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ABSTRACT 
 
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder and the 

main cause of dementia, characterised by two specific pathological hallmarks: 

the extracellular deposition of neurotoxic amyloid beta peptides in the form of 

senile plaques, and the intracellular accumulation of hyperphosphorylated forms 

of the cytoskeletal protein tau in neurofibrillary tangles. Two forms of AD exist, 

early-onset AD, which occurs before the age of 65 years and is usually hereditary; 

and late-onset, or sporadic AD (sAD), which accounts for more than 95% of cases 

and is linked to a series of genetic and environmental risk factors. APOE, the 

gene encoding the apolipoprotein E (apoE) protein, is the most prominent genetic 

risk factor for sAD. Three allelic variants exist in humans: APOE ε2, the least 

common variant linked to a reduced risk of developing AD; APOE ε3, the most 

common variant considered to be risk-neutral; and APOE ε4, linked to an 

increased risk of AD. The isoforms encoded by the allelic variants differ in single 

amino acid substitutions at positions 112 or 158; with apoE4 presenting Arginine 

at both positions, thus being unable to form disulphide-linked dimers, the most 

effective form of apoE to interact with cellular receptors. ApoE is the most 

important cholesterol transporter in the brain, however it has many other 

functions, some of which are dependent on its interactions with receptors, 

including apoER2, the main ligand of which is reelin. Reelin is a large glycoprotein 

that regulates neuronal migration during brain development, and is implicated in 

synaptic transmission, plasticity, and memory in the adult brain.  

In this doctoral thesis, we aimed to characterise altered patterns of apoE 

and reelin proteins in the cerebrospinal fluid (CSF) of AD patients, and to describe 

a relatively unknown apoE receptor, LRP3, and determine how it interacts with 

key proteins in AD. An imbalance of apoE glycoforms, with an increased 

abundance of immatures species, was detected in AD samples compared to 

controls, alongside the appearance, exclusively in AD samples, of an aberrant 

high molecular mass species that was compatible with dimers but resistant to 

reducing agents. ApoE4 also participates in these aberrant dimers, despite the 

inability of these isoforms to form disulphide-linked dimers. The apoE glycoform 
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imbalance was replicated in AD brain samples. Full-length reelin levels 

decreased in AD CSF and presented a different profile of fragments, 

characterized by increased C-terminal region cleavage and decreased N-terminal 

region cleavage, as compared with control subjects. Once again, aberrant 

complexes of high molecular mass, composed mainly of N-terminal reelin 

fragments, were also detected in AD, regardless of the APOE genotype. 

Regarding LRP3, we found a reduced presence of the receptor in the brain of AD 

patients and discovered that the expression of LRP3 is modulated by apoER2; 

and that LRP3 can in turn influence APP and Aβ levels. These results indicate a 

possible pathological situation in which modifications of the apoE and reelin 

proteins affect their protective functions and the efficiency of apoER2 signalling, 

thus contributing to the exacerbation of AD. These modifications can also affect 

mechanisms of co-regulation of key AD proteins, such as APP, thus implicating 

the LRP3 receptor. The apoE glycoform imbalance and the fragmentation profile 

of reelin, alongside the appearance of aberrant aggregates of both proteins, could 

serve as potential read-outs of impaired signalling, and may also have potential 

for AD diagnosis and progression.  
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RESUMEN 
 
La enfermedad de Alzheimer (EA) es un trastorno neurodegenerativo asociado 

a la edad y la principal causa de demencia. Se caracteriza por dos rasgos 

patológicos principales: el depósito extracelular de péptidos neurotóxicos de beta 

amiloide en forma de placas seniles, y la acumulación intracelular de formas 

hiperfosforiladas de la proteína citoesquelética tau en ovillos neurofibrilares. 

Existen dos formas de EA: EA de inicio temprano (antes de los 65 años), que 

suele ser hereditaria, y EA de inicio tardío o esporádica, que representa más del 

95% de casos y se asocia a factores de riesgo genéticos y ambientales. APOE, 

el gen que codifica la apolipoproteína E (apoE), es el factor de riesgo genético 

más importante para sAD. Existen tres variantes alélicas en humanos: APOE ε2, 

la menos frecuente y relacionada con un riesgo reducido de desarrollar EA; 

APOE ε3, la más común y neutra; y APOE ε4, relacionada con un mayor riesgo 

de padecer EA. Las isoformas codificadas por las variantes alélicas difieren en 

sustituciones de un aminoácido en las posiciones 112 o 158; y apoE4 presenta 

arginina en ambas posiciones, por lo que no puede formar dímeros por enlaces 

disulfuro, la forma más efectiva en la interacción con receptores celulares. ApoE 

es el transportador de colesterol más importante en el cerebro, pero tiene otras 

funciones, algunas asociadas a su interacción con receptores, como el apoER2, 

cuyo ligando principal es la reelina. La reelina es una glicoproteína involucrada 

en la migración neuronal durante el neurodesarrollo, y en el cerebro adulto 

participa en la memoria, y en la transmisión y plasticidad sináptica.  

En esta tesis doctoral, nuestro objetivo fue caracterizar los patrones 

alterados de las proteínas apoE y reelina en el líquido cefalorraquídeo (LCR) de 

pacientes con EA, y describir la función de un receptor de apoE, LRP3, apenas 

caracterizado en el SNC. Encontramos un desbalance de las glicoformas de 

apoE, con una mayor abundancia de especies inmaduras en las muestras de 

LCR con EA, en comparación con los controles. También detectamos la 

aparición, exclusivamente en EA, de una especie aberrante de alto peso 

molecular, compatible con los dímeros pero resistente a agentes reductores. El 

apoE4 también participa en estos dímeros aberrantes, a pesar de su incapacidad 
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de formar dímeros por enlaces disulfuro. El desequilibrio de glicoformas de apoE 

se replicó en muestras de cerebro con EA. Los niveles de reelina, como proteína 

completa, sin procesar proteolíticamente, disminuyeron en el LCR de EA y 

presentaron un perfil alterado de fragmentos, debido a un aumento de 

fragmentación en la región C-terminal y una disminución en la región N-terminal, 

en comparación con los controles. Detectamos complejos aberrantes de 500 kDa 

compuestos principalmente por fragmentos N-terminales de reelina, 

independientemente del genotipo APOE. En cuanto a LRP3, detectamos niveles 

reducidos del receptor en el cerebro de pacientes con EA y descubrimos que la 

expresión de LRP3 está modulada por apoER2; y que LRP3 puede a su vez 

influir en los niveles de APP y del péptido beta amiloide a través de mecanismos 

de endocitosis. Estos resultados indican que modificaciones de las proteínas 

apoE y reelina podrían afectar a sus funciones protectoras y a la eficiencia de la 

señalización de apoER2, contribuyendo así a la exacerbación de la EA. Estas 

alteraciones pueden también afectar la co-regulación de proteínas claves en la 

EA, como APP, a través del receptor LRP3. El desequilibrio de las glicoformas 

de apoE y el perfil de fragmentación de reelina, junto con la aparición de 

agregados aberrantes de ambas proteínas, podrían servir como indicadores de 

señalización alterada y tener un uso potencial para el diagnóstico de la EA.
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ALZHEIMER’S DISEASE 

Background 
Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by 

memory loss and a progressive decline in cognitive abilities that was first 

described in 1907 in a case study reported by Alois Alzheimer of a 51-year-old 

patient with rapidly deteriorating memory (Alzheimer, 1907). Whilst a variety of 

progressive neurological conditions were known at that time, the early age of 

onset and a new pathological finding, the neurofibrillary tangles (NFT), made this 

condition unique. Over time, AD has been split into two clinical conditions 

depending on the age of onset. Early-onset AD is a rare condition that affects 

individuals under the age of 65, and nowadays is known to be mostly hereditary, 

thus it can also be referred to as familiar AD; on the other hand, a similar dementia 

in the elderly, in individuals over 65 years of age, is referred to as late-onset or 

sporadic AD, representing >95% of AD cases. 

According to the World Health Organization, AD is the most common form 

of dementia, defined as a deterioration in cognitive function that surpasses the 

consequences associated to biological aging. AD is responsible for 

approximately 60-80% of cases of dementia and affects over 50 million people 

worldwide, with an increase in AD-associated deaths in recent years (Gauthier et 

al., 2021). The risk of developing AD greatly increases with age, affecting 5% of 

people aged 60-74 years, 13% of people aged 75-84, and 33% of people aged 

85 or above (2022 Alzheimer’s Disease facts and figures). Therefore, the disease 

constitutes a much larger burden on society than other common forms of 

dementia, such as dementia with Lewy bodies, frontotemporal dementia, or 

secondary dementia (caused by other primary factors, such as a stroke); and the 

associated economic burden of the disease has increased drastically in recent 

years (Wong, 2020).  

In AD, the pathophysiological changes precede clinical symptoms by 

various years (Jack et al., 2010). The disease is characterized by two main 

pathological hallmarks: amyloid or senile plaques (SPs) that accumulate 

extracellularly, and the deposition of NFTs constituted of hyperphosphorylated 

tau within neurons. The role of these hallmarks has been largely discussed, 
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leading to both amyloid- and tau-driven hypotheses (reviewed in Ferrer, 2022). 

Although other animals may present Aβ deposits and tau pathology, the 

distribution and prevalence of these characteristic hallmarks are exclusive to 

humans (Ferrer, 2022).  

The distribution and progression mainly of NFTs, but also SPs, in post-

mortem brains allows the categorization of the severity of the pathology. 

Regarding NFTs, the most widely used stage categorization system is called 

Braak stages (Braak and Braak, 1991), which describe neurofibrillary 

degeneration. In Braak stages I & II NFTs appear in the entorhinal and 

transentorhinal cortex; at stages III and IV they appear in the hippocampus, limbic 

system and temporal cortex; and finally, in stages V and VI the NFTs spread 

across the majority of the neocortex (Braak & Braak, 1991; Braak & Del Tredici, 

2011). Regarding the distribution of SPs, the stages are characterized as 0 

(absence of SPs), A (low density SPs in the occipital, temporal and frontal cortex), 

B (SPs in neocortical association areas and hippocampus) and C (SPs in the 

primary sensory and motor areas) (Braak & Braak, 1997). The different 

progressive stages of AD are illustrated in Figure 1. 

 

 
Figure 1. Progression of Aβ and tau pathology in AD. A: Illustration of an amyloid plaque 

(above) and a NFT (below). B: Progression of amyloid (above) and tau (below) pathologies over 

the course of AD. Small amounts of amyloid plaques start to appear in the temporal, frontal and 

occipital cortex (Stage A), before expanding to the hippocampus and neocortical association 

areas (Stage B), and then finally to the primary sensory and motor areas (Stage C). NFTs first 
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appear in the entorhinal and transentorhinal cortex (Stages I & II), and then progress to the 

hippocampus, limbic system and temporal cortex (Stages III & IV), before occupying the majority 

of the neocortex (Stages V & VI). Extracted from Masters et al., 2015. 

 

Amyloid-beta (Aβ) 
The extracellular amyloid plaques, or SPs, are one of the main hallmarks of AD. 

SPs represent the accumulation of amyloid beta (Aβ) peptides, which are short 

peptides of 36–43 amino acids generated by the proteolytic processing of the so-

called Amyloid Precursor Protein (APP), a large type I trans-membrane protein 

(Haass, 2012). APP belongs to a protein family alongside APP-like protein 1 

(APLP1) and 2 (APLP2), which are all type-I transmembrane proteins that are 

processed in a similar manner; however, the Aβ domain is unique to APP (Wasco 

et al., 1993; Coulson et al., 2000). Despite being at the centre of many studies, 

the physiological function of APP has yet to be fully defined, probably because 

APP is rapidly processed by proteolytic enzymes. Nonetheless, APP appears to 

be crucial for adequate migration of neuronal precursors to the cortical plate in 

neurodevelopment (Young-Pearse et al., 2007), as well as many other different 

functions, such as neurite outgrowth and synaptogenesis (reviewed in Zheng & 

Koo, 2006). 

The APP gene is located on chromosome 21, and three major isoforms 

can arise from alternate splicing: APP695, APP751 and APP770, which contain 

695, 751 and 770 amino acids, respectively (Goate et al. 1991), all of which can 

generate Aβ. Even though the neuronal APP695 variant is the most abundant in 

the brain, levels of the APP751 and APP770 variants appear to be elevated in 

the AD brain and are associated with increased Aβ deposition (Menéndez-

González et al., 2005). However, the relation between the expression levels of 

the different isoforms and their proteolytic processing is not well established. 

The proteolytic processing of APP is carried out by enzymes known as 

secretases, which are responsible for the cleavage of many different substrates 

in addition to APP. Depending on the secretases involved, APP can be processed 

by two distinct pathways: the amyloidogenic pathway, which leads to the 

production of Aβ, and the non-amyloidogenic pathway, which does not. These 

pathways are illustrated in Figure 2. It is worth noting that under physiological 
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conditions both pathways are active in parallel, and that Aβ levels are maintained 

through a balance of production (amyloidogenic pathway) and clearance (Zhang 

et al., 2011). 

 

APP non-amyloidogenic pathway: α-secretases and γ-secretases 

In the non-amyloidogenic pathway, APP is sequentially processed by α-

secretases and γ-secretases. The α-secretase cleavage site is located within the 

Aβ domain, and thus precludes Aβ generation (Sisodia, 1992; Spies et al., 2012). 

Following processing, a large soluble ectodomain called sAPPα is generated, 

which has an important role in neuronal plasticity and survival and has a 

protective function against neurotoxicity (Furukawa et al., 1996; Mattson, 1997), 

as well as in the regulation of neural stem cell proliferation (Caillé et al., 2004). 

Alongside the sAPPα fragment, a C-terminal fragment of 83 amino acids, α-CTF, 

that remains bound to the membrane is also generated. This α-CTF is further 

processed by γ-secretase, releasing a soluble intracellular fragment, the so-

called APP Intra-Cellular Domain (AICD) and a small extracellular non-

amyloidogenic fragment known as P3, which is rapidly degraded and does not 

appear to have any significant biological role. 

α-secretase activity mainly resides with several members of the ADAM (A 

Disintegrin And Metalloproteinase) family, especially ADAM10, but also ADAM17 

(Lichtenthaler et al., 2021). Overexpression of ADAM10 increases α-cleavage of 

APP in several cell lines (Kuhn et al., 2010), whereas ADAM10 conditional knock-

out nearly abolishes sAPPα generation (Jorissen et al., 2010). It has been 

demonstrated that activation of ADAM10 by the synthetic retinoid acitretin is 

viable in vitro and in patients with AD, and this activation induces an increase of 

the levels of sAPPα in the cerebrospinal fluid (CSF) (Endres et al., 2014). 

Furthermore, in AD patients, reduced ADAM10 protein levels in platelets have 

been associated to significantly reduced sAPPα levels in platelets and in the CSF 

(Colciaghi et al., 2002), and reduced α-secretase activity has been detected in 

the temporal cortex of affected patients (Tyler et al., 2002). Indeed, ADAM10 is 

detectable in the CSF and the levels of the mature full-length species and 

fragments of ADAM10 seem to be significantly reduced in AD CSF samples 

(Sogorb-Esteve et al., 2018). 
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The γ-secretase activity resides in a complex of high molecular mass 

consisting of four components, all of which are necessary for enzymatic activity 

(Kimberly et al., 2003; Takasugi et al., 2003): 

- Presenilin (PS), present as two distinct homologs, PS1 and PS2, that act 

as catalytic components of the γ-secretase (Ahn et al., 2010).  

- Nicastrin, which is a large glycoprotein that acts as a scaffolding protein 

within the complex (Arakawa et al., 2002)  

- Anterior pharynx-defective-1 (APH-1), which is required for the cell-

surface localization of nicastrin (Goutte et al., 2002).  

- Presenilin-enhancer-2 (PEN-2), which is necessary for the expression of 

PS and the maturation of nicastrin (Steiner et al., 2002). 

   

APP amyloidogenic pathway: β-secretases and γ-secretases 

The amyloidogenic pathway consists in the sequential processing of APP through 

β-secretases that are exclusive to this processing pathway, and γ-secretases, 

which are shared between the two pathways. BACE1 (Beta-site Amyloid 

precursor protein Cleaving Enzyme 1) is the main β-secretase in the central 

nervous system (CNS) (Sinha et al., 1999; Hampel et al., 2021). BACE1 has been 

proven to be directly involved in Aβ production in several transgenic mouse 

models (Luo et al., 2001; Domínguez et al., 2005), as BACE1 knock-out mice do 

not produce detectable levels of Aβ and are rescued from neuronal loss and 

memory deficits (Ohno et al., 2004; Ohno et al., 2006). Studies in human brains 

have detected that BACE1 protein and activity levels are elevated in regions 

affected by AD (Yang et al., 2003; Johnston et al., 2005). In the CSF of AD 

patients, various different BACE1 species co-exist, yet the mature full-length 

species is the only one presenting higher levels (López-Font et al., 2019). Since 

cleavage of APP by BACE1 is the rate-limiting step in Aβ production, the viability 

of BACE1 as a therapeutic target in AD has been extensively studied (Egan et 

al., 2018; Henley et al., 2019). 

As a result of the β-cleavage, the APP ectodomain is released as a soluble 

fragment: sAPPβ. sAPPβ is shorter than sAPPα, given that it does not contain 

any part of the Aβ peptide (amino acids 1-16), unlike sAPPα, and has a role in 

mediating axonal pruning and neuronal cell death (Nikolaev et al., 2009). The 



 INTRODUCTION 
 

 
 

21 
 

APP domain that remains inserted in the membrane, β-CTF, is also further 

processed by γ-secretase, thus finally producing extracellular Aβ and intracellular 

AICD fragments (Zhang et al., 2017). γ-secretase cleavage takes place within the 

transmembrane domain and can yield Aβ species of varying length, of which the 

most relevant in vivo species are Aβ40 (containing 40 amino acids), the most 

common species, and Aβ42 (containing 42 amino acids), the most amyloidogenic 

species associated to AD pathology (Zhao et al., 2007; Kandalepas et al., 2013; 

Sadleir et al., 2016). 

Alternative APP secretases, including δ- and η-secretases, as well as 

alternative β-secretases, have been discovered recently and appear to be linked 

to AD (discussed in Andrew et al., 2016). Therefore, many APP proteolytic 

pathways co-exist. 

 Monomeric Aβ is released under physiological conditions and regulates 

synaptic functions, amongst others, such as promoting brain recovery after injury 

and fixing leaks in the blood-brain barrier (BBB) (Jeong et al., 2022). The levels 

of the Aβ peptide are physiologically controlled through a balance of its production 

and clearance, but the peptide, particularly the Aβ42 species, has a natural 

tendency to self-associate into dimers and soluble oligomers. In AD, abnormally 

folded amyloid peptides form insoluble and toxic amyloid fibrils that accumulate 

in extracellular plaques (Lane et al., 2018). Accordingly, high levels of amyloid 

deposits in the brain are associated to low CSF Aβ levels, thus indicating a 

decline in the solubility of the peptides alongside a reduced rate of clearance 

(Grimmer et al., 2009; Strozyk et al., 2003). Further studies associate the 

reduction in CSF Aβ levels to AD progression (Wahlund & Blennow, 2003), and 

for this reason the measurement of decreased CSF Aβ levels is a diagnostic 

biomarker used nowadays (Blennow & Zetterberg, 2018), which will be discussed 

at a later point.  

The accumulation of Aβ in SPs led to the belief that the production of Aβ 

fibrils was the triggering factor responsible for AD progression, referred to as the 

amyloid cascade hypothesis (Hardy & Higgins, 1992). Nonetheless, recent 

studies reported toxic effects for Aβ oligomers, in addition to fibrils, indicating that 

Aβ oligomers, rather than SPs, are the leading effectors of AD (Selkoe & Hardy, 

2016; Cline et al., 2018). Thus, Aβ plays a major role in neurotoxicity in key areas 
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such as the hippocampus and cerebral cortex, leading to cognitive impairment, 

as well as causing damage to astrocytes, microglia and neurons, and influencing 

NFT formation (Chen et al., 2017). Aβ can also become toxic by promoting 

oxidative stress and alterations in calcium metabolism and membrane potentials 

(Reiss et al., 2017; Soria Lopez et al., 2019). 

