(2023) 117:166

ORIGINAL PAPER

Distinguished $C_p(X)$ spaces and the strongest locally convex topology

J. C. Ferrando¹ · Stephen A. Saxon²

Received: 1 August 2023 / Accepted: 22 August 2023 © The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2023

Abstract

Since Tychonoff spaces X serve as continuous Hamel bases for the strong dual $L_{\beta}(X)$ of $C_p(X)$, an old splitting theorem proves: $C_p(X)$ is distinguished $\Leftrightarrow L_{\beta}(X)$ has the strongest locally convex topology (slctop) [Ferrando/Kąkol]. Our new splitting theorem: The span $L_X(Y)$ of $Y \subseteq X$ complements $L_X(X \setminus Y)$ in $L_\beta(X)$. Thereby we prove If $X = Y_1 \cup \cdots \cup Y_n$ and each $C_p(Y_i)$ is distinguished, then so is $C_p(X)$, provided either (i) all Y_i are G_{δ} sets, or (ii) all are F_{σ} sets. Hence, provided (iii) all Y_i are open, or (iv) all are closed. Parts (ii)/(iv) extend to countable unions (known). Part (i) does not, via Michael's line. Countable case (iii) remains open. A dozen recent related results are proved/improved in our slctop analysis of $L_{\beta}(X)$.

Keywords Distinguished · Barrelled · φ -complemental · Stationary sets · Bidual · $\Sigma(X)$

Mathematics Subject Classification 46A03 · 46A08 · 46E10 · 54C35

1 Introduction

The strongest locally convex topology (slctop) for a real linear space E with algebraic dual E^* is β (E, E^*). The strong dual φ of the Fréchet space $\mathbb{R}^{\mathbb{N}}$ is the simplest nontrivial example. Indeed, φ has its slctop and is the only \aleph_0 -dimensional (Hausdorff) barrelled space, up to isomorphism. A subset of a topological space is assumed to carry the relative topology unless otherwise indicated. A subspace of a linear space is a subset closed under vector addition and scalar multiplication. If E has its slctop, then every \aleph_0 -dimensional subspace is a copy (= isomorphic image) of φ that is complemented in E [37, II, Ex. 7(a)]. A space E

Professor J. C. Ferrando is supported by the Generalitat Valenciana under project PROMETEO/2021/063.

[🖂] Stephen A. Saxon stephen_saxon@yahoo.com J. C. Ferrando jc.ferrando@umh.es

¹ Centro de Investigación Operativa, Universidad Miguel Hernández, 03202 Elche, Spain

² Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

is distinguished if and only if its strong dual $(E', \beta(E', E))$ is barrelled [25]. We say E is *flat* if $E' = E^*$ [32, 36]. Every space with the slctop is flat.

Recent distinguished $C_p(X)$ study [8–10, 12, 14, 15, 18–20, 26, 27, 29] begins with the slctop [9, Corollary 3.4]. Yet we just learned that, a *half-century* ago, Prof. Denny Gulick [16] proved $C_p(X)$ is distinguished if and only if its bidual is \mathbb{R}^X , and gave nice examples of (non)distinguished $C_p(X)$ spaces. He used neither the word *distinguished* nor the notion of slctop. He tacitly reminds us that slctop was little regarded (see [31, pp. 88, 89]) before we proved barrelled spaces are φ -complemental, φ generates the second smallest variety, nuclear spaces often contain φ , strict (*LF*)-spaces always contain φ complemented, etc. [6, 21, 22, 31, 33, 34, 36].

A locally convex space *E* is φ -complemental [35] if, for each \aleph_0 -codimensional closed subspace *F* in *E*, every algebraic complement of *F* is a topological complement isomorphic to φ . Generally, φ -complemental is far from *barrelled* [35]. In fact, the weak barrelledness table [35, Fig. 1.3] presents *barrelled* $\Rightarrow \aleph_0$ -*barrelled* $\Rightarrow C$ -*barrelled* \Rightarrow *property* $(L) \Rightarrow$ *inductive* $\Rightarrow \varphi$ -complemental \Rightarrow *primitive* as one of four seven-step paths from *barrelled* to *primitive* in which φ -complemental is the penultimate step. However, *barrelled* and φ - complemental are equivalent for $L_\beta(X)$ spaces, wherein complemented copies of φ abound (Theorems 5, 10). And $\Sigma(X) \subseteq M(X)$ (definitions below) if and only if every \aleph_0 dimensional subspace of $L_\beta(X)$ is a complemented copy of φ (Theorem 16), which seems very near to φ - complemental.

But $\Sigma(\omega_1) \subseteq M(\omega_1)$ (Corollary 17), and $L_\beta(\omega_1)$ is not barrelled (Theorem 18 has proof much simpler than Ka kol-Leiderman's original [18]). Hence $L_\beta(\omega_1)$ is not φ -complemental, but 'very nearly' so, which recalls the titular question of [12]. Theorem 5 characterizes sets $Y \subseteq X$ whose span $L_X(Y)$ in $L_\beta(X)$ is barrelled, generalizing the case Y = X given independently by K-L and F-S [12]. In Sect. 5, our slotop theory unifies/extends most known results of a certain interesting type (see Abstact).

2 Structural notions for the strong dual $L_{\beta}(X)$

We write $E = F \oplus G$ to indicate that the locally convex space *E* is the (topological) direct sum of algebraically complementary subspaces *F* and *G*. A subspace *F* in *E* is *complemented* if there exists a subspace *G* with $E = F \oplus G$. A subset *S* in *E* is *bounded away from zero* if some 0-neighborhood in *E* misses *S*. And *E* is *feral* [24] if every linearly independent sequence is unbounded.

We list some possible properties for a locally convex space E.

- (a) E has the slctop.
- (b) $E = F \oplus G$ and F and G have the slctop whenever F and G are algebraic complements in E.
- (c) $E = F \oplus G$ and G is a copy of φ whenever F and G are algebraic complements in E with dim $G = \aleph_0$.
- (d) G is a complemented copy of φ whenever G is an \aleph_0 -dimensional subspace of E.
- (e) G is a copy of φ whenever G is an \aleph_0 -dimensional subspace of E.
- (f) Every linearly independent sequence in E is bounded away from zero.
- (g) E is feral.
- (*) *E* is φ -complemental.
- (†) E is flat.

One easily observes that (a) \Leftrightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f) \Rightarrow (g) (see [37, Ch. II, Ex. 7]). Also, (c) \Rightarrow (*) and (a) \Rightarrow (†) \Rightarrow (f). In fact, any linearly independent set *S* in *E* is part of a Hamel basis *B* for *E*; if *E* is flat and *f* is the unique linear form in $E^* = E'$ whose value on *B* is constantly 2, then the polar f° is a 0 -neighborhood which bounds *S* away from zero.

In the special case $E = L_{\beta}(X)$, condition (g) always holds, and we will see that: I. For $E = L_{\beta}(X)$, conditions (a), (b), (c), (*), (†) are equivalent, and II. For $E = L_{\beta}(X)$, conditions (d), (e), (f) are equivalent.

Moreover, the conditions in (I) are all equivalent to the condition that $C_p(X)$ be distinguished, and we prove the conditions in (II) are equivalent to the condition that the dual M(X) of $L_\beta(X)$, when canonically identified as a dense subspace of \mathbb{R}^X , must contain the subspace $\Sigma(X)$ of \mathbb{R}^X consisting of all countably supported functions on X. In the terminology of [1], $\Sigma(X)$ is the \aleph_0 -dual of L(X) with respect to the Hamel basis X.

3 The ubiquitous component φ in $L_{\beta}(X)$

The (LF)-spaces are trichotomized by φ [28, 34]: $(LF)_1$ -spaces contain (copies of) φ complemented; $(LF)_2$ -spaces contain φ , but not φ complemented; $(LF)_3$ -spaces contain no copies of φ . By contrast, we find that all L_β (X) spaces contain copious complemented copies of φ (Theorem 10). The slctop exotica of L_β (X) synergizes the study of local convexity and distinguished C_p (X).

First, we observe

Lemma 1 Let F be a closed subspace of a locally convex space E. The following two assertions are equivalent.

- 1. The quotient E/F has its slctop.
- 2. (*Every*) [Some] algebraic complement G of F in E is a topological complement having its slctop.

Proof If E/F has its slctop, the restriction $q|_G$ of the quotient map q is an isomorphism, so G has the slctop and the projection $(q|_G)^{-1} \circ q$ is continuous. The converse is obvious. \Box

Thus *E* is φ -complemental if and only if the quotient *E*/*F* is a copy of φ for each closed \aleph_0 -codimensional subspace *F* in *E*, which illumines the path *barrelled* $\Rightarrow \varphi$ -complemental [33] \Rightarrow primitive [35]. We [35, 36] defined *E* as primitive if $f \in E'$ whenever $f \in E^*$ and each restriction $f|_{E_n}$ is continuous for some increasing sequence $\{E_n : n \in \mathbb{N}\}$ of subspaces covering *E*.

Throughout, X denotes an infinite Tychonoff space, C(X) the continuous real-valued functions on X, and $C_p(X)$ denotes the linear space C(X) endowed with the topology of pointwise convergence. By means of the evaluation map, we may think of each x in X as a continuous linear form on $C_p(X)$, so that X becomes a Hamel basis for the dual L(X) of $C_p(X)$. We write $L_\beta(X)$ to denote L(X) with the strong topology $\beta(L(X), C(X))$: the strong dual of $C_p(X)$. The bidual M(X) of $C_p(X)$ is the dual of $L_\beta(X)$. As linear forms are determined by their values on a fixed Hamel basis, we identify the algebraic dual $L_\beta(X)^*$ with \mathbb{R}^X , so that M(X) becomes the subspace of \mathbb{R}^X consisting of points in the closure in \mathbb{R}^X of bounded sets in $C_p(X)$. (See the first paragraph of [11, Section 2].)

Trivially, every flat space is primitive. The converse is far from true in general. Yet,

Theorem 2 Every primitive subspace G of $L_{\beta}(X)$ is flat.

Proof We must show $G' \supseteq G^*$. As $G^* = L_\beta(X)^*|_G = \mathbb{R}^X|_G$, we let $h \in \mathbb{R}^X$ and show that $h|_G \in G'$. The sets $Y_n := \{x \in X : |h(x)| \le n\}$ span increasingly large subspaces $L_X(Y_n)$ which cover L(X), so the subspaces $G_n := G \cap L_X(Y_n)$ likewise cover G. Since G is primitive, we need only prove each $h|_{G_n} \in G'_n$. Choose $h_n \in \mathbb{R}^X$ with $h_n|_{Y_n} = h|_{Y_n}$ and $|h_n| \le n$ (the identically n function). As h_n is continuous, so is $h_n|_{G_n} = h|_{G_n}$. Indeed, $h_n \in \ell_\infty(X) \subseteq M(X)$ [12, Theorem 2].

