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Abstract: Aging is a complex process characterized by an ongoing decline in physiological functions,
leading to degenerative diseases and an increased probability of death. Cellular senescence has
been typically considered as an anti-proliferative process; however, the chronic accumulation of
senescent cells contributes to tissue dysfunction and aging. In this review, we discuss some of the most
important hallmarks and biomarkers of cellular senescence with a special focus on skin biomarkers,
reactive oxygen species (ROS), and senotherapeutic strategies to eliminate or prevent senescence.
Although most of them are not exclusive to senescence, the expression of the senescence-associated
beta-galactosidase (SA-β-gal) enzyme seems to be the most reliable biomarker for distinguishing
senescent cells from those arrested in the cell cycle. The presence of a stable DNA damage response
(DDR) and the accumulation of senescence-associated secretory phenotype (SASP) mediators and ROS
are the most representative hallmarks for senescence. Senotherapeutics based on natural compounds
such as quercetin, naringenin, and apigenin have shown promising results regarding SASP reduction.
These compounds seem to prevent the accumulation of senescent cells, most likely through the
inhibition of pro-survival signaling pathways. Although studies are still required to verify their short-
and long-term effects, these therapies may be an effective strategy for skin aging.
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1. Introduction

Since the dawn of civilization, humans have been confronted with the problem of
aging and mortality and have therefore sought ways to slow this process, if not defeat it
altogether (e.g., the philosopher’s stone myth). Currently, the question of delaying aging
is as relevant as ever: more than 10% of the world’s population is over 65 years old, and
Europe is the “oldest” region, being home to 19% of those over 65 [1]. According to the
United Nations forecast report, the total number of people over 60 will double between
2017 and 2050, rising from 962 million to an astounding 2.1 billion [2]. Consequently, our
lifespans are rapidly outpacing the so-called health span. Unfortunately, wisdom is not the
only gift of maturity; it also bears a heightened risk of geriatric conditions such as frailty,
impaired mobility, and cognitive deterioration. Elderly individuals are sick for longer
on average, and it is not uncommon for them to struggle with multiple chronic issues
simultaneously, placing a sizable burden on the medical system.

In general, aging is viewed as a multifactorial process in which the body changes over
time, leading to functional impairment and an ever-increasing likelihood of the loss of
life. The problem of aging encompasses a web of aspects, from obvious clinical effects to
sociopolitical outcomes for the lives of individuals and society as a whole. These aspects
are the subject of the study of gerontology [3]. The subfield of gerontology that deals with
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the study of aging in vitro by analyzing the mechanisms of aging in cultured cells is called
cytogerontology [4]. It should be noted that cytogerontological findings cannot be the
sole basis for proposing theories due to scientific reductionism. Most models of normal or
altered aging in multicellular organisms are reduced to several specific molecular switches
in a set of cells (sometimes limited to a single cell line). As a result, most of these models
are devoid of the complexity of neural and humoral influences, which makes them quite
vulnerable when translating in vitro data to in vivo models.

In 2013, López-Otín et al. [5] described nine now-canonical hallmarks of cellular and
molecular aging and grouped them into three categories. The primary hallmarks include
developments at the molecular level: telomere attrition, the instability of the genome,
epigenetic alterations, and a loss of proteostasis—all of which have the potential to wreak
havoc on the molecular level. Antagonistic hallmarks comprise a counteractive response to
the embodiment of the primary hallmarks (deregulated nutrient sensing, mitochondrial
dysfunction, and cellular senescence). Finally, integrative hallmarks such as stem cell
exhaustion and altered cellular communication are the culmination of damage caused
by the aforementioned hallmarks, leading to what is known as a damaged phenotype,
i.e., functional deterioration.

While the primary hallmarks, as the name implies, are the starting point of damage,
they alone do not constitute evidence of cellular aging. The downstream response is,
in a sense, a counterbalance that serves to bring the system to homeostasis after initial
detrimental effects. Unfortunately, over time, if left to its own devices, this mechanism
can lead to additional damage, which, in turn, causes harm to the body. As a result,
physiological and functional damage accumulates, setting off the onslaught of chronic
inflammation and disease. Impaired energy metabolism alone can lead to changes in
insulin sensitivity that affect a whole range of normal functions, from neural to sensory
(especially visual and auditory) [6]. It must be stipulated that cellular senescence and
aging are not transposable concepts. Aging is a process that is inherently time-dependent,
whereas senescence occurs throughout life, even before birth during embryogenesis.

Recent advances in our understanding of the factors and mechanisms that cause and
sustain cellular senescence may lead to the selective removal of senescent cells. The term
senotherapy has been used to describe this unique approach [7]. Senotherapeutics have
been proven to reduce the quantity of naturally existing senescent human cells in vitro,
reverse or prevent senescence hallmarks, and improve physical and cognitive function,
lengthening the lifetimes of aged mice [8].

The main objective of this review was to describe cellular senescence as a factor in
overall aging, as well as skin aging in particular. Additionally, the most important hallmarks
and biomarkers of cellular senescence, with a special focus on skin biomarkers and their
relationship with oxygen reactive species (ROS), are discussed. Finally, senotherapeutic
strategies with antioxidant compounds, especially plant polyphenols, are also reviewed.

2. Search Strategy

A systematic search for hallmarks, biomarkers of skin senescence, and senolytics was
performed considering all the articles published until December 2022 through Medline
using PubMed as the search engine. Manual research was completed at Miguel Hernandez
University (UMH), Spain. The UMH bibliographic resource provided access to original
manuscripts. A systematic search was performed using the keywords “cell”, “senes-
cence”, “skin”, “senolytic”, “antioxidant”, “aging”, “biomarker”, “ROS”, “hallmark”, and
“senotherapy”, using the operators AND OR between relevant keywords. Eligible abstracts
were read to determine if they met the eligibility criteria, which consisted of being as recent
as possible (before December 2022), being an original publication belonging to an indexed
journal, and being aligned with the objective and theme of the review. Non-English or
Spanish language publications were excluded from the present review. Filter limits (such
as text availability, article type, and publication date) were not applied. Titles and abstracts



Antioxidants 2023, 12, 444 3 of 26

that met the inclusion criteria were retrieved, and the full text articles were studied. Finally,
187 studies were selected for review (Figure 1).

Antioxidants 2023, 12, x FOR PEER REVIEW 3 of 28 
 

an indexed journal, and being aligned with the objective and theme of the review. Non-

English or Spanish language publications were excluded from the present review. Filter 

limits (such as text availability, article type, and publication date) were not applied. Titles 

and abstracts that met the inclusion criteria were retrieved, and the full text articles were 

studied. Finally, 187 studies were selected for review (Figure 1). 

 

Figure 1. Flowchart of article screening. 

3. Cellular Senescence 

The first description of the phenomenon of cellular senescence was put forth by Hay-

flick and Moorhead in a formative 1961 paper [9]. In this paper, the authors scrutinized 

and challenged the previously held view postulating that all cells are essentially immortal 

and therefore can duplicate infinitely. Hayflick and Moorhead showed that after a series 

of in vitro passages, normal human fibroblasts enter an irreversible growth arrest that 

fundamentally differs from the behavior of a typical cancer cell. This occurrence was later 

termed the Hayflick limit by Macfarlane Burnet and is now commonly known as “repli-

cative senescence” [10]. It has long been suspected that cellular senescence plays a role in 

perpetuating aging, but it was not until 2011 that this was convincingly demonstrated by 

the in vivo research of van Deursen et al. [11]. Currently, the term cellular senescence is 

used to refer to cells shifting into stable cycle arrest, meaning that a normally proliferating 

cell becomes impervious to division incitement, despite optimal growth conditions and 

mitogenic stimuli. This phenomenon is typically associated with DNA damage [12]. 

