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Abstract
In this paper we describe and compare the methods for the calculation of all the
key points of the photovoltaic single-diode model. These include the short-circuit
point, the open-circuit point, the maximum power point, the mean slope point, the
maximum curvature point, and the jerk point. The main contribution of this paper is
a new algorithm to obtain the maximum power point which is based on reducing its
computation to solve a single-variable equation. Its unique solution leads to an explicit
expression of the point by using a recent parametrization of the single-diode model
current–voltage curve. In the numerical resolution of the previous equation, we will
use as starting point the mean slope point which has been proved to be close to the
maximum power point. Previously, we will provide for the first time in the literature
an exact and explicit expression of the mean slope point. The new algorithm proposed
reaches the accuracy of the best known numericalmethods, but it ismuch faster, almost
reaching the execution times of explicit formulas.
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1 Introduction

The analysis of photovoltaic (PV) models, which try to describe the behaviour of PV
panels, allows to find essential information for their optimal construction, the study
of their performance, the search for faults in the systems, the optimal operation under
different environmental conditions etc. Therefore, knowing as accurately and quickly
as possible the data determining themodels is crucial to carrying out the tasks described
above. One of the most widely used PV models in the literature due to its precise
description of real measurements and its relative simplicity, is the PV single-diode
model (SDM). There are algorithms capable of finding the SDMparameters with great
precision and speed for fixed environmental conditions. For example, Batzelis et al.
(2022) obtains the maximum likelihood estimates (MLE) of the SDM parameters by
using the Euclidean distance, Laudani et al. (2014), Cárdenas et al. (2017), Toledo et al.
(2018) and Xu (2022) have obtained in the last years the best results in the literature
in the SDM parameters extraction by minimization based on the current distance,
Lappalainen et al. (2022) analyzes in depth various fitting approaches, including a
novel method based on combining current and voltage distances. In Samadhiya et al.
(2021) is described a probabilistic methodology in order to quantify the effects of
uncertainty in the SDM.There are alsoworks that provide formulas on howparameters
vary as a function of temperature and/or irradiance (Batzelis and Papathanassiou 2016;
Jain and Kapoor 2004; De Soto et al. 2006), although the existing formulas cannot yet
contemplate all the possible variables or all the technologies.

All the PV models have key points that provide relevant information. In the partic-
ular case of the SDM these are the remarkable points, maximum power point (MPP),
short-circuit point (SCP) and the open-circuit point (OCP), and other less known, but
equally important points, such as themean slope point (MSP), themaximum curvature
point (MCP), or the jerk point (JP). The study of these points is as important as that
of the parameters themselves and their calculation as a function of the parameters
requires mathematical techniques non-trivial at all due to the transcendental nature of
the SDM equation. One of the objectives of this work is to describe and compare the
best known methods to calculate all the SDM key points. Having described all the
points and the preferable way to calculate them is very useful for researchers in this
field and the graphical illustrations of all the points on the I–V curve can inspire new
ideas and applications.

As its name indicates, the MPP is one of the main important points of a PV panel
because it gives the point where the panel must operate to provide the maximum
possible power. It is well-known that the MPP varies depending on the environmental
conditions. For example, the temperature and the irradiance (Yadir et al. 2020), and
other factors such as panel conditions, namely, shadows, dirt, degradation (Kichou
et al. 2016), etc. So, in real conditions, it is almost impossible to know the MPP priori.
In some photovoltaic installations, the operating point of a panel can be a fixed point
that themanufacturer determines to be as close as possible to theMPP in any condition.
Obviously these panels are almost never going to provide the maximum power. Other
times, the panels incorporate an algorithm that search for theMPP in real time based on
the last measurements of the panel. These are calledMPP tracking algorithms (Bendib
et al. 2015; Ramos-Hernanz et al. 2020). The calculation of the theoretical MPP of
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the SDM is important because it should match the real MPP and provide essential
information about the correct working of the panel or allows to predict the real MPP
in different environmental conditions. However, aswe have said before, the calculation
of the theoreticalMPP is not a simple problem. There are several works in the literature
that try to calculate the theoretical MPP exactly (Ikegami et al. 2001; Zagrouba et al.
2010; Askarzadeh and Rezazadeh 2013; Laudani et al. 2017; Trejo and Ortiz-Conde
2020; Cardelli et al. 2022) or approximately (Batzelis et al. 2015). We would like to
highlight the works (Laudani et al. 2017; Trejo and Ortiz-Conde 2020; Cardelli et al.
2022) in which fast and accurate methodologies are provided to calculate the MPP
of the SDM and that, in addition, are simple enough to be implemented in low-cost
microcontrollers, which allows them to be used as MPPT techniques. The objective
of this paper is also the theoretical calculation of the MPP with the parameters of
the model and its usefulness in the design and prediction programs of photovoltaic
installations where internally these models are used for all calculations. The main
contribution of this work is a new algorithm to calculate the theoretical MPP that is as
accurate as a numerical method and almost as fast as an explicit formula. The key idea
is to reduce the calculation of the theoretical MPP to the resolution of a single variable
equation. The solution of this equation leads us to the explicit expression of the MPP
through a parametrization of the SDM (Toledo et al. 2023). On the other hand, it is well
known that the speed in the numerical resolution of an equation to attain a prefixed
precision depends on the initial seed from which the algorithm starts. In this work, we
use the MSP as a seed. It was proved in Rodriguez and Amaratunga (2007) that the
MSP is close to the MPP. Nevertheless, only approximate expressions of this point
were provided in that paper. In the present work we provide for the first time an exact
and explicit expression of the MSP making use again of the parametrization given in
Toledo et al. (2023). It should be said that the MSP definition depends on the SCP
and the OCP. A good computation of these points will benefit the complete strategy
to compute the MPP.

