
Computer versus cardiologist: Is a machine learning
algorithm able to outperform an expert in diagnosing a
phospholamban p.Arg14del mutation on the
electrocardiogram?
Hidde Bleijendaal, MD,*†1 Lucas A. Ramos, MSc,†‡1 Ricardo R. Lopes, MSc,‡

Tom E. Verstraelen, MD,* Sarah W.E. Baalman, MD,* Marinka D. Oudkerk Pool, MSc,*
Fleur V.Y. Tjong, MD, PhD,* Francisco M. Melgarejo-Meseguer, PhD,x

F. Javier Gimeno-Blanes, PhD,k Juan R. Gimeno-Blanes, MD, PhD,x{

Ahmad S. Amin, MD, PhD,*{ Michiel M. Winter, MD, PhD,* Henk A. Marquering, PhD,‡

Wouter E.M. Kok, MD, PhD,* Aeilko H. Zwinderman, PhD,†

Arthur A.M. Wilde, MD, PhD, FHRS,*{ Yigal M. Pinto, MD, PhD*
From the *Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and

Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands,
†Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and
Bioinformatics, Amsterdam, The Netherlands, ‡Amsterdam UMC, University of Amsterdam,
Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands, xVirgen de Arrixaca
Hospital, El Palmar, Spain, kMiguel Hern�andez University, Elche, Alicante, Spain, and {Member of the
European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN
GUARD-Heart).
BACKGROUND Phospholamban (PLN) p.Arg14del mutation carriers
are known to develop dilated and/or arrhythmogenic cardiomyopa-
thy, and typical electrocardiographic (ECG) features have been
identified for diagnosis. Machine learning is a powerful tool used
in ECG analysis and has shown to outperform cardiologists.

OBJECTIVES We aimed to develop machine learning and deep
learning models to diagnose PLN p.Arg14del cardiomyopathy using
ECGs and evaluate their accuracy compared to an expert cardiolo-
gist.

METHODS We included 155 adult PLN mutation carriers and 155
age- and sex-matched control subjects. Twenty-one PLN mutation
carriers (13.4%) were classified as symptomatic (symptoms of heart
failure or malignant ventricular arrhythmias). The data set was split
into training and testing sets using 4-fold cross-validation. Multiple
models were developed to discriminate between PLN mutation
carriers and control subjects. For comparison, expert cardiologists
classified the same data set. The best performing models were
validated using an external PLN p.Arg14del mutation carrier data
set from Murcia, Spain (n 5 50). We applied occlusion maps to
visualize the most contributing ECG regions.
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RESULTS In terms of specificity, expert cardiologists (0.99)
outperformed all models (range 0.53–0.81). In terms of accuracy
and sensitivity, experts (0.28 and 0.64) were outperformed by all
models (sensitivity range 0.65–0.81). T-wave morphology was
most important for classification of PLN p.Arg14del carriers. External
validation showed comparable results, with the best model outper-
forming experts.

CONCLUSION This study shows that machine learning can outper-
form experienced cardiologists in the diagnosis of PLN p.Arg14del
cardiomyopathy and suggests that the shape of the T wave is of
added importance to this diagnosis.
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Introduction
Phospholamban (PLN) is a transmembrane sarcoplasmic
reticulum phosphoprotein and is a major regulator of calcium
homeostasis in cardiomyocytes. Mutations in the gene en-
coding this protein are known to cause cardiomyopathy,
including arrhythmogenic cardiomyopathy (ACM) and
dilated cardiomyopathy.1 Carriers of mutations in PLN are
at increased risk of developing malignant ventricular arrhyth-
mias and end-stage heart failure, leading to high mortality.2–4

