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… 

To understand a system, we must be able to see that it must, because of its inner 

nature, behave as we see it behaving. Its properties must grow out of its inner 

organization; its behavior must arise from its properties.  

… 

The best way to prove that an explanation actually explains something is to cast 

is as a working simulation, turn it on, and let it operate by the rules you have put 

in it. If you can’t do that, then you don’t have a model or an explanation. All you 

have is more or less persuasive rhetoric. 

 

W.T. Powers, Preface to Living Control Systems (1989, p. xv) 
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Abstract 
 

The main question of this thesis is the origin of the correlation between speed and 

curvature in human hand movement, or why does the hand move slower in curves? The 

phenomenon is known since the late 19th century, and was formalized in the late 20th 

century as the “speed-curvature power law” or “the 2/3 power law”. It has often been 

studied, since it is one of the few invariances found in hand movement. There is no 

consensus about its origin, and the attempts to explain it can be placed into roughly three 

approaches. First, the cortical origin hypotheses assume that the cortical structures 

optimize movement trajectories according to a criterion (such as minimal jerk) and the 

movement system then executes the planned trajectory. The second group of approaches 

assumes interaction: the power law depends on the interaction between the brain, the 

hand, and the environment; it arises from low-pass filtering properties of the arm or from 

differences in the environment, such as moving the hand through air or water. Finally, the 

third approach attempts to explain away the power law as a purely statistical artifact, 

arising from mistakes in the measurement process or the calculation of variables. 

To answer this question, we have considered all three approaches, using mathematical 

analysis of generated trajectories, human behavioral experiments, and numerical and 

robotic modelling. We showed that the power law is not mathematically trivial, but that 

there is a statistical artifact if angular speed is used instead of tangential speed. We argued 

against the claim that mechanical work is minimal in the 2/3 power law, and explored the 

relationship between the angular frequency of a curve, its power law exponent and the 

minimization of jerk. Applying the theory of hierarchical control, we built a robot arm 

and showed how the interaction between the artificial perception, simple controllers, low-

pass-filtering physical arm, and the unpredictable environment may result in the power 

law when drawing ellipses. The robot, however, produced smaller and phase-delayed 

elliptic trajectories compared to humans in similar tasks. In behavioral experiments with 

humans, we found that the most likely visual features used when tracking targets along 

elliptic trajectories are the phase and size difference. We created a numerical simulation 

of sensorimotor feedback loops using those features as controlled variables. When 

performing the same tasks as human participants, the simulation drew ellipses of the 

correct size and without phase delay, and also reproduced the exponents of the speed-

curvature power law. 

Taken together, the papers show significant progress toward understanding the origins of 

the speed-curvature power law, and suggest further testable hypotheses on the neural 

mechanisms of sensorimotor control in human arm and hand movement. Specifically, it 

appears that the power law in drawing ellipses can be explained by a hypothesis in the 

interaction approach - the power law emerges in the interaction of the low-pass filtering 

in the sensorimotor system, and higher-level visual controlled variables, such as the phase 

difference and the size difference.  

Additionally, we developed a free open-source movement tracking application for 

Android tablets to facilitate hand movement research outside the lab. Further, we built a 

prototype robot model of two antagonistic muscles for simultaneous control of joint angle 

and muscle tone. This is an initial step toward a more complex electromechanical model 

of the human arm that could be used to integrate and further verify the hypotheses 

generated by the present thesis. 
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Resumen 
 

La pregunta principal de esta tesis es el origen de la correlación entre la velocidad y la 

curvatura en el movimiento de la mano humana, o ¿por qué la mano se mueve más 

despacio en las curvas? El fenómeno se conoce desde finales del siglo XIX y se formalizó 

a finales del siglo XX como la "ley de potencia de curvatura de velocidad" o "ley de 

potencia de 2/3". Se ha estudiado a menudo, ya que es una de las pocas invariancias 

encontradas en el movimiento de la mano. No hay consenso sobre su origen, y los intentos 

de explicarlo se pueden encontrar en, principalmente, tres enfoques. Primero, las hipótesis 

del origen cortical asumen que las estructuras corticales optimizan las trayectorias de 

movimiento de acuerdo con un criterio (como sacudida mínima) y luego el sistema de 

movimiento ejecuta la trayectoria planificada. El segundo enfoque asume la presencia de 

interacción: la ley de potencia depende de la interacción entre el cerebro, la mano y el 

entorno: surge de las propiedades de filtrado de paso bajo del brazo o de las diferencias 

en el entorno, como mover la mano a través del aire o el agua. Finalmente, el tercer 

enfoque intenta explicar la ley de potencia como un artefacto puramente estadístico, que 

emerge de errores en el proceso de medición o el cálculo de variables. 

Para responder a esta pregunta, hemos considerado los tres enfoques, utilizando análisis 

matemáticos de trayectorias generadas, experimentos de comportamiento en humanos y 

modelos numéricos y robóticos. Mostramos que la ley de potencia no es matemáticamente 

trivial, pero que existe un artefacto estadístico si se usa la velocidad angular en lugar de 

la velocidad tangencial para su medida. Argumentamos que el trabajo mecánico no es 

mínimo en la ley de potencia de 2/3, y exploramos la relación entre la frecuencia angular 

de una curva, su exponente de ley de potencia y la minimización de la sacudida. 

Aplicando la teoría del control jerárquico, construimos un brazo robótico y mostramos 

cómo la interacción entre la percepción artificial, los controladores simples y el brazo 

físico de filtrado de paso bajo con el entorno impredecible puede dar como resultado la 

ley de potencia al dibujar elipses. El robot, sin embargo, produjo trayectorias elípticas 

más pequeñas y con retraso de fase en comparación con los humanos en tareas similares. 

En experimentos de comportamiento con humanos, descubrimos que las características 

visuales más probables que se utilizan al rastrear objetivos a lo largo de trayectorias 

elípticas son la diferencia de fase y tamaño. Creamos una simulación numérica de bucles 

de retroalimentación sensoriomotora usando estas características como variables 

controladas. Al realizar las mismas tareas que los participantes humanos, la simulación 

dibujó elipses del tamaño correcto y sin retraso de fase, reproduciendo también los 

exponentes de la ley de potencia de velocidad-curvatura. 

En conjunto, los artículos muestran un progreso significativo hacia la comprensión de los 

orígenes de la ley de potencia de velocidad-curvatura y sugieren más hipótesis 

comprobables sobre los mecanismos neurales del control sensoriomotor en el movimiento 

del brazo y la mano humana. Específicamente, sugiere que la ley de potencia al dibujar 

elipses puede explicarse mediante la hipótesis en el enfoque de interacción: la ley de 

potencia surge de la interacción del filtrado de paso bajo en el sistema sensoriomotor con 

las variables visuales controladas de nivel superior, como la diferencia de fase y la 

diferencia de tamaño. 

Además, desarrollamos una aplicación de seguimiento del movimiento de código abierto 

para tabletas Android con el fin de facilitar la investigación del movimiento de las manos 

fuera del laboratorio. Adicionalmente, construimos un modelo de robot prototipo de dos 
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músculos antagónicos para el control simultáneo del ángulo articular y el tono muscular. 

Este es un paso inicial hacia un modelo electromecánico más complejo del brazo humano 

que podría usarse para integrar y verificar aún más las hipótesis generadas por la presente 

tesis. 
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1.1. Why motor control 
 

Research in motor control is plagued (or perhaps blessed) with controversies, 

 some of which involve quite fundamental questions (Flash and Sejnowski, 2001). 

 

Most of our interactions with the world are mediated by muscles – obviously locomotion 

and limb movements, but also chewing, breathing, speaking, eye movements, iris dilation 

and contraction, and noise dampening in the ear. When we get goosebumps, there are tiny 

muscles, attached to hair follicles, that contract and move a small bundle of hairs. 

Internally, muscles pump our blood and help regulate our digestion. Inevitably, a large 

part of nervous system activity is going to be directly related to muscles. 

In evolution, locomotion seems to be one of the earliest functions of neurons. The first 

neurons are believed to have been similar to neurons of modern sea animals such as the 

amphioxus and larval ascidians (Striedter and Northcutt, 2019, p. 64, 90). The amphioxus, 

for example, does not have a heart. Its few muscles are used in gill movement, swimming 

and burrowing into sand. Ascidians, also known as sea squirts, swim during their larval 

phase in search of a place to attach themselves and they lose most of their neurons during 

metamorphosis to the adult, sedentary form. The entire evolution of the vertebrate 

nervous system may be seen as an elaboration of the movement repertoire from simple 

patterns toward more complex ones, owing to the elaboration and diversification of the 

underlying neural structures (Cisek, 2019). 

In robotics and AI, movement was once considered an easy problem and logical reasoning 

was considered hard. As it turned out, logical reasoning was solved much sooner than 

movement. The observation that the easy problems are hard, and the hard problems easy 

is known as the Moravec paradox, and it still holds – AI systems can beat the best human 

players in chess, go and StarCraft, and we do have fairly constant progress in robot motor 

skills, but, arguably, they are nowhere near the capabilities of a human child.  

Our problems with movement stem from the seemingly impossible conditions the motor 

control systems have to deal with. The sensory apparatus is noisy, imprecise and delivers 

the information about limb states with significant delay, so we don’t always have an 

accurate or timely information about their state. Our muscles are nonlinear, fatigable, and 

asymmetrically arranged around joints, so the same ‘commands’ to muscles will not 

create the same forces or the same movements at different times, or from different starting 

positions. On top of all that, the environment is constantly changing in unpredictable 

ways. Even a perfect movement plan, taking into account limb dynamics, muscle states, 

noise, delays and requirements of the task, will at some point fail and might need to be 

recalculated because it was impossible to predict the environmental disturbances and 

perturbations. And yet, humans move and perform everyday tasks with ease, neutralizing 

disturbances as they go, and only rarely stumble, fall or drop objects. Some of this ability 

is probably owed to our large brains, but, even insects, with much smaller brains, easily 

move around. The skilled ones, like the praying mantis, can use their arm-like limbs to 

catch pray and manipulate it to their mouths. 

This gap between the apparent structural limitations of the elements of our sensorimotor 

loops and our obvious motor abilities gave rise to a myriad of different approaches in 
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theoretical motor control. As in other sciences, research in motor control begins with 

observation and measurement. Any regularities are noted and expressed precisely and 

unambiguously in the form of mathematical laws. These regularities, also called 

invariances, may then serve as starting points for mechanistic models of sensorimotor 

loops, that represent its elements at different levels of detail. Competing models may hold 

different implications for the structure of the neural controllers, and may predict different 

behavioral performance in experiments - those are the main criteria for comparing the 

models. A model explaining human motor behavior should be composed of biologically 

realistic or plausible elements; it should explain and predict neural activity during 

movement; and it should reproduce the kinematic and dynamic invariances measured in 

experiments with human participants. Different approaches in theoretical motor control 

seem to emphasize the importance of different criteria. 

Historically, there have not been a large number of invariances found in human 

movement. There are, for example, the speed-accuracy tradeoff, where the precision of 

movement falls with the increase in speed or rhythm (Woodworth, 1899); the Fitts’ Law, 

where the duration of point-to-point movement decreases with the increase of target area 

size (Fitts, 1954); bell-shaped speed profiles in point-to-point movements, where the 

speed initially rises, reaches a peak near the middle of the movement, and then falls 

toward the endpoint (Morasso, 1981); and the speed-curvature power law (Lacquaniti et 

al. 1983) that I will elaborate below, as the main topic of this thesis. 

 

1.2. In natural hand movement, speed is related to curvature 

 

In a study of the speed of hand movement during writing, Binet and Courtier (1893) 

noticed several curious phenomena that are not entirely explained to this day. They used 

a late-19th century technological innovation called the Edison pen, made for copying 

documents. The interesting property of the pen was the constant frequency of vibrations 

of its tip, since its traces could be used to infer movement speed. The segments of the 

path traced at higher speeds appear as dots separated further apart than the dots in 

segments traced at lower speeds (Figure 1). 

 

 

Figure 1. Handwriting sample, from Binet and Courtier (1893). The sample was made with an Edison 

pen, a forerunner to modern tattooing pens. The tip of the pen oscillates at a constant frequency, so faster 

movements leave dots further apart than slower movements. Segments A-K are straight and drawn at higher 

speeds than the curved segments. The text is “Diapason”, meaning “tuning fork” in French. 
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Figure 2. Drawing loops, from Binet and Courtier (1893). The participants could not draw the loops at a 

uniform speed along the whole path, and instead always moved at a lower speed on the curves in the top 

and bottom and higher speed on the straight vertical segments. 

They noticed that the speed of writing is generally higher in the straight segments of 

letters, and lower in the curved segments; that the speed in circular segments seemed to 

depend on the radius of the circle – larger circles or arcs were drawn at higher speeds 

(Figure 2). These phenomena were present in the writing of all the participants and 

appeared even when they attempted to maintain uniform natural speed. Interpreting this 

result, Binet and Courtier suggested that participants did not have a great deal of voluntary 

control over the instantaneous speed during natural handwriting. The term ‘natural’ here 

refers to the speed commonly used when writing – neither too slow or too fast.  

Another late-19th century researcher noticed a similar thing. Jack (1895), after analyzing 

the samples made by participants writing with a tuning fork that vibrated at a constant 

frequency, leaving traces on a smoked glass slide, wrote: “the curved parts of letters and 

figures are more slowly formed than the rectilinear parts” and “the velocity of a curve 

varies, roughly speaking, with the radius of curvature.”  

The correlation between speed and curvature is one of the most researched invariances 

found in human movement. The research has gained momentum with the invention of 

modern recording equipment, such as digitizing tables and electronic pens and tablets, as 

well as the spread of computers that aided data recording and analysis. In one of the papers 

of this thesis, we describe a novel software packet for Android tablets, free and open-

source, that can be used for recording finger movements in drawing or tracing on the 

tablet (Annex 1).  

 

1.3. The 2/3 power law and the kinematics of curved movements 

 

Almost a century after Binet, Courtier and Jack, the phenomenon was studied by Viviani 

and Terzuolo (1982), who noticed that in some curved movements, tangential velocity is 

proportional to curvature, or that angular speed was constant with a different value in 
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different movement segments. A different formulation was offered as the ‘speed-

curvature power law’ by Lacquaniti, Viviani and Terzuolo (1983). They’ve noticed that 

the speed of the pen, while tracing ellipses, can be approximated by a power function of 

curvature with a constant exponent. The name “power law” comes from the empirical 

relationship: 

 𝑉 ≈ 𝑘𝐶𝛽 (1) 

where speed V is approximately equal to curvature C raised to the power β, times a 

constant k, related to rhythm or average speed.  

 

 

Figure 3. The speed-curvature power law in hand movement, V≈kCβ, or logV ≈ logk + β logC. A) 

Geometric and kinematic definitions of the variables: the point P moves along the curve s; at each instant 

of time, its velocity can be described by the vector v, speed V by the magnitude of velocity, and curvature 

C as the reciprocal of the radius R of the osculating circle (C = 1/R). The direction of movement with 

respect to the x-axis is α, and its first time-derivative is the angular velocity A. The variable k is a constant 

related to average speed. B) An example of an empirical trajectory conforming to a speed-curvature power 

law: a participant moves the pen faster (bright green) in areas of low curvature and slower (dark green) 

in areas of high curvature. On a log-log plot, the relationship between speed and curvature is linear, with 

the slope β, intercept log k and coefficient of determination r2. C) Examples of the speed-curvature 

relationships for equal curvature profiles, but different speed profiles. In the first case, the speed is 

constant, and there is no power law. In the second case, the speed is slightly lower in areas of high 

curvature, with the exponent β= -1/3 (~0.33) and r2=1. This profile is often found in elliptic human hand 

movements. In the third case, the speed is much lower in areas of high curvature than in areas of low 

curvature, with the exponent β= -2/3 (~0.67) and r2=1. 

 

The exponent β in drawing ellipses at a “natural” speed was found to be β=-1/3, and the 

law is sometimes called the “1/3 power law”. The phenomenon is also known as the “2/3 

power law”, since the angular speed in drawing ellipses varies approximately in 

proportion to curvature raised to the power of 2/3: 
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 𝐴 ≈ 𝑘𝐶2/3 (2) 

The formulations using tangential speed or angular speed have been considered 

equivalent; the -1/3 speed-curvature power law and the 2/3 angular speed-curvature 

power law are thought to be the same phenomenon described by different variables. In 

further text we use both names, indicating explicitly which formulation we are using: VC 

power law for the speed and curvature, and AC for the angular speed and curvature power 

law.  

Tangential speed or just speed, from equation (1) is defined as the magnitude of the 

velocity vector of the moving point P with coordinates (x, y) (see also Figure 3A): 

  𝑉 = |𝒗| = √𝑥̇2 + 𝑦̇2 (3) 

Curvature C is the reciprocal of the radius R of the osculating circle (Figure 3A), and can 

be approximated using the first and second derivatives of position: 

 
𝐶 =

1

𝑅
=

|𝑦̈𝑥̇ − 𝑥̈𝑦̇|

𝑉3
 

(4) 

where x and y are coordinates of the point P in the Cartesian plane. Angular velocity is 

defined in a moving frame as the rate of change in the direction α of the velocity vector, 

𝐴 =
𝑑𝛼

𝑑𝑡
. The exponent β is approximated as the slope of the linear regression line of the 

model: 

 log 𝑉 ≈ log 𝑘 + β log 𝐶  (5) 

 

This linear model is found by taking the logarithm of both sides of the equation (1).  

The values of the exponents in the VC power law indicate the “degree of slowing down 

in curves” or the difference between the fastest and slowest speed (Figure 3C). For β = 0, 

the speed is constant. Technically, the correlation of a constant with a variable is not 

defined because it involves a division with zero, so this a non-power-law trajectory. For 

β=-1/3, what is most commonly found in human movement, the speed is slightly lower in 

curved parts than straight parts (Figure 3B), and for more negative values of the exponent 

β, the speed is even more low if curved pars relative to straight parts. 

The exponents of the AC power law are different, as and constant speed trajectories have 

the exponent β=1 and an r2 of 1. Most commonly found exponent in empirically recorded 

elliptic trajectories is 2/3, and smaller values indicate more relative slowing in curves. 

The phenomenon of the power law is interesting as it is one of the rare behavioral 

invariances found in various types of human movement, as well as the movement of some 

animals. The power law with the exponent β=-1/3 has been found in planar elliptic 

trajectories (Viviani and Schneider, 1991; Viviani and Flash, 1995; Richardson and Flash, 

2002; Flash and Handzel, 2007; Huh and Sejnowski 2015; Catavitello et al, 2016), as well 

as in trajectories in 3D space (Maoz et al, 2009). Similar speed-curvature relationships 

were found in human walking trajectories (Vieilledent et al, 2001; Ivanenko et al, 2002), 
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and smooth pursuit eye movements (de’Sperati and Viviani, 1997). Different values of 

the exponent were found in drawing other shapes instead of ellipses (Schaal and Sternad, 

2001; Richardson and Flash, 2002; Huh and Sejnowski, 2015). It was also found in the 

movements of hands of monkeys (Schwarts, 1994; Abeles et al, 2013), movements of the 

drosophila larvae (Zago et al, 2016), and elephant trunks (Dagenais et al, 2021).  

Mathematically, an object moving along a given path could take any of the infinite 

possible speed profiles, and yet the speed of the human hand in natural movements is 

correlated with curvature. The invariance poses an interesting problem for movement 

theories: does the nervous system create a plan of the whole trajectory in preparation for 

the movement; or is the speed profile a non-intended consequence of some constant 

properties of the movement subsystems? 

The fact that its origin is not entirely explained points to unanswered fundamental 

questions in theoretical motor control – we still do not exactly and quantitatively know 

how the brain, the spinal cord, the bones and muscles interact with the unpredictable 

environment to create fluid and seemingly effortless movements such as drawing a circle 

or an ellipse. During the past 40 years, there have been many approaches to explaining 

the power law, and they can be divided in roughly three groups: central origin theories, 

brain-body-environment interaction theories, and attempts to explain away the power law 

as a purely statistical artifact. These approaches are used to explain multiple phenomena 

in motor control, but here we focus specifically on the phenomenon of the speed-

curvature power law. 

 

1.4. Theories explaining the origins of the speed-curvature power law 
 

1.4.1. Central origin 

 

Hypotheses or theories in the central origin group propose that the invariances in 

movements imply the existence of explicit planning of the movement trajectory. A 

trajectory is understood to be the full profile of positions in time, simultaneously defining 

the geometry and kinematics of the movement at each point in time. A planned trajectory, 

or a desired trajectory is imagined as a trajectory originating in the central nervous 

system, in the higher-level, planning phase of the movement. It may be executed either 

open-loop or by some form of closed-loop trajectory servo-followers on the lower levels. 

This kind of control architecture is often seen in industrial robot arms. 

Since the realized trajectory is considered equal or nearly equal to the desired trajectory, 

the question of explaining the power law requires answering why is the desired trajectory 

following the speed-curvature power law? Presumably, the brain is choosing power law 

trajectories, from the set of all possible ones, because they are beneficial in some way. 

Mathematically, this process can be expressed as the optimization of different cost 

functions, and selecting some specific cost functions leads to the 2/3 power law. 
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A commonly proposed cost is squared jerk, the third derivative of position. Minimization 

of jerk is considered equivalent to maximization of smoothness. By minimizing jerk over 

a given path and duration, researchers can predict a large class of movement trajectories 

(Wann et al. 1988; Viviani and Flash, 1995; Todorov and Jordan 1998; Richardson and 

Flash, 2002). It is defined as minimization of the magnitude of squared jerk of a point 

with position vector x, integrated over the duration of movement, T:  

 
𝐽 = ∫ |𝑥|2𝑑𝑡 

𝑇

0

 (5) 

Huh and Sejnowski (2015), predict a wide range of exponents in hand trajectories that 

follow different ‘pure frequency curves’ (Huh 2015), and demonstrate that trajectories of 

human participants, when moving in a fast and smooth manner, behave as predicted by 

the optimization of jerk. We have replicated this finding (Annex 2). 

Lebedev et al (2001) argued that the power law emerges because of the principle of least 

action and the minimization of work. We have argued that Lebedev and colleagues made 

a mistake in their calculations and that work is not minimal in power law trajectories 

(Annex 3). 

Another perspective uses non-Euclidean geometrical representations of movement to 

explain the power law (Flash and Handzel, 2007; Bennequin et al, 2009; Polyakov et al, 

2009). According to their analyses, maintaining a variable such as affine speed at a 

constant value, leads to the speed-curvature power law. 

The main problem of central origin hypotheses is the relatively complex process leading 

to the generation of desired trajectories, involving calculus of variations and detailed 

knowledge of limb dynamics, encoded in internal models. This process if sometimes 

criticized for not being biologically plausible, implying that it could not possibly be 

executed in real time by the central nervous system (Ostry and Feldman, 2015; Powers, 

2008).  

The existence of the desired trajectory itself was also questioned (e.g. Cisek, 2005). Some 

experiments seem to imply that the desired trajectory does not exist (Liu and Todorov, 

2007). As an alternative to pre-planned desired trajectories, Todorov and Jordan (2002) 

proposed optimal feedback control theory (OFC). The theory proposes continuous use of 

sensory feedback and optimization of cost functions that result in different control laws 

or policies, with time-varying gains. The theory predicts a wide range of observed 

phenomena, such as muscle synergies and movement invariances, but it still requires 

internal models of limb dynamics and optimal state estimation from sensory data. As 

summarized by Haith and Krakauer (2013), among movement researchers, OFC seems to 

be a most widely accepted model of movement, as it describes a large number of 

phenomena using a relatively small number of principles, and a small set of cost function. 

Its main drawback is the implication of an omniscient brain (Haith and Krakauer, 2013). 

This weakness means that even though OFC predicts behavior very well, it is a normative 

model – it describes how participants behave, but not necessarily how the nervous system 

achieves these behaviors (Pruszynski and Scott, 2012). The general problem in the field 
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of motor control is then to find mechanistic models with biologically plausible elements 

that still predict behavior as good or better than OFC.  

 

1.4.2. Interaction hypotheses 

 

As a counter to hypotheses of central origin, the second group of hypotheses aims to 

explain the power law as a consequence of the physical interactions of the human hand 

and the environment. When controllers are proposed, they are simple and biologically 

plausible. 

For example, Catavittelo et al (2016) show that drawing ellipses in water results in hand 

trajectories with a different power law exponent than when drawing ellipses in the air, 

suggesting a major role for environmental dynamical factors instead of neural 

determinism. Gribble and Ostry (1996) show that a simulated neural control signal does 

not have to contain a power-law profile for the final hand trajectory to obey the power 

law. They explain their findings as the effects of spring-damper-like properties of the 

musculoskeletal system. Further, Schaal and Sternad (2001) showed that even a simple 

low-pass filter with an appropriate cutoff frequency can lead to the power law.  

Consistent with above, we constructed a robot arm with artificial vision and showed that, 

because of its mass, processing delays, and explicit signal-smoothing algorithms, it acts 

as a low pass filter, and can create a speed-curvature power law when drawing ellipses at 

a high speed, even when the reference trajectory has a non-power-law, constant speed 

profile (Annex 5).  

One problem with the low-pass filter hypothesis is that it does not address the signal 

attenuation and phase delays. In low-pass filters, as their name implies, amplitudes of 

frequencies lower than the cutoff go through the filter unchanged, while amplitudes of 

frequencies higher than the cutoff get removed or attenuated, and there is also some 

frequency-dependent phase delay. However, when human participants follow targets 

along elliptic trajectories, they maintain the amplitudes of the x and y sinusoids forming 

the elliptic shapes, and produce cursor trajectories with, on average, very low phase delay 

relative to the transport delay in the loop (Viviani et al. 1990). However, methods 

employed by Gribble and Ostry (1996), Schaal and Sternad (2001) and also our robot 

arm, result in lower output (cursor) amplitudes and strongly phase-delayed trajectories of 

the cursor. 

To address this issue, we proposed two high-level controllers that directly, visually, 

measure ellipse shape size and phase delay, and then generate an oscillatory reference 

signal for the downstream movement control systems, maintaining simplicity of 

controllers, and reproducing participant behavior (Annex 7).  
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1.4.3. Statistical artifacts 

 

In an analysis of trajectories composed of points distributed as white gaussian noise, 

Maoz and colleagues (2005) show that those trajectories conform to the VC power law, 

given that we consider coefficient of determination of r2 ≈ 0.57 an acceptable indicator of 

conformity. Further, if we take a non-power-law trajectory, and add gaussian noise, 

simulating measurement noise or movement noise and muscle tremor, this may again 

result in a trajectory conforming to the power law. With proper filtering, the analysis 

showed the ‘true’ state of not conforming to the power law. They point to a possible origin 

of the power law as an artifact of white or non-white noise, or of improper smoothing. 

We may also interpret their results as suggesting that only relatively high values of the 

coefficient of determination, higher than about r2 = 0.6 or 0.7 should be taken as indicative 

of conformity to the speed-curvature power law. 

More recently, and perhaps with more controversy, Marken and Schaffer (2017) argued 

that both the VC and the AC power laws are purely statistical artifacts, arising from failure 

to include a third predictor variable, the cross-product of acceleration and velocity D, into 

the regression analysis. According the them, the 2/3 power law is a mathematically 

necessary consequence of the way speed and curvature are calculated, and how the fit to 

the power law is estimated. 

In response to Marken and Schaffer, we showed (Annex 2) that the speed-curvature 

power law is not mathematically necessary, we simulated physical systems where it does 

not appear, and showed empirical data from human drawing of different shapes where the 

exponents change with the change in the shape. 

However, we have later found a mistake in our reasoning, not mentioned by Marken and 

Shaffer – we have assumed, as all the researchers since Lacquaniti and colleagues (1983), 

that the VC and AC power are equivalent. However, they are not equivalent, and angular 

speed should be avoided when assessing the speed-curvature power law (Annex 4). 

 

1.5. Control theory and the target tracking task 

 

In this section, I will describe the theoretical background we used in the design of 

behavioral experiments and computational and robotic models of behavior. The general 

framework is control theory, a field of applied mathematics used in analysis and design 

of feedback processes and devices. More specifically, we took a lot of inspiration from 

the writings and computer programs of W. T. Powers, for example Powers (1973, 1976, 

1978, 2008). This approach is sometimes called Perceptual Control Theory (PCT) 

because of the emphasis on explaining behavior as control of variables generated by the 

perceptual apparatus of organisms. It features relatively simple controllers, arranged in a 

hierarchy, and most of the complexity is contained in the perceptual functions. We have 
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also used modern developments in fields such as theoretical control, robotics, control 

engineering, and engineering psychology. 

Why control theory? For billions of years, evolution has been designing negative 

feedback loops. Some of those mechanisms are known as homeostatic loops, they can be 

found inside organisms, where they sense and maintain variables of the milieu intérieur 

– body temperature, blood glucose levels, oxygen and carbon dioxide levels, and many 

others.  

The central assumption in the basis of applying control theory to the analysis of behavior 

is that there are also feedback loops closed through the external environment. Certain 

variables are sensed, and if their values are not at their respective reference values, 

organisms behave in ways that reduce the difference. The stated assumption is not 

particularly controversial. However, exploring the implications of this assumption leads 

to novel experimental methods, combining control theory, computer simulations and 

behavioral measurements. During the thesis, we’ve designed and performed several types 

of tracking, tracing and drawing experiments, with a similar design and approach.  

 

1.5.1. Target tracking task 

 

The approach can be illustrated with the example of target tracking (Figure 4), where the 

participant is holding an electronic pen in his hand and moving a cursor on the screen, 

following a target. Depending on the instructions and the patterns of target movement, 

the participant might be controlling different visual variables, such as the distance 

between the cursor and the target, expressed in the Cartesian coordinate system, or their 

angular separation, or a difference in cursor and target amplitudes if they are moving in 

sinusoidal patterns, etc. At this point the researcher and the participant don’t necessarily 

know the exact controlled variable – it is often not obvious from the task definition or 

observable behavior.  

The task of the researchers is then, to create a mathematical model of the sensorimotor 

loops involved in the process, verify their proposal in experiments and progressively 

improve it, by comparing the behavior of the participant to the behavior of the model. 

Mathematically, a sensorimotor behavioral process is a negative feedback loop – the 

participant is controlling a visually perceived variable, comparing its state to some desired 

state, and performing actions that reduce the difference. Crucially, the visually perceived 

variable is always a result of the interaction between the environmental disturbances and 

participant’s own behavior. In the terminology of industrial process control: behavior is 

the manipulated variable, and perception is the measured variable (or the process output 

variable). 

There are two independent variables in the loop. One is the reference signal, representing 

the desired state of the controlled variable. It is internal to the participant and the 

researcher does not have direct control over it, but it may be influenced by giving 
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instructions the participant. The other independent variable is the disturbance, or what is 

commonly called the stimulus. All the other variables are dependent on the disturbance 

and the reference signal. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Target tracking task. A) Sketch of the participant performing a target tracking task. B) Diagram 

of variables and functions in the participant–environment feedback loop. 

 

The sketch and the feedback loop (Figure 4A and 4B) are drawn from the perspective of 

the researcher. This means that the researcher could, in principle, observe and measure 

all of the variables in the diagram. Cursor and target positions are discrete variables in the 

computer, and the researcher may also see their correlates on the monitor. The perceptual, 

reference and error signals are assumed to be time-varying quantities in the nervous 

system of the participant. Powers (1973) speculated they could each be average rates of 

firing over a bundle of neural fibers. Comparator, the element calculating the difference 

between the reference and the perceptual signal, would be implemented by a set of 

neurons receiving both excitatory and inhibitory inputs, and generating a “difference” 

output signal. They would be implemented separately for positive and negative values of 

the signals, since firing rates are always positive. Though, of course, other 

implementations of the neural computations are possible. 

 

1.5.2. The controlled variable 

 

Strictly speaking, the perceptual signal, constructed from raw light waves, and across 

multiple levels of perceptual abstraction by the participant’s visual system, is the 

controlled variable. It is the variable maintained at its reference level despite disturbances. 

In order to understand the behavior of the participant, we must start from understanding 

the nature of the controlled variable. 

A B 
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As we illustrate in Figure 5A, in a tracking task, the perceptual signal is expressed in 

some neural units and is ultimately a function of cursor and target positions. From the 

perspective of the researcher, we could observe and measure the target and cursor 

positions. In theory, we could observe the perceptual signal in the participant’s brain to 

determine the nature of this function – if we had the tools to measure the signal in real 

time, with sufficient resolution, and if we knew exactly where to look, and what kind of 

neural code is relevant. In practice, this might be very difficult. 

Alternatively, we can replace the system in Figure 5A with an equivalent system, shown 

in Figure 5B. As proposed by Powers (1978), the controlled quantity may be modelled as 

a linear combination of the effects of the disturbance (target) and the participants own 

behavior (cursor). The effect of the disturbance is called the disturbance quantity and is a 

function of the target position, here named G. The effect of the participants behavior is 

called the feedback quantity, here named F. The input function is a simple unit converter, 

and a pure delay may be added. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Equivalent systems. A) The computer converts the cursor and target position, in pixels, to light 

patterns emitted by the monitor. Starting from the light patterns, the visual system constructs a perceptual 

signal, represented in some neural units. B) In an equivalent system, the disturbance function G converts 

the target position to the disturbance quantity, and the feedback function F converts the cursor position to 

the feedback quantity. Disturbance and feedback quantities are added to form the controlled quantity, units 

depend on functions F and G. The input function converts the controlled quantity to neural units, and may 

be as simple as a constant multiplier, or may also have a pure delay element. 

 

We can also replace the system converting the error signal to the cursor position with an 

equivalent system (Figure 6). The output function is modelling the conversion of 

participant’s visual error signal to the observed cursor position. In tracking tasks, the 

output function is often modelled as an amplifier in series with a low-pass filter, or as a 

multiplier and a leaky integrator.  

A B 
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Finally, replacing both systems with their equivalents, we get the canonical diagram of 

the feedback loop in the tracking task, as shown in Figure 7. 

 

 

 

 

 

 

 

 

 

Figure 6. Equivalent systems. A) The visual error signal is passed on to the motor system, where it 

generates muscle forces, joint torques and movement of the hand, which in turn moves the pen, and the 

cursor on the screen. B) An equivalent function converts the error signal to cursor position. 

 

 

Figure 7. Diagram of the feedback loop in the target tracking task. Replacing ‘cursor’ and ‘target’ with 

different output and disturbance variables, this diagram represents any negative feedback control system  

 

1.5.3. Approximating controlled variables 

 

In any control loop, the controlled variable is maintained equal to or near the reference 

level and is unaffected by the disturbances: if the reference level is constant, the controlled 

variable will also be constant (Figure 8). This fact forms the basis of the test for the 

controlled variable, or the process of searching for the best definition of the controlled 

quantity. Here, I will describe a version of the test used in target tracking; for a more 

general version see Powers (1978) or Runkel (1991). 

A B 
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A  

 

 

 

 

 

Figure 8. The test for the controlled variable in the tracking task. A) When applied to the tracking task, 

the test can be seen as varying the definitions of functions F and G in order to minimize the correlation 

between the controlled quantity and the disturbance quantity, and to minimize the variance of the controlled 

quantity with respect to the disturbance quantity B) Assuming a stable reference, the controlled quantity 

will be stable, and the feedback quantity will track or oppose the disturbance, depending on the sign. 

 

When the researcher disturbs a variable controlled by the participant, the participant will 

counteract the disturbance and return the controlled variable to its reference state. Out of 

different hypotheses of the controlled variable, assuming the reference signal is stable, 

the best candidate is the most stable one. A stable variable, unaffected by the disturbance 

will have a low correlation with the disturbance quantity, and its variance will be small 

in relation to the variance of the disturbance. This process of searching for the best 

definition of the controlled variable can be described as the search for the definitions of 

functions F and G (Figure 8A) that minimize the correlations, in absolute value, between 

the controlled quantity and the disturbance quantity; and minimize the variance of the 

controlled quantity with respect to the variance of the disturbance. In other words, the 

best approximation to the controlled variable will have the lowest correlation between 

disturbance and controlled quantities, and the highest stability of the controlled quantity 

relative to the disturbance.  