For each $g \in \mathbb{R}^X$ define $P_g = \{f \in \mathbb{R}^X : |f| \le |g|\}$, a bounded set in \mathbb{R}^X . For each bounded set A in \mathbb{R}^X define $\phi_A \in \mathbb{R}^X$ by writing $\phi_A(x) = \sup_{f \in A} |f(x)|$ for each $x \in X$. For each bounded set B in $C_p(X)$, define another bounded set B^+ in $C_p(X)$ consisting of those h in C(X) for which there exists a finite set $\mathcal{F} \subseteq B$ such that $|h(x)| \le \max_{f \in \mathcal{F}} |f(x)|$ for all $x \in X$.

In an early version of [15], Saxon proved the following lemma. We add here equicontinuity of P_g , with easy proof: If $g \in M(X)$, there exists a bounded set B in $C_p(X)$ with $g \in \overline{B}$, closure in \mathbb{R}^X . Since $\phi_{\{g\}} = |g|$ and $P_{|g|} = P_g$, the lemma's first statement (proved in [12, 15]) assures $P_g \subseteq \overline{B^+}$. As B^+ is bounded in $C_p(X)$, the set P_g is equicontinuous.

Lemma 3 If a subset A of \mathbb{R}^X lies in the closure \overline{B} in \mathbb{R}^X of a bounded set B in $C_p(X)$, then $P_{\phi_A} \subseteq \overline{B^+}$. In particular, (i) $P_{\phi_B} \subseteq \overline{B^+}$ always holds, and (ii) if $g \in M(X)$, then $P_g \subseteq M(X)$; indeed, P_g is equicontinuous on $L_\beta(X)$.

If $\mathbb{R}^{(X)}$ denotes the finitely supported functions in \mathbb{R}^X , $(ii) \Rightarrow \mathbb{R}^{(X)} \subseteq \ell_{\infty}(X) \subseteq M(X)$ [9, 12], since $\mathbf{n} \in C_p(X) \subseteq M(X)$ and $\ell_{\infty}(X) = \bigcup_{n \in \mathbb{N}} P_n$. Now $\mathbb{R}^{(X)} \subseteq M(X)$ simply says the basis X has continuous coefficient functionals, so the splitting theorem [30, 36] proves $L_\beta(X)$ is barrelled ($C_p(X)$ is distinguished) if and only if $L_\beta(X)$ has the slotop [9, 12, 15]. Given $Y \subseteq X$, the subspace $L_X(Y)$ spanned by Y is closed in $L_\beta(X)$ since $\mathbb{R}^{(X)} \subseteq M(X)$, so $L_X(X \setminus Y)$ is a closed algebraic complement. Much more, in fact:

Theorem 4 (SPLITTING THEOREM) If $Y \subseteq X$, then $L_{\beta}(X) = L_X(Y) \oplus L_X(X \setminus Y)$.

Proof Let V be a closed absolutely convex neighborhood of the origin in $L_X(Y)$. Its polar V° in $L_X(Y)'$ is equicontinuous on $L_X(Y)$, with $V^{\circ\circ} = V$. The Hahn-Banach theorem provides a set D in M(X) equicontinuous on $L_\beta(X)$ with set of restrictions $D|_{L_X(Y)} = V^{\circ}$. Equicontinuity of D means there is a bounded set B in $C_p(X)$ such that $D \subseteq \overline{B}$, closure in \mathbb{R}^X . Therefore $P_{\phi_D} \subseteq \overline{B^+}$ by Lemma 3. In particular,

$$A := \left\{ f \in \mathbb{R}^X : f|_{L_X(Y)} \in V^\circ \text{ and } f|_{X \setminus Y} = 0 \right\} \subseteq \overline{B^+}.$$

Hence *A* is equicontinuous on $L_{\beta}(X)$. Clearly, then, the polar A^{\bullet} is a 0-neighborhood in $L_{\beta}(X)$, and $A^{\bullet} = V^{\circ\circ} + L_X(X \setminus Y) = V + L_X(X \setminus Y)$. Thus the projection of $L_{\beta}(X)$ onto $L_X(Y)$ along $L_X(X \setminus Y)$ is continuous.

We generalize results from our previous paper [12].

Theorem 5 If $Y \subseteq X$, the following six assertions are equivalent.

- 1. The subspace $L_X(Y)$ of $L_\beta(X)$ has the slctop.
- 2. The subspace $L_X(Y)$ is barrelled.
- 3. The subspace $L_X(Y)$ is primitive.

- 4. The subspace $L_X(Y)$ is flat.
- 5. The dual space M(X) contains all functions in \mathbb{R}^X which vanish off Y.
- 6. For each sequence Y_1, Y_2, \ldots of pairwise disjoint subsets of Y, empty sets allowed, there exists a sequence Q_1, Q_2, \ldots of open sets in X such that each $Q_n \supseteq Y_n$ and, for each $x \in X$, the set $\{n \in \mathbb{N} : x \in Q_n\}$ is finite.

Proof Clearly, $(1) \Rightarrow (2) \Rightarrow (3)$, and $(3) \Rightarrow (4)$ by Theorem 2.

 $[(4) \Rightarrow (5)]$. Suppose $f \in \mathbb{R}^X$ vanishes off Y. Then f vanishes on $L_X(X \setminus Y)$ and is continuous there. By (4), the restriction $f|_Y$ is continuous on $L_X(Y)$. Therefore f is continuous on $L_X(Y) \oplus L_X(X \setminus Y) = L_\beta(X)$ (Theorem 4); *i.e.*, $f \in M(X)$.

 $[(5) \Rightarrow (6)]$. Let disjoint subsets Y_1, Y_2, \ldots of Y be given. Let h be the step function which vanishes off $\bigcup_{n \in \mathbb{N}} Y_n$ and has constant value n on Y_n for each $n \in \mathbb{N}$. Since $h \in M(X)$ by (5), there is a bounded set B in $C_p(X)$ with $h \in \overline{B}$, closure in \mathbb{R}^X . Each $Q_n := \bigcup \{f^{-1}(n-1, n+1) : f \in B\}$ is an open set, possibly empty, containing Y_n by definition of h and \overline{B} . Moreover, when a point x is in Q_n , there is some $f_n \in B$ such that $f_n(x) > n-1$. Since B is bounded at x, the point x can be in only finitely many Q_n . Thus (6) holds.

 $[(6) \Rightarrow (5)]$. Let *u* be a function in \mathbb{R}^X which vanishes off *Y*. The disjoint sets $Y_n := \{x \in Y : n-1 \le |u(x)| < n\}$ $(n \in \mathbb{N})$ cover *Y*. Let Q_1, Q_2, \ldots be corresponding open sets in *X* satisfying (6). If

$$B_n := \{g \in C(X) : |g| < \mathbf{n} \text{ and } g \text{ vanishes off } Q_n\}$$

then $B := \bigcup_{n=1}^{\infty} B_n$ is bounded in $C_p(X)$. In fact, for each $x \in X$ we readily obtain

$$\sup_{g \in B} |g(x)| \le \max\left(\{0\} \bigcup \{n \in \mathbb{N} : x \in Q_n\}\right) := m_x.$$

For a given finite set $\sigma \subseteq X$, if $x \in \sigma \cap Y$ then $x \in Y_n \subseteq Q_n$ for some $n \in \mathbb{N}$, so $|u(x)| < n \le m_x \in \mathbb{N}$, and, routinely, there exists $g_x \in B_{m_x}$ with $g_x(x) = u(x)$. If, on the other hand, $x \in \sigma \setminus Y$, then u(x) = 0, and we let $g_x = \mathbf{0} \in B_1 \subseteq B$. Thus for all $x \in \sigma$ we have $g_x \in B$ and $|u(x)| \le |g_x(x)|$. The finite $\mathcal{F} := \{g_x : x \in \sigma\} \subseteq B$ yields $h \in B^+$ agreeing with u on σ . Hence $u \in \overline{B^+}^{\mathbb{R}^X}$. Now $\overline{B^+}^{\mathbb{R}^X} \subseteq M(X)$ since B^+ is bounded in $C_p(X)$. Then $u \in M(X)$, proving (5) holds.

 $[(5) \Rightarrow (1)]$. Let *A* be a bounded set in the algebraic dual \mathbb{R}^{Y} of *L*(*Y*). The polar A° in *L*(*Y*) is a basic slctop 0-neighborhood. If *B* is the subset of \mathbb{R}^{X} whose restriction sets $B|_{Y}$ and $B|_{X\setminus Y}$ are *A* and $\{0\}$, respectively, then ϕ_{B} vanishes off *Y*, so $\phi_{B} \in M(X)$ by (5). By Lemma 3(*ii*), $P_{\phi_{B}}$ is equicontinuous on $L_{\beta}(X)$, as is its subset *B*. Therefore the polar B^{\bullet} is a 0-neighborhood in $L_{\beta}(X)$, making $A^{\circ} = B^{\bullet} \cap L_{X}(Y)$ a 0-neighborhood in the subspace $L_{X}(Y)$. Consequently, $L_{X}(Y)$ has the slctop.

When Y = X, then $L_X(Y) = L_\beta(X)$, and we have: The condition (2) that $L_\beta(X)$ be barrelled, i.e., that $C_p(X)$ be distinguished, equals the condition that $L_\beta(X)$ bear the slctop; be primitive; be flat $[M(X) = L_\beta(X)' = L_\beta(X)^* = \mathbb{R}^X]$, which are fundamental results given in [9, 12, 15, 16]. Another such example: If $|X| = \aleph_0$, then $C_p(X)$ is distinguished, because, for $f \in \mathbb{R}^X$ with $|X| = \aleph_0$, one easily finds a bounded sequence $\{f_n : n \in \mathbb{N}\} \subseteq C_p(X)$ converging in \mathbb{R}^X to f, so that $f \in M(X) = \mathbb{R}^X$.

Also immediate, when Y = X, is a Kąkol–Leiderman solution [18] to Problem 1 of [15], independently given in variant form by Ferrando–Saxon [12]:

Corollary 6 $C_p(X)$ is distinguished if and only if, for each sequence $X_1, X_2, ...$ of pairwise disjoint subsets of X, there exists a sequence $Q_1, Q_2, ...$ of open sets in X such that Q_n contains X_n and, for each $x \in X$, the set $\{n \in \mathbb{N} : x \in Q_n\}$ is finite.

If $Y \subseteq X$ satisfies the equivalent conditions of Theorem 5, then Corollary 6 readily shows that $C_p(Y)$ is distinguished. Indeed, we readily obtain two facts, one well-known:

(A) If $Y \subseteq X$ and $C_p(X)$ is distinguished, then $C_p(Y)$ is distinguished [9, 12, 15], and (B) If $L_X(Y)$ has the slctop, then $C_p(Y)$ is distinguished.

Could the converse of (B) hold, adding a seventh equivalent condition to (1) - (6)? The answer is *No*. The space $C_p(Y)$ is distinguished for $|Y| = \aleph_0$. Yet $L_X(Y)$ fails to have the slotop for some such $Y \subseteq X$ precisely when $\Sigma(X) \nsubseteq M(X)$ (Theorem 16). Examples include $X = \mathbb{M}$ (Corollary 29), $X = \mathbb{S}$ (the Sorgenfrey line [12, 15]) and many others (Theorem 20).

