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METHODOLOGY

A novel approach to learning through categorical
variables applicable to the classification of
solitary pulmonary nodule malignancy
Raquel Bosch-Romeu1,2, Julián Librero3,8, Marina Senent-Valero4,10, Maŕıa Carmen Sanfeliu-Alonso5,

José Maŕıa Salinas-Serrano6, Jaume Forés-Martos1,2, Beatriz Suay-Garćıa1,2, Joan Climent7, Antonio

Falcó1,2* and Maŕıa Pastor-Valero4,9

Abstract

Background: One of the main drawbacks in constructing a classification model is that some or all of the
covariates are categorical variables. Classical methods either assign labels to each output of a categorical
variable or are summarised measures (frequencies and percentages), which can be interpreted as probabilities.

Methods: We adopted a novel mathematical procedure to construct a classification model from categorical
variables based on a non-classical probability approach. More specifically, we codified the variables following
the categorical data representation from the Discriminant Correspondence Analysis before constructing a
non-classical probability matrix system that represents an entangled system of dependent-independent variables.
We then developed a disentangled procedure to obtain an empirical density function for each representative
class (minimum of two classes). Finally, we constructed our classification model using the density functions.

Results: We applied the proposed procedure to build a classification model of the malignancy of Solitary
Pulmonary Nodule (SPN) after five years of follow up using routine clinical data. First, with 2/3 (270) of the
sample of 404 patients with SPN, we constructed the classification model, and then validated it with the
remaining 1/3(134) we validated it. We tested the procedure’s stability by repeating the analysis randomly
1000 times. We obtained a model accuracy of 0.74, an F1 score of 0.58, a Cohen’s Kappa value of 0.41 and a
Matthews Correlation Coefficient of 0.45. Finally, the area under the ROC curve was 0.86.

Conclusion: The proposed procedure provides a machine learning classification model with an acceptable
performance of a classification model of solitary pulmonary nodule malignancy constructed from routine
clinical data and mainly composed of categorical variables. It provides an acceptable performance, which could
be used by clinicians as a tool to classify SPN malignancy in routine clinical practice.
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Background

The main aim of this article is to propose a procedure to be used in constructing

a classification model by means of categorical variables. This model can be applied

to construct health recommendations using previously anonymised routine clinical

data from health centres and hospitals. Clinical data are usually collected as cat-

egorical variables, which is one of the main barriers to implementing a binary or

multi-class classification system.

Chang et al. [1] and Krzanowski [2] were among the first researches to propose the

use of continuous and dichotomous variables in this context. In their research, they

implemented a classification model based on discriminant analysis involving two

groups combining discrete and continuous variables previously established by Olkin

and Tate [3]. Several other methodologies such as Logistic Regression and Neural
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Networks use the above methodologies but in a different mathematical framework,

i.e. they artificially convert categorical variables into continuous variables, when

these models were only designed to be used with quantitative physical-based mea-

sures [4].

Classical methods – to work with categorical variables – either assign labels to

each output of a variable or they summarise measures using frequencies and per-

centages, which can be interpreted as probabilities. Following this latter strategy,

Discriminant Correspondence Analysis (DCA) [5] uses tables showing the frequency

of each category of the variables in the different groups into which individuals can

be classified. It is most commonly used to analyse data obtained through surveys. In

such a context, each question corresponds to a variable and each possible answer to

a category of that variable. DCA is a specific application of Correspondence Anal-

ysis (CA) and Discriminant Analysis (DA). The aim of the CA is to summarise the

relationships between the variables, which are studied either in pairs or as a whole.

On the other hand, the aim of DA is to categorise observations into different groups

using continuous variables. DCA is primarily employed to classify observations but

using categorical independent variables based on the geometry of a point cloud,

which allows distances between groups and categories to be defined.

On this basis, our methodological challenge was to construct a classification model

to help clinicians manage diagnoses based on a quantum probability framework.

The model will be expressed as a classification map (or oracle) denoted by ℓ.

We adopted a novel strategy based on observed categorical variables to construct ℓ

from a training data set. This oracle assigns an output category n output category

Y = ℓ(X) in a finite output space Y to a data vector X, from an input space X .

In practice, In practice, clinicians will be able to query the oracle ℓ using collected

input data X obtained from a new patient and get the answer ℓ(X) ∈ Y.

For example, from a previous survey using hospital patients, we have a set of two

categorical variables Sex and Smoker that take values in a set of modalities given

by

{Sex.Male,Sex.Female,Smoker.Never ,Smoker.Current ,Smoker.Former}.

The patients are classified in two modalities, namely

{Positive Diagnosis,Negative Diagnosis},

which are obtained from each individual clinical history. Remember that classical

approaches, like logistic regression, assume that

Y ∈ {−1 (Negative Diagnose), 1 (Positive Diagnose)}.

Next, we can construct an input space X , where each element is written in the

form

X = α1Sex.Male + α2Sex.Female

+ α3Smoker.Never + α4Smoker.Current + α5Smoker.Former .
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Here each coefficient αi takes the value 1 if its corresponding modality is active and

0 otherwise. Similarly, the output space Y is composed of elements written in the

form

Y = βPositive Diagnosis + (1− β)Negative Diagnosis

where β = 0, 1. Formally, we can represent both elements as vectors

X =




α1

α2

α3

α4

α5




and Y =

[
β

1− β

]
,

composed of binary entries. Hence, the individual elements of the survey can be

represented with the help of the following tensor product operation:

X⊗Y := XY
T =




βα1 (1− β)α1

βα2 (1− β)α2

βα3 (1− β)α3

βα4 (1− β)α4

βα5 (1− β)α5



.