 

 

Figure 9. Potential visual features used in tracking a target along an elliptic trajectory. A) Euclidean 

distance. B) x and y components of the Euclidean distance C) Relative angle and angular velocity. D) 

Position, speed and acceleration of the cursor and target. E) Direction of movement and its rate of change. 

F) Distance of the cursor from the path G) Ellipse size difference. H) The amplitude of movement in x and 

y dimensions. 

B 
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In a task of tracking targets along elliptical trajectories, one of the tasks we used in testing 

phenomena related to the speed-curvature power law, there are many candidates for the 

controlled variable (Figure 9). The participant might be controlling the cursor-target 

Euclidean distance, the angular difference, some function of positions, speeds and 

accelerations, the amplitude of vertical and horizontal movements, etc. These are some 

of the definitions we came up with, though there could be others. 

 

1.5.4. More than tracking targets 

 

On the abstract level of mathematical approximations and box-and-arrows diagrams, 

controlling the cursor-target distance is analogous to the body’s blood glucose 

concentration control, or to the control of the individual’s social status in a group. All 

these processes involve sensing a particular variable, comparing it to the desired state, 

and acting to reduce the error. There are differences in implementation and dynamic 

characteristics, but the basic relationships between the variables are the same – the 

controlled quantity will tend to be equal to the reference level, the error will tend to zero, 

and the behavior will tend to neutralize the effects of perturbations on the controlled 

variable. So far, the methodology of searching for controlled variables has been applied 

mostly to visual tracking tasks, and it remains to be seen how to apply it to different tasks 

and behaviors. 

In principle, regardless of the modality of control, or even the organism, the search for 

controlled variables will follow the same “make a hypothesis and verify existence of 

control” procedure described above. The significance of this procedure for neuroscience 

is the possibility of using purely behavioral experiments to generate hypotheses about 

environmental quantities that correlate with neural quantities. When we are dealing with 

negative feedback systems, the stimuli generated by the experimenter may not be 

perceived by the organism, but only acts as disturbances to the variables controlled by the 

organism. This is especially relevant for experiments with behaving participants, where 

the feedback loop is closed. Finding exact definitions of controlled variables may 

contribute to explaining, first the behavior, and second the neural processes that generate 

them.  

In robotics, a theory that explains human sensorimotor loops can be used to help construct 

artificial devices that will match human abilities. We showed that a robot arm with 

artificial vision, constructed with a hierarchical control architecture based on Powers 

(2008) reproduces some human behavioral features in tracking tasks, shows joint 

synergies, and motor equivalence; all with very simple controllers (Annex 5).  

Additionally, we developed a robotic prototype modelling a spinal reflex loop involving 

artificial muscles, tendon tension sensors and muscle length sensors (Annex 6). 

 

 



25 

 

1.6. Objectives 

 

The main objective of this thesis was to improve our understanding of processes and 

structures underlying the production of the invariance known as the speed-curvature 

power law in human hand and arm movement. While the field of motor control is often 

focused on the recorded behavioral outputs, we focused on inferring perceptual inputs 

and, from there, started to build the understanding of the entire sensorimotor loop. We 

have proposed the following specific objectives: 

• Deepen our understanding of the geometry and kinematics of curved 

trajectories, as well as mathematics and statistics used in the estimation of the 

speed-curvature power law 

• Identify visually controlled variables in elliptic target tracking tasks 

• Identify or hypothesize about proprioceptive controlled variables involved in 

arm and hand control in humans 

• Create simulation models and robot models of human sensorimotor loops that 

can produce the speed-curvature power law in situations where humans 

produce it, in order to generate hypotheses relevant for understanding the 

neural mechanisms of hand and arm control 
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2. Materials and Methods 
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2.1. Movement recording application for Android tablet 

 

The Android tablet we used was Samsung SM-T580 tablet, dimensions 254x164x8mm, 

PLS LCD screen 10.1˝, 1920x1200px resolution. The tablet has a capacitive touch screen 

and can register finger or stylus movements. The screen refresh rate is 60Hz and the touch 

sampling rate 85Hz. 

The app was programmed in Android Studio (version 3.3.2) in the Kotlin programming 

language. The combination of relative simplicity and the ability to use existing Java 

libraries makes Kotlin a practical choice.  

We used a Windows 10 PC, with 8GB of RAM and Intel i5 CPU. A notable feature of 

the software is recording of finger movements at the rate of 85Hz. The software is free 

and open-source, and can be found on github.com. Figure 10 shows a workflow diagram 

from design of the experiment to the analysis of the results.  

 

 

Figure 10. The workflow diagram: from design of the experiment to the analysis of results. Using our 

app simplifies the process by providing the template code for new experiments. 

 

2.2. Recording of movement trajectories in the lab 

 

2.2.1. Hardware 

 

In recording human hand movement trajectories, we used several different graphics 

tablets with dedicated electronic pens or touchscreens to record finger movements: 

Wacom Intuos Pro S, PTH-451, spatial resolution 0.08mm, sampling rate: 200 samples/s. 

Active surface: 15x10cm 

Wacom Intuos Pro Paper PTH-860, resolution 0.08mm, sampling rate: 120 samples/s. 

Active surface: 30x21cm.  

Wacom Cintiq 27QHD, interactive graphics monitor. The screen refresh rate is 60hz, and 

the pen position sampling rate 150Hz, resolution 2560x1440px. 
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2.2.2. Software 

 

Our hand trajectory recording software is written in Python with the pygame library or 

the qt library for simple graphics, often just two circles for the target and cursor, or the 

cursor and a path for following. The trajectories were recorded with maximal temporal 

and spatial resolution afforded by the devices used. The analysis of recorded trajectories 

was performed using Jupyter Notebooks. 

 

2.3. Generating trajectories with arbitrary speed-curvature power laws 

 

Starting from the equation V = kCβ, since V = ds/dt, where dt is the time differential, and 

ds the arc-length differential, we can write ds/dt = kCβ. Curvature C can be numerically 

calculated as dα/ds, where α is the local angle between the tangent line at any given point 

and the x axis, and dα its differential, the equation of time-dilation that allows to transform 

any trajectory into desired power law kinematics is: dt = k -1ds1-βdαβ. 

The numerical procedure for generating a trajectory with an arbitrary power law exponent 

from a given trajectory is 1) sample the given trajectory using a constant dt; 2) calculate 

the arc-length dsi, and direction dαi differential at each point (xi, yi) of the trajectory; 3) 

construct a new time-difference vector, where each dti follows the equation dti = dsi
1-

βdαi
β; 4) construct a time vector as a cumulative sum of all dti, and scale it by the desired 

duration divided by the total duration of the original time vector, to set the total duration 

equal to the desired duration; 5) using a cubic spline, fit the existing (xi, yi) points to the 

new time vector; 6) finally, sample the splined trajectory again with constant dt, obtaining 

a new vector of points (xj, yj) as a discrete approximation of an arbitrary power law 

trajectory. 

 

2.4. Robot arm with hierarchical control 

 

We designed and built a robot arm with four degrees of freedom, visual control of hand 

tip position, and pen pressure control (Figure 11). The control architecture of the robot 

arm was adapted from computer simulations (Powers, 1999; 2008). Each joint was 

actuated by a geared DC motor, and had a potentiometer for measuring the joint angle. 

The angle measurements were collected by a Teensy 3.1 microcontroller which also 

implemented the fast 200Hz lower-order control systems, analogous to spinal-level 

control systems in the human arm. Slower, high-level, visual and touch control loops were 

implemented on the PC. The image was recorded by a webcam at 30Hz and 640x480px, 

and after each frame, the visual perception system found the location of the green marker 

on the hand tip, and sent the information to visual control loops. Similarly, the pressure 

of the pen tip on the tablet was recorded at 30Hz and sent to the PC as pressure perception 
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to the pressure control loop. Higher level loops provided reference signals for the lower-

level loops (Figure 12). 

 

Figure 11. The robot arm system design and implementation. (A) Side view showing the body of the robot, 

enclosed microcontroller, electronic pen and tablet. (B) Diagram of the robot arm in perspective view with 

arm segments L0 – L3, motors M0 - M3, camera, tablet, pen and marker of tip position. (C) Photo of the 

experimental setup, including the top camera. (D) Top view photo (camera’s viewpoint), the green circle 

is used by the visual system as the marker of hand tip position. (E) Diagram of the robot from the top view.  

 

The control architecture was based on simulations (Powers, 1999; 2008), but was not 

identical to them since we needed to adapt it to the robot arm hardware, and we added 

touch-pressure sensors and pressure control not found in the simulations. The control 

architecture shown here (Figure 12A) is simpler than the simulations, since it avoids the 

whole layer of explicit control of joint angles.  

Higher-level loops take visual information to construct controlled variables – x and y 

location of the cursor in the visual field, and also pressure and orientation of the pen while 

writing. They are slower and more precise than proprioceptive loops. The errors from the 

higher-level loops propagate to lower levels as reference signals. 

The lower-level loops are designed to be analogous to the spinal or brainstem-level 

control systems in humans, as they work with imprecise proprioceptive information, with 

low signal transport delays, and high frequency sampling. The controlled variables are: 

xp, the proprioceptive lateral displacement of the finger; R, or reach is the distance of the 

fingertip to the shoulder; z is the elevation of the fingertip, and δ (delta) the angle of the 

wrist with respect to the x-y plane (Figure 12B).  
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Finally, the four proprioceptive control loops directly set voltages on shoulder rotation, 

shoulder pitch, elbow and wrist motors, combining their outputs, resembling multiple 

muscle output schemes found in the human spinal cord. 

 

Figure 12. Control diagrams of the robot arm system. (A) Block diagram of two levels of feedback loops, 

high level (yellow) and low level (blue). There are four high-level controlled variables: position of the 

marker in x and y dimensions in the visual field, angle of the pen to the tablet, and pressure of the pen to 

the tablet. The references are supplied by the experimenter. The outputs from top-level loops are references 

for the lower-level loops controlling proprioceptive variables: xp, the x coordinate of the hand tip in 

proprioceptive space; reach, the distance from the shoulder base to the hand tip; z as the height of the hand 

tip; and delta (δ) as the angle between the x-y plane and the hand. All controllers are proportional-

derivative (PD) with a low-pass filter (LPF) in controller output. (B) Diagrams showing the geometric 

definitions of variables in the block diagram, the visual space and a diagram of the pen angle and pressure 

variables. 

 



32 

 

2.5. Control of joint angle and tone with antagonistic muscles  

 

This robotic prototype is a model of the elbow joint (Figure 13). It includes mechanical 

analogs of antagonist muscles, and electro-mechanical analogs of muscle tension and 

muscle length receptors. The two muscles were modelled by twisted string actuators 

(TSA). Each TSA was composed of a geared DC motor (N20) that was rotating a loop of 

string approximately 1mm in profile diameter. Rotation of the motor would twist the 

string and shorten its length. When untwisting, the string would lengthen if there was a 

force pulling in the opposite direction. This arrangement removed the backlash from the 

joint. Two antagonistic TSAs could only pull in one direction, and it was important to 

coordinate simultaneous pulling in opposite directions to maintain total muscle tone and 

generate desired torque on the joint.  

 

 

Figure 13. Elbow joint angle and tone control by antagonistic muscles, modelled as TSAs. Each muscle 

unit contains a geared DC motor, a string for twisting, slide potentiometer for length measurements, 

rubber-band tension sensor and a high-precision angular position sensor. 

 

The coordination was achieved by a nested (or cascaded, hierarchical) control scheme 

(Figure 14). On the first level, the controlled variables were string lengths measured by a 

sliding potentiometer. On the second level, the controlled variables were the sum of two 

muscle tensions, named the muscle tone or joint stiffness, and the difference in muscle 

tensions, named the joint torque. On the third level, the controlled variables are the joint 

angle and angular speed. 
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Figure 14. Block diagram of the control architecture for two antagonist muscles, biological analogs in 

cursive. The lowest level of control are the spindle-muscle loops controlling muscle lengths. The spindle is 

a combination of a length sensor and comparator.   

 

2.6. Identifying visually controlled variables in the task of tracking elliptical 

targets 

 

The controlled variable (CV) is the variable in a negative feedback control loop that is 

measured and maintained equal or near equal to the reference variable. If a variable is 

controlled by a system, directly perturbing it will result in an action that removes the 

effect of the perturbance, and restores the level of the controlled variable back to the 

reference level. The speed of this restoration depends on the dynamic characteristic of the 

loop. These facts form the basis for inferring unknown controlled variables in different 

behavioral tasks: the participant is controlling an unknown variable or a set of variables, 

and the researcher attempts to identify the best approximations to the variables controlled 

by the participant. First, the researcher forms a specific quantitative hypothesis of the 

controlled variable, and defines an appropriate perturbation inside the bandwidth of the 

system. The participant performs the task while the researcher applies the disturbance, 

predicting that if the variable is controlled it will stay stable despite the perturbations, and 

the behavior of the participant will negate the effects of the disturbance. When the CV is 

inferred from behavioral experiments, it is always an approximation and, theoretically, 

can always be improved. Quantitatively, one approximation is better than another if, for 

the same task, the CV has a smaller variance relative to the variance of the effects of the 

perturbation; and if the correlation between the CV and the effects of the perturbation is 

lower (Powers, 1978). 
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In the task of tracking elliptic trajectories, we have compared the cartesian cursor-target 

distance in x and y dimensions with the angular separation of the cursor and the target, 

where the center of angle is in the center of the ellipse, as well as the difference in sizes 

of the ellipses, where size is defined as the semi-major axis of an ellipse passing through 

the cursor or the target. 
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3. Discussion 
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3.1. Understanding the problem 

 

The first group of four papers are all about understanding the problem of the invariance 

in human movement known as the speed-curvature power law. We developed an 

instrument for recording movement outside of the lab, explored the mathematical 

properties of curves conforming to the power law, and of curves created by physical and 

mathematical systems that do not conform to the power law. We have deepened our 

understanding of the statistical procedures used to estimate the correlation and regression 

coefficients relating different kinematic and geometric variables. 

 

3.1.1. An android app for recording finger movement outside of the lab 

 

Our contribution to the methods for recording human hand movement is a free and open-

source Android app that can be used for designing tracking, tracing and drawing 

experiments outside of the lab, using an android tablet or a smartphone. We have provided 

the source code of the app (https://github.com/adam-matic/KinematicCognition) written 

in the programming language Kotlin, and a demonstration of an experimental protocol 

and analysis of the results (https://github.com/adam-matic/KinematicCognition-

Analysis) written in Phyton.  

The app was optimized for high temporal resolution in trajectory measurements, and can 

achieve up to 85Hz sampling rate for finger touch event recording on the tested tablet, the 

Samsung T-580. For simple graphics, the screen display can be refreshed at 60Hz, which 

is on par with standard computer monitors.   

The analysis of recorded trajectories revealed that the results are in accordance with 

previous experiments. Tracing the lemniscate figure (Annex 1, Figure 4A, 4B and 4C) is 

consistent with an experiment reported by Viviani and McCollum (1983). The lead-

follow analysis shows, similar to Viviani and Mounoud (1990), that for one participant, 

the cursor followed the target with a variable phase delay, sometimes following and 

sometimes overtaking the target (Annex 1:  Figure 4D, 4E). We analyzed recorded pure 

frequency curve traces to get the spectrum of curvature (Annex 1: Figure 4F) and found 

that the curvature profiles of the traced trajectories have single peaks at the same 

frequencies as the displayed pure curves, and we note that the traces were performed at a 

relatively high speed in a fast and fluid manner. In scribbling movements, we 

demonstrated an analysis of clockwise and counter-clockwise turning directions of the 

unwrapped direction angle (Annex 1: Figure 4G) and the number of complete rotations 

in either direction (Annex 1: Figure 4H). Finally, we show a discrete segmentation 

analysis of different paths that can be taken to draw the shape in Annex 1: Figure 4J. 

In conclusion, the app with its source code can be used in experiments in its current state, 

directly downloaded from the code repository; or it can be used to help the development 

https://github.com/adam-matic/KinematicCognition
https://github.com/adam-matic/KinematicCognition-Analysis
https://github.com/adam-matic/KinematicCognition-Analysis
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of state-of-the-art recording apparatus for research on finger and hand movement outside 

of the lab, using a portable Android tablet. 

  

3.1.2. A reappraisal of the speed-curvature power law 

 

This study was motivated by a claim of Marken and Shaffer (2017) that the speed-

curvature power law is purely a statistical artifact, arising from neglecting to include a 

second predictor variable, the cross-product of speed and acceleration into the regression 

analysis. They also claimed that speed is necessarily correlated to curvature, because of 

their ‘mathematical relationship’.  

First, we demonstrated that in trajectories of human participants drawing different shapes, 

the exponent of the AC power law is not always 2/3. We replicated an experiment from 

a study by Huh and Sejnowski (2015) where participants traced the so-called pure 

frequency curves. Huh and Sejnowski used tangential speed and curvature – and we 

obtained equivalent results using angular speed and curvature (Annex 2: Figure 2C). The 

exponent of the AC power law ranged from 0.4 for the spiral shape (ν=2/33) up to 0.8 for 

the hexagonal shape (v = 6). 

Second, we demonstrated that the power law does not depend on the way curvature is 

calculated. Using data from Drosophila larvae movement (Zago et al. 2016), we 

calculated curvature with three different methods, using time parametrization of the 

trajectory; using the spatial derivative of the angle coordinate, and using the inverse of 

the radius of the osculating circle, and we found no statistically significant differences in 

the regression parameters in the angular speed and curvature power law (Annex 2: Figure 

3). 

Our third point was that the speed-curvature power law, in the VC or AC form, is not 

necessarily present in any given trajectory. To demonstrate, we generated different speed 

profiles for the same elliptical path (Annex 2: Figure 4). We showed one trajectory with 

a perfect 2/3 power law where the ellipse parameter θ was proportional to time, and two 

trajectories that were not fitting to a power law: in the first one, θ was proportional to 

time squared, and in the second to the integral of the absolute sine of time (Annex 2: 

Figure 4A). The exact exponent of 2/3 in the AC power law appears only when the second 

derivative of θ is 0, or when the magnitude of the cross-product of speed and acceleration 

(D) is constant (Annex 2: Figure 4E) 

Finally, we simulated several physical systems to show how different physical 

interactions may lead to non-power law trajectories. In Annex 2: Figure 5A, we show 

that two bodies attracted by gravitational force do not conform to a power law – their 

speed depends on how close they are to their barycenter, not on the curvature of their 

paths. The speed of a projectile depends on initial conditions and forces that act on it, 

such as drag; and we show a power law trajectory for a no-drag situation, and a non-

power-law trajectory when there is drag (Annex 2: Figure 5B). In Annex 2: Figure 5C, 
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the speed of the pendulum changes from zero at the peaks, to maximum at the bottom, 

while curvature stays constant, again showing that speed is not related to curvature in this 

physical system. Two coupled springs in the plane with no friction, in Annex 2: Figure 

5D, show the behavior of a coupled harmonic oscillator may lead to power law 

trajectories. 

In conclusion, we have refuted the claim of Marken and Shaffer (2017) that the speed-

curvature power law is necessary mathematically or physically, or that it is an artifact 

coming out of the way curvature is calculated.  We maintain that it is a real, non-trivial 

phenomenon in movement and that it needs to be explained by movement control 

theories. 

 

3.1.3. Mechanical work is not minimal in the speed-curvature power law 

 

Lebedev and colleagues (2001) proposed that the 2/3 power law results from the principle 

of least action: given a path and the duration of movement, the mechanical work is 

minimal. According to them, the nervous system chooses the most economical trajectory; 

the neural controllers implementing the principle of least action are acquired through 

training, and they are minimizing the mechanical work needed to perform motor tasks. 

However, we noticed that they made a mistake in deriving their conclusions. The variable 

D is defined as the magnitude of the cross product of velocity and acceleration. We can 

rewrite the 2/3 power law as V = D1/3R1/3, and from this find that D = V3/R = V(V2R). 

The term in the parenthesis is centripetal acceleration An, so we have D = VAn. The error 

by Lebedev and colleagues (2001, their equation 5) was to equate this product D with 

mechanical power P. However, mechanical power P is not equal to D, the magnitude of 

the cross-product of velocity and acceleration. Instead, mechanical power is the amount 

of mechanical work per unit of time, and mechanical work is proportional to the dot 

product of velocity and acceleration vectors. Consequently, mechanical work is not 

constant and mechanical power is not minimal in the 2/3 power law, so the principle of 

least action is not related to the 2/3 power law. 

We show in Annex 3: Figure 3 how different trajectories that conform to the 2/3 power 

law all have a constant magnitude of the cross-product D, and they do not have constant 

mechanical work or mechanical power. We further reasoned that if the variable D is 

constant, then the integral of D is minimal. We analyzed the same four trajectories over 

a 6s segment, across different power law kinematics. We show that the integral of D is 

locally minimal for β=2/3 (Annex 3: Figure 4). According to Pollick et al (2009), the 

variable D is the cube of equi-affine speed, and if D is constant, the equi-affine speed is 

constant. We found that the integral of equi-affine speed, the equi-affine arc-length, is 

invariant to the exponent of the power law (Annex 3: Figure 5). It is known from previous 

research that 2/3 power law trajectories also have minimal jerk (Wann et al., 1988; 

Viviani and Flash, 1995). We confirmed these finding for non-elliptic trajectories that 
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were also quasi-pure in the curvature spectrum, with the peak at frequency ν=2 (Annex 

3: Figure 6).  

This study was an exploration of the properties of numerically generated trajectories, of 

their geometric purity, optimality and conformity to the speed-curvature power laws. We 

have discovered and corrected a mistake by Lebedev and colleagues (2001), where we 

showed that the trajectories conforming to the 2/3 power law do not have minimal 

mechanical power or work, and cannot be derived from the principle of least action. 

Instead, we show that the variable D, magnitude of the cross-product between velocity 

and acceleration, and also related to affine velocity, is constant in the 2/3 power law.  

The main limitation of the study is the use numerically generated trajectories, and not 

exploring human-drawn trajectories, which should be performed in future studies. 

 

3.1.4. Angular speed should be avoided when assessing the speed-curvature power 

law 

 

In our power law reappraisal paper (Annex 2), we assumed that the AC and VC forms of 

the speed-curvature power law were equivalent, where the A is angular speed, and V is 

tangential speed; We showed that the AC and the VC power law are not necessary 

mathematically, statistically or physically. We have demonstrated analytically and 

numerically generated trajectories that do not conform to the power law, and we showed 

empirically measured trajectories that fit to different values of the exponent of the power 

law. However, it appears we made a mistake in assuming equivalence of the two laws. In 

this paper (Annex 4) we examine the differences in using angular speed to estimate the 

exponent of the power law, versus using tangential speed.   

We explore this difference by analyzing empirical data using the AC and the VC power 

law. We used data from another experiment (Annex 7) where participants tracked targets 

moving along elliptic trajectories with increasing frequency across tasks, and with three 

different speed profiles. In the case of the VC form of the power law, only the fast 

movements, with frequency above 1 Hz resulted in a good fit to the power law, while the 

slower ones were not fitting to the power law (Annex 4: Figure 2). In contrast, in the case 

of the AC power law, nearly all of the trajectories appear to have a strong power law 

(Annex 4: Figure 3). 

We explain this difference as a mistake in the initial assumptions: the VC and AC power 

laws are not equivalent. They are equivalent in exponents of the law, but not in the 

strength of the correlation. Tangential speed (V) is a purely kinematic variable, and 

curvature (C) a purely geometric variable, but angular speed is a mixed geometric-

kinematic variable (A=VC); it depends on both curvature and speed. Angular speed is not 

necessarily correlated to curvature, but is often trivially correlated to curvature simply 

because small-curvature segments tend to be associated with a low angular speed (rate of 
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turning). In fact, the strength of the correlation will depend on the range of curvature 

(Annex 4: Figure 6, 7). 

To illustrate this mistake, we used the analogy with a set of rectangles of different widths. 

Considering a set of rectangles of random, uncorrelated widths (w) and heights (h); their 

area (a=wh) will be correlated with width simply because the smaller width rectangles 

will tend to have smaller areas, and larger width rectangles will tend to have larger areas; 

not necessarily because the widths and heights are systematically related. 

In sum, while the speed-curvature power law is not trivial – not given by mathematics, 

physics or statistics – we should only be using tangential speed and not angular speed as 

the kinematic variable when approximating the fit of trajectories to the power law.  

 

3.2. Proposing solutions  

 

In the second group of papers we gather proposals for the solutions to the problem 

elaborated in the first group of papers. Namely, we build robotic and simulation models 

of human sensorimotor loops. The models are aimed to be generative - the elements of 

the model represent simplified elements of human sensorimotor loops, and they should 

perform the same tasks human participants can perform. If indeed, the models behave 

similar to human participants, and the elements of the model are biologically plausible, 

the model may be said to explain the behavior.  

 

3.2.1. Robot arm produces power law trajectories and other invariances 

 

The purpose of the robot arm was two-fold: to see what kinds of invariances will emerge 

in simple target tracking tasks performed by a physical robot arm interacting with the real 

environment; and to test a hierarchical control architecture on real-world, noisy artificial 

sensors, geared electrical motors, and the unpredictable external environment. For these 

purposes, we built a 4-joint robot arm with a camera for visual perception, pressure 

sensing and angle sensing from the electronic (see Methods). We subjected the robot to 

tasks inspired by tasks commonly performed by humans and monkeys, such as center-out 

reaching, tracking elliptical targets and random pursuit tracking. We used direct and 

indirect perturbations to simulate situations encountered by humans in everyday tasks, 

such as using a tool, writing on a tilted surface, rotation of the visual field and blocking 

of a joint. 

The main finding, relating to the power law, is that the robot arm produced power-law 

trajectories at high rhythms of movement even when the reference was a constant-speed 

non-power-law trajectory (Annex 5: Figure 4). For slow rhythms, the robot arm followed 

the reference, keeping the speed low and constant. At mid-range rhythms, the speed of 

the robot arm was on average lower than the speed of the reference and it was oscillating.  

At very high rhythms, the robot’s trajectory followed the speed-curvature power law, 
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while the target had constant-speed non-power law trajectory. The speed profile of the 

robot arm is very similar to the profile of speed of the human hand when drawing ellipses, 

however, the size of the ellipse drawn by the robot is much smaller, and is showing an 

increasing phase delay. We can explain this phenomenon if we look at the robot as a 

dynamical system that takes the reference signal as an input and returns the robot hand 

position as output. When we create an input-output ratio vs frequency and phase-delay vs 

frequency plots (Bode plot, Annex 5: Figure 5), we can see that the robot arm acts as a 

low-pass filter: attenuating all amplitudes above 0.1Hz and creating frequency-dependent 

phase delays. Gribble and Ostry (1996) and Schaal and Sternad (2001) also show that the 

speed-curvature power law can emerge out of low-pass filtering. A non-power law 

reference may contain high frequency components, but when it passes through the filter, 

only the low-frequency components remain, and pure sinusoids in x and y dimensions 

create trajectories fitting to the power law (Lacquaniti et al, 1983). 

These results suggest that, in humans, the speed-curvature power law may emerge out of 

the failure to track a given reference trajectory – as opposed to successfully tracking a 

pre-planned power-law reference trajectory. Indeed, when human participants track 

constant speed targets along elliptic trajectories, they can follow the instantaneous speeds 

when the average speed is low, while at high speeds they always go slower in the curves, 

following the speed-curvature power law (Viviani and Mounoud, 1990, see also Annex 

7). 

However, if the low-pass filter hypothesis is correct, we need to explain how the human 

visuo-motor system compensates for the difference in the sizes of the reference and the 

drawn ellipses, as well as the phase delay between them. In the framework of hierarchical 

control (Powers, 2008), the proposed solutions, in principle, are higher-level feedback 

loops systems that control more abstract visual variables, and set lower-level references. 

For example, these variables might be directly related to the visually perceived size of the 

drawn ellipses and the angular (phase) separation between the cursor and target, as we 

elaborate in a different paper (Annex 7). 

Unrelated to the speed-curvature power law, we also found the invariance known as the 

bell-shaped speed profile in center-out reaching (Annex 5: Figure 3). In humans, straight-

line movements have a characteristic speed profile – starting from zero speed, the hand 

quickly accelerates to a peak, and gradually decelerates to a stop, forming the shape of a 

bell (Morasso, 1981; Viviani and McCollum, 1983). This invariance is maintained 

regardless of direction or extent of movement, prompting the hypothesis that the straight-

line trajectories must be pre-planned. Minimizing jerk over a given path and duration, for 

example, results in a bell-shaped speed profile (Atkeson and Hollerbach, 1985). However, 

we get the bell-shaped speed profile without any trajectory planning. The speed profile 

emerges out of the simple structural relationship - the acceleration of the hand is directly 

related to the visual separation between the cursor and the target. A lot of second-order 

systems behave in this way. A limitation of our solution is that it always behaves 

isochronously – the durations of reaching are the same regardless of reaching extent. This 
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suggest there might be a higher-level system managing movement speed, perhaps related 

to maintaining accuracy or the speed-accuracy tradeoff. 

The performance under the blocked-wrist condition may be interpreted as the 

phenomenon of motor equivalence – humans can perform the same movement, such as 

drawing a letter, with the left of their right hand, on a horizontal or vertical surface, 

holding a pen or stick, or in many other different ways. This ability in the robot is a direct 

consequence of the synergistic, multi-input, multi-output arrangement of control systems. 

These control systems resemble the definition synergy of Latash et al. (2007) – the 

controlled variables such as reach are the performance variables, and the activations of 

motors are elemental variables. This arrangement is a proposal for the computational basis 

of synergies in human arm control, not just at the level of muscles, but perhaps on multiple 

levels of control (Annex 5: Figure 6).  

The robot arm has proven to be resilient to different perturbations, and has performed 

elliptic target tracking, reaching and random pursuit tracking with similar effectiveness 

under normal conditions and under conditions of: a) blocked wrist, b) tablet tilted by 30° 

from horizontal, c) the hand-tip marker placed on a ‘tool’ extension, d) camera rotated by 

30° (Annex 5: Figure 7). This resilience comes from the hierarchical arrangement of 

control systems – the higher-level systems specify the reference, the desired value of the 

lower-level perceptions; they do not specify actions or how the lower-level systems 

should achieve their references.  

In summary, even though the robot arm is modest in precision and speed, the robustness 

to direct and indirect perturbations, combined with the computational simplicity of the 

controllers, is suggesting that similar multi-level control architectures might be 

implemented in the basis of biological control. With regards to the speed-curvature power 

law, we confirmed that low-pass filtering in the high-level visual sensorimotor loop may 

be an important element in the origin of the power law, but the system is still missing size 

and phase compensation. Taken together, the goal for future research is to attempt to 

design a hierarchical control system with a low-pass filter element that can compensate 

for the differences in size and phase when tracking elliptical targets. 

 

3.2.2. Robot model of antagonistic muscles 
 

One important observation made during the testing of the hierarchically controlled robot 

arm was related to the backlash in the gears and precision of movement. Backlash is one 

of ‘hard nonlinearities’ in robot control, coming from the small spaces between 

transmission gears.  It is a known phenomenon in robotic engineering that backlash in the 

gears may cause instabilities and self-sustained oscillations (Slotine and Li, 1991, p. 172), 

and because of it, the gains need to be reduced, impacting final precision of movement. 

Common solutions to avoiding backlash are using direct-drive arms or cables in the drive 

train, such as twisted string actuators (TSAs). TSAs are an emerging technology in 
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robotics (Palli et al, 2012; Popov et al. 2013; Rodriguez et al. 2020), they can be placed 

in a variety of configurations and controlled by different architectures.  

We designed and build a pair of antagonistic TSAs as a model of the elbow joint (see 

Methods). The robotic prototype also contained a model of the Golgi tendon organ as a 

force or tension sensor made from a potentiometer and some rubber bands, and the model 

of the muscle spindle as a muscle length sensor or comparator. The controlled variables 

at the first level were muscle lengths, at the second level had simultaneous control of 

sums of tendon tensions and differences of the tensions; while the joint angle and angular 

speed were controlled at the third level. The control architecture was inspired by a 

simulation by Powers (1979) intended to model spinal control systems.  

The analysis of the response to a step input in joint angle shows that the removal of 

backlash from the joint had very good effects on joint precision: the steady-state error 

was very low, only +/-0.03 degrees in low stiffness and +/-0.04 degrees in the high 

stiffness situation. On the other hand, since the motors used in the TSAs were small and 

slow, the bandwidth was only about 0.2 Hz (Annex 6: Figure 3). 

Overall, the extremely simple control architecture, using only summing and 

differentiating elements in the computational part of the controller, is still working very 

precisely despite being built from very inaccurate elements. This architecture shows 

promise as a model of the spinal control architecture; however, it is still a very early 

prototype. In future development, the simple antagonist muscle arrangement might be 

extended to multiple muscles and joints, with added realistic delays and faster motors to 

improve bandwidth. A system like that might be used to build affordable, precise, and 

easily controllable prosthetic arms. Likewise, it may be more directly compared to human 

arms, functioning as a robotic platform for testing hypotheses about the spinal and supra-

spinal motor control systems.  

 

3.2.3. Visuomotor phase-locked loop reproduces elliptic hand trajectories 

 

In the experiments with the hierarchically controlled robot arm, we confirmed and further 

explored the idea that low-pass filtering in the visuo-motor loop may be responsible for 

the speed-curvature power law. The robot arm could follow a low-frequency constant-

speed reference, but at higher frequencies, it could not follow the reference. Specifically, 

the robot arm it did not follow the high frequency components of the reference trajectory. 

Consequently, the hand trajectory contained mostly pure sinusoids in position and speed 

profiles, and conformed to the power law. However – the sinusoids had a smaller 

amplitude, causing the drawn ellipses to be much smaller than required, and also causing 

phase shifts not observed in tasks with human participants.  

In this study (Annex 7), we designed an experiment where the participants tracked a target 

along an elliptic trajectory, across a range of frequencies and different speed profiles, and 
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we designed a numerical, generative model that aims to predict and explain participant 

behavior in this task. 

In experiment 1, we found that the participants, like the robot, could accurately follow 

only low frequency references. The participants followed the path of the target (Annex 

7: Figure 2B, 2E), and the speed (Annex 7: Figure 2C, left panel, and Figure 2E). 

Participant trajectories did not conform to the power law because of high noise in the 

curvature estimate. The curvature is estimated using the first and second derivative of 

position, making it sensitive to measurement noise and movement tremor, and they are 

apparently not entirely removed with the second-order Butterworth low-pass filter with a 

10Hz cutoff.  

At high speeds we have a different situation. Participants don’t follow the path of the 

target exactly, and there are large errors in instantaneous speed (Annex 7: Figure 2B, 2E). 

In fact, the speed profiles of the participants’ hands are nearly identical across different 

situations for the same cycle frequency, even though the target profiles were different 

(Annex 7: Figure 2D). The targets had profiles with exponents β=0, β=-1/3 and β=-2/3, 

while all the participant’s trajectories had the exponent β=-1/3. At high frequencies, or 

high average speeds of movement, participants don’t have a lot of control over their 

instantaneous speeds, confirming the observation of Binet and Courtier (1893). After 

about 1Hz and faster movements, all participant trajectories were following the -1/3 VC 

power law. This suggests that participants have relatively poor trajectory control at high 

speeds – apparently, they cannot produce constant speed trajectories at cycle frequencies 

larger than 1Hz even what that is the task, and they can only produce trajectories 

conforming to the -1/3 power law. 

The first question we wanted to answer was the nature of the visually controlled variables 

in elliptic target tracking. First, we demonstrated that the participants are not controlling 

the linear cursor-target distance in x and y dimensions. We fitted a model controlling 

cursor-target distances dx and dy to human behavior in a random pursuit tracking task. 

