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Abstract: In this work, we focus on the numerical analysis of the propagation of plane-waves in
one-dimensional periodic lossy dielectric media, which constitute the building block of dielectric
frequency-selective surfaces (DFSSs). To this end, a full-vectorial modal method was used, in which
discontinuities of some components of the electromagnetic fields have to be evaluated, and we
propose a numerical improvement in the evaluation of some integrals appearing in the developed
formulation. Some confusion may exist in the evaluation of the cited integrals due to the discontin-
uous nature of the dielectric function and its transverse gradient. Therefore, some considerations
are given in order to solve these integrals accurately for the general case of a relative dielectric
permittivity function defined as a sum of lossy dielectric slabs. We particularize our study to a
dielectric frequency-selective surface (DFSS), for which the periodic dielectric medium can be defined
as constant functions inside an homogeneous region, whose contours define the discontinuities. Thus,
the relative dielectric permittivity can be expressed in terms of the Heaviside or step function. In
this way, the above-mentioned integrals can be correctly evaluated in the discontinuity, obtaining
good results with the employed vectorial modal method for both the propagation constant and the
electromagnetic fields obtained in the periodic dielectric medium constituting the DFSS. These results
are compared with those obtained with a less accurate evaluation of the cited integrals, when an
approximation made by other authors is used.

Keywords: dielectric frequency-selective surface; vectorial modal method; propagation constant;
Heaviside function

1. Introduction

The propagation characteristics in some sophisticated periodic structures have been
subject to investigation from many researchers in the past few years because of their wide
field of application in microwave and optical communication systems, associated with
their frequency-selective behavior. Some common examples of periodic structures are
photonic crystals [1] and frequency-selective surfaces (FSSs) [2–4]. Within the second type
of periodic structures, we can find the so-called dielectric frequency-selective surfaces
(DFSSs) [5–7], which, unlike classical metallic FSSs—metallic surfaces showing some
periodicity on the surface—consist of multilayered dielectric planar slabs containing a
periodic variation along any layer. In such structures, leaky modes can be generated
in suitable geometries and produce total reflection at the resonance frequencies. These
guided-mode resonance structures have been of considerable interest as passive signal
processing devices with a large number of applications. A few of these possible uses include
static and tunable spectral filters with arbitrarily narrow bandwidths, optical switches and
modulators, polarizers, couplers, sensors, dichroic subreflectors in antennas, and many
other applications [8–11].

In order to obtain the dispersion behavior in DFSSs, which are multilayered planar
structures where at least one propagating medium is a periodic dielectric grating formed
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by two or more dielectric slabs, under plane-wave incidence, the modal spectrum in all
propagating media must be efficiently computed. For this analysis, some authors have
employed semi-analytical methods [12]. However, when the number of dielectric slabs
inside the propagation medium increases, alternative methods should be employed, with
the ones that are more used including the modal, perturbative [13], transfer-matrix [14]
or numerical methods such as finite difference time domain (FDTD) method [15] and
finite-element method [16]. However, the combination of the periodic characteristics of
DFSSs together with their open nature makes it difficult to employ some commercial elec-
tromagnetic software based on numerical methods (such as Ansys HFSS or CST) for their
analysis. Alternatively, modal methods, which are more suitable from a computational
point of view, may be performed by using either full-vectorial treatments [17] or approxi-
mate scalar approaches [18]. Scalar modal methods have two fundamental problems: on
the one hand, they lack general applicability and, on the other hand, they do not take into
account the vector nature of the electromagnetic fields. Thus, vectorial modal methods are
much more suitable because of their efficiency and accuracy. Additionally, the proposed
method is especially indicated for analyzing dielectric discontinuities including multiple
lossy dielectrics with periodic boundary conditions, such as the ones present in DFSSs,
in which other traditional methods may lack the necessary accuracy.