It must be stipulated that cellular senescence and aging are not transposable con-

cepts. Aging is a process that is inherently time dependent, whereas senescence occurs 

throughout life, even before birth during embryogenesis. Senescence can be described as 

a dynamic, multifactorial process in which cells undergo specific changes and transfor-

mations depending on their environment. These cells remain viable and metabolically ac-

tive, albeit with additional alterations to normal function, and are remarkably resistant to 

apoptosis in most cases [13,14]. 

Senescence is linked to several normal and pathological mechanisms involving tissue 

remodeling (Figure 2). While the initial, transient accumulation of senescent cells per-

forms beneficial functions, it is a double-edged sword when persistent, negatively affect-

ing surrounding cells, tissues, and the body as a whole. 

Figure 1. Flowchart of article screening.

3. Cellular Senescence

The first description of the phenomenon of cellular senescence was put forth by
Hayflick and Moorhead in a formative 1961 paper [9]. In this paper, the authors scrutinized
and challenged the previously held view postulating that all cells are essentially immortal
and therefore can duplicate infinitely. Hayflick and Moorhead showed that after a series
of in vitro passages, normal human fibroblasts enter an irreversible growth arrest that
fundamentally differs from the behavior of a typical cancer cell. This occurrence was
later termed the Hayflick limit by Macfarlane Burnet and is now commonly known as
“replicative senescence” [10]. It has long been suspected that cellular senescence plays a role
in perpetuating aging, but it was not until 2011 that this was convincingly demonstrated
by the in vivo research of van Deursen et al. [11]. Currently, the term cellular senescence is
used to refer to cells shifting into stable cycle arrest, meaning that a normally proliferating
cell becomes impervious to division incitement, despite optimal growth conditions and
mitogenic stimuli. This phenomenon is typically associated with DNA damage [12].

It must be stipulated that cellular senescence and aging are not transposable concepts.
Aging is a process that is inherently time dependent, whereas senescence occurs throughout
life, even before birth during embryogenesis. Senescence can be described as a dynamic,
multifactorial process in which cells undergo specific changes and transformations depend-
ing on their environment. These cells remain viable and metabolically active, albeit with
additional alterations to normal function, and are remarkably resistant to apoptosis in most
cases [13,14].

Senescence is linked to several normal and pathological mechanisms involving tissue
remodeling (Figure 2). While the initial, transient accumulation of senescent cells performs
beneficial functions, it is a double-edged sword when persistent, negatively affecting
surrounding cells, tissues, and the body as a whole.
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The bilateral nature of senescence is most evident with respect to its role in cancer [15].
The underlying mechanism of cell cycle arrest prevents the multiplication of cells with
amassed DNA damage, which are later cleared out by immune cells, contributing to overall
structural equilibrium [16,17]. Senescent cells tend to accumulate with age, most likely
due to the inability of the aging immune system to promptly rid tissues of these cells,
usually resulting in permanent damage [18]. Senescent cells can directly affect neighboring
cells by secreting senescence-associated secretory phenotype (SASP) factors—an elaborate
mixture of pro-inflammatory molecules, namely, cytokines, prostaglandins, miRNAs, and
damage-associated molecular pattern proteins (DAMPs); chemokines attracting roving
immune cells; and proteases capable of damaging the composition of the extracellular
matrix (ECM). This secretory phenotype can create proinflammatory conditions favorable
for cancer cell proliferation and expansion [19,20]. Nonetheless, the make-up of secreted
SASP varies considerably according to cells and tissues, as well as the stimuli provoking
the onset of senescence.

In skin lesions, senescent fibroblasts secrete platelet-derived growth factor AA during
the proliferative phase of wound healing, stimulating the differentiation of adjacent fibrob-
lasts into myofibroblasts and thus contributing to the shrinkage of the wound opening,
optimizing tissue repair [21]. Furthermore, at the end of the wound healing process, myofi-
broblasts lose their activity by becoming senescent, which also promotes their elimination
by the immune system [22–24].

4. Other Nonsenescent Forms of Cell Cycle Arrest

Senescence is recognized first and foremost by its primary feature—irreversible cell
cycle arrest. According to Blagosklonny, senescent cells enter active arrest at the later stages
of the G1, G1/S, and G2 phases of the cell cycle [25]. Cell cycle arrest is not senescence but
simply one aspect of the senescence equation. Growth stimulation, the second component,
is what truly results in the senescent phenotype. This strengthens the argument that cancer
and aging share many characteristics and that the secretory phenotype leads to cancer.

It is extremely important to effectively differentiate senescence from alternative forms,
namely, quiescence, terminal differentiation, and T-cell exhaustion (Table 1). Quiescence
is a state of a replication-competent cell wherein the cell undergoes proliferative arrest
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after experiencing signals of mitogen deprivation, contact inhibition, etc. [26]. Terminal
differentiation is a genetically preprogrammed developmental process and is characterized
by the metamorphosis of a series of undifferentiated progenitor cells into specialized
progeny and prolonged or permanent cell cycle arrest [27]. T-cell exhaustion refers to a
phenomenon of the functional inadequacy of antigen-specific T cells and, in some cases,
even their full-on elimination. T lymphocytes are thought to undergo growth arrest after
prolonged exposure to viral and tumor cells, and even after their elimination, T cells remain
“wired” to stay in the exhausted state, especially in cases of secondary activation upon
reinfection [28].

Table 1. Main differences between cell senescence, quiescence, terminal differentiation, and
T-cell exhaustion.

Senescence Quiescence Terminal Differentiation T-Cell Exhaustion References

Type of cell cycle arrest Generally irreversible Reversible Generally irreversible Largely irreversible [26,27,29,30]

Cause

Repetitive
stimulation;

DNA damage agents;
stress signals

Signals of mitogen deprivation;
contact inhibition Genetically preprogramed

Continuous
antigenic

stimulation
[26,27,31,32]

Typical features

Large flat cells Reduced cell size n/a n/a [33,34]
Cell cycle arrest driver:
↑ p16, p21, p53

CDK inhibitors:
↑ p21,27, 57 p21, p27, and p57 ↑ p27, p15;

↓ cyclin E-Cdk2, Cdc25A [26,27,31,35]

↑Macromolecular damage
↓ Telomere length, telomerase activity

Does not exhibit
macromolecular damage

Does not exhibit
macromolecular damage ↓ Telomere length, telomerase activity [36–38]

↑ SA-β-gal activity Does not result in the upregulation of
SA-β-gal activity

Does not result in the upregulation of
SA-β-gal activity

Does not
result in the upregulation

of SA-β-gal
activity

[39,40]

n/a n/a n/a

↑ Inhibitory
receptors:

PD1, TIM3,
LAG3, CTLA4,

TIGIT

[41]

↑ Glycolysis ↓↑ Glycolysis
(depending on cell type) n/a ↓ Glycolysis [42–44]

Cytokine pattern SASP, proinflammatory cytokines:
↑ IL-1, IL-6, IL-8, IFN-γ, TNF n/a n/a

↓ IL-2
↓ TNF

↓ IFN-γ, β-chemokines
[45,46]

Epigenetic changes ↑ SAHF
Abnormal DNA methylation

↑ H3K27me3
chromatin modifications;

expression level of several histones is
strongly reduced

↑ H3K9me3 and H3K27me3;
reduced levels of global

DNA methylation;
enhancers are enriched for H3K27me3

and DNA methylation,
which is associated with the lower

expression of their target genes

Exhaustion-associated
DNA methylation patterns [37,47–49]

CDC25A: M-phase inducer phosphatase 1; CDK: cyclin-dependent kinase; CTLA-4: cytotoxic T-lymphocyte
antigen 4; H3K27me3: trimethylation of lysine 27 on histone H3 protein; H3K9me3: trimethylation of lysine 9 on
histone H3 protein; IFN-γ: interferon gamma; IL: interleukin; LAG-3: lymphocyte-activation gene 3; p16: cyclin-
dependent kinase inhibitor 2A; p21: cyclin-dependent kinase inhibitor 1; p27: cyclin-dependent kinase inhibitor
1B; p53: cellular tumor antigen p53; p57: cyclin-dependent kinase inhibitor 1C; PD-1: programed cell death
protein 1; SA-β-gal: senescence-associated beta-galactosidase; SAHF: senescence-associated heterochromatic foci;
SASP: senescence-associated secretory phenotype; TIGIT: T-cell immunoreceptor with Ig and ITIM domains;
TIM3: T-cell immunoglobulin and mucin domain-containing protein 3; TNF-α: tumor necrosis factor alpha;
↑: increase; ↓: decrease.