Clearly, in the random pursuit task, this model explains participant behavior very well, in 

accordance with previous research (reviewed in Parker et al, 2020). However, in the 

ellipse tracking task, this model was drawing the ellipses of different sizes than 

participants, and introduced a large phase delay not present in human-made trajectories 

(Annex 7: Figure 3). However, when looked in the frequency domain, the model can be 

seen as a low-pass filter, and still produces -1/3 power-law elliptic trajectories. This 

suggested that, even if the model does not explain the behavior of the participants entirely, 

it could be used as a low-pass filter element in a lager, multi-level loop that also 

compensated for the observed differences in the size of the drawn ellipses and the phase 

delay.  

We proposed that these higher-level systems are perceiving the phase difference between 

the cursor and the target; and the size difference between the cursor-drawn ellipse and the 

target-drawn ellipse, using them as a controlled variable in a negative feedback loop. We 

conducted a preliminary experiment (experiment 2, Annex 7: Figure 4) where we directly 

disturbed these two variables simultaneously with a random-smoothed disturbance. The 
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results of the experiment confirmed that the participant (N=1) maintained both variables 

stable and uncorrelated to the disturbance quantity (Annex 7: Figure 4), supporting our 

proposal. 

Next, we created a generative numerical model with size and phase difference as high-

level controlled variables. The phase difference modified the frequency of a 2D harmonic 

oscillator, and the size difference modified the amplitude. This arrangement is similar to 

a phase-locked loop (PLL), used very commonly in signal processing and communication 

technologies. The output of the oscillator served as the reference, or a kind of virtual 

target, for the lower-level target tracking system, that also performed low-pass filtering. 

(Annex 7: Figure 5).  

The model replicated many important features of participant behavior: (i) the power law 

emerged only for fast-drawn ellipses (frequency f ≥ 0.84Hz), (ii) the speed profiles were 

similar to participant’s speed profiles across all frequencies, (iii) the position profiles were 

nearly identical for all frequencies, (iv) the sizes of the drawn ellipses were similar to the 

size of participant drawn ellipses in the same task, (v) the phase differences were 

maintained near zero radians (Annex 7: Figures 5 and 6). The model also replicated 

participant behavior from experiment 2 with simultaneous random changes in phase and 

size of the ellipse (Annex 7: Figure 6C and 6D). 

The limitation of the study is, primarily, the small number of participants and this should 

be improved in future research. There could also be alternative models with similar or 

better performance in the same tasks. For example, the oscillator might not be located in 

the higher-level loop, suggesting a cortical structure, but perhaps in a lower-level loops, 

suggesting a spinal level structure; as indicated by fitting of the delay parameter in the 

model.  

Overall, the model presented here explains the origins of the speed-curvature power law 

in terms of a hierarchical sensorimotor control system. The high-level perceptually 

controlled variables are ellipse size difference and phase difference. These variables and 

their implicit references are used to manipulate the frequency and amplitude of an internal 

oscillator. The oscillator, in turn, sets the reference of a target-tracking system that also 

performs low-pass filtering. The similarities in the behavioral performance of the model 

to the participants, taken together with the computational simplicity of the model 

elements, may be suggesting the existence of neural perceptuomotor mechanisms that 

perform the task in a similar way. 
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4. Conclusions 
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1. The speed-curvature power law is a real, non-trivial phenomenon in human 

movement, and not a statistical artifact. 

2. Angular speed should not be used to estimate the speed-curvature power law since 

it is often trivially correlated to curvature, and instead tangential speed can be 

used. 

3. The principle of least action, as suggested by Lebedev et al. (2001) cannot explain 

the origin of the speed-curvature power law. 

4. The power law may be created by low-pass filtering non-power-law elliptic 

trajectories. However, the drawn ellipses will be smaller and phase-delayed 

compared to the referent trajectory and also compared to the trajectories created 

by human participants in the same situation. 

5. A hierarchical control architecture with simple elements produces flexible and 

adaptive behavior in a physical robot system, despite noise, delays and non-

linearities. This suggests that the architecture of neural systems in the control of 

arm movement may be hierarchical. 

6. The removal of backlash by tension-controlled antagonistic twisted string 

actuators allows for very precise angular position control, despite non-precise 

individual elements of the robotic prototype. 

7. Phase and size difference are the most likely visual features controlled by human 

participants when tracking targets along elliptic trajectories, also underlying the 

generation of the power law at high frequency tasks. This claim is supported by 

further behavioral experiments, when participants keep both phase and size 

difference stable even under direct perturbation. It is also supported by a 

numerical model that replicates participant trajectories in tracking targets across 

multiple frequencies. 
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1. La ley de potencia de velocidad-curvatura es un fenómeno real y no trivial en el 

movimiento humano, y no un artefacto estadístico. 

2. La velocidad angular no debe utilizarse para estimar la ley de potencia, dado que 

suele estar trivialmente correlacionada con la curvatura. En su lugar, puede 

utilizarse la velocidad tangencial. 

3. El principio de mínima acción, como sugieren Lebedev et al. (2001), no puede 

explicar el origen de la ley de potencia. 

4. La ley de potencia puede crearse mediante el filtrado de paso bajo de trayectorias 

elípticas sin ley de potencia. No obstante, las elipses dibujadas serán más 

pequeñas y con retraso de fase en comparación con la trayectoria de referencia y 

con las creadas por los participantes humanos en la misma situación. 

5. Una arquitectura de control jerárquica con elementos simples produce un 

comportamiento flexible y adaptativo en un sistema de robot físico, a pesar del 

ruido, los retrasos y las no linealidades. Esto implica que los sistemas neuronales 

en el control del movimiento del brazo pueden ser jerárquicas. 

6. La eliminación de la holgura mediante actuadores de cuerda torcida antagónicos 

controlados por tensión permite un control de posición angular muy preciso, a 

pesar de la falta de precisión de los elementos individuales del prototipo robótico. 

7. Las diferencias de fase y de tamaño son los rasgos visuales más probablemente 

controlados por los participantes humanos cuando siguen visualmente objetivos a 

lo largo de trayectorias elípticas, lo que también subyace a la generación de la ley 

de potencia en tareas de alta frecuencia. Esta afirmación está respaldada por 

experimentos de comportamiento adicionales, en los que los participantes 

mantienen estables tanto la diferencia de fase como la de tamaño incluso bajo una 

perturbación directa. Además, está respaldada por un modelo numérico que 

reproduce las trayectorias de los participantes en el seguimiento de objetivos a 

través de múltiples frecuencias. 
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“A drawing is simply a line going for a walk.” (Paul Klee)

1. Introduction

It has been argued that nothing makes sense in neuroscience except
in the light of behavior (Krakauer et al., 2017). Yet, even when we
carefully measure the behavior of organisms, the promise that the
discoveries found in the laboratory will generalize in real-world situa-
tions is often hard to fulfill. This is in part due to the simplicity of
experimental designs which, in turn, allow to maximize control by the
experimenter, taming the complexity and context that is natural to the
behaving subject under study (Gomez-Marin and Mainen, 2016). For
instance, writing on a piece of paper or simply drawing with our finger
on a tablet are everyday activities, but the quantitative study of the
processes and mechanisms generating such complex hand trajectories is
nearly always done in laboratory conditions.

Another main reason for laboratory research is the necessary in-
volvement of expensive, sophisticated, and usually massive technolo-
gical devices for manipulation and measurement. In fact, measuring
behavior has a rich history in hand movement research, where the
development of recording instruments has played a central role. These
include graph paper, cameras, robot arms, motorized linkages, and
other clever gadgets to store hand position over time. While it is not our
aim here to present a exhaustive account, let us list several influential
methods in movement research that illustrate the advancement of a
field with more than a century of history.

An early instrument in recording movement was the Edison pen,
where a needle at the tip of the pen was oscillating at constant fre-
quency. The needle made marks on the paper so that movements at
higher speed left marks spaced further apart than movements at lower
speed. With such device, the speed of the pen in curved parts of a
trajectory was observed to be lower than the speed in straight parts
(Binet and Courtier, 1893). A middle-sized model was priced at 50$ in
the 1890’s, which is on the order of 1500$ in today’s dollars. A few
years later, Woodworth used a simple method of graph paper and
metronome-synchronized movements to measure the relationship be-
tween speed and accuracy (Woodworth, 1899). As he notes, the method
was easy to use and he recorded more than 125 K individual trajectories
for a study. The difficult part was analyzing the recorded data, and this
was done by his assistants. During the 1930’s, Bernstein invented a
highly sophisticated method called cyclography, utilizing high-speed
film cameras with shutter speeds of 150–200 Hz and light-bulb markers
placed on the bodies of his participants (Bernstein, 1984; Gurfinkel and
Cordo, 1998). Using multiple cameras or a single camera and a system
of mirrors, the three-dimensional trajectories of joints and limbs of
participants could be reconstructed. Bernstein formulated the so-called
degrees of freedom problem, and an early theory of movement control
hierarchy. Regarding handwriting analysis with digitizers in the 1960’s,
an overview of devices used can be found in (Schoemaker, 1998).

In the 1980’s, a puzzling constraint between instantaneous speed and
local curvature of end-point hand trajectories was discovered in data re-
corded with an ultrasonic device called the Graph Pen (Lacquaniti et al.,
1983; Soechting et al., 1986), which was capable of 100Hz sampling and
0.1mm accuracy in measuring pen position on a plane. Another device used
by (Lacquaniti et al., 1983) was a Calcomp electromagnetic digitizing table,
100Hz sampling and 0.025mm accuracy. It was then established that in
human hand movement, the instantaneous angular velocity is proportional
to the local curvature raised to the 2/3 power (A=k· Cβ with β=0.66);
the so-called two-thirds power law.

Further investigations of the coordination of arm movements used
two-link mechanical manipulanda. Built with two joints and precision
potentiometers calibrated to measure joint angles, and sampling at
100 Hz, it achieved 1mm resolution in the endpoint position mea-
surement (Flash and Hogan, 1985). Another class of measuring tech-
nologies consisted of pressure sensitive pads, which can be used with

ordinary pens. For example, a Quest Micropad pressure sensitive device
can reach 200 Hz, and achieve 0.2 mm accuracy (Wann et al., 1988).
Furthermore, for free movement in three dimensions, the use high-
speed cameras together with visual markers placed on the body of the
participant facilitate computerized analysis. For instance, in (Dounskaia
et al., 2002) an Optotrack 3D optoelectronic camera system achieved
100 Hz frequency using infrared LED lights as markers.

More recently, researchers have been using digitizing graphics ta-
blets like the Wacom Cintiq and Intuos. In particular, using such devices
it has been empirically found (and theoretically predicted) that humans
produce a spectrum of speed-curvature power laws while tracing pure
frequency curves (Huh and Sejnowski, 2015). These devices provide
very high temporal and spatial resolution of recording pen or finger
position, up to 140 Hz in sampling rates for Cintiq and up to 200 Hz for
Intuos models, and reported 0.005mm of spatial resolution (5080 lines
per inch; but accuracy may be lower), while displaying any curve
geometry and target kinematics on the very surface where the partici-
pant draws. We have recently reproduced such findings with the same
devices (Zago, Matic et al., 2018). However, note that the Wacom
Cintiq 27QHD is a 27” monitor weighing 13 kg, and priced around
2750$. Its size and cost, and the requirement of a separate computer to
record the data can be a limitation in experimental settings that require
affordable, portable, and high-throughput data collection. This has
prompted us to explore other solutions that are more efficient and in-
expensive without compromising the quality of the data.

In the last years, small-size autonomous computers such as iPad
tablets, Android tablets, touch-screen laptops or even smart-phones are
increasingly used in movement control and development research
(Accardo et al., 2013; Lee et al., 2014; Hill et al., 2014), as well as in
clinical settings (Anzulewicz et al., 2016; Sisti et al., 2017; Vianello
et al., 2017). Tablet computers are affordable and transportable, which
in principle makes them ideal for large-scale experiments outside of the
laboratory, in natural settings for humans such as classrooms, homes, or
hospitals. Actually, the spatial and temporal resolution of recording
movement trajectories in the tablets is becoming on par with larger,
specialized graphics digitizing tablets, thus becoming a reasonable and
practical alternative. We have exploited this fact here.

In this article we report on creating a free and open source appli-
cation for an Android tablet made to facilitate large-scale hand move-
ment experiments in situations not necessarily constrained to labora-
tory settings. Our application can be used in its current form, or as a
template and code base for designing applications for new experiments.
Currently, there are three main task types available in the code: (i)
tracing figure shapes, (ii) tracking target trajectories and (iii) free
scribbling or drawing. Each task type invites to constraint certain as-
pects of trajectory production. For instance, in tracing, participants are
invited to move their finger following a particular geometry statically
displayed on the screen, but with kinematics being free. In tracking,
participants are invited to follow the particular kinematics displayed by
a moving target. And in scribbling, participants can draw in space
(geometry) and time (kinematics) as they please. We have developed an
experimental protocol for high-throughput experimentation outside the
lab, and we have tested the validity of the app for generating labora-
tory-quality motor control data. In sum, our app is ready to use, open,
customizable, and suitable for human movement research.

2. Materials and methods

2.1. Hardware

We have used a fairly common and affordable tablet, the Samsung
Galaxy Tab A6 (alternative name SM-T580) whose price is around
170€. Physical dimensions are 254×164×8mm. It comes with the
Android operating system, version 8.1.0 (Oreo) and API level 26. The
display is a 10.1” PLS LCD screen, with dimensions 216×135mm, and
a resolution of 1920× 1200px. The tablet has a capacitive touch-
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screen, and registers touch by a finger or a capacitive stylus, with re-
solution equal to the display resolution, which is 226ppi or 8.89 px/mm
in pixel density. Maximum screen refresh rate is 60 Hz. Maximum
sampling rate of touch events is not published, but we have found it to
be close to 85 Hz.

2.2. Software

The app was programmed in Android Studio (version 3.3.2), a free
integrated development environment (IDE), officially supported by
Google, intended for development of Android OS applications on mul-
tiple platforms. Android Studio enables development in programming
languages Java, C++, Go. For this application we used Kotlin, which is
a recently designed general-purpose programming language fully in-
teroperable with Java, can freely use Java libraries, and compiles to the
JVM, but features a simpler and more concise syntax. The combination
of relative simplicity and the ability to use existing Java libraries makes
Kotlin a practical choice. To program the app, we have used a Windows
10 PC, with 8GB of RAM and Intel i5 CPU. But there are no stringent
constraints on the PC needed to do so.

2.3. Experiments

The proof-of-concept validation behavioral experiments were per-
formed by one of the authors. They involved tracing, tracking and
drawing different geometric and kinematic tasks with the finger on the
tablet. The total duration of the experimental protocol coded in the app
was 15min. Default instructions were to produce fast and fluid move-
ments without corrections. Procedures were approved by the
Institutional Review Board.

3. Results

We have created an application software (an “app”) for Android
tablets to be used in hand movement and sensory-motor control re-
search, with a focus on the speed-curvature power law. The application
is ready for use in its current form. We also provide the source code
together with an easy way of designing other tasks to be encoded in the
app, as well as a deconstruction of an effective experimental protocol,
which we demonstrate. We also validate the quality of the data col-
lected for motor control science, and share the raw data as well as
analysis scripts. See Fig. 1 for a general methodological scheme, whose
steps we now explain:

3.1. The app is ready to run and easy to install

The application can be installed on any Android tablet. It can be run
in its original form by simply downloading it the app in a tablet. This
would install the app with predesigned template experiments and its
default settings. An ordinary route for Android applications is the
Google Play Store, but it is not necessary, as it might involve fees and
delays, and add another layer of complexity to the process. Distributing
the apk file can be done via USB cable, copying it from the PC to each
tablet, or more simply via email, by sending the apk file or a link for its
download to each tablet’s email address. The app can then be down-
loaded and installed on the tablets.

3.2. An effective experimental protocol has been designed and validated

As diagrammed in Fig. 2, when participants start the app the first panel
they see is the data entry panel. They are asked to enter the year and month
of birth, gender, and dominant hand. This information is stored as meta-
data, and used to construct the filename with the trajectory data. The
participant can then start a “practice” sequence or an “experiment” se-
quence, following the instructions previously programmed in the app by the
experimenter. The practice sequence serves to familiarize the participant
with the tasks and can be repeated as many times as needed. By default, the
data is not recorded in the practice sequence (but this can be modified in
the Experiment.kt file; see next subsection). The experiment sequence con-
tains a series of tracing, tracking and scribbling tasks, as defined in the
program. Data is recorded after each task in the experimental sequence. The
experiment ends after all tasks have been run.

After a concise verbal instruction to the participant about the ex-
periment, we found practice to be important in ensuring that the ex-
periment takes place smoothly. We also found that it is effective to
present the various (tracing, tracking, and scribbling) tasks con-
secutively with a brief pause, rather than providing a general menu
where the participant clicks back and forth the corresponding task or
curve to execute. This protocol coded in the app should be particularly
useful to perform high-throughput experiments in groups of children or
adults by having the app installed in several tablets and running the
practice and experiment phases synchronized across participants.

When the experimental sequence is finished, the application ends
and the movement data (x position, y position, time) is saved in a txt file
together with the type of task and metadata (age, gender, hand) as the
file name, so that each file self-contains all the necessary information
for further analyses (see section 3.6).

Fig. 1. General methodological scheme
of the tablet app: from experimental
design to data analyses. The app is
compiled and ready to be used (app-
release.apk file). It simply needs to be
downloaded to the Android tablet via
USB from a desktop computer or by
email. Its deployment consists of three
phases: basic data entry, practice and
experiment sections (see Fig. 2). When
the experiment is finished, the raw data
(movement trajectories, experimental
templates, and participant metadata)
can again be easily transferred from
each tablet to a desktop computer via
USB or email. It is also possible to
customize the app for other experi-
mental designs involving sequences of
tracing, drawing or scribbling tasks (see
Fig. 3). This is implemented in the

source code of the app (editing the Experiment.kt file; see scripts in supplementary material). Quantitative data analyses (which can be performed in Python files we
share within a Jupyter Notebook; see Analysis_KinematicCognition.ipynb file in supplementary material) yield state-of-the-art motor control results as demonstrated in
Fig. 4. The potential of the app for real-world behavioral neuroscience experiments is summarized in Fig. 5.
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3.3. The app can be edited by non-professionals to customize experimental
protocols

The source code is provided and can be edited in order to accom-
modate the particular needs of the experimenter. To facilitate the cus-
tomization process, we have designed the code to allow editing of a
single file in order to change the most important protocol elements: the
type of task, duration, sequence of appearance, and pause in between
tasks.

After the experimental design is implemented in code, tested, and
debugged, the code needs to be compiled into an Android package file
(apk) using the Android Studio IDE. Note that the code is written in the
Kotlin programming language. To make it accessible to nonprofes-
sionals, the file Experiment.kt in the project source is the only one that
needs to be edited (see supplementary material). It contains definitions
of all the curves used in tracing tasks, all target trajectories used in
tracking tasks, the duration of each task and their ordering in the
practice sequence and the experiment sequence.

The definitions of the curves are at the top of the file Experiment.kt.
Curves for tracing tasks, such as ellipses or lemniscates, are defined as
lists of x–y points. For future reference and comparison with participant
trajectories, points for each curve are saved into a text file named after
the curve (e.g. Lemniscate.txt contains a list of x–y points used to draw
the shape on the screen). Target trajectories are defined as functions
that return point coordinates at a particular time t measured from the
task start. Currently implemented code enables design of target tra-
jectories following pure frequency curves (specifying geometry) and
velocities defined by a speed-curvature power law with an arbitrary
exponent (specifying kinematics).

Next, each task or event needs to be defined with a name, type and
duration. The name is arbitrary, the type is one of “trace”, “track”,
“scribble” or “pause”, and duration is the number of seconds after
which the task will automatically end and proceed to the next task.
Finally, ordering and duration of tasks are defined for the practice se-
quence and the experiment sequence.

In sum, in order to customize the app, one needs to download the
project from Github (clone the repository), and open it in Android
Studio to edit the file named Experiment.kt. As depicted in Fig. 3, this
allows a handy composition of new “practice” and “experiment” tasks.

3.4. The app can be thoroughly customized by advanced programmers

We provide all the necessary source-code files as Supplementary
Material. In particular, one needs to access the “KinematicCognition”
folder. The files therein (and also inside the “idea” folder) are the build
instructions for Android Studio and configurations for the project. They
are mostly in Kotlin programming language. In the “gradle” folder one
finds additional files for the building process. There is no need for the
user to modify any of these files. The Android Studio actually generates

and modifies them as one compiles the app. In the “app” folder one
finds two main folders. In the “release” folder one can find the app
ready to be installed as an app-release.apk. The “src/main” folder con-
tains all the scripts needed to customize the app. In the “java/com/
example/kinematiccognition” are the Kotlin (.kt) files corresponding to
the so-called ‘activities’ (screens, routines for recording the trajectories,
saving files, generating trajectories). For basic editing as described in
the previous section, one does not need to worry about any of such files.
But advanced programmers can of course make use of their editing. In
the “res” folder there are many folders automatically managed by
Android Studio. They comprise icons, layouts of the screens, connec-
tions between layouts, additional libraries, and dependencies. Let us
also remind to select the appropriate API level for compilation in
Android Studio so that it matches the particular tablet model to be used.
Note that if the application is intended for a tablet with different screen
resolution (ours was 1920× 1200px), the shapes and trajectories
should be adapted by adjusting their size in pixels in Experiment.pk file.

3.5. The app is optimized for temporal resolution of trajectory recording

In the Android operating system, the touch location and the time-
stamp are not usually provided in their raw form, as recorded by the
touch-screen driver. To improve user experience during normal use,
finger touch locations are by default recorded in batches of events,
synchronized to display refresh events, and passed through an inter-
polation and estimation algorithm. These touch events are available to
the programmer through methods event.X, event.Y for the location, and
event.getTime for the timestamp. Maximal temporal resolution is equal
to the screen refresh rate, which is 60 Hz (for the SM-T580 Samsung
model we used). These methods are useful in general user interface
programming, gesture recognition and similar uses. However, the in-
terpolation and estimation algorithms may distort finger touch position
and timestamp. Similarly, because the touch events will be synchro-
nized to screen refresh events, the rate of touch events may be lower
than recorded in its raw form.

To acquire more accurate and non-processed raw location and
timestamp data at maximal possible temporal resolution, we access the
recorded batches of events through the event.historicalX,
event.historicalY and event.historicalTime methods. Trajectory recording
methods are implemented in each of the task classes in the code. In
target tracking tasks, trajectories are defined as functions of time. This
method allows for correct positioning of the target, independent of the
drawing frame rate or lags in the running of the app during the task.
Synchronization of the target and finger trajectories in data analysis can
be made using this target trajectory data. In free scribbling tasks, only
the last one second of the trajectory is shown, as a disappearing trail.
This minimizes the effect of drawing on the frame rate, keeping it near
maximum 60Hz.

Fig. 2. Application flow diagram during an experi-
ment. Upon clicking on the app icon on the tablet
desktop, the app starts with the data entry panel (1),
which is saved as metadata. Next the participant can
choose to run a practice sequence (2) one or more
times by pressing the “practice” button (P). Then the
participant may click the “experiment” button (E) so as
to be presented with a sequence of tracing, tracking
and scribbling tasks (3) for which data is recorded.
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3.6. Movement data and metadata file formats allow efficient management
and analysis

Each tablet will contain the data of the experiments that were run
on it, stored by default to the folder “/internal storage/download”. The
data is composed of text files containing participant trajectories, target
trajectories, and default curve points. As we mentioned, they can be
copied to the desktop computer over a USB cable, or sent to an email
address from each tablet.

The filename of each recorded trajectory contains the metadata of
the participant information collected in the data entry panel (year and
month of birth, gender, and dominant hand), as well as the type of the
task performed, and the time and date of the experiment. For example,
file February1986MaleRight scribble 10.4.2019. 16.10.57.txt contains the
movement data of a scribbling task performed at the noted date and
time by a right-handed male born in February 1986. In this way, all the
relevant information of each experiment is centralized in a single file.

Raw trajectory data is stored in text files, with each file containing
three columns, a timestamp in milliseconds since the start of the task,
and x and y coordinates in pixels. Note that the upper left corner is the
coordinate (0, 0), x is increasing from left to right, and is y increasing
from top to bottom. This may result in reversing the y coordinate if the
data is plotted in the traditional Cartesian coordinate system.

Curve tracing and scribbling tasks save the participant movement
coordinates only, while the tracking tasks save two files: one with
participant data, with the filename prefixed “user”, and one with target
positions prefixed “target”. Target participant data are saved in dif-
ferent files because of their different sampling rate. Target position is
saved at the rate of screen refreshing, while the participant data at the
rate of touch event recording. For the tablet Samsung T580 used in
developing this application, the timestamp differences were are ap-
proximately 16.66ms (60 Hz refresh rate) for screen refresh, and
11.8ms (85 Hz sampling rate) for touch events. While the rate of data
sampling for participant trajectories is reasonably constant at near
85 Hz, it is useful to spline/interpolate and re-sample the participant
and target trajectory data, or participant data from different tasks to the
same sampling frequency. For target tracking tasks, the target trajectory
can be synchronized to participant finger trajectory by the timestamp
variable, since the timestamps measure time in ms since the start of the
task, for both movements.

3.7. The data collected with the app yields state-of-the-art scientific results

To evaluate the data collection potential of the app and to demon-
strate the range and quality of possible types of analysis, we performed
a pilot study consisting of several tracing, tracking and scribbling tasks.
All data was filtered with a low-pass Butterworth filter with a cutoff
frequency of 8 Hz. The analyses we performed are characteristic of the
study of the speed-curvature power law, as well as of other quantitative
aspects of movement research. The results, shown in Fig. 4, illustrate
the usefulness of our method in hand movement research.

First, when tracing of a lemniscate figure (Fig. 4A), the trajectory
shows a strong covariance between angular speed and curvature
(Fig. 4B), which yields a power law with the exponent β=0.82 and
r2= 0.977 (Fig. 4C). This is consistent with the law and exponent found
in the literature for a lemniscate (Viviani and McCollum, 1983). Other
curves tested (data not shown) yielded power laws with the exponents
reported in (Lacquaniti et al., 1983) and (Huh and Sejnowski, 2015).

Second, we analyzed the lead-and-follow dynamics when the finger
tracks a moving target along an elliptical trajectory with hypo-natural
kinematics (Fig. 4D). Hypo-natural movement trajectories are defined
as those for which the angular speed and curvature power law has an
exponent lower than 2/3 (in this case we imposed β= 1/3) so that the
target slows down in high-curvature parts of the path much more than
in the movements naturally performed by participants. The angular
difference between the target and participant positions is measured
from the center of the ellipse, at each point along the trajectory. Con-
sistent with a similar analysis in the literature (Viviani and Mounoud,
1990), we find that the participant is not merely following the target,
but getting closer and further away periodically, with more difficulty to
track it at certain regions, and with certain trajectory segments even
overtaking the target (Fig. 4E).

Third, a set of pure frequency curves (Huh, 2015) with parameters
ν=0.8, ν=1.5 and ν=2.0 (respectively corresponding to four-lobe,
three-lobe and ellipse curves) were shown on the tablet screen as static
templates and the participant traced those figures in a fast and fluid
manner. For participant traces of those curves, Fig. 4F shows the am-
plitude of the curvature spectrum, which is the Fourier transform of the
logarithm of the curvature profile but parametrized in angle rather than
in length or time (Huh and Sejnowski, 2015). Remarkably, the curva-
ture profiles of the traced trajectories have single peaks at the precise

Fig. 3. Composing task elements to easily and flexibly create an
experimental protocol in the app. The Experiment.kt file contains:
(A) the definitions of curves and trajectories to specify the geo-
metry and kinematics used as experimental tasks, as well as defi-
nitions of each task specifying duration and whether to save the
data or not; and (B) definitions of practice and experimental se-
quence of tasks as one wishes to make them appear in the appli-
cation. For instance, the “experiment” vector in (B) would gen-
erate the sequence of tasks depicted in (C).

A. Matic and A. Gomez-Marin Journal of Neuroscience Methods 328 (2019) 108398

5

Rectangle



pure frequencies of the template curves displayed. One also sees har-
monics. In contrast, the log curvature profile of a free scribbling tra-
jectory does not show sharp peaks (except some dominant contributions
at ν=2 and also a bit below ν=1) as it is not a pure-frequency curve.
Overall, this analysis illustrates how such spectra can be a powerful and
principled measure of geometrical accuracy during tracing.

Fourth, in a segment of scribbling movements (Fig. 4G) we ex-
amined the direction of movement as the accumulated unwrapped local
angle over time. We can clearly distinguish between clock-wise and
counter-clockwise movements, and quantify the number of complete
rotations (gray lines in Fig. 4H) during free scribbling.

Fifth, we can discretize a continuous trajectory by means of a seg-
mentation analysis. As shown in Fig. 4I, there are actually different
ways to draw the same simple figure. The three-lobe pattern helps il-
lustrate such degeneracy. In the left one, the trajectory crosses the
center without changing the direction of movement (thus, mono-
tonically) and this is all done counter-clockwise. In the right one, each
‘petal’ is drawn separately (non-monotonic curvature changes) with the
direction of movement changing in the middle of the figure, while this
is done clockwise. In sum, the tracing of such a simple figure can betray
handedness and decision-making differences across participants, and
within participants in time.

3.8. Scripts for data analyses are available as a Jupyter notebook

The raw data and a python scripts to analyze it are also available as
supplementary information. In particular, the “KinematicCognition-
Analysis” folder contains the files power_law_analysis.py and power_-
spectrum.py which correspond, respectively, to the scripts that estimate
speed and curvature to test the power-law constraint and it exponent,
and the scripts that calculate the power spectrum of any trajectory. The
file Analysis_KinematicCognition.ipynb is a Jupyter Notebook that facil-
itates the visualization and generation of the analyses corresponding to
those shown in each plot of Fig. 4. In the “data-new” folder is the raw
data of the pilot study corresponding to different curves traced, targets
tracked and scribbling. Note that for local use, one must match the
paths to local folders.

4. Discussion

Android tablets are widely available and affordable today. The
reader may even have one or two at home. We have created an app and
deployed it on a commercial tablet, demonstrating that it allows suffi-
ciently high temporal and spatial resolution for state-of-the-art motor
control laboratory research. We have provided a ready-to-use version of

Fig. 4. Analyses of the data collected with the app produce state-of-the-art results: Five main situations are shown: power-law constraint during tracing (A-C); lead-
follow dynamics during tracking (D-E); geometrical accuracy in pure-frequency curves (F); clockwise scribbling (G-H); and action segmentation degeneracy (I). (A)
Tracing a lemniscate figure with the finger on the tablet. (B) Instantaneous angular speed and local curvature as a function of time for a short interval. Both appear
tightly correlated. (C) The trajectory of the participant’s finger complies with the speed-curvature power law (r2= 0.977), with an exponent β= 0.82. (D) Tracking a
moving target along an ellipse. The color of the dots depicts the relative phase angle (measured from the center of the ellipse) between target and the finger, which is
minimal in the most curved parts of the trajectory. (E) Lead-follow analysis reveals that the participant is behind the target most of the time, only leading in front of
the target at some points that coincide with maximal curvature. (F) Amplitude of the power spectrum of the curvature profile in tracing pure frequency curves shows
strongest peaks at the frequency of the template, while the scribble has a much broader distribution. (G) Direction analysis during free scribbling shows clockwise
turning (in red) for the first part of the analyzed trajectory, followed by counter-clockwise turning (in blue) in the second part. (H) Accumulated angle over time
reveals five full windings before changing direction. (I) Discrete segmentation of a continuous path produced while tracing a three-lobe flower-like shape can reveal
different choice sequences in drawing of the same path across different trials or individuals. Apart from clock-wise or counter-clockwise directions, one can also
choose to trace the pattern with monotonic changes in curvature, or sharply changing direction at the center.
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the app, with an experimental protocol design that is suited for high-
throughput effective data collection outside the laboratory. We have
also shared the source code and organized it so as to facilitate re-
searchers to design their own experiments, and to be able to compile
new app versions.

As summarized in Fig. 5, our app has plenty of advantages. Let us
also remark now some of its limitations. First, it is worth stating that the
spatial and temporal resolution of digitizing tables and similar devices a
few decades ago was on the same level (or better) than today’s Android
tablets. For instance, in (Lacquaniti et al., 1983) a resolution of 100 Hz
is reported for an electromagnetic digitizing table with 0.025mm of
accuracy, and in (Wann et al., 1988) a pressure sensitive pad achieved
200 Hz sampling rate, though with somewhat lower accuracy of
0.2 mm. Nevertheless, the sampling rate of movement recording for the
tablet used in the present manuscript is fast enough to enable the
quantitative analysis of kinematics and geometry of human movement
while drawing. The price of the tablet we used here is easily an order of
magnitude cheaper than typical recording devices used in the lab.
Second, we did not program the app to be run on cell phones since this
would considerably limit the spatial range and resolution of most of the
motor control experiments one is interested in. Third, note as well that
our app cannot be run on an Apple iPad. Yet, nothing prevents other
users to use the code, design, and analyses employed here to extend it to
other platforms or uses.

Our custom-made app running on a commercial tablet is a sweet
spot between the precision of laboratory equipment and the usability of
mobile devices. It is a fact that tinkering with the source code requires
some considerable programming knowledge. Yet, our goal here has
been to design the code to significantly simplify the task of creating a
movement-recording app, specially in comparison with creating it from
scratch. Additionally, we have solved some more involved technical
issues regarding the access of maximal temporal resolution of touch
events and maximal rate of screen refreshing during experiments. In
sum, we expect our app (and modifications of it) not only to be usable
but actually used.

Broadening the scope, we hope that the methods presented here will
be of value to study motor control phenomena outside the laboratory.
This may include educational programmes at schools, improving health
in hospitals, scientifically studying artistic practices, and even recrea-
tional purposes at home. Let us emphasize the potential of our App and
method in the study of Parkinson's disease. Being one of the most
common chronic neurological diseases in advanced ages, tests for early-
sign detection and quantification of progression are certainly

established but at times too subjective or cumbersome to perform. It is
not unfeasible that one could manifest some subtle motor signs of the
disease while drawing simple shapes or writing one's name on the ta-
blet. Given the accuracy of measurement of our app, one may even test
it for early diagnosis and also to follow up on the improvements —or at
least lack of progression— of the disease upon medical and com-
plementary treatment (such as the one realized in Parkinson
Associations, with whom we are starting to collaborate). If so, our app
could become a low-cost, objective and simple-to-use evaluation tool.

Neuroscience has needed a considerable amount of time to realize
the imperative to go “out of the head”. Conceding a certain dose of
behavioral “chauvinism” in the face of 21st century “neuralism”
(Gomez-Marin, 2017), one must take seriously the idea that in order to
understand how the brain works we must also ask what it is for (aka,
behavior). At the end of the day, everyone willing to spend some time
with our App scripts and with 200$ to spend on a tablet can now do
high-resolution human behavioral science of laboratory-quality in the
real world. The time is ripe to move “out of the lab”.

Supplementary material

All codes (and data) used in this study are available. The app in
release form (app-release.apk) and the source codes to edit it can be
obtained from the authors directly in the following online repository:
https://github.com/adam-matic/KinematicCognition. The raw beha-
vioral data used in this study together with the scripts used to analyze it
in Python within a Jupyter notebook can be found here: https://github.
com/adam-matic/KinematicCognition-Analysis.
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that may underlie speed-curvature power laws discovered in 
empirical studies.

Keywords  Motor control · Drawing · Two-thirds power 
law · Statistical analysis

Introduction

One of the best-studied characteristics of human voluntary 
movements is the empirical relationship between instantane-
ous speed and local path curvature. Speed—distance divided 
by time—is a spatio-temporal property of movement, while 
curvature is a purely spatial property, corresponding to the 
extent to which the trajectory bends relative to a straight 
line. Although a given trajectory can be traced with infinitely 
many different speed profiles, biological constraints restrict 
the degrees of freedom with the result that speed generally 
co-varies with curvature throughout a given continuous 
movement (Viviani and Terzuolo 1982). Specifically, in a 
planar drawing of elliptic shapes, the angular speed of the 
pen tip varies in close proportion to the 2/3 power of the 
curvature of the trace (so called 2/3 power law, Lacquaniti 
et al. 1983).