Here the superscript T denotes the transpose matrix operation. Thus, we can rep-

resent the data basis space as a tensor product space X ⊗ Y, similar to a bipartite

state space in the quantum mechanics framework.

Methods

This section presents a general methodology that can easily be used to reuse medical

data that contains either only categorical or categorical and quantitative variables.

Categorical data representation

We assume we have a series of n observed data points, from a given a population

Ω, which are obtained from a survey containing q-questions. These questions are

represented by the categorical variables X1, . . . , Xq. Each Xi has an assigned set of

mi-answers denoted by Oi = {O(i)
1 , . . . , O

(i)
mi} where mi ≥ 2 and 1 ≤ i ≤ q. More-

over, each individual ω in the population generates an output from the categorical

variable Xi given by

Xi(ω) =

mi∑

k=1

α
(i)
k (ω)O

(i)
k =




α
(i)
1 (ω)

α
(i)
2 (ω)
...

α
(i)
mi(ω)



,

where α
(i)
k (ω) = 1 if ω has the modality O

(i)
k and α

(i)
k (ω) = 0, otherwise (1 ≤ i ≤ d).
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Under this formalism, a Bernoulli categorical variable Xi takes values over two

mutually incompatible modalities {O(i)
1 , O

(i)
2 } and hence Xi(ω) belongs to

{(
1

0

)(
0

1

)}
⊂ {0, 1}2.

Thus, in general for a categorical variable over mi mutually incompatible modalities

{O(i)
1 , . . . , O

(i)
mi}, each Xi(ω) will take values in the set

Xmi
:= {e1, . . . , emi

} ⊂ {0, 1}mi ,

for some mi ≥ 2, and where ek is a vector containing 1 in the i-th position and 0

in the rest.

We now define a survey X from categorical variables X1, . . . , Xq as

X = X1 + · · ·+Xq.

Each individual ω in Ω, has an assigned observation represented by a vector with

binary entries X(ω), defined as

X(ω) = X1(ω) + · · ·+Xq(ω) =

d∑

i=1

mi∑

k=1

α
(i)
k (ω)O

(i)
k =




α
(1)
1 (ω)
...

α
(1)
m1

(ω)
...

α
(q)
1 (ω)
...

α
(q)
mq (ω)




,

In consequence, the set {X(ω) : ω ∈ Ω} can be seen as the data set of a particular

clinical survey. Since each categorical variable takes values in Xmi
, the survey X

takes values in the set

Xd = Xm1
× · · · × Xmq

,

Moreover,

CardXd = m1m2 · · ·mq ≥ 2q.

Finally, the output data Y is a univariate categorical variable taking values over

Yk = {e1, . . . , ek} ⊂ {0, 1}k, for some k > 1. . Throughout this paper we will

assume that d is much larger that k.

Observe that X ∈ {0, 1}d ⊂ R
d and ey ⊂ {0, 1}k ⊂ R

k, then we can define a

tensor product operation similar to that used in quantum mechanics as

X⊗ ey = Xe
T
y ,

which is a d× k matrix where all columns entries are zero except the y-th column

that is equals toX. Consequently, our data basis will be described with the following
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tensor product space

Xd ⊗ Yk =
{
Xe

T
y : X ∈ Xd and ey ∈ Yk

}
.

Note that not only categorical variables fall within the above framework. Re-

member that indicator functions over measurable sets can approximate – under a

convenient norm – any measurable function. As a result, any quantitative variable

can be easily codified following the above ideas.

To describe the proposed methodology, we will consider that we are working with

a generic training dataset

D := {Xi Y
T
i ∈ Xd ⊗ Yk : 1 ≤ i ≤ n}.

Now, the goal is to use D to give the classification model by constructing an empir-

ical classification map, namely ℓD : Xd −→ Yk, as an approximation of an “ideal”

classification map ℓ.

The construction of the empirical classification map ℓD will be given in three

steps. In the first one we will use a density matrix from non-classical probability

theory to construct a probability representative basis. We will then use this basis to

parametrise the covariates Xi and construct a surrogate training dataset. Finally,

we will use this surrogate training set to obtain a conditional empirical density

function for each class in the independent set using a kernel method. This will be

used to propose our empirical classification map.

Constructing non-classical probabilities from the training set

To construct the density matrix associated to D we will do the following. For each

output data ey ∈ Yk, where 1 ≤ y ≤ k, we compute the vector fy of non-negative

integers, which is defined by the sum of all elements in D sharing the output label

ey, i.e.,

∑

XeT
y ∈D

Xe
T
y =




fy,1

fy,2
...

fy,d




e
T
y = fy e

T
y .

Observe that vector fy contains the frequencies for all categories related to the

output label ey. Next, we construct a d× k matrix

D := [f1 f1 · · · fk] =




f1,1 f2,1 · · · fk,1

f1,2 f2,2 · · · fk,2
...

...
. . .

...

f1,d f2,d · · · fk,d




=

k∑

y=1

fy e
T
y .

The columns of matrix D are related to the values in Yk, whereas the rows of D

are related to the values in Xd. Consequently, matrix D contains the frequencies

of D ⊂ Xd ⊗ Yk like a bivariate distribution. Now, we would want to extract the

information about the input variable Xd contained in matrix D to asses a value in
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Yk. For this, we transform D by using element-wise the function
√· and obtaining

a matrix

X =
√
D =




√
f1,1

√
f2,1 · · ·

√
fk,1√

f1,2
√
f2,2 · · ·

√
fk,2

...
...

. . .
...√

f1,d
√
f2,d · · ·

√
fk,d




=

k∑

y=1

√
fy e

T
y .