The paper is structured as follows. Our starting point in Sect. 2 is to describe the
SDM and all its key points. In this section we also expose a recent parametrization of
the SDM I–V curve, which is crucial for this paper. We recall well-known expressions
of the current and the voltage in terms of the Lambert W function together with a
numerical formula to evaluate this function which avoids computational problems
with too large values of the arguments. In Sect. 3, the best known explicit expressions
and efficient numerical methods are described to compute the key points of the SDM
I–V curve. In particular, a new methodology to obtain the maximum power point
based on the parametrization given in Sect. 2 is proposed. We will provide the first
exact and explicit expression of the Mean Slope Point, which will play a key role in
the MPP calculation. Section 4 shows the experimental results and Sect. 5 exposes the
main conclusions of the work. The paper finishes with Sect. 1 which includes practical
pseudocodes and technical details.
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(a) Short-Circuit Point (b) Open-Circuit Point (c) Maximum Power Point

(d) Jerk Point (e) Mean Slope Point (f) Maximum Curvature Point

Fig. 1 SDM key points for the PV module 1 of Table1

2 Preliminaries

2.1 The single-diodemodel and its key points

The single-diode model equation associated to a solar panel with ns cells in series is
given by

I = Iph − Isat

(
e

V +I Rs
a − 1

)
− V + I Rs

Rsh
(1)

where I is the panel currentmeasured inAmperes (A), V is the panel voltagemeasured
inVolts (V), Iph is the panel photocurrent inAmperes, Isat is the panel diode saturation
current in Amperes, Rs is the panel series resistance in Ohms (�) and, Rsh is the panel
shunt resistance in Ohms. a = nsnVT where n is the ideality factor and VT = k

q T
is the so-called thermal voltage, being T the temperature in Kelvin degrees, k =
1.3806488 × 10−23 J/K the Boltzmann’s constant and, q = 1.60217653 × 10−19 C
the electron charge.

The I–V curve generated by the solutions of the SDM equation has some points
that are significant either from the physical point of view or/and from the geometri-
cal/analytical point of view, let us call these points the key points of the SDM (they
can be visualized in Fig. 1). In Fig. 1d, I ′(V ) and I ′′(V ) are the first and the second
derivative functions of I (V ). In Fig. 1c and f, the power and the curvature functions,
defined respectively as P(V ) = V · I (V ) and k(V ) = |I ′′(V )|

(1+(I ′(V ))2)3/2
, are graphically

represented.
Although most of the key points are well known, let us briefly describe them:

– The short-circuit point (see Fig. 1a): It is the point of the I–V curve corresponding
to zero voltage. It is denoted by SC P = (0, Isc) where Isc is the solution of the
Eq. (1) when V = 0. The experimental value of Isc in a PV panel corresponds to
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the maximum current that the panel can generate which occurs when it is short-
circuited. Isc is used, for example, for sizing of the switches of the converter.

– The open-circuit point (see Fig. 1b): It is the point of the I–V curve corresponding
to zero current. It is denoted by OC P = (Voc, 0) where Voc is the solution of the
Eq. (1)when I = 0. The experimental value of Voc in a PVpanel corresponds to the
maximum voltage that the panel can attain which occurs when it is disconnected.
Voc is used, for example, for sizing the input capacitors of the converter.

– The maximum power point (see Fig. 1c): It is the point of the I–V curve cor-
responding to the maximum value of the power function P . It is denoted by
M P P = (VM P P , IM P P ). The experimental value of the M P P provides the
maximum power that the panel can extract. Then it is used as the operating point
of a PV solar installation.

– The jerk point (see Fig. 1d): It is the point of the I–V curve where the third deriva-
tive of the current function vanishes. Indeed, at this point the second derivative
of the current function has a minimum and the first derivative has an inflexion
point. It is denoted by J P = (VJ P , IJ P ). As far as we know, this point has no
practical application. It is only interesting from a theoretical point of view due to
its geometric meaning in the I–V curve.

– The mean slope point (see Fig. 1e): It is the point of the I–V curve where the
slope is the mean slope of the curve between the open-circuit and the short-circuit
points, that is, at this point the slope is I ′

M S P = − Isc
Voc

. It is denoted by M S P =
(VM S P , IM S P ). Although this point arises from a geometric property, its definition
through the short-circuit and open-circuit points leads to a close relationship with
the MPP. In fact, it was proved in Rodriguez and Amaratunga (2007) that the MSP
is very close to the MPP, so it can be used as a good approximation of the MPP or
to accurately compute theMPP at high speed, which demonstrates its applicability
and relevance.

– The maximum curvature point (see Fig. 1f): It is the point of the I–V curve cor-
responding to the maximum value of its curvature function k. It is denoted by
MC P = (VMC P , IMC P ). This point does not have an apparent direct physical
interpretation, but it has been used to obtain the maximum likelihood estimators
of the SDM parameters, which evidences its practical value.

The first three points, OC P , SC P , and M P P are usually known as the remarkable
points. They are also called notable, important, noteworthy, and essential points of the
I–V curve.

2.2 Some key tools through known results

Let us recall some mathematical results and tools that we will use later. In particular,
the parametrization of the single-diode model introduced here will be crucial for the
rest of the paper.
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2.2.1 The single-diode model with the Lambert W function

It is known that the current and the voltage in the SDM equation can be expressed
explicitely by using the Lambert W function, W0, as (see Banwell and Jayakumar
2000)

I = 1

Rsh + Rs
(Rsh(Iph + Isat ) − V )

− a

Rs
W0

(
Isat Rsh Rs

a(Rsh + Rs)
exp

(
Rsh(Rs(Iph + Isat ) + V )

a(Rsh + Rs)

))
(2)

V = Rsh(Iph + Isat ) − (Rsh + Rs)I − aW0

(
Isat Rsh

a
exp

(
Rsh(Iph + Isat − I )

a

))

(3)

where recall, W0 is the inverse of the function f (x) = xex in the interval [−1,+∞[
(Corless et al. 1996). This explicit formulation allows for a more practical and robust
calculation of the current and the voltage of the SDM.However, the computation of the
images ofW0 needs the direct programming of numerical algorithms (Barry et al. 1995;
Fritsch et al. 1973), or the implementation of series expansions (Comtet 1974; deBruijn
1981; Corless et al. 1996), or, themost usual option, the use of amathematical program
such as Matlab with its built-in function lambertw. Nevertheless, some problems can
arise when the arguments of the function W0 are too large to be handled by the used
software. To avoid these large value problems and to be as accurate and fast as possible,
a recent paper (Toledo et al. 2022) has proposed the following numerical formula (4)
to compute W0 and, thus, I and V with (2) and (3), respectively. In this formula it has
been adapted the strategy proposed in Batzelis et al. (2020) to avoid large values of
the argument of W0 when it is given in the form αeβ .