Since the original demonstration, the 2/3 power law has 
been largely confirmed for elliptic trajectories drawn in 2D 
space (Viviani and Schneider 1991; Viviani and Flash 1995; 
Richardson and Flash 2002; Flash and Handzel 2007; Huh 
and Sejnowski 2015; Catavitello et al. 2016) or 3D space 
(Soechting and Terzuolo 1986; Flanders et al. 2006; Maoz 
et al. 2009). Moreover, speed-curvature power relationships 
have been reported for many other types of movements, 
including isometric 3D force trajectories (Massey et al. 
1992), walking trajectories (Vieilledent et al. 2001; Ivanenko 
et al. 2002; Hicheur et al. 2005), and smooth pursuit eye 

Abstract  Several types of curvilinear movements obey 
approximately the so called 2/3 power law, according to 
which the angular speed varies proportionally to the 2/3 
power of the curvature. The origin of the law is debated but 
it is generally thought to depend on physiological mecha-
nisms. However, a recent paper (Marken and Shaffer, Exp 
Brain Res 88:685–690, 2017) claims that this power law 
is simply a statistical artifact, being a mathematical conse-
quence of the way speed and curvature are calculated. Here 
we reject this hypothesis by showing that the speed-curva-
ture power law of biological movements is non-trivial. First, 
we confirm that the power exponent varies with the shape 
of human drawing movements and with environmental fac-
tors. Second, we report experimental data from Drosophila 
larvae demonstrating that the power law does not depend 
on how curvature is calculated. Third, we prove that the 
law can be violated by means of several mathematical and 
physical examples. Finally, we discuss biological constraints 
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movements (de’Sperati and Viviani 1997). Deviations from 
the 2/3 value of the exponent occur at inflection points of 
the trajectory where the prescribed tangential speed would 
become infinite, but they also occur for some trajectories 
without inflection points, such as ellipses with low eccen-
tricities or large sizes (Wann et al. 1988; Schaal and Ster-
nad 2001), or other shapes (Massey et al. 1992; Schaal and 
Sternad 2001; Richardson and Flash 2002; Dounskaia 2007; 
Flash and Handzel 2007; Bennequin et al. 2009; Huh and 
Sejnowski 2015).

The power law has been studied mainly in humans, but 
it also applies to drawings made by monkeys (Schwartz 
1994; Abeles et al. 2013) and to crawling movements of 
Drosophila larvae (Zago et al. 2016). Thus, the power law 
might be a recurrent law underlying several biological move-
ments. It is generally thought to depend on physiological 
mechanisms, although its exact origin remains debated. In 
particular, it has been suggested that the law might be due 
to kinematic or dynamic constraints arising at some level of 
the neuro-musculo-skeletal chain (Schwartz 1994; Viviani 
and Flash 1995; Gribble and Ostry 1996; Harris and Wolpert 
1998; Schaal and Sternad 2001; Dounskaia 2007; Flash and 
Handzel 2007; Bennequin et al. 2009; Polyakov et al. 2009; 
Huh and Sejnowski 2015; Zago et al. 2016).

Now, a paper recently published in this journal (Marken 
and Shaffer 2017, in the following abbreviated as M/S) 
claims that the 2/3 power law is just an artifact, being a 
mathematical consequence of the way the critical variables 
of speed and curvature are calculated. If true, the contention 
put forth by M/S would have a significant impact on the field 
of motor control, since the power law is often considered as 
one of the hallmarks of curvilinear movements (e.g., Wolp-
ert et al. 2013).

Here we reassess the validity of the speed-curvature 
power law by considering previous work as well as new 
data. In particular, we show that (a) the power law is not a 
trivial relationship given by mathematics or physics, (b) it 
does not depend on the methods used to compute the criti-
cal variables, and (c) the exponent of the power law is not 
fixed to 2/3 but varies with the shape of movement and with 
environmental factors. Based on these points, we reject the 
hypothesis that the empirical power law is a mathematical 
or statistical artifact.

Basic notions on the geometry of curves

As remarked at the outset of this article, a priori any given 
path of movement can be traced with infinitely many speed 
profiles, since the path specifies the instantaneous move-
ment direction but not the speed. Moreover, any path can be 
defined independently of the law of motion. Speed and path 

become jointly determined only when a specific kinematic 
law is provided.

We first review the definitions of the critical variables 
from elementary differential geometry of planar, continuous, 
differentiable, regular curves (for 3D curves, see for example 
Struik 2012; Gielen et al. 2009; Pollick et al. 2009). The 
position of a point P moving along the curve (Fig. 1) can be 
described by the functions of time x = f(t) and y = g(t), as 
well as by the arc-length s along the curve measured from a 
starting point (x0, y0). Then, given unit vectors i1 and j along 
the x and y axis, respectively, the vector from the origin to P 
is R = ix + jy = if(t) + jg(t) = R(s), the tangential velocity 
vector is � =

d�

dt
= �

dx

dt
+ �

dy

dt
, with magnitude (speed2) 

V = |�| = |||
d�

dt

||| =
√(

dx

dt

)2

+
(

dy

dt

)2

=
|||
ds

dt

|||. We can associ-

ate to P a moving frame (Frenet-Serret frame) composed of 
tangent and normal unit vectors, T and N respectively. 
� =

d�

ds
= �

dx

ds
+ �

dy

ds
=

�

|�|, � =
d�∕ds

|d�∕ds|. Thus, � = �|�| and 

� = � × � where Ω is the vector of angular velocity. We 
can measure the direction of T by means of the tangential 
angle α, that is, the angle between the tangent line to the 

x

y

ds

R P

 V

Fig. 1   Schematic illustration of kinematic and geometric variables 
for an arbitrary trajectory described by a moving point P (see text for 
details). V is the vector of tangential velocity, α the tangential angle, 
R the radius of curvature (radius of the osculating circle)

1  Bold characters denote vector quantities throughout.
2  Although the terms velocity and speed are often used interchange-
ably in the literature (including M/S), the former denotes the vector 
with a magnitude and direction while the latter denotes the magnitude 
only.
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curve at the given point and the x-axis. Angular speed (mag-
nitude of angular velocity vector) corresponds to the abso-
lute value of the rate of change of α with respect to time 
A = |�| = |||

d�

dt

|||. Curvature C corresponds to the absolute 

value of the rate of change of α with respect to arc-length 
C =

|||
d�

ds

||| =
|||
d�

ds

||| =
|||
d2�

ds2

|||, and C� =
d�

ds
. Radius of curvature 

R is the inverse of C and corresponds to the radius of the 
osculating circle, i.e., the circle passing through the point P 
and two other points on the curve infinitesimally close to P.

From the above equations V =
|||
ds

dt

|||, A =
|||
d�

dt

|||, C =
|||
d�

ds

|||, it 

can be seen that speed (whether tangential or angular) is 
independent of curvature (or radius of curvature) in the 
absence of constraints. In other words, the curvature profile 
uniquely specifies the shape of a movement, independently 
of the speed profile (Bennequin et al. 2009; Huh and Sejnow-
ski 2015).

Empirical speed‑curvature power laws for human 
drawing have different exponents

As is the case for all biological power laws (West 2017), also 
the speed-curvature power law is an approximation. Most 
previous studies investigating speed-curvature relationships 
in biological movements tested the hypothesis that angular 
speed A is approximately proportional to curvature C raised 
to an exponent β:

where A and C are measured at each instant of time at the 
endpoint that traces the trajectory (the pen tip for hand-draw-
ing). A different but mathematically equivalent formulation 
of speed-curvature relationships involves V instead of A, 
and R instead of C. Because A = V/R and R = 1/C, Eq. 1 is 
equivalent to:

The relationships of Eqs. 1–2 can also be expressed using 
logarithms, yielding respectively:

In the case of normal hand-drawing of ellipses, the expo-
nent β is approximately equal to 2/3 and K is roughly con-
stant throughout the drawing, being related to the overall 
tempo of the movement and increasing proportionally to the 
average speed (Lacquaniti et al. 1983). For more complex 
trajectories such as the scribbles, K is piecewise constant 
(Lacquaniti et al. 1983, 1984; Viviani and Cenzato 1985; 
Richardson and Flash 2002).

(1)A ≈ KC�

(2)V ≈ KC−(1−�) = KR(1−�)

(3)logA ≈ logK + � logC

(4)logV ≈ logK + (1 − �) logR

In general, however, the power exponent β is not invar-
iant. Dynamic factors may affect its value (Wann et al. 
1988; Gribble and Ostry 1996), as shown by a recent study 
comparing elliptic drawing movements performed in air 
and water at the same average speed (Catavitello et al. 
2016). The speed-curvature law held in both conditions, 
but the exponent was close to 2/3 in air and 3/4 in water, 
indicating that the speed-curvature coupling is affected by 
the viscosity of the medium where the movement unfolds.

A major factor affecting the specific value of the expo-
nent β is determined by the shape of the drawn trajectory. 
Thus, deviations from the 2/3 value of the exponent were 
noticed for specific curves such as the asymmetrical lem-
niscate (Viviani and Flash 1995; Richardson and Flash 
2002; Flash and Handzel 2007). Several models based on 
the optimization of different kinematic costs (Richardson 
and Flash 2002, Huh and Sejnowski 2015) or on assuming 
non-Euclidean geometrical representations of movements 
(Flash and Handzel 2007; Bennequin et al. 2009; Polyakov 
et al. 2009) were developed to account for such devia-
tions. A thorough investigation of the shape dependency 
of the exponent has recently been carried out by Huh and 
Sejnowski (2015). They considered a wide set of planar 
convex curves that differ in terms of the spatial angular fre-
quency (Huh 2015). Angular frequency ν of a curve is the 
number of curvature oscillations per cycle. For instance, 
ν is equal to 2 for an ellipse, because the curvature profile 
fluctuates twice per cycle. At integer frequencies ν > 2, the 
curves resemble rounded regular polygons. In general, a 
convex curve with a rational frequency ν = m/n, where m 
and n are coprime integers (i.e., no common factors) and 
m ≠ 1, has a closed shape of period 2πn, and exhibits m 
degrees of rotational symmetry. For such pure frequency 
curves, Huh and Sejnowski (2015) described a spectrum 
of power laws with exponents covering a wide range. The 
exponent of the angular speed-curvature power law ranged 
from about 0.34 for a curve with ν = 2/33 up to about 0.90 
for a curve with ν = 6, and including an exponent of 0.65 
for the ellipse (ν = 2), close to the value reported in previ-
ous studies for the latter curve.

The finding that drawing different shapes results in 
very different values of the power exponent is important 
because it reveals potential physiological mechanisms 
underlying movement generation (see section Biologi-
cal constraints on speed-curvature relationships). Given 
the relevance of this issue for the present discussion, here 
we replicated part of the protocol by Huh and Sejnowski 
(2015) to verify the strong shape-dependency of the power 
exponent.
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Methods and results

We used the same eight curves included in Fig. 5 of Huh 
and Sejnowski (2015). The angular frequency ν of these 
curves was 2/33, 2/5, 4/5, 4/3, 2, 3, 4, and 6. These curves 
(typical size 10 cm) were presented on a sheet of paper 
that was placed on top of a digitizing tablet (Wacom Intuos 
ProS PTH-451, spatial resolution: 0.08 mm, sampling rate: 
200 samples/s). Three participants traced the curves con-
tinuously over 30 s with the tablet stylus (leaving no trace 
behind). They had previously given written informed con-
sent to procedures approved by the Institutional Review 
Board, and had been instructed to draw with fast and fluid 
movements without corrections. The tempo of the move-
ments (average speed) was indicated by a metronome with 
a period of 0.6 s. The x, y position-samples of the stylus tip 
were low-pass filtered (5 Hz cut-off, second-order, zero-
phase-lag Butterworth filter), and interpolated using cubic 
splines to obtain the first and second time derivatives. Lin-
ear regressions of log A versus log C (Eq. 3) was used to 
estimate the exponent (β) of a power law A = KCβ. Here 
and throughout the article, log denotes base 10 logarithm 
(log10).

Figure 2a shows the results for three different curves. 
Data were well fitted by a power law, but the power exponent 
β systematically increased with the angular frequency of the 
curve, in agreement with Huh and Sejnowski (2015). Only 
for the ellipse did the exponent comply with the 2/3 power 
law, while for the other two curves the exponents deviated 
substantially from 2/3. Notice that the fit of the power rela-
tionships was quite sensitive to the specific value of β, as 
shown by forcing other β values (Fig. 2b).

Figure 2c shows the best-fitting exponents for all eight 
drawn shapes plotted as a function of the respective angular 
frequency (ν). Again in agreement with Huh and Sejnowski 
(2015), the overall β versus ν relationship was S-shaped. The 
variance accounted for (r2) by the log–log linear regressions 
in each trial of each curve was greater than 0.83 (v = 6), 
0.86 (v = 4), 0.93 (v = 3), 0.97 (v = 2), 0.94 (v = 4/3), 0.87 
(v = 4/5), 0.72 (v = 2/5) and 0.55 (v = 2/33). Participants had 
some difficulty to trace accurately the curves with very high 
or very low angular frequencies, and the log–log regressions 

fitted the data less well than those at intermediate frequen-
cies, as also reported in Huh and Sejnowski (2015).

In sum, the present results confirm the strong shape 
dependency of the exponent of the speed-curvature power 
law, consistent with Bennequin et al. (2009) and Huh and 
Sejnowski (2015).

Empirical power laws do not depend 
on how curvature is computed

Although speed and curvature are mathematically independ-
ent (see above), in practice some spurious correlation 
between the two measured variables might result from the 
time discretization due to a finite sampling rate and from 
using temporal derivatives in the calculation of both speed 
and curvature. In other words, the time-sampled spatial coor-
dinates used to estimate local curvature might reflect to some 
extent also the speed of movement. This can be seen by re-
parametrizing curvature first with respect to x, y coordinates 
and then with  respect  to  t ime.  Thus,  f rom 
C =

|||
d�∕dx

ds∕dx

||| =
|d2y∕dx2|

[1+dy∕dx2]
3∕2 =

|||
d�∕dt

ds∕dt

|||, x =  f(t) and y = g(t), 

� = tan−1
(

dy∕dt

dx∕dt

)
, we can derive C =

||||
dx

dt

d2y

dt2
−

dy

dt

d2x

dt2

||||[
dx

dt

2
+

dy

dt

2
]3∕2  or using 

the dot notation for time derivatives.

In this section, we compare empirical speed-curvature 
relationships for crawling larvae using different sampling 
rates and different methods to calculate path curvature. To 
this end, we re-analyzed data presented in Zago et al. (2016).

Methods and results

For details on the experimental procedures and tracking of 
larvae behavior, see Gomez-Marin et al. (2011, 2012) and 
Zago et al. (2016). All procedures were in accordance with 
the ethical standards of the institution at which the experi-
mental recordings were performed. Briefly, Drosophila 
melanogaster larvae in the foraging stage crawled on a vis-
cous medium and were tracked at 7 frames/s, 90 μm/pixel. 
These sampling parameters have been shown to be fully 
adequate for the slow, small movements of these animals 
(Gomez-Marin et al. 2011, 2012). Three groups of larvae 
were exposed to different sensory environments, resulting 
in three different types of crawling trajectories, overshoot 
(n = 42 larvae), approach (n = 40), and dispersal (n = 41). 
The x, y position-samples of the larvae centroid were low-
pass filtered (0.07 Hz cut-off, second-order, zero-phase-lag 
Butterworth filter), and interpolated with cubic splines.

(5)C =
|ẋÿ − ẍẏ|

(ẋ2 + ẏ2)3∕2

Fig. 2   Dependence of the power exponent on the shape of human 
drawings. a Power laws for movement trajectories characterized 
by angular frequency (ν) equal to 4/5 (four-leaf), 2 (ellipse) and 4 
(rounded square), from top to bottom. Scatter plots of instantane-
ous angular speed and curvature on log–log scale. The data were 
best-fitted (black line), with β-exponent and variance accounted for 
(r2) as indicated in the insets. b Plots of r2 resulting from imposing 
β-exponents in the range 0–1 in the power function for the corre-
sponding drawings of panel (A). The best-fitting β-exponent is indi-
cated by the vertical dashed line. c Best-fitting exponents (blue trian-
gles) as a function of angular frequency (ν) of all eight drawn shapes
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Curvature was then computed using three different meth-
ods: (1) as C =

|ẋÿ−ẍẏ|
(ẋ2+ẏ2)3∕2

 with the time parametrization 

(Eq. 5), (2) as the spatial derivative of the angle coordinate 
C =

|||
d�

ds

|||, (3) as the inverse of the radius of the osculating 

circle. Before computing dα/ds (method 2), we oversampled 
the original data by a factor 1000 (corresponding to a rate of 
7000 samples/s) in order to dilute any time dependence of 
the spatial coordinates. To compute the osculating circle 
(method 3), we oversampled the data by a factor of 10, and 
then we best fitted a circle to any 3 consecutive x, y samples. 
Next, we performed least-squares orthogonal-regression of 
log angular speed A versus log curvature C (Eq. 3), the latter 
being computed with one of the three methods described 
above.

Figure 3a shows a typical trajectory traced by a crawl-
ing larva in the overshoot condition. These trajectories 
were not associated with a constant progression speed 
or any simple kinematic pattern. Both the instantaneous 
angular speed and the local path curvature were widely 
modulated, yet they co-varied throughout (Fig.  3b). 
Notice that the time profiles of curvature derived with the 
three methods described above are essentially identical 
(for clarity, they are plotted with an offset in Fig. 3b). A 
log–log plot of angular speed versus curvature revealed a 
power law as a straight line whose slope corresponds to 
the power-exponent β (Fig. 3c). We found no statistically 
significant difference in the linear regression parameters 
(slope β and r2) between the results obtained with the 
three methods used to compute curvature (Kruskal–Wal-
lis ANOVA by ranks followed by multiple comparisons, 
P > 0.95 in all three groups of larvae). The median value 

of β was 0.78 (interquartile-range = 0.06), 0.78 (interquar-
tile-range = 0.08), and 0.76 (interquartile-range = 0.06) 
for the overshoot, approach, and dispersal conditions, 
respectively. The maximum difference between the slope 
β computed with one of the three methods and the slope 
computed with the other two methods was < 0.1% of the 
maximum value. Median value of r2 was > 0.91 for all 
three methods.

These results show that the empirical speed-curvature 
relationships of the crawling larvae are very little affected 
by the specific method used to estimate path curvature, 
indicating that the numerical calculations typically used 
are unlikely to introduce any significant cross-talk between 
curvature estimates and speed estimates, irrespective of 
the specific parametrization.

A power exponent close to 3/4 in crawling larvae is 
reminiscent of the value found for human drawing move-
ments in water (Catavitello et al. 2016), and thus it might 
depend on the viscosity of the medium (Zago et al. 2016). 
Alternatively, it could be attributed to the complex shape 
of the trajectories traced by the larvae. Irrespective of the 
origin, the deviation of the exponent from 2/3 reinforces 
the notion that the power exponent is not constant in bio-
logical movements.

Zago et al. (2016) also checked for the potential con-
tamination of speed-curvature relationships by noise in 
the data (Maoz et al. 2006). Their Fig. S1 shows that the 
values of β and r2 of the log–log regression of speed versus 
curvature depend little on the specific value of the low-
pass frequency cut-off used to filter the position data of 
the crawling larvae.
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Fig. 3   Empirical relation between angular speed and curvature in a 
crawling larva. a Trajectory of the larva centroid. Green circle indi-
cates starting position. Each point of the trajectory is colored accord-
ing to the instantaneous tangential speed. b Time course of the angu-
lar speed (A, red) and curvature (C, green) for the trajectory plotted 
in panel A. The three traces of curvature are plotted with an offset 
between each other and correspond to curvature computed as in Eq. 5 
(top), as the spatial derivative of the angle coordinate (middle), and as 

the inverse of the radius of the osculating circle (bottom). The dashed 
horizontal lines correspond to C = 0 in all three cases. c Scatter-plot 
of instantaneous angular speed A and curvature C on log–log scale. 
The data were best-fitted (red line) with β-exponent and variance 
accounted for (r2) as indicated in the inset. These data refer to curva-
ture computed according to method 1) above. In this example, β and 
r2 values differed by < 10−4 between the three methods
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A different way to look at speed‑curvature 
relationships

Since V = (ẋ2 + ẏ2)1∕2 = A∕C and C =
|ẋÿ−ẍẏ|

(ẋ2+ẏ2)3∕2
=

|ẋÿ−ẍẏ|
V3

, by 

substitution we obtain A = |ẋÿ − ẍẏ|1∕3C2∕3. For brevity, we 
denote the term |ẋÿ − ẍẏ| as D (same notation as in M/S):

or equivalently V = D1∕3C−1∕3. In logarithmic units, 
logA =

1

3
logD +

2

3
logC  o r  logV =

1

3
logD −

1

3
logC . 

Notice that, in Eq. 6, D depends simultaneously on both 
speed and curvature. In fact, using the formulas by de 
L’Hôpital and Faà di Bruno, we can rewrite:

Equation 7 makes explicit the simultaneous dependence 
of D on speed and curvature, since the term 

(
ds

dt

)3

 is the third 

power of the tangential speed, while the term 
(

dx

ds

d2y

ds2
−

dy

ds

d2x

ds2

)
 

is the curvature.
Therefore, Eq. 6 represents a simple mathematical iden-

tity and does not imply that A depends on two independent 
variables, D and C, because in the absence of constraints 
A and V remain mathematically independent of C and R. 
Moreover, D cannot be considered an independent predictor 
of V (or A) because D itself depends on V (or A).

For an arbitrary motion, in Eq. 6, A, D and C are all time-
varying functions along the traced curve. However, in the 
special case in which D does not vary with time throughout 
the movement, that is, when D1/3 = K = constant, Eq. 6 satis-
fies Eq. 1 with a power exponent of β exactly equal to 2/3. 
In other words, the special condition of D1/3 = K yields the 
2/3 power law for the speed-curvature consistently found for 
elliptic drawings (see above). In the following, we will con-
sider conditions that either satisfy or violate D1/3 = constant. 
First, we describe mathematical and physical examples, and 
then we consider biological constraints that result in a nearly 
constant value of D1/3.

The power law is not obligatory mathematically

Before we have used formal arguments to show that a given 
path of movement can be traced with different speed profiles, 
since the path specifies the instantaneous movement direc-
tion but not the speed. In this section we provide analytical 
and numerical calculations to demonstrate the same fact. 
To this end, we use the prototypical case of an elliptic path 
that, when drawn by humans or monkeys, typically complies 

(6)A = D1∕3C2∕3

(7)

ẋÿ − ẍẏ =
dx

ds

ds

dt

d2y

dt2
−

dy

ds

ds

dt

d2x

dt2
=
(
ds

dt

)3
(
dx

ds

d2y

ds2
−

dy

ds

d2x

ds2

)

with the 2/3 power law. In our simulations, the geometry of 
the curve is constant, while the kinematics is specified by 
means of the usual parametric representation in sine and 
cosine functions of the angle θt. However, we define differ-
ent time profiles for θt, with the result of obtaining for the 
same geometry different kinematics, and therefore different 
relationships between angular speed and curvature.

Methods and results

Figure 4 shows the results of three different simulations of 
elliptic motion. We present both the analytical solutions and 
the results of numerical calculations (Fig. 4d). For the lat-
ter, the time-discrete trajectories were interpolated (cubic 
splines) to obtain first and second time derivatives, which 
were then used to calculate curvature C and angular speed A.

In all three simulations, the kinematics is defined by the 
equations:

Only in the first simulation (top panel, Fig. 4b) does the 
angle θt have a simple, linear dependence on time (�t = t). 
In the other two cases, θt has a more complex, non-linear 
time-dependence (middle and bottom, Fig. 4b). In particu-
lar, the target slows down as curvature increases (toward 
the vertices), progressively accelerates, and slows down as 
curvature decreases, in the first, second and third simulation, 
respectively. As a result, the angular speed A and curvature 
C co-vary throughout the movement in the first case (top, 
Fig. 4c), whereas the relationship between A and C changes 
over one cycle for the other two cases (middle and bottom, 
Fig. 4c). Accordingly, logA is linearly related to logC with 
an exponent β equal to 2/3 in the first case (top, Fig. 4d), 
whereas the relationship logA versus logC is complex and 
the 2/3 power law is violated in the other two cases (middle 
and bottom, Fig. 4d).

To see why this happens, we remind that the critical 
condition to satisfy exactly the 2/3 power law is given by 
D = |ẋÿ − ẍẏ| = constant. By taking the time derivatives of 
Eq. 8 and performing straightforward calculations, we find 
that D = ab

(
2𝜋||𝜃̇||

)3. Now, for the first case we considered 
(�t = t), we find that D = ab(2�)3 = constant, and A = KC2/3 
is satisfied exactly. In fact, the notion that orthogonal har-
monic oscillations (such as those of Eq. 8 with �t = t) gen-
erate motions that comply with the 2/3 power law has long 
been established (Lacquaniti et al. 1983). Notice further 
that, if we scale up the motion speed by a constant (�t = ct),  
then D scales up with c3 and the 2/3 power law still holds 
but the A–C curve is shifted upwards, consistent with the 
published results of the effects of changes in average speed 
of human hand-drawing (Lacquaniti et al. 1983). In contrast 
with the previous cases, in the elliptic trajectories in which 
θt has a non-linear time-dependence (as in the second and 

(8)x = a sin
(
2��t

)
, y = b cos

(
2��t

)
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third simulations of Fig. 4), D is not constant any more but 
changes drastically (with the 3rd power of the rate of change 
of the angle θt). Therefore, in all such cases, the 2/3 power 
law is mathematically violated.

The power law is not obligatory in physical 
systems

In this section, we address another theoretical issue about the 
nature of the speed-curvature power-law: Does any object 
obey necessarily the law irrespective of the underlying forces 
because of the way the law is derived? If this were the case, 
we should be able to derive the law also for the motion of 

any arbitrary, inanimate body subjected to non-biological 
forces. In the following, we provide examples of the motion 
of objects affected by gravitational, drag or elastic forces, 
and we show that most of them violate the speed-curvature 
power law, while one example complies with the law.

Methods and results

Figures 5a–d show the results of simulations of a few dif-
ferent systems whose kinematics is dictated by the dynamic 
equations provided in Fig. 5e. In all cases, the dynamic equa-
tions of motion were numerically integrated by means of 
time-step Euler integration. The time-discrete, unfiltered tra-
jectories were interpolated (cubic splines) to obtain first and 

DBA C

E

Fig. 4   Mathematical models and numerical simulations of one 
ellipse traced with three different kinematics (top, middle, bottom 
row). a Each point of the ellipses is colored according to the instan-
taneous tangential speed. The defining equations for the angles θt are 
in the insets. The moving point slows down with increasing curva-
ture, progressively accelerates over one cycle, and slows down with 
decreasing curvature in the top, middle and bottom panels, respec-
tively. The bottom inset reports the general parametric equations for 
the geometry and kinematics of the ellipses, with a = 10, b = 5 cm. 

b Time course of θt for the three kinematic cases depicted in (A) 
over one cycle. c The corresponding time profiles of angular speed 
A (magenta) and curvature C (green). d Log–log plots of A and C, 
for both the analytical (red) and the numerical (black) solutions. For 
comparison, blue dashed lines with 2/3 slope are shown in the middle 
and bottom panels. e Summary of the main mathematical expressions 
for the speed-curvature relation of ellipses traced with different kin-
ematics
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second time derivatives, which were then used to calculate 
curvature and angular speed.

The first physical system we consider is given by an ideal 
binary star consisting of two bodies of equal mass, under 
Newton’s law of universal gravitation (Fig. 5a). The gravi-
tational pull between the two bodies causes them to move in 
elliptic orbits around their common center of mass. Unsur-
prisingly, we find that the instantaneous angular speed of 
each body can be either very large or very small for the same 
values of local curvature. The log–log plot of angular speed 
and curvature shows that the power law is clearly violated. 
Once more, the result can be predicted by considering that 
D = |ẋÿ − ẍẏ| is not constant for this system (Fig. 5e). Simi-
lar results are obtained (data not shown) when we consider 
the case where one body is massive, such as the Sun, and 
the other one is much less massive, such as a planet orbiting 
around the Sun. We then rediscover Kepler’s observation 
that in perihelion (the point closest to the Sun) the planet is 
moving faster than in aphelion (the point farthest from the 
Sun). Since these two points have the same curvature, it is 
clear that speed and curvature do not co-vary, violating the 
power-law.

The second physical system consists of a projectile 
launched in ballistic trajectory under the action of grav-
ity (Fig. 5b). We consider two cases, namely that the pro-
jectile motion is affected (thin line) or unaffected (thick 
line) by a drag force proportional to speed. Without drag, 
angular speed and curvature co-vary, and the 2/3 power 
law is obeyed. With drag, instead, the law is violated. In 
fact, by considering the corresponding dynamic equa-
tions (Fig. 5e), we see that D is constant without drag, 
but is non-constant with linear drag. Notice that D is non-
constant also with quadratic drag (valid at high speeds): 
D = ||− gẋ − k(ẋẏ2 − ẏẋ2)||.

The third physical system is a simple pendulum under 
gravity, without drag (Fig. 5c). This system provides a dra-
matic violation of the speed-curvature power-law (La Sca-
leia et al. 2014). The oscillations of the pendulum trace a 
circle and thus curvature is constant throughout, while angu-
lar speed changes throughout, being zero at the extremes of 
the swing and maximal in the middle point. Accordingly, 
the log–log plot of angular speed vs. curvature yields a line 
parallel to the ordinates axis.

Finally, we consider a system consisting of a mass con-
nected to two orthogonal linear springs, whose elastic force 
is proportional to the distance from equilibrium length 
(Fig. 5d). Depending on the initial conditions and parameter 
values, speed and curvature can approximate a power law, 
but in general the power law is not obeyed exactly.

Different biological constraints may give rise 
to the speed‑curvature power law

We have previously argued that the power law is not a trivial 
relationship given by mathematics or physics. Here we con-
sider a number of potential physiological constraints that 
may underlie non-trivial speed-curvature power laws found 
in empirical studies of biological movements. One approach 
consists in investigating specific kinematic conditions under 
which D in Eq. 6 is constant or nearly constant, thus yield-
ing speed-curvature relationships closely obeying the 2/3 
power law. As we mentioned above, Lacquaniti et al. (1983) 
showed that orthogonal harmonic oscillations at the same 
frequency generate 2D elliptic drawings that always comply 
with the 2/3 power and, for such condition, D in Eq. 6 is 
exactly constant.3 Even in the case of harmonic oscillations 
that are not orthogonal, such as those generated by coupled 
angular motions at the limb joints, D can vary little with 
time. Thus, Soechting and Terzuolo (1986) and Schaal and 
Sternad (2001) showed that, for periodic drawings of ellipses 
in 3D, the condition D ≈ constant is satisfied by sinusoidal 
motion of the limb segments with appropriate inter-segmen-
tal phase shifts. Dounskaia (2007) elaborated further on the 
implications of sinusoidal angular motions using a simpli-
fied model of planar 2D drawing movements. She showed 
that the condition D1/3 ≈ constant holds when the shoulder 
and elbow perform sinusoidal angular motions of moder-
ate amplitudes with a substantial phase offset, whereas the 
condition is violated (D1/3 widely time-varying) when the 
angular motions are very large or very small (consistent with 
previous experimental observations by Wann et al. 1988 and 
Schaal and Sternad 2001).

However, only some biological movements are subserved 
by simple sinusoidal motions. For instance, the small hand 
drawing movements of the convex curves that we described 
earlier (see Empirical speed-curvature power laws for human 
drawing have different exponents) involve important con-
tributions by wrist and fingers (in addition to shoulder and 
elbow), which exhibit considerable harmonic distortion and 
whose phase is quite variable (Lacquaniti et al. 1987). Since 
the different convex curves of Fig. 2 (as well as those of Huh 
and Sejnowski 2015) were all of about the same size and 
were performed at about the same average speed, the dif-
ferent values of the exponent β as a function of curve shape 
cannot be explained on the basis of the average speed and 
amplitude of oscillation at the shoulder and elbow joints 
(Dounskaia 2007).

3  Notice, however, that orthogonal harmonic oscillations at a differ-
ent frequency generate Lissajous motions that do not comply neces-
sarily with the 2/3 power law (Lebedev et al. 2001).
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A different perspective on the significance of the con-
straint was brought up by consideration of the geometrical 
structure of the internal representations of human move-
ments and perceptions (Pollick and Sapiro 1997; Flash 
and Handzel 2007; Polyakov et al. 2009; Bennequin et al. 
2009). Although Euclidean geometrical representations are 
often assumed, there is growing evidence that both move-
ment planning and visual perception may rely on repre-
sentations drastically departing from Euclidean geometry, 
such as affine and equi-affine geometries (Koenderink and 
van Doorn 1991; Bennequin et al. 2009). Following this 
approach, Pollick and Sapiro (1997) and Flash and Hand-
zel (2007) showed that D1/3 = constant implies that the 
equi-affine speed Vea is constant, since Vea = |ẋÿ − ẍẏ|1∕3 
(Guggenheimer 1977). Therefore, the 2/3 power law is pre-
dicted by assuming a constant equi-affine speed through-
out the movement. On the other hand, a combination of 
Euclidean, affine, and equiaffine geometries can generate 
variable power law exponents, depending on the shape of 
the trajectory, consistent with the observations by Huh 
and Sejnowski (2015), replicated in our earlier section of 
this article.

Still a different approach relies on the assumption that the 
motor system optimizes a given cost function along the tra-
jectory. In particular, the minimum-jerk model has fre-
quently been associated with the speed-curvature power law 
(Wann et al. 1988; Viviani and Flash 1995; Todorov and 
Jordan 1998; Richardson and Flash 2002; Huh and Sejnow-
ski 2015). This model assumes the minimization of squared 
hand jerk (the rate of change of acceleration) summed over 
movement duration T: 

T

∫
0

(x⃛2 + y⃛2)dt. Todorov and Jordan 

(1998) argued that the constraint of the 2/3 power law pro-
vides an efficient solution to the minimization of the total 
jerk along a prescribed trajectory, since it sets the normal 
component of jerk to zero. Indeed, by taking time derivatives 
and canceling terms, the expression ẋÿ − ẍẏ = constant is 
shown to be equivalent to ẋ

ẏ
=

x⃛

y⃛
, which implies that the jerk 

vector should be parallel to the tangential velocity vector, so 
that the jerk component in the normal direction is zero 
(Soechting and Terzuolo 1986; Todorov and Jordan 1998). 
Huh and Sejnowski (2015) expressed the total squared-jerk 
cost to be minimized in the Frenet–Serret moving frame. 
Remarkably, this model revealed scale-invariant features of 
2D curved movements and accounted for a spectrum of 
power laws with a wide range of exponents for different pure 
frequency curves (see above), as well as for mixtures of 
power laws for multi-frequency curves such as those associ-
ated with scribbling. This approach is related to the Cartan’s 
moving frame method used by Bennequin et al. (2009), 
which also predicts a mixture of geometries compatible with 
a spectrum of power exponents, not just the 2/3 power expo-
nent. Lebedev et al. (2001) argued instead that the 2/3 power 
law arises from the principle of least action; viz. if a move-
ment between two points of a given path obeys the 2/3 power 
law, then the amount of work required to execute a trajectory 
in a fixed time is minimal. In fact, the principle of least 
action states that the integral 

T

∫
0

ẋ3(
d2y

dx2
)dt must be minimal 

over movement duration T, and this condition is satisfied 
when ẋ3

(
d2y

dx2

)
= constant. Since ẋÿ − ẍẏ = ẋ3(

d2y

dx2
), it follows 

that a movement obeying the 2/3 power law satisfies the 
principle of least action (Lebedev et al. 2001).