5. Hallmarks of Senescence

The hallmarks of senescence are a set of characteristics or alterations acquired by
cells as they transition to senescent states, e.g., morphological changes. A “biomarker”
(an amalgamation of “biological marker”), in its broadest sense, is a quantifiable measure of
a certain biological parameter or condition that can be measured with a certain degree of ac-
curacy and reproducibility. Biomarkers are often associated with hallmarks, e.g., wide and
flattened cells, which are framed within morphological changes. Stephen Naylor defined a
biomarker as “an umbrella coalescence term” and, more precisely, “a characteristic that is
objectively measured and evaluated as an indicator of normal biological or pathogenic pro-
cesses” [50]. Regarding the interpretation of biomarkers of aging, one of the first definitions
was proposed by Baker et al. in 1988: a “biomarker of aging is a biological parameter of an
organism that either alone or in some multivariate composite will, in the absence of disease,
better predict functional capability at some late age, than will chronological age” [51].

In the following sections, several standard in vitro hallmarks and their associated
biomarkers for senescence detection and their prospective applications are described.
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5.1. Stable Cell Cycle Arrest

Eukaryotic cell division is directed by a group of heteromeric serine/threonine kinases
known as cyclin-dependent kinases (CDKs) [52]. The basic mode of action is the consecutive
activation of each member of the family network, bringing about the phosphorylation of
appropriate substrates and thus the passage through each step of the cell cycle (Figure 3).
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CDKs should be set up and further phosphorylated. CDK inhibitors (CDKIs) halt cyclins from acting
as cell cycle breaks. A close connection between cyclins, CDKs, and CDKIs is essential for correct cell
cycle progression.

Cell cycle arrest is prompted by the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor
suppressor routes. p21WAF1/CIP1 acts downstream of p53, while p16INK4A acts upstream of
pRB. Prolonged stress conditions may be a potential trigger for the activation of p16INK4a—
a cell cycle regulator that acts as an inhibitor of CDK4/6 kinases [53]. This leads to arrest
in the phosphorylation of RB, which in turn contributes to enduring cell cycle arrest. As
long as p16INK4a is expressed, Rb proteins remain in a sustained hypophosphorylated state,
stimulating attachment to E2F and cell cycle exit in G1 [54]. The overexpression of p16INK4a

was detected in aging human skin, indicating a possible link between this suppressor
protein and aging and senescence. Moreover, the upregulation of p16INK4a was observed in
senescent fibroblasts in response to oxidative and DNA-damaging stressors.

When p53 is switched on, it acts as a regulator of the growth-suppressive transcrip-
tional process by activating the cyclin-dependent kinase inhibitor gene p21, indirectly caus-
ing the hypophosphorylation of RB and cell cycle arrest [55,56]. Nevertheless, these genes
are not absolute markers: the persistent activation of p21CIP1 (relevant in the launching of
the senescence process) is not always observed in senescent cells, making it unreliable as a
single marker [57]. At the same time, p53 is a regulator of apoptotic cell death, making it a
dubious aid in discriminating between senescent cells and those undergoing apoptosis [58].

5.2. Metabolic Changes

In 1995, Dimri et al. detected the senescence-associated β-galactosidase (SA-β-gal)
enzyme with optimum levels at pH 6 expressed by senescent cells; since then, it has become
the best-known and most studied biomarker of cell senescence [59]. As cells age, their
defense mechanisms become further corrupted, leading to amassed molecular debris [60],
often associated with the altered function of lysosomal and proteosomal enzymes [61].
Detecting switches in normal metabolic function is a useful way to identify senescent cells.
An increase in SA-β-gal is a biomarker that reflects the increase in the number and size
of lysosomes [40]. SA-β-gal is not detected in quiescent or differentiated cells [40], yet it
has been found in cells with intrinsically high lysosomal β-galactosidase activity, such as
macrophages and postmitotic cells [62], and in several types of cancer cells [63]. Hence,
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the choice of SA-β-gal as an exclusive marker may lead to a false-positive outcome and
requires the amplification of results using auxiliary markers.

A more recent enzymatic marker for senescence-associated lysosomal expansion,
α-fucosidase, was found to be overexpressed in multiple senescent cell models [64]. Addi-
tionally, the attenuation of α-fucosidase was established to negatively affect the onset of
senescence [65].

The enlargement of lysosomal substances in senescent cells is largely attributed to the
accumulation of lipofuscin (LF) [66]. LF is represented by nondegradable yellowish-brown
pigment granules that are mainly composed of an autofluorescent mixture of oxidized
lipids, cross-linked proteins, oligosaccharides, and metals. This aggregate is a derivative
of the oxidative and polymerization reactions between a wide range of cellular structures
and macromolecules [67]. Because of its convoluted chemical structure, LF cannot be
eliminated, causing it to accumulate in the lysosomes or cellular cytoplasm of lingering
postmitotic and senescent cells that remain after normal autophagy. Over time, this leads
to the extension of the lysosomal lumen to accommodate the ever-increasing amounts of LF.
In contrast, proliferation-competent cells systematically attenuate the volume of LF during
cell division [68]. For this reason, LF is commonly linked to aging and is referred to as the
“age pigment” [69]. LF can be detected by microscopy techniques such as transmission
electron [66] or confocal fluorescence microscopy [68].

Generally, metabolic changes in cell senescence are denoted by an increase in the
ratio of AMP/ADP to ATP, leading to the activation of AMP-activated protein kinase
(AMPK) signaling. The upregulation of AMPK causes a shift from a biosynthetically driven
metabolism into a catabolism mode. Aging-related diseases are greatly impacted by the
ability of AMPK activation to slow or stop the aging process. By the same token, in skin,
senescence has been shown to affect various metabolic pathways in both dermal and
epidermal cells, leading to deficiencies in key metabolites and protective proteins, which
weakens the skin’s barrier function [70].

As a byproduct of mitochondrial metabolism, ROS are continuously created and
removed by antioxidant mechanisms. To function properly, respond to metabolic stress,
and avoid cellular senescence, ROS produced by mitochondria must be controlled. Mi-
tochondrial ROS are a physiological activator of AMPK, and this activation results in an
antioxidant response, reducing the amount of mitochondrial ROS produced. However,
AMPK-deficient cells exhibit elevated amounts of mitochondrial ROS and develop pre-
mature senescence. These findings accentuate the critical role of AMPK in detecting and
neutralizing mitochondrial ROS to maintain cellular metabolic equilibrium and resilience
to stress and senescence [71].

5.3. Morphological Changes

During the transition to the senescent state, cells undergo a few changes in their
morphological features [72]. The most obvious are the atypically distended dimensions
and flat shape [73]. Cells exhibit substantial vacuolation and in some cases have multiple
nuclei [74]. Moreover, adherent cells appear flattened, disarranged, and show random
orientation in the culture plate [75].