W (α, β) := W0(αeβ) =
{

αeβ N R( f (z), zseed) if ln α + β ≤ 1
N R(h(w),wseed) if ln α + β > 1

. (4)

where N R( f unc(u), useed) means Newton–Raphson method applied to the function
f unc (with u as the variable) starting with the seed useed . In the proposed formula
one has specifically

f (z) = z − e−αeβ z

zseed = 1 + ln(1 + αeβ)

1 + 2αeβ

and

h(w) = lnw + w − ln α − β

wseed = ln α + β − ln(ln α + β) + ln(ln α + β)

ln α + β
+ ln(ln α + β)(−2 + ln(ln α + β))

2(ln α + β)2
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Observe that W (α, β) is simply another way to write the LambertW function since

W0(α) = W (α, 0).

A simple pseudocode with the programming of W (α, β) can be found in Appendix
6.1.1.

Formula (4) can be used in general to compute the current and voltage of the SDM
in a very robust and efficient way (see pseudocode in Appendix 6.1.1), and, we will
take advantage of it to obtain Isc and Voc in this paper.

2.2.2 A parametrization of the single-diode model

Equation (1) can be rewritten as

I = (Iph + Isat )Rsh

Rsh + Rs
− V

Rsh + Rs
− Isat Rsh

Rsh + Rs
e

V +I Rs
a (5)

where the linear part
(Iph+Isat )Rsh

Rsh+Rs
− V

Rsh+Rs
is an oblique asymptote of the I–V curve

(Toledo and Blanes 2014).
In the paper (Toledo et al. 2023), it has been proved that any point of the I–V curve

(5) is of the form (V(x), I(x)) for certain x > 0, where

V(x) = a(Rs+Rsh)
Rsh

(
ln x − Rs

a

(
Rsh(Iph+Isat )

Rs+Rsh
− x

)
− ln

(
Isat Rsh
Rsh+Rs

))

I(x) = Rsh(Iph+Isat )−V(x)

Rs+Rsh
− x

. (6)

In other words, (V(x), I(x)) is a parametrization of the I–V curve. In Toledo et al.
(2023) it is also shown that the parameter x in (6) is the vertical distance from the I–V
curve to its oblique asymptote given by

x = Isat Rsh

Rsh + Rs
e

V +I Rs
a (7)

but x can also be given in terms exclusively of the slope I ′ of the I–V curve at the
point (V , I ) as

x = − a

Rsh + Rs

I ′(Rsh + Rs) + 1

1 + I ′ Rs
. (8)

The parametrization given by (6) will be used in this paper to obtain the maximum
curvature point, the mean slope point, and the jerk point. All of them explicitly, but
even more importantly, to compute the maximum power point in a very robust and
efficient way.
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2.2.3 The slope of the SDM I–V curve at any point

Differentiating with respect to the voltage on (1) and isolating I ′ gives

I ′ = − Isat Rshe
V +I Rs

a + a

Isat Rs Rshe
V +I Rs

a + a(Rs + Rsh)
(9)

So, if the coordinates of a point of the I–V curve are known, it is straightforward to
obtain the slope of the I–V curve at this point with (9).

Observe also that if the slope were the known datum, one would obtain from (8) the
parameter which provides with (6) the coordinates of the point where the I–V curve
has this slope.

3 Calculation of the SDM key points

In this section, we describe the best known methods to obtain the key points of the
SDM I–V curve. The MPP has been intentionally left the last one because a new
methodology has been proposed to compute it that uses the MSP as starting point.
The MSP will be obtained exactly and explicitly with a new expression based on the
parametrization (6) of the SDM I–V curve.

3.1 The short-circuit point

Since the short-circuit current, Isc, is the current value corresponding to voltage zero,
to obtain this value from the SDM one should solve the equation

Iph − Isat

(
e

Isc Rs
a − 1

)
− Isc Rs

Rsh
− Isc = 0 (10)

where Isc is the unknown.Since (10) is implicit in nature, it requires numerical solution.
But the following expression derived from (2 ) with the application of (4) provides a
robust and efficient way to get Isc

Isc = Rsh(Iph + Isat )

Rsh + Rs
− a

Rs
W

(
Isat Rsh Rs

a(Rsh + Rs)
,

Rsh Rs(Iph + Isat )

a(Rsh + Rs)

)
(11)

Recall that it is just a combination of a known formula (Banwell and Jayakumar 2000)
with an explanation of the proposed methodology in Toledo et al. (2022) to compute
W0 quickly and accurately that moreover circumvents problems with large values of
the argument of W0.

One can find commonly in the literature some approximations of Isc, for instance,
assuming that Isat is insignificant with respect to the other terms in the Eq. (10), one
can consider Isat ≈ 0 and obtains (Farivar et al. 2013; Batzelis and Papathanassiou
2016; Bai et al. 2014)
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Isc ≈ Rsh Iph

Rsh + Rs
(12)

If moreover Rsh is large enough compared with Rs so that Rs/Rsh is insignifi-
cant with respect to the unit, then one can consider Rs/Rsh ≈ 0 and the previous
simplification (12) becomes

Isc ≈ Iph (13)

Obviously,when the postulations used to obtain the simplifications are not satisfied, the
corresponding approximations (12) and (13) are not always close to Isc and their use
can lead to errors or high inaccuracies in theoretical developments and the subsequent
results.

Once the short-circuit current is computed, the slope of SDM I–V curve at this
point is obtained with (9) as

I ′
sc = − Isat Rshe

Isc Rs
a + a

Isat Rs Rshe
Isc Rs

a + a(Rs + Rsh)

and the corresponding parameter xsc from its definition (7) as %

xsc = Isat Rsh

Rsh + Rs
e

Isc Rs
a

3.2 The open-circuit point

Since the open-circuit voltage, Voc, is the current value corresponding to current zero,
to obtain this value from the SDM I–V curve one should solve the equation

Iph − Isat

(
e

Voc
a − 1

)
− Voc

Rsh
= 0 (14)

where Voc is the unknown. Since (14) is implicit in nature, it requires numerical
solution.

