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We characterize in terms of the topology of a Tychonoff space𝑋 the existence of a bounded resolution for 𝐶𝑐(𝑋) that swallows the
bounded sets, where 𝐶𝑐(𝑋) is the space of real-valued continuous functions on 𝑋 equipped with the compact-open topology.

1. Preliminaries

In the sequel, unless otherwise stated, 𝑋 is a nonempty
completely regular Hausdorff space. We represent by 𝐶𝑝(𝑋)
the ring 𝐶(𝑋) of real-valued continuous functions defined
on 𝑋 equipped with the pointwise topology 𝜏𝑝. As usual, we
denote by 𝐿𝑝(𝑋) the weak∗ dual of 𝐶𝑝(𝑋). When 𝐶(𝑋) is
equipped with the compact-open topology 𝜏𝑐 we write 𝐶𝑐(𝑋).
As in [1], we denote by 𝐶∗(𝑋) the linear space of real-valued
continuous and bounded functions defined on 𝑋. If 𝐶∗(𝑋)
is regarded as a subspace of 𝐶𝑐(𝑋), we denote this space by𝐶∗𝑐 (𝑋). Since𝐶∗(𝑋) is dense in𝐶𝑐(𝑋), both𝐶∗𝑐 (𝑋) and𝐶𝑐(𝑋)
have the same dual. The Banach space 𝐶∗(𝑋) equipped with
the supremum norm has recently been studied in [2]. Let
us recall that a family {𝐴𝛼 : 𝛼 ∈ NN} of subsets of a set𝑋 is called a resolution for 𝑋 if it covers 𝑋 and 𝐴𝛼 ⊆ 𝐴𝛽
whenever 𝛼 ≤ 𝛽; i.e., 𝛼(𝑖) ≤ 𝛽(𝑖) for every 𝑖 ∈ N (see [3,
Chapter 3]). If 𝐸 is a topological vector space, a resolution{𝐴𝛼 : 𝛼 ∈ NN} consisting of bounded sets (see [4, Definition
1.4.5]) is referred to as a bounded resolution. A bounded
resolution {𝐴𝛼 : 𝛼 ∈ NN} on 𝐸 that swallows the bounded
sets, i.e., such that for each bounded set 𝑄 in 𝐸 there is 𝛾 ∈
NN with 𝑄 ⊆ 𝐴𝛾, is referred to as a fundamental bounded
resolution. The existence of such a resolution in a locally
convex space 𝐸 has shown to be equivalent to the existence
of a so-called G-base of absolutely convex neighborhoods of
the origin in the strong dual 𝐸󸀠𝛽 of 𝐸. Besides, fundamental
bounded resolutions are essential in order to get a proper
extension of the class of (𝐷𝐹)-spaces (see [5] for details).

Fundamental compact resolutions, i.e., resolutions consisting
of compact sets which swallow the compact sets, have been
widely used, even in Banach space theory [6], since they were
introduced in [7]. A well-known result of Christensen [8,
Theorem 3.3] asserts that a metrizable space𝑋 is Polish if and
only if 𝑋 has a fundamental compact resolution. Moreover,
it has been shown in [9, Theorem 2] that 𝐶𝑐(𝑋) has a G-
base of neighborhoods of the origin if and only if 𝑋 has a
fundamental compact resolution. In this note we provide two
characterizations, in terms of the domain space 𝑋, of the
existence of a fundamental bounded resolution for 𝐶𝑐(𝑋),
one bymeans of certain uniformity for𝑋 and the other purely
topological. Our main motivation is the two following 𝐶𝑝-
theoretic results.

Theorem 1 ([7,Theorem 3.7] or [10, Problem 216]). The space𝐶𝑝(𝑋) has a fundamental compact resolution if and only if 𝑋
is countable and discrete.

Theorem 2 ([11, Theorem 3.3]). The space 𝐶𝑝(𝑋) has a
fundamental bounded resolution if and only if 𝑋 is countable.

