• �Oi (Car loans) = 5.2.

Then, the most representative features for t1 in the decision process are ρ1 = (car loans �
living beyond means � lack or absence of transaction trail).

Therefore, if in a transaction the weight of feature 1 is higher than the weight of
feature 2, we can infer that the decision process is being more influenced by feature 1.

Definition 1. Using the aforementioned notation, the problem that we tackle in this work is defined
as follows:

1. An interpretability system for CFD is represented by CFDIS = 〈T, F, C〉;
2. A set {ρi} of internal ordered weights Wij for each feature F;
3. A set

{
Ti ⊆ T

}
of transactions where a subset Fi ⊆ F of features, belonging to ρi, are the

features more representative for the decision process.

The problem is finding how to build a set describing the contribution of the features
from the set of features F given by such T.

Our proposal 1. As a solution to the aforementioned problem, we propose to couple the
CFDIS with a mechanism that is able to evaluate the weights for each feature and for
each transaction in the latent space. For that purpose, we build a VAE, as expressed in
Equations (1) and (2), to obtain the latent space representation of the transaction that
we want to interpret, and we generate a custom dataset with random samples using
perturbations around the instance. To achieve this, we propose an STE with this custom
dataset with artificial samples around the instance. These perturbations in the latent space
are weighted according to their proximity to the instance of interest using a decision
function. Once we have built the ITR for the more significant features, we repeat this
process for all the transactions building a global ranking. However, our approach focuses
on building individual rankings, which we consider has an enormous potential, as it allows
us to discover the most significant features of the decision process.



Appl. Sci. 2022, 12, 3856 14 of 28

3.7.2. STE Discovers the Feature Weights

As an introductory and illustrative synthesis, we can say that our STE analysis imple-
ments and validates a linear surrogate model, which validly approximates the behavior
of complex black-box models for each of the samples under study. Accordingly, the
weights of the aforementioned linear model could be considered as the summarized con-
tributions of the complex and black-box model under evaluation, for each individually
assessed instance.

Bearing this underlying global rationale in mind, we can describe the detailed process
followed in the implementation. We start by using the selected and filtered features
previously described earlier using the IVI algorithm and the MIFF filter. We implement
the encoder by applying a fine-tuning technique that better encapsulates the relevant
information of the input space in a 3D latent space. Once this encoder is built, a variational
autoencoder will allow us to generate new surrogate and viable input samples compatible
with the existing reality. Then, by using the realistic projected samples that are close
enough according to a certain score distance in the latent space, a linear regression model
is implemented. This linear model will be considered as the surrogate model that best
matches the complex black-box model (an autoencoder model in our case) for such set of
samples. Therefore, the weights of such linear model can be quantitatively used as the local
single instance contribution of the aforementioned black-box model. The detailed process
being followed is described in Algorithm 2, where a VAE is fitted to obtain random samples
in the latent space around the transaction that we want to interpret. With these samples,
we will calculate the score difference in the latent space with respect to the transaction that
we want to interpret using a classifier. These score differences in the latent space are used
to obtain weightings to each of the input features in the decision process by means of a
linear model.

Algorithm 2 Interpretability. STE algorithm
Require: Training set in real space is X, In is the transaction to interpret, encoder enc,

number of resamples d, and number of bootstraps resamples s.
1: Split the set X into two subsets, Xtrain with Ytrain and Xtesti with Ytesti , and number of

bootstraps resamples s.
2: Initialize the VAE = {}.
3: Fit VAE. VAE← VAE. f it(Xtrain).
4: Generate realistic synthetic data. X′ ← VAE.predict(Xtest).
5: Execute encoder to obtain the position in the latent space for instance In.

InLS = enc.predict(In).
6: Execute encoder to obtain the position in the latent space for Xtrain.

XtrainLS = enc.predict(Xtrain).
7: Fit a classification model in the latent space CM.