By using X =
√
D, we construct a square matrix related to the frequencies of each

category of the input space Xd as follows. Let

ρ
D
:=

1

tr(XXT )
XXT

=
1

tr(XXT )

k∑

y=1

k∑

y′=1

√
fy e

T
y ey′ (

√
fy′)T

=
1

tr(XXT )

k∑

y=1

√
fy (
√
fy′)T (remember that eTy ey′ = δy,y′)

=
1

tr(XXT )




∑k
i=1 fi,1

∑k
i=1

√
fi,1fi,2 · · · ∑k

i=1

√
fi,1fi,d∑k

i=1

√
fi,2fi,1

∑k
i=1 fi,2 · · ·

∑k
i=1

√
fi,2fi,d

...
...

. . .
...∑k

i=1

√
fi,dfi,1

∑k
i=1

√
fi,dfi,2 · · · ∑k

i=1 fi,d




,

where tr denotes the trace function (which is defined over the set of square ma-

trices and returns the sum of its diagonal elements). Observe that tr(XXT ) =∑k
i=1

∑d
j=1 fi,j = N, is the total sum of all frequencies. Moreover, the matrix ρ

D

has the following properties

1 ρ
D

is a symmetric matrix, i.e., ρ
D
= ρT

D
where the superscript T denotes the

transpose matrix operation.

2 ρ
D

is a semi-definite positive, i.e., it can be decompose as ρ
D
= BTB where

B = (tr(XXT ))−1/2XT .

3 tr ρ
D
= 1.

In quantum mechanics a matrix satisfying 1. 2. and 3. is called a density matrix

and it is a measure of quantum probability (also called non-classical probability). It

represents a set of mixed states (in our setting it is produced by the interaction of

the input and output outcomes) and where a mixed state refers to any case in which

we subdivide a microscopic or macroscopic system into an ensemble. These mixed

states are generated by a convex combination of pure states or rank-one tensors,

i.e., density matrices ρ = UU
T for an unitary vector U.

Also as a consequence of 1. and 2. we obtain non-negative singular values of matrix

ρ
D
. Another key feature is given by the Fundamental Theorem of the ranks, which

asserts

rankXXT = rankXTX = rankX = rankXT ≤ CardYk,

hence

rank ρ
D
≤ k. (1)
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Thus, the rank of the density matrix ρ
D

and the matrix X are bounded by the

number of classes in Yk. Property (1) will be essential to reduce the degree of

freedoms (DoF) to represent the vectors in the input space data. From now one, we

will assume

rank ρ
D
= r ≤ k.

To write each input data by means a set of r-coordinates or DoF, we will use

the Singular Value Decomposition (SVD) of the density matrix ρ
D
. The SVD of ρ

D

allows the explicit construction of an orthonormal basis

B(ρ
D
) = {Ui ∈ R

d : 1 ≤ i ≤ d}

of Rd, where U
T
i Uj = δi,j holds for all 1 ≤ i, j ≤ d, together with a set of non-

negative values

σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0

such that

ρ
D
=

d∑

i=1

σiUi U
T
i .

We known that only some of the non-negative values σ1, . . . , σr, called the singular

values, are different from zero. More precisely, it is known that σi = 0 if and only

if i > rank ρ
D
. Thus

ρ
D
=

r∑

i=1

σiUi U
T
i , (2)

and trρ
D

=
∑

r

i=1 σi = 1. The quantum mechanics interpretation of (2) is that

the density matrix ρ
D

is generated by a convex combination of the pure states

{Ui U
T
i : 1 ≤ i ≤ r}.

Constructing a surrogate training set from non-classical probabilities

Any input data X ∈ Xd, can be normalised under the Euclidean norm as

X̃ :=
X√
XTX

=
X√
q
∈ R

d,

and then we write X̃ by using the basis B(ρ
D
) as X̃ =

∑d
i=1 λiUi, where λi = U

T
i X̃

for 1 ≤ i ≤ d. On the other hand, we can identify any normalized input data X̃

with the symmetric matrix X̃X̃
T (a random variable in quantum probability), i.e.,

X̃X̃
T =

d∑

i=1

d∑

j=1

λiλjUiU
T
j .

Since ∥X̃∥2 = X̃
T
X̃ = 1 then X̃X̃

T it is a rank-one projection (and a pure state)

over the linear subspace generated by the vector X.
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The ρ
D
-expected value of the rank-one projection X̃X̃

T is given by

Eρ
D
[XX

T ] = tr(ρ
D
XX

T ).

Since

ρ
D
X̃X̃

T =

r∑

k=1

n∑

i=1

n∑

j=1

σkUk U
T
k λiλjUiU

T
j

=

r∑

k=1

n∑

i=1

n∑

j=1

σkλiλjδk,iUkU
T
j

=
r∑

k=1

n∑

j=1

σkλkλjUkU
T
j ,

the diagonal of ρ
D
X̃X̃

T is the matrix
∑

r

k=1 σkλ
2
kUkU

T
k . Thus, we conclude that

Eρ
D
[X̃X̃

T ] =
∑

r

k=1 σkλ
2
k. Moreover, we deduce

ρ
D
X̃X̃

T = ρ
D
X̃rX̃

T
r
where X̃r :=

r∑

i=1

λiUi. (3)

Thus, (3) implies that

Eρ
D
[X̃X̃

T ] = Eρ
D
[X̃rX̃

T
r
], (4)

holds for every X ∈ Xd. From (4), the rank-one projection X̃X̃
T and the symmetric

matrix X̃rX̃
T
r

have the same ρ
D
-expected value. This allows us to identify the

elementary events representing the one dimensional linear subspaces generated by

X̃ and X̃r, respectively. Indeed, the vector X̃r written in the B(ρ
D
)-basis is given

by

X̃r =

r∑

i=1

λiUi =

r∑

i=1

U
T
i X√
q

Ui =




U
T
1
X√
q

U
T
2
X√
q

...
U

T
r
X√
q



.