Low QRS voltages have been reported as the electrocar-
diographic (ECG) hallmark in PLN mutation carriers.5 Two
large Dutch cohort studies reported low-voltage ECGs in
46% and 41% in 52 (van der Zwaag et al1) and 295 (van
Rijsingen et al2) patients, respectively. Additionally, repolar-
ization changes on the ECG, in particular T-wave inversions
in the lateral leads, are frequently seen in PLN p.Arg14del
mutation carriers. van Rijsingen et al2 reported T-wave inver-
sions in 40%, while van der Zwaag et al1 reported T-wave
inversions in 57%. A Canadian cohort study by Cheung
et al6 reported 53% in 50 patients. Additionally, PLN is
known to cause ACM and one of the diagnostic criteria for
ACM is frequent ventricular extrasystoles (.500/24 h).7

This was present in 48% of the carriers in the van Rijsingen
cohort2 and in 65% of the Holter that were evaluated by van
der Zwaag et al.1

PLN p.Arg14del cardiomyopathy is a rare disease, with a
prevalence of 0.08%–0.38% in selected cardiomyopathy
cohorts.8 Other PLN gene mutations have been described,
mostly in case reports and small cohorts, while Hof et al8

reported data of over a thousand p.Arg14delmutation carriers
in the Netherlands alone, making p.Arg14del the most com-
mon PLN mutation in the literature to date.4 Most general
cardiologists do not routinely see patients with PLN-associ-
ated cardiomyopathy and consequently may not recognize
the ECG features associated with this disease. The standard
for diagnosing a PLN p.Arg14delmutation is genetic testing.
However, when a patient is suspected of having a gene mu-
tation causing structural heart disease, the ECG can increase
(or decrease) the probability of having a mutation, assisting
the clinician in early decision making regarding the diagnosis
and possible therapy. Early diagnosis is of major importance
because PLN-associated cardiomyopathy is among the
most malignant cardiomyopathies necessitating early ICD
implantation.2,7

In the past few years, the use of machine learning (ML)
and, more specific, deep learning (DL) methods in medicine
has increased significantly.9 An advantage of DL is that it can
automatically learn features from raw data, allowing the
discovery of previously unknown relationships.10 Within
cardiology, DL is used for the detection of a variety of cardiac
arrhythmias, such as atrial fibrillation, in which the models
outperform cardiologists, thereby positioning DL as a power-
ful tool for ECG analysis.9,11 The increased accuracy of DL
models often comes with the downside of the lack of
interpretability. However, new techniques have been
developed, making it possible to visualize the features a
DL model uses and thus can be used to identify new
features.12,13

In this study, we aimed to developML and DLmodels and
study their accuracy compared to expert cardiologists in
diagnosing PLN p.Arg14del cardiomyopathy on an ECG.
We aimed to present a proof of concept to show how ML-
enabled ECG analysis is of added value, specifically when
it concerns a rare disease that is often missed simply because
it is rarely seen.

Moreover, we aimed to identify specific regions of ECGs
that could give insights for improving diagnosis of this dis-
ease and be used for better understanding of PLN mutation
cardiomyopathy in general.

Methods
Data collection and labeling
We collected ECGs from all patients that were stored in the
ECG database (MUSE, GE Healthcare, Chicago, Illinois)
of the Amsterdam University Medical Centers (UMC),
location Academic Medical Center, during the period
from 1998 up to and including 2018. To minimize the
amount of non-PLN mutation–related cardiovascular pa-
thology that could potentially influence the ECG, we
included only ECGs from patients aged 18–60 years.
From this database, we extracted all patients known to
have a PLN p.Arg14del mutation. A mutation carrier was
defined as symptomatic when they suffered from either
an arrhythmic event (sustained ventricular tachycardia or
ventricular fibrillation) or a symptomatic episode caused
by heart failure (New York Heart Association class 2 or
higher, as defined by clinical staff). This information was
provided by the national PLN registry, and informed con-
sent for reuse of patient information has been obtained.
ECGs were excluded if they were made on the emergency
ward or during hospitalization in a clinical ward to exclude
the possible effect of acute cardiac disease on the ECG. As
a control group, we selected ECGs from patients aged be-
tween 18 and 60 years who underwent general noncardio-
vascular preoperative screening at the outpatient clinic of
the Amsterdam UMC, location Academic Medical Center,
after which we randomly selected a subgroup to match the
population with PLN according to age and sex, to ensure
the same distribution for each group. For both groups,
only the first recorded ECG for each patient was used.
Figure 1 shows a diagram with the PLN and control group
selection process.