As before, the following expression derived from (3) with the application of (4)
provides a robust and efficient way to get Voc

Voc = Rsh(Iph + Isat ) − aW

(
Isat Rsh

a
,

Rsh(Iph + Isat )

a

)
(15)

One can find commonly in the literature some approximations of Voc, for instance,
if (14) is expanded as

Iph − Isat e
Voc

a + Isat − Voc

Rsh
= 0 (16)

and one assumes that the isolated term Isat is insignificant with respect to the other
terms in the equation (16), it can be neglected, and, moreover, if Rsh is large enough
compared with Voc so that Voc/Rsh is insignificant with respect to the other terms
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in the equation, then one can consider Voc/Rsh ≈ 0 and one gets (Ding et al. 2012;
Saloux et al. 2011; Cristaldi et al. 2012; Batzelis and Papathanassiou 2016; Accarino
et al. 2013)

Voc ≈ a ln

(
Iph

Isat

)
(17)

Another possible approximation is obtained as follows. If just the isolated term Isat

in (16) were neglected, one would obtain solving Voc from the exponential that

Voc ≈ a ln

(
Iph

Isat
− Voc

Rsh Isat

)
(18)

Now, using the approximation (17) for the Voc inside the logarithm in (18), one obtains

Voc ≈ a ln

(
Iph

Isat
− a

Rsh Isat
ln

(
Iph

Isat

))
(19)

Once again, when the hypothesis used to obtain the simplifications are not satis-
fied, the corresponding approximations (17) and (19) are not always close to Voc and
their use can lead to errors or high inaccuracies in theoretical developments and the
subsequent results.

Once the open-circuit voltage is computed, the slope of SDM I–V curve at this
point is obtained with (9) as

I ′
oc = − Isat Rshe

Voc
a + a

Isat Rs Rshe
Voc

a + a(Rs + Rsh)

and the corresponding parameter xoc from its definition (7) as

xoc = Isat Rsh

Rsh + Rs
e

Voc
a

3.3 Themean slope point

Themean slope point has been already used in the literature to compute or approximate
the MPP (Rodriguez and Amaratunga 2007; Batzelis et al. 2015; Ghosh et al. 2014;
Moshksar and Ghanbari 2018), but this is the first time that the coordinates of this
point have been obtained explicitly and exact, that is, without any approximation.

Observe that the existence and unicity of the mean slope point of the SDM I–V
curve is consequence of the mean value theorem and the fact that the I–V curve is
differentiable, decreasing and concave as was proved in Toledo and Blanes (2014).

Since the mean slope point is determined by its slope given by I ′
M S P = − Isc

Voc
, first

we need to know Isc and Voc.
The natural way to obtain the mean slope point is to solve the following system of

2 equations where VM S P and IM S P are the unknowns.
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⎧
⎪⎨
⎪⎩

Iph − Isat

(
e

VM S P +IM S P Rs
a − 1

)
− VM S P + IM S P Rs

Rsh
− IM S P = 0

−Isat e
VM S P +IM S P Rs

a Voc−Isc Rs
a − Voc − Isc Rs

Rsh
+ Isc = 0

This system can be solved by a numerical method like the Newton–Raphson (N–
R) method for non-linear systems. It is important a good selection of the initial seed
to guarantee the convergence of the method. No other method for the exact MSP
calculation is reported in the literature.

Here we are going to provide a simple and explicit way to obtain the mean slope
point by using the parametrization (6 ). Just observe that the parameter corresponding
to this point is directly obtained from (8) as

xM S P = a

Rsh + Rs

Isc(Rsh + Rs) − Voc

Voc − Rs Isc
(20)

Then, substituting x by xM S P in (6) one gets the M S P = (VM S P , IM S P ) as

VM S P = a(Rsh+Rs )
Rsh

(
ln xM S P − Rs

a

(
Rsh(Iph+Isat )

Rsh+Rs
− xM S P

)
− ln

(
Isat Rsh
Rsh+Rs

))

IM S P = Rsh(Iph+Isat )−VM S P
Rsh+Rs

− xM S P

(21)

Note that the MSP is explicitly given only depending on the SDM parameters.

3.4 Themaximum curvature point

The maximum curvature point appeared for the first time in the literature of PV mod-
elling in Toledo et al. (2023) to compute the Euclidean distance from a generic point
to the SDM I–V curve. The parametrization (6) was used in Toledo et al. (2023) to
obtain this point explicitly as follows which is briefly repeated here for completeness.
It was demonstrated that the parameter corresponding to the MCP was given by

xMC P =
√

β2 + 8αγ − β

4γ

where

α = 1 + 1

(Rsh + Rs)2
, β = Rs

a
+ 1

a(Rsh + Rs)
, γ = 1 + R2

s

a2

Then, substituting x by xMC P in (6) one obtains the MC P = (VMC P , IMC P ) as

VMC P = a(Rsh+Rs )
Rsh

(
ln xMC P − Rs

a

(
Rsh(Iph+Isat )

Rsh+Rs
− xMC P

)
− ln

(
Isat Rsh
Rsh+Rs

))

IMC P = Rsh(Iph+Isat )−VMC P
Rsh+Rs

− xMC P

(22)

.
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Note that the MCP is explicitly given only depending on the SDM parameters.
The slope of the I–V curve at the MCP is obtained through (8) by

I ′
MC P = − a + (Rsh + Rs)xMC P

(Rsh + Rs)(a + Rs xMC P )

3.5 The jerk point

The jerk point of the I–V curve, denoted by (VJ P , IJ P ), was defined and obtained
in Toledo and Blanes (2014) studying the geometric properties of the SDM. It is the
point of the I–V curve where the third derivative of the current function vanishes, the
second derivative has a minimum, and the first derivative has an inflexion point. It is
given explicitly by

VJ P = a(Rsh+Rs )
(
1−2 ln

(
2Isat Rsh Rs
a(Rsh+Rs )

))
−2Rsh Rs (Iph+Isat )

2Rsh

IJ P = Rsh(Iph+Isat )−VJ P
Rsh+Rs

− a
2Rs

. (23)

We can also obtain this point with the parametrization (6) as follows. It is known
from Toledo and Blanes (2014) that the slope of the I–V curve at this point is

I ′
J P = − Rsh+3Rs

3Rs (Rsh+Rs )
, (24)

then, we can obtain the parameter corresponding to this point from (8) as

xJ P = a

2Rs

Now we obtain the jerk point just substituting x by xJ P in (6) and moreover, the slope
of the I–V curve at the jerk point is obtained through (8) by resulting to the above
Eq. (24).