Omitted variable bias hypothesis

M/S argue that the Equation A ≈ KC� (Eq. 1) and the equiva-
lent ones (Eqs. 2–4) typically used to assess speed-curvature 
relationships in biological movements are inappropriate, 
because these equations omit the predictor variable D1/3 that 
is included in the expression A = D1∕3C2∕3 (Eq. 6). However, 
this argument is flawed since D of Eq. 6 is not an independ-
ent variable, but depends on both A and C (or V and R), as 
we showed in an earlier section (A different way to look 
at speed-curvature relationships). Therefore, D cannot be 
considered an independent predictor of A (or V), because 
D itself depends on A (or V). If one applied to experimental 
data a statistical regression based on Eq. 6 (as M/S do), one 
would learn nothing at all about the physiological under-
pinnings of the relationship between speed and curvature, 
because Eq. 6 is a mathematical identity that must always 
be satisfied, apart from measurement errors. In fact, the only 
interest in performing a statistical regression on Eq. 6 (or its 
log–log equivalent) would lie in the study of noise effects 
(see below). This is acknowledged by M/S when they state 
that a statistical regression analysis that included D1/3 as a 
predictor variable would always find the exponent of C in 
Eq. 6 to be exactly equal to its true value 2/3. Accordingly, 
their application of the principles of omitted variable bias 

Fig. 5   Physical models and numerical simulations of the kinematics 
of different systems subject to gravitational, drag or elastic forces. a 
Two gravitating bodies of equal mass, such as two equal stars orbiting 
around their common barycenter. b Ballistic projectiles thrown with 
an initial speed and accelerated downwards by gravity in the pres-
ence (thin lines) or absence (thick lines) of drag. c Simple pendulum 
accelerated by gravity in the absence of drag. d Two uncoupled linear 
springs. Subpanels in A–D show in clockwise order: angular speed 
(magenta) versus time, x coordinate versus y coordinate of the mov-
ing object, log–log plot of angular speed and curvature, and curva-
ture (green) versus time. e Differential equations used to simulate the 
different physical systems, together with the analytical assessment of 
whether or not the term D = constant and the 2/3 power law is satis-
fied. Parameters are: k = 0.04, r = instantaneous distance between the 
two bodies for gravitation; k = 0.09 and g = 9.81 m s−2 for the pro-
jectiles; L = 1 m and g = 9.81 m s−2 for the pendulum; kx = 1.78 and 
ky = 0.33 s−2 for the springs
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(OVB, see Wooldridge 2012) to the speed-curvature rela-
tionship is ill-grounded, since OVB applies to linear regres-
sions of a dependent variable on one or more independent 
variables, and here C is an independent variable but D is not.

Given the circularity of M/S argument based on a math-
ematical identity, it is totally unsurprising that M/S are able 
to calculate the value of the deviation of the exponent β of 
Eq. 1 from the 2/3 value based on Eq. 6. Indeed, this had 
already been shown by Maoz et al. (2006), who performed 
the statistical regressions to show the potential effects of 
measurement noise. Maoz et al. (2006) showed that, if one 
considers all variables as random variables affected by meas-
urement noise, A = D1∕3C2∕3 (Eq. 6) implies that � =

2

3
+

�

3
, 

where β denotes the linear regression coefficient of logA ver-
sus logC and ξ denotes the linear regression coefficient of 
logD versus logC. In turn, � =

Cov(logC,logD)

Var(logC)
 where Cov and 

Var are the covariance and variance of the indicated varia-
bles. Therefore, if logD and logC (as derived from experi-
mental measurements) are statistically uncorrelated, 
Cov(logC, logD) = 0, ξ = 0 and β = 2/3, thus fulfilling 
exactly the 2/3 power law. For all other cases, instead, 
Cov(logC, logD) ≠ 0, ξ ≠ 0 and β ≠ 2/3. Therefore, the 
experimental finding of a range of β values (including the 
special case of β = 2/3) for different kinds of biological 
movements implies that the control systems are able of estab-
lishing non-trivial co-regulations of path geometry and 
kinematics.

As we discussed at length before (see Different biologi-
cal constraints may give rise to the speed-curvature power 
law), D is not a predictor variable but its behavior, whether 
it is nearly constant or widely time-varying throughout a 
movement, can tell us something about the physiological 
mechanisms underlying the generation of a given biologi-
cal movement (Lacquaniti et al. 1983; Soechting and Terzu-
olo 1986; Viviani and Flash 1995; Pollick and Sapiro 1997; 
Todorov and Jordan 1998; Maoz et al. 2006; Dounskaia 
2007; Flash and Handzel 2007; Polyakov et al. 2009; Benne-
quin et al. 2009). Interestingly, the message stemming from 
these previous studies goes in the opposite direction to that 
of M/S. Rather than being mathematical/statistical artifacts, 
empirical speed-curvature power laws are real and require 
a critical investigation of the properties of D to account for 
compliance or deviation of empirical β values relative to the 
prototypical 2/3 value found in elliptic drawings, and to test 
different hypotheses about the physiological origin of the 
speed-curvature relationships.

Real statistical issues with the power law analysis

A general caveat is that caution is necessary before claiming 
that experimental measurements conform to a power law, 

unless a mechanistic model of the system dynamics spe-
cifically predicts such a law (Stumpf and Porter 2012). In 
theory, a power law should be scale invariant, that is, the 
functional relationship between the two variables should be 
independent of their magnitude. In practice, few empirical 
phenomena obey power laws for all values of the variables, 
and therefore the corresponding law should be defined only 
over a specified domain.

Statistical support for a power law is often searched using 
log–log plots, given the simplicity of this analysis (the expo-
nent of the law being found by linear regression). This is also 
the case for most studies of the speed-curvature power law. 
A common rule of thumb to assess a candidate power law 
is that it should exhibit an approximately linear relationship 
on a log–log plot over at least two orders of magnitude in 
both the x and y axes (Stumpf and Porter 2012). For instance, 
Fig. 3 shows that the log–log regressions of speed versus 
curvature for the experimental data with crawling larvae 
comply with this criterion (see also Zago et al. 2016). When 
this criterion is not fulfilled, there are additional statistical 
tests that can be used to validate power law distributions 
(Clauset et al. 2009).

One drawback of using log–log regressions is that they 
tend to de-emphasize the error of data points at the higher 
ends of the range of values, i.e. higher speeds and curvatures 
in the present case. Schaal and Sternad (2001) compared 
log–log regressions and nonlinear regressions of speed ver-
sus curvature for drawing of ellipses in 3D space, and found 
that log–log regressions slightly but systematically underes-
timated the absolute deviations from the coefficient expected 
from the 2/3 power law. Therefore, when high speeds and 
curvatures are important for a specific study, nonlinear 
regressions should be used instead of log–log regressions.

Correlation versus causation

In several experiments dealing with the speed-curvature 
power law, the path was unconstrained, so that both instan-
taneous curvature and speed can vary freely, and indeed the 
point of the law is that their changes are tightly correlated 
(coupled) between each other. On the other hand, it is incor-
rect to state that “Since neither of these variables [i.e., cur-
vature or speed, our note] is manipulated under controlled 
conditions, any observed relationship between them cannot 
be considered to be causal” (M/S, pg. 1836). In fact, in a 
series of previous experiments, movement was guided by 
asking participants to follow with the pen tip the inner edge 
of a Plexiglas template cut by a numerical control milling 
machine (Lacquaniti et al. 1983; Catavitello et al. 2016). 
Each template resembled an ellipse but consisted of two 
pairs of circular arcs with different radii. A set of 11 such 
templates was built by varying the radii so that the shape of 
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the templates varied progressively from a circle to a very 
elongated pseudo-ellipsis, while the perimeter was kept 
constant. This step-response paradigm allowed to address 
the relation between the geometry of the trajectory and the 
speed of execution in a controlled manner. Recordings from 
each template resulted in a pair of data points in the log 
angular speed versus log curvature plot, one for the more 
curved and the other one for the less curved portions of the 
trajectory. All data points were well fitted by power func-
tions, but the power exponents decreased with increasing 
average speed of execution (Fig. 4 in Lacquaniti et al. 1983). 
Using the same templates, Catavitello et al. (2016) investi-
gated the speed changes occurring at the transitions between 
the two circular arcs and found that they occurred before the 
radius changed from large to small, possibly reflecting an 
anticipatory control of path trajectory (Tramper and Flan-
ders 2013), but the reverse transition (small to large radius) 
did not involve a similar anticipation. Several other studies 
have explored the manual tracing of template figures, thus 
manipulating curvature under controlled conditions (e.g., 
Wann et al. 1988; Viviani and Flash 1995; Todorov and Jor-
dan 1998; Richardson and Flash 2002; Flash and Handzel 
2007; Huh and Sejnowski 2015).

On a theoretical basis, the causal relationship between 
curvature and speed is predicted by models assuming that 
the geometrical shape of a given movement is pre-planned 
while the speed profile results from movement optimiza-
tion (Wann et al. 1988; Viviani and Flash 1995; Todorov 
and Jordan 1998; Richardson and Flash 2002; Flash and 
Handzel 2007; Huh and Sejnowski 2015) or non-Euclidean 
implementations of the plan (Pollick and Sapiro 1997; Flash 
and Handzel 2007; Polyakov et al. 2009; Bennequin et al. 
2009). Specifically, Huh and Sejnowksi (2015) showed that 
movement speed depends not only on the instantaneous cur-
vature, but also on the nearby curvature within 1 rad of the 
angle coordinate α, suggesting that the angle coordinate and 
therefore curvature only need to be planned 1 rad ahead. 
This is consistent with the result of Tramper and Flanders 
(2013) that planning (or anticipation) takes over longer dis-
tance and time when the radius changes from large to small, 
and shorter distance and time when the radius changes from 
small to large.

M/S rightly point out that “muscle forces will not be con-
sistently related to the curvature and velocity of the move-
ment” (pg. 1836). Indeed, it has been long known that the 
changes in electrical muscle activity (EMG) and joint tor-
ques follow a time course different from that of hand or joint 
kinematics. For instance, drawing of ellipses in 3D tends to 
comply with the 2/3 power law and involves sinusoidal angu-
lar motions at the shoulder and elbow joints (Soechting et al. 
1986; Schaal and Sternad 2001). Instead the corresponding 
joint torques and EMG activities deviate substantially from 
sinewaves (Soechting et al. 1986). The relationship between 

neural commands, muscle forces, joint torques, and hand 
kinematics is very complex, being stochastic, non-linear, and 
closed-loop. For instance, due to the existence of sensory 
feedbacks with substantial time delays, the muscle forces 
do not simply affect movement output, but in turn they are 
affected by the movement via the feedback loops. Therefore, 
the inference drawn by M/S that “An alternative to a causal 
explanation of the power law is that the law is an inher-
ent characteristic of the mathematical relationship between 
measures of curvature and velocity obtained during any 
curved movement” (pg. 1836) is logically a non sequitur, 
given the complex relationship between muscle forces and 
movement kinematics.

Conclusion

Although some of the arguments and simulations we pre-
sented probably appear trivial to mathematically oriented 
readers, they are important to be clarified since illusory 
issues are still lingering around the speed-curvature power 
law, as demonstrated by M/S paper. We believe that our anal-
yses are sufficient to refute the argument that “the power law 
of movement is an observation forced by the mathematical 
relationship between measures of the curvature and veloc-
ity of movement that are used in power law research” (M/S, 
pg. 1841).

Contrary to M/S conclusion, we maintain that the speed-
curvature power law is real and it applies to a wide variety of 
biological movements with different values of the exponent. 
The issue that remains to be solved concerns the physiologi-
cal origins of the power law. But this is a different topic to 
be covered in a forthcoming article.
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a b s t r a c t

Drawing movements have been shown to comply with a power law constraining local curvature and
instantaneous speed. In particular, ellipses have been extensively studied, enjoying a 2/3 exponent.
While the origin of such a non-trivial relationship remains debated, it has been proposed to be
an outcome of the least action principle whereby mechanical work is minimized along 2/3 power
law trajectories. Here we demonstrate that this claim is flawed. We then study a wider range of
curves beyond ellipses that can have 2/3 power law scaling. We show that all such geometries are
quasi-pure and with the same spectral frequency. We then numerically estimate that their dynamics
produce minimum jerk. Finally, using variational calculus and simulations, we discover that equi-affine
displacement is invariant across different kinematics, power law or otherwise. In sum, we deepen
and clarify the relationship between geometric purity, kinematic scaling and dynamic optimality for
trajectories beyond ellipses. It is enticing to realize that we still do not fully understand why we move
our pen on a piece of paper the way we do.

© 2020 Elsevier Inc. All rights reserved.

We must represent any change, any movement, as absolutely
indivisible. — Henri Bergson

1. Introduction

In 1609 Kepler published in the book Astronomia Nova (Kepler,
1609) his celebrated First Law of planetary motion: Mars moves
along an elliptical trajectory with the sun at one of its foci. This
left behind Ptolemaic and Copernican models; not circles, but
ellipses. In the same book we find Kepler’s Second Law, which
specifies an invariant (which was later understood as conserva-
tion of angular momentum): the area between the Sun, Mars and
any previous point of Mars is constant along the motion of the
planet. In sum: equal areas in equal times. This was generalized
to all other planets. We move faster when we are close to the
sun (fastest when nearest, at the perihelion), and slower when
far away (slowest when furthest, at the aphelion).

Ten years later, Kepler published in Harmonices Mundi (Kepler,
1619) his Third Law of motion: the semi-major axis A is related to
the period P of a planet by means of the following relation: A =

k· P2/3 (the parameter k is a constant, which can be renormalized
using the semi-major axis of the Earth and the number of years as
units). It was Kepler’s big achievement to establish such a lawful
regularity despite the fact that nobody understood why planets

∗ Corresponding author.
E-mail address: agomezmarin@gmail.com (A. Gomez-Marin).

would care to follow it. No one could derive Kepler’s two-thirds
power law until Newton’s Law of Universal Gravitation (Newton,
1687) was proposed nearly seventy years later. From geometric
properties and kinematic laws one would then strive to ‘‘climb
up’’ in order to establish dynamic laws that frame the former.

Physics is full of celebrated examples of this sort, where con-
straints of motion are first discovered and later explained by
other more general empirical laws, which in turn are then shown
to derive from even more fundamental theoretical principles
(such as symmetries). Such is a hallmark understanding phenom-
ena, from the motion of planets across the solar system to the
movement of Picasso’s brush along a canvas. However, when it
comes to ‘‘living matter’’, the explanatory work seems to have
been accomplished when molecules or circuits are shown to be
‘‘necessary and sufficient’’ for the appearance (or disappearance)
of the phenomenon under investigation (Gomez-Marin, 2017).

In the midst of the dominant reductionistic zeitgeist obsessed
with efficient mechanical causes in the form of counterfactual
reasoning within purely interventionist approaches (Krakauer
et al., 2017), it is conceptually refreshing (and empirically ex-
citing) to realize that relationships like Kepler’s laws could be
understood as formal causes. Science is actually the art of inter-
preting correlations, be it in terms of efficient causation or, in
arguably more mature sciences (in physics), by actually giving up
causation (or, rather, by framing it in) the notion of invariance
(Bailly & Longo, 2011). Is it not ironic that, while the stone falls for
symmetry reasons, the insect is thought to fly for neural reasons?

https://doi.org/10.1016/j.jmp.2020.102453
0022-2496/© 2020 Elsevier Inc. All rights reserved.
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Scaling laws are a particularly relevant sub-class of deep re-
lations, ranging from physics to psychophysics, ecology or lan-
guage. They all point to unifying principles in complex systems
(West, 2011). Note that not all power laws are necessarily statis-
tical, namely, expressing a constraint or a functional dependency
on probability distributions (such as p(x) = xa). Others relate
one degree of freedom to another (in the form x = yb), like the
speed-curvature power law studied here.

In fast elliptical hand movements, the instantaneous angular
speed also scales with local curvature via a power law, whose
exponent is 2/3 (Lacquaniti et al., 1983). This relationship, simple
as it seems, is not a trivial mathematical fact, nor a statistical
artifact, nor is it given by physics (Zago et al., 2018). Cortical
computations have been proposed as the controlling mechanism
(Schwartz, 1994). However, it is still unclear how the neuro-
musculo-skeletal system may actually do so. Moreover, the tra-
jectories of insects also comply with the speed-curvature power
law (Zago et al., 2016), suggesting that a much simpler explana-
tion – perhaps via simple central pattern generators – may be at
work (at least in the humble fruit fly). Nearly forty years later, the
origins of the law remain debated.

Most theoretical and phenomenological studies of the power-
law have concentrated on ellipses, also decomposing scribbling
into monotonic segments (Lacquaniti et al., 1983). On a few
occasions shapes other than ellipses have been studied, such
as the cloverleaf, lemniscate or limaçon (Flash et al., 2018). In-
voking optimality as a normative explanation, one can derive
the power law by powerful mathematical frameworks. Requiring
that the trajectory produces minimum jerk (jerk is the time
derivative of acceleration, or equivalently the second derivative or
speed, or the third derivative of position) naturally implies such
speed-curvature constraints (Flash & Hogan, 1985). Also recently,
a spectrum of power laws with different exponents has been
empirically demonstrated when tracing a whole range of ‘‘pure
frequency’’ curves beyond ellipses, and shown to theoretically
derive from minimization of jerk (Huh & Sejnowski, 2015).

Notably, it has also been proposed that the 2/3 power-law is
an outcome of the least action principle, namely, that imposing
mechanical work to be minimal along the trajectory naturally
produces the power law with its well-known 2/3 exponent (Lebe-
dev et al., 2001). Here we correct this mistaken statement. In
turn, this allows us to deepen our knowledge of the relation-
ship between geometrical purity, kinematic scaling and dynamic
optimality beyond elliptical trajectories. Planets do not move at
constant speed along their (quasi) elliptical trajectories around
the Sun. Nor does your finger when tracing an ellipse on a tablet
(Matic & Gomez-Marin, 2019). And yet, while planets do not
follow the speed-curvature power law (Zago et al., 2018), nor
do finger movements derive from the physical principle of least
action, as we hope to show in what follows.

2. Materials and methods

2.1. Mathematical relations

Basic notation and equations. Let us use the following notation:
A is the angular speed (A = V/R), where V is the instantaneous
speed (the module of the velocity vector) and R is the local radius
of curvature. Curvature is then defined as C = 1/R. The speed-
curvature power law then reads: A = kCβ , where k is a constant
and β is the power law exponent. By definition, the power law
can also be written as V = kCβ−1 or V = kR1−β

Space–time dilation for arbitrary power-law generation. Since
V = ds/dt (where dt is the time differential, and ds the arc-length
differential), then one can obtain an explicit relation for how

time dilates with space at every infinitesimal increment along the
trajectory: ds/dt = kCβ−1. Since C can be numerically calculated
as dα/ds (where α is the local angle between the tangent line at
any given point and the x axis, and dα its differential), we arrive
at the final equation that allows to transform any trajectory into
a power law kinematics that respects the original geometry: dt =

(1/k)dsβdα1−β .

2.2. Numerical simulations

Trajectory generation. Trajectories were generated by numer-
ically integrating (with a dt = 0.001s) the x and y positions
and their derivatives for curves expressed and governed via the
following differential equation: d3x/dt3+q(t)x = 0 for x(t), and
also for y(t): d3y/dt3+q(t)y = 0. Note that the initial conditions
can be different but both x and y are governed by the same
equation with the same time-dependent coefficient q(t). The four
different curves explored in this manuscript were generated by
choosing the function q(t) as follows: q(t) = 1 corresponds to
the ellipse, q(t) = t for the spiral-like ellipse, q(t) = |sin(t)| for
‘‘wobbly’’ curve, and q(t) = |3 sin(4t)| for the flower-like curve
(see Fig. 1A).

Curvature spectrum. Curvature frequency spectrum analysis is
based on Huh and Sejnowski (2015), expanded to approximate
also the frequency spectrum of non-monotonic angle profiles. We
calculate the first derivative of the unwrapped local angle profile,
then take its absolute value, and finally integrate. The profile is re-
sampled to a uniform step in the local angle coordinate. We take
the log of the profile, de-trend it, and apply the Fourier transform.

Generating power-law kinematics of any exponent from ar-
bitrary geometries. Selecting an arbitrary power law between
angular velocity and curvature is solved by recalculating the time
period between each point of the discretized curve, so that the
angular velocity fits a desired relationship with curvature (the
power-law relation; A = kCβ ), or equivalently, that tangential
velocity fits equation (V = kCβ−1). First, we sample or construct
the trajectory using a constant step in time (dt). We calculate
the arc-length dsi, and curvature Ci at each point (xi, yi) of the
trajectory. Next we construct a new time-difference vector, where
each dti follows equation dti = dsiC1−β . We then construct a time
vector as a cumulative sum of all dti., and scale it by a factor k (as
the desired duration divided by the total duration of the original
vector) so as to set the total traversing duration of the trajectory
equal to the desired duration, without changing the power law
relationship. Then, using a cubic spline, we fit the existing (xi,
yi) points to the new time vector. Finally, we sample the splined
trajectory again with constant dt, obtaining a new vector of points
(xi, yi) as a discrete approximation of an arbitrary power law
trajectory.

2.3. Behavioral experiments

Ellipse trace. Using the methods developed in Matic and Gomez-
Marin (2019), one of the authors traced an ellipse on an android
tablet device in a fast and fluid manner. The data was recorded
at 85 Hz. Raw data was smoothed with a low-pass, 2nd order
Butterworth filter, with a cutoff at 8 Hz.

Homer’s trace. A member of the lab traced a contour of Homer
Simpson’s head shown on a Wacom Cintiq interactive graphics
monitor, using an electronic pen. The tracing movement was done
without lifting the pen from the screen. Several practice traces
preceded the trace used in this paper. The data was recorded
at 150 Hz. Raw data was smoothed with a low-pass, 2nd order
Butterworth filter, with a cutoff at 8 Hz.
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Fig. 1. A wide range of geometries beyond ellipses can have two-thirds power law kinematics. (A) The four main generated trajectories analyzed in this work:
ellipse, elliptic spiral, wobbly ellipse and elliptic flower. (B) Time dependence of the function q(t), which generates those trajectories via the third order differential
equation d3u/dt3+q(t)u = 0 satisfied for both x(t) and y(t). (C) Time course of instantaneous angular speed A and local curvature C for each curve. (D) The numerically
estimated log–log plot of angular speed versus curvature reveals, as predicted, an exact power law relationship with exponent 2/3 for each of the curves. Thus an
ellipse is not the only geometry that naturally admits kinematic scaling.

2.4. Codes

For more details please see the Supplementary material at
the end of the manuscript with links to the code that generates
all analyses, plots, and animations.

3. Results

3.1. A wide range of curves beyond ellipses naturally lead to a 2/3
power law

The speed-curvature power law is the relation A = k· Cβ ,
where A is the instantaneous angular speed (defined as A = V/R),
C is the local curvature (defined as C = 1/R), V is the absolute
instantaneous speed of movement and R the local radius of cur-
vature of the trajectory. The term k is a proportionality factor that
remains more or less constant empirically (and a precise constant
theoretically), and β is the power law exponent. This relation
is non-trivial since aspects of geometry (like curvature; which
concerns only space) and aspects of kinematics (like speed; which
concerns time) need not constrain one another in general (like in
the motion of a pendulum).

Using the definition of the radius of curvature R as a function
of the time derivatives of the trajectory (we are always referring
to movement in two dimensions here), it is not difficult to show
that, if the power law holds, the term k = D1/3, where D =

|vXaY − vYaX|. Note that vi and ai are the velocity and acceleration

components in both orthogonal directions x and y. The 2/3 power
law is often written as A = D1/3C2/3, with D constant.

Now, if k is constant (namely, if the 2/3 power-law holds), then
the term |vXaY − vYaX| should also be constant. This implies that
its time derivative should be zero, and thus one gets: aXaY+vXjY−
vY jX − aYaX = 0 (where ‘‘j’’, known as jerk, is the time derivative
of acceleration; just as ‘‘a’’ is the time derivative of speed). Two
terms cancel out, and thus we finally get that any trajectory
that complies with the 2/3 power-law must satisfy the following
differential equation: jX/vX = jY/vY. This geometric-kinematic
constraint is very interesting because it dictates that both x(t)
and y(t) must behave so that the ratio of their third and first
time derivatives is equal which, without losing generality, can
be expressed as j/v = q(t), where q(t) is any arbitrary temporal
function. In other words, one can choose any q(t) at will and,
by means of the equation d3u/dt3+q(t)u = 0 – where u(t) here
denotes both x(t) and y(t), although initial conditions can be
different – generate geometric curves whose kinematics follow
the 2/3 power law.

Following this mathematical reasoning (Lebedev et al., 2001),
we generated four different trajectories (Fig. 1A). Selection of
the q(t) function determines the shape of the trajectory: for the
ellipse, it is constant, q(t) = 1; for the elliptic spiral q(t) = t; the
wobbly ellipse, q(t) = |sin t|; and for the elliptic flower we chose
q(t) = |3 sin t/4| (Fig. 1B). Not only are curvature and angular
speed of these trajectories strongly correlated (Fig. 1C), but they
also in fact follow the 2/3 speed-curvature power law exactly
(Fig. 1D).
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Lebedev and colleagues explicitly listed the ellipse, hyperbola
and parabola as the trajectories resulting from constant q(t),
noting the relationship between constant q and the resulting
geometry (q = 0 for parabola, q < 0 for ellipse, and q > 0
for hyperbola). In Supplementary Figure 1 we analyzed those
three curves in the same way as four mentioned curves in Fig. 1.
Curvature and angular speed are visibly constrained, following a
power law with the exponent of exactly 2/3.

To the best of our knowledge, nobody has analyzed the family
of curves that are generated with a non-constant q(t). Some
examples are shown in Fig. 1. In what follows, we will concentrate
on such four curves to gain further insights into geometric purity,
kinematic scaling, and dynamic optimality beyond ellipses. We
will also correct an important physics error in Lebedev et al.
(2001).

3.2. Two-thirds power law trajectories have quasi-pure geometrical
spectra

Let us now concentrate on the geometry of the curves pre-
sented in the previous section. It has been recently shown that
the speed curvature power laws (of different exponents, not just
2/3) are achieved for so-called ‘‘pure frequency curves’’ (Huh &
Sejnowski, 2015). Actually, (as we will see in the last section of
the Results) trajectories with ‘‘mixed curvature frequencies’’ can-
not comply with the kinematic scaling of the power law, unless
they give up dynamic optimality. So, how does one estimate the
‘‘geometric purity’’ of a curve?

Parametrization of local curvature can be done in many ways.
To estimate power laws one usually parametrizes curvature in
time, namely, C(t), so that it can be compared, moment to mo-
ment, with speed V(t), which is naturally defined as a function of
time. Time parametrization of log curvature is convenient in the
regression analysis with log angular velocity, also parametrized in
time (as in Fig. 1D). In Fig. 2B we show curvature parametrized
in time for the four study-case trajectories shown in Fig. 2A.

However, cumulative arc length (s) is the natural parametriza-
tion for curvature, since curvature is by construction a purely
geometrical quantity, and so the time parametrization natural in
kinematic quantities (such as speed) injects a temporal bias that
geometry should be indifferent to. In Fig. 2C we re-parametrize
curvature now in terms of arc length, C(s). Note the subtle change
in the functions with respect to the time parametrizations in
Fig. 2B.

There is a third way to parametrize curvature: rather than
time or length, one can use angle. Based on Huh (2015) we can
parametrize curvature in the local angle coordinate, as shown
in Fig. 2D. This representation has many advantages in under-
standing essential properties of the curves, as well as revealing
the connection between geometry and kinematics in power law
constraints (Huh & Sejnowski, 2015).

In particular, once any curve is parametrized in the angle, one
can detect a shared feature in the four curves studied here: note
how the profiles of Fig. 2D are naturally rescaled with respect to
those in Fig. 2C and B, so that now, every 2π , curvature undergoes
exactly two complete oscillations. If these were temporal func-
tions, a Fourier transform would immediately reveal a dominant
frequency there.

Following Huh and Sejnowski (2015) we apply the Fourier
transform to the log of the curvature profile, once parametrized
in the local angle coordinate (Fig. 2E). The resulting amplitude
profile shows curvature frequency spectrum in angle space. The
frequency of a curve is the number of curvature oscillations per
unit of local angle (full oscillation is 2π radians), and the local
angle is defined as the angular direction of the velocity vector.
Despite their very different appearance in X-Y space (Fig. 2A), all

four curves share a main peak at ν = 2 (which corresponds to
Huh’s pure ellipse; see below) as well as some ripples.

The quasi-pure spectrum of these geometries, and especially
that of the ellipse shown on the left side of Fig. 2A, makes one
wonder why they are not exactly pure (namely, with a single
peak at ν = 2, without any ripples). To better understand this,
we went back to Huh’s pure frequency curve with ν = 2 (Huh,
2015), which is visually very similar to the classical ellipse, (x/a)2+
(y/b)2 = 1. Both curves are shown in Supplementary Figure 2A,
together with ellipses empirically traced on a tablet.

Huh’s ellipse (on the left) has a single strong peak at ν = 2
by design, and no peaks at other frequencies, meaning that its
log-curvature profile in angle space is a pure sinusoid. The classic
ellipse, constructed with two orthogonal sine waves with 90
degrees of phase difference, has a few harmonics at frequencies
multiples of ν = 2 (4, 6, 8, etc.), but it is still quasi-pure. The em-
pirically recorded ellipse trace, similarly, shows some harmonics
and also peaks at other frequencies (Supplementary Figure 2B).
It is also decently pure. In sum, this precise geometrical analysis
of the spectrum of curvature is not only both informative as to
whether we shall expect a power law and of what exponent, but
also a necessary condition to know that we are dealing with a
pure frequency curve in the first place, which is very important
when trying to determine whether the speed-curvature power
law holds empirically.

To gain even further insight into what these spectra are re-
flecting, we morphed an ellipse into a circle by reducing the
eccentricity of the former (Supplementary Figure 2C). The am-
plitude of the peak at ν = 2 is progressively reduced, as well as
all the other harmonic frequencies, until the circumference does
not show peaks at any frequency (as it should, since its curva-
ture is constant). Finally, spectra for different parametrizations of
curvature are shown in Supplementary Figure 3.

We can proceed now with kinematic and dynamic considera-
tions on these curves.

3.3. The power law does not imply that mechanical work is constant
nor minimal

For 2/3 power law trajectories, we have seen that D is con-
stant. It turns out that D is actually the magnitude of the cross
product between the velocity and acceleration vectors. For the
trajectories displayed in (Fig. 3A) that cross product should be
constant too (Fig. 3B). The magnitude of the cross product can
be represented as the area of the parallelogram closed by both
vectors.(Fig. 3D). So far, so good.

Remember that one can rewrite the 2/3 power law (A =

kC2/3) as A = D1/3C2/3, and then simply as V = D1/3R1/3, so
that V3/R = D. With similar mathematical manipulations Lebedev
et al. (2001) arrive at this last same equation and, rewriting D =

V(V2/R) realize that the term in parenthesis is the magnitude of
centripetal acceleration (An), and so D = V· An. The fatal error
comes in their equation (5), when they say that ‘‘[t]his product is
known in physics as mechanical power’’, which they call P. The
essential mistake that invalidates the main claim of their paper is
to equate D with P.

If that was the case (which is not), then a 2/3 power law
would constraint movement along the trajectory to have constant
mechanical power (because we have seen that D is constant). As
we will unpack further below, the authors were understandably
excited to discover that, mathematically, the time integral of D is
minimal when D happens to be constant. In other words, the opti-
mal way to move is to do so that D is constant, aka, the 2/3 power
law. They are thrilled (as we would) because, if their physics were
correct, the mathematics would prove that ‘‘drawing movements’’
[which fulfill the 2/3 speed curvature power law] are ‘‘an outcome
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Fig. 2. Very different geometries can have the same quasi-pure curvature spectrum. (A) The four studied curves in Euclidean space. (B) Their local curvature
parametrized in time as C(t). (C) Curvature parametrized in arc length space as C(s). (D) Curvature reparametrized in local angle as C(α). (E) Geometric spectrum of
the curves – Fourier transform of the logarithm of C(α) – showing that all curves are quasi-pure with a dominant peak at frequency 2.

of the Principle of Least Action’’ (which is precisely the title of
their paper). But if D is not the mechanical power, then the claim
evaporates. Why is not D = P, then?

Lebedev and colleagues equate mechanical power with D,
namely, the authors take the product of centripetal acceleration
with the speed to be proportional to physical force that would
push a particle moving along such 2/3 power law trajectories.

Mechanical power is the amount of mechanical work per unit
of time. Mechanical work is the amount of energy transferred by a
force. It is calculated as the integral of the force vector along the
trajectory vector. Force is proportional to acceleration, and the
trajectory vector can be rewritten as velocity times dt. Thus, in
practice, mechanical work is proportional to the product of veloc-
ity and acceleration. But (and here comes the subtle mistake), it is
the dot product (also called scalar product) of the vectors, rather
than the simple product of their magnitudes. Put plainly, the dot
product of two orthogonal vectors is zero, no matter how large
they are; while the product of their magnitudes is large. In sum,
mechanical work is calculated via the scalar product – rather than
the cross product (which gives us D)— of velocity and acceleration.
And thus, as shown in Fig. 3C, work is far from constant along the
trajectory, as opposed to D (Fig. 3B).

Animated traversals of the spiral and elliptical trajectories are
available in the GitHub repository as video files (see Supplemen-
tary Material). They show the constancy of the magnitude of the

cross product D during the whole trajectory, and the changes in
the position, acceleration, velocity and jerk vectors over time. See
Fig. 3D for snapshots.

In sum, and contrary to what was claimed in Lebedev et al.
(2001), the speed-curvature 2/3 power law of movement is not
an outcome of the principle of least action whereby mechanical
work is minimized.

3.4. Trajectories with constant D minimize the time integral of D

The mathematical derivation that, by means of a variational
analysis, shows that the time integral of D is minimal when D
is constant (Lebedev et al., 2001) is still valid and somewhat
insightful. Agnostic about the existence of a meaningful physical
or mathematical interpretation of the term D, next we sought
to numerically demonstrate that constant-D prescribes the most
‘‘economical’’ way to move amongst the infinitely many ways to
do so. To our knowledge, such minimization has not been done
numerically.

Because we seek a numerical demonstration that trajectories
complying with the 2/3 power law constrain their geometry
(curvature) and kinematics (speed) so as to minimize the integral
of D, we can only aspire to show local, rather than global, minima.
To that end, we invented a way to systematically generate a
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Fig. 3. Mechanical work is not constant for 2/3 power law trajectories, but the term D is. (A) Analyzed segments of the curves marked in solid black. (B)
Magnitude of the cross product of the velocity and acceleration vectors (which is mathematically equal to D) as a function of time along the trajectory. It is constant
for all curves. (C) Dot product of the velocity and acceleration vectors (which is technically the power divided by the mass, and in the present case proportional
to mechanical work) over time. It is not constant for any curve (including the ellipse). (D) Velocity, acceleration and jerk vectors for two of the curves at a given
time instant. Geometrically, the term D is the area of the parallelogram formed by velocity and acceleration, and it has the property of remaining constant along the
trajectory. Moreover, the jerk and velocity vectors have opposite directions. Mechanical power (whose value is depicted in color) is not constant along the trajectory.
It is actually zero at the extremes of the ellipse (since velocity and acceleration vectors are orthogonal there) but non-zero at other times. See also animations of
panel (D) in the Supplementary Material.

range of different kinematics that would traverse the exact same
geometry in the exact same total duration (see below).

We take a segment (of a trajectory that complies with the
2/3 speed curvature power law) with starting points A and B
(Fig. 4A), and whose total time duration is T (vertical black line
in the plots of Fig. 4B). We then maintain the geometry while
rescaling the kinematics so that the same segment is traversed in
the same amount of time but now with a kinematics that would
still yield a power law with an exponent different than 2/3 (say,
with hypo-natural exponent 1/3, and hyper-natural exponent
equal to 1). We then numerically calculate D as we integrate it in
time all the way to t = T (Fig. 4B) for such three different (power
law) kinematics. Exponent 2/3 always yields the minimum value

at the end of the segment. In Fig. 4C we can calculate I(t = T)
for a whole range of values of β on the given path. Compared to
trajectories with any other values of β , trajectories with β = 2/3
indeed have the minimal time integral of D.