In consequence, we will consider the following reduced input space

X̃r :=
{
X̃r ∈ R

r : Xe
T
y ∈ D for some ey ∈ Yk

}
,

which is contained in

Br

1(0) =

{
r∑

i=1

λi Ui ∈ R
r :

r∑

i=1

λ2
i ≤ 1

}
,

the closed unit ball of Rr. So, to construct the empirical classification map ℓD, we

will use the following surrogate training set

D̃ =
{
X̃r e

T
y ∈ R

r ⊗ Yk : Xe
T
y ∈ D

}
.
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Since the vectors X̃r =
∑

r

i=1 λi Ui ∈ X̃r satisfy
∑

r

i=1 λ
2
i ≤ 1 we can also use the

r-dimensional spherical coordinate system to represent X̃r, i.e.,

λ1 = r cos(φ1)

λ2 = r sin(φ1) cos(φ2)

λ3 = r sin(φ1) sin(φ2) cos(φ3)

...

λr−1 = r sin(φ1) sin(φ2) · · · sin(φr−2) cos(φr−1)

λr = r sin(φ1) sin(φ2) · · · sin(φr−2) sin(φr−1)

where φi ∈ [0, π] for 1 ≤ i ≤ r − 1, φr−1 ∈ [0, 2π) and r ∈ [0, 1]. Hence we can

characterize each X̃r as

X̃r :=




r(X̃r)

φ1(X̃r)
...

φr−1(X̃r)



∈ [0, 1]× [0, π]r−2 × [0, 2π).

A surrogate training set in polar coordinates to be used in a binary classification

model

Next, we will concentrate on the binary classification case, i.e., when k = 2 and

Y2 = {e1, e2}. Under this condition rank ρ
D
≤ 2 holds. Without loss of generality

assume that rank ρ
D
= r = 2 and hence each X̃2 ∈ X̃2 obtained from a X ∈ Xd can

be written as

X̃2 =
U

T
1 X√
q

U1 +
U

T
2 X√
q

U2 where 0 <
(UT

1 X)2

q
+

(UT
2 X)2

q
≤ 1.

Using polar coordinates we have

U
T
1 X√
q

= r cos θ,

U
T
2 X√
q

= r sin θ,

then

r(X) =

√
(UT

1 X)2

q
+

(UT
2 X)2

q
,

θ(X) = arctan
U

T
2 X

UT
1 X

,

and hence

X̃2 = r(X)(sin θ(X)U1 + cos θ(X)U2).
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Thus, we obtain an equivalent parametrization of X̃2 by the parameters (θ(X), r(X)) ∈
[−π/2, π/2]× [0, 1], which allows us to define the next surrogate training data set

D̃ =

{[
θ(X)

r(X))

]
e
T
y ∈ ([−π/2, π/2]× [0, 1])⊗ Yk : Xe

T
y ∈ D

}
.

On the empirical conditional density functions for the dependent variables and the

classification map

In this third step, for each fixed ey ∈ Yk put

X̃r,ey
:=
{
X̃r : X̃r e

T
y ∈ D̃

}
,

and we check -for example with the help of some multivariate Kolmogorov-Smirnov

test [6]- that the probability distributions of the k-cloud sets:

{X̃r,ey
: ey ∈ Yk} ⊂ Br

1(0)

are different.

Under the assumption of a positive answer to the above test, we then construct an

empirical probability distribution function for each individual set X̃r,ey
(ey ∈ Yk),

using a multivariable kernel method. For this we will consider a function

K : Rr −→ [0,∞)

with a compact support in B1r(0) and satisfying

∫

Rr

K(x)dx =

∫

Br

1
(0)

K(x)dx = 1

Usually K will be a radially symmetric unimodal probability density function, for

example is the multivariate Epanechnikov kernel defined by

K(x) =

{
1
2c

−1
r

(r+ 2)(1− x
T
x) if xT

x < 1

0 otherwise,
,

where cr is the volume of Br

1(0). We recall that a multivariate kernel density esti-

mator with kernel K and window width h in X̃r,ey
is defined by

f̂h(x|ey) =
∑

X̃r∈X̃r,ey

1

nhr
K

(
x− X̃r

h

)
. (5)

Since the family of maps {f̂h(x|ey) : ey ∈ Yk} are continuous with compact

support, we can introduce the family on non-empty sets

My(D̃) := arg max
x∈B1(0)

f̂h(x|ey) for each ey ∈ Yk, for 1 ≤ y ≤ k.
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The multivariate Epanechnikov kernel is unimodal, thus the map f̂h(x|ey) has an

absolute maximum and hence My(D̃) = {xmax
y }.

Now, we have everything to define

ℓ
D̃
: Br

1(0) ⊂ R
r −→ Yk,

by

ℓ
D̃
(X̃r) = ey if and only if ∥X̃r − x

max
y ∥ < ∥X̃r − x

max
y′ ∥ holds for all y′ ̸= y.

Evaluation of the classification map

Evaluating a classification model consists of determining how often labels are cor-

rectly or incorrectly classified for the testing samples. In other words, it is counting

how many times a sample is correctly or incorrectly labelled into a particular class.