In this work, we will focus on a full-vectorial modal method [6] based in the Method
of Moments (MoM), in which integrals involving discontinuities of a component of the
electromagnetic field must be evaluated. These integrals contain the relative dielectric
permittivity function, which is a discontinuous function, and its transverse gradient. Some
confusion may exist regarding the evaluation of these integrals, due to the discontinuous
nature of the dielectric function and its transverse gradient. Thus, in this paper, we study
the way to solve these integrals accurately for the general case of a relative dielectric
permittivity function defined as a sum of lossy dielectric slabs in the unit cell of a peri-
odic dielectric medium, as is the case in DFSSs. To this end, we analyze a simple case of
a dielectric slab surrounded by a different dielectric medium inside the unit cell of the
periodic dielectric medium (see Figure 1), whose contour defines the discontinuity, so it can
be expressed in terms of the Heaviside or step function. In this way, these integrals have
been correctly evaluated regarding their discontinuity, giving good results for the prop-
agation constant and the fields obtained with the vectorial modal method. These results
are compared with those obtained using a less accurate evaluation of the cited integrals,
when an approximation made by other authors is employed [19–21], and also with results
obtained with a completely numerical approach adopted for numerical validation (Ansys
HFSS), demonstrating the accuracy of the proposed method and revealing a significant
higher efficiency in terms of computation time.
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Figure 1. Characteristic unit cell of a periodic dielectric medium.



The rest of the document is organized as follows. Section 2 is dedicated to describe the
theoretical base of the full-vectorial modal method and to evaluate the integrals involving
the discontinuity. Next, Section 3 shows, for a simple case, a comparison of the results of the
evaluation of these integrals when they are correctly evaluated with those obtained using a
wrong approximation. Results concerning the propagation constant obtained in both cases
for some propagating modes are also presented, along with some field components for this
case. Finally, Section 4 summarizes the main conclusions that can be drawn from this work.

2. Theory

The objective of this section is to present the theoretical bases of the vectorial modal
method for studying a dielectric one-dimensional periodic medium in the Y direction with
translational invariance along the Z axis (see Figure 1). We assume that the magnetic field
in this medium can be expressed as a linear superposition of fields with explicit harmonic
dependence on the z coordinate (we assume that the time dependence is always implicit
and has an harmonic form ejωt for all vector fields):

H(x, y, z) = (h(x, y) + hz(x, y) ẑ) e−jβz (1)

where β is the propagation constant, h represents the transverse component to the Z
direction of the magnetic field, and hz is the component in the Z direction. Following [22],
it can be derived that the transverse component of the magnetic field, when no sources are
present, satisfies the vector wave equation [5,6]:[

∇2
t + k2

0εr +

(
∇tεr

εr

)
× (∇t × ◦)

]
h = β2h (2)

where εr = εr(x, y) is the relative complex permittivity of the periodic medium, k0 is the
free-space wavenumber (k0 = ω

√
µ0ε0), and ∇t and ∇2

t are the transverse gradient and
transverse laplacian operators, respectively. In this equation, we can identify in square
brackets the differential operator governing the transverse component evolution along the
Z axis.

For our purposes, it is more interesting to rewrite Equation (2) as a pure 2D eigenvalue
problem for the differential evolution operator L:

Lh = β2h (3)

where h is the eigenvector of the L operator. We are certainly concerned with the matrix
representation of the linear operator L. Following the standard Method of Moments [23],
this eigenvalue equation can be expressed in a matrix form if the modes in the periodic
medium are expanded in terms of an auxiliary system whose eigenvectors satisfy an
orthogonality relation of the form:

〈ẽp, h̃q〉 = δpq . (4)

Thus, the modes of the real problem can be expanded in terms of the auxiliary sys-
tem as:

hn = ∑
q

cqnh̃q (5)

where cqn are the complex coefficients of the modal expansion for the transverse magnetic
field of the n-th mode. Finally, the transverse electric fields of the modes are related to
the magnetic ones through constraints directly derived from Maxwell’s equations [22],
resulting in:

en =
j

ωε
ẑ ×

[
1

jβn
∇t[∇t · hn] + jβnhn

]
. (6)