CM← CM. f it(XtrainLS , Ytrain).
8: Execute encoder to obtain the position in the latent space for realistic synthetic data X′.

SinLSi = enc.predict(X′i) with i = 1, . . . , d.
9: Calculate score variation in the latent space.

Yscorei = (CM.score(SinLSi )− CM.score(InLS)) with i = 1, . . . , d.
10: for b← 1 to s do
11: Generate a random subset of realistic synthetic data in real space with size Nb, and

its distance in score to the Instance to interpret in in the latent space.
XB = X′k, with k = 1, . . . , Nb.
YB = Yscorek , with k = 1, . . . , Nb.

12: Fit linear model.
Mod← LinearModel. f it(XB, YB).

13: Obtain the weight vector W∗(b) using XB and y YB.
14: Save weight vector X∗(b) in the bth column of matrix W∗.
15: end for
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3.7.3. Building the ITR

As we indicated above, our proposal provides a novel mechanism to understand why
the decision process works for an individual transaction in a CFDIS. Accordingly, the
method is agnostic from the mechanism that we use to obtain the latent space; in this way,
if a more powerful mechanism appears in the state of the art, it is compatible with said
proposal. That is, if instead of using an autoencoder we use another algorithm, through
STE and generating random samples by perturbations around the instance, we can also
determine the contribution for each feature. Once the mechanism is decided, we can use
this black box to obtain the weights of each feature. In this work we use autoencoder
approaches to obtain the latent space, and, from there, the weights.

Considering the weights obtained using STE, through ITR, we build a ranking of
individual transactions. This ranking captures the order of features, allowing us to know
for each individual transaction which features are the most influential in the decision
process. Formally, it can be expressed as follows.

Definition 2. An ITRi for the transaction ti participating into the CFDIS is an estimation ∆t
i of

its more representative features ρi, such that:

ITRi = ∆t
i = (Fi,�O′i

) (4)

where:

• Fi ⊂ F is a subset of features used in the decision process in the ti;
• �O′i

is an ordering function, such that O′i : Fi × tij × Enc→ R assigns a value to a certain

feature in Fi taking into account the result of applying a lineal classifier in the latent space
using autoencoder to a transaction tij.

Example 2. Let us illustrate this definition by the following example. For instance, let F1 = {living
beyond means, lack of transaction trail, car loans} be the set of features, which are made up of
transactions t1, t2, and t3 with different weights obtained using STE:

• t1 : (car loans) = 5.2 � (living beyond means) = 4.9 � (lack of transaction trail) = 4.7
• t2 : (car loans) = 3.9 � (living beyond means) = 3.7 � (lack of transaction trail) = 3.2
• t3 : (lack of transaction trail) = 4.2 � (living beyond means) = 3.7 � (car loans) = 3.1

Then for the transactions t1 and t2 we can see have the same ITR (car loans) � (living
beyond means) � (lack of transaction trail) and t3 have different properties with other ITR (lack of
transaction trail) � (living beyond means) � (car loans).

We can see the process to calculate ITR summarized as shown in Algorithm 3.

Algorithm 3 Interpretability. Obtain individual transaction rankings
Require: Training set in real space X, number of features L, number of transactions k

1: Calculate weights for all instances
Wi ← STE(Xi) with i = 1, . . . , k.

2: Generate individual ranking for each transaction.
3: for b← 1 to k do
4: Depending on the weights of each feature, we obtain its numerical position in the

significance ranking, where the highest weight is the first in the ranking and the
lowest is the last.
ITRb = generateRanking(Wb).

5: end for

3.7.4. Building Global Profiles

Once we developed the ranking of the feature contribution for every single instance
under study, or ITR of that very instance, we can hypothesize that the samples or trans-
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actions sharing the same ITR might also be sharing other properties, for example, they
very likely are close in the latent space. This reasoning is consistent with the fact that we
developed the weights/contributions of the features that guided the ITR development
based on the proximity of the samples in the latent space, allowing us to consider that this
approach does not move away from the line of argument, but, on the contrary, it closes the
loop, consolidates the proposed model, and can be viewed as a tool to validate previous
lines. Although this is not necessarily true both ways, as being close in the latent space
would mean that they very likely might be sharing ITR, but not all samples with same
ITR, they will necessary be in the same area in the latent space. Different areas might
share the ITR.