Senescent cells often exhibit an augmented nucleus [76], which has been attributed to
a range of factors, including a reduction in lamin B1. Lamin B1 is an intermediate filament
protein incorporated into the inner portion of the nuclear envelope [77]. It aids in the
stability of the nucleus, the replication of DNA, gene transcription, and cell proliferation.
A lamin B1 deficit is part of the senescence-induced restructuring of the nuclear architec-
ture. It is accompanied by the refashioning of chromatin organization, the loosening of
heterochromatin, and the resulting enlargement of the nucleus [78,79].

Senescent cells exhibit a substantial increase in the number of mitochondria, and these
organelles present an enlarged, distended shape. The enlargement of mitochondria can be
attributed to the cell compensating for dysfunction by fusion and reduced division. Due
to reduced autophagy in senescent cells, poorly functioning mitochondria are not cleared
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but rather accumulate in the cell. This amassing leads to a decrease in the mitochondrial
membrane potential, accelerating the production of ROS. In addition, it has been observed
that ROS have a damaging effect on mitochondrial DNA, which exacerbates organelle
dysfunction. This is particularly evident in cases of photoaged skin, where mitochondrial
DNA has a high level of mutations due to exposure to UVA compared to protected skin [80].

5.4. Epigenetic Alterations

Chromatin reorganization is a prominent genome-wide alteration in cells experiencing
senescent transformation, which contributes to persistent proliferation arrest and transition
into full senescence [81]. Senescent cells exhibit regions of condensed heterochromatin
observed under microscopy [82]. These regions, known as senescence-associated hete-
rochromatin foci (SAHF), are densely organized patches of DNA containing a constitutive
heterochromatin marker histone H3 (H3K9me3—trimethylated at Lys9) in the core sur-
rounded by the facultative heterochromatin marker H3K27me3 (trimethylated at Lys27).

Constitutive heterochromatin proteins, namely, di- or trimethylated forms of histone
H3 (H3K9me2/3) and HP1 proteins associated with gene silencing, are easily detectable by
immunofluorescent techniques, which highlight their role as potential senescence mark-
ers [83]. Notably, SAHFs do not carry sites of active transcription; thus, SAHFs are true
transcriptionally inactive patches of heterochromatin. SAHFs are routinely identified by
staining DNA with specific dyes such as DAPI, with senescent cells exhibiting spotty
staining and “normal” nonsenescent DNA showing uniform staining [84].

Altered redox mechanisms have been observed to cause the general hypomethylation
of the genome and the specific hypermethylation of DNA promoters, although it is not
clear whether ROS-induced changes in the epigenetic makeup are exclusively a cause
or a consequence of aging. Broad-based DNA hypomethylation has been shown to be
strongly implicated in the expression process of aging genes, which is supported by the
fact that cancer, a high-risk age-associated disease, shows the most pronounced effects of
ROS-dependent DNA methylation. In aging, genomic regions with the activating histone
post-translational modification H3K4me1 are more likely to have hypomethylated DNA
sequences. The duality of the hyper- and hypomethylation processes of the different parts of
the DNA reveals the complexity of the genomic mechanisms involved in cell senescence [85].
Nevertheless, aberrant DNA methylation could be both a potential biomarker and a tool to
evaluate therapeutic treatments.

5.5. DNA Damage and Persistent DNA Damage Response

DNA damage, especially double-strand breaks (DSBs), is an integral aspect of senes-
cent cells. DNA damage response in senescent cells is most often associated with proteins
such as γH2AX (phosphorylated at Ser139) and an adjacent p53-binding protein 1 (53BP1),
which are known to aggregate at DSBs. The breaking of the double strand activates the
recruitment pathway of the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia
and Rad3-related (ATR) protein kinases to the site of damage. These kinases are capable of
converting histone H2AX to its phosphorylated form γH2AX, which quantitatively corre-
lates with DSBs. ATM is known to phosphorylate a variety of substrates, particularly the
checkpoint kinases CHK1/2, facilitating a downstream phosphorylation cascade and the
activation of the p53/p21 signaling pathway [86]. The simultaneous detection of γH2AX
and p53/p21 could be a viable option for detecting senescent cells.

Cellular senescence is also marked by the elevated expression of the promyelocytic
leukemia protein (PML) [87]. PML is a normal constituent of the nucleus of most cell lines
and acts as part of cell cycle regulation through the Rb and p53 pathways, which tend
to accumulate in PML nuclear bodies. The extent to which PML accumulates in regions
of unprocessed, unrepaired DNA correlates positively with the extent of DNA damage
signaling, indicating that the transition to the senescent state may be associated with the
corruption of the cell’s DNA repair system [88].
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Another noteworthy epigenetic change connected to senescence is the formation of
so-called DNA-SCARS (DNA segments with chromatin alterations reinforcing senescence).
These foci appear to be a universal feature of most types of senescence, showing coupling
with PML core bodies as well as an accumulation of activated forms of p53, ATR, and
ATM [89,90]. Thus, these persistent foci could be considered excellent senescence comarkers.

Telomere dysfunction-induced foci (TIF) are an alternative version of DNA-SCARS,
specifically located at uncapped telomere sites. These markers have been shown to concen-
trate in both senescent cells and aging tissues, as determined by the colocalization of 53BP1
and γH2AX at the telomeric ends of DNA [91]. Studies have associated a longer telomere
length with decreased cellular senescence. Mice with hyper-long telomeres have been
shown to express lower levels of global DNA damage, telomere-induced DNA damage,
and p21, revealing the relationship between cellular senescence and telomeric length [92].

5.6. Apoptosis Resistance

Senescent cells employ a number of pathways to evade apoptosis [93]. Major survival
pathways include ephrins and the Bcl-2 protein family, which act by actively suppressing
apoptosis. Exemplary research conducted on murine models that studied the inhibition
of antiapoptotic Bcl-2, Bcl-W, and Bcl-xL proteins showed apoptosis and the subsequent
elimination of senescent cells [94]. Escape from apoptosis could also be achieved by
the overexpression of p21, which appears to be a substantial inhibitor of p53-dependent
apoptosis. Additionally, higher levels of p21 impede the activation of the c-Jun amino-
terminal kinase (JNK) and caspase networks, both of which have been implicated in the
apoptosis process. The dentification of these Bcl-2 proteins is deemed to be a convenient
technique for localizing senescent cells. However, the upregulation of the synthesis of
these markers is not limited to senescent cells; blood cells also show the overexpression
of anti-apoptotic regulators [95]. While these proteins seem appealing as markers that
are usually targets for senolytic agents, their expression is rarely chosen to assess this cell
state [96]. Rather, evidence of the absence of annexin V and cleaved caspase-3 is regularly
used as a marker to rule out apoptosis as a stress feedback process.

5.7. Secretory Phenotype

The SASP is one of the most thoroughly described hallmarks of the senescent state.
Essentially, it is the ability of senescent cells to send inflammatory signals to neighboring
cells in a paracrine manner (Figure 4). Among the several dozen identified factors that
are secreted in a cell- and tissue-dependent manner, a number of marker molecules are
commonly expressed by most senescent cells.
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The chemical composition of the SASP is highly dependent on the type and strength
of the stimulus triggering senescence as well as the type of cells implicated in the process.
For example, oncogene-induced senescence shows the exaggerated secretion of typical
proteins in comparison to replicative or irradiation-induced senescence [97]. Moreover,
when examining tissue and tumor material for SASP influences, it is very important to
consider that the immune cell infiltrate and the degree of senescent cell accumulation could
present additional unpredictable variables [98].

Even so, some crisscrossing has been demonstrated between a set of SASPs, with
several proteins detected more or less universally. A basic SASP series consists of soluble
molecules such as growth factors (IGFBPs, VEGFs, PDGFs, and HGFs) and interleukins [99].
The leading cytokine in the SASP process is proinflammatory IL-6, which appears to be
directly driven by sustained DNA damage in keratinocytes, melanocytes, and epithelial
cells, among others [100]. Another notable interleukin upregulated by senescent cells is
IL-1, with both IL-1α and IL-1β overexpressed by various cell types [101].