 

 
Figure 2. APP processing pathways. APP can be processed by the non-amyloidogenic pathway 

(left) or the amyloidogenic pathway (right). APP is first cleaved by α- or β-secretase into large 

soluble fragments (sAPPα and sAPPβ, respectively) and a membrane-bound C-terminal fragment 

(C83 and C99, respectively). These CTFs are further processed by γ-secretase, yielding an APP 

intracellular domain (AICD) common to both pathways, and a soluble fragment, which is Aβ in the 

case of the amyloidogenic pathway. Aβ then aggregates and can form soluble oligomers, or 

insoluble senile plaques in the extracellular space. Extracted from Spies et al., 2012. 

 

Tau: Formation of NFTs 
Tau is a microtubule associated protein expressed mainly in neurons (Grundke-

Iqbal et al., 1989; Wood et al., 1986) that is encoded by the MAPT gene. Tau 

plays a key role in the maintenance of neuronal morphology, the axonal transport 

of organelles and synaptic plasticity (Robbins et al., 2021), and these functions 

are modulated by site-specific phosphorylation, regulated by kinases and 
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phosphatases (Mandelkow & Mandelkow, 2012). There is significant evidence 

supporting the notion that a disruption of normal phosphorylation events results 

in tau dysfunction in neurodegenerative diseases, including AD, but also others 

such as Pick’s disease, progressive supranuclear palsy, corticobasal 

degeneration, argyrophilic grain disease and other primary age-related 

tauopathies (Kovacs, 2017). In AD, the tau protein is hyperphosphorylated and 

incapable of performing its biological roles adequately, consequently affecting 

long-term potentiation and synaptic plasticity (Boekhoorn et al., 2006; Shentu et 

al., 2018).  In fact, since tau plays an important role in maintaining synaptic 

function and neuronal projections, a loss of tau function in key areas such as the 

hippocampus could be responsible for the memory deficits present in AD (Selkoe, 

2002).  

Abnormal modifications and truncations of tau, alongside the accumulation 

of hyperphosphorylated tau (P-tau), results in its self-aggregation within neurons 

into loosely intertwined paired helical filaments (PHFs) and tightly wrapped 

straight filaments, which then lead to the formation of NFTs (Sinsky et al., 2021), 

finally leading to neuronal collapse and cell death (Goedert et al., 1992). The 

formation of NFTs is illustrated in Figure 3. The accumulation of NFTs starts in 

specific regions of the cortex, before expanding to the majority of cortical 

structures in the latter stages of the disease. Despite the distinct spatial 

distribution of NFTs (intracellular) and SPs (extracellular), studies in mouse 

models have shown that Aβ can enhance tau aggregation (He et al., 2017); 

similarly, other factors, such as cleavage by proteases, may also promote tau 

aggregation (Zhang et al., 2017). Tau also accumulates in the AD brain as 

neuropil filaments, which occurs in areas of the brain lacking cell bodies (Braak 

& Braak, 1988). 
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Figure 3. NFT formation. The hyperphosphorylation of microtubule-associated tau protein leads 

to its self-aggregation and the accumulation of intracellular loosely intertwined paired helical 

filaments (PHF) and tightly wrapped straight filaments (SF). These PHFs and SFs then lead to 

the accumulation of NFTs. Extracted from Jie et al., 2021. 

 

Other characteristics of AD 
Alongside the key hallmarks mentioned beforehand, AD is also characterized by 

other factors: 

- Synaptic deficits: The loss of synaptic plasticity is at the centre of the 

clinical manifestations of AD, as the loss of synapses and synaptic 

receptors correlates with the cognitive decline presented throughout the 

disease (Boros et al., 2017). The progressive deposition of Aβ into 

plaques, which slowly grow in size, is believed to be responsible for the 

damage to synapses and the subsequent reduction in glutamatergic 

transmission (Wu et al., 2010; Burgold et al., 2011). However, there is 

much evidence that implicates soluble oligomeric Aβ as the primary 

noxious form leading to synaptic loss (reviewed in Reiss et al., 2018). As 

the harmful effects of Aβ spread to other brain areas, the damage 

becomes more severe and can also promote the phosphorylation of tau, 

its dissociation from microtubules, and the formation of NFTs, which 

directly cause neurodegeneration (Jack et al., 2018). Therefore, it is 

possible that β-amyloid-induced synaptic deficits are responsible for the 

early stages of the disease, whereas the tau-associated axonal damage 
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characterizes the latter stages of synaptic degradation in AD (Pereira et 

al., 2021), however alternative hypotheses have also been proposed 

(reviewed in Ferrer et al., 2022).  

- Neuroinflammation: Astrocytes and microglia are the main cell types in 

the central nervous system responsible for the inflammatory response, 

and prolonged neuroinflammation plays a key role in several 

neurodegenerative diseases, although its precise role has yet to be 

determined (Calsolaro & Edison, 2016, Parkhizar & Holtzman, 2022). 

Activated microglia and reactive astrocytes have been detected in the 

brains of AD patients, and microglial cells have been observed 

surrounding amyloid plaques (Sastre et al., 2006). Microglia and 

astrocytes can play a key role in AD through the release of high levels of 

pro-inflammatory cytokines (Morales et al., 2014) or by promoting Aβ 

deposition (Guo et al., 2002). Furthermore, astrocytes and microglia can 

up-regulate β-secretase protein levels and enzymatic activity, thus 

increasing the production of Aβ (Sastre et al., 2003). Finally, these glial 

cell types may also contribute to the progression of the disease by 

enhancing oxidative and endoplasmic reticulum stress (Chen et al., 2014; 

Li et al., 2015; Lennol et al., 2021).  

- Lipids: The brain is one of the most lipid-rich organs in the body, as lipids 

constitute the basic structural component of neuronal cell membranes. 

The disruption of lipid homeostasis is linked to neurological disorders 

including AD, and as such, variations of fatty acids in lipid rafts and 

cerebral lipid peroxidation are detected in the early stages of the disease 

(Kao et al., 2020). The most abundant lipid in the brain is cholesterol, 

where it is formed de novo, given that the blood-brain barrier prevents 

lipids entering the brain (Vance et al., 2005). Cholesterol plays an 

important role in amyloidogenesis (Di Paolo & Kim, 2011), as 

demonstrated by studies showing that increased levels of cholesterol 

seem to be responsible for Aβ formation in the early stages of AD (Kojro 

et al., 2001). Cholesterol influences APP processing by affecting the 

activity of all the secretases involved (α-, β- and γ-secretases), and 

mediates Aβ metabolism, as increased cholesterol levels are associated 
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to increased Aβ levels (Puglielli et al., 2003). Cholesterol metabolites also 

appear to play a key role in AD, as high levels of 27-hydroxycholesterol 

have been detected in the brain and CSF of AD patients (Testa et al., 

2016). Furthermore, many of the genetic risk factors for AD are involved 

in lipid homeostasis (Harold et al., 2009). 

 

Genetics 
As mentioned, two different variants of AD exist: sporadic AD (sAD), also known 

as late-onset AD, associated to an increased risk in the older population; and 

early-onset AD, which is usually linked to several genetic mutations in key 

elements of the disease that lead to an early development of symptoms, in which 

case it is also referred to as familial AD (fAD). sAD is the most common form of 

the disease and is responsible for 95-98% of cases (van Cauwenberghe et al., 

2016). 

 fAD is an autosomal dominant condition caused by the mutation in one (or 

more) of the following three genes: APP (on chromosome 21, encoding the 

amyloid precursor protein, APP) (Goate et al., 1991), PSEN1 (on chromosome 

14, encoding the γ-secretase catalytic subunit presenilin 1, PS1) (Sherrington et 

al., 1995) or its homologous PSEN2 (on chromosome 1, encoding presenilin 2, 

PS2, which can substitute PS1 in the γ-secretase complex) (Levy-Lahad et al., 

1995; Canavelli et al., 2014). More than 200 mutations for these genes have been 

described (Cruts et al., 2012) that are believed to cause this early form of AD, 

either by enhancing the production and deposition of Aβ through the increase of 

APP levels and its amyloidogenic processing, or by the generation of an 

imbalance between Aβ42 and Aβ40 species (Selkoe, 1997; Walker et al., 2005). 

The heritability of this presentation of the disease ranges between 92 and 100% 

(Cacace et al., 2016). Nonetheless, uncertainties arise regarding the heritability 

of the illness due to the appearance of rare variants (Ayodele et al., 2021) 

associated to mutations in genes such as SORL1 (Andersen et al., 2016) and 

TREM2 (Bellenguez et al., 2017). Thus, it is plausible that some early-onset AD 

forms are not caused by an inherited change in one of these three deterministic 

genes, and may rather be a consequence of a combination of other genes that 



 INTRODUCTION 
 

 
 

27 
 

do not cause the disease directly but drastically increase the risk of developing 

AD. 

 Regarding the genetic risk factors of the most common variant of the 

disease, sAD, many different genes involved in different processes have been 

linked to the disease, such as genes related to inflammatory processes (TREM2) 

(Guerreiro et al., 2012, Jonsson et al., 2013), membrane trafficking (SORL1, 

PICALM) (Harold et al., 2009, Pottier et al., 2012), and lipid metabolism (CLU, 

ABCA7) (Harold et al., 2009; Naj et al., 2011). Recent studies have also 

discovered a novel mutation in the ADAM10 gene linked to an increased 

likelihood of developing the disease (Agüero et al., 2020). However, the most 

important risk factor for sAD is the APOE gene (Corder et al., 1993), encoding 

the apolipoprotein E protein, which will be analysed in depth throughout the 

following sections.  

 sAD is likely to be caused by an interplay between various genetic and 

environmental factors. Epidemiological evidence indicates that hypertension and 

obesity increase the risk of developing sAD (Xu et al., 2015; Qizilbash et al., 

2015), as well as high cholesterol, diabetes, smoking, depression, physical and 

mental inactivity, and a poor diet (Barnes & Yaffe, 2011; Nordestgaard et al., 

2022).  On the other hand, healthy activities such as physical exercise (de la 

Rosa et al., 2020), a healthy diet (Petersson & Philippou, 2016) and increasing 

cognitive reserve (Stern, 2012) all reduce the risk of developing AD, or, at least, 

delay the onset of the disease (reviewed in Livingston et al., 2020). 
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APOLIPOPROTEIN E 

Basic functions and characteristics 
Apolipoprotein E (apoE) is a glycoprotein of approximately 34 kDa in molecular 

mass that is composed of 299 amino acids. It is present ubiquitously throughout 

the body, although its production is tissue-specific and can be regulated by 

various factors, such as lipids, hormones or transcription factors (Kockx et al., 

2018). In the peripheral system, apoE is produced mainly by the liver and plays 

an essential role in cholesterol metabolism.  

In the CNS, apoE is mainly produced by astrocytes (Boyles et al., 1985), 

although under stress conditions it can also be produced by microglia, 

oligodendrocytes, choroidal epithelial cells of the choroid plexus, and even 

neurons (Bruinsma et al., 2010; Buttini et al., 2010). The protein is synthesized in 

the endoplasmic reticulum (ER), post-translationally glycosylated in the Golgi 

network, where it is O-glycosylated and sialylated, and then transported to the 

plasma membrane and secreted (Kockx et al., 2007). O-glycosylation, alongside 

N-glycosylation, are the main protein glycosylation mechanisms. N-glycosylation 

can take place in the ER and Golgi apparatus, and consists in the addition of a 

N-acetylglucosamine (GlcNAc) to an Asparagine (Asn) residue; O-glycosylation, 

on the other hand, is a more diverse form of glycosylation that occurs exclusively 

in the Golgi apparatus and consists in the covalent linkage of glycans to a Ser/Thr 

residue (Haukedal & Freude, 2020). 

ApoE is the most important protein involved in lipid transport and 

cholesterol metabolism in the brain, which, indeed, is the most cholesterol-rich 

organ in the body. ApoE provides cholesterol to neurons and carries out the 

clearance if excessive levels are present (Mahley, 2016). In this manner, apoE 

participates in many different functions, such as cell membrane support and 

repair after injury (Lane-Donovan et al., 2016; Tensaouti et al., 2020). In order to 

correctly perform most of these functions, apoE needs to be secreted and 

lipidated.  

ApoE lipidation is mediated by the ATP binding cassette transporter A1 

(ABCA1) and ATP binding cassette subfamily G member 1 (ABCG1), both of 

which control cholesterol efflux to apoE (Vance & Hayashi, 2010). ABCA1 is one 



 INTRODUCTION 
 

 
 

29 
 

of the key transporters regulating cholesterol efflux through lipoproteins, and thus 

plays a key role in forming high-density lipoproteins (HDL) (Jacobo-Albavera et 

al., 2021). Lipoproteins are biochemical structures responsible for the transport 

of insoluble lipids through extracellular fluids, and apoE binds to these structures 

to stabilise them and guide their function and transport (Feingold, 2022).   

Astrocytic production and secretion of apoE are regulated by the liver X 

receptor (LXR) and the retinoid X receptor (RXR), which are nuclear receptors of 

transcription factors implicated in cholesterol metabolism (Fernández-Calle et al., 

2022). These receptors are involved in the transcriptional regulation of APOE 

(Hong & Tontonoz, 2014), and LXR also regulates ABCA1 transcription 

(Koldamova et al., 2007). 

The APOE gene is the most important genetic risk factor for sAD and is 

located on chromosome 19q13.32. APOE presents three distinct variants: APOE 

ε2, ε3 and ε4, which encode the apoE2, apoE3 and apoE4 isoforms, respectively. 

Given these allelic variations, six different APOE genotypes arise: three 

homozygous (APOE ε2/ε2, ε3/ε3 and ε4/ε4) and three heterozygous (APOE 

ε2/ε3, ε2/ε4 and ε3/ε4). The ε3 allele is by far the most common, as it presents 

an allele frequency of 75-78%, and is considered to be risk neutral for AD. The 

APOE ε2 allele has been reported to be protective against AD (Li et al., 2020), 

and is the least frequent, present in 5-8% of the population. The ε4 allele is 

present in ~14% of the population (Eisenberg et al., 2010; Husain et al., 2021), 

and has been associated to an increased risk of developing AD. Expressing one 

copy of the ε4 allele increases the risk of AD threefold, whereas expressing two 

copies of the ε4 allele can increase the risk 9- to 15-fold compared to the 

expression of the ε3 allele (Sando et al., 2008; Yamazaki et al., 2019); 

furthermore, expressing ε4 alleles also considerably reduces the age of onset of 

AD (Roses et al., 1996).  It is important to note that, within the population of AD 

individuals, the presence of the ε4 allele is considerably higher and is present in 

approximately 37% of cases (Farrer et al., 1997; Belloy et al., 2019).  

ApoE forms differ in their relative abundance in the CSF and plasma. In 

the latter, apoE concentrations are isoform-dependent, with apoE2 presenting the 

highest concentration, and apoE4 the lowest (Rasmussen et al., 2015). In the 

CSF, contradictory results have been observed, depending on the quantification 
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method used: ELISA studies showed isoform-dependent differences in apoE 

levels (Shinohara et al., 2016), whereas mass spectrometry studies found no 

such differences (Wildsmith et al., 2012). Other studies found reduced levels of 

apoE in APOE ε3/ε4 and ε4/ε4 cases compared to apoE from APOE ε2/ε3 cases 

(Cruchaga et al., 2012). In induced pluripotent stem cell (iPSC)-derived astrocyte 

studies, apoE4 was associated to decreased protein and mRNA levels compared 

to apoE3 (Lin et al., 2018), but this result was not replicated in iPSC-derived 

cerebral organoids (Zhao et al., 2020). Nonetheless, apoE4 is normally 

associated to lower protein levels than apoE3 in the CNS (Sullivan et al., 2011). 

The allelic variations of apoE also affect the lipid particle size and the type 

of lipids apoE binds to. In AD brains, apoE-containing particles from APOE ε4/ε4 

subjects are significantly larger than those derived from APOE ε3/ε3 subjects 

(Garcia et al., 2021). ApoE4 presents preferential binding for very low-density 

lipoproteins (VLDLs) and low-density lipoproteins (LDLs), whereas the 

preference is for HDLs in the case of apoE3 (Li et al., 2013).   

Biochemical features  
ApoE protein presents three distinct regions: an N-terminal domain (residues 1-

167), which contains the receptor-binding region (residues 136-150), a C-terminal 

domain (residues 206-299) containing the lipid-binding region (residues 244-

272), and a flexible hinge region (residues 168-205) that joins the two domains 

(Weisgraber, 1994; Frieden & Garai, 2013; Chen et al., 2021). The isoforms 

derived from the genotypes differ from one another in the amino acids at positions 

112 and 158: apoE2 possesses cysteine at both positions 112 and 158 

(Cys112/Cys158), apoE3 possesses a cysteine at position 112 and an arginine 

residue at position 158 (Cys112/Arg158), and apoE4 possesses arginine at both 

positions (Arg112/Arg158). The amino acid substitution at position 112 

significantly alters the structure of apoE4, as the presence of an arginine at this 

position enables the formation of a salt bridge between the N-terminal and C-

terminal domains of apoE4, which are otherwise separated in apoE2 and apoE3 

(Yu et al., 2014). Moreover, the presence of a cysteine at position 112 enables 

apoE2 and apoE3 isoforms, but not apoE4, to form disulphide-linked dimers in 
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the brain (Elliott et al., 2010). The structure of the different apoE isoforms is 

represented in Figure 4. 

 

 
Figure 4. ApoE structure and isoforms. A: Variant frequency of each apoE isoform in control 

and AD subjects, and the amino acid substitutions. B: Visualization of the structure of the different 

apoE isoforms. Extracted from Belloy et al., 2019. 

 

The amino acid composition of the different apoE isoforms influences their 

receptor and lipid binding abilities (Weisgraber et al., 1982) but also their 

lipidation levels, being apoE4 the least lipidated isoform, and apoE2 the most 

lipidated (Hubin et al., 2019).  

Aside from the three basic allelic forms, rare variants of APOE have also 

been described, which modulate the influence of the APOE genotype on the risk 

of developing AD. The most relevant is the Christchurch mutation found in APOE 

ε3 (R136S), consisting in a substitution of Arg136 for Ser within the receptor 

binding region of apoE3 (Wardell et al., 1987). This mutation protected against 

fAD in a woman that carried two copies of APOE ε3 (R136S) and the PSEN1 

E280A mutation (Arboleda-Velasquez et al., 2019). Interestingly, heterozygous 

carriers of the R136S mutation do not appear to benefit from its protective effects 

(Hernandez et al., 2021). Other mutations have been recently described in the C-

terminal region of apoE, including the V236E (known as the Jacksonville 

mutation, Valine  Glutamic acid) in APOE ε3, which reduces apoE aggregation, 



 INTRODUCTION 
 

 
 

32 
 

and the R251G mutation (Arginine  Glycine) in APOE ε4, and both may have 

protective effects against the risk of developing AD (Le Guen et al., 2022).  