Having said that, we proposed a Kendall correlation analysis to evaluate similarity
among ITR of different instances opening the door to cluster the samples (based on samples
with the same ITR), attending to this measurement, and defining a new global property to
profile the samples that keep common characteristics, paying attention to the ITR.

The procedure to address this analysis was Algorithm 4, where we calculate Kendall’s
correlation for all transactions and, in order to evaluate the similarity, we cluster with the
unique values.

Algorithm 4 Interpretability. Obtain profiles
Require: Features weight by transaction W, individual transaction ranking ITR, number

of transaction k
1: Calculate the Kendall-Correlation between all the instances.
2: for b← 1 to k do
3: corrb = kendall(ITRb, ITR).
4: end for
5: unique values from correlations
6: for c← uniqueValues(corr) do
7: Xc = instancesSameFeatureRanking(W, ITRb, c).
8: end for

4. Experiments and Results

In this work, we propose a novel procedure to simultaneously face the double chal-
lenge of applying new, powerful, and proven AI tools, while maintaining the interpretability
of the underlying descriptors, thus allowing compliance with the rigorous regulations of
data protection and non-discrimination in force for financial institutions. The developed
methodology helps the interpretable linear methods by capturing the relevant features,
leaving aside the black boxes, while minimizing the potential bias.

In this section, the results of the previously described methodology for FS, for accuracy
measurements, and for interpretability are shown.

4.1. Features Selection (IVI)

Following the framework of our previous work [1], an FS technique was applied to all
datasets, including the new dataset. These results are presented in Figure 4, and they were
relevant for all ML algorithms, following the same methodology used in the companion
paper [1] and showing consistency with the results previously described. In this figure,
the relevant features (columns) are in green and those ones not identified as significant by
the IVI algorithm (rows) are in red. According to the previous descriptive analysis [1], the
features were classified as RFF if the feature had been selected in all the ML algorithms used,
and MIFF if the feature had been selected at least in two of them. In the synthetic dataset,
Figure 4a, features f 1 to f 4 were all included with RFF filter, but f 0 was not identified
as such due to the misclassification by SVC. In the same direction, features identified as
relevant for at least two methods were understood to be informative for further analysis
and so categorized within the MIFF group of variables. In Figure 4a, features f 0 to f 5
met the MIFF criteria and were included as members of this filter. These features perfectly
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match with the relevant features of the synthetic dataset ( f 0 to f 4), adding one of the
redundant features ( f 5). Attending to these results, we can conclude that the IVI algorithm
was consistent over the different ML methods, thus conferring it a valid potential feature
selection capability. From the results obtained on the synthetic dataset, we can see how
the MIFF filter discards non-informative and redundant features, allowing to increase the
accuracy of the model. These results are extendable to real datasets, as it was analyzed
in the companion paper [1]. For a more detailed analysis, see [1]. In the case of the new
dataset, we can see in Figure 4b that there are three features which are selected by all the
ML algorithms used, except by LDA, and these features are isFlaggedFraud, amount and
oldBalanceOrg. For the new dataset, the results were consistent with the previous work,
and again, FS using MIFF improved the training procedure in terms of computer efficiency,
by reducing the number of features to reach higher accuracy, thus reinforcing the results in
the previous work [1].

Figure 4. Results of IVI algorithm for each ML technique in the synthetic dataset (a), in the German
Credit Dataset (b), and in the PaySim (c). In rows are the different ML techniques: covariance
multiplication estimator (CME), support vector machine classification (SVC), gradient boosting (GB),
linear regression (LR), and linear discriminant analysis (LDA). In columns are the different features
as defined previously. Green color represents scenarios where feature was identified as relevant. Red
color represents features not identified as relevant during the analysis. The threshold for determining
relevance is defined by MIFF filter (at least in two methods).