This slope was already obtained in Toledo and Blanes (2014) with elementary
calculus.

3.6 Themaximum power point

The power generated by a PV module at any point (V , I ) of its characteristic I–V
curve is given by

P = V I

There is a point on the characteristic I–V where the corresponding power is maxi-
mum, which is called maximum power point. If we consider the theoretical I–V curve
generated by the SDM Eq. (5), we can also conclude the existence of a maximum of
the theoretical power function (see Appendix 3) which provides the corresponding
theoretical MPP.
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There are different methods to obtain the theoretical MPP. Let us expose some of
the most known.

3.6.1 Numerical knownmethods

Two equations system The natural way to obtain the theoretical MPP, (VM P P , IM P P ),
is as follows. Since the MPP is the unique I–V curve point satisfying that P ′ = 0,

where P ′ = I + V I ′, one obtains the well-known relation I ′
M P P = − IM P P

VM P P
.

So, the MPP must satisfy Eqs. (1) and (9) giving rise to the following system of
2 equations with two unknowns VM P P , IM P P (Ikegami et al. 2001; Zagrouba et al.
2010; Askarzadeh and Rezazadeh 2013)

⎧
⎪⎨
⎪⎩

Iph − Isat

(
e

VM P P +IM P P Rs
a − 1

)
− VM P P + IM P P Rs

Rsh
− IM P P = 0

IM P P

(
1 + Isat Rs

a
e

VM P P +IM P P Rs
a + Rs

Rsh

)
− VM P P

(
Isat

a
e

VM P P +IM P P Rs
a + 1

Rsh

)
= 0

(25)

This system can be solved by a numerical method like the Newton–Raphson (N–R)
method for non-linear systems. It is important a good selection of the initial seed to
guarantee the convergence of the method.

Single-variable equation with the Lambert W function Another way to obtain theMPP
is using the Lambert W funcion. Considering the derivative properties of the Lambert
W function, derivating in (2) with respect to V one obtains (Batzelis et al. 2015)

I ′ = − 1

Rs
+ Rsh

Rs(Rs + Rsh)

1

1 + W

(
Rs Rsh Isat

a(Rs+Rsh)
e

Rs Rsh (I ph+Isat )+Rsh V
a(Rs+Rsh )

) (26)

Since the MPP must satisfy that 0 = P ′
M P P = IM P P + VM P P I ′

M P P , one obtains
from (2) and (26) the following equation with VM P P as the unique unknow

Rsh(Iph + Isat ) − VM P P

Rsh + Rs
− a

Rs
W0

(
Rs Rsh Isat

a(Rs + Rsh)
e

Rs Rsh (I ph +Isat )+Rsh VM P P
a(Rs +Rsh )

)

+VM P P

⎛
⎜⎜⎝− 1

Rs
+ Rsh

Rs(Rs + Rsh)

1

1 + W0

(
Rs Rsh Isat

a(Rs+Rsh )
e

Rs Rsh (I ph +Isat )+Rsh VM P P
a(Rs +Rsh )

)

⎞
⎟⎟⎠= 0

(27)

Using the notation (similar to the one used in Batzelis et al. (2015))

w(VM P P ) = W0

(
Rs Rsh Isat

a(Rs + Rsh)
e

Rsh
a(Rsh+Rs )

(Rs (Iph+Isat )+VM P P )
)

equation (27) can be rewritten as
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Rsh(Iph + Isat ) − VM P P

Rsh + Rs

− 1

Rs

(
aw(VM P P ) − VM P P

(
1 − Rsh

(Rs + Rsh)(1 + w(VM P P ))

))
= 0 (28)

In (28) we can use indeed (4) to get a fast and accurate computation of the Lambert
images and to avoid problems with large values of the argument.

Equation (28) can be solved by a numerical method like the Newton–Raphson
method.Wewould like to point out that since theunknownVM P P is inside the argument
of the Lambert W function, one has indeed an equation inside another equation. So, in
each iteration of theN–Rmethod the correspondingLambert imagemust be computed.
Again, it is important to have a good selection of the initial seed to guarantee the
convergence of the N–R method. Once Eq. (27) is solved, one must obtain IM P P , for
instance, by using (2) so that

IM P P = 1

Rsh + Rs
(Rsh(Iph + Isat ) − VM P P ) − a

Rs
w(VM P P ) (29)

or alternatively, by solving the model Eq. (1) with V = VM P P . Any case, another
equation different from (28) must be solved.

3.6.2 Explicit approximate methods

In Batzelis et al. (2015) an explicit formula to obtain an approximation of the MPP
was provided and compared with other existing formulas in the literature Saloux et al.
(2011), Das (2013), Rodriguez and Amaratunga (2007), Fernandes et al. (2013). As
it was checked in Batzelis et al. (2015) through some experiments, only the formulas
of Batzelis and Fernandes were able to obtain reasonably good approximations of the
MPP. Of course, with a small computation time due to the non-iterative procedure,
but obviously with an accuracy far of the one achieved by numerical methods. Let us
describe the formulas/methods of Batzelis and Fernandes.
Batzelis method The following explicit formulas where given in Batzelis et al. (2015)
to approximate the MPP for any PV system operating under uniform illumination and
temperature conditions

VM P P ≈ Rs+Rsh
Rsh

a(w − 1) − Rs Iph
(
1 − 1

w

)

IM P P ≈ Iph
(
1 − 1

w

) − a(w−1)
Rsh

(30)

where w = W0(
e Iph
Isat

), and e is the Euler number. To evaluate approximately W0 it is
used in Batzelis et al. (2015) the explicit formula proposed in Batzelis et al. (2014).
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Fernandes method In Fernandes et al. (2013) the following analytical method was
described to obtain an approximation of the MPP

k1 = ln

(
Iph(Rsh+Rs )−a ln

( I ph
Isat

+1
)

Rsh Isat

(
ln

( I ph
Isat

+1
)
− 1

a Iph Rs

)
)

+ 1

k2 = 1
a Rsh(Iph + Isat ) + 2 − k1

RLm = k1Rsh+
√

k21 R2
sh−4k2Rs ((k1−2)Rsh−k2Rs )

2k2

IM P P ≈ a
RLm+Rs

ln
(

a(Rsh+Rs−RLm )
Rsh Isat (RLm−Rs )

)

VM P P ≈ IM P P RLm

(31)

Remark The previous equations are from Fernandes et al. (2013) after certain correc-
tions of mistypings.