 ApoE protein is characterized by a series of post-translational 

modifications that affect its structure and dynamics, including phosphorylation 

(Jaros et al., 2012), oxidation (Jolivalt et al., 1996) and the binding of sugars either 

by a non-enzymatic process (glycation) (Shuvaev et al., 1999) or by enzymatic 

mechanisms, the most important of which is glycosylation (Ke et al., 2020). The 

O-glycosylation of apoE confers it the required flexibility to alter its conformation 

in order to bind lipoproteins. Eight different O-glycosylation sites have been 

identified throughout the entirety of the structure of apoE, presenting sites in the 

N-terminal domain (Thr8, Thr18, Ser94), the hinge region (Thr194 and Ser197), 

and the C-terminal region (Thr289, Thr290, Ser296) (Martens, 2022). The 

glycans held by apoE are mainly monosialylated (Neu5Acα2–3Galβ1–

3GalNAcα1-) and disialylated (Neu5Acα2–3Galβ1–3(Neu5Acα2–6)GalNAcα1-) 

core 1 O-glycan structures (Flowers et al., 2020). Interestingly, apoE derived from 

the plasma and CSF differ in their glycosylation patterns, as CSF-derived apoE 

is more heavily glycosylated. Specifically, CSF-derived apoE presents much 

more C-terminal O-glycosylation but less N-terminal O-glycosylation than plasma 

apoE, with similar levels in the hinge region (Flowers et al., 2020). Moreover, 

apoE found within the cell appears to be more heavily glycosylated than the 

secreted forms (Lee et al., 2010). Furthermore, apoE glycosylation and secretion 

appears to depend on the cellular source: astrocytes secrete two differently 

glycosylated forms of apoE, whilst microglia secrete only one form of apoE but 

possess two intracellular forms, all of which are glycosylated (Lanfranco et al., 

2021).  

 

ApoE signalling pathway 
ApoE is internalized by apoE receptors that belong to the low-density lipoprotein 

receptor (LDLR) family (Holtzman et al., 2012). The members of this family are 

seven structurally related transmembrane proteins (May et al., 2007), although 

recently other LDLR members have been discovered (Holtzman et al., 2012). 

Adequate apoE binding to these receptors is dependent on lipoprotein-binding: 
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when apoE binds to a lipoprotein it undergoes a conformational change that 

separates its N- and C- terminal regions, and this exposes the previously buried 

receptor-binding domain, which allows the interaction of the protein with its 

receptors (Chen et al., 2011). Among the LDLR family members, the receptor 

LDLR preferentially binds lipidated rather that non-lipidated apoE particles (Bu, 

2009), whereas low density lipoprotein receptor-related protein 1 (LRP1) has a 

preference for binding recombinant rather than physiological apoE, HDL derived 

from the CSF, and lipoproteins enriched for apoE (Zhao et al., 2018). 

Accumulating evidence indicates that LRP1 is a key regulator of APP/Aβ 

metabolism (reviewed in: Shinohara et al., 2017). The allelic variations of APOE 

also affect receptor preference, as apoE4 has been observed to present a higher 

affinity to LRP1 than apoE3 (Cooper et al., 2021).   

The sortilin-related receptor SorlA, encoded by the AD risk factor gene 

SORL1 (Campion et al., 2019), preferentially binds apoE4 (Yajima et al., 2015). 

Furthermore, SorlA also acts as a neuronal receptor for APP and participates in 

the regulation of the amyloidogenic processing pathway (Spoelgen et al., 2006). 

ApoE also binds proteoglycans, such as heparin sulphate proteoglycans 

(HSPG), through its N-terminal domain (Saito et al., 2003). Interestingly, the 

APOE Christchurch mutation has been associated to strongly decreased apoE 

binding to both heparin and LDLR (Lalazar et al., 1988; Arboleda-Velasquez et 

al., 2018). 

ApoE also binds to the receptors apoER2 (another member of the LRP 

family, also known as LRP8) and very low-density lipoprotein receptor (VLDLR); 

however, reelin protein appears as the principal ligand for both receptors 

(D’Arcangelo et al., 1999), which will be discussed further ahead. The binding of 

apoE to apoER2 leads to the internalization of APP and BACE1, which could 

subsequently lead to an increased production of Aβ (He et al., 2007). 

Nonetheless, apoE may simply interfere with reelin signalling by competing for 

binding to the receptor (Beffert et al., 2004; Hoe & Rebeck, 2005), likely as 

unlipidated apoE.  

Recently, new members of the LRP family, such as low-density lipoprotein 

receptor-related protein 3 (LRP3), have been described and may also have a role 

to play in AD. LRP3 is smaller and presents a different structure compared to 
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other core members of the LRP family, and has been associated to roles in 

osteogenic and adipocytic differentiation (Elsafadi et al., 2017), although the 

precise functions of LRP3 in the CNS are yet undiscovered. 

As mentioned above, apoE forms disulphide-linked homodimers and 

heterodimers with apoA-II via the Cys112 residue (Martens et al., 2022), and 

apoE homodimers could be the necessary form to efficiently bind to the 

apoE/reelin receptors (Dyer et al., 1991). The presence of Arg112 that 

characterizes apoE4 affects its ability to form dimers, as evidenced by the lack of 

dimers in APOE ε4/ε4 subjects, and the lower levels in ε3/ε4 compared to ε3/ε3 

subjects (Rebeck et al., 1998). This inability to form dimers may thus affect the 

interaction with apoER2 and some of the biological roles of apoE, and may be 

responsible, at least in part, for the increased risk of developing AD associated 

to the APOE ε4 isoform (Minagawa et al., 2009).  

 

Reelin 
Reelin is a large extracellular glycoprotein composed of 3461 amino acids with a 

molecular mass of approximately 430 kDa, produced by Cajal-Retzius neurons 

in the embryonic brain (DeSilva et al., 1997). In the adult brain, the main source 

of reelin is no longer the Cajal-Retzius cells, but a subpopulation of GABAergic 

interneurons (Alcantara et al., 1998).    

Reelin is the main ligand for apoER2. In the embryonic brain reelin 

activates a signalling pathway that drives neuronal migration and establishes 

laminated structures (Frotshcer, 2010); whereas in the adult brain it is involved in 

regulating learning and dendritic growth, and consequentially synaptic plasticity 

(Jossin et al., 2020). Furthermore, in the adult brain reelin can also contribute to 

synapse formation and modulate synaptic transmission and plasticity by 

regulating Ca2+ entry through the interaction of apoER2 with the N-methyl-D-

aspartate receptor (NMDAR) (Ventruti et al., 2011), therefore affecting learning 

and memory (Knuesel, 2010).  

Secreted reelin forms homodimers (Kubo et al., 2002), which are likely the 

species that binds to receptors. Its signalling is regulated by proteolytic cleavage 

by metalloproteinases (namely ADAMTS-4 and ADAMTS-5) at three sites (Krstic 
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et al., 2012): the so-called C-terminal and N-terminal cleavage sites, and a third 

recently described cleavage site within the C-terminal region (Kohno et al., 2015), 

leading to the production of various different fragments that differ in their relative 

abundance and can interfere in reelin binding to apoER2 (Smalheiser et al., 

2000). The proteolytic cleavage of reelin follows receptor binding, however it can 

also occur independently of its binding to receptors.   

After reelin binds to apoER2, the receptor is sequentially processed by α- 

and γ-secretase (May et al., 2003; Hoe et al., 2006), and the secreted fragment 

of apoER2 can act as a dominant-negative receptor and inhibit reelin signalling 

(Koch et al., 2002).  The main α-secretase responsible for this cleavage is 

ADAM10, in a similar fashion to APP (Chow et al., 2010), and following this α-

secretase cleavage, the remaining C-terminal fragment of apoER2 is processed 

by γ-secretase, releasing the soluble intracellular domain (ICD), which can 

translocate to the nucleus and bind to the reelin promoter, leading to a decrease 

of reelin expression (Balmaceda et al., 2014). Thus, in addition to the interference 

of reelin and apoER2 extracellular fragments in subsequent reelin binding to the 

receptor, the ICD of apoER2 establishes a negative feedback loop between reelin 

binding to apoER2 and reelin expression.  

 The reelin signal is transduced, after binding to apoER2, beginning with 

the tyrosine phosphorylation of the intracellular adaptor Disabled-1 (Dab1) 

(Howell et al., 1999), which binds to the cytoplasmic region of apoER2.  Reelin-

dependent Dab1 phosphorylation leads to a kinase cascade, first by the activation 

of PI3K (phosphoinositide 3-kinase) (Bock et al., 2003), which in turn activates 

the serine-threonine protein kinase Akt (also known as protein kinase B), also by 

phosphorylation (Jossin & Goffinet, 2007). Activated Akt then inhibits GSK3β 

(glycogen synthase kinase beta) (Beffert et al., 2002), which has a key role in tau 

phosphorylation state (Ávila et al., 2012). In summary, reelin binding to apoER2 

activates a signalling pathway that ultimately inhibits tau phosphorylation, as seen 

in Figure 5. Therefore, through its effects on tau, reelin appears to play a direct 

role in regulating microtubule assembly (Meseke et al., 2013), and a 

dysregulation of its signalling pathway could affect adequate repair of damaged 

neurons in AD (Krstic & Knuesel, 2013). 
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Reelin and Dab1 can interact with APP (Trommsdorff et al., 1998; Hoe et 

al., 2009), ultimately leading to a reduction in Aβ production, (Hoe et al., 2006). 

Furthermore, apoER2 can cluster together with APP and lead to an increase in 

non-amyloidogenic processing, thus also decreasing the production of Aβ (Hoe 

et al., 2005), leading to a complex picture in the crosstalk between reelin 

signalling and APP processing. 

These interactions show a map of links between reelin, apoER2, APP 

processing (and subsequent Aβ secretion) and tau phosphorylation, the key 

pathological effectors in AD, and, as such, impaired reelin signalling could play 

an important role in the pathogenesis of the disease (Deutsch et al., 2006). 

 
Figure 5. Reelin signalling pathway. Reelin binds to apoER2, which phosphorylates Dab1. 

Dab1 phosphorylation then activates PI3K, phosphorylating Akt, which inhibits GSK3β, ultimately 

leading to a reduction in tau phosphorylation and protecting against the formation of NFTs. 

ApoER2 can cluster with APP, and Dab1 can also interact with the receptor, leading to a reduced 

production of Aβ and subsequent SPs. Created with BioRender.com 
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THE ROLE OF APOE AND REELIN IN AD 

ApoE in the pathogenesis of AD 
Since the discovery of APOE ε4 as the most important genetic risk factor for AD, 

numerous studies have attempted to determine the exact role apoE plays in AD 

pathogenesis, with a special focus on the effects of the different APOE variants. 

In the normal brain, apoE is involved in the inhibition of inflammation, the 

clearance of debris for homeostasis, and the promotion of neuronal network 

resilience, all of which could play a part in the progression of AD (Flowers & 

Rebeck, 2020). As introduced briefly in the previous section, roles for apoE have 

been described for practically every aspect of the disease, including Aβ 

aggregation, tau phosphorylation, and synaptic deficits; however, much of the 

evidence is contradictory, given the conflicting results obtained from different 

studies depending, at least in part, on the approach used. Therefore, the precise 

role of the protein in AD has yet to be determined. 

 

ApoE and Aβ: Binding, aggregation, and clearance 
A vast number of studies regarding the role of apoE in Aβ accumulation, 

aggregation, seeding and clearance have been performed; and mouse models 

are frequently employed to this means. It is worth noting that apoE in mice (and 

other mammals) is present as the ancestral form: a single isoform that presents 

an Arg residue at position 112, and thus resembles the human apoE4 variant 

(McIntosh et al., 2012), and that the promoter regions of human and mouse apoE 

(mouse-apoE) share less than 40% homology (Maloney et al., 2007).  

 In AD mouse models, the expression of murine or human apoE affects the 

role of the protein regarding many different AD processes, such as 

neuroinflammation, synaptic integrity and Aβ clearance (Liao et al., 2015): in 

comparison to mouse-apoE, expression of human APOE isoforms reduces 

plaque deposition and onset, where APOE ε2 shows the strongest effect (Fryer 

et al., 2005). As human and mouse apoE differ so greatly in functions associated 

to AD, the development of human APOE knock-in transgenic murine models that 
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replicate AD is crucial to understand the increased risk associated to expressing 

the ε4 allelic variant of APOE (Lewandowski et al., 2020). 

Many studies have reported a direct interaction between apoE and Aβ. 

Poorly lipidated apoE co-deposits with Aβ in amyloid plaques (Namba et al., 

1991), and synthetic Aβ can bind in vitro to apoE derived from cells (LaDu et al., 

1994), human CSF (Wisniewski et al., 1993), or human plasma (Strittmatter et 

al., 1993). Aβ can interact with both the N-terminal receptor binding domain and 

the C-terminal lipid binding domain of apoE (Wisniewski & Drummond, 2020); 

interestingly, heparin also interacts with both these binding sites, as well as a site 

on Aβ that binds apoE, and thus HSPGs could promote Aβ oligomerization and 

aggregation by facilitating interactions between Aβ and apoE (Brunden et al. 

1993). Given the ability of Aβ to bind to the lipid binding domain of apoE, it may 

compete with lipids for apoE binding, and the lipidation state of apoE could 

determine the binding site. As such, in vitro studies have shown that lipid-free 

apoE interacts with Aβ with a higher affinity than lipidated apoE; furthermore, the 

incubation of apoE with Aβ oligomers hinders the ability of apoE to bind lipids and 

may therefore interfere with its physiological function (Verghese et al., 2013).  

In addition to being dependent on the lipidation state, apoE binding to Aβ 

is also isoform dependent. ApoE3 has been seen to form more abundant SDS-

stable complexes with Aβ than apoE4 (LaDu et al., 1995), which may indicate a 

better capacity of apoE3 to transport Aβ for clearance or to prevent aggregation 

(Petrlova et al., 2011). ApoE4 complexes with Aβ are less stable and fewer in 

number than those formed with apoE2 and apoE3 in the CSF of AD patients, 

which may be due to the poorer lipidation state of apoE4 (Tai et al., 2013). 

Nonetheless, conflicting results have also been found that question the 

interactions between apoE and Aβ. A recent study showed that soluble Aβ is a 

poor binding partner of apoE, and that the influence of apoE on Aβ metabolism 

and clearance may not require direct binding of the two proteins, and may depend 

instead on other mechanisms, such as LRP1 (Verghese et al., 2013). 

Direct effects of apoE on Aβ, prior to plaque formation, have also been 

reported. Aβ accumulates in vulnerable neurons (Gouras et al., 2000), and this 

intracellular accumulation in late endosomal and lysosomal compartments in 

mice is increased by the presence of apoE4 (Zhao et al., 2014). ApoE4 can also 
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increase the rate of Aβ production to a greater extent than apoE2 and apoE3 

when binding to apoER2, which triggers APP and BACE1 endocytosis and 

enhances the rate of intracellular Aβ generation (He et al., 2007). Furthermore, 

an APOE isoform dependent effect on APP transcription and subsequent Aβ 

production has also been reported, in which apoE4 induces the largest increase 

(Huang et al., 2017).  

Different studies have reported an effect for APOE on amyloid deposition 

and plaque formation. APOE ε4-carriers present an increased plaque load and 

density compared to non-carriers (Tiraboschi et al., 2004), as well as the highest 

levels of plaque deposition, whereas APOE ε2-carriers present the lowest levels 

(Fagan et al., 2002). Moreover, mice expressing human apoE4 have higher 

amounts of Aβ deposition and plaques than those expressing other human apoE 

isoforms (Holtzman et al., 2000). The increase of Aβ in the brain coincides with a 

reduction in CSF Aβ42 levels, an indicator of AD, further supporting the notion 

that apoE4 promotes deposition (Morris et al., 2010). There is also an isoform-

dependent effect of APOE on Aβ oligomerization, in which apoE4 increases the 

levels of Aβ oligomers (Hashimoto et al., 2012) and stabilizes them to a larger 

extent than apoE2 and apoE3 (Cerf et al., 2011). 

During Aβ aggregation, the peptides change their conformation into a β-

sheet structure that accelerates fibrillogenesis to form insoluble fibrils in a process 

known as seeding (Harper & Lansbury, 1997). A critical role for apoE4 in amyloid 

plaque seeding has been described, as expression of apoE4, but not apoE3, 

during the seeding stage enhanced amyloid deposition and neuritic dystrophy 

(Liu et al., 2017).  

Human apoE4 may also enhance Aβ fibril formation in vitro (Castano et 

al., 1995), although results showing that apoE decreases Aβ aggregation in vitro 

have also been reported (Wood & Wetzel, 1996). As apoE3 interacts more with 

Aβ than apoE4, it is possible that apoE4 could be less effective in inhibiting Aβ 

fibrillization. This discrepancy could be explained by the differences in apoE/Aβ 

preparations in the different studies, as many factors, such as apoE lipidation, 

can play an important role. For example, the reduction of apoE lipidation (by 

ABCA1 depletion) increases amyloid deposition in AD transgenic mouse models 

(Wahrle et al., 2005). 
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APOE knock-out studies in mouse AD models have presented interesting 

results, as the knock-out led to a reduction of Aβ42 deposition in models 

overexpressing only human APP (Bales et al., 1999), whereas it led to an overall 

increase in plaque size in more aggressive models overexpressing both APP and 

PSEN1 (Ulrich et al., 2018). On the other hand, the suppression of APOE 

expression in a humanized APOE4/APP/PSEN1 mouse model led to a reduction 

in plaque load when performed before plaque onset, yet the reduction was not 

observed when performed after plaque formation onset (Huynh et al., 2017), thus 

supporting a role for APOE in plaque seeding, but not plaque growth. 

Aside from the roles mentioned up to this point, many studies have also 

shown apoE-dependent effects on Aβ clearance. Aβ can be cleared through a 

plethora of mechanisms (Tarasoff-Conway et al., 2015), and apoE4 is associated 

to a reduced rate of clearance in all of them (Kanekiyo et al., 2014), as 

demonstrated in in vivo studies that showed a reduced rate of Aβ clearance in 

apoE4-TR (targeted replacement) mice when compared to apoE3-TR mice 

(Castellano et al., 2011).  

One of the key mechanisms in the brain is Aβ degradation through the 

enzymatic activity of proteases, such as neprilysin and insulin-degrading enzyme 

(IDE), which can also degrade apoE in both intracellular compartments and in the 

extracellular space (Saido & Leissring, 2012). ApoE enhances the enzymatic 

clearance of Aβ, especially when highly lipidated (Jiang et al., 2008), however 

reduced neprilysin and IDE expression levels have been demonstrated in APOE 

ε4-carriers (Miners et al., 2006).  

Aβ can also be cleared through the blood-brain barrier (BBB), and this 

clearance could be modulated by apoE (Ma et al., 2018). APOE ε4 is associated 

to BBB breakdown and a reduced rate of Aβ clearance (Montagne et al., 2020). 

ApoE receptors have also been implicated in Aβ clearance through the BBB, 

given that apoE2 and apoE3 are cleared at a faster rate through the BBB via 

LRP1 and VLDLR than apoE4, and the same differences in rate of clearance are 

present in apoE-Aβ complexes (Deane et al., 2008). Aβ can also be cleared 

through the interstitial fluid (ISF) via LRP1, however this pathway is complex, as 

some studies have seen an increased rate of clearance in APOE-KO mice 

(DeMattos et al., 2004).  
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A third mechanism of Aβ clearance is through intracellular lysosomal 

degradation in astrocytes, microglia, and neurons, and, once again, apoE4 is 

associated to a lower rate of clearance (Li et al., 2012).  ApoE-Aβ complexes are 

internalized through LDLR and LRP1 to facilitate degradation (Carlo et al., 2013); 

however, apoE may also reduce the rate of Aβ internalization and degradation by 

competing for binding to receptors, such as LRP1 (Verghese et al., 2013), 

whereas other receptors also participate in Aβ degradation in an apoE-

independent manner (Basak et al., 2012). Finally, apoE can also influence Aβ 

clearance through microglia and astrocytes by altering their expression profiles 

(Fernández et al., 2019).  