For the auxiliary system, we used the Floquet modes corresponding to a lossless
homogeneous medium of relative dielectric permittivity ε̃r and periodicity D—i.e., the
eigenfunctions of the evolution operator L̃ corresponding to a periodic structure immersed
in a lossless homogeneous medium [24]—. Such modes have been adequately normalized
to satisfy the following orthogonality relationship:

〈ẽp, h̃q〉 =
∫

CS
(ẽ∗p × h̃q) · ẑ dS = δpq (7)

where CS represents, in this case, the cross section of the periodic cell. Then, the application
of the Method of Moments yields the following linear matrix eigenvalue problem:

∑
q

Lpqcqn = β2
ncpn (8)

where Lpq are the matrix elements of the L operator, which are obtained as follows (it is
worth noting that the standard Galerkin’s procedure was not employed):

Lpq = 〈ẽp, Lh̃q〉 =
∫

CS
(ẽ∗p × L h̃q) · ẑ dS . (9)

By breaking down the problem under consideration to L = L̃ + ∆, each element Lpq
of the matrix can be calculated by means of the expression:

L(p,q) = β̃2δpq + k2
0

∫
CS
(εr − ε̃r)(ẽ∗p × h̃q) · ẑ dS +

∫
CS

[
ẽ∗p ×

((
∇tεr

εr
− ∇t ε̃r

ε̃r

)
×
(
∇t × h̃q

))]
· ẑdS (10)

where the first term is diagonal because the operator L̃ is expressed in its own orthogo-
nal basis.

Given that we have chosen as the auxiliary basis the Floquet modes of a lossless
homogeneous medium of relative dielectric permittivity ε̃r and periodicity D, in this case
we obtain5t ε̃r = 0. The diagonalization process provides us with the eigenvectors and
eigenvalues of the L-matrix. The former give us the amplitudes of the transverse magnetic
components of the waveguide modes. The latter yield their corresponding propagation
constants in the form of their squares β2.

For the particular case of a periodic dielectric medium with an arbitrary number
of dielectric slabs inside the periodic cell, the medium can be fully characterized by its
complex relative permittivity in the unit cell, defined as:

εr = εr(y) = ε̃rb +
ND

∑
i=1

[
(εri − ε̃rb)

(
H(y− y0i +

li
2
)− H(y− y0i −

li
2
)

)]
(11)

where H(y) is the Heaviside or step function, ND is the number of lossy dielectric slabs
inside the periodic cell (which can be an arbitrary number), and the i-th dielectric slab is
centered at point y0i, being li its width, as shown in Figure 1.

As described in Section 1, some confusion may exist in the evaluation of the one-
dimensional integrals that appear in the calculation of the L-matrix (see Equation (10)),
when the relative dielectric permittivity is a discontinuous function; this may even apply to
the simpler case of two dielectric slabs in the periodic cell of relative permittivities εr1 and
εr2 (see Figure 2), as will be analyzed in Section 3, defined as a Heaviside function—i.e., it
has a constant value of εr2 and εr1 in and outside of a domain of definition delimited by
the contour C—. For convenience, we will choose a curvilinear coordinate system [25]
defined by the curvilinear coordinates {n, τ, z}, being n and τ, respectively, the normal and
tangential coordinates to the contour C, and z coinciding with the Cartesian coordinate.



In this coordinate system, both the relative permittivity and its gradient may be expressed
as follows:

εr(xt) = εr2 + (εr1 − εr2)H(n− nc) (12)

∇tεr = (εr1 − εr2)
1
hn

∂

∂n
H(n− nc)n̂

= (εr1 − εr2)
1
hn

δ(n− nc)n̂ (13)

where we have chosen ε̃r = εr1, being hn and n̂, respectively, the normal scale factor and
theunit vector normal to the curve C in the normal-tangential coordinate system, and nc a
normal coordinate above the curve.
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Figure 2. Cross section of the unit cell of a periodic dielectric medium with relative permittivities εr2

and εr1, in and outside of the domain of definition delimited by the contour C.