4.2. Latent Space Representation and Classification

Following the methodology mentioned in Section 3.5, in this experiment we propose
to evaluate the classification ability in a latent space in 3D (for representability reasons).
To achieve this, we first proceed to perform the projection on the latent space, using an
autoencoder with the selected features defined in Section 4.1. In this way, and to obtain
a higher dispersion in the latent space, we applied a fine-tuning by adding a softmax
layer mentioned in Section 3.6. Then, a classifier (SVC) was implemented in the resulting
latent space, which allows us to evaluate the prediction capability in this new space for
the different scenarios under study. In other words, the experiment allows us to evaluate
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how the transformation from the input space to the latent space contributes to the possible
improvement in terms of accuracy. In an attempt to verify and quantify the results, accuracy
was calculated in three different scenarios for each dataset. The scenarios considered
different sets of features, namely, (i) the complete features available in input space; (ii) IVI
with MIFF classified features in the input space; and (iii) IVI with MIFF classified features
in the latent space. SVC was implemented as the classifier for benchmarking and analysis.
Table 4 summarizes the mean and standard deviation of the 100 resampling executions for
the different scenarios. The results showed that the latent space consistently provided the
best results for all datasets. The relatively small standard deviation of the results obtained
after multiple resampling of the input signal encourages us to validate the results obtained.

Table 4. Statistical results for accuracy for different datasets. Mean and standard deviation of the
results are shown for 100 resample analysis. In rows are the results for the different datasets. In
columns are the analyses for the different set of features included in the process. Columns from left
to right correspond to the inclusion of all available features, IVI with MIFF filter, and IVI with MIFF
filter in the latent space (using autoencoder).

Dataset Acc_All_Features (SVC) Acc_fs_MIFF Acc_fs_MIFF_LS

Synthetic 0.9870± 0.003195 0.9872± 0.002951 0.9885± 0.00039
PaySim 0.9654± 0.00011 0.9678± 0.0002 0.9758± 0.00011
German 0.7580± 0.017017 0.7663± 0.020409 0.7778± 0.00238

In Table 4, columns from left to right correspond to the inclusion of all available
features Acc_ all_ features, of IVI with MIFF filter Acc_fs_MIFF, and of IVI with MIFF filter
in the latent space (using autoencoder) Acc_fs_MIFF_LS. As we can see in the results in
this table, columns Acc_ all_ features (SVC) and Acc_fs_MIFF represent the values obtained
in the companion paper [1], where it was compared with several alternatives, using all
attributes and the MIFF filter for the synthetic and German datasets. In this sense, we can
consider Acc_ all_ features (SVC) as the baseline and the Acc_fs_MIFF as the gold standard.
In column Acc_fs_MIFF_LS, we obtain the best results in the latent space and it is clear that
in the latent space the ML algorithms improve the classification task by better mapping the
different types of transactions. Furthermore, in this column we also observed a decrease in
the standard deviation of up to almost 10 times in both synthetic and PaySim datasets and
2 times in the German Dataset. This indicates that the use of latent space not only improves
the accuracy, but also increases the stability of the results.

4.3. Sensitivity Analysis in the Latent Space

In view of the results presented in the previous subsection, it was considered of interest
to study the variability of the results of each feature of the input space. For this purpose,
this experiment uses the score of the SVC classifier defined in the latent space to estimate
the sensitivity of the outcome to small variations of each feature in the original space.
For these observations, we made small variations for each feature in every transaction
individually by increasing and decreasing a small percentage of its features. Sensitivity was
estimated as the ratio between the score obtained by applying a small percentage change
in the input space and the score without the percentage change in the input space values.
In Table 5, we can see the average sensitivity of each feature in the PaySim Dataset. This
result shows that there is a large difference between the small variations in each feature, for
example, the feature newbalanceOrig is more affected by small variations than step.