In summary, many different roles for apoE in the amyloidogenic process 

have been described, supporting roles for apoE in the aggregation, deposition, 

oligomerization, and clearance of Aβ. These roles point towards a possible gain 

of toxic function of apoE4 by increasing the rate of amyloid deposition and 

aggregation, and enhancing plaque formation, or a loss of protective function 

compared to the other isoforms by hindering the rate of clearance or failing to 

protect against aggregation. The effects of apoE on Aβ are summarized in Figure 

6. 
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Figure 6. ApoE effects on Aβ. A: Effects of apoE on Aβ production. ApoE4 and LRP1 facilitate 

the endocytosis of APP, leading to an increased production of Aβ, whereas apoER2 inhibits this 

process. B: Effects of apoE on Aβ aggregation and clearance. ApoE4 facilitates Aβ aggregation 

and deposition, whereas lipidated apoE inhibits this process in an isoform-dependent manner 

(ε2>ε3>ε4). ApoE also facilitates Aβ clearance through the BBB and extracellular proteolytic 

degradation, also in an isoform-dependent manner (ε2>ε3>ε4). Lipidated apoE can form 

complexes with Aβ and participate in its intracellular degradation via LRP1 and LDLR, and, once 

again, apoE4 presents the lowest rate of clearance. Extracted from Yu et al., 2014. 
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ApoE and tau in AD 
The hyperphosphorylation of tau and the subsequent formation of intracellular 

NFTs is one of the key hallmarks for AD that could result in a gain of toxic function 

of tau (Gendron & Petrucelli, 2009), and may drive the pathology (Benjanin et al., 

2017). Histopathological studies have shown a link between APOE and NFTs in 

the AD brain (Rohn et al., 2012), as APOE ε4-carriers present a more severe 

temporal and medial spread of tau throughout the cortex, which follows the Braak 

staging described previously (Braak & Braak, 1991; Sanchez et al., 2021; Vogel 

et al., 2021). Interestingly, no protective effect for APOE ε2 on tau pathology has 

been described; in fact, APOE ε2 homozygosity enhances tau pathology and 

increases the risk of tauopathy (Robinson et al., 2020).  

The APOE ε4 genotype has been associated to increased tau-associated 

pathogenesis, neurodegeneration and neuroinflammation (Wang et al., 2021), 

and apoE4 can enhance tau neurotoxicity through the inhibition of 

neurotransmitter transport into synaptic vesicles, consequently leading to the 

degeneration of the Locus Coeruleus (Kang et al., 2021). In mice tauopathy 

models, APOE ε4-expressing mice showed the highest amount of 

neurodegeneration compared to the other two isoforms, and APOE KO mice were 

protected from tau-induced tauopathy (Shi et al., 2017); furthermore, in the same 

tauopathy models, the reduction of apoE4 levels protected against tau pathology 

(Litvinchuk et al., 2021), and tau removal rescued the toxicity and deficits induced 

by apoE4, suggesting an underlying pathological mechanism in AD that requires 

both apoE and tau (Andrews-Zwilling et al., 2010). 

Similar results have also been demonstrated in human iPSC-derived cell 

models, showing a link between apoE4 and tau pathology in glial cells and 

neurons (Wadhwani et al., 2019). iPSC-derived neurons from APOE ε4-carrier 

patients showed higher levels of P-tau and neuron degeneration than non-

carriers (Wang et al., 2018), and CRISPR mutation from apoE3 to apoE4 has 

also been demonstrated to enhance P-tau levels (Lin et al., 2018). 

Higher tau levels have been associated to increased cortical plasticity 

impairment and cognitive decline, and reduced astrocyte survival in the CSF of 

APOE ε4-carriers (Koch et al., 2017). Furthermore, apoE4 levels have been 

positively associated to total tau and P-tau levels in the CSF of AD patients 
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(Wattmo et al., 2020; Liu et al., 2021), although many contradictory findings have 

also been reported (Rodriguez-Vieitez & Nielsen, 2019).  

APOE ε4-non-carriers present a tau uptake pattern that does not coincide 

with the Braak pattern, with less uptake in the entorhinal cortex and higher 

amounts in the neocortex (Whitwell et al., 2018). Tau can be internalized in 

neurons by HSPGs (Holmes et al., 2013), but also by LRP1, both of which are 

apoE receptors. Studies have shown that apoE may regulate tau uptake within 

cells using HSPGs (Jablonski et al., 2021), whereas others have shown that apoE 

inhibits the direct interaction between tau and LRP1, being apoE4 the least 

efficient isoform at inhibiting this interaction (Rauch et al., 2020). The reduced 

inhibition of tau interaction with LRP1 also leads to increased tau propagation 

(Rauch et al., 2020), thus supporting a role for apoE receptors in tau spreading. 

In this manner, LRP1 knockdown leads to reduced tau propagation, whereas 

LDLR appears to have an opposing effect, as its overexpression also leads to 

reduced tau propagation (Shi et al., 2021).   

As apoE is secreted and tau is usually located within the cell, no link 

between these two factors comparable to the one between apoE and Aβ has 

been described, and furthermore, the effects of apoE on tau pathology may be 

mediated by its effects on Aβ pathology. In fact, immunotherapy studies targeting 

the apoE present in amyloid plaques appear to reduce Aβ-mediated tau seeding 

and spreading (Gratuze et al., 2022), although other studies have reported Aβ-

independent effects (Baek et al., 2020; Therriault et al., 2020).  

Therefore, the precise mechanism by which APOE affects tau pathology 

has yet to be fully understood. 

 

ApoE and AD-related synaptic deficits 
Some of the earliest damage present in AD is localized at the synapses, and 

synapse loss correlates with cognitive impairment in AD (Scheff et al., 2006). 

Synapses are affected at both presynaptic and postsynaptic levels (Reddy et al., 

2005), and Aβ oligomers, rather than amyloid plaques, appear be responsible for 

the damage by causing synaptic toxicity, thus affecting synaptic plasticity and 

leading to synaptic dysfunction and loss (Tu et al., 2014). Aβ oligomer localization 
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at synaptic terminals can occur before plaque formation, which may indicate an 

early effect of Aβ on synapses (Klementieva et al., 2017). 

 As apoE is the main cholesterol transporter in the brain, it plays a crucial 

role in the maintenance of synaptic membranes (Liu et al., 2013) and neuronal 

repair (Mahley & Huang, 2012); and, therefore, apoE dysfunction has been linked 

to the synaptic deficits present in AD (Perdigão et al., 2020). APOE ε4 has been 

associated to reduced neuronal outgrowth (Wang et al., 2005) and synaptic 

density compared to APOE ε3 (Dumanis et al., 2009), and APOE ε4 also affects 

the architecture of neurons by reducing dendritic length and arborization, and by 

decreasing the density of dendritic spines (Jain et al., 2013). In iPSC-derived 

organoids, apoE4 exacerbated synaptic loss by decreasing presynaptic and 

postsynaptic proteins (Lin et al., 2018). APOE ε4 has also been associated to 

decreased long-term potentiation (LTP) (Trommer et al., 2004), through a 

NMDAR-dependent mechanism (Korwek et al., 2009), and, furthermore, the 

presence of apoE4 has also been linked to poor learning and memory (Rodríguez 

et al., 2013).  

The exact mechanism by which apoE4 hinders synapses has yet to be 

elucidated. ApoE4 may affect synaptic integrity acting as a cofactor by directing 

toxic Aβ oligomers to synapses (Koffie et al., 2012), or through the impairment of 

endosome recycling (Xian et al., 2018), as apoE4 has been linked to a reduced 

rate of recycling and an increased intracellular accumulation of apoE (Heeren et 

al., 2004). This impairment could trap apoE alongside glutamatergic receptors 

such as NMDAR and AMPA receptor, which would in turn impair synaptic 

regulation (Chen et al., 2010), an effect which may be dependent on apoE4 

interaction with apoER2. Additionally, apoER2 may also be trapped in 

endosomes, leading to reduced receptor binding by reelin and subsequent 

synaptic dysregulation (Weeber et al., 2002).  

 

ApoE and glial cells in AD: a role in neuroinflammation 
Neuroinflammation has been referred to as the third pathological hallmark of AD 

(Guzman-Martinez et al., 2019). Microglial cells and astrocytes mediate the 

neuroinflammatory response by triggering several signalling pathways through 
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the release of pro-inflammatory cytokines (Shabab et al., 2017). APOE can play 

an important role in modulating the inflammatory response by impacting synaptic 

function and glial activation (Cudaback et al., 2011). For example, APOE ε4 

knock-in mice presented an exacerbated loss of synaptic proteins, alongside 

increased glial activation and production of pro-inflammatory cytokines following 

lipopolysaccharide (LPS, a widely known activator of the inflammatory response 

(Ngkelo et al., 2012)) insult, compared to APOE ε2 and ε3 mice (Cudaback et al., 

2011).  

Inflammatory responses can also influence apoE secretion and 

expression. In primary cell cultures, following LPS insult, microglia of APOE ε2 or 

ε3 knock-in mice showed increased secretion of apoE, whereas no comparable 

effect was observed in APOE ε4 knock-in mouse microglia. On the other hand, 

astrocytes from APOE ε4 knock-in mice presented a reduced level of apoE 

expression and secretion following TNF-α (tumour necrosis factor α; a cytokine 

that act as a major regulator of the inflammatory response) treatment, and no 

change after LPS treatment. Taken together, these results indicate dysfunctional 

responses of APOE ε4-expressing microglia and astrocytes towards stimuli that 

activate the inflammatory pathway (Lanfranco et al., 2021). 

Regarding microglia, apoE may exert its influence on the inflammatory 

response through receptors such as TREM2 (triggering receptor expressed on 

myeloid cells 2), whose encoding gene is one of the recently described genetic 

risk factors for AD (Carmona et al., 2018). TREM2 has many ligands, including 

glycolipids, clusterin, apoE and Aβ (Gratuze et al., 2018) and is expressed in the 

brain mainly by microglia (Ulland & Colonna, 2018). Upregulated TREM2 mRNA 

levels have been detected in microglial cells obtained from AD patients (Gosselin 

et al., 2017). The precise role of TREM2 in AD is unknown, but studies regarding 

TREM2 absence reported increased neuritic dystrophies associated to Aβ 

plaques (Zhong et al., 2017), and either a reduction (Leyns et al., 2017) or 

exacerbation (Bemiller et al., 2017) of tau pathology.  Other studies described an 

important role for TREM2 in Aβ and tau seeding and spreading (Leyns et al., 

2019; Parhizkar et al., 2019). The interaction between apoE and TREM2 is 

unclear, as TREM2 loss-of-function has been associated to reduced levels of 

apoE in amyloid plaques (Parhizkar et al., 2019) and aberrant lipid metabolism, 
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which could influence apoE (Andreone et al., 2020), whereas TREM2 deletion 

impairs microglial phagocytosis of apoE (McQuade et al., 2020). The exact role 

of the interaction between apoE and TREM2 on neuroinflammation, thus, 

requires further investigation. 

ApoE may also influence microglial response through its interaction with 

toll-like receptors (TLR), whose activation primes microglia and constitutes the 

first step in the inflammatory response (Shen et al., 2018). Specifically, a TLR4- 

dependent pathway has been associated with apoE, and as such apoE3 can 

inhibit the microglial activation promoted by TLR4 (Zhu et al., 2010), whereas the 

APOE ε4 genotype is linked to a deleterious effect in AD through this receptor 

(Krasemann et al., 2017). 25-hydrocholesterol, an important inflammatory 

mediator produced by microglia, promotes neuroinflammation in an APOE 

isoform-dependent manner (ε4 > ε3/ε2) and is produced in larger quantities in 

APOE ε4 microglia (Wong et al., 2020). 

 LRP1 is also highly expressed in microglia and conflicting results have 

associated the activation of the receptor with a suppression in microglial activity 

(Chuang et al., 2016), but also with an amplified inflammatory response and 

increased microglia activation following LPS insult (Brifault et al., 2019); in 

addition, LRP1 silencing has been shown to enhance the inflammatory response 

(He et al., 2020). Therefore, given its importance in this mechanism, LRP1 may 

modulate the effect of apoE on microglial inflammation (Pocivavsek et al., 2009).  

How apoE affects the microglial inflammatory response is still under 

debate, as various potential mediatory mechanisms exist. Nonetheless, the 

evidence points towards a deleterious effect of the APOE ε4 genotype that 

enhances the inflammatory response and may lead to an exacerbation of 

subsequent neurodegeneration.  

The APOE genotype can also influence astrocytic functions. Astrocytes 

play an important role in maintaining brain energy homeostasis, and astrocytes 

expressing APOE ε4 present reduced mitochondrial function (Schmukler et al., 

2020) and aberrant glucose utilization (Farmer et al., 2021). Therefore, an APOE 

ε4 genotype may lead to an exacerbation of neurodegeneration in AD through 

dysfunctional brain energy homeostasis maintenance and altered responses to 

inflammatory stimuli, ultimately leading to neurotoxicity. 
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The role of apoE and lipids in AD 
As commented through the text, the key role for apoE in the CNS is to transport 

cholesterol to maintain adequate neuronal function (Zhang & Liu, 2015). ApoE 

derived from APOE ε4 individuals is produced at lower levels and is poorly 

lipidated in comparison to APOE ε3-derived apoE, thus apoE4 may be less 

efficient at transporting cholesterol (Gong et al., 2002; Zhao et al., 2017), and the 

lower lipidation likely results in impaired cholesterol metabolism in astrocytes. 

Nonetheless, iPSC-derived APOE ε4 astrocytes appeared to present increased 

secretion and intracellular levels of cholesterol (TCW et al., 2022), therefore the 

precise cause behind the poorer lipidation of apoE is yet unknown. A potential 

mechanism lies in the higher tendency of apoE4 to self-aggregate and misfold, 

which can in turn increase ABCA1 aggregation and decrease membrane-

recycling, thus lowering the lipidation of apoE4 (Rawat et al., 2019). 

The different APOE isoforms vary in their lipid-binding preference: apoE2 

and apoE3 both preferentially bind to small HDLs, whereas apoE4 binds to large 

VLDLs and LDLs (Li et al., 2013). Furthermore, apoE2 decreases the levels of 

cholesterol in plasma, in contrast to apoE4 which increases them (Kao et al., 

2020), as seen in other studies demonstrating that apoE4 homozygosity is linked 

to elevated plasma cholesterol levels and CSF levels of 24S-hydroxycholesterol 

(Papassotiropoulos et al., 2002), which acts as a counterbalancing mechanism 

in cholesterol homeostasis.  

ApoE may exert its influence through lipid rafts, structures within cell 

membranes that play crucial roles in signal transduction, cell adhesion and lipid 

and protein sorting. They serve as a platform for apoE interaction with Aβ and tau 

to promote their aggregation and hyperphosphorylation, respectively 

(Kawarabayashi et al., 2004). AD-related proteins can also be found in lipid rafts, 

such as APP, BACE1, γ-secretase, and neprilysin (El Gaamouch et al., 2016); 

consequently, Aβ generation and degradation are associated to the composition 

of lipid rafts (Schengrund, 2010). Interestingly, cholesterol appears to be an 

essential component in the lipid raft triggering of Aβ fibrillization (Okada et al., 

2008). 

The cholesterol transporters responsible for the lipidation of apoE may 

mediate its influence on lipids in AD. As mentioned beforehand, ABCA1 is the 
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main mechanism responsible for lipid efflux and apoE lipidation, and loss-of-

function mutations in ABCA1 are associated to increased AD risk (Nordestgaard 

et al., 2015). ABCA1 overexpression inhibits amyloid deposition (Wahrle et al., 

2008), whereas lower levels of expression impair Aβ clearance (Wahrle et al., 

2004), and APOE isoforms may have a role in this function, as ABCA1 deficiency 

led to increased Aβ aggregation in APOE ε4-expressing mice, but not when mice 

expressed APOE ε3 (Fitz et al., 2012). Other members of the ABC family also 

participate in APP processing and Aβ production and aggregation, such as 

ABCA2 and ABCA7, although no evidence regarding a modulatory effect of apoE 

has been reported as of yet.  

Lipid metabolism in the brain, although normally directed from astrocytes 

to neurons, can also involve an inverted mechanism, by which fatty acids, 

specifically unsaturated triglycerides stored in the form of toxic lipid droplets, are 

transferred, via apoE, from neurons to astrocytes for neutralization (Liu et al., 

2017), due to very limited capacity of neurons to store or catabolize fatty acids 

compared to astrocytes (Schönfeld et al., 2013; Ioannou et al., 2019). Excessive 

fatty acids can lead to toxicity, lipid peroxidation and, ultimately, 

neurodegeneration (Nguyen et al.,2017); as such, apoE4 appears to be less 

efficient at transporting these fatty acids from neurons to astrocytes (Qi et al., 

2021) and at neutralizing these toxic lipid droplets (Sienski et al., 2021), leading 

to enhanced neurodegeneration. 

 

Altered glycosylation in AD 
Aside from the key aspects mentioned up to this point, new characteristics of 

apoE are being progressively implicated in AD pathogenesis, such as apoE 

glycosylation. Recent evidence has demonstrated that the glycosylation pattern 

of various AD-related proteins is altered during the pathological progression of 

the disease (Haukedal & Freude, 2021), including APP (Boix et al., 2020) and tau 

(Almansoub et al., 2019). Glycosylation differences within the brains of AD 

patients have been reported in O-GlcNAcylation and N-/O-glycosylation (Frenkel-

Pinter et al., 2017). ApoE glycosylation differs in a tissue-specific manner, and 

the cellular source of apoE in the CNS affects its glycosylation pattern, as 
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astrocyte-derived apoE is more heavily sialylated and glycosylated (Flowers et 

al., 2020). Correct apoE glycosylation is essential for its correct functioning and 

modulates its lipid receptor affinity, lipid transportation and metabolic functions 

(Kacperczyk et al., 2021), as well as protecting against self-association and 

aggregation (Lee et al., 2010). An altered glycosylation pattern for apoE has been 

previously described in a Niemann-Pick Type C model, which shares some 

pathological mechanisms with AD including Aβ deposition, in which changes in 

apoE glycosylation led to increased levels of Aβ42 (Chua et al., 2010) due to a 

lower rate of binding between the proteins; and, thus, a role for a specific sialic 

moiety of apoE on its interaction was suggested (Sugano et al., 2008). In sum, 

there is evidence to support a role for apoE glycosylation in AD. 

 

ApoE dimerization in AD 
ApoE2 and apoE3 are able to form disulphide-linked hetero- and homodimers 

through the presence of Cys at position 112; whereas apoE4 lacks this ability as 

it presents Arg at position 112. In human CSF studies, no differences in apoE 

dimer levels between control and AD subjects were found (Montine et al., 1998); 

however, a recent report showed lower plasma levels of dimers in AD APOE ε3-

carrier subjects compared to controls (Patra et al., 2019).  Despite the natural 

inability to form disulphide-linked dimers, apoE4 SDS-resistant dimers with Aβ 

have been described in vitro (Martel et al., 1997), in non-pathological human CSF 

(LaDu et al., 2012), and in the AD brain (Permanne et al., 1997), and these 

species have been implicated in Aβ clearance and fibrillization (Deroo et al., 

2015). Therefore, the capacity of dimerization of apoE could play an important 

role in Aβ toxicity in AD, and the interaction of apoE with Aβ could lead to the 

appearance of complexes, regardless of the APOE genotype.  

 

ApoE and myelination in AD 
AD is characterized by a progressive and generalized loss of white matter, due 

to demyelination and cell death (Safaiyan et al., 2021), that is closely related to 

motor deficits and cognitive dysfunction (Ji et al., 2019). APOE ε4 may fail to 

properly modulate white matter integrity (Heise et al., 2010) and has been linked 
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to an increase in MRI-detected white matter hyperintensities, which are risk 

factors for cognitive impairment, in AD patients (Mirza et al., 2019). 

 

ApoE in the endocytic/autophagic pathway in AD  
Alterations in cellular trafficking and recycling have been implied in AD, including 

endocytosis (recycling and internalization of molecules from the plasma 

membrane), autophagy (removal of intracellular sources and organelles) and 

phagocytosis (degradation of extracellular materials). Endo-lysosomal trafficking 

and autophagy plays key roles in the formation of Aβ (van Acker et al., 2019), 

APP degradation (Xiao et al., 2015), and clearance of Aβ (Cho et al., 2014). 