A space 𝑋 is called 𝐾-analytic if there is an upper
semicontinuous compact-valued map 𝑇 from the product
spaceNN, whereN is equippedwith the discrete topology, into𝑋 such that ⋃{𝑇(𝛼) : 𝛼 ∈ NN} = 𝑋. A family F of functions
from a uniform space (𝑋,N) into a uniform space (𝑌,M) is
called uniformly equicontinuous [12, Chapter 7, Problem G] if
for each 𝑉 ∈ M there is 𝑈 ∈ N such that (𝑓(𝑥), 𝑓(𝑦)) ∈ 𝑉
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whenever 𝑓 ∈ F and (𝑥, 𝑦) ∈ 𝑈. LetN be a uniformity for
a (nonempty) set 𝑋 and denote by 𝜏N the uniform topology
defined by N. A base {𝑈𝛼 : 𝛼 ∈ NN} of the uniformity N is
called aG-base if𝑈𝛽 ⊆ 𝑈𝛼 whenever𝛼 ≤ 𝛽.There is no loss of
generality by assuming that each 𝑈𝛼 is a symmetric vicinity.

2. Fundamental Bounded Resolutions
for 𝐶𝑐(𝑋)

Although it can be easily seen that each metrizable locally
convex space 𝐸 has a fundamental bounded resolution, if
the locally convex space 𝐶𝑐(𝑋) has a fundamental bounded
resolution, unlike what happens with 𝐶𝑝(𝑋), the space 𝑋
needs not be countable and moreover 𝐶𝑐(𝑋) needs not be
metrizable.

Proposition 3. Let𝑋 be ametrizable space.Then𝐶𝑐(𝑋) has a
fundamental bounded resolution if and only if𝑋 is 𝜎-compact.

Proof. If 𝑋 is 𝜎-compact then 𝐶𝑐(𝑋) is weakly 𝐾-analytic
by [13, Proposition 2.2], or it has a compact resolution that
swallows the compact sets by [14, Corollary 2.10]. In any
case 𝐶𝑐(𝑋) has a bounded resolution. Since 𝑋 is a 𝑘R-space
then 𝐶𝑐(𝑋) is complete, hence locally complete. So, it follows
from Valdivia’s [3, Theorem 3.5] that there exists a resolution{𝐴𝛼 : 𝛼 ∈ NN} of 𝐶𝑐(𝑋) consisting of Banach disks that
swallows the bounded sets of 𝐶𝑐(𝑋), which shows that 𝐶𝑐(𝑋)
has a fundamental bounded resolution. Conversely, if 𝐶𝑐(𝑋)
has a fundamental bounded resolution then 𝐶𝑝(𝑋) has a
bounded resolution, so [3, Corollary 9.2] shows that 𝑋 is 𝜎-
compact.

Example 4. According to the previous proposition 𝐶𝑐(R) has
a fundamental bounded resolution, butR is neither countable
nor discrete. On the other hand, 𝐶𝑐(Q) has also a fundamen-
tal bounded resolution, but Q, although is countable, is not
discrete. Observe that 𝐶𝑐(R) is metrizable, but 𝐶𝑐(Q) is not.
Of course, if𝑋 is hemicompact, or even compact, then 𝐶𝑐(𝑋)
is metrizable, or even a Banach space, and in this case 𝐶𝑐(𝑋)
has obviously a fundamental bounded resolution.

Theorem 5. The space 𝐶𝑐(𝑋) has a fundamental bounded
resolution if and only if (𝑋,M), whereM is the uniformity for𝑋 generated by the pseudometrics

𝑑𝐴 (𝑥, 𝑦) = sup
𝑓∈𝐴

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)󵄨󵄨󵄨󵄨 (1)

for each bounded set 𝐴 of 𝐶𝑐(𝑋), has aG-base.

Proof. Let 𝐸 be the topological dual of 𝐶𝑐(𝑋) and denote
by B the family of all bounded sets of 𝐶𝑐(𝑋) and by𝛽(𝐸,𝐶(𝑋)) the strong topology on 𝐸. By identifying 𝑋 with
its canonical homeomorphic embedding in 𝐿𝑝(𝑋), note that𝑋 ⊆ 𝐿(𝑋) ⊆ 𝐸. The strong topology 𝛽(𝐸, 𝐶(𝑋)) generates a
unique admissible translation-invariant uniformity N on 𝐸,
so that 𝜏N = 𝛽(𝐸, 𝐶(𝑋)). By considering also 𝑓 ∈ 𝐶(𝑋) as a
linear functional on 𝐸, observe that for each 𝑁 ∈ N there is𝐴 ∈ B such that

{(𝑢, V) ∈ 𝐸 × 𝐸 : sup
𝑓∈𝐴

󵄨󵄨󵄨󵄨⟨𝑓, 𝑢 − V⟩󵄨󵄨󵄨󵄨 ≤ 1} ⊆ 𝑁. (2)