We excluded all ECGs that were considered technically
inadequate according to an experienced investigator (H.B.)
(limb lead reversal, loss of signal on 1 or more leads, and
high amount of noise of 2 or more leads, making analysis
impossible) or that had any other rhythm than sinus rhythm.
ECGs were labeled as “PLN” or “control” on the basis of
the presence of a PLN Arg14.del gene mutation. This
data set was named the Amsterdam data set to discriminate
from the external validation set. External validation was
performed on a population of PLN p.Arg14del mutation



Figure 1 Data cleaning process from patient selection to model develop-
ment. DL 5 deep learning; ECG 5 electrocardiographic; ML 5 machine
learning.
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carriers from the Virgen de Arrixaca Hospital in Murcia,
Spain. From the local ECG database, a random set of
non-PLN mutation carriers in this hospital was selected as
a control group. This external validation set was named
the Murcia data set.

The study was approved and the requirement for informed
consent was waived by the Medical Ethics Commission of
the Amsterdam UMC on 22-11-2018 (registration number
W18_371#18.425).
Evaluation by expert cardiologists
All ECGs included were anonymized and visually evaluated
separately by 2 cardiologists with expertise in PLN-associ-
ated cardiomyopathy (A.A.M.W. and W.E.M.K.). The ex-
perts classified the ECGs in PLN or non-PLN and were not
informed of the ratio between carriers and noncarriers. For
ECG classification, they used known ECG features, as
described in Introduction (low QRS voltages, T-wave inver-
sion, and frequent extrasystoles).

Data preprocessing and development of ML models
To increase the amount of training data, we extracted all beats
from each 10-second ECG available and used them as
individual samples during training. Details about the data
preprocessing are given in Online Supplemental Methods
Section 1.1 and Online Supplemental Figure 1. Patients
were randomly split into training, validation, and testing
sets by using 4-fold cross-validation stratified for carriers
and controls. Initially, 3-folds are separate for training and
1-fold is left aside for testing. From the 3-folds used for
training, 20% is separated as a validation set to be used to
assess network performance during training and hyperpara-
meter optimization. All heartbeats from each individual
patient were kept in either the training set or the testing set
in the initial split to prevent data leakage. For testing, only
1 beat was used per patient as reference. We did not choose
a beat on one of the edges of the ECG because of the high
probability of it containing noise. For creating the models,
we followed 2 approaches, defined below.

Our first approach—the wavelet ML-based approach—
consisted of applying a wavelet transform for each individual
beat, since wavelets have been broadly and successfully used
in multiple ECG applications.14,15 More details about
wavelets and their implementation can be found in Online
Supplemental Methods Section 1.2. The output of the
wavelet transformation (of size (64 ! 8)) was flattened and
used as input to train ML classifiers—logistic regression,
support vector machine (SVM), multilayer perceptron,
random forest, and extreme gradient boosting (XGB)—by
following the approach of Kumar et al.15

In our second approach–DL-based approach—we imple-
mented 1- and 2-dimensional (1D and 2D) convolutional
neural networks (CNNs) and long short-term memory
(LSTM) networks by using the R-to-R peak as input. For
each type of network (CNN and LSTM), we implemented
2 approaches (using 1D and 2D convolutions), namely,
approach A and approach B. Details about these approaches
and their implementations are available in Online
Supplemental Methods Section 1.3.