In case it is not already clear by now, let us emphasize that a
given geometry can in principle be traversed with any kinematics.
Let us now have a brief interlude to explain and illustrate how to
kinematically re-scale a given geometry with any kinematics to
a power-law kinematics with our exponent of choice. For each
β in the required range, we start with a generated path as an
ordered list of points. Given the path, the β and k, we calculate
the time periods between each point of the path, so that they
satisfy the formula dt = (ds/k)C1−β , derived as explained in the
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Fig. 4. Numerical evidence that the time integral of D is (locally) minimal when D is constant. (A) Start and end points of trajectory segments (of 6 s of duration)
for each of the four main curves. (B) The time integral of D as time elapses from the beginning to the end of the segment. Respecting the same geometry and total
duration of the movement, different kinematics were explored (generated by power laws with different exponents; depicted in green, red blue). (C) The integral of
D, when numerically calculated for all exponents between 0 and 1 turns out to be minimal for β = 2/3 (red dot), for all curves. . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Methods. The resulting trajectory does not necessarily have the
desired average speed. The whole trajectory is then re-calculated
with the same points and β , but with a different k parameter so
that the total time elapsed is the same.

We illustrate the effects of the rescaling algorithm for the
classical example of an ellipse (Supplementary Figure 4A). Gen-
erating an elliptical trajectory with orthogonal sine waves yields a
β = 2/3 power law (Supplementary Figure 4D, red line). We can
rescale this trajectory into β = 1 (blue line) and β = 1/3 (green
line) power laws. The Y coordinate over time (Supplementary
Figure 4B) of the β = 2/3 trajectory is shown in red, and is
a pure sinusoid. A trajectory with exponent β = 1 is more
‘round’ in the Y coordinate, and a trajectory with β = 1/3 is more
‘triangular’. The arc-length for the β = 2/3 trajectory changes
over time: an object moving on such a trajectory slows down
in more curved parts, and speeds up in straighter parts of the
path (Supplementary Figure 4C). Because human participants
produce speed profiles similar to these, the β = 2/3 trajectory
is called ‘natural’. In comparison, a trajectory with β = 1 is
called ‘hyper-natural’ and has a constant arc length, because it has
constant tangential speed. Trajectories with β = 1/3 are called
‘hypo-natural’, as they slow down more and speed up more than
β = 2/3 ‘natural’ trajectories. Similar relationships are visible
in the speed over cumulative arc length plot (Supplementary
Figure 4E), illustrating the transformations made by the rescaling
algorithm. When shortening the time period of crossing the same
distance, we get higher speed, as illustrated by the peaks of the
β = 1/3 (green) plot. For longer times, speed goes down, as
in the valleys of the β = 1/3 plot. Angular speed over time
(Supplementary Figure 4F) shows some inverted relationships.
Here, the hyper-natural trajectory has the highest peaks and
lowest valleys of the three trajectories.

3.5. Equi-affine displacement is invariant under different kinematics

We have seen how the time integral of the term D is minimal
when D is constant. However, we have also seen that D does
not correspond to mechanical power, and so the minimization
of D does not imply that the power law is the outcome of
the least action principle of physics. Mechanical work is not
necessarily minimal for power-law kinematics with a 2/3 ex-
ponent (Supplementary Figure 5). Is there any other quantity
whose integral, when minimized, lends itself to a meaningful
interpretation?

The cubic root of D has been identified as the so-called equi-
affine speed (Flash & Handzel, 2007; Pollick & Sapiro, 1997):
VEA = D1/3. Of course VEA is constant when D is constant. But
note that the fact that the integral of D is minimal when D is
constant does not mean that the integral of VEA is minimal when
VEA is constant. And so we asked: what happens if we minimize
the integral of VEA?

We can answer the question mathematically by means of
variational calculus. When deriving the Euler–Lagrange equation
that results in minimizing the equi-affine speed as the Lagrangian,
we found that the terms in that equation cancel out completely.
To be concrete, first one needs to rewrite VEA as (dx/dt) times
a second term which is d2y/dx2 raised to the 1/3 power. This
turns out to be a very convenient mathematical rewriting as
shown in Lebedev et al. (2001). Then, the partial derivative of the
Lagrangian with respect to the time derivative of x yields simply
that second term. Finally, when calculating the time derivative
of that term in order to obtain the second term of the Euler–
Lagrange second-order partial differential equation, one realizes
that it is exactly equal to the first term of the Euler–Lagrange
equation, namely, the partial derivative of VEA over x. Thus, both
terms cancel out. So, are not there any particular solutions that
make the functional an extremum?

7

Rectangle



A. Matic and A. Gomez-Marin Journal of Mathematical Psychology 99 (2020) 102453

Fig. 5. The time integral of equi-affine speed is invariant for different kinematics with fixed geometry. (A) Trajectory segments of duration T (in black) with
their start and end points. (B) Time integral of equi-affine speed for various kinematics (power laws of different exponents). Unexpectedly, all kinematics lead to
the same value of the integral at t = T, for all curve segments.

We then answered the question numerically. We followed in
Figure 5 the same procedure as in Figure 4. We took our four main
curves and chose a segment of duration T (Fig. 5A) and numer-
ically estimated the time integral of VEA upon movement along
the same geometry with three different kinematics (Fig. 5B), this
is, power laws with different exponents. To our surprise, and as
opposed to the integral of D in Figure 4, the integral of VEA yields
the same value at the end of the segment (t = T) regardless of
the kinematics. There seems to be no minimum. Is it thus an
invariant?

Note that, generally, the time integral of speed along a path
is precisely its total displacement. In fact, the integral of affine
velocity is known as the equi-affine arc-length or the special
affine arc-length (Izumiya & Sano, 1998). Our analytical and nu-
merical results thus indicate that affine arc-length is invariant
under different power law kinematics.

Next we asked whether such invariance remains when the
kinematics does not follow a power law (Supplementary Figure
6A) and/or when the geometry between A and B is different
(Supplementary Figure 6B). In a similar analysis to Figure 5,
we show that the affine arc-length is the same for power law
and non-power law kinematics. An elliptical trajectory segment
(Figure 5.1 A) is traversed with power law kinematics (with
exponent β = 2/3) (in black) and non-power law kinematics
(with ellipse’s sine angle theta increasing with time squared)
(in red). The integral of equi-affine speed is the same for both
(Supplementary Figure 6A).

Let us note an interesting pathological case: in movement
from A to B in a straight line at constant speed, there is no
acceleration vector, and so VEA is zero and so is its integral.

To explore the effect of different ways to get from one point
to another in space (geometry), not just in time (kinematics),
we also tested three pseudo-random paths from points A to B.
Using the procedure described in (Supplementary Figure 4), we
imposed power law kinematics (black lines), while colored lines
had non-power law kinematics, as shown in the middle plot. The
integral of equi-affine speed is the same for both kinematics, but
not across different geometries (Supplementary Figure 6B).

Equi-affine speed is not invariant under arbitrary transforma-
tions. It has been shown that equi-affine length is invariant under
affine transformations using the signed volume of the paral-
lelepiped created by vectors of first, second and third derivatives
with respect to time of the curve r, raised to the power 1/6

(Pollick et al., 2009). Equi-affine speed has also been shown to
be piecewise constant along movement segments and so, rather
than Euclidean, it becomes a natural geometric description of
hand trajectories (Bennequin et al., 2009; Flash & Handzel, 2007;
Meirovitch et al., 2016; Polyakov et al., 2009). However, we have
not been able to find an explicit claim that the time integral of
equi-affine speed is a kinematic invariant, as our findings suggest.

3.6. Pure curves with two-third power law scaling minimize jerk

Having found a way to numerically estimate whether certain
functionals (such as D and VEA respectively in Figure 4 and Figure
5), are (locally) minimal for a fixed geometry upon different
kinematics, we now apply the method to confirm (Huh & Se-
jnowski, 2015) mathematical derivations: minimum of total jerk
is achieved for pure frequency curves when their kinematics
follow a speed-curvature power law (where the exponent value
β depends on the frequency ν of the curve).

It is well known now that ellipses (which we have shown to
have ν near to 2), when traversed with a power law kinematics
of β = 2/3 (which is how they are traced by humans), have
minimum jerk (Huh & Sejnowski, 2015; Viviani & Flash, 1995;
Wann et al., 1988). But, our knowledge, nobody has estimated this
numerically. Nor has this claim been shown for the large family
of curves that, despite not being an ellipse, have ν = 2 (like those
in Fig. 6A).

To that end, we show that quasi-pure curves with a peak at
ν = 2, produce minimum jerk when kinematically traversed
at β = 2/3 (Fig. 6B). This confirms and expands the findings
in Huh and Sejnowski (2015), at the same time that provides a
numerical method to estimate and predict the intricate relation-
ship between geometric purity, kinematic scaling and dynamic
optimality for any drawn movement beyond (the ultra-studied)
ellipses.

3.7. The subtle relationship between curve purity, scaling and opti-
mality

Let us end with a fun and illustrative example to recapitu-
late. Tracing the contour of Homer Simpson’s face (Fig. 7A) was
drawn on an interactive graphics tablet, tracing the original image
shown on the screen, in a single movement, without lifting the
pen from the screen. The raw data are smoothed before analysis
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Fig. 6. Numerical estimation of minimum jerk for the four quasi-pure (ν = 2) frequency curves. (A) Trajectory segments analyzed (in black). (B) Total jerk as a
function of different power law kinematics shows a minimum near β = 2/3.

Fig. 7. Using Homer’s face to illustrate purity, scaling and optimality in drawing movements. (A) Trace of Homer Simpson’s face contours. (B) X and Y positions of
the tip of the pen as a function of time. (C) Speed and curvature for a brief segment a function of time. (D) Log–log plot of speed and curvature reveals that kinematics
does not comply with a power law. (E) Curve spectrum reveals that the drawing is not a pure-frequency geometry, having several peaks at low frequencies and a
decreasing tail. (F) One can transform the original kinematics so that both X and Y follow the same third-order differential equation with the shared time-dependent
parameter q(t), which can be calculated as the ratio between the third and first derivatives of position, shown here. (G) Homer’s face now must follow a 2/3 power
law. (H) The term D, as compared to the original drawing (gray) is quasi constant along the trajectory (blue). . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

(see Methods). The X and Y coordinates over time (Fig. 7B) show
constant movement with no breaks. Curvature and velocity look
fairly correlated (Fig. 7C), but do not exactly conform to a power
law (Fig. 7D). In fact, the log–log plot seems to indicate multiple
segments with different power law exponents, perhaps related
to different segments of the drawing. The geometry spectrum
analysis shows multiple peaks at low frequencies, and we can see
that this is not a pure frequency curve (Fig. 7E).

The plots in Fig. 7F–H show a transformed trajectory: the
geometry is the same (still Homer’s face), but the empirical kine-
matics of drawing are transformed to strictly follow the 2/3
power law (Fig. 7G). From the same trajectory we can extract
the function q(t), and we can see it is near-identical in X and
Y dimensions (Fig. 7F) which, as we saw at the beginning of
this article, is a hallmark of a 2/3 power law trajectory. Beyond

ellipses, or the other three main curves systematically analyzed
in this study, there are infinitely many ways to have a 2/3 power
law trajectory (Homer’s face included). As such, the magnitude of
the cross product (the term D) is now near constant, unlike the
empirical one, which is more variable (Fig. 7H).

Unfortunately for Homer, since its geometry is not pure
(Fig. 7E), its tracing cannot enjoy both kinematic scaling (Fig. 7G)
and dynamic optimality at the same time. In other words, if speed
scales with curvature, drawing movements cannot be optimal in
terms of jerk unless their curvature spectrum is pure. In fact,
power-law kinematics do not produce minimum jerk dynamics
if the curve geometry is not pure (Supplementary Figure 7).
However, in general, one could have minimum jerk using some
unknown minimization procedure for any non-pure geometry,
with non-power law kinematics.
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4. Discussion

Nearly forty years after its discovery, the two-thirds speed-
curvature power law of human movement (Lacquaniti et al.,
1983) is still puzzling. Moreover, evidence for the same scaling
law with different exponents has recently been discovered empir-
ically (Huh & Sejnowski, 2015), and demonstrated to be derivable
from normative principles that require jerk (the time derivative
of acceleration) accumulated along the trajectory to be minimal.
Along those lines, it was claimed that the 2/3 speed-curvature
power law of movement is a consequence of minimizing me-
chanical power (Lebedev et al., 2001). If so, the power law could
be seen as both an outcome of minimum jerk (Flash & Hogan,
1985) and ‘‘an outcome of least action’’ (Lebedev et al., 2001).
That would be interesting, were it true. However, here we have
demonstrated that this is not the case. We have discovered a flaw
in the derivation of Lebedev and colleagues, which is due to a
basic physics error in interpreting mechanical work (to take the
dot product of two vectors as that of their magnitudes). Thus, the
connection the authors draw between the term D and mechanical
work is inexistent. This invalidates the main claim of their paper.
Drawing movements complying with the two-thirds power law
do not minimize mechanical work.

The origins of the speed-curvature power law remain debated
to date. Therefore, we deemed it necessary that the (to the best
of our knowledge) undetected mistake in Lebedev et al. (2001)
– and its corresponding unexpected link to equi-affine speed, in
the line of the work by Flash and colleagues – does not continue
unreported and uncorrected.

However, two pieces of their mathematical treatment are still
valuable when expanded upon. They provide more insights to
further understand the 2/3 speed-curvature power law observed
in humans while drawing. First, their mathematical treatment
demonstrates that drawing movements complying with the 2/3
power law must obey a third-order linear ordinary differential
equation that only depends on a time-dependent coefficient q(t).
The authors explored only the family of x(t) and y(t) solutions
when q(t) is constant in time, which comprises ellipses, hyper-
bolas and parabolas. Here we exploited other non-trivial curves
of the myriad of geometries that can stem from time depen-
dencies in q(t). Second, the variational principle they put forth
demonstrates that D (rather than the work) is minimal when
it is constant. We tested it numerically, and reformulated it to
show that equi-affine displacement of trajectories is invariant
upon different power-law and non-power-law kinematics. We
also demonstrated that β = 2/3 power laws with geometrical
frequency ν close to 2 (namely, ellipses but other curves too) have
minimum jerk.

Our work has limitations and poses some challenges. First,
note that except the hand-drawn ellipse and Homer’s face, the
rest of our analysis is based on mathematics and numerically
simulated curves. Further studies should mirror our findings in
human experiments inspired by them. Second, all our numeri-
cal estimates regarding minimization demonstrate local, but not
global, minima (we explored the space of β parameters). Third,
a very interesting aspect remains fairly unexplored: while the
equation that generates all possible 2/3 power lawmovement tra-
jectories is a third-order differential equation, in physics virtually
all equations of motion do not go beyond second-order. Fourth,
while in most traces and drawings one constantly switches from
clockwise to counter-clockwise movement, all trajectories ex-
plored in this manuscript (except Homer’s) were monotonic in
curvature. Fifth, it is still a challenge to robustly estimate jerk
from empirically measured trajectories because of sensitivity to
filtering and to noise in the derivatives.

To end, let us emphasize that the discovery of non-trivial
constraints in nature – like a power law – is always as puzzling

as rewarding. Kepler established one for the motion of orbiting
planets. Lacquaniti and colleagues found another one for the
movement of drawing hands. Both characterized by an exponent
whose value is exactly 2/3. In 1981 Yoshio Koide uncovered a
yet-unexplained relation between the masses of three elementary
particles (the three charged leptons, namely, the electron, the
muon, and the tau): their sum divided by the square of the sums
of their square roots is approximately equal to 2/3. If that was
not enough, the same relation holds for the masses of the three
heaviest quarks. It is tempting to dismiss such phenomenolog-
ical discoveries as mere numerology or, at best, as compressed
descriptions awaiting the hard-core science to take place. This
is even more so in biology, where mechanism is king while
phenomena often enjoy epiphenomenal connotations. However,
as we hope to have illustrated here, phenomena borrow from
mechanisms the reasons by which they are explained. but restore
those reasons to mechanisms in the form of scientific questions
which they have stamped with their own meaning. The depth
that an answer provides crucially depends on the quality of the
question being asked in the first place. Science, in a way, is like
good journalism.
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Abstract. The speed-curvature power law is an intriguing constraint between the geometry and 

the kinematics of a movement trajectory. It dictates, for instance, how much slower the hand 

should move in curves. The empirical phenomenon has led to various interesting theoretical 

proposals for its origin and possible generating processes. Its formulation based on tangential 

speed (V∼Cβ) is considered equivalent to its angular speed counterpart (A∼Cβ+1), with the 

corresponding change in the exponent. In the case of drawing ellipses, these relationships are 

respectively known as the “one-third power law” or the “two-thirds power law”, after the values 

of the exponents. Here we show that using angular speed instead of tangential speed tends to result 

in much stronger data correlations, impacting on the interpretation of the strength of relationship, 

the putative value of the exponents, and even the very existence of the power law. We explain how 

and why this is the case, using both empirical and synthetic data. We conclude that angular speed 

should be avoided when expressing the speed-curvature power law. 

Keywords: motor control, speed-curvature, power law, geometry, kinematics. 

* 

1. INTRODUCTION 

The relationship between instantaneous speed and local curvature in human movement is a classic, 

fascinating, and well-studied phenomenon in the field of motor control. Its historical roots can be 

dated to the observations of Binet and Courtier (1893) and Jack (1895) that in ‘natural handwriting’ 

the speed of the pen tends to be lower in curved segments of the path and higher in the straight 

segments. Lacquaniti and colleagues (1983) proposed that the relationship can be expressed as a 

power law and reported its validity for a large class of hand movements. The law has since been 

observed also in human locomotion, speech, eye movements, and even in the trajectories of 

animals (Zago et al, 2016). For a recent review, see (Zago, Matić et al, 2017).  

The speed-curvature power law is expressed in several ways, involving either tangential speed or 

angular speed as kinematic variables and curvature or radius of curvature as geometric variables. 

Different formulations are often explicitly considered to be equivalent (e.g.  Lacquaniti et al. 1983; 

Viviani and Cenzato, 1985; Wann et al. 1988; Viviani and Schneider, 1991; Schaal and Sternad, 

2001; Vieilledent et al. 2001; Ivanenko et al. 2002; Perrier and Fuchs, 2008; Maoz et al. 2009; Tesio 

et al. 2011; Huh and Sejnowski, 2015; Karklinsky et al. 2016; Zago, Matić et al. 2017; Rybarczyk 

and Carvalho 2019; Matić and Gomez-Marin 2020).  

Indeed, examining the algebraic relationships shows that the exponents in different formulations 

of the power law are mathematically related. Namely, with angular speed A, curvature C, and a 

constant k (related to average speed, also called the velocity gain factor), one has the “AC power 

law” as: 
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 𝐴 = 𝑘𝐶𝛽 (1) 

With tangential speed V, since A=VC, one gets the “VC power law”: 

 𝑉 = 𝑘𝐶𝛽−1 (2) 

If instead of curvature C, one uses the radius of curvature R = C-1, the exponent of the power law 

would simply be: 𝐴 = 𝑘𝑅−𝛽or 𝑉 = 𝑘𝑅1−𝛽. See also Figure 1 for definitions of variables.  

It turns out that, in drawing ellipses and scribbling movements, the exponent of the AC power law 

(equation 1) is empirically found to be β≈2/3 (Lacquaniti et al. 1983), a phenomenon known as 

the “2/3 power law”. If one chooses to analyze the same trajectories with the VC power law 

(equation 2), the exponent is near -1/3, and the phenomenon is sometimes called the “1/3 power 

law”. Regardless of the name used, most published research uses tangential speed and curvature, 

the VC power law, as expressed in equation (2). The use of angular speed is relatively rare, but it 

is frequent enough to warrant scrutiny (e.g. Lacquaniti et al. 1983, Ivanenko et al 2002; Zago, Matić 

et al. 2017; James et al. 2019).  

 

Figure 1. For a particle P moving along the path s, speed (V) is defined as the magnitude 

of the (tangential) velocity vector,  V = |𝐯| = |
ds

dt
|, while angular speed (A) is the absolute 

rate of change of the direction of velocity,  A = |
dα

dt
|,  and curvature (C) is the reciprocal 

of the radius of the osculating circle, or the rate of change of direction with respect to arc-

length, C =
1

R
= |

dα

ds
|. From this we see that, naturally, A=VC. 

 

Crucially, these mathematical relationships show an equivalence of exponents between 

relationships, but not an equivalence of strength of the underlying relationship.  

In the research on the power law of movement, power functions (1) and (2) are typically converted 

to linear functions by taking a logarithm of both sides. Next, the exponents β, the speed gain factor 

k and the strength of the relationship, expressed as the coefficient of determination r2 are estimated 

by linear regression from models: 

 log 𝐴  ≈ log 𝑘 + β𝐴𝐶log 𝐶 (3) 

 log 𝑉  ≈ log 𝑘 + β𝑉𝐶log 𝐶 (4) 

In linear regression, the coefficient of determination (r2), shows how much variance in the outcome 

is explained by the predictors, expressing the strength of the linear relationship. When there are 

only two variables in a regression, the r2 is the square of the correlation coefficient r (Pearson’s or 

other). More generally, it is calculated as r2 = 1 – RSS/TSS where RSS is the sum of squares of 

residuals and TSS the total sum of squares of the outcome. If the relationship between variables 

has a high r2 (near 1), one can predict with high accuracy the value of the outcome variable from 

the values of the predictors. 

Here we look carefully at the differences between the coefficients of correlation and determination 

in the formulations of the power law involving different kinematic variables, tangential speed V 

and angular speed A. We show that there are big differences in empirical and synthetic data, explain 

why the differences exist, and suggest how to interpret different formulations of the power law.  
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2. EMPIRICAL DATA: Tracking elliptic targets at different frequencies 

Methods 

We analyzed pen trajectories recorded in a target tracking experiment (Matić and Gomez-Marin, 

in preparation).  

Participants were seated, looking at a computer monitor, while holding an electronic pen in their 

dominant hand on a graphics tablet. There was a small circular target displayed on the screen. The 

pen determined the position of a circular cursor on the screen, and the task of the participant was 

to track the target with the cursor. Targets always moved in an elliptical pattern. Target trajectories 

varied across trials (i) in 9 different frequencies, from slow rhythms to fast, and (ii) in 3 different 

speed profiles: constant speed (βVC=0), ‘natural speed’ (βVC=-1/3) and ‘extra slowing’ (βVC=-2/3). 

Each participant (three males) performed 27 trials of target tracking, lasting 16 seconds, presented 

in a random order. 

The recorded trajectories were smoothed by a second-order, low-pass Butterworth filter with a 

cutoff at 10Hz, and differentiated to estimate speed and curvature. The power law exponents β 

and the coefficients of determination r2 were estimated using linear regression. Conformity to the 

power law was chosen at an arbitrary point of r2 > 0.75, considering that pure gaussian noise can 

produce a fit of up to r2 ≈0.6 (Maoz et al, 2005). 

All of the data and the code in python for analysis and generating the figures are available in an 

online repository:  https://github.com/adam-matic/AngularSpeedPowerLaw. 

Results 

The plot of the VC power law across frequencies (Figure 2) and the plot of the AC power law 

across frequencies (Figure 3) show that the values of exponents are equivalent; for each trajectory 

the following equality holds: βAC= βVC + 1. However, there is a dramatic difference in the 

coefficients of determination. For the VC power law, only the trajectories performed at fast 

rhythms of f ≥ 0.94 conformed to the power law with the coefficient of determination of r2 ≥ 

0.75. On the other hand, angular speed is strongly correlated to curvature across the entire 

frequency range, with only a few exceptions of the power law estimates with r2 < 0.75, and even 

then, the lowest value is r2 ≈ 0.5.  

                       

Figure 2.  Using tangential speed and curvature to estimate the speed-curvature power law, only high-frequency 

participant trajectories (freq ≥ 0.94) conform to the power law with a coefficient of determination r2 ≥ 0.75. Many 

trajectories have a low r2. 
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Figure 3. Using angular speed and curvature to estimate the speed-curvature power law, the r2 is higher than 0.75 for 

most trials, making the AC power law apparently much stronger than the VC power law (see Figure 2). 

 

Clearly, the VC and AC power laws are not equivalent (compare Figure 2 to Figure 3); the AC 

power law tends to be much stronger. 

 

                        

Figure 4. Example data from a single trial (target frequency = 0.27Hz), showing tangential speed, angular speed and 

curvatrue over time. The VC power law is fairly weak, showing that tangential speed is hardly related to curvatrue, 

while in this case the AC power law is very strong, angular speed being strongly correlated with curvature. 

Figure 4 shows a common type of the differences in the estimated strength of the speed-curvature 

power law: when using angular speed, the power law is very strong while, for the same trajectory, 

tangential speed is very weakly related to curvature, apart from a slight tendency to slow down in 

more curved parts of the path.  

In other words, there can be plenty of empirical cases in which the speed V of the cursor is hardly 

related to the curvature, while the speed of ‘turning’, or the rate of change of direction, is strongly 

related to curvature. In the following section we explore why this is the case by means of synthetic 

data. 
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3. SYNTHETIC DATA: Correlation between curvature and the two speeds 

Methods 

In simple linear regression, the coefficient of determination r2 is equal to the square of Pearson’s 

correlation coefficient r. The Pearson’s correlation coefficient r is in turn defined as normalized 

covariance. To investigate the differences between the two power laws, here we focus only on the 

algebraic manipulations of correlations and covariances between the variables, and using 

simulations and random variables. 

Elliptical trajectories were generated in the following way: first, we generated an elliptic trajectory 

with a given semi-minor and semi-major radius, frequency, and number of cycles. Next, we created 

a gaussian noise speed profile of the same length as the trajectory, smoothed it with a low-pass 

butterwort filter at 10Hz cutoff, and then generated a time profile for the elliptic trajectory by 

dividing the distances between the points with the desired speeds obtain from the random speed 

profile. Finally, we used a cubic spline to create constant time-sampling for the final elliptic 

trajectory. 

Results 

According to equation (4), in the VC power law one is correlating log C and log V; according to 

equation (3), for the AC power law one is correlating log C and log A. However, we also know 

that A=CV, and therefore log A = log C + log V. In considering the AC power law, we are, in 

effect, correlating log C with log C + log V.  

Letting Cov = covariance, a = log A, c = log C, and v = log V, we can write:  

Cov(c, a) = Cov(c, c+v) = Cov(c, c) + Cov(c, v) = Var c + Cov(c, v)  

We can then see that Cov(c, a) will be dependent not only on the covariance of curvature and 

speed, but also on the variance of curvature. This means that the correlation coefficient will tend 

to be large when the curvature has a big variance relative to speed, regardless of the actual 

correlation between speed and curvature. 

One can simply and effectively explore such a dependency as follows. Let us take two random 

normal variables x and y (Figure 5) and calculate the correlation coefficient between x and x + y, 

as an analogy to correlation of log C and log A. Letting Corr be equal to the Person’s correlation 

coefficient, obviously, the correlation r = Corr(x, x+y) is not equivalent to the Corr(x, y), which is 

zero in all four cases. Instead, if we keep the standard deviation of y stable, the Corr(x, x + y) 

increases with the standard deviation of x. 

 

Figure 5. For two random normal variables x (mean 10, std in range [0.1, 4]) and y (mean 10, std 1), the variable x is 

not necessarily correlated to x+y, but it gets more strongly correlated as the variance of x increases. 
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The same effect of increasing the range of curvature can be illustrated with a random speed profile 

along a circular and along an elliptic trajectory. As shown on Figure 6A, the circular trajectory is 

designed to have a constant curvature profile and a random-smoothed speed profile. As expected, 

the correlation between logC and logV is very low, and so is the correlation between logC and 

logA. In the case of the ellipse (Figure 6B), the curvature profile has a bigger range, but the speed 

profile is identical to the circle. This single change was enough to increase the correlation between 

logC and logA to 1. 

We further explore this effect in Figure 7. We show how the Pearson’s correlation coefficient 

Corr(logC, logV) is near zero for all values the semi-major axis. This is expected, since the speed 

profile is randomized. However, for the correlation between angular speed and curvature, even a 

small increase in the semi-major axis, making the ellipse slightly eccentric, and making the 

curvature have slightly larger variance, increases the correlation Corr(logC, logA) to very high 

levels.  

 

                     

 

 

 

 

 

 

 

                          

 

 

 

 

 

 

Figure 6. Correlation depends on the range of curvature in generated ellipses. (A) For a circular trajectory, radius of 

100 mm, with a random-smoothed speed profile, both the logC-logV and logC-logA correlations are near zero. (B) 

For an elliptic trajectory, ra = 150 mm, rb =10 0mm, with the same speed profile, the logC – logV correlation is still 

low, while the logC-logA is very high. In this case, it is worth realizing that an exponent tending to β=1 for the AC 

power law already indicates, if one recalls the mathematics, that there will be no relation at all between tangential speed 

and curvature. 

 

A 

B 
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Figure 7. The correlation between logC and logA depends on the range of curvature, even in the absence of a speed-

curvature power law.  All ellipses had the same random-smoothed speed profile (see Figure 5), and the same semi-

minor axis rb=100mm, while the curvature range was varied by increasing the semi-major axis. Note that, for instance, 

at 105 mm, which is 5% increase, the correlation is 0.87, and at 110 mm, which is a 10% increase, the correlation is 

0.96. 

 

4. DISCUSSION 

Here we asked whether tangential speed and angular speed are equivalent in estimating the speed-

curvature power law from data. 

The analysis of empirical data from an experiment with human participants (Figures 2, 3 and 4) 

shows a huge difference between the two forms of the speed-curvature power law, generally 

considered to be equivalent. This difference can be explained in the following way: the VC version 

of the law is relating a purely kinematic variable (tangential speed) with a purely geometric variable 

(curvature), and is adequately reflecting the strength of the constraint in human movement. The 

correlation between angular speed and curvature, and the AC power law, have to be interpreted 

differently. 

We also found that some types of movement (here fast drawing of ellipses at about 1s of cycle 

time or faster) show a strong speed-curvature power law, always with an exponent tending to 

βvc≈-1/3. Other forms of movement don’t show a strong speed-curvature power law, namely, 

drawing of slower ellipses (Figure 2).  

We stress that this correlation is measuring a genuine phenomenon in movement, an invariance 

that needs to be explained by theories of human motor control. However, the correlation between 

angular speed and curvature will reflect the tendency that small-curvature segments have smaller 

angular speed; a generic fact we know a priori from A = CV.  

Conceptually, one could think of the correlation between angular speed and curvature as the 

correlation between widths and areas of rectangles (area = width * height, or log area = log width 

+ log height) in a set of rectangles of different sizes. In this idealized example, the correlation is 

not necessarily there, but in most cases, if we have a sufficient range of widths, the small-width 

rectangles can be associated with small areas, and large-width rectangles with large areas, regardless 

of their heights. The larger the range of widths, the stronger the correlation.  

Although it is possible to measure (Figure 4) or construct (Figure 6) trajectories where angular 

speed and curvature that are hardly correlated at all, in most movement trajectories a great deal of 

the correlation between angular speed and curvature arises from the fact that the rate of change of 
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direction increases in direct proportion to curvature. As we have illustrated, a high correlation 

between logA and logC in an elliptical trajectory can arise it complete absence of kinematic-

geometric constraints (Figure 6B and Figure 7). 

Ever since the pioneering works of Binet and Courtier (1883), Jack (1895), and a century latter 

Lacquaniti et al (1983), one goal of movement science is to understand why there is a relationship 

between movement speed and curvature. In such a quest, the main message of this manuscript is 

that when estimating the correlation between kinematics and geometry of movement, one should 

better use mutually independent kinematic and geometric variables, such as tangential speed and 

curvature, avoiding angular speed, as it can often inject spurious correlations to curvature, leading 

to misinterpretations of the strength of the speed-curvature power law of movement. 
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The control architecture guiding simple movements such as reaching toward a visual

target remains an open problem. The nervous system needs to integrate different

sensory modalities and coordinate multiple degrees of freedom in the human arm to

achieve that goal. The challenge increases due to noise and transport delays in neural

signals, non-linear and fatigable muscles as actuators, and unpredictable environmental

disturbances. Here we examined the capabilities of hierarchical feedback control models

proposed by W. T. Powers, so far only tested in silico. We built a robot arm system with

four degrees of freedom, including a visual system for locating the planar position of

the hand, joint angle proprioception, and pressure sensing in one point of contact. We

subjected the robot to various human-inspired reaching and tracking tasks and found

features of biological movement, such as isochrony and bell-shaped velocity profiles

in straight-line movements, and the speed-curvature power law in curved movements.

These behavioral properties emerge without trajectory planning or explicit optimization

algorithms. We then applied static structural perturbations to the robot: we blocked the

wrist joint, tilted the writing surface, extended the hand with a tool, and rotated the visual

system. For all of them, we found that the arm in machina adapts its behavior without

being reprogrammed. In sum, while limited in speed and precision (by the nature of the

do-it-yourself inexpensive components we used to build the robot from scratch), when

faced with the noise, delays, non-linearities, and unpredictable disturbances of the real

world, the embodied control architecture shown here balances biological realism with

design simplicity.

Keywords: robot arm, perceptual control theory, reaching, tracking, human movement

INTRODUCTION

Pointing and reaching toward visual targets are nearly effortless human behaviors. However, an
explanation of these processes at levels of detail and abstraction that would allow us to build
equally capable artificial systems or to treat common disorders in hand and arm control remains
elusive. An understanding of such simple motor behaviors should follow from a broader theory
of sensorimotor control, while being consistent with the anatomical structure of the underlying
system. Such an understanding would provide insights into the origin of laws, invariances, and
principles in the behavior of organisms.
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The anatomical structure of the nervous system, together with
the behavioral analysis of organisms under different conditions
and upon different perturbations, suggests that biological control
is hierarchical. One of the earliest hypotheses on the hierarchical
nature of the nervous systemwas proposed by Hughlings Jackson
(1884, 1958), discussing the possible evolutionary development
of the nervous system in layers (see also Prescott et al.,
1999). In turn, neurophysiologist Nikolai Bernstein proposed
a hierarchical organization of neural structures underlying
movement, where each layer performs a specific function,
increasing in abstraction as one ascends the hierarchy (see Profeta
and Turvey, 2018). Arguments for the existence of hierarchy of
control can also be made from the comparative evolutionary
history of the nervous system (Cisek, 2019) and from early
development in primates (Plooij and van de Rijt-Plooij, 1990).

However, some findings in spinalized preparations blur the
line between the capabilities of different levels in motor control.
Cats with a transected spinal cord or cats in a decerebrate
preparation can learn to walk on a treadmill (Whelan, 1996);
decerebrate ferrets can learn new locomotion trajectories (Lou
and Bloedel, 1988, 1992); rats with lesions in themotor cortex can
still move in stable, predictable, non-perturbing environments,
but not if the environment is rapidly changing (Lopes, 2016).
Those experiments show the existence of independent “lower
levels” in the spinal cord, capable of relatively complex behaviors
on its own, despite normally operating in accord with the higher
levels. Therefore, while the consensus seems to be that biological
control is hierarchical, it is still unclear what is the function of
each particular level, what are their limits and relationship, or
even why there is a hierarchy at all.

Hierarchical architectures have been used in robotics,
famously by Brooks in the subsumption architecture (Brooks,
1986). More recently, Merel et al. (2019) listed core advantages
of hierarchical control appearing in both biological and
engineered systems. Hierarchies allow for modularization and
simplification of individual controllers and training procedures.
Each subsystem can deal with only a part of the incoming sensory
information, and, having partial autonomy, can be trained
separately with cost functions and performance requirements
distinct from the task objective. In contrast, “flat” non-
hierarchical controllers receive and process all the sensory
information, and directly calculate the behavioral output. Such
arrangements make the control algorithm complex, require
extensive training, and result in rather incomprehensible
information flows. Thus, at least from an engineering perspective,
hierarchical architectures can be very beneficial for adaptive
behavioral control.