Hence𝑀 ⊆ 𝑋×𝑋 belongs to the relative uniformityM ofN
to 𝑋 × 𝑋 if and only if there exists 𝐴 ∈ B such that

{(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : sup
𝑓∈𝐴

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)󵄨󵄨󵄨󵄨 ≤ 1} ⊆ 𝑀. (3)

If {𝐴𝛼 : 𝛼 ∈ NN} is a fundamental bounded resolution for𝐶𝑐(𝑋), by setting
𝑈𝛼 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : sup

𝑓∈𝐴𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)󵄨󵄨󵄨󵄨 ≤ 1} (4)

we obtain aG-base {𝑈𝛼 : 𝛼 ∈ NN} of M. If 𝛼 ≤ 𝛽 then 𝑈𝛽 ⊆𝑈𝛼, and if 𝑀 ∈ M there is 𝐴 ∈ B such that (𝑥, 𝑦) ∈ 𝑀
whenever sup𝑓∈𝐴|𝑓(𝑥) − 𝑓(𝑦)| ≤ 1, so if 𝛾 ∈ NN is such that𝐴 ⊆ 𝐴𝛾, clearly 𝑈𝛾 ⊆ 𝑀.

Conversely, if the uniform structure for 𝑋 generated by
the family of pseudometrics {𝑑𝐴 : 𝐴 ∈ B}, where

𝑑𝐴 (𝑥, 𝑦) = sup
𝑓∈𝐴

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)󵄨󵄨󵄨󵄨 , (5)

has a G-base {𝑈𝛼 : 𝛼 ∈ NN}, this entails that for each 𝐴 ∈ B

there is 𝛿 ∈ NN such that sup𝑓∈𝐴|𝑓(𝑥) − 𝑓(𝑦)| ≤ 1 for every(𝑥, 𝑦) ∈ 𝑈𝛿. Setting
𝐴𝛼 = {𝑓 ∈ 𝐶 (𝑋) : sup

(𝑥,𝑦)∈𝑈𝛼

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)󵄨󵄨󵄨󵄨 ≤ 1} , (6)

for each 𝛼 ∈ NN, clearly 𝐴𝛼 ⊆ 𝐴𝛽 if 𝛼 ≤ 𝛽 and 𝐴 ⊆ 𝐴𝛿.
Consequently {𝐴𝛼 : 𝛼 ∈ NN} is a fundamental bounded
resolution for 𝐶𝑐(𝑋).

Let 𝑋 be a nonempty completely regular Hausdorff
topological space and let K(𝑋) denote the family of all
compact sets of 𝑋.

Lemma 6. A subset 𝐴 of 𝐶(𝑋) is bounded for the compact-
open topology 𝜏𝑐 if and only if there exists a sequence {F𝑛(𝐴) :𝑛 ∈ N} of subsets ofK(𝑋) such that

(1) for each 𝑛 ∈ N, if 𝐾 ∈ F𝑛(𝐴) then
sup𝑓∈𝐴sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛

(2) F𝑛(𝐴) ⊆ F𝑛+1(𝐴) for each 𝑛 ∈ N

(3) ⋃∞𝑛=1F𝑛(𝐴) = K(𝑋)
(4) If a set 𝑄 ∈ K(𝑋) is such that sup𝑥∈𝑄|𝑓(𝑥)| ≤ 𝑛 for

each 𝑓 ∈ 𝐶(𝑋) with sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛 for all 𝐾 ∈
F𝑛(𝐴), then 𝑄 ∈ F𝑛(𝐴)

Proof. If 𝐴 is 𝜏𝑐-bounded and 𝑛 ∈ N, define

F𝑛 (𝐴) = {𝐾 ∈ K (𝑋) : sup
𝑓∈𝐴

sup
𝑥∈𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑛} . (7)
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Clearly F𝑛(𝐴) ⊆ F𝑛+1(𝐴) for each 𝑛 ∈ N and if 𝐾 ∈ K(𝑋)
there is 𝑚 ∈ N with

sup
𝑓∈𝐴

sup
𝑥∈𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑚, (8)

so that 𝐾 ∈ F𝑚(𝐴), which shows that ⋃∞𝑛=1F𝑛(𝐴) = K(𝑋).
In addition, if 𝐾 ∈ F𝑛(𝐴) the relation sup𝑓∈𝐴sup𝑥∈𝐾|𝑓(𝑥)| ≤𝑛 holds by construction. Finally, if we set