From a graphical point of view, these results can be clearly observed to show that small
variations in some features in input space can have a great impact on the latent space. We
can see this effect in Figure 5, and we can observe that the same small variation in a feature in
input space can have different response in latent space; for example, for the newbalanceOrig
feature, this response is more visible than in type_transfer and type_payment features,
where this response is not appreciable.



Appl. Sci. 2022, 12, 3856 19 of 28

Table 5. Mean of sensitivity for each feature in PaySim Dataset.

Var. Name Sensitivity Var. Name Sensitivity

newbalanceOrig 1.118154 bstep 0.000600
amount 0.843496 isFlaggedFraud −0.000518
newbalanceDest 0.215071 nameOrig_code −0.001186
type_transfer 0.199242 type_CASH_IN −0.366544
type_payment 0.104022 type_DEBIT −0.753180
type_cash_out 0.012399 oldbalanceOrg −1.086948

Figure 5. Representation for one non-fraud transaction of how small variations for each feature in
real space affect in the latent space with MIFF filter in the PaySim Dataset.

In Figure 6, we can see the score distributions obtained in the latent spaces when we
apply these small variations. For reasons of representability we have only represented two
features, newbalanceOrig with high sensitivity and step with low sensitivity, according
to the data in Table 5. In feature newbalanceOrig we can see how the distributions are
shifted due to the sensitivity, while in feature step, having low sensitivity, it remains static.
In addition, we can observe in these figures that they do not have normal-like distributions,
but rather they are multimodal distributions. This type of distribution reinforces our
hypothesis defined in Section 3.7.4, that each transaction can be affected differently in
the latent space by the combinations of the values of the features in the real space, thus
producing different weights in each feature used in the decision process.
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Figure 6. Score distributions obtained in the latent spaces when small variations are applied for
PaySim Dataset.

4.4. Sample Base Characterization though STE Local Analysis

Once we have detected different levels of response in each feature, the following
questions might come up. First, depending on the type of transaction, are some features
more relevant than others, and can we explain the decision process? Alternatively, on
the contrary, have all the features the same relevance and can they produce some, or
wrong, interpretability? From the results shown in Figure 7, we can observe how the fraud
and non-fraud classes tend to occupy different regions in the latent space once we use
the encoder with fine-tuning. Figure 7 was generated with the the encoder defined in
Section 3.6. As can be seen from Figure 7, there are different regions with a concentration
of instances in latent space for fraud and the non-fraud classes, which we can consider as
different transaction profiles. For this purpose, we proposed to perform the analysis in a
local environment and for each transaction. Following the model described previously in
Section 3.7.2, we only incorporate the features that have been shown to consolidate the
relevant information in the previous experiments and in previous work [1]. We start from
the autoencoder model applied in the previous section. Additionally, with the intention
of studying the behavior in the local environment for each and every transaction using
STE, and continuing with what is described in the methods section, we use the VAE to
generate a set of viable samples sufficiently close to the transaction under study. Finally,
for each transaction under study and together with the samples generated by the VAE,
the result of the STE will propose the linear regression model that best approximates the
score of the classifier implemented for this dataset. For this dataset, the coefficients of
the regressor will be considered as the weights that summarize the contribution of each
feature of this transaction. This approach therefore allows us to formalize a linear model,
consistent with the previous experiments and specific, that should be valid both for the
transaction under study and for its environment. The generalization of this experiment
over all the transactions will give rise to a set of feature weights of the transaction one by
one, which we will refer to as STE.



Appl. Sci. 2022, 12, 3856 21 of 28

(a) (b)

Figure 7. Latent space for the different datasets. (a) Synthetic dataset. (b) PaySim Dataset. Red
samples correspond to non-fraudulent transactions. Blue samples correspond to fraudulent instances.
Fraud and non-fraud are easily observed in separate areas, although both groups are not always
clearly separable.