We distinguish four qualities:

• TP (True Positive): the correct classification of a sample into a class;

• TN (True Negative): the correct classification of a sample out of a class;

• FP (False Positive): the incorrect classification of a sample into a class;

• FN (False Negative): the incorrect classification of a sample out of class.

To assess the quality of the classification map, confusion matrix, sensitivity, speci-

ficity, the predictive values, accuracy, F1 score, Cohen’s kappa [7] and Matthews

Correlation Coefficient [8] will be computed by using the above qualities. Recall

that

Sensitivity =
TP

TP + FN
, (worst value = 0; best value = 1),

Specificity =
TN

TN+ FP
, (worst value = 0; best value = 1),

Positive predictive value =
TP

TP + FP
, (worst value = 0; best value = 1),

Negative predictive value =
TN

TN+ FN
, (worst value = 0; best value = 1),

Accuracy =
TP+TN

TP + TN+ FP + FN
(worst value = 0; best value = 1),

F1 Score =
2TP

2TP + FN+ FP
, (worst value = 0; best value = 1).

The definition of the Cohen’s kappa of a binary classification confusion matrix is

given by

κ =
2(TP× TP− FN× FP)

(TP× FP) + (FP× TN) + (TP× FN) + (FN× TN)

(worst value = −1; best value = 1; agreement expected by chance = 0).
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and the Matthews Correlation Coefficient (MCC) which is defined by

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

(worst value = −1; best value = 1; agreement expected by chance = 0).

To measure the quality of our performance we will use the receiver operating

characteristic (ROC) curve. This curve is computed using Sensitivity on the vertical

axis and 1-Specificity on the horizontal axis. Evaluating the performance is given by

the so-called area under the curve (AUC): the greater the AUC is, the better model

is performing. ROC curves are insensitive to changes in class distribution. If the

proportion of positive to negative instances changes in a test set, the ROC curves

will not change [9]. However, we often have a data set with many negative instances

and few positives instances. For these kind of imbalanced sets, according to Chicco

[10], the Precision-Recall curve is a more reliable and informative indicator of the

statistical performance of the proposal method.

Results

We proved the usefulness and effectiveness of the proposed method using routine

clinical data. Our aim was to establish a classification model to distribute patients –

with a prior diagnosis of a Solitary Pulmonary Nodule (SPN) – into two classes; class

1 patients diagnosed with lung cancer, or class 0 free of lung cancer after five-years

of follow-up. For that purpose, we reused routine clinical data from patients of two

public university general hospitals. Briefly, SPN, defined as a pulmonary opacity

up to 30 mm in diameter, is a common finding in routine clinical practice when

performing chest imaging tests such as X-rays or computed tomography (CT) for

any reason [11, 12]. The vast majority of these nodules are benign, and only a small

proportion (around 10–20%) are malignant [13, 14]. A Spanish cohort found, after

five years of follow-up, a prevalence of malignant SPN, detected by chest radiography

or CT, of 12.1% and 18.2% respectively [15]. In routine clinical practice, the risk of

malignant SPN can be clinician-assigned based on clinician judgement, which can

lead to the use of inadequate clinical tests and treatments with potential side effects

such as excess radiation, or calculated using a validated risk prediction model. The

applicability of a predictive model, rather than just using clinical judgement based

on intuition/experience, offers a standardised and reproducible approach to nodule

risk assessment [16].

Results from a recent systematic review which evaluated 15 SPN malignancy pre-

dictive models applicable to routine clinical practice, indicated that most models

were derived from multivariable logistic regression models [17]. All models con-

structed in these studies were classified as having a high risk of bias compromis-

ing their clinical applicability. The quality of these models was assessed using the

Prediction model Risk Of Bias Assessment Tool (PROBAST) [18], to construct a

structured judgement of the applicability and transferability of predictive models

to clinical practice.

For the purpose of this work, we used data from a retrospective cohort study

of patients aged ≥35 years referred for thoracic imaging for non-screening reasons
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(such as preoperative evaluation) in two hospitals from the Valencian Autonomous

Community (south-east Spain) from within the hospital and from primary health

care centres during 2010 and 2011. Out of 25,422 patients with an imaging test

performed during that period at both hospitals, 893 patients were found to have an

SPN. Patients previously diagnosed with lung cancer or with intrapulmonary lymph

nodes and pseudo-lesions were excluded from the study. The detailed methodology

has been described elsewhere [19, 20]. All patients with SPN (893) were followed

up for five years or up to a diagnosis of lung cancer from nodule detection. Selected

clinical and demographic variables were collected from medical records.

We limited our study to 404 patients for which complete information on the eight

chosen predictor variables were available: sex, previous malignancy, smoking habit

(non-smokers, current or former smokers), Chronic Obstructive Pulmonary Disease

(COPD), more than one SPN, SPN diameter (mm), SPN location (lung lobe) and

SPN border. These variables are usually considered by most medical guidelines to

the most significant in managing the diagnoses procedures when an SPN is found in

a routine clinical context. The eight chosen predictors were found to be associated

with a risk of lung cancer in two previous analyses with the same population [15, 20].

For missing values, it was decided not to impute missing data and rely only on data

collected.

The modalities of the eight variables and their distribution according to the two

classes are shown in Table 1. Sex, Previous Malignancy, Smoker, COPD, More than

one SPN have two modalities, however, SPN diameter and SPN location (lobe)

use three modalities and SPN border uses four. The dependent variable collected

(which functions as a class label) was the development or not of lung cancer during

the five years following the detection of the SPN. In this period, 22% of patients

were diagnosed with lung cancer. The percentage is higher than normal because the

diagnosed patients were slightly better documented than the undiagnosed. Of the

initial 893, the percentage was 14.9%. These predictor variables can be considered

as a survey of q = 8 questions with d = 20 answers.