Failures in this system are detected early in AD pathology, leading to Aβ 

accumulation (Nixon, 2017) that could in turn affect other aspects of AD, including 

neuroinflammation (François et al., 2013).  

The APOE ε4 genotype has been associated to the endocytic/autophagic 

pathway (Lambert et al., 2013) given its role in Aβ internalization, and, as such, 

APOE ε4 astrocytes appear to possess a lower capacity to clear Aβ through 

autophagic routes (Simonovitch et al., 2016). In transgenic mice, APOE ε4 has 

been associated to a dysregulation of the endosomal-lysosomal pathway (Nuriel 

et al., 2017) and decreased autophagy in the hippocampus (Simonovitch et al., 

2019). In the human brain, APOE ε4-carriers showed lower mRNA transcripts of 

proteins associated to autophagy (Parcon et al., 2018). These studies indicate 

that there is an APOE ε4-associated alteration in autophagy. 

 

To summarize, a pathological role for APOE has been described in diverse 

aspects of AD, ranging from increments in Aβ aggregation and tau 

phosphorylation to the induction of neuroinflammation and synaptic and 

autophagic deficits, and APOE ε4 has been linked to an exacerbation of all 

aspects of the pathology (reviewed in Tzioras et al., 2018 and Fernández-Calle 

et al., 2022). All the proposed roles for apoE in AD are summarized in Figure 7.  

Key characteristics of the protein, such as its lipid-binding capacity, stabilization 

into complexes, and glycosylation have all been implicated in the disease process 

to some description, and in all these processes, the risk-associated ε4 allele has 
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been reported to exacerbate AD pathology, leading to a general negative impact 

on the clinical outcome and progression of the disease. 

 

 
Figure 7. Proposed roles for apoE in AD. ApoE participates in many different aspects of AD, 

and the APOE ε4 isoform has been associated to an exacerbation of the disease regarding every 

role described. Obtained from Yu et al., 2014. 

 

Impaired reelin signalling in the pathogenesis of AD 
Reelin is a large glycoprotein that binds to apoER2. Despite the potential 

influence of reelin signalling on Aβ secretion and tau phosphorylation, the number 

of studies regarding the role of this protein is nowhere near comparable to the 

amount of research regarding the role of apoE in AD. Nonetheless, the studies 

performed have shown an affectation of the reelin signalling pathway in AD, and 

it is therefore plausible to consider a key role for reelin from the early stages of 

AD and throughout the progression of the disease (Krstic et al., 2013). 

Reelin signalling antagonizes AD-related pathways by binding to apoER2, 

which can ultimately lead to the inhibition of tau phosphorylation (Ohkubo et al., 

2003; Beffert et al., 2004) and a reduced secretion of Aβ through its effects on 
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Dab1 (Hoe & Rebeck, 2008). A protective effect for reelin on synapse dysfunction 

has also been reported, in which reelin can prevent LTP and NMDAR 

suppression until the amyloid burden becomes excessive (Durakoglugil et al., 

2009). Reelin may maintain synaptic plasticity by competing with apoE to prevent 

it from sequestering NMDAR and apoER2, which occurs more frequently in the 

presence of apoE4 (Chen et al., 2010). In fact, reelin KO and APOE ε4 knock-in 

mice models both show similar effects on increased tau phosphorylation 

(Kobayashi et al., 2003). 

Reelin protein levels appear to be depleted in the entorhinal cortex of AD 

patients (Chin et al., 2007), and this depletion can also be observed in the human 

frontal cortex in the preclinical stage of AD and in the murine hippocampus before 

the onset of amyloid pathology (Herring et al., 2012); nonetheless, other studies 

reported higher levels of reelin mRNA and protein levels in the brain of AD 

patients (Botella-López et al., 2006). Increased reelin fragment levels have also 

been reported in the CSF of AD patients (Sáez-Valero et al., 2003; Botella-López 

et al., 2006), and the deposition of C-terminal and N-terminal reelin fragments 

associated to dementia status have been detected in the human hippocampus 

(Notter & Knuesel, 2013). On the other hand, studies of reelin mRNA levels have 

demonstrated an up-regulation in the frontal cortex in the latter stages of AD 

(Botella-López et al., 2006), although a reduction in the hippocampus has also 

been reported (Knuesel et al., 2009).  

Anyhow, regardless of the variations in reelin mRNA expression and 

protein levels, it is likely that reelin signalling is impaired in AD, given the specific 

alterations detected in the protein that affect its correct functioning, such as 

aberrant glycosylation (Botella-López et al., 2006), which could hinder its 

protective effects (Cuchillo-Ibáñez et al., 2016). Increased reelin expression has 

been described in parallel to decreased apoER2-CTFs, thus indicating 

dysfunctional reelin signalling through this receptor (Mata-Balaguer et al., 2018). 

Reelin co-localizes with Aβ (Doehner et al., 2010), and consequently Aβ may 

interfere with the reelin signalling pathway and compromise its function by 

aggregating and trapping reelin (Cuchillo-Ibáñez et al., 2016). Progressive reelin 

aggregation over time may also hinder the signalling pathway and increase 

synaptic vulnerability to Aβ deposition (Kocherhans et al., 2010). Furthermore, 
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treatment of SH-SY5Y neuroblastoma cells with Aβ42 led to increased reelin 

levels and an altered glycosylation pattern (Botella-López et al., 2010).  

 Genetic variations in components of the reelin signalling pathway have 

also been linked to AD pathogenicity, such as polymorphisms of APOER2 and 

VLDLR, which have been related to an increased risk of developing AD 

(Helbecque et al., 2009). ApoER2 proteolytic processing and Dab1 

phosphorylation, both regulated by ligand-receptor binding, appear to be reduced 

in AD (Cuchillo-Ibáñez et al., 2016). Nonetheless, Dab1 mRNA expression is up-

regulated in the brain of AD patients, which has been associated to a disruption 

of the cellular proteome (Müller et al., 2011), leading to increased expression and 

processing of key proteins such as APP (Parisiadou & Efthimiopoulos. 2006). 

Therefore, Dab1 expression in early stages of the pathology may be beneficial in 

preventing AD, given its key role in the reelin/apoER2 signalling pathway, 

however at later stages it could play an important role in the exacerbation of the 

pathology (Gao et al., 2015).  

 In conclusion, reelin initially appears to have a protective role in AD by 

inhibiting tau phosphorylation and Aβ secretion. However, as the pathology 

progresses and the amyloid burden increases, the signalling pathway appears to 

present a loss of protective function characterized by increased levels of reelin 

expression and protein, but an ineffective activation of the signalling pathway due 

to altered glycosylation and aggregation of reelin through the effects of Aβ. This 

inefficient apoER2 activation could ultimately convert the beneficial effect of the 

pathway into an exacerbation of the AD pathology. 

 

AD biomarkers: apoE and reelin as potential targets 
ApoE and reelin both appear to play important roles in AD by participating in many 

key aspects of the pathology. Moreover, both apoE and reelin are secreted 

proteins present in the human CSF and could theoretically have diagnostic 

potential. Therefore, it comes as no surprise that both proteins have been 

proposed as biomarkers to measure AD pathology progression. A precise 

diagnosis of AD can only be performed in the post-mortem human cortex, as a 

clinical diagnosis of AD is unreliable due to the heterogeneity of AD symptoms 
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(Beach et al., 2010). As AD pathophysiology occurs long before the onset of 

clinical symptoms, the development of tools to assist early diagnosis is crucial, 

and recent studies have attempted to find diagnostic tools in accessible bodily 

fluids, such as the CSF and blood. CSF biomarkers present an advantage over 

those derived from the blood due to the proximity to the brain parenchyma, as 

brain proteins are secreted to the CSF (Blennow et al., 2010). 

In the context of potential CSF biomarkers for AD, and in recent years, 

clinical evidence has supported that the key hallmarks of AD, Aβ and tau, can 

serve as consistent biomarkers for AD, with the first studies quantifying these 

proteins in human CSF having been published approximately 20 years ago 

(Blennow et al., 1995; Andreasen et al., 1999).  

Early studies demonstrated that Aβ is secreted to the CSF (Seubert et al., 

1992), and quantification of Aβ42 showed an important decrease in AD patients 

across many studies (Olsson et al., 2017), a paradoxical change, since its 

generation is increased in the AD brain, which is probably due to the 

accumulation of Aβ into plaques (Strozyk et al., 2003). In this manner, a high 

concordance between decreased CSF Aβ42 levels and amyloid status detected 

by positron emission tomography (PET) scans has been demonstrated (Blennow 

et al., 2015). Another Aβ species, the more abundant Aβ40 peptide, can also be 

detected in the CSF and also appears to decrease, but to a lesser extent than 

Aβ42; as such, various studies have demonstrated that a CSF ratio of Aβ42/Aβ40  

performed better than Aβ42 alone (Hansson et al., 2007), and presented a higher 

concordance with PET amyloid positivity (Lewczuk et al., 2017), thus improving 

the diagnostic accuracy of Aβ as a biomarker (Shoji et al., 1998). This improved 

accuracy may be due to Aβ40 reflecting “total” Aβ levels, and therefore Aβ42 

levels are interpreted in a more subject-dependent level based on the production 

of Aβ of each individual (Lewczuk et al., 2015).  

Both total tau (T-tau) and phosphorylated tau (P-tau) can also be detected 

in CSF, despite being cytoskeletal proteins, and many studies have consistently 

found a significant increase in total tau (T-tau) levels in AD patients (Olsson et 

al., 2017). CSF T-tau levels reflect the intensity of neurodegeneration or neuronal 

damage in the brain (Blennow & Hampel, 2003), as observed in individuals after 

acute brain damage (Zetterberg et al., 2006). As such, higher T-tau levels in AD 
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are indicative of rapid disease progression (Buchhave et al., 2012). In a similar 

fashion, increased P-tau levels have been associated to AD progression (Wallin 

et al., 2010). However, unlike T-tau levels, CSF P-tau levels remain normal or 

only marginally increased in individuals with neurodegenerative diseases without 

NFTs or following acute damage (Skillbäck et al., 2014); therefore, P-tau 

measurements appear to reflect current tau phosphorylation rather than neuronal 

damage and seem to be more characteristic of AD.  

Unlike Aβ, both tau biomarkers show low concordance with PET 

visualization of tau pathology (Gordon et al., 2016), due to the fact that T-tau and 

P-tau levels are elevated at earlier stages of the pathology, before tau aggregates 

can be detected by PET. Therefore, T-tau and P-tau likely represent 

neurodegeneration and tau phosphorylation state, respectively, whereas tau PET 

scans correlate with the stage of cerebral atrophy and the severity of cognitive 

deficits (Blennow & Zetterberg, 2018).  

A combination of low Aβ42 and high T-tau/P-tau levels present high 

sensitivity in predicting AD in the prodromal stage of the disease and efficiently 

differentiate between AD and MCI or other neurodegenerative disorders 

(Hansson et al., 2006). Nonetheless, low CSF Aβ42 levels can predict future 

cognitive decline, whereas T-tau changes cannot, and thus lowered CSF Aβ42 

can be considered as a very early indicator of amyloidosis (Gustafson et al., 

2007). The measurement of CSF tau and Aβ42 levels are now widely included in 

the diagnostic procedure for AD in several countries (Jack et al., 2016), however 

the quantification of these CSF biomarkers on fully automated machines is 

required to remove human error from the calculations (Blennow & Zetterberg, 

2018).  

Other proteins, aside from Aβ42 and T-tau/P-tau, may also be sensitive to 

changes in AD and could have diagnostic potential, including synaptic proteins 

such as neurogranin, high CSF levels of which are associated to AD (Kvartsberg 

et al., 2015) and to hippocampal atrophy (Portelius et al., 2015). Other CSF 

biomarkers, such as neurofilament light (NfL), glial fibrillary acidic protein (GFAP), 

or α-synuclein have also been proposed (Johnson et al., 2023), as well others 

(Blennow & Zetterberg, 2018). 
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The use of CSF biomarkers has two important setbacks: the obtention of 

CSF samples requires invasive methods (lumbar puncture), and the quantity of 

sample obtained is limited. For this reason, blood biomarkers have been 

proposed as an alternative, as blood samples are far more accessible than those 

from the CSF. However, difficulties arise in the development of blood biomarkers, 

as very few brain proteins enter the bloodstream compared to the CSF; 

additionally, blood is much richer in peripheral proteins, and plasma proteins, 

such as albumin and IgG, can interfere with the analytical methods (Blennow & 

Zetterberg, 2015). The potential new blood biomarkers for AD may be ubiquitous 

proteins, produced also by peripheral organs, thus making it difficult to detect 

specific brain changes. Furthermore, the brain proteins released into the 

bloodstream could very easily be degraded by proteases or cleared by the liver 

or kidneys (O’Bryant et al., 2015).  

For blood biomarkers to be used, previous fractionation of proteins 

associated to exosomes originated in the CNS, or proteins that present CNS-

exclusive isoforms, could be an advantage. Moreover, specialized and more 

precise techniques, such as ultrasensitive immunoassays and mass 

spectrometry, are needed (Andreasson et al., 2016). 

In this context, measurements of Aβ42 levels derived from the brain in 

plasma present difficulties due to the contribution of peripheral tissues, leading to 

a lack of consistent correlations between CSF and plasma Aβ levels (Hansson et 

al., 2010). Nonetheless, recent innovative techniques have been capable of 

establishing weak correlations between CSF and plasma Aβ42 and Aβ42/Aβ40 

levels, as well as a significantly reduced Aβ42/Aβ40 ratio in AD cases compared 

with controls (Janelidze et al., 2016).  

By using ultrasensitive techniques, such as single-molecule arrays 

(Simoa), tau can be measured in blood samples, and increased levels are 

detected in AD samples (Zetterberg et al., 2013), although substantial overlap 

with controls is also found, which reduces its diagnostic potential (Mattson et al., 

2016). Nonetheless, recent studies have shown that tau phosphorylation at 

Thr217 (P-tau217) adequately discriminates between AD and other 

neurodegenerative disorders, and thus has potential as a plasma biomarker for 

AD (Palmqvist et al., 2020). 
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Neurofilament light (NfL) is a recently discovered blood biomarker 

(Gaetani et al., 2019) that presents a high correlation between plasma and CSF 

levels (Gisslén et al., 2015). Plasma NfL levels are markedly increased in AD, 

with a sensitivity comparable to the core AD CSF biomarkers Aβ42 and T-tau/P-

tau (Mattson et al., 2017). Furthermore, NfL levels are also elevated in 

symptomatic and pre-symptomatic fAD, meaning that Nfl could also detect 

neurodegeneration in the preclinical stage of AD (Weston et al., 2017). However, 

despite these promising results, it is important to note that increased plasma NfL 

levels are not an exclusive feature to AD, as this phenomenon is common to other 

neurodegenerative disorders such as frontotemporal dementia (Rohrer et al., 

2016). As such, its potential may be limited to detecting generic 

neurodegeneration that would require further analyses to determine the exact 

nature of the damage. 

Given the high accessibility of blood samples, further development of 

specialized techniques is essential to enhance the diagnostic power of these 

markers, although the use of blood biomarkers in the detection of AD is currently 

limited. Therefore, at this moment in time, the discovery of CSF biomarkers is still 

of great interest to improve the early detection of AD, even before the onset of 

clinical symptoms. Given the roles of reelin and, particularly, apoE in AD and their 

interactions with Aβ and tau, it is feasible to regard them as alternative biomarkers 

for AD.  

 ApoE studies performed in plasma samples found a general decrease of 

plasma apoE levels in AD compared to controls and a low correlation with CSF 

Aβ42 levels (Gupta et al., 2011). In addition, the balance of apoE isoforms in 

different APOE genotypes differs in the plasma: apoE4 protein levels are lower 

compared to the other isoforms, and as such a lower proportion of apoE4 

compared to apoE3 is present in APOE ε3/ε4 subjects (Martínez-Morillo et al., 

2014), which has been attributed to a faster catabolic rate of apoE4 compared 

with other isoforms (Gregg et al., 1986). It is worth noting that these proteins do 

not cross the BBB, and consequently a very low correlation between plasma and 

CSF apoE levels has been reported (Fukumoto et al., 2003). Therefore, although 

various studies have reported interesting (yet contradictory) results in the plasma, 

the focus should be focused on the CSF.  
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 Studies of apoE protein levels in APOE knock-in mice found a genotype-

dependent effect, with ε2 knock-in mice presenting the highest apoE protein 

levels in the brain, and ε4 knock-in mice the lowest (Ramaswamy et al., 2005). 

This suggests that in CSF studies of apoE content, the genotype could be an 

important variable to take into consideration. Initial human studies quantifying 

apoE protein levels presented mixed results, and in general failed to establish an 

association between CSF apoE protein levels and AD risk (Fukumoto et al., 

2003). 

Studies quantifying total CSF apoE protein levels have produced 

inconclusive findings. When taking the APOE genotype into account, APOE ε4-

carriers presented the lowest levels of CSF apoE protein in some studies (Riddell 

et al., 2008), and the highest levels in others (Darreh-Shori et al., 2011). Unlike 

in the plasma, some studies indicated that the CSF isoform composition did not 

vary in APOE heterozygotes (Wahrle et al., 2007), although recent evidence 

points towards differences in apoE isoform composition in heterozygote subjects 

(Minta et al., 2020). A recent report suggested that the discrepancies regarding 

the balance of isoforms in the CSF may be related to differences in their Aβ 

clearance capacity (Honda et al., 2023).  However, once again, no association 

between CSF apoE levels or its isoform composition were associated to Aβ status 

or disease progression. Whereas some CSF studies detected a strong correlation 

between CSF apoE levels with Aβ42 levels and with fibrillar Aβ brain deposition 

(Cruchaga et al., 2012), others found a correlation only in APOE ε4-carriers 

(Nielsen et al., 2017). The incongruencies detected amongst the studies are likely 

due to the sample size and analytic method used (Simon et al., 2012), and may 

also be related to the specific type of apoE species detected, given the different 

dimeric capabilities of the apoE isoforms as a consequence of the Cys112 

substitution for Arg112 in apoE4. 

The APOE genotype can affect CSF Aβ42 levels (Cruchaga et al., 2010) 

and amyloid PET scan results (Morris et al., 2010); as such, even in cognitively 

normal subjects, APOE ε4-carriers present increased PET amyloid positivity and 

reduced CSF Aβ42 levels (Reiman et al., 2009), and the affectation is more 

severe in homozygotes, suggesting a dose-dependent effect of APOE ε4.  
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The associations between CSF apoE levels and Aβ42 levels have been 

seen to vary across studies. In the same manner, associations have been found 

between apoE3 and apoE4 with T-tau and P-tau concentrations (Martínez-Morillo 

et al., 2014), but only in APOE ε4-carriers (Deming et al., 2017). Given the cellular 

localization of tau and apoE, there is a “physiological” difficulty for these proteins 

to interact, and as such the connection between them is more complex than the 

connection between apoE and Aβ.  

Regarding the potential of reelin as a biomarker for AD, few studies have 

been performed. Reelin is present in the CSF as the full-length species and as 

C-terminally and N-terminally truncated fragments. Previous studies detected 

increased levels of the 180 kDa fragment in AD (Botella-López et al., 2006), the 

fragment generated following interaction with apoER2 (Hibi & Hattori, 2009); 

although significance was not achieved in other studies (Botella-López et al., 

2010). Recent reports indicate that reelin fragments can be generated through 

the activity of extracellular matrix metalloproteinases regardless of receptor 

interaction (Hattori & Kohno, 2021). Further studies regarding the balance of 

reelin fragments are required to consider reelin protein levels as a potential 

biomarker for AD.  