4.5. Clustering Through ITR

Once the STE weights are obtained, we have the contribution of each feature in the
model. With this, it is possible to coherently develop a ranking of features according to their
contribution, based on the magnitude of the coefficients following the strategy described in
Section 3.7.3. We can establish, for each transaction under study, the sequence of features
according to their relevance that best approximates the predicted model and its score in
the classification strategy carried out. This sequence, and its modeling to obtain it, was
described in detail in the methodology, Section 3.5, and it is referred as ITR. This ranking of
features or ITR can be considered the profile of the transaction by collecting the sequence
of contribution of the features for that transaction.

Figure 8 shows two examples (in rows) of a set of samples that share the same ITR
value for the synthetic dataset. Column (a) shows the corresponding ITR in such a way
that in the first row, we can see that for this set of transactions the ITR shows that the
informative features in the decision process are ordered as f 4, f 5, f 2, f 0, f 1, f 3, while for
the set in the next row, they are ordered as f 4, f 5, f 3, f 2, f 1, f 0. In these ITR we can observe
that attribute f 3 for the second set has a high relevance, while for the first set it is the last
one. In column (b), we represent the latent space which has been generated with the the
encoder defined in Section 3.6. In said latent space, the transactions are marked according
to whether or not they were correctly classified by the generated model. Thus, it can be
seen that the elements in blue correspond to fraudulent cases correctly identified and the
elements in red correspond with non-fraudulent cases correctly identified. Additionally,
the transactions of both classes that were incorrectly classified are represented in green
and yellow. This is visible in the set of transactions that share the ITR of the first row,
since, in the case of the second row, 100% of the transactions correspond to the same class
and have been correctly classified, as they are sufficiently unclassified from the visual
border. It can be seen how the misclassified transactions, which are also collected for the
reader’s convenience in column (c), are in the visual border zone of the two classes in the
latent space, being consistent with the classification strategy in this space. Finally, note that
column (d) incorporates the confusion matrix.
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In Figure 9, similar representations of the same figures and contents are reproduced
as in the previous Figure 8, but in this case, for three sets of transactions that share the
same ITR for the PaySim Dataset. Results show the same behavioral patterns as in the
synthetic dataset, where a strong relationship is observed between the transactions that
share the same ITR value, sometimes effectively corresponding to transactions of the same
class, although not in all cases, since the transactions located in the interface areas of classes
generate a limited number of cases corresponding to the other class.

(a) (b) (c) (d)

Figure 8. ITR analysis. By rows, the analysis of 2 sets of samples sharing same ITR for the synthetic
dataset. By column: (a) represents the ITR, (b) latent space representation of the samples identifying
the class and the AE prediction, (c) latent space of misclassified samples, (d) the confusion matrix for
all the transactions sharing the same ITR.



Appl. Sci. 2022, 12, 3856 23 of 28

(a) (b) (c) (d)

Figure 9. Different groups of ITR in PaySim Dataset. Column (a) represents the ITR. In column (b) we
can see all the transaction with the same ITR with the class predicted with our methodology. Column
(c) is similar to (b) but it only shows the mismatch. Finally, (d) shows the confusion matrix for all the
transactions with the same ITR.

4.6. Dataset Profiling

Once the ITR for each transaction studied has been obtained, we can perform a
comparative analysis to evaluate the ITR distribution. To achieve this, we proceed to
perform Kendall correlation analysis of all the sequences in pairs. As a result, we obtain,
for each dataset, a collection of Kendall correlations, of which distribution is presented in
the histogram form, as shown in Figure 10. Since there is a discrete number of possible
combinations, the Kendall correlation reaches corresponding discrete values that may
eventually correspond to datasets that share similar characteristics. In Figure 10, it can be
seen for case (a) corresponding to the synthetic dataset, how a clear bimodality is visible in
the values 1 and 0.6. This bimodality is repeated in the PaySim case at 0.85 and 1, although
in the case of the German Dataset, the population model is closer to a Gaussian distribution.