Although patient characteristics, such as advanced age have been associated with

a higher risk of malignant SPN [11, 21, 22], age was not considered because its

inclusion in the training dataset did not change the results and therefore did not

contribute to the construction of the classification map, as explain below. Diam-

eter, on the other hand, followed a very specific pattern and its introduction was

considered significant.

We constructed the classification map with 404 participants with SPN after five

years of follow-up with a mean age of 65 ± 12 years. We consider each of these

20 different answers as a measurement for an individual patient. For each question,

every individual could only have one modality marked as 1 with the other modalities

being 0. Moreover, each individual was classified in class 0 : non SPN diagnosis, or

otherwise in class 1. Table 2 gives an example of two data vectors from two different

individuals according to the two different classes.

After we separated patients into two groups: one consisting of two thirds of the

patients to construct the model (the training dataset), and the remaining third (the

test dataset) was used to validate the model. With the individual data vectors of

the first group, matrix D was computed (Table 3). It contains the frequency of each
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answer in each class in our database. Calculating the root of all its elements, the X

matrix is obtained (Table 4). The density matrix (ρ
D
) is then calculated (Table 5).

In our model, the range of ρ
D
is equal to the number of classes, so r is equal to 2.

Subsequently, the SVD of ρ
D

was performed obtaining the orthonormal basis

B(ρ
D
). With it, each input data X̃ can be then considered by means of its truncated

representation X̃r.

These X̃r are obtained from the individual data vectors of the training dataset,

obtaining a surrogate training dataset. Likewise, the X̃r of the test dataset are cal-

culated using the same basis vectors B(ρ
D
) previously computed with the training

set. The true classification for each of them is known.

The polar coordinates (θ(X), r(X)) of both the training and test datasets were

then calculated. With this new surrogate training dataset, having used the multi-

variate Kolmogorov-Smirnov test to check that the probability distribution of the

coordinates in the training dataset is different between the two classes, an empir-

ical probability density function of both coordinates of each class (f(X|ey)) was

constructed using the multivariate Gaussian kernel and the variance matrix as the

bandwidth matrix. An example of the density functions are showed in Figure 1.

They were constructed using the R package ks [23]. Each individual in the test

dataset is assigned to the class whose maximum probability has the smallest dis-

tance to that individual’s coordinate values.

Nevertheless, as shown in Figure 2, it was observed that the classes were dis-

criminated primarily by the θ coordinate. It was therefore decided to carry out the

classification following the same process as above but using only this coordinate. In

this case, the multivariate kernel used was the Epanechnikov kernel. The bandwidth

was chosen using Silverman’s rule of thumb. An example of the density functions is

shown in Figure 3.

In total, 1000 analyses were performed by randomising the training dataset and

the test dataset. With the difference between the predicted and the real classes, both

with the two coordinates and with θ only, the confusion matrices were calculated.

The average of the matrices of the 1000 analyses using the two coordinates is given

in Table 6, using only θ in Table 7. Furthermore, to quantify the model’s goodness

of fit, the predictive values, the accuracy, the sensitivity, the specificity, the F1 score

and the Cohen’s kappa coefficient were computed. The averages of these are shown

in Table 8.

Subsequently, to assess the goodness of the model, an ROC curve was constructed.

This curve is normally used with analyses that yield a probability, but can be

constructed using another statistic or score, i.e. a numeric value that represents the

degree to which an individual is a member of a class [9]. In our case, we have used

the difference between the distances of the patient’s coordinate to the maximum of

each of the two classes.

To summarise the 1000 curves in one, we use the vertical averaging method [9].

It allows the mean and confidence interval to be plotted at different points on

the curve. The averaged curve of the analysis using the two coordinates with 95%

confidence intervals is shown in Figure 4. It was constructed using the R package

ROCR [24]. The result using the θ coordinate was very similar (data not shown).

Moreover, the averages of the area under the ROC curve of the 1000 analyses, both

using the two coordinates and only using θ, are shown in Table 8.
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We also present the graph reflecting the relationship between the positive pre-

dictive value and the sensitivity (usually called the Precision/Reception graph) of

the analysis employing the two coordinates, using the same output score, the same

averaging method and the same package to construct it (Figure 5).

Discussion

In our model, the classification using the two coordinates (r, θ) and only θ gar-

ners very similar results. It can therefore be concluded, as seen in Figure 2, that

discrimination is mainly produced by the θ coordinate.

The results obtained (Tables 6 and 7) are acceptable, with better discrimination

of patients who were actually diagnosed with lung cancer. This is explained by the

higher number of undiagnosed patients in the area where the density functions of

the diagnosed and undiagnosed overlap (Figure 3).

All parameters in Table 8, except the positive predictive value (PPV), also result

in acceptable values. The low value of the PPV is partly explained by a higher

proportion of undiagnosed patients. It is worth noting the good value of the MCC.

The MCC, as described by Chicco et al. [25], is a more comprehensive coefficient

than Cohen’s kappa coefficient in checking the performance of a classification map.

The good assessment obtained for our proposed methodology is reinforced by the

results of the ROC curve. However, the information provided by the Precision/Re-

call graph is not as strong due to the worse positive predictive value results, due in

part to using an unbalanced dataset, i.e., the number of individuals with a diagnosis

of lung cancer being much lower (22%) than those without a diagnosis (78%).