Statistical analysis
For model evaluation, we reported the average accuracy,
sensitivity, specificity, and area under the receiver operating
characteristic (ROC) curve. We deemed the best performing
models the ones with the highest accuracy and sensitivity
because of greater importance of missing true-positive



Table 1 Description of the Amsterdam data set

Variable PLN (n 5 155)
Control
(n 5 155)

Age (y)* 39 (28–50) 39 (28–50)
Sex: male* 63 (41) 63 (41)
Ventricular rate (beats/min) 68 (60–75) 65 (57–73)
Atrial rate (beats/min) 68 ( 60–75) 66 (57–73)
QRS duration (ms) 86 ( 80–94) 94 (84–104)
QT interval (ms) 388 (368–406) 400 (374–426)
QT corrected interval (ms) 407 (394–424) 410 (401–429)
P-wave axis (deg) 55 (37–66) 48 (33– 61)
R-wave axis (deg) 48 (2–75) 34 (3–63)
T-wave axis (deg) 46 ( 1–63) 38 (20–58)

Values are presented as median (interquartile range) or as n (%).
*Variables were used to match samples from the control group.

82 Heart Rhythm, Vol 18, No 1, January 2021
(PLN) patients. We used the McNemar test to check whether
the difference between the models and the experts was
statistically significant.16
Visualization of ECG features
For our best performing model, we created visualization plots
to visualize the parts of the ECG that were most relevant for
classification of patients with PLN in our DL model; we used
“occlusion maps” for this purpose.17 We generated occlusion
maps by systematically occluding parts of the heartbeat
signal. We split the (8 ! 256) input signal into 16 parts of
(8 ! 16) and occluded a region by setting all its values to
zero. Then, we applied the trained model to the signal with
the occluded region and evaluated the loss of model
performance. The higher the loss of performance, the more
important the occluded region.
Reproducibility and open access
Given its sensitive nature, the data used in this study are not
publicly available. All the code used in this study, however, is
available at the following GitHub page: https://github.com/
L-Ramos/CardiologyAI.
Table 2 Performance (in terms of accuracy, sensitivity, and specificity

Model Sensitivity

Expert 1 0.32 6 0.01
Expert 2 0.25 6 0.05
1D CNN—approach A 0.65 6 0.02
2D CNN—approach B 0.77 6 0.03
1D LSTM network—approach A 0.65 6 0.13
2D LSTM network—approach B 0.81 6 0.08
Wavelet—MLP 0.70 6 0.05
Wavelet—SVM 0.71 6 0.05
Wavelet—LR 0.72 6 0.07
Wavelet—KNN 0.69 6 0.05
Wavelet—RFC 0.69 6 0.5
Wavelet—XGB 0.69 6 0.03

Values are presented as mean 6 SD. These values are computed over 4-folds.
1D 5 1-dimensional; 2D 5 2-dimensional; AUC 5 area under the receiver ope

learning; KNN 5 k-nearest neighbor; LR 5 logistic regression; LSTM 5 long sh
RFC 5 random forest classifier; SVM 5 support vector machine; XGB 5 extreme gr
Results
Among the 297 known PLN p.Arg14del mutation carriers in
Amsterdam UMC, 155 were eligible for inclusion in this
study (see Figure 1 for a flow diagram). Among PLN
mutation carriers, 13.5% were symptomatic at the time the
ECG was recorded. The mean age in this group was 39 years
(interquartile range 28–50 years), and 63 (41%) were male.
Baseline ECG characteristics are summarized in Table 1.
Performance of ML and DL models compared to
expert cardiologists
Table 2 presents the results for both the experts and ML and
DL models averaged over the 4-folds. Experts 1 and 2 had
an accuracy of 0.65 and 0.63, a sensitivity of 0.32 and 0.27,
and a specificity of 0.97 and 0.99, respectively (Table 2).
Despite showing a slightly higher accuracy, expert 1 had
also larger standard deviation than did expert 2. Figure 2
shows ROC curves for the selection of the best performing
models and the results of the best performing expert; the
ROC curves for other models are shown in Online
Supplemental Figure 2. Figure 3 shows an example of an
ECG correctly classified as PLN by both the 1D CNN
and the experts. For accessing interrater reliability between
the 2 cardiologists, we computed the Cohen’s k score,18