In addition to the secretion of some proinflammatory factors, senescent cells also ex-
press enzymes for ECM remodeling, such as matrix metalloproteinases (MMPs), especially
MMP1/3/9, which are involved in the breakdown of matrix proteins, serine/cysteine pro-
teinase inhibitors (SERPINs), and tissue inhibitors of metalloproteinases (TIMPs) [45,102].

SASP-associated proteases greatly influence cell homeostasis by solubilizing membrane-
associated proteins, breaking up and subsequently degenerating signaling molecules, pro-
cessing, remodeling, or degrading the ECM [103]. These activities are responsible for the
high potency of senescent cells in altering surrounding tissues.

SASPs have long been shown to be promising markers of cellular senescence. Fur-
thermore, SASPs can be qualified and quantified both directly and indirectly by observing
their known effects on surrounding cells. Nevertheless, it is important to understand that
there are some major limitations inherent to secretory markers. SASPs can vary between
cell types and different stages of senescence, and there is a gap in technology that does not
allow for the high-throughput analysis of single-cell secretory phenotypes, which would
be necessary to isolate a population on this basis [104].

5.8. Reactive Oxygen Species

ROS are well-known mediators of the senescence process. The generation of hydrogen
peroxide, superoxide anions, and hydroxyl radicals disrupts normal cellular processes,
induces senescence, and even leads to cell death [105]. Although the fact that ROS-induced
DNA strand damage favors the onset and maintenance of senescence [106] has long been
observed, the focus has currently shifted to the role of ROS as a signaling molecule in
senescence induction. Signaling pathways closely involved in the senescence process, such
as p53, p21, and p16, have been known to prompt ROS production [107], consequently
promoting the upregulation of SASP factors [108]. Underscoring this role, McCarthy et al.
2013 showed that antioxidants and low oxygen tension restricted the production of IL-1α
and downstream IL-6 and IL-8 [109].

Increasing inflammatory conditions accelerate the production of ROS in mitochondria
through the recruitment of the cytokines TNF-α and IFN-γ [110]. Moreover, oxidative
stress inhibits sirtuin activity, leading to higher levels of inflammation by inhibiting the
superoxide dismutase enzyme (SOD) and preventing the inhibition of proinflammatory
cytokines [111].

There is a clear relationship between cellular ROS levels and senescence. Low ROS
levels are important for maintaining redox homeostasis and adequate antioxidant response.
However, the increased accumulation of ROS triggers a variety of cellular responses,
leading to irreversible cell cycle arrest that may turn into SASP, affecting surrounding tissue
or apoptosis and subsequent cell death. Figure 5 shows the different cellular interactions
related to senescence depending on the different intracellular levels of ROS.
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Figure 5. The level of intracellular ROS triggers adaptive response, apoptosis, or SASP. Intracellular
ROS levels can vary depending on several factors, including extracellular factors such as exposure to
UV radiation, high levels of oxidative stress, or proinflammatory environments with the presence
of cytokines or growth factors. ROS are also produced intracellularly as part of normal cellular
processes or at elevated levels derived from dysfunctional mitochondrial activity, as well as increased
by NADPH oxidase activity or other intracellular enzymes. Low ROS levels activate AMPK and
inhibit proinflammatory response. Low ROS levels do not promote cell senescence and contribute
to redox homeostasis. Medium ROS levels activate Nrf2 and promote adaptive cellular response
to fight ROS and prevent apoptosis, activate proinflammatory response, and increase SASP and its
paracrine signaling, promoting cell senescence. High ROS levels cause mitochondrial dysfunctions
that generate more ROS; inhibit AMPK, resulting in mTOR activation; and cause widespread cell
damage by increasing cellular stress and the concentration of tumor suppressors and cell cycle
arrest proteins, leading to apoptosis. AREs: AU-rich elements; AMPK: AMP-activated protein
kinase; DD: DNA damage; DDR: DNA damage response; EM: extracellular matrix; ERS: endoplasmic
reticulum stress; IFN-γ: interferon gamma; IL: interleukin; mTOR: mammalian target of rapamycin;
NADPH: nicotinamide adenine dinucleotide phosphate; ROS: reactive oxygen species; SIRT1: sirtuin
1; SOD: superoxide dismutase; TNF-α: tumor necrosis factor alpha; UV: ultraviolet.

Inflammaging was introduced and extensively studied by C. Franceschi, who hy-
pothesized that aging might be connected with an overall chronic increase in mediators
of inflammation of a diverse nature [12]. This is presumably due to prolonged exposure
to harmful substances during the lifespan or to fluctuations in the gut microbiota and
other metabolic disturbances. Inflammaging is an ever-changing process that is easily
transmitted by soluble factors to neighboring cells or even systemically [112]. Additionally,
inflammaging leads to the chronic activation of the local immune system, resulting in per-
sistent low-grade inflammation, creating a positive response loop with the immune system
that affects its normal function. The aging process leads to noticeable changes in immune
cells, such as the altered expression of surface markers, the weakening of the protective
capacity, and a shift in the balance to the side of proinflammatory cytokine secretion. This
acquired phenotype, referred to as “immunosenescence”, adds to the build-up of molecular
damage in tissues; exacerbates various conditions; and (notably) significantly reduces the
efficiency of the protective response against infection, tumors, and other damage [113].
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In chronic cutaneous inflammation, the abnormal accumulation of molecular media-
tors has been associated with age-related changes in macrophage function [114]. The ability
of these cells to carry out surveillance and clearance in an aging body becomes increasingly
impaired, which is a key feature of immunosenescence. Subsequently, this “dereliction
of duties” leads to an increase in overall oxidative stress and the further promotion of
inflammation in the skin milieu.

5.9. Biomarkers of Cellular Senescence

To fully appreciate and reap the benefits of senescent cell clearance, it is critical to not
only identify a valid marker but also choose a suitable detection method for the identifi-
cation of said marker. Due to the general ambiguity of the concept of senescence and the
diversity of its types, there is currently no universal marker that can selectively identify
senescent cells in different tissues and extracellular environments. In the review by Gor-
goulis et al., the authors recommended an integrative method consisting of a combination
of markers for metabolic changes, nuclear markers, and SASP and/or cell type-specific
markers to restrict the allowable margin of freedom and increase specificity [36]. Some of
the markers of cellular senescence and the most widely applied methods of their detection
are presented in Table 2.

Table 2. Biomarkers of cellular senescence and general detection methods used to identify them.

Hallmarks of Senescence Biomarker Observation Detection Method References

Cell cycle arrest

p16/pRB axis
↑ p16
↑ pRb

↓ Phospho-pRb WB, IHC, IF [56,115–119]

p53/p21 axis
↑ p21
↑ p53

↑ Phospho-p53

Absence of proliferation ↓ Ki67
↓ PCNA IHC, IF [24,120,121]

Decrease in/absence of
DNA synthesis ↓ BrdU, EdU Staining incorporation,

immunofluorescence [122]

Metabolic adaptations
SA-β-gal ↑

NIR
Fluorescence

Enzymatic staining
[123–125]

α-fucosidase ↑ Fluorescence
Enzymatic staining [64,126]

Lipofuscin ↑
Dye incorporation

(SSB, GL13)
Fluorescence

[127,128]

Morphological changes

Wide and flattened cells
High vacuolization n/a

IF
Scanning electron microscopy

Light microscopy
Flow cytometry

[129,130]

Lamin B1 ↓ qPCR, IF, WB [131]

Plasma membrane proteins ↑ ICAM-1, DEP1 Immunohistochemistry
IF, WB, flow cytometry [132]

Epigenetic alterations SAHF ↑ PML bodies
↑ H3K9 methylation IF [133]

DNA damage

γH2AX
53BPI
ATM
ATR
TIF

↑ IF [89]

Telomere shortening ↓ qPCR, FISH [134,135]

Apoptosis resistance

Annexin V
Cleaved caspases

Cleaved PARP
↓/absent

IF
IHC
WB

[136–140]

Blunt ends of
double-stranded

DNA breaks
- TUNEL assay [141]
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Table 2. Cont.