In Sect. 5 we find a useful quasi-converse of (B). Here we extend Theorem 5:

Theorem 7 If G is a complemented subspace of $L_{\beta}(X)$, then statements (1)–(4) of Theorem 5 remain equivalent when G replaces $L_X(Y)$.

Proof For n = 1, 2, 3, 4 let (n') denote statement (n) with G replacing $L_X(Y)$. Clearly, as before, $(1') \Rightarrow (2') \Rightarrow (3') \Rightarrow (4')$. By hypothesis, $L_\beta(X) = F \oplus G$ for some subspace F. It is (easily) known in general that if $G \approx E/F$ is flat, then every algebraic complement Hof F is flat (see [25, 10.8.2]). Indeed, let $h \in E^*$ be arbitrary on H and vanish on F. Then there exists $h' \in (E/F)^* = (E/F)'$ with $h = h' \circ q \in E'$, where q is the quotient map. Thus the arbitrary point $h|_H$ in H^* is also in H'; i.e., $H^* = H'$, as desired. In our particular case, $[G \approx L_\beta(X) / F \text{ is flat}] \Rightarrow [L_X(Y) \text{ is flat}]$, where we choose Y to be a maximally large subset of X such that $L_X(Y)$ is transverse to F. Thus $(4') \Rightarrow (4)$ for this Y. By Theorem 5 we have $(4) \Rightarrow (1)$. Finally, $(1) \Rightarrow (1')$ via Lemma 1.

Theorem 5 has a convenient countable version:

Theorem 8 Let Y consist of distinct points $x_1, x_2, ...$ in X. The following six assertions are equivalent.

- 1. The subspace $L_X(Y)$ is flat.
- 2. The subspace $L_X(Y)$ is a copy of φ .
- 3. The subspace $L_X(Y)$ is a complemented copy of φ .
- 4. The quotient space $L_{\beta}(X)/L_{X}(X \setminus Y)$ is a copy of φ .
- 5. The dual space M(X) contains all functions in \mathbb{R}^X which vanish off Y.
- 6. There exists a sequence $Q_1, Q_2, ...$ of open sets in X such that $x_n \in Q_n$ for each $n \in \mathbb{N}$ and, for every $x \in X$, the set $\{n \in \mathbb{N} : x \in Q_n\}$ is finite.

Proof The equivalence of (1)–(5) follows from Theorems 4 and 5.

 $[(5) \Rightarrow (6)]$. Apply $[(5) \Rightarrow (6)]$ of Theorem 5 with each $Y_n = \{x_n\}$.

 $[(6) \Rightarrow (5)]$. Let *h* be a function in \mathbb{R}^X which vanishes off *Y*, and let Q_1, Q_2, \ldots be as in (6). For each $n \in \mathbb{N}$, choose $g_n \in C(X)$ vanishing off Q_n with $g_n(x_n) = h(x_n)$. For each $x \in X$, we have $g_n(x) = 0$ for almost all $n \in \mathbb{N}$. Therefore $B := \{g_n : n \in \mathbb{N}\}$ is bounded in $C_p(X)$. Comparing values both on and off *Y*, we see that $|h| \le \phi_B$; i.e., $h \in P_{\phi_B}$. Lemma 3(*i*) says $P_{\phi_B} \subseteq \overline{B^+}^{\mathbb{R}^X}$. And $\overline{B^+}^{\mathbb{R}^X} \subseteq M(X)$ since B^+ is bounded in $C_p(X)$. Thus $h \in M(X)$, which proves (5) holds.

Corollary 9 If $Y = \{x_n : n \in \mathbb{N}\}$ is a relatively discrete set of distinct points in X, its span $L_X(Y)$ is a copy of φ complemented in $L_\beta(X)$.

Proof There are open sets U_n in X such that each $U_n \cap Y = \{x_n\}$. Being regular, X admits open sets V_n with $x_n \in V_n$ and $\overline{V}_n \subseteq U_n$. If $Q_1 = V_1$ and $Q_{k+1} = V_{k+1} \setminus \bigcup_{j \le k} \overline{V}_j$ for $k \ge 1$, the open disjoint sets Q_n verify part (6) of Theorem 8, and thus part (3).

Theorem 10 Each infinite linearly independent set S in $L_{\beta}(X)$ has a subset S₀ whose span sp (S₀) is a complemented copy of φ .

Proof Zorn's lemma produces a unique subset Z of the Hamel basis X whose span $L_X(Z)$ algebraically complements sp (S) in L(X). Since $|X \setminus Z| = |S|$ is infinite and X is regular, routine induction yields a denumerable relatively discrete set $Y \subseteq X \setminus Z$. By splitting Theorem 4 and Corollary 9,

$$L_{\beta}(X) = L_X(Y) \oplus L_X(X \setminus Y)$$
 and $L_X(Y)$ is a copy of φ .

Moreover, $[Y \subseteq X \setminus Z]$ ensures $[Z \subseteq X \setminus Y]$. Therefore $L(X) = L_X(Z) + \operatorname{sp}(S) = L_X(X \setminus Y) + \operatorname{sp}(S)$. Again, elementary algebra produces a unique subset S_0 of the linearly independent set S whose span sp (S_0) is an algebraic complement to the closed $L_X(X \setminus Y)$. So $|S_0| = |Y| = \aleph_0$, and by Lemma 1, sp (S_0) is a topological complement to $L_X(X \setminus Y)$ and has its slotop; i.e., sp (S_0) is a complemented copy of φ .

Does *every* linearly independent sequence in $L_{\beta}(X)$ span a (complemented) copy of φ ? No, not always (*e.g.*, not when $X = \mathbb{M}$, Michael's line), but yes, precisely when $\Sigma(X) \subseteq M(X)$. Such questions anticipate Theorem 16, an expansion of Theorem 8.

4 Ferality, $\Sigma(X) \subseteq M(X)$, bounded away from zero

A result/comment from [13, 24] solves [23, Problem 1]. Our brief organic proof translates weak (quasi)barrelled spaces into feral duals. Defining *feral* is key.

Theorem 11 A locally convex space E has its weak topology $\sigma(E, E')$ and is [quasibarrelled] (barrelled) if and only if the [strong dual $(E', \beta(E', E))$] (weak* dual $(E', \sigma(E', E))$) is feral.

Proof (new) *E* has its weak topology and is [quasibarrelled] \langle barrelled $\rangle \Leftrightarrow$ [each bornivorous barrel] \langle each barrel \rangle contains a finite-codimensional subspace (see [39, Lemma 1.2]) \Leftrightarrow [each $\beta(E', E)$ -bounded set] \langle each $\sigma(E', E)$ -bounded set \rangle is finite-dimensional \Leftrightarrow [the strong dual] \langle the weak* dual \rangle is feral.

Important known facts easily follow: Since φ is feral [37, II, Ex. 7(b)], so is $L_{\beta}(X)$ by Theorem 10, which means $C_p(X)$ is quasibarrelled by Theorem 11.

Corollary 12 $L_{\beta}(X)$ is feral [16, Corollary 4] and $C_{p}(X)$ is quasibarrelled [4, 17].

CREDIT FOR THEOREM 11. Our Theorem 11 has already appeared, in [24], in [23], and in a circulated preprint. On page 498 of [24], Saxon (a) defined feral spaces, which oppose docile spaces and determine (quasi)barrelled enlargements, and (b) gave Theorem 11, with proof (see formal **Proof** on p. 498 and the sentence thereafter). Now, nineteen years later, Kąkol/Śliwa [23] have reproduced the quasibarrelled part, adding two more (known) equivalent conditions and a much longer proof. More than two years earlier, on Jan. 2, 2021, Saxon emailed Ferrando, Kąkol, Leiderman and others a preprint that included the quasibarrelled version of Theorem 11. The half-century-old claims of Gulick and Buchwalter/Schmets to Corollary 12 are iron-clad. But Theorem 11, we believe, belongs to Saxon.

Clearly, $C_p(X)$ is *non*feral. Hence $C_p(X)$ admits quasibarrelled countable enlargements [39, Corollary 3.4]. The (quasi)barrelled enlargement issues are most for $L_\beta(X)$: either the

dual $L_{\beta}(X)' = \mathbb{R}^X = L_{\beta}(X)^*$ cannot be enlarged at all, or $L_{\beta}(X)$ is not even quasibarrelled [9, Corollaries 3.2, 3.4].

We know $L_{\beta}(X)$ is distinguished with Baire-like strong dual M(X) [9, 12]. Moreover, and more generally,

Theorem 13 Each feral space E is semi-reflexive with Baire-like strong dual E'.

Proof Ferality means $(E', \sigma(E', E)) = (E', \beta(E', E))$. The dual of the latter is the bidual E'' of E, and the dual of the former is E. Therefore E'' = E, proving E is semi-reflexive. Thus E' is barrelled [25, 23.3.4] under its only admissible topology $\sigma(E', E)$. Now the 0 -neighborhoods of E', unlike those of φ , always contain a finite-codimensional subspace. Hence the barrelled space E' cannot contain φ , and must be Baire-like [31].

Corollary 14 Always, $L_{\beta}(X)$ is semi-reflexive with Baire-like strong dual M(X).

If $Y \subseteq X$, Arkhangel'skii [2] denotes by $C_p(Y|X)$ the subspace of $C_p(Y)$ comprised of functions on Y having extensions belonging to C(X). In a companion paper [11] we prove $C_p(Y|X)$ is a large subspace of $C_p(Y)$, so both spaces have the same (feral) strong dual $L_\beta(Y)$, and thus $C_p(Y|X)$ is always quasibarrelled. The weak* dual of $C_p(Y|X)$ is dominated by the weak* dual $L_p(Y)$ of $C_p(Y)$. If the coarser topology is feral, so is the finer. Hence $C_p(Y)$ is barrelled if $C_p(Y|X)$ is, by Theorem 11, or by the simple fact that $C_p(Y|X)$ is dense in $C_p(Y)$. Similarly, since $L_p(Y)$ dominates a subspace of $L_p(X)$, the former is feral if the latter is, and thus $C_p(Y)$ is barrelled if $C_p(X)$ is (well-known, or use Theorem 11). The question arises: If $C_p(Y)$ is barrelled, must $C_p(Y|X)$ be, also?

The answer is *No*, even when *Y* is assumed to be dense in *X*. For a counterexample, let *X* be the Michael line \mathbb{M} and *Y* its dense subset \mathbb{P} of irrationals, and argue as follows:

Example 15 Recall the Michael line \mathbb{M} . It is the Tychonoff space (\mathbb{R}, τ) , where τ is the coarsest topology on the real line \mathbb{R} that (a) is finer than the usual topology on \mathbb{R} and (b) induces the discrete topology on the irrationals \mathbb{P} . Now \mathbb{M} induces the usual topology on the rationals \mathbb{Q} . Furthermore, $C_p(\mathbb{Q})$ and $C_p(\mathbb{P})$ are distinguished, because \mathbb{Q} is countable and \mathbb{P} is discrete [9, 15]. Yet $C_p(\mathbb{M})$ is not distinguished. In fact, $\Sigma(\mathbb{M}) \notin M(\mathbb{M})$ [12, 15].