ApoER2 ectodomain fragments can be detected in the CSF and may also 

have potential as a biomarker for reelin signalling. These CSF apoER2 fragments 

correlate with reelin levels in control subjects, but not in AD, where these 

fragments appear to diminish (Cuchillo-Ibáñez et al., 2016), suggesting inefficient 

reelin signalling in the brain of AD patients.  

In conclusion, despite the existence of studies regarding the potential of CSF 

levels of apoE and reelin as read-outs of impaired reelin/apoE signalling and AD 

progression, given the complex interactions of these proteins with key 

components of the AD pathology, and the plethora of variables that could lead to 

differences, more research is required to determine the exact potential of these 

proteins in detecting AD at the earliest stage possible.  
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HYPOTHESIS AND OBJECTIVES OF THE 
DOCTORAL THESIS 
Throughout the Introduction section the importance of apoE in AD has been 

described thoroughly, and the implications of carrying an APOE ε4 allele have 

been illustrated. Despite the large amount of research published regarding the 

role of apoE in AD, the vast majority of studies have focused on the impact of 

expressing an APOE ε4 genotype instead of the alternative isoforms in various 

disease-related aspects. Many conflicting results have been reported regarding 

the role of apoE in the progression of the disease. This could be due to different 

variables that could potentially alter the interpretation of the findings, such as the 

apoE source, extraction method, apoE lipidation state, analytic method used, etc. 

The focus on APOE ε4 is understandable, given the associated increased risk of 

developing AD. Nonetheless, expressing an ε4 allele does not necessarily mean 

that AD will be developed, and, furthermore, most AD patients carry the much 

more common APOE ε3 allele.  

Pathological alterations are likely present in all apoE isoforms, perhaps to 

a different extent in apoE4, due to the basal compromise in some physiological 

roles compared with apoE3 and apoE2; however, there is a gap in the knowledge 

regarding alterations in the structure of apoE, and how these changes can affect 

the pathophysiology of the disease. The evidence obtained does propose that 

important aspects, such as apoE glycosylation and its capacity to form dimers, 

could be related to AD development. The study of alterations in apoE structure 

could provide valuable information regarding the role apoE plays in AD and could 

contribute to its diagnostic potential. Nonetheless, few studies have dedicated 

their efforts to quantifying and characterizing the specific apoE species present 

in the CSF of AD individuals, and the reports performed up until now present 

incongruent findings.  

The main hypothesis of this doctoral thesis is that apoE protein presents 

alterations associated to AD, regardless of the isoform, and that these apoE 

alterations are expected to be found in AD CSF and brain samples. Moreover, as 

apoE and reelin are both soluble glycoproteins that compete for binding to the 

same receptor, apoER2, we also hypothesize that similar alterations to apoE 



 INTRODUCTION 
 

 
 

62 
 

could be found in reelin in AD samples. Alongside apoER2, other receptors from 

the LRP family, such as LRP3, may play yet undiscovered roles in AD. These 

alterations in apoE/reelin and apoE receptors could contribute to the progression 

of AD. 

 

 The objectives of the thesis are the following: 

1. To characterize apoE species in the CSF of AD individuals with different 

APOE genotypes. Specifically, the aim is to perform a biochemical 

characterization of the protein, including glycosylation, oligomerization, 

and the analysis of specific species associated to the disease, in order to 

obtain a particular apoE profile in human AD CSF. 

2. To obtain a similar apoE profile in different brain areas of AD individuals. 

Specifically, to analyse apoE in frontal and temporal brain regions.  

3. To analyse reelin protein levels, including proteolytic fragments, in the CSF 

of AD individuals with different APOE genotypes, in order to evaluate a 

potential read-out of reelin impairment in AD, and to analyse whether the 

APOE genotype has any impact on reelin levels.  

4. To characterize LRP3, a novel apoE receptor of the apoER2 family, in AD 

brain extracts and cellular models, to define its role in the pathology, and 

to study the potential influence of LRP3 on APP levels and/or proteolytic 

processing. 

  

The main method employed to study these objectives was Sodium dodecyl-

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot, 

using samples from human CSF and brain extracts from control and AD subjects 

with different APOE genotypes, as well as samples from animal and cellular 

models. Western blotting is a method that allows the characterization and 

quantification of protein species that differ in molecular mass, as well as the 

discrimination between fragments of the same protein. Other techniques, such as 

native-PAGE or mass spectrometry, were also employed. Cellular models 

expressing specific proteins of interest, such as reelin or LRP3, allowed us to 

observe alterations induced by AD-triggering effectors. Immunoprecipitation 
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assays were frequently used to study the interaction between specific proteins, 

but also to assure the identity of the protein species under study. 

The results obtained from the studies performed throughout the doctoral 

thesis led to three publications, all in Q1 journals, which can be found annexed 

following the Materials and Methods section.
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In this section the samples and methods used in our studies will be briefly 

described. For detailed information regarding methods employed in some 

studies, please refer to the corresponding research paper.  

 

Samples 

For our studies human CSF and brain samples with known APOE genotypes 

were used. All studies were approved by the ethics committee at the Miguel 

Hernández University and were carried out in accordance with the Helsinki 

declaration regarding research on humans.  

The CSF samples were all de-identified aliquots from clinical routine 

analyses, following procedures approved by the ethics committees of the 

University of Gothenburg (Sweden) and the Hospital Sant Pau (Spain). The CSF 

samples were obtained by lumbar puncture and centrifuged (2000×g, 10 min) and 

then immediately aliquoted and stored in ultrafreezers at -80ºC until analysis. The 

time between CSF acquisition and storage was less than 4 hours in all cases. 

Freeze-thaw cycles were avoided, and new aliquots were used for each 

independent analysis. AD core biomarker levels were obtained by standardized 

methods in each cohort, and specific cut-off points were determined. For 

information regarding the AD diagnosis and specific details of the cohorts used, 

please refer to the corresponding research articles (apoE and reelin studies) 

(Lennol et al., 2022; López-Font et al., 2022).  

Brain samples from the frontal or temporal areas were obtained from the 

brain banks of the Institute of Neuropathology (Bellvitge University Hospital, 

Spain) and the University of Edinburgh (Scotland). Cases with AD were 

considered as those showing NFTs and/or senile plaques with the appropriate 

Braak staging at the post-mortem neuropathological examination. For information 

regarding the characteristics of the samples used, please refer to the 

corresponding research papers (LRP3 study and apoE annex) (Cuchillo-Ibáñez 

et al., 2021).  

 For the apoE CSF study, transgenic rat CSF samples were also used. 

Transgenic Tg344-AD rats expressing mutant human APP and presenilin-1 were 

bred in animal research facilities at the University of Barcelona with the approval 
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of the Experimental Animal ethical committee, and in compliance with European 

legislation. CSF samples were obtained at different time-points by cisternal 

puncture in the suboccipital region through the atlanto-occipital membrane, with 

a single incision into the subarachnoid space. For information regarding the 

characteristics of the samples, please refer to the apoE research paper.  

 

Cell cultures 

HEK-293T cells stably transfected with reelin were employed to study the effects 

on Aβ42 on cellular reelin levels (López-Font et al., 2022). Briefly, 2×106 cells/dish 

were grown in six-well plates in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% foetal bovine serum (FBS), penicillin/streptomycin and 

G418. After 24 hours the medium was changed to a modified Eagle’s Minimum 

Essential Media (Opti-MEM), and cells were treated with 2.5 µM Aβ42 or a 

scrambled Aβ peptide for 2 consecutive days with no media change. The cell 

medium was then collected, filtered through 0.2 µm pores and concentrated with 

an Amicon Ultra 100 kDa size exclusion filter, and then conserved at -80ºC until 

analysis by western blot.  

SH-SY5Y cells, a human neuroblastoma line, were differentiated to neural-

like cells to assess the interaction of apoER2 with LRP3. Briefly, cells were 

seeded at a density of 1×105 cells/well in 6-well plates and cultured in DMEM 

supplemented with 1% FBS, penicillin and streptomycin. To neuro-differentiate 

cells, all-trans-retinoic acid (RA) was employed to enhance neuronal markers and 

the expression of reelin and apoER2. 10 µM of RA diluted in DMEM with 1% FBS 

was added every 2 days. After 6 days, some cells were treated with recombinant 

reelin (12 µg for 24 hours), whereas others were treated with Aβ42 or scrambled 

Aβ protein in DMEM with 1% FBS for 2 consecutive days without media change 

at a concentration of 500 nM, 1 µM or 5 µM.  

Non-differentiated SH-SY5Y cells were transfected with Lipofectamine 

3000 with a construct encoding full-length apoER2 and apoER2-ICD expressing 

only the cytoplasmic domain, or with GFP as a mock transfection, for 48 hours. 

CHO cells stably overexpressing wild-type human APP (CHO-PS70 cells) were 

grown in DMEM with 10% FBS, 0.1% puromycin and 0.2% G418. CHO-PS70 
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cells were transfected with full-length human LRP3 cDNA for 48 hours. After 24 

hours post-transfection, some cells were treated with 10 µM chloroquine for 24 

hours (Cuchillo-Ibáñez et al., 2021).  

 

Western blotting 

SDS-PAGE and Western blotting is a technique used in all the research papers 

included in this compendium. Samples of human brain or CSF (quantities 

dependent on the protein being studied) were denatured for 5 minutes (unless 

otherwise stated) and resolved by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) under reducing conditions (unless otherwise 

stated). Premade or homemade gels of varying acrylamide percentage were used 

accordingly. In all studies, samples were analysed at least in duplicate (in 

separate gels) and distributed in the gels to ensure the comparison across 

different conditions. The distribution of samples and the experiments were 

performed by different research team members, to ensure no experimenter bias 

was involved.  

Following electrophoresis, proteins were blotted onto 0.45 µM 

nitrocellulose membranes, and immunoreactive bands were detected using the 

corresponding antibody (see Table 2). Blots were then probed with the 

appropriate conjugated secondary antibodies and imaged on an Odyssey CLx 

Infrared Imaging System. Band intensities were analysed using LI-COR software. 

When required, loading reference controls were included to allow normalisation 

across blots (Cuchillo-Ibáñez et al., 2021; Lennol et al., 2022; López-Font et al., 

2022). 
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Antibodies Protein detected Concentration Study 

AB178479 apoE (all isoforms) 1:1500 apoE and annex 

AB947 apoE (all isoforms) 1:1000 apoE 

NBP1-49529 apoE (apoE4) 1:1000 apoE 

MAB5366 reelin (N-terminal) 1:1000 reelin 

Ab139691 reelin (C-terminal) 1:1000 reelin 

Y186 apoER2 (N-terminal) 1:4000 reelin 

SAB1402255 LRP3 (C-terminal) 1:100 LRP3 

SAB4501786 LRP3 (N-terminal) 1:100 LRP3 

F1804 Flag 1:1000 LRP3 

ZRB1176 LDLR (C-terminal) 1:200 LRP3 

SAB1306331 apoER2 (C-terminal) 1:2000 LRP3 

A8717 APP (C-terminal) 1:2000 LRP3 

A8967 APP (N-terminal) 1:2000 LRP3 

11088 sAPPα 1:1000 LRP3 

18957 sAPPβ 1:1000 LRP3 

Ab63817 LC3B 1:2000 LRP3 

T6199 α-tubulin 1:4000 LRP3 

Table 2. Antibodies used in studies.  

 

Immunoprecipitation  

CSF or brain samples were incubated on a roller overnight with PureProteome 

FlexiBind Magnetic Beads coupled with the corresponding antibody. The 

supernatant was removed (unbound fraction) and the beads were washed and 

then resuspended and boiled at 98ºC for 5 min (unless otherwise stated) in SDS-

PAGE sample buffer and analysed by western blot with the appropriate antibody. 

Control immunoprecipitations were performed (Cuchillo-Ibáñez et al., 2021; 

Lennol et al., 2022). 
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Native-PAGE 

For blue-native gel electrophoresis, CSF samples were not heated (native 

conditions) and were loaded with LDS 4x sample buffer into native-PAGE 4-16% 

gels. Buffers were prepared using native-PAGE running buffer and native-PAGE 

cathode buffer additive. Immunoreactivity was detected using the AB178479 

antibody and HRP anti-goat secondary antibody. The signal was visualized by 

ECL and analysed using ImageStudio software (Lennol et al., 2022).  

 

Enzymatic deglycosylation  

CSF samples were deglycosylated using an Agilent Enzymatic Deglycosylation 

Kit. Briefly, 30 μL of control or AD CSF was mixed with 10 μl incubation buffer 

and 2.5 μL denaturing buffer and heated at 100°C for 5 min. The samples were 

then cooled down to room temperature, and 2.5 μL of detergent (15% NP-40) 

was added while mixing gently. O-linked (1 μL sialidase and 1 μL O-glycanase) 

or N-linked (1 μL N-glycanase) deglycosylating enzymes were then added 

according to each different condition (O-linked, N-linked, or O- and N-linked 

deglycosylation) and samples were heated at 37°C for 3 hours. Control 

deglycosylation was performed by exposing samples to the same heating 

conditions in absence of deglycosylating enzymes. Samples were analysed by 

western blot (Lennol et al., 2022).  

 

In-gel digestion and mass spectrometry 

1 mL of CSF pooled from several AD patients was immunoprecipitated with 

AB178479 antibody and loaded into an SDS-polyacrylamide gel under reducing 

conditions. Recombinant apoE was included as a reference. Upon 

electrophoresis, the gel was divided into 2 pieces, one for protein visualization by 

SimplyBlueTM SafeStain Coomassie and one for blotting with the AB947 antibody 

to confirm band presence and location. Bands of interest were cut-out from the 

AD CSF and recombinant lanes and destained. Gel pieces were then dehydrated, 

reduced and alkylated. Gel pieces were then washed, dehydrated and dried once 

more, and digested overnight with trypsin enzyme. Digestion was stopped and 

peptides were collected. Pooled extracts were dried and stored until MS analysis. 
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For MS analysis samples were reconstituted and analysed with a Dionex 

3000 nanoflow liquid chromatography system coupled to a Q Exactive. Mass 

spectra were acquired in positive ion mode and in a data-dependent manner. 

Fragmentation was obtained by higher energy collision-induced dissociation. 

Database searches were made using PEAKS Studio XPRO (Lennol et al., 2022).  

 

Brain membrane enriched-fractions  

Brain cortex samples were homogenized using a polytron Heidolph RZR-1 at 

600-800 rpm in a glass potter applying 10-15 pulses in buffer at 10% (w/v). The 

homogenate was centrifuged at 1000×g for 20 min at 4ºC. The supernatant (post-

nuclear fraction) was centrifuged at 13000xg for 15 min at 4ºC, and then the 

supernatant (cytosolic fraction) was aliquoted, and the resulting pellet 

(membrane-enriched fraction) was resuspended in buffer. 

 Differential centrifugation was performed in some CHO-PS70 cells. After 

homogenization of cell extracts in sucrose buffer, the homogenate was 

centrifuged at 1000×g for 10 min, and the supernatant was then centrifuged at 

15000×g for 15 min. The resultant supernatant (fraction containing the plasma 

membrane and soluble proteins from the cytosol) and the pellet (containing 

membranes from the endoplasmic reticulum, mitochondria, lysosomes, 

peroxisomes and endosomes) were quantified and stored for subsequent 

analysis (Cuchillo-Ibáñez et al., 2021).  

 

Microarray analysis 

Gene expression was analysed in SH-SY5Y cells 48 hours after transfection with 

apoER2 using microarrays SurePrint G3 Human Microarrays, and performed by 

Bioarray SL. RNA concentration and purity was determined by a NanoDrop 

spectrophotometer, and RNA quality was determined with the R6K Screen Tape 

kit, and RNA integrity ranged between 9.5 and 9.7. Each sample was labelled 

with Cy3 using the Ono-Color Microarray-Based Gene Expression Microarrays 

Analysis v6.6 and data were imported to linear models for microarray data 

Bioconductor software. Raw data were subjected to background subtraction, then 

to within-array loess normalization. Across-array normalization was then 
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performed. Normalized data were fitted to a linear model, and the significance of 

gene expression changes was analysed to the adjusted p value (Cuchillo-Ibáñez 

et al., 2021).  

 

qRT-PCR analysis 

RNA was extracted from human brains, SH-SY5Y cells or CHO-PS70 cells using 

TRIzol® Reagent in the PureLinkTM Micro-to-Midi Total RNA Purification System. 

SuperScriptTM III Reverse Transcriptase was used to synthesize cDNAs from this 

total RNA (2 µg) using random primers. Quantitative PCR amplification was 

performed on a StepOneTM Real-Time PCR System with TaqMan probes specific 

for human LRP3 (assay ID: HS01041220_m1), LDLR (assay ID: 

HS00181192_m1), and human 18S as a housekeeping gene for the human brain 

and SH-SY5Y cell samples. In CHO-PS70 cells, mRNA expression was 

measured with primers for human APP (forward: AACCAGTGACCATCCAGAAC; 

reverse: ACTTGTCAGGAACGAGAAGG) and for GAPDH (GAPDH, forward: 

AGAAGGTGGTGAAGCAGGCAT; reverse: AGGTCCACCACTCTGTTGCTGT) 

to normalize the expression levels of the target genes by the ΔCt method curves 

(Cuchillo-Ibáñez et al., 2021). 

 

Immunofluorescence and confocal microscopy 

CHO-PS70 cells overexpressing LRP3-flag were washed with cold Hank-

buffered salt solution and fixed with 4% paraformaldehyde and 0.1 M EGTA for 

10 min. To stain the plasma membrane, cells were incubated with WGA-FITC 

(WGA: lectin from Triticum vulgaris, FITC (fluorescin) conjugate) for 15 min at 

room temperature, and the nonspecific sites were blocked with 10% (w/v) bovine 

serum albumin for 30 min. No permeabilization steps were included before or 

during the incubation with the primary antibodies. Cells were incubated with 

primary antibody for Flag (1:200) for 1 hour, followed by secondary antibody 

(1:200, Cy5 anti-mouse) for 1 hour. After washes with PBS, cells were incubated 

briefly with Hoechst dye to label nuclei. Pictures were obtained in a Leica SPEII 

upright TCL-SL confocal microscope using an oil-immersion 40× objective.  
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The frontal cortex and hippocampus of 14 cases with different pathology 

stages were used in the fluorescence study. Formalin-fixed, paraffin-embedded-

de-waxed sections, 4 µm in thickness, were stained with a saturated solution of 

Sudan black B for 15 min to block autofluorescence of lipofuscin granules present 

in cell bodies and then rinsed in 70% ethanol and washed in distilled water. The 

sections were boiled in citrate buffer to enhance antigenicity and blocked for 30 

min at room temperature with 10% FBS diluted in PBS. Then, the sections were 

incubated at 4ºC overnight with combinations of primary antibodies: LRP3 C-

terminal (1:50) and apoER2 (1:50). After washing, the sections were incubated 

with fluorescent secondary antibodies against the corresponding host species. 

Nuclei were stained with DRAQ5TM (1:2000). After washing, sections were 

mounted in an Immuno-Fluore medium, sealed, and dried overnight. Sections 

were examined with a Leica TCS-SL confocal microscope (Cuchillo-Ibáñez et al., 

2021).    

 

Statistical analyses 

Data analyses were performed using GraphPad Prism (version 7). The 

distribution of data was tested for normality using D’Agostino-Pearson tests. 

ANOVA was performed for parametric variables and Kruskal-Wallis test for non-

parametric variables to compare between groups. To compare two specific 

groups and determine exact p values Student’s t-test for parametric variables and 

Mann-Whitney U tests for non-parametric variables were performed. For 

correlations, Pearson and Spearman tests were used. p value < 0.05 was 

considered significant. 
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After observing significant modifications of the apoE protein in AD CSF samples, 

we decided to study apoE in brain samples obtained from AD subjects. In AD, 

apoE plays important roles in the deposition of Aβ (Morris et al., 2010), and 

histopathological studies have detected apoE in amyloid plaques (Namba et al., 

1991) and NFTs (Rohn et al., 2012). Therefore, an aberrant behaviour of the 

protein is likely present in the brain, and it is plausible that a relevant percentage 

of apoE is trapped in these proteinaceous deposits. 