3.6.3 A newmethodology based on the SDM I–V curve parametrization

In this subsection, using the parametrization (6), we reduce the problem of obtaining
the theoretical MPP to the resolution of a single-variable equation that only involves
logarithms and polynomials. Once the equation is solved, the MPP is obtained explic-
itly. A numerical strategy will be provided that always converges to the solution with
computation times close to the explicit methods as we will see in the section of com-
putational experiments.

Let us see first some theoretical details leading to the single-variable equation.
Using the parametrization (6) of the I–V curve (5) one obtains the following

parametrized power function
P(x) = V(x)I(x) (32)

The unique critical point of this single-valued function is the parameter, xM P P , corre-
sponding to the maximum power point (see Appendix 6.3). To obtain xM P P , we need
to solve the equation P ′(x) = 0. One has that

P ′(x) = V ′(x)I(x) + V(x)I ′(x) = − 1

δ2x
g(x)

where δ = Rsh
a(Rsh+Rs )

> 0 and

g(x) = (k0 + k1x) ln x + k2x2 + k3x + k4 (33)

with

k0 = 2
Rsh+Rs

k1 = Rsh+2Rs
a(Rsh+Rs )

k2 = 2Rs
a2

k3 = k1
(
1 − ln

(
Isat Rsh
Rsh+Rs

))
− k2Rsh(Iph+Isat )

Rsh+Rs

k4 = − k1Rsh(Iph+Isat )

Rsh+Rs
− 2

Rsh+Rs
ln

(
Isat Rsh
Rsh+Rs

)
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Fig. 2 Seeds selection for N–R
method depending on the sign of
g(x+)

(a) g(x+) > 0 (b) g(x+) < 0

where k0, k1, k2 > 0. Therefore, the unique solution of P ′(x) = 0 is the unique
solution of g(x) = 0. Once solved g(x) = 0, one obtains xM P P and, substituting x
by xM P P in (6), the MPP is explicitly obtained.

Numerical strategy to find the root, xM P P , of g Let us propose the following strategy
to compute the unique root, xM P P , of g, which aims to be an optimal combination of
analytical andgeometrical ideas, to guarantee the convergence of theNewton–Raphson
method, but also with the goal of achieving maximum speed.

From the properties of function g (see Appendix 6.3), g is concave below x+ and
convex above x+, where

x+ = 1

4k2

(√
k21 + 8k2k0 − k1

)
. (34)

If g(x+) > 0 the root of g is below x+ and g is negative and increasing for values
below the root, then Newton–Raphson method converges if we start from any seed
xs > 0 where g(xs) < 0. If g(x+) < 0 the root of g is above x+ and g is positive and
increasing for values above the root, then Newton–Raphson method converges if we
start from any seed xs > 0 where g(xs) > 0 (see Fig. 2).

Algorithm 1: New MPP calculation strategy
Input: Iph , Isat , a, Rsh , Rs , N // a = nsnVT , N (even) is the number of points to be represented
Output: xM P P

1 Compute xM S P and x+ // See (20) and (34)
2 xs = xM S P
3 if g(x+) ≥ 0 then
4 while g(xs ) > 0 do
5 xs = xs

2

6 else
7 while g(xs ) < 0 do
8 xs = 2xs

9 xM P P = N R(g; xs ) // N R(g; xs ) means Newton–Raphson method to compute
the root of g starting from the seed xs
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(a) Module 1 (b) Module 2 (c) Module 3

(d) Module 4 (e) Module 5 (f) Module 6

(g) Module 6 (h) Module 8 (i) Module 9

Fig. 3 I–V curves from Table1 and their key points

Note that seeds that do not satisfy the above considerations could cause theNewton–
Raphsonmethod to not converge. Therefore, the objective is to find a seed xs satisfying
the previous properties, but as close as possible to the root of g. Taking into account
the definitions of the MPP and the MSP together with the geometric properties of the
SDM, both points lie always between the short-circuit and the open-circuit points, so
the MPP and the MSP must be relatively close, as can also be observed in real cases.
So, the value xM S P or a multiple of it suitably selected could be a good starting point
for the N–R method applied to g. Following the previous arguments, we propose the
methodology schematized in Algorithm 1 which provides the unique root of g.

4 Computational experiments

In this section we are going to use a set of 9 samples of I–V curves, with parameters
given in Table1, to compute and compare all the SDM key points with the different
methods described in the previous sections. These curves come from or are inspired
by curves obtained from real measurements under different conditions in order to have
the greatest possible variety of situations and they have been used previously in other
papers (Toledo et al. 2022; Batzelis et al. 2022). Some of these parameters correspond
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Table 1 SDM parameters
corresponding to 9 samples I–V
curves

Module Iph (A) Isat (A) a Rs (�) Rsh (�)

1 15.880 7.44E−10 14.670 2.0400 425.2

2 1.032 2.51E−06 1.300 1.2390 744.7

3 3.654 4.00E−21 0.516 2.6900 2329.0

4 0.578 1.34E−10 0.012 0.0127 612.0

5 0.761 3.11E−07 0.039 0.0370 52.9

6 4.802 4.02E−07 0.037 0.5906 1167.0

7 4.942 1.84E−07 1.222 0.2460 387.0

8 2.501 1.13E−07 1.228 0.2283 442.2

9 0.991 5.47E−07 1.398 0.0386 844.4

to unusual case studies, which is deliberate so as to assess the methods in all possible
conditions.

For the comparison of the new proposed algorithm to calculate the MPP, we also
will use 1000 randomly chosen I–V curves from the National Renewable Energy
Laboratory (NREL) database ofUSA (Marion et al. 2021).Wewill provide the average
RMSE on the measured values as well as the mean computation time.