Conclusions

This classification model is based on concepts borrowed from non-classical proba-

bility theory arising in quantum mechanics and provides an acceptable performance

that could be a used with routine clinical data..
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19. Gómez-Sáez, N., González-Álvarez, I., Vilar, J., Hernández-Aguado, I., Domingo, M.L., Lorente, M.F.,

Pastor-Valero, M., Parker, L.A., Picazo, N., Calbo, J., Lumbreras, B.: Prevalence and variables associated with

solitary pulmonary nodules in a routine clinic-based population: a cross-sectional study. Eur. Radiol. 24(9),

2174–2182 (2014)
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Figure 1: An example (among the 1000 analyses performed) of the density func-

tions f(X|ey) for y ∈ {0, 1} of the test dataset.

(a) Not diagnosed class (0)

(b) Diagnosed class (1)
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Figure 2: An example (among the 1000 analyses performed) of the distribution

of the polar coordinates of the datatest set
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Figure 3: An example (among the 1000 analyses performed) of the density func-

tions f(θ|y) for y ∈ {0, 1} of the test dataset.

Figure 4: ROC curve averaged using the vertical averaging method. The ROC

curve of 1000 analyses was averaged using the two coordinates as predictors. The

bars show 95% confidence intervals.
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Figure 5: Positive predictive value-sensitivity curve averaged using the vertical

averaging method. The positive predictive value-sensitivity curve of 1000 anal-

yses was averaged using the two coordinates as predictors. The bars show 95%

confidence intervals.
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Table 1: The data used to construct the model.

N (%) Not diagnosed Diagnosed Total p value1

N 315 (78.0) 89 (22.0) 404

Sex

Male 197 (62.5) 68 (76.4) 265 (65.6) 0.021
Female 118 (37.5) 21 (23.6) 139 (34.4)

Previous malignancy

No 204 (64.8) 48 (53.9) 252 (62.4) 0.082
Yes 111 (35.2) 41 (46.1) 152 (37.6)

Smoker

Never 99 (31.4) 10 (11.2) 109 (27) < 0.001
Former or current 216 (68.6) 79 (88.8) 295 (73)

COPD

No 228 (72.4) 52 (58.4) 280 (69.3) 0.017
Yes 87 (27.6) 37 (41.6) 124 (30.7)

More than one SPN

No 266 (84.4) 72 (80.9) 338 (83.7) 0.524
Yes 49 (15.6) 17 (19.1) 66 (16.3)

SPN diameter (mm)

< 11.3 232 (73.7) 15 (16.9) 247 (61.1) < 0.001
11.3 - 20.7 63 (20) 34 (38.2) 97 (24)

> 20.7 20 (6.3) 40 (44.9) 60 (14.9)

SPN location (lobe)

Lower 114 (36.2) 28 (31.5) 142 (35.1) 0.028
Middle 36 (11.4) 3 (3.4) 39 (9.7)
Upper 165 (52.4) 58 (65.2) 223 (55.2)

SPN border

Smooth 155 (49.2) 6 (6.7) 161 (39.9) < 0.001
Lobulation 47 (14.9) 21 (23.6) 68 (16.8)
Spiculation 63 (20) 16 (18) 79 (19.6)

Other irregular 50 (15.9) 46 (51.7) 96 (23.8)
1p value of Pearson’s chi-squared test
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Table 2: An example of two individual data samples, one for class 0 and another

for class 1.
Class 0

Sex Male 1

Sex Female 0

More than one SPN Yes 1

More than one SPN No 0

SPN diameter (mm) < 11.3 1

SPN diameter (mm) 11.3-20.7 0

SPN diameter (mm) > 20.7 0

SPN location (lobe) Middle 0

SPN location (lobe) Upper 1

SPN location (lobe) Lower 0

SPN border Other 0

SPN border Spiculation 1

SPN border Lobulation 0

SPN border Smooth 0

Previous malignancy Yes 0

Previous malignancy No 1

Smoker Yes 1

Smoker Never 0

COPD Yes 1

COPD No 0

Class 1

Sex Male 0

Sex Female 1

More than one SPN Yes 1

More than one SPN No 0

SPN diameter (mm) < 11.3 0

SPN diameter (mm) 11.3-20.7 0

SPN diameter (mm) > 20.7 1

SPN location (lobe) Middle 0

SPN location (lobe) Upper 0

SPN location (lobe) Lower 1

SPN border Other 0

SPN border Spiculation 0

SPN border Lobulation 0

SPN border Smooth 1

Previous malignancy Yes 0

Previous malignancy No 1

Smoker Yes 0

Smoker Never 1

COPD Yes 0

COPD No 1

Table 3: An example of matrix D.
0 1

Sex Male 124 49

Sex Female 84 13

More than one SPN No 174 51

More than one SPN Yes 34 11

SPN diameter (mm) < 11.3 159 10

SPN diameter (mm) 11.3-20.7 37 26

SPN diameter (mm) > 20.7 12 26

SPN location (lobe) Upper 116 42

SPN location (lobe) Middle 24 2

SPN location (lobe) Lower 68 18

SPN border Smooth 98 6

SPN border Spiculation 40 11

SPN border Lobulation 36 13

SPN border Other 34 32

Previous malignancy No 135 31

Previous malignancy Yes 73 31

Smoker Never 64 8

Smoker Yes 144 54

COPD No 150 36

COPD Yes 58 26
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Table 4: An example of matrix X computed from matrix D.
0 1