𝐵𝑛 = {𝑓 ∈ 𝐶 (𝑋) : sup
𝑥∈𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑛 for every 𝐾
∈ F𝑛 (𝐴)}

(9)

then 𝐴 ⊆ 𝐵𝑛. Therefore, if 𝑄 ∈ K(𝑋) verifies that
sup𝑓∈𝐵𝑛sup𝑥∈𝑄|𝑓(𝑥)| ≤ 𝑛 then

sup
𝑓∈𝐴

sup
𝑥∈𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑛, (10)

so that 𝑄 ∈ F𝑛(𝐴). Hence {F𝑛(𝐴) : 𝑛 ∈ N} satisfies the
required conditions.

Conversely, if there exists a sequence {F𝑛(𝐴) : 𝑛 ∈ N}
of K(𝑋) satisfying the four conditions of the statement of
the lemma (actually, only the first and the third conditions
are required) then clearly 𝐴 is 𝜏𝑐-bounded on 𝑋, for if𝑃 ∈ K(𝑋) there is 𝑘 ∈ N with 𝑃 ∈ F𝑘(𝐴) such that
sup𝑓∈𝐴sup𝑥∈𝑃|𝑓(𝑧)| ≤ 𝑘.

In what follows the fourth condition above, which is
independent of 𝐴, will be referred to as the closure condition
ofF𝑛(𝐴), and we shall say that the familyF𝑛(𝐴) is closed.
Definition 7. A collection {F𝛼,𝑛 : (𝛼, 𝑛) ∈ NN × N} of closed
subsets of K(𝑋) will be called a covering net of K(𝑋) if{F𝛼,𝑛 : 𝑛 ∈ N} is an increasing covering of K(𝑋) for each𝛼 ∈ NN such thatF𝛽,𝑛 ⊆ F𝛼,𝑛 whenever 𝛼 ≤ 𝛽 for all 𝑛 ∈ N.

Theorem 8. The space 𝐶𝑐(𝑋) has a fundamental bounded
resolution if and only if there is a covering net {F𝛼,𝑛 : (𝛼, 𝑛) ∈
NN × N} such that if {F𝑛 : 𝑛 ∈ N} is an increasing covering of
K(𝑋) by closed sets, there exists 𝛾 ∈ NN such that F𝛾,𝑛 ⊆ F𝑛
for all 𝑛 ∈ N.

Proof. If there exists a covering net {F𝛼,𝑛 : (𝛼, 𝑛) ∈ NN ×
N} for 𝑋 which satisfies the property of the statement of the
theorem, the sets

𝐴𝛼 = {𝑓 ∈ 𝐶 (𝑋) : sup
𝑥∈𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑛 for every 𝐾
∈ F𝛼,𝑛 and each 𝑛 ∈ N}

(11)

compose a fundamental bounded resolution for 𝐶(𝑋).
Indeed, each set 𝐴𝛼 is 𝜏𝑐-bounded by virtue of the pre-
vious lemma, since {F𝛼,𝑛 : 𝑛 ∈ N} is an increas-
ing covering of K(𝑋) consisting of closed sets such that

sup𝑓∈𝐴𝛼sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛 for all 𝐾 ∈ F𝛼,𝑛. Besides 𝐴𝛼 ⊆ 𝐴𝛽
whenever 𝛼 ≤ 𝛽 since F𝛽,𝑛 ⊆ F𝛼,𝑛, and if 𝐴 is a 𝜏𝑐-bounded
subset of 𝐶(𝑋), according to the previous lemma there exists
an increasing covering {F𝑛(𝐴) : 𝑛 ∈ N} of K(𝑋) consisting
of closed sets. Therefore, by the condition in the statement of
the theorem, there exists 𝛾 ∈ NN such that F𝛾,𝑛 ⊆ F𝑛(𝐴)
for all 𝑛 ∈ N. Now, if 𝑓 ∈ 𝐴 then sup𝑘∈𝐾|𝑓(𝑥)| ≤ 𝑛 for all𝐾 ∈ F𝑛(𝐴) and 𝑛 ∈ N, in particular for each 𝐾 ∈ F𝛾,𝑛
and all 𝑛 ∈ N, which shows that 𝑓 ∈ 𝐴𝛾. Hence 𝐴 ⊆ 𝐴𝛾,
which proves that {𝐴𝛼 : 𝛼 ∈ NN} is a fundamental bounded
resolution for 𝐶𝑐(𝑋).