A prominent normative approach to motor behavior is
optimal feedback control (Todorov and Jordan, 2002a; Scott,
2004, 2012; Shadmehr and Krakauer, 2008). The theory predicts
many of the features of human movement and corrects a
long-standing bias against the importance of sensory feedback
in online movement (e.g., Flash and Hogan, 1985; Uno
et al., 1989). However, this theoretical framework does not
necessarily suggest a neural substrate for implementation of the
proposed control algorithms. In fact, it is still debated whether
some features of the optimal feedback control architecture,

such as internal forward and inverse models are necessary,
computationally too complex, and whether they can be found
in the brain or not (Loeb, 2012; McNamee and Wolpert, 2019;
Hadjiosif et al., 2021). Briefly, forward models estimate the
current state from a copy of the motor command and the
delayed sensory signals, while the inverse models (also called
controllers) provide a motor command that will achieve the
desired state given the current state and an inverted model of
the plant (Wolpert and Kawato, 1998). The theory does not
explicitly address the hierarchical structure of motor control
or the role of sensory feedback in subcortical levels and the
spinal cord.

Exploring the computational principles that underlie eye-
hand coordination and synergistic control in pointing and
reaching, William T. Powers designed a series of distinct models
of arm control. The first one (Powers, 1999) contained a model
of muscles, an arm with three degrees of freedom (DOF) and a
binocular vision control layer. The organization of this control
system follows roughly the anatomical hierarchical organization
of the spinal and some supra-spinal neural structures involved
in human motor control and arm coordination. The second
model (Powers, 2008) consisted of a 14 DOF arm with
more fidelity in arm segment lengths and joint movement
limits, but it lacked the muscle model. These models were
built by cascading multiple layers of simple proportional and
proportional-derivative feedback loops with low-pass filtering.
Using hierarchically arranged controllers, and a selection
of biologically-inspired controlled variables, Powers managed
to avoid computationally expensive calculations of inverse
models, unreliable estimates of load properties, and even
inverse kinematics.

However, the behavioral capabilities of those models have not
been assessed beyond the ideal world of numerical simulations.
Our aim here is to test the in silico idea in machina, namely, to
run those arm simulations in a robot arm, thus assessing not only
the feasibility of the proposal in controlling a robot arm, but its
biological realism in the context of human movement.

Why is this necessary and important? As with many
simulations, Powers’ arm models contain idealized
representations of the nervous system, the body, and the
environment. To name a few: there is no friction, no noise,
no realistic transport delays (although there are some delays),
no contact forces, etc. These idealizations are acceptable for
initial testing and demonstration of principles, but as argued by
Webb (2001), models of biological structures should be tested
in terms of real problems faced by real organisms in the real
world. Additionally, as claimed by Brooks (1992), there is a
near certainty that programs that work well on simulated robots
completely fail in real robots because of the differences between
simulated and real-world sensing and actuation. Moreover,
designing and building robots that work decently can generate
insights about the function of structures in the nervous system
that produce analogous behaviors in living organisms (Floreano
et al., 2014; Morimoto and Kawato, 2015).

In sum, following this approach, in the present work we
adapted and implemented the proposed hierarchical control
architecture (Powers, 1999, 2008) to a 4 DOF robot arm in
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order to examine its theoretical capabilities in the real world—
dealing with noise, delays, non-linearities, and unpredictable
environmental disturbances; as well as to generate insights
about human control in basic task such as reaching or
tracking. In the first part of the manuscript, we show that
several fundamental invariant properties found in human hand

trajectories—isochrony, bell-shaped velocity profiles and the

speed-curvature power law—are also found in the robot arm
trajectories without planning or optimization. In the second part,

we demonstrate the motor equivalence phenomenon, where the

robot arm can still perform reaching and tracking while the wrist

joint is blocked, without learning or being reprogrammed. We

also show spontaneous behavioral adaptation to the tilt of the

writing surface, to the rotation of the visual field with respect

to the arm segments, and to the extension of the robot hand

with a “tool.” We conclude by discussing the limitations of

both the robot and its control architecture, specifically in the

light of modeling fidelity and potentially higher and lower levels

of control.

METHODS

Hardware: The Robot Arm
We designed and 3D-printed robot arm segments and its rotating
base in PLA plastics. Several pictures of the arm and its diagram
are shown in Figure 1. The robot has four degrees of freedom:
shoulder rotation angle, shoulder pitch, elbow pitch, and wrist
pitch. They are actuated via DC motors M0–M3, respectively
(Figure 1B). The location of the shoulder pitch joint is 4 cm
above the base level. The upper and lower arms are both 12 cm
in length, while the hand spans 10 cm from the wrist joint to
the hand tip. Each joint has a geared DC motor as the actuator
and a potentiometer as a sensor to estimate the joint angle
and angular velocity. The motors and gear trains come from
RC servos: two HobbyKing 15298 in base and shoulder joints,
Futaba S3003 in the elbow, and an N20 DC motor in the wrist.
All the electronics and control circuits were removed from the
servo motors and replaced by custom control software on the
microcontroller. The potentiometers on the gear output shaft of
the servos were kept to measure the angular position of the joints.

FIGURE 1 | The robot arm system design and implementation. (A) Side view showing the body of the robot, enclosed microcontroller, electronic pen, and tablet. (B)

Diagram of the robot arm in perspective view with arm segments L0–L3, motors M0–M3, camera, tablet, pen, and marker of tip position. (C) Photo of the

experimental setup, including the top camera. (D) Top view photo (camera’s viewpoint), the green circle is used by the visual system as the marker of hand tip

position. (E) Diagram of the robot from the top view.
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The microcontroller used was Teensy 3.1, with a Cortex-M4
processor working at 96 Mhz and 3.3V logic. It was programmed
in C++ in Arduino IDE 1.8.6. It outputs four pulse-width
modulated (PWM) signals to two TB6612FNG dual H-bridge
1A motor drivers, each connected to two motors and a 9V 1A
power supply, limited to 5V in software. The sampling rate for
angle potentiometers and control signal calculation rate on the
microcontroller was 200 Hz.

To detect and measure the marker position, we used a generic
webcamwith a resolution of 640× 480 px and a maximum frame
rate of 30Hz. The camera was placed at a height of ∼40 cm from
the writing surface using a 3D printed stand (Figure 1C) The
camera was pointed down toward the marker on the tip of the
hand, covering the area of 26× 19.5 cm, slightly smaller than the
graphics tablet active area size (Figures 1D,E). The image from
the camera was used to construct two controlled variables, the
x and y position of the marker, and formed the basis of visual
controlled loops.

To measure pen angle and pressure, we used a graphics tablet
Wacom Intuos Pro Paper PTH-860, with an active surface of 30.7
× 21.3 cm, at a spatial resolution of 0.08mm. The sampling rate
of the tablet was 120 samples per second. However, we used 30
samples per second for pen pressure and pen angle control in
order to be synchronized with the visual control loops that were
limited by the temporal resolution of the camera to 30Hz. The
position of the pen as measured by the tablet itself was not used
in arm control.

The PC we used for recording and visual processing had an
Intel i5 processor, 8 GB of RAM, and runs on Windows 10 OS.

We initially designed and placed pressure sensors on the hand
of the robot, using three linear sliding potentiometers measuring
the stretch of an elastic rubber band when the hand is pressing
on a surface (visible on the hand in Figure 1A). One sensor was
placed at the tip of the hand, and two on the base. The sum of
travel of all three potentiometers was therefore directly related to
the pressure of the palm on a surface, and the difference between
the front potentiometer and two back potentiometers was related
to the pressure difference and tilt of the hand. However, the
Wacom graphics tablet also reports the pressure of the pen on
the tablet and the angle of pen tilt, and these readings proved
to be more reliable than our custom sensors and were used in
control loops.

Software and the Control Architecture
Hierarchical Control
In the arm models, Powers (1999, 2008) provides several
simulations of hierarchical control architectures. However, those
control systems are not proposals for the exact architecture of
the human arm control systems, but rather conceptual models
and demonstrations of principles. There are no rigorous rules
or recipes given for construction of hierarchical systems. In his
1973 book, Powers proposes that the first, lowest-level control
systems are in direct contact with the environment via receptors
and effectors, forming fast negative feedback loops, with short
transport delays. The reference values for the first level are
supplied by the second level in the hierarchy, as outputs of a

single control system or functions of outputs of multiple second-
level control systems. The controlled variables of the second
level in the hierarchy are constructed as functions of first-level
controlled variables, have a different level of abstraction, and
work with a longer signal transport delay. The next level up then
continues the pattern of creating controlled variables as functions
of lower-level controlled variables and provides the reference
signals for the lower level. An example of the lowest level
would be spinal loops controlling tendon tensions and muscle
lengths, while supra-spinal or cortical loops would implement
control of slower-changing, more abstract variables such as arm
configurations of sequences of positions.

The control architecture of the present robot, as shown in the
block diagram in Figure 2A, is not a verbatim copy of simulated
systems. It is adapted to a 4 DOF arm using the guidelines
and rules of thumb described in the literature. In addition
to proprioceptive and visual variables, it also uses control of
pressure, not found in the simulations. The architecture is
composed of two levels with four control systems at each level.
Starting from the bottom (body, plant), each degree of freedom
of the robot contains a DC motor and a potentiometer for
joint angle measurements. The voltages activating the motors
are proportional to the net signal arriving from the outputs of
lower-level controllers; i.e., the same motors are used by multiple
controllers, creating joint torque-coupling at the controller level.
The gears, potentiometers and housing of the motors come from
RC servos, but the servo circuitry has been stripped away (see
section Hardware: the Robot Arm for details).

The lower level of control (Figure 2A, blue box) is
implemented on the microcontroller, it is faster (200Hz
cycle) and has a short signal transport delay (5–10ms). It is
controlling proprioceptive variables, with a relatively low gain.
The proprioceptive variables R, xp, z, and δ are constructed
from low precision and noisy potentiometer readings and stored
arm segment lengths. Their geometric meaning is shown in the
Figure 2B. Note that joint angles are measured and used in
forward kinematics equations, but they are not controlled.

The higher level (Figure 2A, yellow box) is implemented on
the PC, it is slower (30Hz cycle) and has a longer transport delay
(180–190ms). The variables controlled at the higher level are
visual and tactile, constructed from camera images and graphics
tablet and pen recordings. Their geometric meaning is shown
on Figure 2B. The controllers at this level are slower, but have a
higher gain than controllers on the lower level, i.e., they are more
sensitive to errors. The errors xe and ye between the reference for
the visual position (top level signal provided by the experimenter)
and the sensed visual (x, y) position of robot arm sets the
reference for the proprioceptively sensed endpoint positions xp
and R. The tactile variable pen pressure error ze sets the height
(z) reference; and the pen angle error te sets the reference for the
hand angle δ.

Proportional-Derivative Controller With a Low-Pass

Filter
The basic unit of the control architecture (Figure 2A) is the
proportional-derivative (PD) controller with a low-pass filtering
element (LPF) on the controller output. All of the controllers of

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2021 | Volume 15 | Article 755723

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
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FIGURE 2 | Block diagram of the robot arm control systems and geometric definitions of the variables involved. (A) Block diagram of two levels of feedback loops,

high level (yellow) and low level (blue). There are four high-level controlled variables: position of the marker in (1) x and (2) y dimensions in the visual field, (3) angle of

the pen to the tablet, and (4) pressure of the pen to the tablet. The references for those variables are supplied by the experimenter at each run. The outputs from

higher-level loops are references for the lower-level loops controlling four proprioceptive variables: (1) xp: the x coordinate of the hand tip in proprioceptive space; (2)

reach, R: the distance from the shoulder base to the hand tip; (3) z: the height of the hand tip; and (4) delta (δ): the angle between the x-y plane and the hand. All

controllers are proportional-derivative (PD) with a low-pass filter (LPF) in controller output. (B) Diagrams showing the geometric definitions of variables in the block

diagram, the visual space, and a diagram of the pen angle and pressure variables.
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the hierarchy can be described by the following equations in the
time domain:

o = Kp

(

iref − i
)

− Kv
di

dt
(1)

dy

dt
=

o− y

tc
(2)

where (1) is the PD controller equation with controlled variable
i, reference input iref , output o, the derivative of the controlled
variable di/dt, proportional gain Kp, and derivative gain Kv.
Equation (2) models the low-pass filter with input o and output
y, and tc is the open-loop time constant of the low pass filter.

The purpose of the low pass filter is to modify the bandwidth
of the system. In the presence of delays and noise, high-frequency
disturbances might cause positive feedback and instability. The
low-pass filter attenuates the amplitudes of high-frequency
components or completely removes them from the controller
output, preserving stability of the loop. At the same time, the
proportional and derivative gain can be kept high to maintain
error sensitivity and good performance at low frequencies.

Construction of Controlled Variables
Robot arms are usually built with a servo motor in each
degree of freedom. Consequently, at the lowest level, controlled
variables are joint angles, its derivatives—joint velocities and
accelerations—or joint torque. Building the robot arm from
scratch enabled the experimentation with alternative control
architectures that create coupling between multiple joint motors
and skip joint angle control, which is arguably more biologically
realistic. Instead of joint angle control, we constructed the
controlled variables at the first level using standard forward
kinematics equations, stored arm segment lengths and joint
angle measurements obtained from potentiometers placed at
each joint. Due to imprecise measurements, noise, gear backlash,
and flex in the plastics of the arm segments, the gain of control
systems on the first level was relatively low.

There are four controlled variables at the first level: (1) xp,
the x coordinate of the hand tip in proprioceptive space; (2) R or
reach, the distance from the base to the hand tip; (3) z, the height
of the hand tip or z coordinate in proprioceptive space; and (4) δ

(delta), the angle of the hand with respect to the x-y plane. The
position in x dimension of the hand tip in kinesthetic space (xp)
is controlled by activating the shoulder rotation motor M0. This
configuration limits the work area of the arm to <180◦ in the
upper half-plane (y>0). Reach R is controlled by simultaneously
activating shoulder (M1), elbow (M2), and wrist (M3) motors,
with the elbow being activated in the opposite angular direction
from the other two. Height z of the hand tip is controlled by
moving the shoulder motor M1. Angle delta between the hand
and the x-y plane is controlled by moving the wrist motor M3.
All the variables are controlled simultaneously. For instance, if
correcting the height variable creates an error in δ angle, it will be
treated as a disturbance to the δ angle control system and will be
corrected simultaneously to the height error, creating a coupling
between control systems. Joint angles are not calculated before
starting the movement as in traditional inverse kinematics. Joint

motors move until all the errors are reduced. These calculations
are performed on the microcontroller.

At the second level, there are also four controlled variables:
(1) x and (2) y positions of the marker in visual space, (3) pen
pressure and (4) pen angle (Figure 2B). These control systems
are implemented on the PC, in a script written in Python. The
image processing algorithm uses the OpenCV library to find the
location of a green marker placed on the tip of the hand of the
robot (Figure 2B). The image from the camera is first converted
from BGR color space to HSV; then an inRange filter is applied
to extract the green-colored areas. The filtered image is eroded
and dilated to remove noise. Finally, the location of the marker is
taken to be the center of the largest contour found on the image.
The location of the marker is reported in pixels. Each variable
is sampled or calculated at ∼30Hz, determined by the sampling
rate of the camera. Signal transport delays in visual loops are
∼180–190ms. Pen pressure and pen angle are read-out from
the Wacom tablet using the PyQt5 tabletEvent api, with pressure
being measured in percentages and angle in degrees.

Tuning the Control Systems
We first tuned the lower-level, proprioceptive loops. The tuning
procedure started with setting proportional and derivative gains
to zero, and the time-constant of the low pass filter to a low
value. Next, we increased the proportional gain until oscillations
appeared after a step reference, and then we increased the
derivative gain until the oscillations would stop. If the precision
were not high enough, then we would increase the time constant
of the LPF and retune the proportional and derivative gains to
a higher value, trading bandwidth for precision and stability.
The time constant tc of the low-pass filters was 80ms for all
the controllers at the lower level. For tuning the higher levels,
we applied step references and aimed for a critically damped
response using the same trial and error procedure as described.
The PD controllers at the higher level are identical to lower-
level controllers expressed in Equations (1) and (2). They differ
only in parameters. Loop gains and open-loop time constants are
much larger in higher-level loops in order to achieve stability and
precision in conditions of large loop delays and noise from the
marker location finding algorithm.

Data Analysis
Robot hand trajectories were extracted from the camera-recorded
positions and estimated hand marker locations. We did not use
the position of the pen on the tablet since the position of the
hand-tip marker was not identical to the position of the pen.
The experimental signals were smoothed with low-pass second-
order Butterworth filter, with the cutoff frequency specified for
each analysis, in order to tame the relatively high levels of noise,
aiming for the preservation of position and velocity profiles, and
taking into account the speed of arm movement. Trajectories of
the computational model were not smoothed.

RESULTS

Beyond computer simulations and blackboard mathematics, we
studied the robot arm as an “embodied control architecture”
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in the real world to see how it can deal with tasks
commonly performed by humans and other primates, while
adaptively managing noise, delays, non-linearities, unpredictable
disturbances, and perturbations.

Having built the robot arm hardware from scratch and having
implemented the hierarchical control algorithms as described
above, our main goal was 2-fold: first, to examine the behavior of
the system in its own right, and second, to compare the behavioral
features of the robot arm to known properties and invariances of
human arm movement.

Task I: Straight Movements in a Reaching
Task
The first test is a reaching paradigm similar to the center out
reaching task (Figure 3A) often used in primate and human

movement research (e.g., Cisek and Kalaska, 2002; Inoue et al.,
2018). We applied the step reference signal simultaneously to
x and y visual tracking loops. There was no central stopping
point: for one size of the task, there were 10 movements in each
direction, done in sequence, for a total of 40 movements, with a
5-s pause on the endpoints. The task was repeated 4 times with
different lengths of movement at 4, 8, 12, and 16 cm (Figure 3B).
We did not randomize the movement directions, since the robot
did not have any learning capabilities that might have influenced
the reaction time or movement trajectories.

We found that the robot performs straight movements across

different lengths and different directions in approximately the
same time: 1.45 s (Figure 3C). For the shortest movements (4 cm)

there was a deviation of 50ms from the average duration of

longer length movements. The speed profile (Figure 3D) was

FIGURE 3 | In reaching to a visual reference, the robot arm shows isochrony and bell-shaped speed profiles. (A) Task diagram. The reference jumps between points

A1 and A2, with a pause of 5 s at each point. Then repeats the same pattern at points B1 and B2, C1 and C2, and D1 and D2. (B) Marker position data for four

different sizes of the reference step. (C) Marker position in visual space calculated as the distance from the previous marker position. The marker reaches 95% of the

distance to the reference after a step in about 1.45 s, regardless of the distance or direction traveled. (D) Speed calculated from the same data shows a bell-shaped

profile, scaled in height to step distance. The position data in plots B and C and was low-pass filtered with a 2nd order Butterworth filter with a cutoff at 15Hz, while

the speed data filter had a cutoff at 5Hz.
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roughly bell-shaped with a shorter rise and longer fall segment

and scaled with the length of movement. In all movements, the
maximum speed was achieved at approximately the same time
after the reference step (peak at 0.33 s, Figure 3D), except in
the shortest movement of 4 cm, where the peak of maximum
speed was 70ms later than the average of the other movements.
Robot position data were low-pass filtered using a second-order
Butterworth filter with a cutoff at 15Hz, while the speed data filter
had a cutoff at 5 Hz.

Task II: Curved Movements in a Tracking
Task
Producing elliptic traces or drawings in humans in a fast and fluid
manner results in a speed-curvature relationship known as the
2/3 speed-curvature power law (or 1/3 power law, depending on
the variables used), first described by Lacquaniti et al. (1983). In
the second task, we tested the production of curved movements.
We used a continuously moving reference point, and we report
on the situation where the reference moved at a constant speed
along an elliptic path.

An elliptic trajectory with a constant tangential speed is
a non-power law trajectory (β ≈ 0, r2 ≈ 0); the x and y
components are not pure sinusoids, but also contain higher
frequency components. In the low frequencies, the speed of the
robot was close to the reference speed, but at higher frequencies,
the speed of the robot was not constant and had a sinusoidal
profile and a lower average than the reference speed. At the
highest frequency of input (f = 0.826Hz, speed ≈ 406 mm/s),
the output trajectory followed a speed-curvature power law with
an exponent of β ≈−1/3 and r2 = 0.78 (Figure 4C).

This seems to support the hypothesis that the power law is
a consequence of the physical limitations of the human arm,
and not a planned invariance. However, the size of the drawn
shape was smaller than the reference shape because both x and
y components of the reference are attenuated in the output.
Additionally, the position data was smoothed with a low-pass
filter with a cutoff at 3Hz and differentiated, which increased
the coefficient of determination (r2) of the power law. To
further probe the question of the origin of reaching and tracking
invariances, and to minimize the effect of noise, we created
and fitted a model of visual loop behavior described in the
next section.

Modeling and Characterization of the
in Machina System
The system controlling the visual y variable (Figure 5A) is non-
linear because increasing reach affects the y position differently
depending on the angle of rotation of the base (α). The three
motors involved in changing reach (Figure 5A) are different
in power and mechanical linkage; they have a different effect
on changes in reach depending on the position they are in.
Despite non-linear elements, the behavior of high-level visual
loops can be described fairly well by a set of linear second-
order equations, modeled in the block diagram (Figure 5B), the
free-body diagram (Figure 5C), and a system of equations:

et = yref t−d − yt−d (3)

ÿt =
k

m
et −

b

m
ẏt (4)

FIGURE 4 | The emergence of the speed-curvature power law at high speed. (A) Reference and robot positions. When the reference speed is low, the position of the

robot hand tip marker in visual space matches the speed of the reference. At higher speeds, there is a magnitude attenuation—the ellipse shape is smaller. (B) Plot of

reference and robot speeds. At low speed, the robot speed matches the reference. When the reference speed is high, the speed of the robot is lower and oscillates,

even though the input speed is constant. (C) Oscillations in robot speed for the highest speed input are regular and correlated with local curvature of movement,

following the speed-curvature power law with the exponent of β ≈ −1/3 and r2 = 0.78. The reference speed is constant (400 mm/s), and there is no power law (β ≈

0, r2 ≈ 0). In all the plots colors indicate speed, as shown in the color bar on the right. Position data were smoothed with a 2nd order Butterworth filter with a 3Hz

cutoff and differentiated to generate speed data.
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FIGURE 5 | The behavior of visual feedback loops can be represented by a second-order model. (A) Diagram of the elements in the control of the position of the

hand in visual space in y dimension, including the lower-level control of reach distance. (B) Block diagram of the model with variables, parameters, and functions. (C)

Free body diagram of a mechanical setup analogous to the model mass on a spring with damping. (D) Bode magnitude plot shows how the amplitude of output

signals at high frequencies is attenuated in relation to the input signals. (E) Bode phase plot showing the frequency-dependent phase difference between the input

and the output. The model reproduces the frequency-dependent properties of the robot’s visual loop. (F) The model produces a similar pattern of isochronous

movement independent of distance in the step reference task; as well as (G) bell-shaped speed profiles in the same task (H) The model produces an ellipse smaller

than the reference ellipse, similar to the robot, due to attenuation of high-frequency inputs. The frequency of the input here is 0.826Hz, and the attenuation is ∼9.5

dB. (I) In the same task, the speed of the model follows the same sinusoidal pattern as the speed of the robot, even with the constant speed of the reference. Model

trajectory was not smoothed in any of the plots.

where t is time, e is position error, yref the position reference, y
position, d is loop transport delay. The values of the coefficients
used are k/m = 40, b/m = 27.5, and d = 0.185 s, which were
found by fitting the behavior of the model to the behavior of
the robot in the step reference task with a 12 cm step distance.
The best fit values indicate a slightly overdamped second-order
system. We modeled the x and y control loops as independent
systems with equal parameters.

The model in Equations (3) and (4) is analogous to a mass-
spring-damper system (Figure 5C) with a movable equilibrium
position and a pure delay element. The approach trajectory of
the marker on the hand of the robot to the visual reference in
the step-reference task is similar or analogous to the approach
trajectory of an object of mass m on a spring with stiffness k
and damping b toward its equilibrium position yref, where the
displacement of the equilibrium position happens after a delay

of d seconds. The spring constant is an analog of the visual gain
or sensitivity to error; the damping coefficient b is an analog
of the combined effect of visual velocity gain (damping term in
the visual PD controller), gains at the proprioceptive level, and
friction between the pen and the tablet; the mass in the mass-
spring-damper system is an analog of the combined contribution
of the mass of the robot arm, time constants in the visual loops
and inertia of electromotors; and the delay is the total duration of
the travel of the signal around the visual loop, combining camera
latency, frame rate, and transmission delays of the serial protocol
between the PC and the microcontroller.

We examined the behavior of the robot in response to
sinusoid inputs across a range of frequencies (0.008, 0.083,
0.413, 0.826Hz). We applied input as the visual reference signals
and measured the output as the position of the marker in the
visual field over time. We calculated the relation of output

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2021 | Volume 15 | Article 755723

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
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amplitude Aout to input amplitude as 20 log10 (Aout/Ain) for
the Bode magnitude plot, and we calculated the phase difference
between the input and output sinusoids for the phase plot.
We then interpolated the plot using the second-order mass-
spring-damper model (Figures 5D,E, model interpolation in red,
experimental values in blue).

Looking at the Bode plot (Figures 5D,E), we can see that the
system is stable for all input frequencies. At the gain crossover
frequency of ∼0.1Hz, the system has a large phase margin of
about 160◦, and at the phase crossover frequency at ∼1Hz
the magnitude attenuation is 11 dB, which satisfies the stability
criterion of having both the phase and gain margins positive. The
bandwidth is limited by the large transport and processing delays
in the visual loops, approximated at 185ms. The delays cause
a phase shift that takes an increasingly longer part of the sine
period with the increase in frequency and are compensated by
low pass filtering the controller output (see Equations 1 and 2 in
Methods section).

We repeated the step-reference task with the model
(Figures 5F,G). The duration of movement is isochronous across
different distances: it takes the same amount of time, 1.47 s, to
cross 95% of the distance to the reference. The speeds are bell-
shaped and scaled with distance, but they all reach a peak after
0.37 s, replicating very nearly the behavior of the robot arm.

Finally, in the ellipse tracking task (Figures 5H,I) at the
highest frequency of 0.826Hz of input, the model replicated
the size of the robot trajectory, and also the properties of the
speed profile. Even when the reference speed was constant, at
this frequency, the speed profile of the model was sinusoidal.
Model trajectory followed a speed-curvature power law with the
exponent β =−0.40, r2 = 0.98.

Model trajectories in panels (Figures 5D–I) were produced by
a model with the same, constant coefficients, simulated with a
time step of 5ms and Euler integration. Model trajectories were
not low-pass filtered.

Task III: Robustness to Blocking the Robot
Arm’s Wrist Joint
The hallmark of biological motor control is robustness to
perturbations. In further testing of the robot arm, we applied
different perturbations to the controlled variables, keeping them
constant for the duration of the task and not changing any of the
parameters in the controllers or other parts of the software of the
robot. We blocked the wrist, tilted the writing tablet, added a tool
that extended the arm, and rotated the visual field.

In the first trial, we blocked the wrist joint and compared
the performance of the robot in visual tracking tasks to the
performance in normal operation where the wrist was moving
freely. Without any changes to the code or parameters of
the control systems, the robot arm performed the tasks even
with the wrist blocked. In normal operation, the variable reach
(Figures 6A,B) is affected by three motors—in the shoulder
(M1), elbow (M2), and wrist (M3). The time-plot of the variables
in normal operation in the step reference task (Figure 6D) shows
joint angles that illustrate how all three motors contribute to the
movement. When the wrist is blocked, reach is maintained at

the same desired value as in the normal situation. However, here
reach is not affected by three motors, but only by two: the elbow
and shoulder motor automatically pick up or compensate for the
work normally done by the wrist motor because their activation
is proportional to the reach error.

The block diagram shows the flow of information in the
reach synergy (Figure 6B). We can describe the system using
the terminology of Latash (2008) or Latash et al. (2007): the
performance variable is reach, and it is maintained at its reference
level ye by varying elemental variables—activations o1, o2 and
o3, of motors M1, M2, and M3, respectively. The activations
are calculated by weighting the output Ro of the controller,
and summing the signals with outputs from other systems, here
control of height z and wrist angle δ. These sums (o1, o2, and
o3) are used as activations of motors, as pulse-width-modulated
signals from the microcontroller to the motor driver chip.

Task IV: Further Perturbations: Tilting the
Tablet, Using Tools, Rotating Point-of-View
We applied static disturbances or perturbations to controlled
variables either directly or indirectly to examine the adaptiveness
and robustness of the robot control architecture. In the normal
condition, without additional perturbations (Figure 7A), the
writing tablet is horizontal, the wrist is mobile, the marker is on
the tip of the hand of the robot, and the visual coordinate system
is roughly aligned with the proprioceptive coordinate system
along the× and y axes. The angle of the pen to the tablet is sensed
and maintained at 0 degrees (pen is perpendicular to the tablet,
while the hand is parallel to the tablet) by moving the wrist joint.
The pressure of the pen to the tablet is sensed and maintained at
or near 50%.

In the tilted tablet condition (Figure 7B), the end of the tablet
distal to the robot was lifted to make the tablet close an angle of
30◦ to the surface. This perturbation challenged the pen pressure
and pen angle control systems because the pressure control
system needs to continuously modify the height of the hand in
order to keep the pressure at 50% and still move toward the
reference in the visual space. The pen angle control system needs
to modify the wrist angle so that the pen is always orthogonal
to the tablet surface. The plots of pen angle and pressure show
that those variables were maintained near their reference values
despite the perturbation, with somewhat more error than in the
normal condition.

In the tool use task (Figure 7C), we added a 12 cm long plastic
piece to the tip of the arm and moved the marker forward to
the end of the plastic piece, creating a situation resembling tool
use, as now the tip of the “tool” was tracking the reference. We
moved the camera about 12 cm forward to keep the workspace
in the visual field. The robot performed the task without learning
or reprogramming visual transformations. In the next task, we
rotated the visual field by 30◦ (Figure 7D) by rotating the camera
and keeping the robot in place. This amount of rotation is near
the limits of performance—the robot performed the task with
higher amounts of error, visible on the patterns (red) on the plots.

The perturbations summary plot shows the average absolute
error as the average distance of the hand marker from the
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FIGURE 6 | Blocking the wrist is compensated by the reach synergy. (A) Geometric definition of reach—the distance from shoulder base to the tip of the hand, and

locations of joint motors. (B) Block diagram of computational and physical processes in the reach synergy, with marked performance and elemental variables. (C)

Diagram of the normal and blocked wrist setup. In the normal setup, the wrist moves freely, keeping the hand parallel to the tablet (and the pen perpendicular). In the

blocked-wrist setup, the motor of the wrist is not powered, and the wrist is locked at ∼180◦ to the forearm. (D) Segment of a reaching task with a step reference,

comparing the normal and blocked-wrist situation. With the wrist blocked, reach is nearly identical to reach in the normal situation, but shoulder and elbow motors are

activated more to compensate. Shoulder and especially elbow angle show differences in both situations.

reference in all perturbation tests across different tasks. The error
grows with distance or the size of the step in the step-reference
task. In pseudorandom tracking, the error grows with “difficulty,”
where more difficult tasks have a higher magnitude of high-
frequency signals. In the ellipse tracking task, the error grows
with frequency or with the speed of the reference. Thus, our
robot arm is highly robust to external perturbations, akin to
human movement.

DISCUSSION

We have demonstrated how and explained why a custom-made
robot arm (Figure 1) with a hierarchical control architecture
(Figure 2) based on simulations by Powers (1999, 2008) displays
basic features characteristic of biological movement. Being robust
to noise and delays, the robot’s behavior complies with isochrony
and displays bell-shaped velocity profiles in a reaching task
(Figure 3). In tracking a moving target at high speeds, the robot
complies with the so-called speed-curvature power law of human
movement (Figure 4).

We must acknowledge that the proposed control architecture
does not fully explain the production of reaching and tracking
trajectories since (i) the reaching trajectories of the robot are
isochronous for different reach distances, while humans may
change the reaching duration according to speed or accuracy
demands of the task (Fitts, 1954); and (ii) the tracking of elliptic
reference trajectories does not reproduce the geometrical trace
or exact speed profile of the reference, with the amplitude of
movement falling with frequency, and the shape reducing in size.

However, it is clear that the hierarchical organization of
the control systems afford a lot of flexibility to the robot
arm even without learning algorithms or online optimization.
Moreover, we have demonstrated adaptive behavior to structural
perturbations such as blocking the robot’s wrist (Figure 6) and
to environmental configuration disturbances such as tilting the
writing tablet, extending the hand with a tool, or rotating
the visual field (Figure 7). The main reason for such a robust
behavioral emergence seems to be the choice of the controlled
variables and the hierarchical arrangement of the control systems.
We further discuss these findings below.
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FIGURE 7 | Diagrams of perturbation conditions and a plot of tracking performance in different tasks. (A) the normal condition diagram and plots of pen angle and

pressure from a pseudorandom tracking task, reference in red and measured variable in blue. (B) The tablet is tilted 30◦, distal part is lifted, plots show the pen angle,

and pressure in a pseudorandom tracking task, reference in red and measured variable in blue. (C) Diagram of the tool use task, a 12 cm plastic piece is attached to

the hand of the robot, and the maker placed on the end. (D) Diagram of the camera rotation task; the camera is rotated by 30◦ when compared to the “normal”

conditions. (E) Diagram of the blocked wrist. (F) Average distance (absolute error) between the marker and the reference in the visual space, across different

conditions and tracking tasks. Bellow the plot are robot trajectories for each perturbation condition and task.

Frequency Response and Stability Despite
Noise and Delays
The frequency response of the robot’s visually guided behavior
(Figure 3) shows how the arm behaves in response to input

signals of different frequencies, where the “input” is the reference

or setpoint input to the hand tip position in the visual space, and

the “response” is the hand tip position in visual space. We can

see that the system is stable for inputs of any frequency because
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both the phase and gain margins are positive. The system has
a slightly overdamped second-order response (simplified model
of the robot arm discussed later in more detail), and it acts as
a low pass filter with the gain crossover frequency of ∼0.08–
0.1Hz. This means that magnitudes of all input signals above this
frequency will be attenuated.

Transport delays in the human visuo-manual loops in tracking
pseudorandom targets are approximated at 100–150ms (Viviani
et al., 1987; Parker et al., 2017). Visual loops of the present robot
also contain large signal transport delays, 180–200ms, that come
from camera latency and refresh rate, as well as serial protocol
communication delays between the microcontroller and the PC.
Delays in feedback loops cause a frequency-dependent phase shift
so that at high frequencies of input, the phase shift might cause
the actuator action to add to the error, creating positive feedback
as opposed to negative feedback where the error is reduced,
whichmay cause instability and oscillation. Long transport delays
are often cited as the main reason for relatively complex delay-
compensation schemes such as forward models (e.g., Miall et al.,
1993; Kawato, 1999; Desmurget and Grafton, 2000). A forward
model, given the efference copy of themotor command, estimates
the state of the arm at current time, instead of waiting for the
delayed feedback signals. However, we show that an alternative,
simpler scheme might work.

Stability can be achieved by reducing the bandwidth of the
system—trading the bandwidth for stability—using low pass filter
elements in the outputs of controllers (Figure 2). This maintains
the visual loop gain high when the input frequency is low and
reduces the effective gain for high-frequency inputs to avoid
positive feedback (Powers, 2008). Additionally, the “real world”
is highly unpredictable, and various disturbances acting on the
arm would invalidate any prediction made by the forward model
that takes only the motor command into account. The present
architecture avoids the problem by always using feedback signals,
affected by both motor action and environmental disturbances,
as representations or parameters in calculation of actual state.

The robot arm is still capable of producing movements
with high peak speed (Figure 3), while movements with both
a short duration and a high peak speed might be produced if
the movement was stopped by an obstacle. This might be a
mechanism involved in fast, short movements of human hands
in e.g., pressing piano keys.

Most of the effects of sensory noise in the high-gain visual
level systems seem to be averaged over time by the low-pass filter
and do not affect the movement, especially at low speed, and
don’t require additional compensation mechanisms. In the lower
levels, sensory noise does not affect movement because the gains
are low.