Hallmarks of Senescence Biomarker Observation Detection Method References

Secretory phenotype SASPs

↑ IL-1, IL-6, IL-8,
↑ TNF-α, GROα/β,

↑MMP-1, MMP-3, MMP-9
↑ IGFBPs
↑ SERPINs
↑ TIMPs

ELISA
Immunofluorescence

WB
SASP-responsive alkaline

phosphatase assay

[142–145]

ROS O2, H2O2,
O2
•−, HO• ↑

Chemiluminescent oxygen
detection, fluorometry,

flow cytometry
[146,147]

γH2AX: phosphorylated histone H2AX; 53BPI: p53-binding protein; 8-OHdG: 8-hydroxydeoxyguanosine;
ATM: ataxia-telangiectasia mutated; ATR: ATM and Rad3-related; BrdU: bromodeoxyuridine; DEP-1: density-
enhanced phosphatase 1; EdU: 5-ethynyl-2′-deoxyuridine; FISH: fluorescence in situ hybridization; GRO: growth-
regulated protein; ICAM-1: intercellular adhesion molecule 1; IF: immunofluorescence; IGFBPs: insulin-like
growth factor binding proteins; IHC: immunohistochemistry; IL: interleukin; MMP: matrix metalloproteinase;
NIR: near infrared; p16: cyclin-dependent kinase inhibitor 2A; p21: cyclin-dependent kinase inhibitor 1; p53: cellu-
lar tumor antigen p53; pRb: retinoblastoma protein 1; PARP: poly (ADP-ribose) polymerase; PCNA: proliferating
cell nuclear antigen; PML: promyelocytic leukemia; ROS: reactive oxygen species; SA-β-gal: senescence-associated
beta-galactosidase; SAHF: senescence-associated heterochromatin foci; SASP: senescence-associated secretory
phenotype; SEM: scanning electron microscopy; SERPINs: serine protease inhibitors; TIMPs: tissue inhibitors of
metalloproteinases; TIF: telomere dysfunction-induced foci; TUNEL: terminal deoxynucleotidyl transferase dUTP
nick end labeling; WB: western blot; ↑: increase; ↓: decrease.

According to the literature analyzed in this review, the most reliable biomarker for
determining that a cell is senescent may be the expression of the senescence-associated
beta-galactosidase (SA-β-gal) enzyme. This enzyme is a biomarker that can be used to
identify senescent cells both in vitro and in vivo. Other biomarkers that tend to persist in
senescent cells are the accumulation of DNA damage-associated proteins, such as p16, p21,
and p53, and the upregulation of cell cycle inhibitors such as p16 and p21.

Regarding senescence hallmarks, the presence of a stable DDR appears to be the most
specific to the presence of senescent cells. This hallmark is characterized by the presence of
senescence-associated heterochromatin foci and the upregulation of cell cycle inhibitors
such as p16 and p21. Other hallmarks of senescence include the accumulation of SASP
mediators, changes in cell morphology and cytoskeletal organization, and increased levels
of ROS. However, the presence of DDR can be considered as the most reliable hallmark of
senescence.

6. Hallmarks and Biomarkers of Skin Aging

There are various crucial factors in the study of skin aging. All skin functions gradually
diminish with age [148]. Over time, the skin becomes less elastic and more susceptible to
environmental assaults, a circumstance that explains, among other things, the malfunction
of the skin as a barrier. Wrinkling, melasma, erroneous wound healing processes, graying,
and partial or total hair loss are the most visible signs of older age. Vital functions such
as thermoregulation, immunological and nervous skin responses, and cutaneous vascular
responses are disrupted. The skin is no longer able to maintain stable energy production,
limiting the amount of lipids available, thus becoming increasingly dry [149,150]. Intrinsic
skin aging reflects the underlying body deterioration, making it the closest to perfect and
most accessible ethical model to study the aging of other tissues arising from the ectoderm,
mainly the nervous system. Finally, the prevention and treatment of age-related skin
conditions necessitates in-depth knowledge of the skin-aging mechanisms.

Skin aging is a highly complex process that has a negative effect on most features of
normal skin morphology and function and is driven by both intrinsic and extrinsic factors.
The intrinsic factors propelling skin aging include the natural passage of time, hormonal
regulation, genetic predisposition, and gradual shifts in the cellular redox environment,
while the extrinsic factors include environmental stresses such as extensive sunlight expo-
sure and various kinds of pollution [151]. The thinning of the epidermis can be explained
to a certain degree by the insufficient proliferative and restorative capacities of the basal
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epidermal layer as well as by a decrease in the pool of local stem cells. In addition to the
epidermis, the dermal epidermal interface and dermis also become thinner (Figure 6) and
less vascularized, limiting the access to nutrients and compromising skin homeostasis.
Dermal fibroblasts secrete ECM elements, which are important for the structural cohesion
and elasticity of the skin. Structural changes in and the degradation of the ECM occur
throughout aging, presumably leading to the thinning of the skin, increased wrinkling, and
diminishing skin resilience [152].
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Figure 6. Schematic comparison of young skin (left panel) and skin undergoing aging transformation
(right panel). The epidermal layer comprises keratinocyte cells and consists of five sections: the horny
layer, stratum lucidum, granular layer, spinous layer, and basal layer. Collagen and elastin fibers lie
underneath these layers in the dermis. These fibers play a role in the rigidity and elasticity of the skin
and, with time, are subject to deterioration, leading to the loss of structural uniformity in the skin.

Extrinsic factors such as excessive sun exposure lead to the skin appearing thick,
rough, and almost leather-like, with large broad wrinkles, telangiectasia, and melasma. An
important histologic feature of photodamaged skin is solar elastosis (amorphous elastic
fiber aggregates) grouped with fragments of poorly organized collagen. This may be the
result of the compromised production of elastic fibers and fibrillin, increased degradation
by senescence-associated MMPs, or a direct result of UV irradiation [153].

In vitro, skin cells subjected to UV irradiation showed signs of DNA damage and
exit from the cell cycle and expressed some of the biomarkers of senescence presented
in Figure 7. These include SA-β-gal activity, the enhanced expression of P16INK4a, the
loss of lamin B1, the expression of MMPs, the secretion of inflammatory cytokines, and
the accumulation of LF [154]. UV irradiation also causes the generation of ROS, which
maximizes the harmful effects mentioned above, as well as the activation of cell surface
receptors. This results in the activation of MAP-kinase p38, JNK, and extracellular signal-
regulated kinase (ERK), as well as the recruitment of c-Fos and c-Jun. As a result, MMP1,
3, and 9 are expressed in fibroblasts and keratinocytes via transcription factor activator
protein 1 (AP-1). ECM breakdown is accelerated by MMP expression, which is mediated
by AP-1. This process is accelerated by the generation of ROS, which also activates MAP
kinases and causes the expression of NF-B [155].