 Before analysing apoE in brain samples, we decided to confirm that the 34 

kDa species was indeed an intermediate species in the synthesis of the protein 

that is released as 36 kDa apoE when adequately glycosylated. As such, we 

transfected HEK-293 cells with apoE3 and apoE4. 2×106 cells/dish were grown 

in six-well plates in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% FBS, 100 µg/mL penicillin/streptomycin and 250 µg/mL G418. After 24 

hours, the medium was changed to Eagle’s Minimum Essential Media (Opti-

MEM) and cells were transfected with Lipofectamine 3000 following 

manufacturer’s instructions with constructs encoding apoE3 or apoE4 for 48 

hours (Addgene, plasmids #87086 and #87087, respectively). Cell media were 

then obtained and kept at -80ºC until analysis. Cell extracts were obtained by 

scraping the plates in presence of solubilization buffer containing Tris-HCl (50 

mM, pH 7.4), NaCl (150mM), EDTA (5 mM), Triton X-100 (0.5%w/v), Nonidet P-

40 (1% w/v), fresh 0.5 mM PMSF, and a cocktail of protease inhibitors. Protein 

concentration was determined using the bicinchoninic acid (BCA) method 

(Pierce™ BCA Protein Assay Kit) and samples were conserved at -80ºC until 

analyses. 

 The samples were heated for 5 minutes with sample buffer and analysed 

by SDS-PAGE/western blot under reducing conditions in 12% gels. Our results 

showed that the 34 kDa apoE species is more abundant in the cellular extracts, 

whereas the 36 kDa is predominantly found in the cell media (see Figure 8). 

These results suggest that 34 kDa apoE is a transient species, mainly located 

within the cell which, once fully glycosylated, will be released into the medium.  
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Figure 8. ApoE over-expressed in HEK cellular extracts and media. HEK cells were 

transfected with apoE3 and apoE4, and apoE protein species were analysed. The 34 kDa apoE 

is detected mainly in HEK extracts, whereas the 36 kDa species is more abundant in the media.  

 

 To study apoE in the brain we are using two well-characterized brain 

cohorts from the frontal or temporal cortex of subjects with known APOE 

genotypes (see Table 1). Small pieces of human cortex stored at -80ºC were 

thawed gradually at 4ºC and then homogenized (10% w/v) in ice-cold extraction 

buffer Tris-HCl (50 mM, pH 7.4), NaCl (150mM), EDTA (5 mM), Triton X-100 

(0.5%w/v), Nonidet P-40 (1% w/v), fresh 0.5 mM PMSF, and a cocktail of 

protease inhibitors (Sáez-Valero et al., 1999). The samples were sonicated and 

centrifuged at 100000×g at 4ºC for 1 hour. The supernatant was then removed 

and conserved at -80ºC until analysis. Protein concentration was determined 

using the bicinchoninic acid (BCA) method (Pierce™ BCA Protein Assay Kit). 

 Brain extracts, 25 µg of each sample, were denatured at 98ºC for 5 

minutes and resolved by SDS-PAGE (Tris-tricine 12% gels). Following 

electrophoresis, proteins were blotted onto 0.45 µm nitrocellulose membranes 

and bands of apoE immunoreactivity were detected using the AB178479 antibody 

(goat polyclonal; Merck Millipore) common to all apoE isoforms. Blots were 

probed with the appropriate secondary antibody (IRDye secondary antibody) and 

imaged on an Odyssey CLx Infrared Imaging System, as described in the 

methods section. Quantifications were performed using the ImageStudio 

software. 
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TABLE 1A: EDINBURGH (SCOTLAND) 
 CONTROL ALZHEIMER’S DISEASE 
APOE ε3/3 ε3/4 All ε3/3 ε3/4 All 
N 6 4 10 5 5 10 
Average age (Years) 66 49.8 59.5 82.2 76.8 79.5 
Age (Range) 53-78 34-59 34-78 65-87 57-90 57-90 
Female/Male 2/4 1/3 3/7 2/3 0/5 2/8 
Post-mortem (hours) 62.5 75 67.5 80.2 74.2 77.2 
Braak stage (V/VI) - - - 0/5 0/5 0/10 

 

TABLE 1B: BARCELONA (SPAIN) 
 CONTROL ALZHEIMER’S DISEASE 
APOE ε3/3 ε3/3 ε3/4 All 
N 6 6 4 10 
Average age (Years) 51.8 79.5 74.3 77.4 
Age (Range) 47-60 56-93 67-81 56-93 
Female/Male 1/5 2/4 3/1 5/5 
Post-mortem (hours) 8.9 11.8 8.5 10.5 
Braak stage (V/VI) - 4/2 3/1 7/3 

 

Table 1. Demographic data of brain cohorts. Demographic data of the Edinburgh temporal 

cortex collection (Table 1A) and the Bellvitge frontal cortex collection (Table 1B). 

 

 Our initial studies were performed in a collection from the Edinburgh Brain 

Bank consisting in temporal cortex samples from control and AD samples (see 

Table 1A). Two distinct apoE glycoforms were present in control samples, with a 

similar molecular mass to the ones detected in CSF samples, with about 34 kDa 

and 36 kDa, thus probably representing immature and mature glycoforms. In the 

AD cases, however, only the 34 kDa apoE species were detected, as the 36 kDa 

species appeared to be mostly depleted (see Figure 9). No differences were 

observed between APOE genotypes, as all AD samples were affected to a similar 

extent in APOE ε4-carriers and non-carriers. 

 Due to the high affectation of the temporal cortex in AD from very early 

stages, we decided to corroborate the results obtained in another brain area that 

is affected later in AD, the frontal cortex, from another independent cohort (Brain 

Bank from the Hospital de Bellvitge/Universitat de Barcelona) (see Table 1B). 

Our initial studies showed that, in the frontal region, both apoE glycoforms of 

about 34 and 36 kDa were present in control and AD samples (see Figure 9). 
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Nonetheless, upon quantification, a lower 36/34 kDa glycoform ratio was detected 

in AD compared with controls (p= 0.004), and this quotient also reached 

significance when APOE ε3/ε3 cases (p= 0.04) and APOE ε3/ε4 cases (p= 0.02) 

were considered independently. No differences between AD cases with different 

APOE genotypes were detected.  

 
Figure 9. ApoE in brain samples. In SDS-PAGE/western blots, apoE is present in the brain as 

two glycoforms, in a similar manner to CSF. Samples from the temporal cortex (A) and frontal 

cortex (B) present an imbalance in immature and mature glycoforms. In the temporal cortex 

(Edinburgh cohort; see Table 1A), the 36 kDa species is practically absent in AD samples. In the 

frontal cortex (Bellvitge cohort; see Table 1B), the 36 kDa band appears to be less intense in AD 

cases (Braak stages V-VI) when compared with controls. The 36/34 kDa ratio from the frontal 

cortex collection is shown to the right (C & D), demonstrating a significant decrease in AD cases, 

considering all the AD cases (C) or when discriminating by APOE genotypes (D).  

 

 High molecular mass species immunoreactive to apoE were detected in 

all samples, including controls, however no apparent changes in their levels and 

no aberrant dimers comparable to the ones found in CSF samples were detected 

in AD samples. 

 Taken together, these results replicate the findings described in CSF 

samples regarding the imbalance of apoE glycoforms in AD. This imbalance 

favouring immature apoE glycoforms appears to be exacerbated in more affected 

regions at later stages of the disease. 



 
ANNEX   

 

 
 

100 
 

 We decided to characterize the 34 kDa glycoform in an attempt to detect 

further differences in this specific form associated to AD pathology. In non-

pathological conditions, immature glycoforms should be attributable to transient 

species that are trafficking through the Golgi, a membrane compartment. We 

expected that the solubilisation of brain extracts using a saline buffer in absence 

of detergent (1 M NaCl, 50mM MgCl2, 1 mM EGTA, 1 mg/ml bacitracin, 2 mM 

benzamidine, 0.1 mg/ml soybean trypsin inhibitor, 10 µg/ml pepstatin, 20 U/ml 

aprotinin, 20 µg/ml leupeptin, 10 mM Tris, pH 7.0) would be adequate to obtain 

the soluble apoE species, but would likely be less efficient for the solubilisation 

of transient apoE species from inside the Golgi and intracellular organelles. The 

protocol of sonication and centrifugation remained the same as the detergent-

containing protocol. After centrifugation, the supernatant containing the soluble 

fraction was kept, and the remaining pellet was then re-solubilized in a buffer 

supplemented with detergent (Tris-HCl (50 mM, pH 7.4), NaCl (150mM), EDTA 

(5 mM), Triton X-100 (0.5%w/v), Nonidet P-40 (1% w/v), fresh 0.5 mM PMSF, 

with a cocktail of protease inhibitors). In this manner, we expected that the apoE 

species trafficking through organelles would be optimally released in the 

detergent fraction. 

 These studies are still in their early stages, so only preliminary results have 

been obtained. Nonetheless, our initial trials in controls have shown that a large 

proportion of 34 and 36 kDa apoE is obtained in the soluble fraction, although a 

proportion of both species is also detected in the detergent fraction. In AD 

samples, however, the 34 kDa species is only consistently released in the 

detergent fraction; as such, significantly less 34 kDa apoE is detected in the 

soluble fraction of AD samples compared to controls (p < 0.0001), as seen in 

Figure 10. 
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Figure 10. ApoE in soluble and detergent fractions from temporal cortex samples. ApoE 

was obtained from temporal cortex samples following solubilization with a saline buffer (Sal) to 

extract the soluble fraction, followed by a buffer containing detergent (Det) to extract the 

unreleased membrane-bound fraction. Note that both the 34 and 36 kDa species are visible 

following both saline and detergent solubilization in control cases, whereas the 34 kDa species is 

only present following solubilization with a detergent buffer in AD cases. The quantification of the 

34 kDa apoE species obtained from each solubilization method is represented as a quotient 

(soluble/detergent fraction apoE). 

 

 Therefore, solubilization with the saline buffer alone is not sufficient to 

effectively release 34 kDa apoE in AD cases. This may indicate that, in AD, apoE 

may not be as readily secreted as in control cases, possibly due to it being 

retained within the organelles. Taking the predominant compartmentalization of 

34 kDa apoE and the absence of 36 kDa apoE in AD into consideration, these 

findings could indicate that the functions of apoE may be seriously affected due 

to the increased presence of poorly glycosylated apoE that is not secreted 

adequately.  

 In conclusion, these preliminary results appear to corroborate the findings 

from our CSF studies regarding an imbalance in apoE immature glycoforms in 

AD. Despite the limitation that different areas also correspond to different cohorts, 

these changes appear to be exacerbated in brain areas that are more severely 

affected in AD. Therefore, although the levels of the 34 kDa species are 

maintained, the inability to generate 36 kDa species suggests that the normal 

glycosylation/secretion pathway for apoE is impaired in AD. In fact, as the 34 kDa 

immature apoE glycoform is not solubilized in absence of detergent with similar 

efficacy in AD as in control samples, these results suggest an alteration in the 

biosynthetic pathway of apoE in AD. Further studies are required to confirm these 

results, and to explore the functional implications of these apoE modifications. 
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Altogether, these findings suggest that the biological roles of apoE may be 

hindered due to aberrant post-translational modifications of the protein.
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AD is a multifactorial disease that involves many different mechanisms, amongst 

which reelin and apoE appear to play important roles. Our studies demonstrate 

that both proteins present an aberrant profile associated to the AD condition that 

may result in ineffective function, and this has been confirmed by other research 

groups. In AD CSF samples, total protein levels, glycosylation, dimerization, and 

fragmentation of apoE and reelin differ from control subjects. The articles 

included in the doctoral thesis suggest that specific proteins that link apoE and 

reelin receptor pathways, such as apoER2 or LRP3, could participate in AD-

related mechanisms. 

 The first article included in this doctoral thesis was centred on apoE in the 

CSF from individuals with AD. We detected a net increase of apoE levels in the 

CSF samples of transgenic rats and AD patients. Increased apoE levels in 

transgenic rat CSF were also reported in a recent study (Bac et al., 2023), 

whereas mainly contradictory results have been presented in studies assessing 

apoE levels in AD CSF samples (Cruchaga et al., 2012). In our study, while a 

unique immunoreactive band was detected in the transgenic rat, two distinct apoE 

glycoforms of 34 and 36 kDa were detected in human CSF. Levels of the less 

glycosylated 34 kDa species were found to be particularly increased in AD 

samples, leading to an imbalance in the 36/34 kDa ratio, which was lower in AD 

patients. We partially validated the results in a second cohort, as higher 34 kDa 

apoE levels and a decreased 36/34 kDa ratio were observed in AD samples 

compared with controls. Therefore, despite the occurrence of increased total 

levels of apoE, the proportion of glycosylated apoE compared to less glycosylated 

apoE is reduced in AD, which could hinder the biological roles of the protein, as 

adequate glycosylation is essential for the correct functioning of apoE 

(Kacperczyk et al., 2021). Interestingly, in the first cohort the APOE ε4/ε4 cases 

presented a higher 36/34 kDa ratio than the AD samples with different APOE 

genotypes; however, these differences were not observed in the second cohort. 

Anyhow, due to the basal compromise in some of the biological functions of 

apoE4, APOE ε4-carriers may be more sensitive to the alterations in the balance 
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of glycoforms, and therefore smaller changes in apoE4 could have more direct 

consequences than in apoE3. 

 Many studies have associated changes in glycosylation to AD, reporting, 

for instance, changes in carbohydrate metabolism (Johnson et al., 2020) and N-

glycosylation (Chen et al., 2021) in the pathology, and as such the glycosylation 

of proteins has been considered as a potential therapeutic target (Conroy et al., 

2021). Alterations in organelles involved in glycosylation have also been reported 

in AD, such as endoplasmic reticulum stress (Imaizumi et al., 2001) and Golgi 

fragmentation (Haukedal et al., 2023). The apoE glycoform imbalance detected 

in the CSF should therefore come as no surprise, as it coincides with previous 

reports in AD describing an aberrant glycosylation pattern in many key proteins, 

including APP, BACE1, nicastrin, tau and PS (reviewed in Schedin-Weiss et al., 

2013). For example, the modification of APP O-glycosylation has been linked to 

Aβ generation and, as such, some studies have proposed that maintaining APP 

glycosylation status at a state comparable to younger people could protect 

against AD (Akasaka-Manya & Manya, 2020). Therefore, the aberrant 

glycosylation in apoE leading to the progressive switch observed from the control 

condition, characterized by abundant 36 kDa species, to the pathological 

condition, in which the presence of 34 kDa species is increased, could explain 

the role that apoE plays in AD by slowly losing the protective functions, such as 

Aβ clearance, which are expected to be carried out by the mature 36 kDa species. 

 We also detected an aberrant apoE species of approximately 100 kDa 

exclusively in AD cases, regardless of the APOE genotype, probably representing 

dimers, but not linked by disulphide bonds, since they were resistant to β-

mercaptoethanol. As discussed earlier (Rebeck et al., 1998), apoE4 lacks the 

ability to form stable dimers through the amino acid substitution at position 112 

(Arg instead of Cys). Nonetheless, we confirmed the identity of these species as 

apoE via immunoprecipitation and mass spectrometry studies. Through trials 

under reducing and non-reducing conditions, these high molecular mass species 

were also detected in control samples when analysed in absence of the reducing 

agent β-mercaptoethanol. Furthermore, using an apoE4-specific antibody, we 

identified apoE4 as part of the aberrant dimers in AD cases, but not in disulphide-

linked dimers from control APOE ε3/ε4 cases under non-reducing conditions, thus 
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indicating that apoE4 only participates in the aberrant aggregates. This 

phenomenon was corroborated under native conditions, in which dimers were 

detected in APOE ε4/ε4 AD subjects, and APOE ε3/ε4 AD cases presented a 

higher proportion of dimers compared to genotype-matched controls. The 

occurrence in human CSF of these SDS-stable dimers is highly unexpected, as 

they had only been described previously in vitro (Martel et al., 1997). Further 

studies are required to confirm their nature and composition. Interestingly, both 

apoE and reelin exhibit aberrant aggregates related to the AD condition. A similar 

phenomenon occurs in soluble CSF-PS1 complexes (Sogorb-Esteve et al., 

2018), in which Aβ oligomers are identified as part of the complexes. Therefore, 

we hypothesize that Aβ oligomers could trigger and participate, as a cross-linking 

agent, in the formation of these SDS-stable complexes.  

 In addition to characterizing these apoE complexes to decipher their 

significance, it would be desirable to evaluate the potential of aberrant apoE 

dimerization as a read-out for AD progression. In this sense, it will also be of 

interest to determine whether apoE immature glycoforms are part of the aberrant 

complexes, as immature glycoforms are not expected to participate in disulphide-

linked dimers. 

 Our preliminary studies in AD brain samples seem to replicate the 

imbalance of apoE glycoforms detected in the CSF. Results in AD brain samples 

suggest an inability to correctly produce fully glycosylated 36 kDa apoE species, 

particularly in samples from the temporal region, displaying a major depletion in 

these mature glycoforms. The levels of the less glycosylated 34 kDa species, on 

the other hand, remain unaltered in both temporal and frontal regions; thus, the 

capacity to synthetize apoE appears to be unaffected, and accordingly an altered 

post-translational mechanism is expected. ApoE glycosylation is of great 

functional importance (Flowers et al., 2020); therefore, these modifications could 

be indicative of a loss of function for apoE in AD, leading to a paradoxical situation 

in which apoE is incapable of adequately performing its functions, despite the 

increased total CSF levels in AD patients and the transgenic rat model.  

 Our initial results regarding saline solubilization of apoE, showing less 

soluble apoE in AD samples compared to controls, appear to support this 

hypothesis: apoE would be retained within the cell, thus hindering its biological 
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functions. It is worth noting that no higher molecular mass species comparable to 

the 100 kDa band in the CSF were detected in brain extracts, despite being 

reported in previous studies (Permanne et al., 1997). These complexes may exist 

in the AD brain but could be lost through the solubilization process (e.g., 

sonication); to confirm this, studies are required to assess how sensitive the SDS-

stable aggregates obtained from the CSF are to the chemical treatments and 

gentle extraction protocols used for brain samples. 

 Recapitulating, apoE appears to suffer structural modifications in the 

human AD brain and CSF. It is worth noting that the CSF samples are usually 

obtained as a means to diagnose AD when the first clinical symptoms appear, so 

the structural modifications in apoE likely represent early stages of the pathology. 

In the brain, the large depletion of the mature apoE glycoforms in the earliest-

affected areas suggests that these modifications could increase with the 

progression of AD. Analysis of ventricular CSF obtained from post-mortem 

subjects could be of value to demonstrate the depletion of the 36 kDa apoE 

species and the occurrence of apoE aggregates, as demonstrated previously for 

other soluble protein aggregates (García-Ayllón et al., 2013).  

 In the study regarding reelin processing in AD, we detected a decrease in 

full-length reelin levels, alongside an imbalance in the levels of reelin fragments 

present in the CSF of AD patients, when compared to controls. An increase of 

the N-terminal 310 kDa and C-terminal 100 kDa fragments was detected, 

indicative of enhanced cleavage at the C-terminal region. However, the N-

terminal 180 kDa reelin fragment levels remained unaltered, whereas decreased 

250 kDa C-terminal fragment levels were found, likely pointing towards reduced 

N-terminal region cleavage of reelin, which is expected to occur after reelin 

binding to apoER2 (Hibi & Hattori, 2009). Our group described an ineffective 

binding of reelin to apoER2 in AD (Cuchillo-Ibañez et al., 2016), which could be 

responsible for the reduced N-terminal cleavage. This ineffective binding could 

lead reelin to be processed by other mechanisms that are independent of its 

interaction with the apoER2 receptor, such as the activity of extracellular matrix 

metalloproteinases, which may be responsible for the imbalance in reelin 

fragments observed in the CSF (Hattori & Kohno, 2021). Therefore, AD samples 
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appear to be characterised by enhanced C-terminal region cleavage and reduced 

N-terminal region cleavage. 