Every τ -neighborhood of a rational q contains an open interval about q, thus meets \mathbb{P} , proving \mathbb{P} is dense in \mathbb{M} . And since \mathbb{P} is discrete, we have $C_p(\mathbb{P}) = \mathbb{R}^{\mathbb{P}}$ is barrelled. But not the large subspace $C_p(\mathbb{P}|\mathbb{M})$. Indeed, let S be a sequence in \mathbb{P} convergent (in both \mathbb{R} and \mathbb{M}) to some $q \in \mathbb{Q}$; e.g., take $S = \left\{\sqrt{2}/n : n \in \mathbb{N}\right\}$, q = 0. Clearly, S serves as an infinite, linearly independent, bounded set in the weak* dual of $C_p(\mathbb{P}|\mathbb{M})$, so said dual is not feral. Since $C_p(\mathbb{P}|\mathbb{M})$ has its weak topology, $C_p(\mathbb{P}|\mathbb{M})$ is not barrelled, by Theorem 11. \diamond

If $\{x_n\}_n$ is a bounded sequence in E, the null sequence $\{x_n/n\}_n$ cannot be bounded away from zero. Hence Sect. 2 observes (f) \Rightarrow (g). Prof. Jerzy Kąkol asked if the converse holds for $E = L_\beta(X)$; *i.e.*, must linearly independent sequences in the ever-feral $L_\beta(X)$ be bounded away from zero? Our next theorem answers *No*, since it is known that $\Sigma(\mathbb{M}) \nsubseteq M(\mathbb{M})$ [12, 15].

Theorem 16 The following six assertions are equivalent.

- 1. $\Sigma(X) \subseteq M(X)$.
- 2. Every linearly independent sequence in $L_{\beta}(X)$ is bounded away from zero.
- 3. Every linearly independent sequence in $L_{\beta}(X)$ spans a copy of φ .
- 4. Every linearly independent sequence in $L_{\beta}(X)$ spans a complemented copy of φ .

- 5. If $|X \setminus Z| = \aleph_0$, then the quotient $L_\beta(X) / L_X(Z)$ is a copy of φ .
- 6. For each sequence of distinct points $x_1, x_2, ...$ in X there are open neighborhoods Q_n of x_n such that, for each x in X, the set $\{n \in \mathbb{N} : x \in Q_n\}$ is finite.

Proof $[(1) \Rightarrow (4)]$. If $\{v_n : n \in \mathbb{N}\}$ is linearly independent in L(X) with span G_1 , there is a sequence of distinct points x_1, x_2, \ldots in X whose span G_2 contains G_1 . By (1), the space M(X) contains all functions in \mathbb{R}^X which vanish on $Z := X \setminus \{x_n : n \in \mathbb{N}\}$. Therefore Theorem 8 implies G_2 is a copy of φ complemented in $L_\beta(X)$. Thus G_1 is a copy of φ complemented in $L_\beta(X)$; i.e., (4) holds.

 $[(4) \Rightarrow (3)]$. Trivially.

 $[(3) \Rightarrow (2)]$. Every linearly independent sequence in φ is bounded away from zero.

 $[(2) \Rightarrow (1)]$. Let $f \in \Sigma(X)$. There are distinct points x_1, x_2, \ldots in X, off of which f vanishes. If $y_n = (1 + |f(x_n)|)^{-1} \cdot x_n$, hypothesis (2) provides a bounded set B in $C_p(X)$ whose polar B° in L(X) misses $\{y_n : n \in \mathbb{N}\}$. Thus for each n, there is some $g_n \in B$ with $|g_n(y_n)| > 1$, which means $|g_n(x_n)| > 1 + |f(x_n)|$. Clearly, then, $\phi_B \ge |f|$. Hence $f \in P_{\phi_B} \subseteq \overline{B^+} \subseteq M(X)$ by Lemma 3(i), so that (1) holds.

 $[(1) \Leftrightarrow (6)]$. Immediate from [Theorem 8, (6) $\Leftrightarrow (5)$].

We now have the equivalence of (1), (2), (3), (4), and (6).

 $[(3) \Rightarrow (5)]$. If $|X \setminus Z| = \aleph_0$, set $Y = X \setminus Z$. By Theorem 4 and hypothesis (3), $L_\beta(X) = L_X(Y) \oplus L_X(Z) \approx \varphi \oplus L_X(Z)$. Therefore $L_\beta(X) / L_X(Z) \approx \varphi$; i.e., (5) holds.

 $[(5) \Rightarrow (3)]$. Let *F* be a subspace of $L_{\beta}(X)$. Choose $Z \subseteq X$ such that $L_X(Z)$ algebraically complements *F*. If dim $(F) = \aleph_0$, then $|X \setminus Z| = \aleph_0$ and $L_{\beta}(X) / L_X(Z) \approx \varphi$ by (5). Hence $F \approx \varphi$ by Lemma 1; i.e., (3) holds.

Theorem 8 or 16 and Corollary 9 improve [12, Theorem 22 and Corollary 23]:

(C) $\Sigma(X) \subseteq M(X)$ if countable sets in X are relatively discrete; thus, if X is a P-space.

Also, from $[(1) \Leftrightarrow (6)]$ of Theorem 16, we observe

(D) $\Sigma(Y) \subseteq M(Y)$ if $Y \subseteq X$ and $\Sigma(X) \subseteq M(X)$.

Corollary 17 If ω_1 is the space of countable ordinals, then $\Sigma(\omega_1) \subseteq M(\omega_1)$ [12].

Proof If $0 \le \alpha_1 < \alpha_2 < \alpha_3 < \cdots$ is a sequence in ω_1 , let $\beta = \sup \{\alpha_n : n \in \mathbb{N}\}$. With $Q_1 := [0, \beta)$ and $Q_n := (\alpha_{n-1}, \beta)$ for $n = 2, 3, \ldots$, apply $[(6) \Rightarrow (1)]$ of Theorem 16. \Box

A subset of ω_1 is a *stationary* set if it meets every **closed unb**ounded set (every *club set*) in ω_1 . Infinite families of pairwise disjoint stationary sets exist [5, 4.3.2]. We greatly simplify the original Kąkol-Leiderman proof of

Theorem 18 The space $C_p(\omega_1)$ is not distinguished [18].

Proof Let S_1, S_2, \ldots be a sequence of pairwise disjoint stationary sets in ω_1 . Let Q_n be an open set containing S_n . The closed set $\omega_1 \setminus Q_n$ must be bounded by some $\delta_n \in \omega_1$, since otherwise it is a club set which misses the stationary set $S_n (\subseteq Q_n)$, an impossibility. Therefore $(\delta_n, \omega_1) \subseteq Q_n$. Hence the successor δ of $\sup \{\delta_n : n \in \mathbb{N}\}$ is a point of ω_1 in Q_n for infinitely many (indeed, for all) $n \in \mathbb{N}$. Clearly, then, $X = \omega_1$ does not satisfy the condition of Corollary 6. Equivalently, $C_p(\omega_1)$ is not distinguished.

Corollary 19 An ordinal α is countable if and only if $C_p(\alpha)$ is distinguished.

For $L_{\beta}(X)$ spaces, *barrelled* $\Leftrightarrow \varphi$ -complemental \Leftrightarrow primitive ([12], or invoke Theorem 5 with Y = X). In (5) of Theorem 16, divisors are characteristically (*i*) closed, (*ii*) \aleph_0 codimensional, and (*iii*) of the form $L_X(Z)$. We could omit (*i*), since (*iii*) \Rightarrow (*i*). We cannot omit (*iii*), delimiting divisors by (*i*) and (*ii*) only. Because thus altered, (5) would simply mean, via Lemma 1, that $L_{\beta}(X)$ is φ -complemental, and $X = \omega_1$ would contradict [(1) \Rightarrow (5)]. So, strangely enough, $L_{\beta}(\omega_1)$ is not φ -complemental, yet every \aleph_0 -dimensional subspace of $L_{\beta}(\omega_1)$ is a complemented copy of φ (Corollary 17, Theorems 16, 18).

Theorem 18 is the Kąkol-Leiderman solution of [15, Problem 64]. Profs. Mikolaj Krupski and Roman Pol solve [12, Problem 24], giving a *P*-space X with $C_p(X)$ nondistinguished [29]. For all such X, the feral space $L_\beta(X)$ is not flat [12, 15], yet bounds every linearly independent sequence away from zero (Theorem 16 and (C)).

More abstractly, one could start with a linear space *E* having uncountable Hamel basis *B*, let *E'* denote the \aleph_0 -dual with respect to *B* [1], and impose any locally convex topology on *E* compatible with the dual pair $\langle E, E' \rangle$. The resulting feral, non-flat space *E* clearly bounds linearly independent sequences away from zero. Being primitive, *E* is not a subspace of any $L_\beta(X)$ space (Theorem 2).

If, on the other hand, we desire natural examples of feral spaces that admit linearly independent sequences *not* bounded away from zero, we may choose spaces $L_{\beta}(X)$ precisely when $\Sigma(X) \nsubseteq M(X)$, again by Theorem 16. There are many such choices besides $L_{\beta}(\mathbb{M})$ and $L_{\beta}(\mathbb{S})$:

Theorem 20 Suppose X is either (a) locally compact or (b) a complete metric space. If X contains a separable set S having no relative isolated points, then $\Sigma(X) \nsubseteq M(X)$.

Proof I. Assume that S = X is separable with no isolated points.

Fix a set Y of distinct points $x_1, x_2, ...$ dense in X. By $[(1) \Rightarrow (3)]$ of Theorem 16 it suffices to show that $L_X(Y)$ is not a copy of φ ; i.e., does not have the slctop. Suppose, by way of contradiction, that $L_X(Y)$ is a copy of φ . Theorem 8 yields open sets $Q_1, Q_2, ...$ such that $x_n \in Q_n$ and each $x \in X$ is in Q_n for at most finitely many $n \in \mathbb{N}$.

Case (a): *X* is locally compact. Put $n_1 = 2$. There is a compact neighborhood K_1 of x_{n_1} with $K_1 \subseteq Q_{n_1}$. Since x_{n_1} is not isolated and *X* is Hausdorff, there exists $n_2 > n_1$ with x_{n_2} in the interior \mathring{K}_1 of K_1 . Local compactness provides a compact neighborhood K_2 of x_{n_2} such that $K_2 \subseteq \mathring{K}_1 \bigcap Q_{n_2}$. We continue inductively to find a sequence $n_1 < n_2 < \cdots$ of integers and a sequence $K_1 \supseteq K_2 \supseteq \cdots$ of compact sets such that

$$x_{n_i} \in K_j \subseteq Q_{n_i}$$
 for $j = 1, 2, \ldots$.