Under a consolidated perspective, Table 6 reports the average of all τ correlations for
each of the three datasets. As can be seen, a greater similarity can be seen in terms of the
informative features and their contribution to the model in the case of PaySim, followed by
the synthetic dataset, and, with lower values, in the case of the German Dataset. From this
perspective, this parameter provides information regarding the dispersion in terms of the
number of different models necessary to be able to characterize the entire dataset under
study, and therefore it can be understood in absolute value as the inverse of the level of
complexity necessary to approximate, by linear means, the underlying reality.
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(a) (b) (c)

Figure 10. Distribution. Kendall rank correlation coefficient for each dataset: (a) Synthetic dataset;
(b) PaySim Dataset; (c) German Dataset.

Table 6. Mean of all Kendall correlation coefficients for each dataset. This value represents, in absolute
value, the inverse necessary complexity to approximate the underlying reality with a linear model.

Dataset τ

Synthetic 0.803
PaySim 0.900
German 0.696

5. Discussion and Conclusions

In this article, we elaborated on the possibility of applying, today, ubiquitous ML
techniques to CFDs and providing interpretability to those decisions made in ML models.
We have extended here the analysis to nonlinear models with respect to the companion
work [1]. One of the main drawbacks of these technologies is that, even though extremely
effective and powerful in all disciplines where they were applied, they are mostly presented
to users as black boxes where it is virtually impossible to decode the way the features are
treated internally. This last statement is intrinsically incompatible with regulation issued by
administrative bodies, as whatever tool used should be compliant with non-discriminatory
rules and transparency. In an attempt to deal with such a difficult dichotomy, in the
companion paper [1], we evaluated different techniques to identify in an effective way the
informative features and their relationships and to minimize potential biases. In this work,
we proposed to evaluate and present a methodology to obtain interpretability in nonlinear
models, and, in particular, we worked with autoencoders. To achieve this, through STE
we are able to effectively identify the main features in the decision process, thus providing
interpretability, and hence leaving aside black boxes through the use of state-of-the-art
technology in ML techniques. We claim that it is possible to build robust explanatory
models to simultaneously meet the regulatory constraint while using the power of the ML
techniques. To achieve this, we first developed the synthetic dataset to define and fine-tune
the models, and successful models were later applied to two real datasets to verify their
generalization and consistency.

The main conclusions when analyzing the three datasets are summarized next.

• We have verified the results obtained in the companion paper [1], that is, using the IVI
algorithm with MIFF filter in a new real dataset, we can systematically capture all the
real features with informative values.

• The better results obtained with the proposed approach (accuracy increase of 5%) sug-
gested that the use of the presented method can improve the performance, meanwhile
the reduction in terms of features simultaneously can enhance the computer efficiency.

• The use of STE has proven to be a suitable method to interpret the relationship between
the contribution of each feature and the output of the classifier in black box methods.

• The use of ITR methods is proposed as a novel technique to classify transactions that
are similar in terms of the participation of the variables in the classifier result.
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The results of applying these findings over the German Credit Dataset [47,48] were con-
firmed consistent with previous results in our synthetic dataset, as well as with other public
published studies. It is also interesting to note that features picked by the model were con-
sistent with those ones from published works sourcing the very same datasets [49,50]. Key
features found in our case were livingbeyond means, lack or absence of transaction trail,
unexpected overdrafts or declines in cash balances, and carloans. It is interesting to note
that in the new dataset one of the features marked as relevant was isFlaggedFraud, which
is a flag decided by a fraud analyst expert and it has high accuracy rate by itself.