To analyze the goodness of the different methods of calculating each key SDM
point, we will establish as benchmark the result obtained by using a basic and direct
computation with Matlab. Specifically we will use the internal function fsolvewith
tolerance 10−16 and the rest of the options will be the ones that come by default. For
the comparison to be as fair as possible, the numerical methods used will all have the
same tolerance, 10−8 (the same used in Toledo et al. 2022), and the same maximum
number of iterations, 200. The error we supply for each method will be the absolute
error compared to the benchmark. For the computation times to be stable and the value
we give be reliable, each calculation will be repeated 200 times and the average of the
times will be taken as the final result.

In Fig. 3, we represent the I–V curves given in Table 1 and also include all the
corresponding SDM key points. It is the first time in the literature that all the key
points of the SDM can be seen represented altogether. It is striking at first glance how
close the MSP is to the MPP and how far the MCP can be from the apparent bend of
the curve.

4.1 The short-circuit and open-circuit points calculation

4.1.1 The short-circuit point calculation

As can be seen in the Tables 2 and 3, and as expected, the error committed by the
explicit formulas is several orders of magnitude higher than with the numerical meth-
ods while the execution time is only a few orders of magnitude lower. Among the
explicit formulas, the approximation obtained with Explicit (12) is considerably bet-
ter than that obtained with Explicit (13) and yet there are no significant differences
in computational times. Among the numerical methods, the errors are essentially the
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same. We emphasize that they achieve high accuracy (in many cases close to machine
error) with rather less demanding stopping conditions than those used for the bench-
mark. However, it is interesting to note that the Numerical (11) is almost always an
order of magnitude faster than N–R (10) with seed (13), even though the latter already
uses a seed which is a good approximation of the solution, and only an order of magni-
tude slower than the explicit formulas. This agrees with the results obtained in Toledo
et al. (2022).

Please observe that Module 6 is indeed unusual, but if it happens (13) and (12) do
not work well as seen in Table2.

4.1.2 The open-circuit point calculation

Tables 4 and 5 collect the results of the methods used to calculate the open-circuit
voltage (Voc). The results are very similar to those obtained for Isc. Again highlighting
the fact that Numerical (15) is almost always an order of magnitude faster than N–R
(14) with seed (17) and only an order of magnitude slower than that needed by the
explicit formulas (17) and (19).

4.2 Themaximum curvature, mean slope and jerk points calculation

The points of maximum curvature, mean slope and Jerk can be obtained explicitly
using the parametrization (6). Therefore, it does not make sense to compare their
exact calculation with possible numerical methods. In Fig. 3, we can find their values
obtained explicitly with the corresponding formulae (21), (22) and (23), and their
position on the corresponding I–V curves can be also visualized. It is interesting to
know that theMCP and the JP points may not lie between the SCP and the OCP points.
See, for example, modules 6, 8 and 9 where the JP is out of the representation, and
modules 6 and 9 where the MCP practically coincides with the SCP and the OCP,
respectively.

It is particularly noteworthy that the point ofmaximum curvature does not generally
correspond to the point that at first glance appears to be “the elbow of the I–V curve”
located between the SCP and the OCP, but the explanation is that the representation of
the I–V curve is usually done with different scale in the two axes and this causes the
optical effect of an elbow, which is not real. Thus, a good unequivocal way to define
“the elbow of an I–V curve” should be through the MCP.

4.3 Themaximum power point calculation

We are going to compare the results of the methods exposed in subsection 3.6 to obtain
the MPP.

The explicit approximate methods will be named as:

– “Explicit approx. in Batzelis et al. (2015)”: the approximate formula (30) given in
Batzelis et al. (2015) together with the approximation of the Lambert W function
proposed in Batzelis et al. (2014).
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– “Explicit approx. in Fernandes et al. (2013)”: the analytical methodology (31)
given in Fernandes et al. (2013)

The numerical methods will be named as:

– “Syst2eqs”: the system of two equations given by (25).
– “1eq-W”: the single-variable equation (28) involving the Lambert W function to
obtain VM P P followed by the expression (29) to obtain the corresponding IM P P .

– “NewMPPcalc”: the method described in Algorithm 1 to obtain the parame-
ter xM P P followed by the explicit formulas to obtain the MPP given by the
parametrization (6).

To be as fair as possible in the comparisons of the numerical methods, we will use
in all of them the MSP as the seed. Moreover, in the case of “1eq-W”, we will use the
numerical formula (4) to compute the images of the Lambert W function.

As explained at the beginning of this section, we recall that the benchmark will be
the value obtained with Matlab to solve the system of equations (25) with a tolerance
of 10−16. Please note that in previous tables we have used “Explicit eq. (x)” to refer
to equation (x), whereas in the following tables “Explicit approx. [x]” will refer to the
methods given in reference [x].

As with the calculation of Isc and Voc, numerical methods are several orders of
magnitude more accurate than explicit methods, although the latter are generally an
order of magnitude faster. Among the explicit methods, the one that obtains better
approximations is in general the “Explicit approx. in Batzelis et al. (2015)” although
in some cases “Explicit approx. in Fernandes et al. (2013)” surpasses it in accuracy.
Regarding the numerical methods, “Syst2eqs”and “NewMPPcalc” are significantly
more accurate than “1eq-W”, with “Syst2eqs” being slightly more accurate in some
cases. This is because it uses the exact same algorithm as the benchmark, therefore it
attains the same result (with the same decimal part) leading to a misleading zero error.
However, “Syst2eqs” sometimes fails resulting in NaN, so it is generally unreliable,
while “NewMPPCalc” is always convergent. Moreover, “NewMPPCalc” is signifi-
cantly faster than “Syst2eqs”, more than two orders of magnitude faster by as much
as four orders of magnitude and only one order of magnitude slower than the explicit
formulas being in some cases of the same order of magnitude (Tables 6, 7, 8 and 9).

4.3.1 Experimental results with NREL I–V curves

In this subsection, we want to validate the superiority of the new method “NewMPP-
calc” to compute the MPP with I–V curves measured in real conditions. As previously
stated, 1000 curves have been randomly taken from the NREL database (Marion et al.
2021). The SDM parameters corresponding to the NREL curves have been obtained
with the two-step linear least-squares (TSLLS) method (Toledo et al. 2018). The aver-
age of the errors and the computational times measured on the 1000 curves are given
in Table 10.