Conversely, if 𝐶𝑐(𝑋) has a fundamental bounded resolu-
tion {𝐵𝛼 : 𝛼 ∈ NN} and we set

F𝛼,𝑛 = {𝐾 ∈ K (𝑋) : sup
𝑓∈𝐵𝛼

sup
𝑥∈𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑛} (12)

then {F𝛼,𝑛 : 𝑛 ∈ N} is an increasing covering of K(𝑋)
such that F𝛽,𝑛 ⊆ F𝛼,𝑛 whenever 𝛼 ≤ 𝛽 for all 𝑛 ∈ N. In
addition sup𝑓∈𝐵𝛼sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛 for 𝐾 ∈ F𝛼,𝑛 and 𝑛 ∈ N

by the definition ofF𝛼,𝑛. Moreover,F𝛼,𝑛 satisfies the closure
condition, for if

𝐵𝛼,𝑛 = {𝑓 ∈ 𝐶 (𝑋) : sup
𝑄∈F𝛼,𝑛

sup
𝑥∈𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑛} (13)

then 𝐵𝛼 ⊆ 𝐵𝛼,𝑛, so if sup𝑓∈𝐵𝛼,𝑛sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛 then
sup𝑓∈𝐵𝛼sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛, which means that 𝐾 ∈ F𝛼,𝑛.

Now, if {F𝑛 : 𝑛 ∈ N} is any increasing covering ofK(𝑋)
consisting of closed sets, define

𝑃 = {𝑓 ∈ 𝐶 (𝑋) : sup
𝑥∈𝐾

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑛 for every 𝐾
∈ F𝛼,𝑛 and each 𝑛 ∈ N}

(14)

and observe that if 𝐾 ∈ F𝑛 then sup𝑓∈𝑃sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛,
which according to the preceding lemma ensures that 𝑃 is
a 𝜏𝑐-bounded set. Since {𝐵𝛼 : 𝛼 ∈ NN} is a fundamental
bounded resolution for 𝐶𝑐(𝑋) there exists 𝛿 ∈ NN such that𝑃 ⊆ 𝐵𝛿. Now if 𝑄 ∈ F𝛿,𝑛 then sup𝑓∈𝐵𝛿sup𝑥∈𝑄|𝑓(𝑥)| ≤ 𝑛
so that, in particular, sup𝑓∈𝑃sup𝑥∈𝑄|(𝑥)| ≤ 𝑛. We claim that𝑄 ∈ F𝑛. Indeed, since sup𝑥∈𝑄|𝑓(𝑥)| ≤ 𝑛 for each 𝑓 ∈ 𝑃, we
have that sup𝑥∈𝑄|𝑓(𝑥)| ≤ 𝑛 holds for each 𝑓 ∈ 𝐶(𝑋) such that
sup𝑥∈𝐾|𝑓(𝑥)| ≤ 𝑛 for every𝐾 ∈ F𝑛 by virtue of the definition
of 𝑃. Therefore, the closure property of F𝑛 yields 𝐾 ∈ F𝑛.
This shows that F𝛿,𝑛 ⊆ F𝑛 for every 𝑛 ∈ N, which, bearing
in mind the properties of the family {F𝛼,𝑛 : (𝛼, 𝑛) ∈ NN × N}
established before, guarantees that {F𝛼,𝑛 : (𝛼, 𝑛) ∈ NN ×N} is
a covering net for𝑋 consisting of closed sets that satisfies the
required property.

In what follows we shall refer to a Tychonoff space 𝑋
satisfying the conditions of the statement of Theorem 8 as
a 𝑐𝑛-space. It is shown in [5, Proposition 3.2] that if 𝑋 is a𝑐𝑛-space or, which is equivalent, if 𝐶𝑐(𝑋) has a fundamental
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bounded resolution, then 𝐶𝑐(𝑋) has a countable 𝑐𝑠∗-network
at the origin [15, 16].Thenext theorem shows that in order for𝑋 to be a 𝑐𝑛-space it suffices that 𝐶∗𝑐 (𝑋) have a fundamental
bounded resolution.