Interestingly, the intrinsic aging process plays a role in the change in skin pigmentation.
With old age, the number of melanocytes decreases, causing the skin in sun-protected areas
to be paler than normal. In contrast, exposed skin acquires uneven pigmentation, with
patches of hyperpigmentation [156]. “Solar lentigo” is a common skin condition that usually
occurs in the areas most frequently exposed to the sun, especially on the back of the hand,
arms, shoulders, and face. This atypical pigmentation is attributed to several processes,
such as the hyperactivation of melanocytes, changes in the distribution of the pigment, and
the accumulation of LF. Moreover, compromised autophagy in the senescent epidermis
could lead to the retention of melanosomes, adding to hyperpigmentation spots [157].
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Figure 7. Normal skin cells vs. Senescent skin cells. Senescent cells are distinguished by changes
in morphology, such as flattening and increased cell size, pronounced SA-β-galactosidase activity,
p16 upregulation, reduction in nuclear lamin B1, and SASP-like MMPs and inflammatory cytokines.

7. Skin Senotherapy and Antioxidant Compounds

Senotherapy is an ultranovel segment of anti-aging therapy that addresses approaches
to eliminate or even prevent senescence in cells. Although this topic is of great interest,
with a sizable number of active trials in humans and even more in the pipeline, there are
no drugs officially clinically approved for patient use, which can be attributed to a high
standard of current medical interventions as well as the slow-paced nature of preclinical
and clinical studies.

Due to an imbalance between pro-oxidant stimuli and antioxidant defenses, oxidative
stress can cause cell senescence. It is therefore of great interest to find and characterize
antioxidant substances that can prevent or reverse the senescent phenotype [158].

Generally, senotherapy strategies are divided into two groups: senolytics, which act
by directly eliminating senescent cells through apoptosis (Figure 8), and senomorphics,
which help circumvent the deleterious effects of senescent cells through selective SASP
suppression. Unfortunately, senomorphics have a major drawback: unlike senolytics,
which exert a cytotoxic effect on senescent cells and can be administered intermittently,
senomorphics must be taken regularly to achieve maximum benefit [159], and further
studies are needed to determine the efficacy of senomorphics. A growing body of evidence
based on preclinical studies in murine models has shown that the periodic purging of
senescent cells may be a way to circumvent their persistent deleterious effects while
benefiting from their short-term favorable functions [160,161]. The results show that various
age-related ailments in geriatric mice can be ameliorated or reversed by this method [8,11].
Certain compounds are currently being tested in human clinical trials for the treatment of
geriatric diseases. The compounds with the greatest potential appear to be natural products
and/or already approved drugs [162].

A recent study by Boccardi and Mecocci (2021) suggested that natural senotherapeutic
agents may be less harmful and more beneficial for humans [163]. Among the natural com-
pounds with senotherapeutic activity, polyphenols stand out, especially flavonoids [164].
Polyphenols are a vast class of plant-derived metabolites that include flavonoids, phenolic
acids, lignans, and stilbenes and have been shown to possess multiple biological activi-
ties. Among these bioactivities, antioxidant capacity is tightly linked to senotherapeutic
activity through ROS scavenging and other oxidative-stress-related mechanisms, such
as antioxidant enzyme upregulation [165]. It should be noted that certain polyphenols
have antioxidant activity at low concentrations and prooxidant activity at high concen-
trations [166]. This duality may be useful to promote ROS elimination mechanisms and



Antioxidants 2023, 12, 444 16 of 26

senescence prevention at low concentrations or enhance its pro-oxidant behavior to trigger
selective cell senescence routes and eliminate these cells [158].
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Plants rich in polyphenolic compounds have been used in topical and nutraceutical
treatments to reverse or halt the skin aging process for a considerable amount of time [167].
Many studies have been conducted on both senescent skin cells and SIPS models, and
treatment with polyphenols showed discernible senotherapeutic effects that could be used
to treat skin aging and associated conditions. The polyphenols with skin senotherapeutic
activity related to their antioxidant capacity are listed in Table 3.

Table 3. Polyphenols with combined antioxidant capacity and skin senotherapeutic activity: the
route of administration, research model used, aging inductor, and proposed mechanisms of action.

Polyphenol Route of Administration Aging Inductor Research Model Mechanism Main Senotherapeutic Effects Reference

Apigenin In vitro UVA and UVB Human dermal fibroblasts

↓ ROS
↓ NF-kB pathway
↓MAPK
↓MMP-1

↑ Viability
↑ Collagen synthesis
↑ DNA repair

[148,168]

Topical UVA Mice

↓ ROS
↓ NF-kB pathway
↓MAPK
↓MMP-1

↑ Dermal thickness
↑ Collagen deposition [169]

Baicalin
In vitro UVB Human dermal fibroblasts, human

skin samples

↓ ROS
↓MMP-1, MMP-3
↓ p16, p21, p53

↑ Collagen synthesis
↑ Viability

↓ DNA damage
↓ Apoptosis

[81]

In vitro UVC Human keratinocytes ↓ ROS ↓ DNA damage [170]

Ferulic acid In vitro UVA Human dermal fibroblasts

↓ ROS
↑ SOD1
↑ CAT
↓ p16

↓MMP-1, -3

↑ Proliferation and cell cycle
↑ ECM reconstruction [171]

Fisetin
In vitro Hydrogen peroxide Human keratinocytes

↓ ROS
↓ NF-kB
↓ iNOS
↓ COX-2

↓ IL-1β, -6, TNF-α

↓ SASP secretion
↑ Viability [172]

In vitro UVB Human dermal fibroblasts ↓ ROS
↓MAPK/AP-1/MMP

↓ SASP secretion
↓ Collagen degradation [173]

Gallic acid
In vitro UVB Human dermal fibroblasts

↓ ROS
↓MMP-1
↓ IL-6

↑ Procollagen type I
[174]

Topical and oral UVB Mice
↑ TGF-β1
↓MMP-1
↓ IL-6

↓Wrinkle formation
↓ Skin dryness

↑ Procollagen type I
↑ Elastin
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Table 3. Cont.

Polyphenol Route of Administration Aging Inductor Research Model Mechanism Main Senotherapeutic Effects Reference

Genistein Topical UVB Mice
↓ ROS

↓ DNA pyrimidine dimer
formation

↓ DNA damage [175]

Luteolin In vitro and topical UVA Human dermal fibroblasts, human
keratinocytes, and human skin explants

↓ ROS
↓MMP-1
↓ IL-6, -20
↓ p38/MAPK

↓ SASP secretion
↓ Collagen degradation

↓ Hyaluronic acid degradation
[176]

Naringenin Intraperitoneal UVB Mice

↓ ROS
↓MMP-9

↓ TNF-α, IFN-γ
↓ IL-1β, -4, -5, -6, -12, -13, -17,

-22, -23

↓ SASP secretion
↓ Inflammatory infiltrations [177]

Topical UVB Mice ↓ ROS
↓ IL-1β, -6, -10, TNF-α ↓ SASP secretion [178]

Nectandrin B In vitro Cell passage ≥72 Human diploid fibroblasts

↓ ROS
↑ AMPK

↓ p16, p21, p27, p53
↓ Cyclin D1
↓ SA-β-gal
↓ Caveolin-1

↓ Senescence
↓ Apoptosis [179]

Piceatannol In vitro UVB Human keratinocytes

↓ ROS
↑ GSH
↓ NF-kB
↓MMP-1

↓Melanogenesis
↑ Collagen synthesis
↓ Photoaging

[180]

Quercetin In vitro Cell passage ≥17 Human dermal fibroblasts

↓ ROS
↑ SOD2, -3
↑ CAT
↓ p16, p53

↓ Senescence
↑Mitochondrial membrane

potential
[181]

AMPK: AMP-activated protein kinase; AP-1: activator protein 1; CAT: catalase; ECM: extracellular matrix;
GPx: glutathione peroxidase; GSH-Px: plasma glutathione peroxidase; HO-1: heme oxygenase 1; IFN-γ: interferon
gamma; IL: interleukin; MAPK: mitogen-activated protein kinase; MCP-1: monocyte chemoattractant protein-1;
MDA: malondialdehyde, COX-2: cyclooxygenase 2; MMP: matrix metalloproteinase; NF-kB: nuclear factor kappa
B; nHDF: normal human dermal fibroblasts; nPC12: neuronally differentiated phenchromocytoma cells; p16: cyclin-
dependent kinase inhibitor 2A; p21: cyclin-dependent kinase inhibitor 1; p27: cyclin-dependent kinase inhibitor 1B;
p38/MAPK: mitogen-activated protein kinase p38; ROS: reactive oxygen species; SA-β-gal: senescence-associated
beta-galactosidase; SASP: senescence-associated secretory phenotype; SOD: superoxide dismutase; TGF-β1: trans-
forming growth factor beta 1; TNF-α: tumor necrosis factor alpha; UVA: ultraviolet A; UVB: ultraviolet B;
UVC: ultraviolet C; ↑: increase; ↓: decrease.