The finite intersection principle ensures there is some $x_0 \in \bigcap_{j=1}^{\infty} K_j$. Hence $x_0 \in \bigcap_{j=1}^{\infty} Q_{n_j}$. But this contradicts the fact that x_0 can be in Q_n for only finitely many values of n. We must conclude that $\Sigma(X) \nsubseteq M(X)$.

Case (b): *X* is a complete metric space. We repeat the induction argument of Case (a), replacing each K_j with a ball B_j centered at x_{n_j} of positive radius $r_j < 1/j$. Since the metric space *X* is complete and the radii tend to 0, the nested sequence $B_1 \supseteq B_2 \supseteq \cdots$ intersects at a single point x_0 (elementary). But then we have $x_0 \in B_j \subseteq Q_{n_j}$ for all $j \in \mathbb{N}$, a contradiction as in Case (a).

Therefore the theorem holds when S = X.

II. In the general case, since *S* is separable and has no relative isolated points, the same is true of \overline{S} , and furthermore, \overline{S} is either locally compact or a complete metric space. Hence case I implies $\Sigma(\overline{S}) \notin M(\overline{S})$. Then $\Sigma(X) \notin M(X)$ by fact (D) above.

Corollary 21 If X is separable, without isolated points, and either locally compact or complete metric, then $C_p(X)$ is not distinguished. Moreover, some linearly independent sequences in the feral space $L_\beta(X)$ are not bounded away from zero. Examples: $X = \mathbb{R}$, S, [0, 1], Cantor set, Helley space, $\beta\mathbb{Q}$, $\beta\mathbb{R}$ (see [14] and [12, Theorem 5]).

5 Sufficient conditions on $Y \subseteq X$

Hahn-Banach enables the splitting Theorem 4, which enables

Theorem 22 Assume $Y_1, \ldots, Y_n \subseteq X$ and each $L_X(Y_i)$ has the slctop. Then $L_X(\bigcup_{i=1}^n Y_i)$ also has the slctop, and (B) proves $C_p(\bigcup_{i=1}^n Y_i)$ is distinguished. Thus $C_p(X)$ is distinguished if $\bigcup_{i=1}^n Y_i = X$.

Proof It suffices to prove $L_X(Y_1 \cup Y_2)$ has the slctop. Since $L_X(Y_i)$ has the slctop, so do subspaces $L_X(Y_i \setminus Y_{3-i})$ and $L_X(Y_1 \cap Y_2)$ (i = 1, 2). The splitting Theorem 4 yields

$$L_{\beta}(X) = L_X(Y_1 \setminus Y_2) \oplus L_X(Y_1 \cap Y_2) \oplus L_X(Y_2 \setminus Y_1) \oplus L_X(X \setminus (Y_1 \cup Y_2)).$$

As the direct sum of the first three summands, $L_X(Y_1 \cup Y_2)$ also has the slctop.

This abbreviates proof of

Corollary 23 [15, Theorem 3.16(3)] Assume $X = \bigcup_{i=1}^{n} Y_i$ with each $C_p(Y_i)$ distinguished. If for each bounded set D in $C_p(Y_i)$ there is a bounded set B in $C_p(X)$ with $B|_{Y_i} = D$ (e.g., if each Y_i is *l*-embedded in X), then $C_p(X)$ is distinguished.

Proof For bounded D in $C_p(Y_i)$ or bounded B in $C_p(X)$, given either one, we choose the other such that $B|_{Y_i} = D$. Thus $L_X(Y_i) = L_\beta(Y_i)$ since, in both spaces,

$$B^{\circ} \bigcap L\left(Y_i\right) = D^{\bullet}$$

is a basic 0-neighborhood, where B° is the polar in L(X) and D^{\bullet} is the polar in $L(Y_i)$. As each $C_p(Y_i)$ is distinguished, each $L_\beta(Y_i) = L_X(Y_i)$ has the slotop by [9, Corollary 3.4]. Hence $C_p(X)$ is distinguished by Theorem 22.

A simpler version of Theorem 22 is

Theorem 24 $C_p(X)$ is distinguished if both $L_X(Y)$ and $L_X(X \setminus Y)$ have the slctop for some $Y \subseteq X$.

In light of (B), the hypothesis assumes both $C_p(Y)$ and $C_p(X \setminus Y)$ are distinguished. But distinguished $C_p(Y)$ and $C_p(X \setminus Y)$ alone may not suffice for $C_p(X)$, as demonstrated by $X = \mathbb{M}$ and $Y = \mathbb{Q}$ in example 15. What additional condition(s) on Y will ensure $C_p(X)$ is distinguished? Prior to our splitting theorem, a handful of answers appeared [12, 15, 18, 19].

The beautifully simple Kąkol-Leiderman answer [18, Proposition 2.3] clearly improves [15, Theorem 57, Corollary 58] and [12, (‡)]. It says $C_p(X)$ is distinguished if $C_p(Y)$ is distinguished for some $Y \subseteq X$ with $|X \setminus Y| < \aleph_0$. A second K-L answer is [18, Theorem 3.8]: $C_p(X)$ is distinguished if some Y is an open F_σ subset of X and both $C_p(Y)$ and $C_p(X \setminus Y)$ are distinguished.

Answers may well involve $L_X(Y)$. Evidently, $L_X(Y) \leq L_\beta(Y) (= L_\beta(Y|X)$ [11]). Thus $L_X(Y) = L_\beta(Y)$ precisely when $L_X(Y) \geq L_\beta(Y)$, i.e., when $L_X(Y)$ has topology at least as fine as that of $L_\beta(Y)$.

Theorem 25 Assume $Y \subseteq X$. The following three assertions are equivalent.

- 1. $L_X(Y) = L_\beta(Y)$.
- 2. Each bounded $S \subseteq C_p(Y)$ admits a bounded $T \subseteq C_p(X)$ with $S \subseteq \overline{T|_Y}^{C_p(Y)}$.
- 3. Each bounded $S \subseteq C_p(Y)$ admits a bounded $T \subseteq C_p(X)$ with $S \subseteq \overline{T|_Y}^{\mathbb{R}^Y}$.

Proof If V is a set in either $C_p(X)$ or L(X), we let V° denote the polar of V with respect to the dual pair $\langle C_p(X), L(X) \rangle$. If W is a set in either $C_p(Y)$ or L(Y), let W^\bullet denote the polar of W with respect to the dual pair $\langle C_p(Y), L(Y) \rangle$.

 $[(1) \Rightarrow (2)]$. Given bounded $S \subseteq C_p(Y)$, the polar S^{\bullet} is a 0-neighborhood in $L_X(Y)$ by (1). The relative topology provides a 0-neighborhood U in $L_\beta(X)$ with $U \cap L(Y) \subseteq S^{\bullet}$. As $L_\beta(X)$ is the strong dual of $C_p(X)$, there is a bounded $T \subseteq C_p(X)$ with polar $T^{\circ} \subseteq U$. Hence

$$T^{\circ} \cap L(Y) \subseteq S^{\bullet}.$$

Clearly, $T^{\circ} \cap L(Y) = (T|_Y)^{\bullet}$, so the bipolar theorem yields

$$S \subseteq S^{\bullet \bullet} \subseteq (T^{\circ} \cap L(Y))^{\bullet} = (T|_Y)^{\bullet \bullet} = \overline{\operatorname{acx}}(T|_Y),$$

where $\overline{acx}(T|_Y)$ is the closure in $C_p(Y)$ of the absolutely convex hull $acx(T|_Y)$ of $T|_Y$. Without loss of generality, we may assume from the beginning that T is absolutely convex. Then so is $T|_Y$; *i.e.*, $T|_Y = acx(T|_Y)$, which means $\overline{acx}(T|_Y) = \overline{T|_Y}^{C_p(Y)}$. Therefore (2) follows.

 $[(2) \Leftrightarrow (3)]. \text{ If } U \subseteq C(Y) \text{ then } \overline{U}^{C_p(Y)} = \overline{U}^{\mathbb{R}^Y} \cap C(Y).$

 $[(2) \Rightarrow (1)]$. The polar S[•] of an arbitrary bounded set $S \subseteq C_p(Y)$ is a basic 0-neighborhood in $L_\beta(Y)$. From (2) there exists bounded $T \subseteq C_p(X)$ with

 $S \subseteq \overline{T|_Y}^{C_p(Y)} \subseteq (T|_Y)^{\bullet \bullet}$. Therefore

$$S^{\bullet} \supseteq (T|_Y)^{\bullet \bullet \bullet} = (T|_Y)^{\bullet} = T^{\circ} \cap L(Y).$$

Now T° is a 0-neighborhood in $L_{\beta}(X)$, so $T^{\circ} \cap L(Y)$ is a 0-neighborhood in the subspace $L_X(Y)$, and lies inside S^{\bullet} . Hence $L_X(Y) \succeq L_{\beta}(Y)$; assertion (1) holds.

Very short proof of Corollary 23 Theorem 25 and [9, Corollary 3.4] imply each $L_X(Y_i) = L_\beta(Y_i)$ has the slctop, so Theorem 22 applies.

Theorem 26 If Y is a G_{δ} set in X, then $L_X(Y) = L_{\beta}(Y)$.

Proof We assume $Y = \bigcap_{i=1}^{\infty} V_i$, with each V_i open in X and $V_{i+1} \subseteq V_i$. Let a bounded set S in $C_p(Y)$ be given. The fact [11] that $C_p(Y|X)$ is a large subspace of $C_p(Y)$ means there is some $B \subseteq C(X)$ such that $B|_Y$ is bounded in $C_p(Y)$ and $S \subseteq \overline{B|_Y}^{C_p(Y)}$. For each $m \in \mathbb{N}$ define

 $A_m = \{u \in C(X) : u \text{ vanishes off } V_m \text{ and } |u|_Y| \le \mathbf{m}, |f|_Y| \text{ for some } f \in B\}$

and let $T = \bigcup_{m=1}^{\infty} A_m$. If $x \in Y$ then $\sup_{u \in T} |u(x)| \le \sup_{f \in B} |f(x)| < \infty$. If $x \in X \setminus V_n$ for some $n \in \mathbb{N}$, then u(x) = 0 for all $u \in \bigcup_{m=n+1}^{\infty} A_m$, and for all $u \in \bigcup_{m=1}^n A_m$ we have $|u(x)| \le n$; thus $\sup_{u \in T} |u(x)| \le n < \infty$. This proves T is bounded at all points $x \in X$; i.e., T is bounded in $C_p(X)$.

Let us be given $v \in S$, finite $\sigma \subseteq Y$, and $\varepsilon > 0$. Since $S \subseteq \overline{B|_Y}^{\mathbb{R}^Y}$, there is some $f \in B$ such that

$$|f(x) - v(x)| < \varepsilon$$
 for each $x \in \sigma$.