 The imbalances detected allowed us to describe quotients for reelin N-

terminal (310 kDa/180 kDa) and C-terminal (100 kDa/250 kDa) fragments that 

appear to be higher in AD than in controls, and these quotients could serve as a 

better read-out for the pathology than reelin concentrations alone, which present 

high inter-subject variability (Botella-López et al., 2010). In previous studies we 

focused on the determination in AD brain and CSF samples of the levels of the 

180 kDa N-terminal fragment and the 420 kDa full-length reelin, and both were 

detected at higher levels in the pathology (Cuchillo-Ibáñez et al., 2016). 

 In our current study on reelin, we performed a more reliable quantification 

of the 420 kDa species, given that we used western blotting with an enhanced 

resolution, based on infrared-excitation of the fluorophores attached to the 

secondary antibodies, and we optimized the separation between higher 

molecular mass species by resolving the electrophoresis on 4-15% 

polyacrylamide-gradient gels. These changes allowed us to detect, unexpectedly, 

the presence of an additional 500 kDa reelin immunoreactive species exclusively 

in AD samples, regardless of the APOE genotype. In previous studies, these 

aberrant high molecular weight species of 500 kDa were probably mixed with full-

length reelin (in previous analyses, 6% polyacrylamide gels were used), which 

could explain the contradiction in full-length reelin levels between studies (in 

previous reports increased full-length reelin was detected, whereas we found 

decreased full-length reelin levels). The 500 kDa reelin species appeared to lack 

the C-terminal domain, as they were only detected with the N-terminal antibody.  

 The APOE genotype of the individuals could influence the levels of reelin 

fragments, given that apoE proteins are competitors for binding to apoER2. 

Accordingly, the levels of the 310 kDa reelin fragment, as well as the levels of 

ectodomain fragments of apoER2, appeared to be decreased in APOE ε4/ε4 

subjects. Interestingly, previous results in cultured neurons indicated that apoE4 

is probably the most effective isoform in dampening reelin signalling by binding 

to apoER2 (D’Arcangelo et al., 1999). Due to the fact that the interaction of reelin 

with apoER2 generates fragments of the ligand, this would explain the lower 

generation of reelin fragments in APOE ε4-carriers. On the other hand, apoE2, 
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when compared with apoE4, promotes a greater accumulation of the C-terminal 

fragments of apoER2 generated after interaction with the receptor (Hoe & 

Rebeck, 2005). This apparent contradiction, in which apoE4 binds more efficiently 

to apoER2 but fails to effectively activate signalling, including the subsequent 

endocytosis and proteolysis of the ligand and receptor, could be related with the 

inability of apoE4 to form disulphide-linked dimers. Reelin (Kubo et al., 2002) and 

apoE2/3 homodimers (Dyer et al., 1991), linked by disulphide bonds, appear as 

the native forms able to bind to receptors. Thus, a basal compromise or impaired 

signalling could occur in APOE ε4/ε4, in which the reelin/apoER2 signalling 

pathway could be activated to a lower extent than in APOE ε3/ε3 subjects. 

 In sum, the decreased levels of the 420 kDa full-length reelin, taken 

together with the aberrant fragmentation and aggregation of the protein, suggest 

that reelin signalling is altered in AD, leading to imbalances in the distribution of 

species detected in CSF samples. 

 Finally, in the third article focused on LRP3, we described a significant 

reduction of the levels of this novel and mainly unknown apoE receptor in the 

brain of patients with AD. Moreover, we demonstrated that LRP3 expression is 

modulated by the apoER2/reelin signalling pathway. The up-regulation of the 

LRP3 receptor is probably exerted by the ICD fragment of apoER2, which is 

generated following reelin stimulation, as the up-regulation of LRP3 was also 

demonstrated when apoER2-ICD was overexpressed. Nonetheless, LRP3 does 

not seem to interact directly with reelin, whereas it may interact with apoE. We 

were able to demonstrate that LRP3 expression modulates APP levels, reducing 

the levels of APP proteins likely through a lysosomal/autophagy pathway, a 

mechanism that has been proposed in previous studies (Cao et al., 2019; van 

Acker et al., 2019). This modulation reduced the levels of Aβ, which is particularly 

relevant in the context of AD, but also sAPPα, which has been seen to have 

protective effects (Milosch et al., 2015) and has even been proposed as a 

potential therapeutic target for AD (Reinhardt et al., 2018). Therefore, any 

benefits gained from the reduction in Aβ could be countered by the lower sAPPα 

levels.  



 DISCUSSION 
 

 
 

148 
 

 LRP3 could therefore play an important role in the pathogenesis of AD 

through its crosstalk with apoE signalling, APP, and the apoER2/reelin signalling 

pathway. 

 

ApoE, reelin and LRP3 signalling: A common link  

ApoE and reelin are both glycoproteins that are characterized in AD by an 

aberrant glycosylation profile and the appearance of SDS-stable complexes. 

ApoE, particularly apoE4, interferes in reelin binding to apoER2 (D’Arcangelo et 

al., 1991), both as monomeric apoE (Chen et al., 2010) and as dimers (Dyer et 

al., 1991). Therefore, the increase of monomers of apoE (especially in APOE 

ε4/ε4), in addition to the appearance of aberrant apoE and reelin dimers, could 

result in increased competition for binding to apoER2, and, as such, reelin 

signalling could be hindered. This interference in apoER2 signalling would thus 

lead to a complex scenario in which increased levels of the ligands do not 

necessarily represent increased signalling efficiency. 

 ApoER2 proteolytic processing down-regulates reelin expression through 

the ICD fragment generated following effective ligand-receptor interaction 

(Balmaceda et al., 2014). Therefore, the reduced activation and subsequent 

processing of apoER2 that occurs in AD should lead to increased levels of reelin, 

however in our study we detected decreased full-length reelin levels. This 

contradiction could be explained by the activity of alternative means of reelin 

proteolysis that are likely activated through the lack of binding to apoER2, such 

as extracellular matrix metalloproteinases (Kohno et al., 2015), which could in 

turn also explain the imbalance of reelin fragments detected in the CSF of AD 

subjects in our study. Given the importance of the apoER2/reelin-apoE pathway 

in protecting against AD progression, through the inhibition of tau phosphorylation 

(Hoe et al., 2006) and the regulation of APP levels and, thus, Aβ generation (Hoe 

et al., 2005), the impairment of this pathway may also contribute to the 

exacerbation of AD. 

 As apoER2/reelin signalling increases LRP3 expression, the decreased 

activation of the pathway could potentially be responsible for the reduced LRP3 

levels detected in the AD brain. These reduced levels could in turn lead to 
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enhanced APP and, consequently, increased Aβ levels, thus contributing to the 

progression of the pathology, although the increase in sAPPα levels could 

potentially counteract this effect. ApoE may be the component that interacts 

directly with LRP3, although the nature of this interaction is yet unknown. Further 

studies are required to clarify the crosstalk between LRP3 and the apoER2/reelin 

signalling pathway, the role of apoE, and the interaction between APP and these 

mechanisms.  

 The apoE glycoform levels and reelin proteolytic processing, taken 

together with the formation of aberrant aggregates of both proteins in AD, could 

contribute to the altered pathway and play a role in the progression of the disease 

by reducing the protective effects of the apoER2/reelin signalling pathway, and 

through a new mechanism: the LRP3 receptor. The potential pathway connecting 

apoE, apoER2/reelin and LRP3 is illustrated in Figure 11.  

 In light of these results and taking into consideration the deleterious effects 

of apoE4 on many AD-related functions (Yu et al., 2014), and the enhanced 

competition for binding to apoER2, the increased risk of developing AD 

associated to the APOE ε4 genotype is comprehensible. Understanding the 

mechanisms underlying the imbalance in apoE glycoforms and the formation of 

aberrant dimers could therefore provide information regarding the pathogenesis 

of AD, and the correction of these alterations may even serve as a therapeutic 

target in the future.  

 The imbalance in apoE glycoforms, alongside the fragmentation profile in 

reelin, could serve as read-outs for AD progression and could be assessed in 

parallel to the other CSF core biomarkers: T-tau, P-tau and Aβ42. In this sense, 

the high molecular weight species of both apoE and reelin detected could serve 

as potential biomarkers for AD. Reelin 500 kDa species were detected in the 

majority of AD cases, but were missing in a considerable portion, thus limiting 

their potential. The 100 kDa apoE species, however, did appear consistently in 

practically all the AD cases, and could thus serve as a potential indicator of AD. 

In particular, the detection of apoE dimers in APOE ε4/ε4 subjects, and the 

detection specifically of apoE4 in these complexes in APOE ε3/ε4 subjects, 

presents considerable potential as a read-out for AD. Nonetheless, techniques 

that distinguish between specific protein species are required. 
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Figure 11. Illustrated pathway of potential interactions between apoE, reelin and LRP3. The 

control (above) and pathological (below) situations are illustrated. Reelin interaction with apoER2 

leads to the processing of the receptor, forming the apoER2-ICD, which in turn inhibits reelin 

transcription. This ligand-receptor effective interaction also activates a downstream signalling 

pathway by the phosphorylation of Dab1, activating PI3K, which, in turn, phosphorylates Akt. Akt 

phosphorylation then inhibits GSK3β, thus preventing tau hyperphosphorylation and the 

subsequent formation of NFTs. The apoER2/reelin signalling activation also increases the 

expression of LRP3, which in turn decreases APP levels and, thus, Aβ production. ApoE 

competes with reelin for binding apoER2, including apoE monomers (apoE4 and maybe 34 kDa 

species) and aberrant dimers (represented as dimers including 34 kDa apoE with unorthodox 
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conformation). In AD the appearance of aberrant apoE dimers, alongside the increased presence 

of the less glycosylated 34 kDa apoE species, may block the apoER2/reelin signalling pathway. 

This blockage would also hinder the activity of the pathway, leading to decreased LRP3 levels, 

and consequentially an increased formation of amyloid plaques and NFTs. Reelin proteolysis 

through extracellular matrix metalloproteinases also appears to be enhanced, leading to an 

imbalance in reelin fragments. Created with BioRender.com 

 

Limitations 

All the studies reported in this doctoral thesis present limitations, some of which 

are already commented in the articles. The CSF studies for both apoE and reelin 

should be amplified in independent cohorts, preferably with a larger sample size, 

especially in the control groups, which included fewer subjects than the AD 

groups (e.g., 15 AD APOE ε3/ε4 subjects compared to 5 genotype-matched 

controls). In this sense, the inclusion of an APOE ε4/ε4 control group would be 

very interesting by allowing us to compare apoE4 from control and AD subjects, 

as disparities in the glycoform balance in this subgroup were detected amongst 

cohorts. However, it will be very difficult to obtain control samples with an APOE 

ε4/ε4 genotype, due to the high possibility of developing AD, and as such the 

majority of studies tend to distinguish between APOE ε4-carriers and non-carriers 

(van Harten et al., 2017). 

 Limitations regarding our studies in brain samples, in addition to the lack 

of APOE ε4/ε4 cases and APOE ε3/ε4 controls in the frontal cortex study, are 

focused on the absence of samples from earlier pathological stages in these 

cohorts. Extending the analysis with earlier Braak stage subjects and APOE 

genotypes would be desirable to enhance our understanding of the role of apoE 

in AD. 

 In the LRP3 study, very little is known regarding the function of the receptor 

in the brain and which proteins interact with it; as such, further studies to confirm 

our results in other brain cohorts could demonstrate a role for the receptor in AD. 

Studies using samples obtained from other brain areas would also be desirable, 

as LRP3 expression could vary across the brain in a similar fashion to apoER2 

(Gallo et al., 2020). 

 The techniques used in our studies also present limitations. Western 

blotting, even when resolved by quantitative fluorescence, is not a reproducible 
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quantitative method like others, such as enzyme-linked immunosorbent assay 

(ELISA). The development of new sensitive and fully quantitative techniques that 

discriminate between particular species, such as glycoforms and aggregates, is 

highly desirable. 

 

Future studies 

The functional relevance of distinct apoE species is of great importance. The shift 

between the 36 kDa and the 34 kDa apoE glycoforms in AD may result in a 

decreased ability of the protein to perform its biological functions. In addition to 

the capacity to interact effectively with receptors, apoE glycosylation has been 

seen to affect its Aβ42 binding ability (Chua et al., 2010), and therefore the higher 

proportion of these immature glycoforms may also affect the role apoE plays in 

Aβ production and clearance. Studies separating the two glycoforms that assess 

the downstream activation of signalling pathways, alongside Aβ binding and 

clearance, are highly desirable. In this sense, a characterization of the 

glycosylation pattern of apoE glycoforms will require the examination of their 

interactions with different lectins, together with deglycosylation analysis. 

 The functional implications of the immature apoE species and aberrant 

dimers detected in AD, and how they interfere with natural apoE and reelin 

dimers, should be explored. As such, it would be interesting to develop a model 

(cellular or animal) that replicates the formation of aberrant dimers in order to 

understand how they are formed and their potential roles in AD.  

 In the AD human brain, we presume that the depletion of the 36 kDa apoE 

is related to alterations in post-translational mechanisms that do not give rise to 

mature apoE forms, but the studies should be completed by measuring APOE 

transcription levels, which we presume will remain unaltered. Future studies 

should be performed analysing apoE from different brain regions and different AD 

pathological stages, to assess the progression of apoE modifications throughout 

the brain and the pathology.  

 Future studies should also attempt to determine whether reelin proteolytic 

processing is altered in AD. The extent and regulation of reelin processing by 

extracellular matrix metalloproteinases remain unresolved. The functional 
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importance of all the reelin fragments described should also be assessed to 

determine if they merely interfere in signalling by interacting with full-length reelin 

or apoER2, or if they have additional roles. How these fragments interact/interfere 

in apoER2 signalling could shed some light on the impairment of reelin signalling 

in AD. Resolving the nature and composition of the aberrant 500 kDa species is 

also of interest.  

 Our results give rise to new questions in the field of neuronal receptors, 

and the exact function of LRP3 in the CNS should be described. It is plausible 

that LRP3 is proteolytically processed by secretases, in a similar fashion to the 

LRP family member apoER2 and APP. In this case, it would be interesting to 

study whether LRP3 fragments have specific functions. Furthermore, LRP3 

modulation by apoE isoforms should be further described, and the mechanism by 

which reelin/apoER2 signalling affects LRP3 should be deciphered. Knowing 

more about the function and regulation of the receptor will help to determine 

whether it plays a role in AD pathogenesis. 

 

Final remarks 

In conclusion, apoE and reelin both suffer modifications in AD that could be either 

a cause or an effect of the disease. These modifications likely impair the functions 

of the proteins, leading to an exacerbation of the pathology. As they share 

common receptors, the aberrant dimerization of apoE and reelin, and the 

imbalance in apoE glycoforms and reelin fragments, may impede effective 

reelin/apoE binding to apoER2, thus inhibiting the protective functions of the 

apoER2/reelin-apoE signalling pathway. This scenario leads to the paradox in 

which increased levels of the ligand do not necessarily represent increased 

signalling, as the pathway appears to be compromised. Novel receptors, such as 

LRP3, that interact with key AD-related proteins, including APP, could also play 

a role in the regulation of apoE function in the disease process, and therefore 

warrant further investigation.  

 Despite the increased risk of developing AD associated specifically to the 

APOE ε4 allele, the majority of AD patients express the much more common ε3 

allele, and thus research should not focus solely on the ε4 allelic variant. As such, 
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in our studies we also found important apoE modifications in APOE ε3 carriers, 

as originally hypothesized. Therefore, apoE alterations appear regardless of the 

APOE genotype, and the risk associated APOE ε4 allele appears to simply 

exacerbate the modifications present in apoE, rather than presenting unique 

alterations.  
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The results obtained and discussed in this Thesis can be summarized in the 
following points:  
 

1) Total apoE protein levels are increased in the CSF of AD subjects, and in 

the CSF of transgenic rats, at early stages of the pathology. 

2) SDS-PAGE-resistant apoE dimers appear in AD CSF, in all APOE 

genotypes, despite the inability of apoE4 to form disulphide-linked dimers. 

3) In AD CSF samples, the less glycosylated 34 kDa apoE species is more 

abundant than in controls, leading to an altered glycoform balance.  

4) The apoE glycoform imbalance and the aberrant dimers are consistent 

across all APOE genotypes, and do not appear to be exclusive to the risk 

associated APOE ε4 allele. 

5) The altered apoE glycoform pattern is present in AD brain samples, 

especially in earliest-affected brain regions, such as the temporal cortex. 

6) Reelin full-length protein levels and the fragment ratios described (N-

terminal fragment ratio: 310/180 kDa; C-terminal fragment ratio: 100/250 

kDa) increase in AD CSF samples. 

7) AD CSF is characterized by the appearance of 500 kDa reelin aggregates 

containing the N-terminal domain.  

8) The apoE glycoform imbalance and reelin fragmentation profile, as well as 

the aberrant dimers detected in both proteins, could serve as read-outs for 

AD onset and progression. 

9) LRP3 is a novel receptor whose expression is modulated by the 

apoER2/reelin signalling pathway. 

10)  LRP3 affects APP levels and subsequent Aβ and sAPPα production 

through an autophagic/lysosomal mechanism. 
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Los resultados obtenidos y presentados en la presente memoria de tesis se 

pueden resumir en las siguientes conclusiones: 

 

1) Los niveles totales de la proteína apoE aumentan en el LCR de sujetos 

con EA y ratas transgénicas en etapas tempranas de la patología. 

2) En el LCR de sujetos con EA aparecen dímeros de apoE resistentes a 

SDS-PAGE, independientemente del genotipo APOE, a pesar de la 

incapacidad de apoE4 para formar dímeros unidos por enlaces disulfuro. 

3) En las muestras de LCR de sujetos con EA se observa un desbalance en 

glicoformas de apoE, debido a que la especie menos glicosilada de 34 

kDa es más abundante que en los controles. 

4) El desequilibrio de glicoformas de apoE y los dímeros aberrantes 

aparecen en todos los genotipos APOE, y no parecen ser exclusivos del 

alelo APOE ε4, que está asociado a un mayor riesgo de padecer EA. 

5) El desbalance de glicoformas de apoE también se observa en muestras 

de cerebro con EA, especialmente en las regiones con afectación 

temprana, como la corteza temporal.   

6) Los niveles de reelina aumentan en el LCR de pacientes con EA; tanto los 

niveles de proteína completa como las proporciones de fragmentos 

descritas (fragmentos N-terminal: 310/180 kDa; fragmentos C-terminal: 

100/250 kDa). 

7) El LCR de sujetos con EA se caracteriza por la aparición de agregados de 

reelina de 500 kDa que contienen el dominio N-terminal de la proteína.  

8) El desbalance de glicoformas de apoE y el perfil de fragmentación de la 

reelina, así como los dímeros aberrantes detectados en ambas proteínas., 

podrían servir como biomarcadores del inicio y la progresión de la EA.  

9) El LRP3 es un receptor nuevo cuya expresión está modulada por la vía 

de señalización de apoER2/reelina. 

10)  El LRP3 afecta los niveles de APP y la producción de Aβ y sAPPα a través 

de un mecanismo autofágico/lisosomal. 
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As I tiptoed off the plane of existence, 

And drifted listlessly, 

Through the velvet blackness of Oblivion, 

I am what I always was: 

Gleaming and Empty. 

 

“From the Kettle Onto the Coil” - Deafheaven 