An analysis of the studies compiled in Table 3 found that most of the experiments
(64.7%) were carried out in in vitro cell models, while 29.4% were carried out with exper-
imental animals (mice in all cases), and a single experiment was performed on human
skin explants. The most common method to accelerate skin senescence and generate a
study model is the application of UVA or UVB radiation, although studies have also used
other elements such as hydrogen peroxide or prolonged cell growth by counting pop-
ulation doubling steps. The main mechanisms of action of antioxidant senotherapeutic
polyphenols for stopping or preventing skin senescence are the scavenging of ROS and the
upregulation or activation of antioxidant enzymes, a decrease in MMPs (mainly MMP-1),
a decrease in pro-inflammatory ILs (mainly IL-1β and IL-6), a decrease in MAPK, and a
decrease in cyclin-dependent kinase inhibitors. The biological effects of these compounds
are varied and largely depend on the nature and study model used. The most common
effects observed are a decrease in SASP, an increase in collagen production, augmented cell
viability, and a slowdown in senescence.

In addition to pure phytochemicals, there exist skin senotherapeutics consisting of
plant extracts containing mixtures of phytochemicals that may include compounds from
the terpene, alkaloid, and polyphenol families, among others. Rosemary extract, rich in
diterpenes and flavanones, has shown antioxidant, photoprotective, and genoprotective
activity in human keratinocytes exposed to UVB [182]. Other examples include lemon
balm extract, which prevented UVB-induced oxidative stress and DNA damage in human
keratinocytes [183], and sweet cherry stem extract, which showed activity against skin-
aging-related enzymes, antioxidant capacity, and lipid peroxidation reduction [184]. There
is also evidence of synergistic senotherapeutic activity between synthetic antineoplastic
drugs and polyphenols. Dasatinib, sold under the brand name Sprycel, entered clinical
practice in 2006 and has a reliable safety profile [185]. Following FDA approval, initial
clinical trials involving fisetin and a dasatinib/quercetin (D/Q) cocktail have begun, and
many more are in progress [161,186,187]. Dasatinib is a tyrosine kinase inhibitor and is
used as a drug for the targeted therapy of leukemia. It induces apoptosis in senescent
cells through its inhibitory effect on Src tyrosine kinase. The combination of dasatinib and
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quercetin selectively destroys senescent cells associated with numerous geriatric chronic
diseases [188].

In an illustrious clinical trial by Hickson et al. (2019) [186], the D/Q cocktail decreased
the number of p16INK4a-abundant cells, reduced cells with high SA-β-gal activity, and
lowered the concentration of major circulating SASPs. In this Phase 1 pilot study, the
D/Q combination was administered in intervals, which the authors referred to as “hit-and-
run” treatment. The reason for the chosen method of administration was that dasatinib,
as a potent antileukemia drug, has several undesirable side effects that can be avoided
by intermittent administration without compromising the senolytic effect [189,190]. Any
prospective off-target effects are evaded through sustained receptor occupancy or metabolic
pathway modulation.

The most common mechanism of action for polyphenols with senotherapeutic activity
is the inhibition of pro-survival signaling pathways. These pathways, such as the phos-
phatidylinositol 3-kinase (PI3K)/AKT and the MAPK pathways, are activated in senescent
cells and contribute to the maintenance of a senescent phenotype. Plant polyphenols
have been shown to inhibit these pathways, leading to the induction of apoptosis and
the reduction of senescent cell numbers. Another mechanism of action for polyphenols
with senotherapeutic activity is the activation of the autophagy process. Autophagy is
a cellular degradation process that helps to remove damaged and unnecessary cellular
components, which can help to reduce the accumulation of senescent cells. Polyphenols
have been shown to activate autophagy and promote the clearance of senescent cells.

Some polyphenols have also been shown to prevent senescence through their antioxi-
dant and anti-inflammatory activity. These capacities may help to prevent the accumulation
of senescent cells by reducing the damage and persistent inflammation exerted by ROS and
pro-inflammatory cytokines that lead to senescence and by reducing the secretion of SASP
factors, which can promote the senescence of neighboring cells. It is important to note that
different polyphenols have different mechanisms of action, and not all of them have been
thoroughly studied; additionally, the final outcomes can vary depending on the cell type
and context.

In summary, among the various polyphenols that have been studied in relation to their
senotherapeutic activity, quercetin, naringenin, and apigenin seem to be among the most
effective. However, due to the complexity of the mechanisms involved under senescence
and the variety of cell models used, it is difficult to determine which of these has clearly
superior activity.

8. Conclusions

Cellular senescence is a permanent state of cell cycle arrest occurring in stressed cells
that is driven by complex mechanisms, showing benefits and drawbacks. On the one
hand, senescence growth arrest prevents tumorigenesis, limits fibrosis, and promotes tissue
remodeling in development and wound healing. On the other hand, when accumulated,
senescent cells promote persistent inflammation and oxidative stress and cell proliferation
and invasion and may lead to aging and cancer progression. Senescence is also one of the
causes of aging, and it is responsible for aging-related disorders. Therefore, senescence
should be targeted in the development of innovative therapies because of its potential
impact on several therapeutic areas.

Senescence is undoubtedly a highly heterogeneous phenomenon, and we suggest that
a precise definition of the context will improve our understanding and allow for a reliable
and meaningful comparison between different studies. Whether the process is beneficial
or detrimental cannot be decided without considering the context. Senescence should be
further studied to improve detection strategies; better understand how a resolution could
occur and how it might be modulated; create populations that summarize the characteristics
of all types of senescence (cell type, context, pathways, SASP, and biomarkers); and develop
more targeted approaches for specific biomarkers.
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The precise typification of senescence and the identification of its key features is
controversial. According to the data analyzed in this review, the presence of a stable DNA
damage response, the accumulation of SASP mediators, and the over-production of ROS
appear to be the most representative hallmarks for senescent skin cells. Among the specific
biomarkers that characterize senescent cells more precisely, the expression of the SA-β-gal
enzyme seems to be the most reliable.

In an attempt to develop new anti-aging therapies, several plant polyphenols have
been proposed to possess skin senotherapeutic activity based on several skin and animal
models and human intervention studies. Among them, quercetin, naringenin, and apigenin
seem to be the most effective. In addition to their antioxidant and anti-inflammatory
activity, which prevents the increase in ROS and pro-inflammatory cytokines, the putative
capacity of these compounds to eliminate or prevent the accumulation of senescent cells
is proposed to take place through the inhibition of pro-survival signaling pathways, the
activation of the autophagy process, and a decrease in the secretion of SASP factors. It
should be also noted that the level of ROS is a key factor in the initiation and progression
of the senescent process and in the accumulation of senescent cells and the SASP.

Although studies have provided evidence that senotherapeutics are effective at decreas-
ing the number of senescent cells in humans, the short-term and long-term side effects of
these therapies are largely unknown and necessitate further, more extensive investigation.
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