Page 13 of 20

166

Fix $m \in \mathbb{N}$ with $m \ge \max_{x \in \sigma} |f(x)|$. As *m* is suitably large, we easily find $u \in C(X)$ such that u(x) = f(x) for each $x \in \sigma$ and $|u(x)| = \min\{m, |f(x)|\}$ for every $x \in X$. Hence $u \in A_m \subseteq T$ and $u|_Y$ is in the basic neighborhood of *v* in \mathbb{R}^Y determined by σ and ε . Therefore each *v* in *S* is also in $\overline{T|_Y}^{\mathbb{R}^Y}$; i.e., assertion (3) of Theorem 25 holds, as must assertion (1): $L_X(Y) = L_\beta(Y)$.

Theorem 26 and [9, Corollary 3.4] prove the promised quasi-converse of (B):

Theorem 27 If Y is a G_{δ} set in X and $C_p(Y)$ is distinguished, then $L_X(Y)$ has the slctop.

Corollary 28 If $|X \setminus Y| \leq \aleph_0$ and $C_p(Y)$ is distinguished, then $L_X(Y)$ has the slctop.

Proof The inequality assures Y is a G_{δ} set.

This and Theorem 24 imply the first K-L answer, since $L_X(X \setminus Y)$ has the slctop if its dimension $|X \setminus Y|$ is finite. However, unlike co-finite Y, a co-countable Y with $C_p(Y)$ distinguished does not mean $L_X(X \setminus Y)$ has the slctop, as seen here:

Corollary 29 The subspace $L_{\mathbb{M}}(\mathbb{P})$ of $L_{\beta}(\mathbb{M})$ has the slctop, $L_{\mathbb{M}}(\mathbb{Q})$ does not.

Proof The first part is from Example 15 and Corollary 28. The second part follows from the first, Theorem 24, and the fact that $C_p(\mathbb{M})$ is not distinguished.

Theorem 30 If Y is both a G_{δ} and an F_{σ} set in X, and both $C_p(Y)$ and $C_p(X \setminus Y)$ are distinguished, then $C_p(X)$ is distinguished.

Proof Apply Theorem 27 twice, then Theorem 24.

An open F_{σ} set is also a G_{δ} set; K-L's second answer [18, Theorem 3.8] follows. Similar results in [12] are substantially improved by (C) above and by Theorem 32 and Corollary 33 below, which dismiss *C-embedded* from all of [12].

Corollary 31 If Y is a co-countable F_{σ} set in X and $C_p(Y)$ is distinguished, then $C_p(X)$ is also distinguished.

With G_{δ} in place of F_{σ} , the Corollary fails: take $X = \mathbb{M}, Y = \mathbb{P}$.

Theorem 32 The following three assertions are equivalent.

- 1. $C_p(X)$ is distinguished.
- 2. $C_p(Y)$ is distinguished for every $Y \subseteq X$ with $|X \setminus Y| = \aleph_0$.
- 3. (i) $C_p(Y)$ is distinguished for some $Y \subseteq X$ with $|X \setminus Y| = \aleph_0$, and (ii) $\Sigma(X) \subseteq M(X)$.

Proof We already know $(1) \Rightarrow (2), (3)$ [15].

 $[(2) \Rightarrow (1)]$. Theorem 10 provides $Z \subseteq X$ with $|Z| = \aleph_0$ and $L_X(Z) \approx \varphi$, and hypothesis (2) says $C_p(Y)$ is distinguished for $Y = X \setminus Z$. By Corollary 28, $L_X(Y)$ has the slctop. Theorem 24 applies.

 $[(3) \Rightarrow (1)]$ We infer, again from (*i*) and Corollary 28, that $L_X(Y)$ has the slctop. And (*ii*) implies $L_X(X \setminus Y) \approx \varphi$ via Theorem 16 so that, just as before, (1) follows from Theorem 24.

Example 15 showed we cannot omit part (*ii*) in (3). Nor can we omit part (*i*), as proved by Corollary 17 and Theorem 18. This negatively solves [12, Problem 17].

However, one may replace part (*i*) with (*i'*) Every closed \aleph_0 -codimensional subspace is complemented in $L_\beta(X)$. Indeed, $[(i') \land (ii)] \Leftrightarrow [L_\beta(X) \text{ is } \varphi\text{-complemental}] \Leftrightarrow (1)$.

In a *P*-space, countable intersections of open sets are open, making countable sets relatively discrete. If X is a *P*-space, then $\Sigma(X) \subseteq M(X)$ by (C) above. Therefore

Corollary 33 Let X be a P-space. The space $C_p(X)$ is distinguished if $C_p(Y)$ is distinguished for some $Y \subseteq X$ with $|X \setminus Y| = \aleph_0$.

We extend Theorem 27 to finite unions.

Theorem 34 For G_{δ} sets Y_1, \ldots, Y_n in X, the following three assertions are equivalent.

- 1. $C_p(Y_i)$ is distinguished for i = 1, ..., n.
- 2. $C_p\left(\bigcup_{i=1}^n Y_i\right)$ is distinguished.
- 3. $L_X(\bigcup_{i=1}^n Y_i)$ has the slctop.

Proof Our (B) and (A) yield $[(3) \Rightarrow (2) \Rightarrow (1)]$.

 $[(1) \Rightarrow (3)]$. Partition $\bigcup_{i=1}^{n} Y_i$ into finitely many disjoint sets Z_1, \ldots, Z_k such that, for each $j \leq k$, there is some $i \leq n$ with $Z_j \subseteq Y_i$. By (1) and Theorem 27, each $L_X(Y_i)$ has the slctop. Each $L_X(Z_j)$, being a subspace of some $L_X(Y_i)$, also has the slctop. Splitting Theorem 4 yields $L_X(\bigcup_{i=1}^{n} Y_i) = L_X(\bigcup_{j=1}^{k} Z_j) = L_X(Z_1) \oplus \cdots \oplus L_X(Z_k)$, which has the slctop since each direct summand does.

The theorem does not extend to countable unions. Indeed, \mathbb{M} is a countable union of G_{δ} sets Y_i $(i \in \mathbb{N})$ consisting of the discrete open set \mathbb{P} and the singleton sets $\{q\}$ $(q \in \mathbb{Q})$, with each $C_p(Y_i)$ obviously distinguished. (The singletons are evidently G_{δ} sets, since \mathbb{M} refines a metric topology.) Yet we know $C_p(\bigcup_{i=1}^{\infty} Y_i) = C_p(\mathbb{M})$ is not distinguished.

Nor must (2) imply (3) for F_{σ} (or even closed) sets Y_1, \ldots, Y_n ; e.g., take $X = \mathbb{M}$ and $Y_1 = \cdots = Y_n = \mathbb{Q}$, so that (2) holds and not (3) by Corollary 29. Nevertheless, equivalence of (1) and (2) persists for countable unions of F_{σ} sets [19, Proposition 2.2], as an independent analysis will show. We begin with

Lemma 35 $L_X(Y_1 \cap Y_2)$ has the slctop if $X = Y_1 \bigcup Y_2$ with each $C_p(Y_i)$ distinguished.

Proof Let $\{Z_n : n \in \mathbb{N}\}$ be a sequence of disjoint sets in $Y_1 \cap Y_2$. Since $C_p(Y_i)$ is distinguished (i = 1, 2), Corollary 6 provides a sequence $\{V_{i,n} : n \in \mathbb{N}\}$ of relatively open sets in Y_i such that each $V_{i,n}$ contains Z_n and each $x \in Y_i$ is in $V_{i,n}$ for at most finitely many $n \in \mathbb{N}$. Let $U_{i,n}$ be an open set in X such that $U_{i,n} \cap Y_i = V_{i,n}$. Finally, let $Q_n := U_{1,n} \cap U_{2,n} \supseteq Z_n$. As each $x \in X$ is in Y_1 or Y_2 , each x is in the open set Q_n for at most finitely many n. Therefore condition (6) of Theorem 5 holds for $Y = Y_1 \cap Y_2$, and so does equivalent condition (1), our conclusion.

Lemma 36 For F_{σ} sets Y_1, \ldots, Y_n in X with each $C_p(Y_i)$ distinguished, $C_p(\bigcup_{i=1}^n Y_i)$ is distinguished.

Proof First, reduce to the case $X = Y_1 \bigcup Y_2$. Then each $Y_i \setminus Y_{3-i}$ is a G_δ set (i = 1, 2), the complement in X of an F_σ set. By (A) above, each $C_p(Y_i \setminus Y_{3-i})$ is distinguished. Theorems 4, 27, and Lemma 35 prove

$$L_{\beta}(X) = L_{\beta}(Y_1 \cup Y_2) = L_X(Y_1 \setminus Y_2) \oplus L_X(Y_1 \cap Y_2) \oplus L_X(Y_2 \setminus Y_1)$$

has the slctop. Hence $C_p(X)$ is distinguished by [9, Corollary 3.4].

Theorem 30 and [18, Proposition 5.7] follow immediately from Lemma 36. In fact, this section unifies/amplifies predecessors [15, Theorems 16, 57, 60, and Corollaries 58, 61, 62], [12, Theorems 22, 25, (‡)], [18, Propositions 2.3, 5.7, and Theorem 3.8], and [19, Proposition 2.2]. A quick summary already yields

Theorem 37 If $X = Y_1 \cup \cdots \cup Y_n$ and each $C_p(Y_j)$ is distinguished, then so is $C_p(X)$ provided either (i) all Y_j are G_δ sets, or (ii) all are F_σ sets. Hence, provided (iii) all Y_j are open, or (iv) all are closed.

It is insufficient that, separately, each Y_j be either open or closed: each of \mathbb{P} and \mathbb{Q} is either open or closed in Michael's line $\mathbb{M} = \mathbb{P} \cup \mathbb{Q}$, yet $C_p(\mathbb{M})$ is not distinguished.

We observed earlier that $X = \mathbb{M}$ disproves the countable version of (*i*). The countable versions of (*ii*) and (*iv*) are clearly equivalent. Thus both are proved by Kąkol-Leiderman [19, Proposition 2.2]; see our proof, below. The countable version of (*iii*) remains an open problem first posed by Professors Leiderman and Tkachuk [26, Question 4.10]:

Problem 38 If $X = \bigcup_{j=1}^{\infty} Y_j$, with each Y_j open in X and each $C_p(Y_j)$ distinguished, must $C_p(X)$ also be distinguished?

Since each closed \overline{Y}_k is a countable union $\bigcup_{j=1}^{\infty} (\overline{Y}_k \cap Y_j)$ of relatively open sets, Theorems 34 and 40 reduce the problem to Y_j that are increasing, open and dense in X.

Expanding notation, if $Y \subseteq X$ and $g \in \mathbb{R}^Y$, define $P_g = \{f \in \mathbb{R}^Y : |f| \le |g|\}$. Trivially, $C_p(Y|X)$ is large in \mathbb{R}^Y if and only if, for each bounded set B in \mathbb{R}^Y , there is some $g \in \mathbb{R}^Y$ with |g| large enough so that $B \subseteq \overline{P_g \cap C(Y|X)}^{\mathbb{R}^Y}$.