The surface element dS in the z direction in the normal-tangential coordinate system
takes the form:

dS = dxdy ẑ = hnhτdndτ ẑ (14)

where hτ is the tangential scale factor.
The first integral of Equation (10) can be easily evaluated and we will not go into

detail. Precisely the second integral of Equation (10) is the one which may have some
difficulty in its evaluation, because a gradient of a discontinuous function must be calcu-
lated. Moreover, we will show that it can be reduced to a contour integral. By substituting
Equations (12)–(14) in the second integral of Equation (10), we find:

L2(p,q) ≡
∫

CS

[
ẽ∗p ×

(
∇tεr

εr
×
(
∇t × h̃q

))]
· ẑdS

=
∫

CS

[
ẽ∗p ×

(
(εr1 − εr2)

1
hn

δ(n− nc)n̂

εr2 + (εr1 − εr2)H(n− nc)
×
(
∇t × h̃q

))]
· ẑhnhτdndτ (15)



Now, making use of a property of the vector triple product, we can rewrite Equation (15)
as follows:

L2(p,q) =
∫

CS
−
(

ẽ∗p ·
(εr1 − εr2)

1
hn

δ(n− nc)un

εr2 + (εr1 − εr2)H(n− nc)

)(
∇t × h̃q

)
· n̂hnhτdndτ

= (εr2 − εr1)
∫

CS

e∗np δ(n− nc)

εr2 + (εr1 − εr2)H(n− nc)

(
∇t × h̃q

)
· n̂hτdndτ (16)

where enp is the normal component of the transversal electric field. Next, we can transform
the surface integral into a contour one, just making use of the fundamental defining
property of the delta function, which states that:∫

f (t)δ(t− a)dt = f (a) (17)

This works provided that the range of integration includes the point t = a. In our case,
the integration in n can be reduced by evaluating the integrand in n = nc:

L2(p,q) = (εr2 − εr1)
∮

C

e∗np(nc, τ)

[εr2 + (εr1 − εr2)H(n− nc)]n=nc

[(
∇t × h̃q

)
· ẑ
]

n=nc
hτdτ (18)

The following step is the evaluation of the Heaviside function just in the discontinuity.
This can be solved by approximating the step function by a continuous function that, in the
limit, coincides with the Heaviside function [26], which is:

f (x) =
1
2
[1 + tanh sx] ⇒ lim

s→∞
f (x) = H(x) =

 0, x < 0,

1, x > 0.
(19)

f ′(x) =
s

2cosh2 sx
⇒ lim

s→∞
f ′(x) = δ(x) (20)

Next, we have to evaluate the inverse of the relative permittivity function just in the
step, resulting in:[

1
εr

]
n=nc

=

[
1

εr2 + (εr1 − εr2)H(n− nc)

]
n=nc

= lim
s→∞

[
1

εr2 +
εr1−εr2

2 [1 + tanh s(n− nc)]

]
n=nc

=
2

εr1 + εr2
(21)

Substituting this result in Equation (18), we have the final expression for the second
integral of Equation (10):

L2(p,q) = (εr2 − εr1)
2

εr1 + εr2

∮
C

e∗np(nc, τ)
[(
∇t × h̃q

)
· n̂
]

n=nc
hτdτ (22)

A different result is obtained if we evaluate the term ∇tεr/εr, expressed as ∇t ln(εr),
as in [19–21]. In this case, the evaluation of the second integral of Equation (10) proceeds
as follows:

L2(p,q) = (ln(εr2)− ln(εr1))
∮

C
e∗np(nc, τ)

[(
∇t × h̃q

)
· n̂
]

n=nc
hτdτ (23)

As will be shown in next section, the results obtained using Equation (22) will be more
accurate than those obtained using the approximation described by Equation (23).