which was 0.65 for the Amsterdam data set, indicating a
substantial agreement between the experts. For the Murcia
data set, k was 0.27, which indicates a fair agreement
between the experts.
ML-based approach
The different wavelet ML models showed comparable
results. The wavelet SVM (accuracy 0.76) and wavelet logis-
tic regression (accuracy 0.76) can be marked as the 2 best
performing models. In terms of sensitivity, the wavelet ML
model also outperformed the cardiologist (0.72 vs 0.31). In
terms of specificity, the cardiologist outperformed the
wavelet ML model (0.99 vs 0.81).
) of the experts and ML and DL models on the Amsterdam data set

Specificity Accuracy AUC

0.97 6 0.02 0.65 6 0.06 0.65 6 0.06
1.0 6 0.00 0.63 6 0.03 0.63 6 0.02
0.67 6 0.07 0.65 6 0.04 0.74 6 0.03
0.67 6 0.09 0.72 6 0.03 0.78 6 0.03
0.59 6 0.18 0.62 6 0.05 0.72 6 0.09
0.53 6 0.12 0.67 6 0.08 0.74 6 0.09
0.76 6 0.03 0.73 6 0.02 0.78 6 0.02
0.81 6 0.06 0.76 6 0.05 0.80 6 0.06
0.79 6 0.06 0.76 6 0.05 0.80 6 0.06
0.77 6 0.07 0.74 6 0.06 0.76 6 0.06
0.80 6 0.07 0.75 6 0.06 0.83 6 0.03
0.81 6 0.00 0.75 6 0.02 0.82 6 0.02

rating characteristic curve; CNN 5 convolutional neural network; DL 5 deep
ort-term memory; ML 5 machine learning; MLP 5 multilayer perceptron;
adient boosting.

https://github.com/L-Ramos/CardiologyAI
https://github.com/L-Ramos/CardiologyAI


Figure 2 Receiver operating characteristic curves for the best performing expert and the 4 best performing models on the Amsterdam data set. AUC 5 area
under the receiver operating characteristic curve; CNN 5 convolutional neural network; LR 5 logistic regression; LSTM 5 long short-term memory; SVM 5
support vector machine.
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DL-based approach
The DL model performing best on test data was the 2D CNN
with approach B, with an accuracy of 0.72, outperforming
both the expert cardiologists, with a standard deviation
comparable to that of the experts. In terms of sensitivity,
this CNN also outperformed both experts (0.77 vs 0.31 of
the expert with highest sensitivity). In terms of specificity,
the experts outperformed the CNNs (0.99 vs 0.67). Using
the McNemar test, we compared the best performing model
(CNN with approach B) with the expert with the highest
accuracy. The c2 statistic was 2.125 and the P value was
.145 for the Amsterdam data set.

ML and DL models have multiple hyperparameters to be
optimized, and all the parameters used are listed in Online
Supplemental Table 1.
External validation on the Murcia data set
The results of the external validation for expert cardiologists,
the 2 best performing wavelet ML models, and the 2 best
performing DL models are presented in Table 3 (standard
deviation is not available since the trained models were
used for inference in the whole set). In terms of accuracy,
the CNN with approach B performed slightly better on the
Murcia data set than did the expert with highest accuracy
(0.68 vs 0.65). Our wavelet ML models showed the highest
sensitivity (0.96) vs the CNN and LSTM network (0.64
and 0.48); however, both wavelet ML models showed poor
specificity (0.20). A comparison between the ROC curves
for the best performing expert and those for the best ML/
DL approaches for the Murcia data set is presented in Online
Supplemental Figure 3. Using the McNemar test for