Theorem 9. Let𝑋 be completely regular. The space 𝐶∗𝑐 (𝑋) has
a fundamental bounded resolution if and only if𝑋 is a 𝑐𝑛-space.
Proof. If 𝑋 is a 𝑐𝑛-space,Theorem 8 ensures that 𝐶𝑐(𝑋) has a
fundamental bounded resolution, which implies that 𝐶∗𝑐 (𝑋),
as a subspace of 𝐶𝑐(𝑋), also has a fundamental bounded
resolution. Conversely, if 𝐶∗𝑐 (𝑋) has a closed fundamental
bounded resolution {𝐴𝛼 : 𝛼 ∈ NN}, for each 𝛼 ∈ NN let 𝐵𝛼
denote the closure of𝐴𝛼 in𝐶𝑐(𝑋). Let us show thatB = {𝐵𝛼 :𝛼 ∈ NN} is a fundamental bounded resolution for 𝐶𝑐(𝑋).
Indeed, let us denote byK(𝑋) the family of all compact sets of𝑋 and pick an arbitrary bounded subset 𝐵 of 𝐶𝑐(𝑋). For each𝐾 ∈ K(𝑋) and 𝑓 ∈ 𝐵, set 𝑀(𝑓,𝐾) = sup{|𝑓(𝑥)| : 𝑥 ∈ 𝐾}
and define 𝑓𝐾(𝑥) = 𝑓(𝑥) if |𝑓(𝑥)| ≤ 𝑀(𝑓,𝐾) and 𝑓𝐾(𝑥) =
sign(𝑓(𝑥))⋅𝑀(𝑓,𝐾) if |𝑓(𝑥)| > 𝑀(𝑓,𝐾). Clearly𝑓𝐾 ∈ 𝐶∗(𝑋),
besides 𝑓𝐾(𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝐾 and |𝑓𝐾(𝑥)| ≤ |𝑓(𝑥)| for all𝑥 ∈ 𝑋. Define 𝑃𝐵 = {𝑓𝐾 : 𝑓 ∈ 𝐵,𝐾 ∈ K(𝑋)} and note that 𝑓
is an adherent point of 𝑃𝐵 in 𝐶𝑐(𝑋).Therefore, 𝐵 is contained
in the closure of 𝑃𝐵 in𝐶𝑐(𝑋). If𝑄 is any compact subset of𝑋,
the fact that 𝐵 is 𝜏𝑐-bounded guarantees that

sup
𝑔∈𝑃𝐵

sup
𝑥∈𝑄

󵄨󵄨󵄨󵄨𝑔 (𝑥)󵄨󵄨󵄨󵄨 = sup
𝑓∈𝐵,𝐾∈K(𝑋)

sup
𝑥∈𝑄

󵄨󵄨󵄨󵄨𝑓𝐾 (𝑥)󵄨󵄨󵄨󵄨
≤ sup
𝑓∈𝐵

sup
𝑥∈𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨 < ∞, (15)

which shows that 𝑃𝐵 is a 𝜏𝑐-bounded subset of𝐶∗(𝑋). Hence,
there is 𝛾 ∈ NN such that 𝑃𝐵 ⊆ 𝐴𝛾, so that 𝐵 ⊆ 𝐵𝛾.
Consequently B is a fundamental bounded resolution for𝐶𝑐(𝑋), as stated. Another application of Theorem 8 shows
that 𝑋 is a 𝑐𝑛-space.

The existence of a bounded resolution on a locally convex
space 𝐸 does not imply the existence of a fundamental
bounded resolution for 𝐸, as the following example shows.

Example 10. If 𝑋 is an infinite Talagrand compact set,
the weak∗ dual 𝐿𝑝(𝐶𝑝(𝑋)) of 𝐶𝑝(𝐶𝑝(𝑋)) has a bounded
resolution but it has no fundamental bounded resolution.