3. Numerical Results and Discussion

In this section, we apply the above theory to a simple case: it consists of a 1D periodic
dielectric medium of period D formed by a dielectric slab of width l = D/10 and εr2 = 20,
placed in a centered position (y0 = D/2) inside a periodic cell of relative permittivity
ε̃r = εr1 = 1. For this case, the relative permittivity function inside the periodic cell is
expressed as follows:

εr = εr1 + (εr2 − εr1)(H(y− yc1)− H(y− yc2)) (24)

where εr1 = 1.0, εr2 = 20.0, and yc1 = y0 − l/2 and yc2 = y0 + l/2 are the normal coordi-
nates above the curve C, which in this case coincide with the straight lines yc1 = 0.45D
and yc2 = 0.55D (i.e., one tenth of the periodic cell is filled with dielectric material whose
relative permittivity is εr2 = 20.0).

In order to verify that the second-order integral has been correctly evaluated using
Equation (22), it has also been numerically calculated employing, for the relative permittiv-
ity function, the continuous function described in Equation (19):

εr = εr1 +
εr2 − εr1

2
(tanh(s(y− yc1))− tanh(s(y− yc2))) (25)

∇tεr =

(
s(εr2 − εr1)

2cosh2 s(y− yc1)
− s(εr2 − εr1)

2cosh2 s(y− yc2)

)
ŷ (26)

where εr1, εr2, yc1 and yc2 take the same value as in Equation (24).
In Figure 3, we show the relative dielectric permittivity function for different values

of the parameter s. It can be checked that, in this case, the relative permittivity function is
very well approximated by the continuous function defined in Equation (25) using a value
of s = 1000. In the problem under consideration, we have chosen a working frequency of
10 GHz, and we have taken the Floquet modes under normal incidence of a homogeneous
medium of relative permittivity εr1 = 1 and periodicity D as the auxiliary basis in the
calculation of the L-matrix. In Table 1, we present the relative difference between the
result obtained for an element (in particular, L2(1,1)) of the second integral in Equation (10)
employing the function of Equation (25), with respect to that obtained using Equation (22)
for different values of the parameter s. Obviously, as the parameter s increases, the relative
difference rapidly decreases.
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Figure 3. Relative permittivity function defined by Equation (25) of the periodic dielectric structure
of Figure 2 for different values of the parameter s.



Table 1. Convergence of the matrix element L2(1,1) of the second integral in Equation (10) of the
periodic dielectric structure of Figure 2, obtained with the function of Equation (19), towards the
value obtained with Equation (22), for different values of the parameter s.

s L2(1,1) Rel. Diff. (%)

10 36.49 92.0
102 392.65 13.0
103 453.54 0.92
104 448.45 0.22
105 448.51 0.20
106 448.91 0.081

Now, we will analyze the effect of the dielectric permittivity in the deviation of the
value of the second integral in Equation (10) when it is not correctly evaluated. To this
end, we have plotted, in Figure 4, the deviation of the constant factors appearing out of
the integral in Equations (22) and (23), which are obtained by evaluating the term∇tεr/εr
or the term ∇t ln(εr), as a function of the difference of the relative dielectric permittivity
(εr2 − εr1). For small differences in the relative dielectric permittivity, the deviation is
not important, but as the difference becomes higher, the deviation between both results
becomes significant.
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Figure 4. Deviation of the term (ln(εr2)− ln(εr1)) with respect to the term (2(εr2 − εr1)/(εr1 + εr2))

appearing in Equations (22) and (23) as a function of the difference of the relative dielectric permittiv-
ity (εr2 − εr1).

Finally, we want to show the effect of the evaluation of the integrals in the discontinuity
in both the propagation constant and the fields, when the second integral of Equation (10)
is evaluated as in Equation (22), or by using the result of Equation (23). To this end, we
chose the same example that was previously described in Equation (24), with parameters
εr1 = 1.0, εr2 = 20.0, yc1 = 0.45D and yc2 = 0.55D, again under normal plane-wave
incidence. Table 2 displays the normalized propagation constant β/k0 of the two modes
which are propagative at the working frequency of 10 GHz, the first one being a mode with



TE polarization, while the second mode has a TM polarization. We compare the results ob-
tained with the vectorial modal method for both ways of evaluating the discontinuity (as in
Equation (22) or by using the result of Equation (23)), considering 30 vector mode functions
as the auxiliary basis in the calculation of the L-matrix for reaching the convergence (in this
case, with a 0.5% relative error). Such results are also compared with those numerically
obtained with Ansys HFSS, for which the computation time was two orders of magnitude
greater in the same machine, thus highlighting the advantage of the present vectorial
modal method in terms of efficiency. We also represent, in Figure 5, the y-component of the
transverse electric field for the first propagative TM mode in this structure.