Figure 3 Example of an electrocardiogram (ECG) that both the experts and the convolutional neural network labeled correctly as “phospholamban (PLN).”
This example shows the typical ECG features that the experts use to detect PLN: lowQRS voltages on the limb leads and T-wave inversion in leads V3 throughV6.
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comparison of the CNN with approach B and expert 1, the c2

statistic was found to be 4.114 (P 5 .043).
Visualization of ECG features
Figure 4 shows 4 examples of the ECG regions from which
the model extracted features so as to classify the specific
ECG sample in either PLN or control patients. In 63% of
the true positives, our results showed that the T wave was
the most important part for the model; an example is shown
in Figure 4A. In 14.2%, the model did not use a specific part
of the signal but used the whole signal (see Figure 4B). In
the majority of true negatives, the model used the whole
signal for classification (56%), and in only 3%, the T
wave was the most prominent ECG feature. An overview
of the ECG features used is given in Online Supplemental
Table 2.
Table 3 External validation on the Murcia data set

Model Sensitivity Specificity Accuracy AUC

Expert 1 0.55 0.75 0.65 0.65
Expert 2 0.18 0.91 0.56 0.55
2D CNN—approach B 0.64 0.72 0.68 0.70
Wavelet—LR 0.96 0.20 0.58 0.58
Wavelet—SVM 0.96 0.20 0.58 0.58
2D LSTM network—
approach B

0.48 0.68 0.58 0.63

Values shown are averaged over 4-folds.
2D5 2-dimensional; AUC5 area under the receiver operating character-

istic curve; CNN 5 convolutional neural network; LR 5 logistic regression;
LSTM 5 long short-term memory; SVM 5 support vector machine.
Discussion
Among all our models, the 2D CNN with approach B outper-
formed expert cardiologists in accuracy and sensitivity on
both the Amsterdam and the Murcia data sets. In terms of
specificity, cardiologists were superior in the identification
of PLN mutation carriers on the ECG. This suggests that
neither the use of ML/DL nor the assessment of an expert
cardiologist for the diagnosis of a PLN p.Arg14del mutation
on the ECG is superior to each other.

Performance of the models
On the Amsterdam data set, the wavelet SVM showed the
highest accuracy (0.76), while 2D CNN with approach B,
which had an accuracy of 0.72 on the Amsterdam data set,
performed best on the Murcia data set, with an accuracy of
0.68 as compared with 0.58 from the wavelet SVM. It is clear
from our results that wavelet models did not generalize well
for a different population, which might indicate that the fea-
tures extracted by the discrete wavelet transform might not
be informative enough across different data sets. 2D CNN
with approach B resulted in the best DL models, where the
learned convolutional kernels were shared among all leads,
instead of learning individual kernels per lead (approach
A). The standard deviation for accuracy and sensitivity for
2D CNN with approach B was also one of the lowest,
showing that the model generalized well across different
folds.

Comparison with previous studies
This study is the first to evaluate the diagnosis of a PLN
p.Arg14del mutation by using solely the ECG. Also, our



Figure 4 Examples of visualization of electrocardiographic (ECG) features that the convolutional neural network used for classification by using occlusion
maps on unique ECGs. A and B: Phospholamban (PLN) ECGs correctly classified by the model as PLN. C and D: ECGs form control while were correctly
classified as non-PLN. The red highlighted areas are the parts of the signal that the model used to classify. If no specific area was highlighted, this means the
model used the whole signal for classification.
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study is the first to use bothML and DL to prove this concept.
In the field of cardiogenetics and ECG analysis, Hermans
et al19 recently added T-wave morphology characterizations
to age, sex, and corrected QT interval in an SVM and
improved the diagnosis of long QT syndrome on the ECG.
In the Amsterdam data set of our study, wavelet ML models
also proved to perform with the highest accuracy. However,
Hermans et al19 did not use a DL approach, in which the
model learns features by itself.