Lemma 39 Suppose $h \in \mathbb{R}^X$ and $Y \subseteq X$ with $C_p(Y)$ distinguished. There exists $g \in \mathbb{R}^Y$ such that each finite $\sigma \subseteq Y$ admits $f \in C(X)$ with $f|_{\sigma} = h|_{\sigma}$ and $|f|_Y| \leq |g|$. If Y is closed, the statement holds for each finite $\sigma \subseteq X$.

Proof We know $C_p(Y|X)$ is always a large subspace of $C_p(Y)$, and $C_p(Y)$ is distinguished (if and) only if $C_p(Y|X)$ is large in \mathbb{R}^Y [11, Theorem 10]. The latter yields $g \in \mathbb{R}^Y$ with

$$(|h| + 1)|_{Y} \in \overline{P_g \cap C(Y|X)}^{\mathbb{R}^Y}$$

Thus, given finite $\sigma \subseteq Y$, some $u \in P_g \cap C(Y|X)$ verifies $|u(y)| \ge |h(y)|$ for all $y \in \sigma$. By definition of C(Y|X) there exists $\overline{u} \in C(X)$ with $\overline{u}|_Y = u$. The Tychonoff space X routinely admits $v \in P_{\overline{u}} \cap C(X)$ having the finitely many prescribed values

$$v(y) = \overline{u}(y) = u(y) \quad (y \in \sigma).$$

As $|v(y)| = |u(y)| \ge |h(y)|$, again X admits $f \in P_v \cap C(X)$ with prescribed values

$$f(y) = h(y) \quad (y \in \sigma).$$

But $f \in P_v$ and $v \in P_{\overline{u}}$, so $f \in P_{\overline{u}}$. Hence $f|_Y \in P_u$, and $u \in P_g$ ensures $f|_Y \in P_g$. Thus $|f|_Y| \le |g|$, and we also have $f|_\sigma = h|_\sigma$, proving the initial result.

Suppose *Y* is closed. The initial result yields $g \in \mathbb{R}^Y$ such that, for each finite set $\sigma \subseteq X$, some function f' in *C*(*X*) satisfies $|f'|_Y| \leq |g|$ and agrees with *h* on $\sigma' := \sigma \cap Y$. Let $\sigma'' = \sigma \setminus Y$. Since σ'' is finite in the open set $X \setminus Y$, some $f'' \in C(X)$ vanishes on *Y* and has the prescribed values f''(x) = h(x) - f'(x) ($x \in \sigma''$). Clearly, $f := f' + f'' \in C(X)$ with $f|_Y = f'|_Y \in P_g$, and *f* agrees with *h* on all of σ .

Theorem 40 (KĄKOL- LEIDERMAN [19]) If $X = \bigcup_{n=1}^{\infty} Y_n$ with each Y_n closed and each $C_p(Y_n)$ distinguished, then $C_p(X)$ is also distinguished.

Proof Equivalently, we must have $M(X) = \mathbb{R}^X$, according to our recent [15, Theorem 14], given fifty years ago in Gulick's terminology [16, Theorem 9]. Since M(X) always consists of points in the \mathbb{R}^X -closure of bounded sets in $C_p(X)$, we need only construct, for each $h \in \mathbb{R}^X$, a bounded set A in $C_p(X)$ with $h \in \overline{A}^{\mathbb{R}^X}$.

Let $h \in \mathbb{R}^X$ and finite $\sigma \subseteq X$ be given. For each $k \in \mathbb{N}$, Lemma 39 provides $g_k \in \mathbb{R}^{Y_k}$ and $f_k \in C(X)$ such that $|f_k|_{Y_k}| \leq |g_k|$ and $f_k|_{\sigma} = h|_{\sigma}$, with g_k independent of σ . Define each A_n $(n \in \mathbb{N})$ by

 $A_n = \{ u \in C(X) : |u| \le \mathbf{n} \text{ and } |u|_{Y_k} \le |g_k| \text{ for } k = 1, ..., n \}.$

The set $A := \bigcup_{n=1}^{\infty} A_n$, independent of σ , is bounded at each point of $X = \bigcup_{n=1}^{\infty} Y_n$; in fact, if $x \in Y_n$ and $u \in A_m$, then, no matter the value of m,

$$|u(x)| \le \max\{n, |g_n(x)|\}$$

Indeed, if $m \le n$ then $|u(x)| \le m \le n$; or, if m > n, then $|u(x)| = |u|_{Y_n}(x)| \le |g_n(x)|$.

Finally, fix $n \in \mathbb{N}$ with $n > \max\{|h(x)| : x \in \sigma\}$. Since X is a Tychonoff space and n is sufficiently large, we may routinely choose some $u_0 \in C(X)$ such that

for each $x \in \sigma$, $u_0(x) = h(x) = f_1(x) = \cdots = f_n(x)$ and for each $x \in X$, $|u_0(x)| = \min\{n, |f_1(x)|, \dots, |f_n(x)|\}$.

As $|f_k|_{Y_k}| \le |g_k|$, the second line of the display assures that $u_0 \in A_n \subseteq A$; the first, that u_0 approximates h (exactly) on the arbitrary finite set σ in X. Therefore $h \in \overline{A}^{\mathbb{R}^X}$.

Let \mathcal{P}_Y be the canonical projection from \mathbb{R}^X onto the subspace of functions whose support lies in $Y \subseteq X$. Replacing $C_p(Y)$ with \mathbb{R}^Y in Theorem 25(3), we arrive at

Theorem 41 (ADDENDUM TO THEOREM 5) The next four assertions are equivalent.

- 1. The subspace $L_X(Y)$ of $L_\beta(X)$ has the slctop.
- 7. $L_X(Y) = L_\beta(Y)$ and $C_p(Y)$ is distinguished.
- 8. Each bounded $S \subseteq \mathbb{R}^{Y}$ admits a bounded $T \subseteq C_{p}(X)$ with $S \subseteq \overline{T|_{Y}}^{\mathbb{R}^{Y}}$.
- 9. Each bounded $A \subseteq \mathbb{R}^X$ admits a bounded $B \subseteq C_p(X)$ with $\mathcal{P}_Y(A) \subseteq \overline{\mathcal{P}_Y(B)}^{\mathbb{R}^X}$.

Proof Here, if V is a set in either \mathbb{R}^X or L(X), we let V° denote the polar of V with respect to the dual pair $\langle \mathbb{R}^X, L(X) \rangle$. If W is a set in either \mathbb{R}^Y or L(Y), let W^\bullet denote the polar of W with respect to the dual pair $\langle \mathbb{R}^Y, L(Y) \rangle$.

 $[(1) \Rightarrow (7)]$. Certainly, $L_X(Y)$ has the slotop only when $L_X(Y) \succeq L_\beta(Y)$. Then $L_X(Y) = L_\beta(Y)$ also has the slotop. By [9, Corollary 3.4], $C_p(Y)$ is distinguished.

 $[(7) \Rightarrow (8)]$. Suppose S is an arbitrary bounded set in \mathbb{R}^Y . Now $C_p(Y)$ being distinguished means $C_p(Y|X)$ is large in \mathbb{R}^Y [11, Theorem 10], which implies some $U \subseteq C_p(X)$ such that $U|_Y$ is bounded in $C_p(Y)$ with $S \subseteq \overline{U|_Y}^{\mathbb{R}^Y}$. Also from (7), $L_X(Y) = L_\beta(Y)$. Theorem 25 provides bounded $T \subseteq C_p(X)$ with $U|_Y \subseteq \overline{T|_Y}^{\mathbb{R}^Y}$. So (8) is evident. $[(8) \Rightarrow (9)]$. For bounded $A \subseteq \mathbb{R}^X$, the set $S := A|_Y$ is bounded in \mathbb{R}^Y . Now (8) provides

 $[(8) \Rightarrow (9)]$. For bounded $A \subseteq \mathbb{R}^X$, the set $S := A|_Y$ is bounded in \mathbb{R}^Y . Now (8) provides bounded $T \subseteq C_p(X)$ with $A|_Y \subseteq \overline{T|_Y}^{\mathbb{R}^Y}$. Clearly, $\mathcal{P}_Y(A) \subseteq \overline{\mathcal{P}_Y(T)}^{\mathbb{R}^X}$. Setting B = T, we have (9). $[(9) \Rightarrow (1)]$. The polar S^{\bullet} of an arbitrary bounded set $S \subseteq \mathbb{R}^{Y}$ is a basic 0-neighborhood in the slotop $\beta(L(Y), \mathbb{R}^{Y})$ on L(Y). Let A be the unique bounded set in \mathbb{R}^{X} for which $A|_{Y} = S$ and $\mathcal{P}_{Y}(A) = A$. By (9), there exists bounded $B \subseteq C_{p}(X)$ with $\mathcal{P}_{Y}(A) \subseteq \overline{\mathcal{P}_{Y}(B)}^{\mathbb{R}^{X}}$. Therefore

$$S = A|_{Y} = \mathcal{P}_{Y}(A)|_{Y} \subseteq \left(\overline{\mathcal{P}_{Y}(B)}^{\mathbb{R}^{X}}\right)|_{Y} = \overline{B|_{Y}}^{\mathbb{R}^{Y}} \subseteq (B|_{Y})^{\bullet \bullet}.$$

Hence $S^{\bullet} \supseteq (B|_Y)^{\bullet \bullet \bullet} = (B|_Y)^{\bullet} = B^{\circ} \cap L(Y)$. The latter is a relative 0-neighborhood in the subspace $L_X(Y)$, whose topology must then be as fine as the slotop on L(Y). Thus (1) holds.

Several times in [15] we employed assertion (8) or (9) without knowing their equivalence to (1). Theorems 24 and 27 prove

Theorem 42 If Y is an F_{σ} set in X and $C_p(X \setminus Y)$ is distinguished, then $C_p(X)$ is distinguished if (and only if) $L_X(Y)$ has the slotop.

This yields Theorem 60 of [15], a theorem which, with clearly closed Y in X and clearly distinguished $C_p(X \setminus Y) = \mathbb{R}^{X \setminus Y}$, concludes that $C_p(X)$ is distinguished if and only if (9) holds. Another example: Theorem 22 essentially says that $C_p(X)$ is *distinguished if (and only if) X is covered by finitely many subsets Y for which* $L_X(Y)$ *has the slctop.* This is exactly what [15, Theorem 16(2)] says, more verbosely, in terms of condition (9). Also, from Theorems 22, 25, 41 follows [15, Theorem 16(3)]: it assumes $C_p(Y)$ is distinguished for each of finitely many *Y* covering *X*, each satisfying a condition clearly more stringent than (2) of Theorem 25. So (1) holds, then (7) of Theorem 41. Thus each $L_X(Y)$ has the slctop; Theorem 22 applies.

Theorem 42 retains conclusion, relaxes hypothesis of [15, Corollary 61].