It was clear from the experiments that in the latent space the ML algorithms improve
the classification task by better mapping the different types of transactions. The use of
latent spaces could still be considered as a black-box model. With the aim of mitigating
explanations for black-box, we have introduced two new mechanisms. First, STE summa-
rizes the contribution of each feature for an individual transaction based on small-scale
fluctuations, and second, the ITR method is able to build an individual feature ranking
for each transaction. These rankings represent a closer estimation of those features that
are more important than the others in the decision process for an individual transaction.
The rationale of the ITR-based approach is a single-instance-level explanation for each
transaction, which allows us to detect similar transaction profiles for the transaction with
equivalent ITR. With these profiles, we can detect possible transaction biases caused by
giving too much importance to not-allowed features, and then producing discrimination
based on various categories including, for instance, race, sex, or marital status. We also
may disclose the strong relation between STE and ITR. In the experiment where we verify
how small variation in a feature in input space has different response in the latent space,
we discovered that the feature newbalanceOrig has a high impact on this small variation,
and this was confirmed when we generated the different profiles with ITR.

In addition to what is expressed in these conclusions regarding the potentiality in terms
of the explicability shown, the evaluation of the Kendall correlation of ITR throughout the
different datasets showed interesting results that encourage the deepening of the proposed
analysis. In this sense, the differences in the means and distributions of the Kendall
correlation, for the different datasets, can be interpreted in several directions. On the one
hand is the existence of modalities in the distributions, which correspond to the existence
of a number of different models needed to approximate the underlying reality that may be
related to the number of different sets of transactions that take place. This set of transactions
should not necessarily coincide with the classes under study, but with different realities, or
varieties, which should be studied individually and separately for a better understanding
of the sample base for greater interpretability. On the other hand, the presence of a single
modality would indicate that of a linear, unique, and representative model, capable of
evaluating with at least the same precision as the highly complex model evaluated. Thirdly,
the existence of a non-modal distribution, whether uniform, Gaussian, or of any other type,
could suggest various interpretations that in all cases could suggest facing new methods
of analysis, either due to the existence of infinite linear models, equivalents, or a limited
number of nonlinear models. In this direction, it is necessary to point out that although it is
possible for each and every one of the transactions to obtain an ITR model, which provides
interpretability to the proposed classification, it will be offered solely and exclusively for
that transaction, not being possible to generalize to other cases. This local approximation
and STE approach, could be understood as an advantage when it comes to interpretability,
although its unique single explanation could also make regulators and authorities reluctant
to validate extensively. That is why it is proposed, as the next step of this work, to advance
in the knowledge of these distributions and the data models that give rise to them in order
to also be able to propose interpretable and generalizable nonlinear models that ensure
consistency, if not for the total of samples of the set, at least for a large group of them that
are part of subsets that share the same ITR.

We can conclude that our methodology provides a detailed evaluation at the transac-
tion level, adding interpretability to each transaction and making visible the most relevant
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features in decision process. This individualized, unbiased, and traceable perspective
provides the necessary transparency, not only to comply with regulations, but also to be
able to justify each classified transaction to clients and authorities.

As a general summary, we can affirm that the objective and contribution of this work
was twofold. On the one hand, we intended to evaluate (and where appropriate, to im-
prove) the detection capabilities of CFD techniques through the application of advanced
AI techniques, which can be applied directly and in real time (online). Secondly, a novel
analysis has been proposed, which is valid for any classification method providing in-
terpretability retrospectively (offline). The authors consider that this last part constitutes
the most important contribution of this work, since it is not only applicable to the latest
generation CFD technique presented here, but, on the contrary, it can be used by regulators,
clients, and authorities of supervision, as well as the entities themselves, separately and
retrospectively (offline) to guarantee the non-discriminatory treatment and the audit of any
pre-existing model without the need to delve into the details of CFD architecture.

The results and conclusions presented here also open up new potential lines of work
for the future. In particular, (i) the possibility of extending the work carried out here
to CFD risk assessments in real time (online); (ii) the possibility of deepening into ITR-
clustering to better profile CFD; and, finally, (iii) to be able to extend AI techniques for fraud
detection to their full potential, after having validated the blind evaluation techniques of
black-box methods.
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