A recent study fromMayo Clinic developed an MLmodel
to diagnose hypertrophic cardiomyopathy.20 Their model
outperform ours; however, their data set is much larger,
and furthermore, hypertrophic cardiomyopathy is a diagnosis
based on a, for example, echocardiographic phenotype, not
solely based on the prevalence of a gene mutation.21 There-
fore, to our knowledge, this study is the first to use DL to
detect a genetically proven structural heart disease by solely
looking at the ECG in a data set including asymptomatic
mutation carriers.

Several studies have used ML- or DL-based ECG analysis
to diagnose cardiac arrhythmia, with a higher accuracy than
our ML models. An example is the DL model of Hannun
et al,11 which is a neural network for the automatic detection
of cardiac arrhythmia on the ECG and which was trained on a
much higher number of ECGs than we used in our study.
PLN is a rare disease worldwide, and it would be impossible
to reach the same number of patients as they have included.
Visualization of ECG features in the DL model
Many techniques have been developed to interpret these
models and give insight into their decision process. To our
knowledge, we are the first to use a DL-based approach to
identify ECG features associated with genetic structural heart
disease. In the majority of our correctly classified PLNECGs,
the model used the T wave as its most important ECG feature.
Although low QRS voltages are seen as the main ECG
feature, T-wave inversions are also common in PLN
p.Arg14del mutation carriers.1,2,5,6 More focused research
will be needed to further elaborate these findings and to
identify more specific and potentially new ECG features.
Clinical interpretation
To implement our models in a clinical setting, first their
performance has to increase. The criterion standard for the
diagnosis of a PLN p.Arg14del mutation is genetic testing.
Models such as ours are unlikely to replace genetic testing
as a whole, but can serve as a risk stratification tool to predict
which patients do need genetic testing. This is currently done
by (expert) physicians, and now that our models have shown
to outperform the sensitivity of expert cardiologists, our
results could contribute to improved and earlier diagnosis
of this progressive genetic cardiomyopathy. Because sensi-
tivity of our models is higher than that of the experts, the
models are better at diagnosing PLN mutation carriers,
compared with the assessment of the expert cardiologist, in
the current setting. When looking at specificity, it is the other
way around; the experts outperform the models, with almost
a maximum specificity and therefore often correctly
classifying an ECG as a PLN p.Arg14del mutation carrier.

PLN is not the only genetic heart disease that has a
“typical” phenotype on the ECG. Other diseases such as
long QT syndrome, hypertrophic cardiomyopathy, and
Brugada syndrome are only a few examples of syndromes
in which a gene mutation can lead to a clinically severe
and life-threatening syndrome. This study suggests that an
ML/DL-based approach could also be used for the diagnosis
of these inherited cardiac syndromes.
Limitations
This study is performed on a (relatively) small data set. It is
known that DL is a technique that is highly dependent on
the amount of data it is trained on. Because PLN-associated
cardiomyopathy is a rare disease, it is difficult to bring
together a much larger number of patients with PLN. We
augmented our data by using multiple beats from a single
ECG as individual samples. Moreover, we decided to first
use patients only from our own center to prove the concept
that it is possible to predict the carrier status of a specific mu-
tation leading to heart disease by using ML/DL-based ECG
analysis.

Also, for this analysis we chose to evaluate genetically
proven carriers of the PLN p.Arg14del mutation, which
were either symptomatic or asymptomatic. This was done
to identify possible ECG features, which are present in
both these groups and not only in symptomatic patients.

The main goal of this study was to evaluate the predictive
value for the ECG for the diagnosis of PLN-associated car-
diomyopathy. Therefore, we did not include basic demo-
graphics such as age and sex, especially because of the risk
of bias given these parameters could influence the ECG by it-
self.22
Conclusion
This study has shown that ML and DL can improve the diag-
nosis of PLN p.Arg14del cardiomyopathy, and our results
find regions of the surface ECG that are related to PLN
p.Arg14del mutations and therefore suggest that the T wave
is of added importance to diagnose PLN mutation–caused
heart disease even before they become symptomatic.
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