Proof of relaxed hypothesis Assume X, Y, Z fulfill the hypothesis of [15, Corollary 61]. We prove X, Y must fulfill the hypothesis of Theorem 42. The hypothesis in [15] distinguishes both $C_p(Y)$ and $C_p(X \setminus Y) = \mathbb{R}^{X \setminus Y}$, and makes Y an F_σ set (closed, even) in X. There only remains to show $L_X(Y)$ has the slotop under assumption (from [15]) that either (i) Y is dense and C-embedded in Z, or (ii) Y is l -embedded in Z, where Z is a Tychonoff space suitably refined by $X (X \succeq Z)$ so that X and Z induce the same topology on the subset Y. Recall that Y is *l*-embedded in Z if $Y \subseteq Z$ and there is a continuous linear extender $\phi : C_p(Y) \to C_p(Z)$ satisfying $\phi(f)|_Y = f$ for each $f \in C(Y)$.

In case (*i*) each bounded $S \subseteq C_p(Y)$ admits a bounded $T \subseteq C_p(Z)$ with $S = T|_Y$ [15, Lemma 26 and Proposition 24]. Likewise in case (*ii*), since the continuous linear image of a bounded set is bounded. Thus in both cases, condition (2) of Theorem 25 holds with Xreplaced by Z, and so does (1); i.e., $L_Z(Y) = L_\beta(Y)$. Now $X \succeq Z$ implies $L_\beta(X) \succeq L_\beta(Z)$. So the induced topologies on L(Y) verify $L_X(Y) \succeq L_Z(Y) = L_\beta(Y)$. Always, $L_\beta(Y) \succeq L_X(Y)$. Therefore $L_X(Y) = L_\beta(Y)$. As $C_p(Y)$ is distinguished, $L_\beta(Y) = L_X(Y)$ has the slctop.

Hence Theorem 42 also yields [15, Corollary 62], a special case of [15, Corollary 61(i)]. To simplify [15, Corollary 61(ii)], omit *Z*, obtaining

Theorem 43 Suppose an F_{σ} set Y is *l*-embedded in X. The space $C_p(X)$ is distinguished if (and only if) both $C_p(Y)$ and $C_p(X \setminus Y)$ are distinguished.

Proof $L_X(X \setminus Y)$ has the slctop (Theorem 27), and so does $L_X(Y) = L_\beta(Y)$ via [9, Corollary 3.4], Theorem 25, and the fact that the continuous linear image of a bounded set is bounded. Apply Theorem 24.

The simplified Theorem 43 dispatches the original [15, Corollary 61(*ii*)]. Indeed, if Y is *l*-embedded in some $Z \leq X$ and if Z and X induce the same topology on Y, then Y is also *l* -embedded in X: any continuous linear extender from $C_p(Y)$ into $C_p(Z)$ is also continuous into $C_p(X)$, a superspace of $C_p(Z)$.

One may likewise simplify [15, Corollary 61(i)] by replacing *l*-embedded in Theorem 43 with *dense and C*-embedded.

6 A note on $\Sigma(X)$

We remark two well-known properties of the space $\Sigma(X)$.

Theorem 44 Always, $\Sigma(X)$ is an ultrabornological Baire subspace of \mathbb{R}^X .

Proof The case X = [0, 1] is stated as an exercise in [3, 3.12.66]. Now \mathbb{R}^X is always a Baire space (Bourbaki) in which $\Sigma(X)$ is G_{δ} -dense (\Leftrightarrow [38, 4.9] by De Morgan's Laws). Therefore the subspace $\Sigma(X)$ is also Baire, as noted in [38, 4.12].

If $|X| = \aleph_0$ then $\Sigma(X)$ is metrizable, hence bornological. If $|X| > \aleph_0$, let *Y* be the onepoint Lindelöfication of the space *X* equipped with its discrete topology. That is, $Y = X \cup \{\xi\}$ where $\xi \notin X$, the points of *X* are declared to be discrete and a base of neighborhoods of ξ consists of all sets of the form $N \cup \{\xi\}$, where $|X \setminus N| \le \aleph_0$. Let $E = \{f \in C(Y) : f(\xi) = 0\}$, a closed hyperplane in $C_p(Y)$. One routinely sees that for $f \in E$, the restriction $Rf := f|_X$ belongs to $\Sigma(X)$. Indeed, the restriction map *R* is a linear homeomorphism from *E* onto $\Sigma(X)$.

As Y is a Lindelöf space, $C_p(Y)$ is bornological by the Buchwalter-Schmets theorem. Its one-codimensional subspace E must also be bornological [7] (or see [17, 13.5.2]). The bornological and sequentially complete space $\Sigma(X)$ must be ultrabornological.

Acknowledgements Thanks to Profs. Kąkol and Leiderman for essential collaboration and exchange, formal and informal, and to Prof. Pol for the privately-communicated example with proof. Also to Saak Gabriyelyan for bringing [16] to our attention. Special thanks for the referee's great care and expertise.

Data availability No data was used.

Declarations

Conflict of interest The authors have no conflicts of interest.

References

- 1. Amemiya, I., Kōmura, Y.: Über nicht-vollständige Montelräume. Math. Ann. 177, 273–277 (1968)
- 2. Arkhangel'skiĭ, A.V.: Topological Function Spaces. Kluwer, Dordrecht (1992)
- Bogachev, V.I., Smolyanov, O.G.: Topological Vector Spaces and Their Applications. Springer Monographs in Math. Springer, Cham (2017)
- Buchwalter, H., Schmets, J.: Sur quelques propriétés de l'espace C_s (T). J. Math. Pures Appl. 52, 337–352 (1973)
- 5. Devlin, K.: The Joy of Sets. Springer, New York (1993)

- Diestel, J., Morris, S.A., Saxon, S.A.: Varieties of linear topological spaces. Trans. Am. Math. Soc. 172, 207–230 (1972)
- Dieudonné, J.: Sur les propriétés de permanence de certains espaces vectoriels topologiques. Ann. Polon. Math. 25, 50–55 (1952)
- Ferrando, J.C.: Approximation by pointwise bounded sets of continuous functions. Topol. Appl. 317, 108191 (2022)
- Ferrando, J.C., Kąkol, J.: Metrizable bounded sets in C(X) spaces and distinguished C_p(X) spaces. J. Convex Anal. 26, 1337–1346 (2019)
- Ferrando, J.C., Kąkol, J.: Distinguished vector-valued function spaces and injective tensor products. Bull. Belg. Math. Soc. Simon Stevin 28, 709–721 (2021)
- 11. Ferrando, J.C., Saxon, S.A.: The ever large subspace $C_p(Y|X)$: distinguished, Montel, covered nicely? (preprint)
- 12. Ferrando, J.C., Saxon, S.A.: If not distinguished, is $C_p(X)$ even close? Proc. Am. Math. Soc. 149, 2583–2596 (2021)
- 13. Ferrando, J.C., Kąkol, J., Saxon, S.A.: The dual of the locally convex space $C_p(X)$. Funct. Approx. Comment. Math. **50**, 389–399 (2014)
- Ferrando, J.C., Kąkol, J., Saxon, S.A.: Examples of nondistinguished function spaces C_p (X). J. Convex Anal. 26, 1347–1348 (2019)
- Ferrando, J.C., Kąkol, J., Leiderman, A., Saxon, S.A.: Distinguished C_p (X) spaces. RACSAM 115, 27 (2021)
- Gulick, D.: Duality theory for the topology of simple convergence. J. Math. Pures Appl. 52, 453–472 (1973)
- 17. Jarchow, H.: Locally Convex Spaces. B. G. Teubner, Stuttgart (1981)
- 18. Kąkol, J., Leiderman, A.: A characterization of X for which spaces $C_p(X)$ are distinguished and its applications. Proc. Am. Math. Soc. Ser. B, **8**, 86–99 (2021)
- Kąkol, J., Leiderman, A.: Basic properties of X for which the space C_p (X) is distinguished. Proc. Am. Math. Soc. (Series B) 8, 267–280 (2021)
- Kąkol, J., Leiderman, A.: On linear continuous operators between distinguished spaces C_p(X). RACSAM 115, 199 (2021)
- Kąkol, J., Saxon, S.A.: Montel (DF)-spaces, sequential (LM)-spaces and the strongest locally convex topology. J. Lond. Math. Soc. 66, 388–406 (2002)
- Kąkol, J., Saxon, S.A.: The Fréchet–Urysohn property, (LM)-spaces and the strongest locally convex topology. Proc. R. Irish Acad. 103, 1–8 (2003)
- Kąkol, J., Śliwa, W.: Feral dual spaces and (strongly) distinguished spaces C (X). RACSAM 117, 94 (2023)
- Kąkol, J., Saxon, S.A., Todd, A.R.: Weak barrelledness for C (X) spaces. J. Math. Anal. Appl. 297, 495–505 (2004)
- 25. Köthe, G.: Topological Vector Spaces I. Springer, New York (1969)
- Leiderman, A., Tkachuk, V.V.: Pseudocompact ∆-spaces are often scattered. Monatshefte Math. 197, 493–503 (2022)
- López-Alfonso, S., López-Pellicer, M., Moll-López, S.: Distinguished Property in Tensor Products and Weak* Dual Spaces. Axioms 10, 151 (2021). https://doi.org/10.3390/axioms10030151
- Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces, North-Holland Mathematics Studies, vol. 131. North-Holland, Amsterdam (1987)
- 29. Pol, R.: private communication (2022)
- Robertson, W.J., Saxon, S.A., Robertson, A.P.: Barrelled spaces and dense vector subspaces. Bull. Austral. Math. Soc. 37, 383–388 (1988)
- Saxon, S.A.: Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology. Math. Ann. 197, 87–106 (1972)
- Saxon, S.A.: The density character of topological vector spaces. In: Lau, A., Tweddle, I. (eds.), Topological Vector Spaces, Algebras and Related Areas, Longman PRNM vol. 316, pp. 24–36 (1994)
- Saxon, S.A., Levin, M.: Every countable-codimensional subspace of a barrelled space is barrelled. Proc. Am. Math. Soc. 29, 91–96 (1971)
- Saxon, S.A., Narayanaswami, P.P.: (*LF*) -spaces, quasi-Baire spaces, and the strongest locally convex topology. Math. Ann. 274, 627–641 (1986)
- 35. Saxon, S.A., Sánchez Ruiz, L.M.: Reinventing weak barrelledness. J. Convex Anal. 24, 707–762 (2017)
- Saxon, S.A., Tweddle, I.: The fit and flat components of barrelled spaces. Bull. Austral. Math. Soc. 51, 521–528 (1995)
- 37. Schaefer, H.H.: Topological Vector Spaces, Graduate Texts in Mathematics 3. Springer, New York (1971)
- 38. Todd, A.R., Saxon, S.A.: A property of locally convex Baire spaces. Math. Ann. 206, 23-34 (1973)

39. Tweddle, I., Saxon, S.A.: Bornological countable enlargements. Proc. Edinb. Math. Soc. 46, 35-44 (2003)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.