Sex Male 11.14 7.00

Sex Female 9.17 3.61

More than one SPN No 13.19 7.14

More than one SPN Yes 5.83 3.32

SPN diameter (mm) < 11.3 12.61 3.16

SPN diameter (mm) 11.3-20.7 6.08 5.10

SPN diameter (mm) > 20.7 3.46 5.10

SPN location (lobe) Upper 10.77 6.48

SPN location (lobe) Middle 4.90 1.41

SPN location (lobe) Lower 8.25 4.24

SPN border Smooth 9.90 2.45

SPN border Spiculation 6.32 3.32

SPN border Lobulation 6.00 3.61

SPN border Other 5.83 5.66

Previous malignancy No 11.62 5.57

Previous malignancy Yes 8.54 5.57

Smoker Never 8.00 2.83

Smoker Yes 12.00 7.35

COPD No 12.25 6.00

COPD Yes 7.62 5.10
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Sex Male 0.08 0.06 0.09 0.04 0.08 0.05 0.03 0.08 0.03 0.06 0.06 0.04 0.04 0.05 0.08 0.06 0.05 0.09 0.08 0.06
Sex Female 0.06 0.04 0.07 0.03 0.06 0.03 0.02 0.06 0.02 0.04 0.05 0.03 0.03 0.03 0.06 0.05 0.04 0.06 0.06 0.04
More than one SPN No 0.09 0.07 0.10 0.05 0.09 0.05 0.04 0.09 0.03 0.06 0.07 0.05 0.05 0.05 0.09 0.07 0.06 0.10 0.09 0.06
More than one SPN Yes 0.04 0.03 0.05 0.02 0.04 0.02 0.02 0.04 0.02 0.03 0.03 0.02 0.02 0.02 0.04 0.03 0.03 0.04 0.04 0.03
SPN diameter (mm) < 11.3 0.08 0.06 0.09 0.04 0.08 0.04 0.03 0.07 0.03 0.05 0.06 0.04 0.04 0.04 0.08 0.06 0.05 0.08 0.08 0.05
SPN diameter (mm) 11.3-20.7 0.05 0.03 0.05 0.02 0.04 0.03 0.02 0.05 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.04 0.03 0.05 0.05 0.03
SPN diameter (mm) > 20.7 0.03 0.02 0.04 0.02 0.03 0.02 0.02 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.04 0.03 0.02
SPN location (lobe) Upper 0.08 0.06 0.09 0.04 0.07 0.05 0.03 0.07 0.03 0.05 0.06 0.04 0.04 0.05 0.07 0.06 0.05 0.08 0.08 0.05
SPN location (lobe) Middle 0.03 0.02 0.03 0.02 0.03 0.02 0.01 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.03 0.02
SPN location (lobe) Lower 0.06 0.04 0.06 0.03 0.05 0.03 0.02 0.05 0.02 0.04 0.04 0.03 0.03 0.03 0.06 0.04 0.04 0.06 0.06 0.04
SPN border Smooth 0.06 0.05 0.07 0.03 0.06 0.03 0.02 0.06 0.02 0.04 0.05 0.03 0.03 0.03 0.06 0.05 0.04 0.06 0.06 0.04
SPN border Spiculation 0.04 0.03 0.05 0.02 0.04 0.03 0.02 0.04 0.02 0.03 0.03 0.02 0.02 0.03 0.04 0.03 0.03 0.05 0.05 0.03
SPN border Lobulation 0.04 0.03 0.05 0.02 0.04 0.03 0.02 0.04 0.02 0.03 0.03 0.02 0.02 0.03 0.04 0.03 0.03 0.05 0.04 0.03
SPN border Other 0.05 0.03 0.05 0.02 0.04 0.03 0.02 0.05 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.04 0.03 0.05 0.05 0.03
Previous malignancy No 0.08 0.06 0.09 0.04 0.08 0.05 0.03 0.07 0.03 0.06 0.06 0.04 0.04 0.05 0.08 0.06 0.05 0.08 0.08 0.05
Previous malignancy Yes 0.06 0.05 0.07 0.03 0.06 0.04 0.03 0.06 0.02 0.04 0.05 0.03 0.03 0.04 0.06 0.05 0.04 0.07 0.06 0.04
Smoker Never 0.05 0.04 0.06 0.03 0.05 0.03 0.02 0.05 0.02 0.04 0.04 0.03 0.03 0.03 0.05 0.04 0.03 0.05 0.05 0.03
Smoker Yes 0.09 0.06 0.10 0.04 0.08 0.05 0.04 0.08 0.03 0.06 0.06 0.05 0.05 0.05 0.08 0.07 0.05 0.09 0.09 0.06
COPD No 0.08 0.06 0.09 0.04 0.08 0.05 0.03 0.08 0.03 0.06 0.06 0.05 0.04 0.05 0.08 0.06 0.05 0.09 0.09 0.06
COPD Yes 0.06 0.04 0.06 0.03 0.05 0.03 0.02 0.05 0.02 0.04 0.04 0.03 0.03 0.03 0.05 0.04 0.03 0.06 0.06 0.04
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Table 6: Average Confusion Matrix using the two coordinates

Predicted classification

Not diagnosed Diagnosed

Real classification

Not diagnosed 0.7198 0.2802
Diagnosed 0.1862 0.8138

Table 7: Average Confusion Matrix using only the θ coordinate

Predicted classification

Not diagnosed Diagnosed

Real classification

Not diagnosed 0.7147 0.2853
Diagnosed 0.1842 0.8158

Table 8: Classification performance parameters
Two coordinates θ coordinate only

Sensitivity 0.8138 0.8158
Specificity 0.7198 0.7147

Negative Predictive Value 0.9322 0.9323
Positive predictive value 0.4517 0.4469

Accuracy 0.7403 0.7368
F1 Score 0.5781 0.5751

Cohen’s kappa coefficient 0.4131 0.4080
Matthews correlation coefficient 0.4521 0.4481

Area under the ROC curve 0.8617 0.8598