Proof. Since 𝐶𝑝(𝑋) is 𝐾-analytic, 𝐿𝑝(𝐶𝑝(𝑋)) is also 𝐾-
analytic by [17, Proposition 0.5.13]. So 𝐿𝑝(𝐶𝑝(𝑋)) has even
a compact resolution by [3, Theorem 3.2]. Suppose by
contradiction that 𝐿𝑝(𝐶𝑝(𝑋)) has a fundamental bounded
resolution {𝐴𝛼 : 𝛼 ∈ NN}. Identifying 𝐶𝑝(𝑋) with its
homeomorphic copy in 𝐿𝑝(𝐶𝑝(𝑋)), for each 𝛼 ∈ NN set𝐵𝛼 = 𝐴𝛼 ∩ 𝐶𝑝(𝑋) and consider the family B = {𝐵𝛼 : 𝛼 ∈
NN}. We claim that 𝐵𝛼 is a functionally bounded subset of𝐶𝑝(𝑋). Indeed, if𝐹 ∈ 𝐶(𝐶𝑝(𝑋)) according to [17, Proposition
0.5.11] there exists a (unique) continuous functional 𝑢𝐹 of𝐿𝑝(𝐶𝑝(𝑋)) such that𝑢𝐹|𝐶𝑝(𝑋) = 𝐹. Since𝐴𝛼 is bounded, there
is 𝐶 > 0 such that |𝑢𝐹(𝑎)| < 𝐶 for all 𝑎 ∈ 𝐴𝛼. In particular,|𝐹(𝑏)| = |𝑢𝐹(𝑏)| < 𝐶 for every 𝑏 ∈ 𝐵𝛼. SoB is a functionally

bounded resolution in 𝐶𝑝(𝑋). If 𝐵 is a functionally bounded
subset of𝐶𝑝(𝑋), then 𝐵, considered as a subset of 𝐿𝑝(𝐶𝑝(𝑋)),
is bounded.Therefore, there is 𝛼 ∈ NN with 𝐵 ⊆ 𝐵𝛼. HenceB
swallows the functionally bounded subsets of 𝐶𝑝(𝑋). Since
𝐶𝑝(𝑋) is Lindelöf and hence a 𝜇-space, the family {𝐵𝛼𝜏𝑝 :
𝛼 ∈ NN} consists of compact subsets and swallows the
compact sets of𝐶𝑝(𝑋). So𝐶𝑝(𝑋) has a fundamental compact
resolution. But according toTheorem 1, the space𝑋 should be
countable and discrete. Therefore, 𝑋 being compact is finite,
a contradiction.
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[3] J. Kąkol, W. Kubiś, and M. López-Pellicer, Descriptive Topology
in Selected Topics of Functional Analysis, Springer, New York,
NY, USA, 2011.

[4] V. I. Bogachev and O. G. Smolyanov, Topological Vector Spaces
andTheir Applications, Springer, 2017.

[5] J. C. Ferrando, S. Gabriyelyan, and J. Kąkol, “On quasi-DF-
spaces,” Submitted.

[6] S.Mercourakis andE. Stamati, “A new class of weaklyK-analytic
Banach spaces,” Commentationes Mathematicae, vol. 47, no. 2,
pp. 291–312, 2006.

[7] V. V. Tkachuk, “A space C𝑝 (X) is dominated by irrationals if
and only if it is K-analytic,” Acta Mathematica Hungarica, vol.
107, no. 4, pp. 253–265, 2005.

[8] J. P. Christensen, Topology and Borel Structure, North-Holland
Publishing Company, Amsterdam, Netherlands, 1974.

[9] J. C. Ferrando and J. Kąkol, “On precompact sets in spaces C𝑐
(X),”Georgian Mathematical Journal, vol. 20, no. 2, pp. 247–254,
2013.

[10] V. V. Tkachuk, A C𝑝-Theory Problem Book, Compactness in
Function Spaces, Springer, 2015.

[11] J. C. Ferrando, J. Kąkol, and S. A. Saxon, “Characterizing P-
spaces if terms of C𝑝 (X),” Journal of Convex Analysis, vol. 22,
no. 4, pp. 905–915, 2015.

[12] J. L. Kelley, General Topology, Van Nostrand Company, New
York, NY, USA, 1955.

[13] M. A. Canela, “Operator and function spaces which are K-
analytic,” Portugaliae Mathematica, vol. 42, pp. 203–218, 1982.

[14] S. Gabriyelyan and J. Kąkol, “Free locally convex spaces with a
small base,” RACSAM, vol. 111, no. 2, pp. 575–585, 2017.



Journal of Function Spaces 5

[15] T. Banakh and L. Zdomskyy, “The topological structure
of (homogeneous) spaces and groups with countable cs∗-
character,” Applied General Topology, vol. 5, no. 1, pp. 25–48,
2004.

[16] M. Sakai, “Function spaces with a countable cs∗-network at a
point,” Topology and its Applications, vol. 156, no. 1, pp. 117–123,
2008.

[17] A. V. Arkhangelski, Topological Function Spaces, Kluwer Aca-
demic Publishers, Dordrecht, 1992.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