The results in Table 10 follow a similar pattern to those obtained with the 9 theo-
retical I–V curves except for the “1eq-W” method. Specifically, the “Syst2eqs” and
“NewMPPcalc” methods are clearly superior in precision than the other methods and
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although “Syst2eqs” seems a bit more accurate than “NewMPPcalc”, errors in the
range of E-16 fall within the digital precision of double numbers in MATLAB, and
therefore cannot infer superiority or inferiority of the involved methods. We must
point out that the results of the “1eq-W” method are significantly worse with real
data than with the theoretical curves. Regarding the computing time, the results are
very similar to those obtained with the 9 theoretical I–V curves. The “NewMPPcalc”
method is several orders of magnitude faster than the other numerical methods and
only one order of magnitude slower than the explicit methods, being more than 50
times faster than the benchmark. These results confirm moreover the reliability of
the results obtained with the theoretical curves and demonstrate the superiority of the
“NewMPPcalc” method and with real data.

5 Conclusions

In this paper, we describe and compare all the key points of the photovoltaic single
diode model. We describe them and show the best known methods of the literature to
compute them, although, for theMPP, using the parameterization (6), we provide a new
very simple method that reaches the accuracy of the best known numerical methods,
that is much faster, almost reaching the execution times of the explicit formulas.
For the numerical calculation of the MPP, we use as seed the Mean Slope Point,
whose coordinates have been computed explicitly and exactly for the first time in the
literature. For fair comparisons, we use this same seed with all numerical methods
except for the benchmark. Having a good seed for a numerical method is often as
important as themethod itself.Weprovide comparisons between the different proposed
methods on a variety of I–V curves covering the widest range of possibilities. After
the experimental results, we can conclude that the use of the parameterization (6)
together with the calculation of the Lambert W function by the procedure described
in (4), result in the most efficient procedures both in accuracy and speed to compute
all the key points of the SDM, and we describe the algorithms detailed so that users
can program the calculation of the points. All the methods proposed in this work
are easily implementable at any programming level, although it must be taken into
account that with low-level implementations the precision of the method will depend
on the computational limitation of the implementation. The advantage of the methods
proposed in this work is their speed of convergence but, in addition, explicit seeds are
proposed that are usually close to the solution, therefore, the methods are capable of
achieving high precision with very few iterations. The algorithms of this paper are
going to be implemented in the web page https://pvmodel.umh.es/ so that anyone can
obtain all the points freely and easily online.
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6 Appendices

6.1 Pseudocodes

6.1.1 Pseudocode Lambert W functionW(˛,ˇ)

Algorithm 2: Pseudocode Lambert W function
Input: Input α, β

Output: W (α, β)

1 I ter = 1
2 if ln α + β ≤ 1 then
3 γ = αeβ

4 x0 = 1+ln(1+γ )
1+2γ

5 x1 = 1+γ x0
eγ x0+γ

6 else
7 γ = 1
8 γ0 = ln α + β, γ1 = ln(γ0), γ2 = γ1

γ0

9 x0 = γ0 − γ1 + γ2(1 + −2+γ1
2γ0

)

10 x1 = x0(1−ln x0+γ0)
1+x0

11 while |x0−x1||x1| > 10−8 and I ter ≤ 100 do
12 x0 = x1
13 I ter = I ter + 1

14 W (α, β) = γ x1
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6.1.2 Pseudocode solutions SDM equation

Algorithm 3: I as a function of V
Input: Input Iph , Isat , a, Rsh , Rs , V // a = nsnVT
Output: I

1 α = Isat Rsh Rs
a(Rsh+Rs )

2 β = Rsh (Rs (Iph+Isat )+V )

a(Rsh+Rs )

3 I = 1
Rsh+Rs

(Rsh(Iph + Isat ) − V ) − a
Rs

W (α, β)

Algorithm 4: V as a function of I
Input: Input Iph , Isat , a, Rsh , Rs , I // a = nsnVT
Output: V

1 α = Isat Rsh
a

2 β = Rsh (Iph+Isat −I )
a

3 V = Rsh(Iph + Isat ) − (Rsh + Rs )I − aW (α, β)

6.2 The theoretical SDMMPP

As proved in Toledo and Blanes (2014), the Eq. (5) defines I is an infinitely differ-
entiable function of the variable V , as a consequence, function P = V I is also an
infinitely differentiable function of V with

P ′ = I + V I ′

and

P ′′ = 2I ′ + V I ′′

Since I ′ < 0 and I ′′ < 0 (Toledo and Blanes 2014), we have that P ′′ < 0 and,
therefore, the function P is strictly concave. Moreover, it is obvious that P(0) =
P(Voc) = 0, then,

since P is a continuous function, there exists a unique voltage VM P P ∈]0, Voc[
such that P(VM P P ) is a local (indeed global) maximum of P , moreover, since P is
differentiable, VM P P is the unique critical point of P , so, P ′(VM P P ) = 0. Therefore,
at point M P P = (VM P P , IM P P ), the I–V curve attains its global maximumwhich is,
indeed, the maximum power point corresponding to the theoretical SDM I–V curve.

6.3 Properties of function g

The function g given in (33) has the following properties:

– Function g is infinitely differentiable on its domain ]0,+∞[.
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– limx→0+ g(x) = −∞ and limx→+∞ g(x) = +∞, then, function g has at least
one root which is actually unique. If we call xM P P the root, the corresponding
point (V(xM P P ), I(xM P P )) is the maximum power point.

– g′(x) = 1
x (k0 + k1x) + k1 ln x + 2k2x + k3

– limx→0+ g′(x) = +∞ and limx→+∞ g′(x) = +∞
– g′′(x) = −1

x2
k0 + k1

1
x + 2k2 = 1

x2
(2k2x2 + k1x − k0)

– g′′(x) = 0 → x = −1
4k2

(

√
k21 + 8k2k0 + k1) < 0 (out of the domain of g) or

x = x+ = 1
4k2

(

√
k21 + 8k2k0 − k1) > 0
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