Table 2. Normalized propagation constant β/k0 of the first two propagative modes of the periodic
dielectric medium described in Figure 3.

Mode HFSS Equation (22) Rel. Diff.
(%) Equation (23) Rel. Diff.

(%)

1 (TE1) 2.09859 2.09845 0.007 2.09845 0.007
2 (TM1) 1.06022 1.06070 0.045 1.19389 12.631
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Figure 5. Y-component of the electric field of the first TM mode of the periodic dielectric medium
described in Figure 3 obtained when evaluating the discontinuity as in Equation (22).

At the sight of Table 2, as one could expect for a great difference in the relative
permittivity, in the case of the second mode (the TM mode) the results obtained employing
the logarithm clearly deviate from the results obtained with Ansys HFSS, showing that the
integrals were not correctly evaluated. This does not occur when the integrals are computed
following Equation (22), giving a very good agreement. Nevertheless, this difference
between the results for both ways of evaluating the discontinuity is only characteristic of
the family of TM modes, with the result obtained by both methods for the TE modes being
nearly the same.

Thus, for the TE modes the results obtained in the diagonalization by both methods
coincide with the value obtained with Ansys HFSS, whereas for the TM modes we get a
better agreement by following the development derived in Equation (22). This behavior can
be understood as follows: for TM modes, the transverse electric field (which is represented
in Figure 5) is normal to the dielectric interface, being consequently discontinuous, which
is a direct consequence of the discontinuity in the dielectric permittivity, while the electric



displacement vector must be a continuous function along the dielectric interface. On the
other hand, the transverse electric field for TE modes is continuous, because the nature of
this family of modes forces the normal component of the electric field (the y-component
for our case), which should be discontinuous, to be equal to zero, which makes the second
integral in Equation (10) vanish in this case.

In Figure 6, we plot the electric displacement vector for the first TM mode when
following the development in Equation (22), showing that it is a continuous function along
the dielectric interface.

0.0 0.2 0.4 0.6 0.8 1.0
0.80

0.85

0.90

0.95

1.00

1.05

d
y

(a
.u

.)

y/D
Figure 6. Y-component of the electric displacement vector of the first TM mode of the periodic dielec-
tric medium described in Figure 3, obtained when evaluating the discontinuity as in Equation (22).

It is worth mentioning that, when conical incidence is considered (i.e., the incidence of
a plane-wave with arbitrary angles θ and φ) [27], the second integral in Equation (10) will
no longer vanish, and thus the evaluation of the dielectric discontinuities must be properly
conducted following the development provided in Equation (22).

4. Conclusions

Some considerations have been given regarding the way to solve some integrals
involving discontinuities of the relativity permittivity function in the application of a
vectorial modal method. This method has been used for analyzing the propagation in
inhomogeneous dielectric-filled media. The obtained results of this study can be applied to
the general case of a propagation medium whose relative permittivity function is defined
as a sum of lossy dielectric slabs. We have checked such results when characterizing
the modal spectrum (propagation constants and fields distribution) in one-dimensional
periodic lossy dielectric media, which constitute the building block of DFSSs. The proposed
approach has been validated by checking the obtained results with Ansys HFSS, and also
by comparing the derived data with other authors’ evaluation techniques, which have
a lower accuracy than the presented method. It has been concluded that this error only
affects the computation of modes involving discontinuities of some components of the
electromagnetic fields, as in the case of the TM modes in DFSSs.
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