Isochrony, Bell-Shaped Velocity, and the
Speed-Curvature Power Law
In humans, isochrony was found in drawing figures of different
sizes (Viviani and McCollum, 1983; Viviani and Flash, 1995). It
was also found in macaques in natural settings (Sartori et al.,
2013), but not consistently in laboratory settings (Castiello and
Dadda, 2019). In the Fitts tapping task, the time of movement
is related to the so-called index of difficulty, and isochrony is

present not for all movements, but for tasks of the same index
of difficulty (Guiard, 2009). The tapping task illustrates the
speed-accuracy tradeoff: the faster we move, the less accurate
our movements will be. Then, in order to preserve accuracy,
presumably, when aiming for smaller targets, we slow down
our movements.

We have found that the robot performs isochronously all
movements in the step-reference task, regardless of travel
distance or direction (Figure 3); for all movements in this
task, the average reaching time was 1.47 s. In comparison, e.g.,
Fitts (1954) reports times from 0.180 to 0.580 s for reaching
across comparable distances; depending also on the size of the
target or the required accuracy. This illustrates that for a direct
comparison with humanmovement, the robot armwould need to
have (1) higher force-producing capabilities and (2) presumably
a higher-level system that would be able to perceive target sizes
and modify produced speeds accordingly. The arm might also be
made closer in size to the human arm: with 12 cm forearm and
12 cm upper arm it is approximately a third of the size of the adult
human arm.

In humans, during rapid straight-line hand movements,
the speed profile is not constant. The movement starts slow,
accelerates to a point, then decelerates to a stop, forming
a bell shape over time or distance. Some researchers report
symmetrical bell shapes where the peak speed is in the middle
of the movement (Flash and Hogan, 1985), and some report
less symmetrical profiles, namely short acceleration and longer
deceleration phase in human (Soechting, 1984; Atkeson and
Hollerbach, 1985) and in primate reaching (Inoue et al., 2018).
In the step-reference task, we found that the speed profiles are
bell-shaped, asymmetrical with a short acceleration phase and
longer deceleration, and with the maximum speed scaled with
the extent of the movement (Figure 3). The peak speeds for the
robot arm were in the range from 50 mm/s for 4 cm distance
to 300 mm/s for 16 cm distance; while in human reaching peak
speeds are higher, e.g., Soechting (1984) reports speeds of 650–
1,300mm/s for reaching across 30 cm.Without the modifications
to the robot arm system mentioned in the previous paragraph, it
is not possible to make more direct comparisons.

We interpret this speed profile emerging as a consequence
of programming visual level loops as proportional-derivative
controllers. Since there was no trajectory planning or online
optimization, our results show that it is possible to achieve such
profiles with a simple control architecture, supported also by our
mass-spring-damper simulation.

There were no accuracy requirements, but we found that
increasing the frequency and speed in the ellipse tracking task
decreased the accuracy, suggesting a speed-accuracy tradeoff in
the movement of the robot. This tradeoff seems to be caused
by several factors: (i) the low-pass filtering properties of the
arm, resulting from its inertia, relatively low power of the
actuators and also explicit low-pass filter elements, and (ii) the
increased influence of lower-level non-linearities and control
system interactions on the behavior of the robot because the
errors on the lower levels were not corrected fast enough.

The speed-curvature power law with a two-thirds coefficient
is observed in rapid elliptical movement in humans. This
phenomenon can be roughly described as movement at lower
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speed in areas of high curvature and relatively higher speed in
areas of low curvature (Viviani and Terzuolo, 1982; Lacquaniti
et al., 1983). The production of a power law trajectory is not
obligatory in principle because the hand might take many of the
infinite possible trajectories along the same path. However, the
set of possible trajectories is limited by the physical properties of
the hand and the environment. For instance, the hand will never
move instantaneously from point A to point B, as there is a limit
to the force produced by muscles.

Remarkably, when the robot was tracking a high-frequency
elliptic reference, we found the speed-curvature power law in
the measured movement, even when it was not present in the
reference input. This result is consistent with the optimization
of jerk in the movement planning phase (Viviani and Flash, 1995;
Huh and Sejnowski, 2015). However, we seem to be getting an
optimal jerk trajectory “for free,” without an explicit optimization
algorithm. This result shows that the speed-curvature power law
can be achieved without explicitly optimizing jerk or smoothness
either in the planning phase or online.

However, the robot did not accurately follow the path
component of the reference. It seems that the emergence of the
power law comes from the failure of the robot to accurately
follow the high-frequency non-power law position reference,
which is interesting. This can be viewed as a consequence
of low-pass filtering the reference signal by the robot arm
system. The position references in x and y dimensions have
high-frequency components that get filtered out, leaving single-
frequency sinusoid fundamentals, conforming to the power law.
Similar results were obtained in simulations by Gribble and Ostry
(1996) and Schaal and Sternad (2001) where low-pass filtering
non-power-law input signals produced power law trajectories.

Related to this result, several studies with human participants
have shown that it is difficult to accurately track targets that
don’t follow the speed-curvature power law (Viviani et al.,
1987; Viviani, 1988; Viviani and Mounoud, 1990). However,
the subjects did accurately follow the path component of the
trajectory and the rhythm of the target. We further discuss
possible mechanisms in the section “higher levels.”

A Second Order Simple Model Accounts
for the Robot’s Behavioral Features
Human behavior in tracking pseudorandom targets can be
accurately modeled by a first-order model with three constant
parameters (see review in Parker et al., 2020). The step-response
and frequency response in humans is also modeled by second-
order models, bang-bang control, surge control, or the Crossover
model (compared in Müller et al., 2017) with various tradeoffs in
simplicity and accuracy of modeling.

Here, in turn, we modeled the behavior of the robot itself with
a second-order system, a mass on a spring with damping, with
three constant parameters (Figure 5) described by the system
of Equations (3) and (4). Once the parameters were estimated,
the model closely reproduced robot position and velocity in
visual space in the frequency response task, in the step-reference
task, and in tracking elliptic references. The model displayed
isochrony and bell-shaped speed profiles in the step-reference

reaching task and the power law in the ellipse tracking task
(Figure 5).

The fact that the model captures all these features of robot
behavior with just three parameters is surprising given the multi-
level control architecture, the non-linearities in the lower levels,
and differences in motors in each joint. This finding points to an
interesting property of hierarchical systems: higher-order loops
may appear as linear systems regardless of non-linearities at
lower levels. Higher levels provide reference signals to the lower-
level systems, so the lower systems are part of the “plant” from the
perspective of the higher systems. A certain range of variations
and non-linearities in the plant will be hidden in the behavior of
the high-level loop.

If the system for tracking a visual target appears to higher
levels of the brain just like the robot arm visual control systems
appear to us as experimenters, movement control might be
relatively simple for the higher brain structures. As postulated
by Viviani and Mounoud (1990), all voluntary movement might
be a special case of pursuit tracking, where the only difference
from conventional tracking is that the target is internal. The
hypothetical higher-level system would only need to specify the
virtual target, which is identical to the hand position reference in
the robot arm.

Higher Levels of Control
In optimal feedback control theory, as well as in industrial
robotics control, the solution to the problem of producing
a trajectory might involve forward or inverse models, online
optimization with a changing horizon, and similar schemes.
Those methods are very powerful, especially when coupled with
modern computers, precise actuators, and relatively noise-free
environments. However, from an academic perspective, they
are criticized for not being empirically refutable or biologically
plausible (Powers, 2008; Scott, 2012; Feldman, 2015). In the
framework of hierarchical perceptual control (Powers, 1973),
higher levels should be controlling variables more abstract than
lower levels, and also work more slowly having a larger time
constant and longer transport delays.

One hypothesis arising from the analysis of straight and
curved movements of the robot arm is that the present
architecture is missing higher levels of control. In the present
architecture, the visual position references are set by the
experimenter. A hypothetical higher level would be taking the
role of the experimenter and would attempt to control or
maintain a high-level variable at a desired value by using the
position reference as the manipulated variable, much like the
current visual position control loops manipulate references to
proprioceptive variables to bring visual position to the desired
value. The visual position reference would be equal to the
produced visual position in the steady state, but not necessarily
during transients.

Harris andWolpert (1998) show that minimizing the variance
of the hand trajectory from the desired path over a set of
movements (accuracy) for a given speed, or minimizing the
speed for a given desired accuracy, reproduced the bell-shaped
speed profiles and the two-thirds power law. Their result was
achieved in the framework of planning an optimal trajectory and
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executing it in an open-loop manner; however, we propose that
their cost functions for speed and accuracy might be treated as
explicit higher-order controlled variables that set visual position
references. This would amount to independent control of path
accuracy and average speed.

Alternatively, elliptic or straight-line movement can
be produced rhythmically. There is some evidence that
control of movement amplitude and frequency are developed
independently. For instance, 5-year-old children occasionally
produce sinusoidal movements that match the amplitude but
not the frequency of the target, while other children match
the frequency but not the amplitude (Mounoud et al., 1985).
This might suggest a closed-loop pattern generator, similar to a
phase-locked loop, that produces a patterned reference for the
position control system (see Matic and Gomez-Marin, 2019).
More research is needed to further elucidate these questions.

Controlled Variables in a Hierarchy Explain
Adaptivity to Perturbations
The ability of humans and animals to achieve the same task
outcome using different motor means has been termed as the
phenomenon of motor equivalence. The problem it poses to
motor control theories is the apparent rapid selection of correct
means from the space of all possible means. While motor
synergies and hierarchical control are proposed as the solution
for the problem (Bernstein, 1967), the concept of synergy in
motor control literature is defined in many different ways (see
review by Bruton and O’Dwyer, 2018). Our reach control system
fits the definition of Latash et al. (2007), and we termed it the
reach synergy.

To probe the system, we blocked the wrist of the robot and put
it through the same battery of tests as in the normal condition:
the step reference reaching task and tracking pseudorandom
and elliptic targets. Without any reprogramming or autonomous
learning algorithms, the robot still performed the task with
similar performance to the normal condition (Figure 6), with
the exception of pen angle not being controlled (as the pen was
fixed perpendicularly to the hand, and the wrist was blocked).
Wrist blocking was also modeled in the DIRECT model (Bullock
et al., 1993) where they argued that fast adaptations to losing
a degree of freedom probably exclude complex planning as a
relevant mechanism as it would take too much time, and the
same effect can be achieved by simpler schemes. Our result
seems to be consistent with the minimum intervention principle
(Todorov and Jordan, 2002b) where the task-level variable of
reaching toward a goal is maintained, and the variability caused
by blocking the wrist is taken up by task-irrelevant variables
of elbow and shoulder joint angles. The minimum intervention
principle may emerge from an online movement optimization
algorithm; however, here we achieve the same result without
optimization, by having a flexible control hierarchy.

Maintaining pen pressure and angle are indeed important
skills in handwriting. Measures of quality of control have been
linked, for instance, to dysgraphia as a diagnostic criterion
(Mekyska et al., 2017). Modeling contact forces in model-
based control and optimal feedback control is still an open

problem. Control systems for pen pressure and pen angle
were implemented for this robot as slow, but precise systems
in the higher level. The precision afforded by the pressure
control was compensating the lack of precision in the lower-
level proprioceptive systems. We tested pressure and angle
control systems by tilting the graphics tablet by 30◦ and
keeping the reference for the pen angle toward the tablet at
0◦ and the reference for pressure at 50%. Next, the robot
performed the battery of tracking tests (Figure 7), and we found
the performance close to the normal condition. The robot
automatically adjusted the height of the tip of the hand and the
angle of the wrist in order to maintain the angle and pressure
references. In this case, we can see that precise pressure control
is crucial for maintaining the pen on the tablet, similarly to
human handwriting.

The visual coordinate system was “retina-based” in the sense
that the two-dimensional visual field recorded by the camera was
the working space of the robot. It was somewhat primitive, as it
could only find the location of a green marker in two dimensions.
However, it was robust to perturbations. The robot arm and the
camera, and their respective proprioceptive and visual coordinate
systems were only roughly aligned to begin with, and this was
sufficient for normal operation. In the first test, we extended the
arm with a 12 cm long piece of plastic and put a marker on the
tip of the plastic instead of the tip of the hand, simulating writing
with a longer pen or reaching with a stick. The visual system had
no information about the size of the stick, or for that matter, the
size of the robot arm or the configuration of its angles, but only
the location of the marker. This was sufficient to enable the robot
to track the reference with this “tool.”

In the second test, we rotated the camera by 30◦. This
made the relationship between visual location proprioceptive
location variables more non-linear than in normal operation.
The performance in this test was somewhat worse than in
normal condition (Figure 7), but the tasks were still successfully
performed: in the step-reference condition, the hand tip reached
the reference position and settled at that position, and in target
tracking, the hand tip followed the reference signal in a similar
manner to the normal situation.

These perturbations to the visual system do not greatly
affect performance because there are no explicit coordinate
transformations between the visual and kinesthetic loops. All
transformations are implicit: the higher levels tell the lower
levels to “move until the higher-level reference state is achieved.”
Moving in approximately the right direction seemed to be
enough. As discussed, most non-linearities in the lower levels
were absorbed by the high-gain higher-level control systems, at
least in the low frequency, low-speed movement.

The geometric and kinematic definitions of controlled
variables used in the arm were selected and adapted to fit with
this specific robot arm, largely based on the previous computer
simulations. While we suspect similar variables might be found
in human arm control, we have no direct evidence to support
the claim. Following the performance of the robot arm in this
study, we suggest that an architecture featuring hierarchical
arrangement of controlled variables might be a plausible solution
for biological arm control.

Frontiers in Neurorobotics | www.frontiersin.org 15 October 2021 | Volume 15 | Article 755723

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
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Limitations and Perspectives
A limitation of the present study is the lack of direct comparison
of robot behavior to human behavior in the same tasks, and
instead comparing invariances and trends. The mechanical and
sensory properties of the arm were not on par with the human
sensory-motor system to allow such a comparison. With the
aim of creating a higher fidelity model of a visually, tactually,
and proprioceptively controlled human arm, the improvements
would make the arm slightly faster and the sensors more
numerous, but maybe not more precise. The improvements
would not remove transport delays or noise, because those
properties are present in biological arm control systems.

Mechanically, backlash in the geartrain of the motors (also
known as slop or play) seems to be a major obstacle for
human-like movement, as it puts a hard limit on the precision
and bandwidth of the system that cannot be improved by
higher quality sensors. With all the non-linearities, slowness,
and fatigability in human muscles, human joints are backlash-
free. Therefore, a higher fidelity model should put an emphasis
on removing the backlash from the joints, perhaps by tendon-
driven actuators.

The visual system of the present robot is a crude
approximation of the human visual system’s object detection
in two dimensions. Accurate modeling of visual delays should
be maintained, but the resolution and refresh rate could be
improved, as well as adding stereo vision for three-dimensional
localization. Improvements in the same direction could be
made to proprioceptive and haptic sensory systems. In sum,
such improved systems would allow testing hypotheses of
lower, spinal-level sensorimotor loops, and their interaction
with higher-level visual or proprioceptive loops, multi-sensory
integration etc.

Additionally, as in studies of humanmovement, the results are
influenced by low-pass filtering the data in the analysis stage, and
should be taken with some reserve.

CONCLUSION

This research has shown that in a robot arm system with
a hierarchical control architecture based on simulations by
Powers (1999, 2008) several features characteristic of biological
movement naturally emerge. The robot is robust to noise,
delays and some nonlinearities. We found isochrony and bell-
shaped velocity profiles in straight reaching movements and

the speed-curvature power law in the fast drawing of ellipses.

We showed how they can be achieved without trajectory
planning, learning or online optimization. We also showed
that a hierarchy of controlled variables can produce a motor
equivalence phenomenon, where the robot performs the same
visual task either with the wrist freely moving or with the wrist
blocked. The system also adapts to different angles of the graphics
tablet tilt by relying on pressure and pen angle control. Moreover,
the system adapts to extending the arm with a tool, and to
rotations of the visual field. Overall, we have demonstrated that
our 4 DOF robot arm reproduces important features of human
movement and therefore presents an appealing platform upon
which to build and test further models of adaptive behavior,
while providing insight into feasible mechanisms of human
arm control.
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Matić et al. Hierarchical Control of Visually-Guided Movement

Viviani, P. (1988). “Two-dimensional Visuo-manual Tracking Beyond The

System Analysis Approach,” in Proceedings of the 1988 IEEE International

Conference on Systems, Man & Cybernetics, Vol. 1, (IEEE), Beijing, China.

404–412.

Viviani, P., Campadelli, P., and Mounoud, P. (1987). Visuo-manual pursuit

tracking of human two-dimensional movements. J. Exp. Psychol. 13, 62–78.

doi: 10.1037/0096-1523.13.1.62

Viviani, P., and Flash, T. (1995). Minimum-jerk, two-thirds power law, and

isochrony: converging approaches to movement planning. J. Exp. Psychol. 21,

32–53. doi: 10.1037/0096-1523.21.1.32

Viviani, P., and McCollum, G. (1983). The relation between linear

extent and velocity in drawing movements. Neuroscience 10, 211–218.

doi: 10.1016/0306-4522(83)90094-5

Viviani, P., and Mounoud, P. (1990). Perceptuomotor compatibility in pursuit

tracking of two-dimensional movements. J. Mot. Behav. 22, 407–443.

doi: 10.1080/00222895.1990.10735521

Viviani, P., and Terzuolo, C. (1982). Trajectory determines movement dynamics.

Neuroscience 7, 431–437 doi: 10.1016/0306-4522(82)90277-9

Webb, B. (2001). Can robots make good models of biological behaviour?. Behav.

Brain Sci. 24, 1033–1050. doi: 10.1017/S0140525X01000127

Whelan, P. J. (1996). Control of locomotion in the decerebrate cat. Prog. Neurobiol.

49, 481–515. doi: 10.1016/0301-0082(96)00028-7

Wolpert, D. M., and Kawato, M. (1998). Multiple paired forward

and inverse models for motor control. Neu net. 11:1317–1329.

doi: 10.1016/S0893-6080(98)00066-5

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
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1 Introduction 

We can voluntarily control at least two variables at the el-

bow joint – the angular position of the elbow, and the stiffness 

or tone of the muscles articulating it. The connectome of sen-

sory-motor loops in the spinal cord is mostly known; a recent 

primer on stretch reflexes summarizes current knowledge: 

spinal pathways form nested feedback loops [1]. However, 

we don’t fully understand the computational principles of 

neural control that would allow us to create equally able arti-

ficial systems. 

Twisted string actuators (TSAs) are tendon driven actua-

tors that convert the rotary motion of a motor shaft to linear 

motion of the load by twisting a string. TSAs are an emerging 

technology with promising uses in exoskeletons and robotic 

hands [2][3][4]. They are light, efficient and flexible, but the 

transmission of force via string twisting is highly nonlinear. 

To compensate for nonlinearities and ensure good perfor-

mance and high bandwidth, model-based control architec-

tures are commonly proposed (e.g. [5][6]). 

Here, we use two TSAs to create a mechanical model of 

the elbow joint, and we design a control architecture inspired 

by known anatomical connections in spinal sensorimotor 

loops, and by a simulation of a hierarchy of feedback loops 

[7]. As a proof of concept, we demonstrate low bandwidth, 

but high precision angular position control. 

2 Methods 

2.1 Hardware 

We placed two TSAs in parallel, with one end fixed to a 

board and the other end connected to the elbow joint (Fig. 1), 

so that two TSAs acted as antagonists; with ~1.5cm of dis-

tance from joint center. Each TSA was composed of a small 

geared DC motors (N20), a string (~1mm diam.), a stationary 

sliding potentiometer for measuring string contraction 

(10KOhm linear, 6cm travel) and another moving potentiom-

eter placed in series with the string (10KOhm, linear, 1cm 

travel), measuring the stretch of a rubber band (Fig 1, zoom-

in). By Hooke’s law, the output of the second potentiometer 

is approximately proportional to the tension of the rubber 

band and therefore the tension of the tendon. The angle of the 

joint is measured by a magnetic angular position sensor (ams 

as5047, 14bit resolution). Sensors are read out by an Arduino 

Pro Mini (5V, 16Mhz), at 30ms sampling time. The micro-

controller sent the output PWM signals to a motor driver 

(TB6612FNG) with maximum output of 12V.  

 

Figure 1: Hardware setup 

2.2 Control architecture 

 The diagram (Fig. 2) shows the nested or hierarchical 

control architecture of the system. The outer-most loop con-

trols angular position of the joint measured in degrees. The 

controller is proportional-derivative (PD) with a low pass fil-

ter. In the time domain, the equation is: 

 𝑜̇ = [𝐾𝑝(𝜃𝑟𝑒𝑓 −  𝜃) − 𝐾𝑣𝜃̇ −  𝑜]/𝑡𝑐,     (1) 

where o is controller output, Kp and Kv the position and ve-

locity gains, θ the measured joint angle, θref the reference for 

joint angle and tc the time constant of the first order low pass 

filter. Both gains are large (Kp=-20K, Kv=5K) and the time 

constant is 15s, ensuring high gain at low frequencies and re-

ducing the bandwidth to avoid instabilities at high frequen-

cies. The output o of the controller is a reference signal for 

the inner control loop (low gain, Kd=1) that senses and con-

trols tension difference. The algebraic difference between 

measured tendon tensions of the two TSAs is proportional 

(approximately) to the torque acting on the joint. In other 

words, an angle error will create a torque reference, and this 

will cause one of the TSAs to increase the tension of the ten-

don, pull more strongly, and correct the angle error. Similarly, 

the stiffness of the joint is approximated as the sum of meas-

ured tendon tensions, and controlled in a low-gain loop (Ks = 

3). The outputs of the sum comparator and the difference 

comparator are combined to form reference signals for the in-

ner loops. The string length control loops are the inner-most 

loops in the hierarchy, with a loop gain of one. 

mailto:adam.matic@gmail.com


  

Figure 2. Block diagram of the control hierarchy with hypo-

thetical biological analogs (in cursive) 

 

2.3 Biological analogs 

The two TSAs are analogs of opposing muscles in the 

joint (Fig 2). Both mechanisms can only produce a pulling 

force and need an opposing force to elongate and control 

muscle length measured by the length sensor. If the sum of 

tensions is too low (low muscle tone and joint stiffness), joint 

angle control does not work – this seems to parallel the bio-

logical phenomenon of alpha-gamma co-contraction. The 

muscle spindle is modelled by the combined length sensor 

and the comparator receiving input from gamma motor neu-

rons (green circle and line). The Ia and II fibers carrying the 

length error signal are entering the alpha motor neuron (red 

circle and line) that sends its axon to the extrafusal muscle 

fibers. The tensions sensors are analogs of Golgi tendon or-

gans, and their outputs type Ib fibers connect to contralateral 

interneurons to form the tension sum and difference signals. 

The magnetic angle sensor is an analog of high-resolution vis-

ual angle sensing in humans, although with a shorter delay. 

The loop sampling time of 30ms is analogous to spinal reflex 

signal transport delay. 

3  Results 

In the initial test, we analyzed the movement range, speed, 

and precision using the step response and frequency seep in 

situations of low and high stiffness (Fig. 3); keeping stiffness 

constant during the task.  

The total movement range was limited to 60 degrees 

(from 120° to 180°). Maximum movement speed was approx-

imately 12 deg/s. The high stiffness step response had a 

higher overshoot than the low stiffness response, both settling 

down at about 3 seconds after the reference step. The band-

width was low, with attenuation of position signal at frequen-

cies above ~0.2Hz. 

However, the precision was relatively high, approaching 

the limits of the angular position sensor, with the steady state 

error of only +/-0.03 degrees in low stiffness and +/-0.04 de-

grees in high stiffness situation. 

 

Figure 3. Step response, steady-state error and frequency 

sweep for measured joint angle 

4 Conclusion 

The hierarchical control architecture working with noisy 

tension and length sensors, relatively long loop delays and af-

fordable low-precision components is capable of high-preci-

sion control of joint angle, with up to +/-0.03° error. The 

source of this precision is the removal of backlash in the joint 

by using opposing TSAs with a constant sum of tensions, cou-

pled with the high-gain angular position control loop (eq. 1). 

While the high precision might be satisfactory, the speed and 

bandwidth of the system are low. In future work we will at-

tempt to improve them by using faster motors and a lower 

gear ratio. From the biological modelling side, a single joint 

with opposing muscles is the simplest arrangement, and more 

research is needed to verify that the control scheme can han-

dle e.g. multiple partial agonists and antagonists. Also, we 

plan to incorporate biologically plausible transmission delays 

into different hierarchical levels of control and compare the 

behavior of the robot to human behavior. 
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Abstract 

 

A well-known phenomenon in human hand movement is the correlation between speed and 

curvature, also known as the speed-curvature power law (V≈kCβ). In drawing elliptic shapes, the 

exponent is often found to be β ≈ -1/3, however it is not clear why the power law appears and why 

the exponent is near -1/3. More fundamentally, it is not clear how do people track elliptic targets. 

In answering these questions, I’ve analyzed trajectories of participants’ cursors while they tracked 

visual targets moving along elliptical paths, across different target speed profiles and cycle 

frequencies. The speed-curvature power law emerged when drawing ellipses at about 1 Hz or 

faster, regardless of the target speed profile, and it did not emerge for lower frequency movements. 

Analysis of the position frequency spectrum shows that the target-cursor trajectory transformation 

may be seen as a low-pass filter. Comparison of different hypothetical salient features of the visual 

field shows that phase difference (angular difference between the cursor and the target) and size 

difference (difference in the sizes of the elliptic paths) are the features most likely used in the task. 

The next experiment confirmed that phase and size difference could be controlled variables 

because participants kept them stable even under direct pseudorandom disturbances. A numerical 

model simulating the sensorimotor processes of the participant, similar to a phase-locked loop, 

using the visual features of phase and size difference as controlled variables, performed the same 

target tracking tasks as the participants. When fitted, the model closely replicated position and 

speed profiles of the participants across all trials, as well as the emergence of the power law at 

high frequencies. The model also reproduced the trajectories of participants in the experiment with 

direct pseudorandom disturbances. In conclusion (1) the speed-curvature power law emerges as a 

side effect of movement system properties, namely low-pass filtering in the sensorimotor loop; (2) 

people could be tracking elliptical targets by varying the frequency and amplitude of an internal 

pattern generator until the produced phase and shape size match the target’s phase and shape size. 

The model generates new hypotheses about the neural mechanisms of rhythmic movement control. 
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Introduction 

 

Hand movement is created in the continuous and closed loop interaction between the brain, body 

and environment. An often-studied phenomenon in hand movement is the correlation between 

speed and curvature, first noticed by Binet and Courtier (1893) and Jack (1895) in handwriting as 

slower movements of the pen in areas of high curvature, and faster movements of the pen in areas 

of low curvature. The phenomenon was later studied by Viviani and Terzuolo (1982) and 

formalized as the ‘speed-curvature power law’ by Lacquaniti et al (1983). The name “power law” 

comes from the empirical relationship V≈kCβ where speed V is approximately equal to curvature 

C raised to the power β, times a constant k. Speed, or tangential speed, is defined as the magnitude 

of the velocity vector,  𝑉 = |𝒗| = √𝑥̇2 + 𝑦̇2 and curvature as the reciprocal of the radius if the 

osculating circle,  𝐶 =
1

𝑅
=

|𝑦̈𝑥̇−𝑥̈𝑦̇|

𝑉3 , where x and y are coordinates of the point P in the plane 

(Figure 1A). In rhythmical elliptic movement, the exponent β is often found to be -1/3 (Figure 1B). 

The value of the exponent β expresses the degree of “slowing down in curves”: for β=0, there is 

no slowing, the speed is constant (Figure 1C); for β=-1/3, the speed is slightly lower in curves than 

in straight parts, and for β=-2/3, the speed is much lower in curves than in straight parts.  

An alternative form of the law uses angular speed, defined as the rate of change of the direction of 

the velocity vector, instead of tangential speed. The two forms have equivalent exponents, 

however, angular speed tends to have much higher correlations to curvature than tangential speed, 

as well as higher coefficients of determination in the regression estimate of the power law, and 

should be avoided when estimating the speed-curvature power law (Matić and Gomez-Marin, 

2022). In further analysis, I will be using tangential speed and curvature. 

Numerous studies found support for the law, from manually tracking visual targets (Viviani and 

Mounoud, 1990), drawing ellipses in water (Catavittelo et al, 2017), walking trajectories 

(Vieilledent et al, 2001) to changes in the exponent during child development (Viviani and 

Schneider, 1991). When drawing different shapes, the exponent has a spectrum of values different 

from -1/3 (Huh and Sejnowski, 2015). The power law was also found in movements of hands of 

monkeys and in population codes in their motor cortex (Schwartz, 1994), as well as in movements 

of the drosophila larvae (Zago et al. 2016). For a recent review of the evidence for the speed-

curvature power law, the statistics used and hypotheses of its origin, see Zago, Matić et al. (2017). 

Hypotheses aiming to explanation the emergence of the power law may be divided into two broad 

groups - central origin theories and emergence theories. The central origin group argues that, since 

the speed-curvature relationship is found in so many different types of movements, it is likely a 

part of the planning strategy for every movement. For example, it could be a result of minimizing 

jerk (Viviani and Flash 1995), maximizing smoothness (Huh and Sejnowski, 2015) or minimizing 

endpoint variance (Harris and Wolpert, 1998). The second group of explanations favors emergence  
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Figure 1. The hand movement speed-curvature power law, V≈kCβ, or log V ≈ log k + β*log C. A) Geometric and 

kinematic definitions of the variables: the point P moves along the curve s; at each instant of time, its velocity can be 

described by the vector v, speed V is the magnitude of velocity, and curvature C is the reciprocal of the radius R of 

the osculating circle (C = 1/R). The direction of movement with respect to the x-axis is α, and its first time-derivative 

is the angular velocity A. The variable k is a constant related to average speed. B) An example of an empirical 

trajectory conforming to a speed-curvature power law: a participant moves the pen faster (bright green) in areas of 

low curvature and slower (dark green) in areas of high curvature. On a log-log plot, the relationship between speed 

and curvature is linear, with the slope β, intercept log k and coefficient of determination r2 C) Examples of the speed-

curvature relationships for equal curvature profiles, but different speed profiles. In the first case, the speed is constant, 

and there is no power law. In the second case, the speed is slightly lower in areas of high curvature, with the exponent 

β= -1/3 (~0.33) and r2=1. This profile is often found in elliptic human hand movements. In the third case, the speed 

is much lower in areas of high curvature than in areas of low curvature, with the exponent β= -2/3 (~0.67) and r2=1. 

 

of the power law in the interaction of the brain, body with the environment, mainly due to low pass 

filtering (Gribble and Ostry 1996; Schaal and Sternad, 2001). 

The relationship of average speed or rhythm of drawing and the exponent of the power law has not 

been explored in detail, although Lacquaniti et al (1983, Figure 4) reported different values of the 

exponent for three different rhythms of drawing, and Wann et al (1988) reported two different 

exponents for two different rhythms, all of relatively fast movement.  

Here, I explore target tracking over a wider range of rhythms for a constant size elliptic trajectory, 

and the relationship between the rhythm and the power law exponent and the coefficient of 

determination. Next, I estimate salient visual features used by the participant in the task, and build 

a numerical model, based on the findings, that performs the same task. 
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My basic assumption was that during the task, participants observe and maintain (control) certain 

visual variables at their respective reference values. It was not obvious what these variables were, 

and how to describe them mathematically. The deceptively simple strategy, suggested by Powers 

(1973, 1978) is to find variables that remain stable despite being disturbed by the experimenter.  

The search starts by generating precise mathematical definitions of the hypothetical controlled 

variables. This definition needs to make clear what are the effects of the experimenter-generated 

disturbances on the controlled variable, and the effects of participant-generated behavior on the 

controlled variable. For instance, the controlled variable may be defined as a distance between the 

target and the cursor, the disturbance is, therefore, the position of the target, and the behavior of 

the participant is the position of the cursor. Both the target and the cursor can affect the controlled 

variable in a precisely defined way. The experimenter can directly perturb this hypothetical 

controlled variable by generating a target trajectory and then observe corrective actions by the 

participant; or alternatively the experimenter can insert a disturbance between the pen and the 

cursor on the screen.  

If the hypothetical controlled variable is stable relative to the variance of the perturbation, it might 

be a good approximation for the variable controlled by the participant. If it is not stable, there are 

several possibilities – (1) the variable is not controlled, (2) the variable is controlled, but the 

bandwidth of the disturbance is too wide (the task is too difficult), (3), the variable is controlled, 

but the reference level was not stable, etc. The task should be designed to be not too difficult, and 

the reference level should be stable, or with a known variation.  

Aside from the stability of the controlled variable, another useful statistic is a low correlation 

between the potential controlled variable and the disturbance variable – meaning that a controlled 

variable is unaffected by the disturbance, and as a consequence it is uncorrelated to it.  

When a sufficiently good and precise definition of the hypothetical controlled variable is found, 

then a generative numerical model, a simulation of the participants’ sensorimotor loop in the can 

be built, and fitted to each participant individually. For further validation, the behavior of the model 

can be compared to the behavior of the participants in new tasks where the model was not fitted. 

Good performance of the model in new tasks would support the explanatory and predictive power 

of the model and the conclusion that the mathematical definition of the controlled variable is a 

good approximation of the variable controlled by the participant. There is always a possibility of 

finding a better approximation.  

The model should be made as computationally simple as possible in order to be biologically 

plausible. Signals generated by the numerical model may be direct correlates of neural signals in 

the nervous system of the participant, and this might be verified in an independent experiment. 

Strong invariances in participants’ movements, such as the speed-curvature power law, may be 

used to verify a model of rhythmic behavior: the power law needs to appear in the same conditions 
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for the model as for the participants, and also it needs to not appear in the same conditions for the 

model, where it does not appear for the participants.  

 

Data and code availability 

 

The data collected in this research, along with jupyter notebooks and python code used to analyze 

the data and prepare the figures is available at https://github.com/adam-matic/visuomotor-phase-

locked-loop 

 

Experiment 1: Tracking targets along rhythmic elliptical trajectories 

Method 

In the first experiment, participants tracked a target with a cursor on the computer monitor. 

Participants (N=3, male, right-handed, age 30-36, including the author of the paper) were seated, 

looking at the computer monitor showing a cursor and a target. They were holding an electronic 

pen in their dominant hand, pen positioned on the graphics tablet (Wacom Intous PTH S). They 

were instructed to keep the cursor and target as close as possible. Target trajectories had three 

different speed profiles: (1) β=0, constant speed, (2) β=-1/3, ‘natural’ speed with slight slowing in 

the curved areas, and (3) β=-2/3, excessive slowing in the curved areas, (see Figure 1C). All three 

profiles were generated for nine fundamental frequencies of the target: 0.27, 0.40, 0.54, 0.67, 0.81, 

0.94, 1.07, 1.21, and 1.34Hz corresponding to average speeds of the target: 44, 67, 91, 113, 135, 

158, 180, 203, 227 mm/s. The target always moved in a counter-clockwise direction. The trials 

were presented in a random order. Each trial started when the participant pressed the space key, 

and lasted for 20 seconds, after which the participant could rest. The monitor displayed the target 

and cursor at 60Hz, while the tablet recorded the pen position data at 200Hz. 

Target trajectories were formed by first generating a high-resolution elliptical path, and then 

rescaling the temporal distances between the points so that the speed conformed to a desired speed-

curvature power law. The resulting target trajectory was splined and resampled to have the points 

equally spaced in time, and rescaled for desired total time. For analysis, pen position data was low-

pass filtered with a second-order Butterworth filter with a cutoff at 10Hz; target positions were 

converted from screen coordinates (px) to tablet coordinates (mm). The speed-curvature power 

law was estimated using orthogonal linear regression because both speed and curvature contained 

measurement uncertainties. 

Results 

For slow, low-frequency movements, the position error (Fig. 2B and Fig. 2E) and velocity errors 

(Fig 2E) were low, meaning that the participants’ pen position stayed fairly close to target position,  
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Figure 2. Experiment 1, when tracking elliptic targets, the speed-curvature power law only emerges at high 

frequencies A) Diagram of the task B) Target and pen paths in slow movement (f=0.27Hz, period=3.7s) and in fast 

movement (f=1.34Hz, period=0.75s). Target ellipse dimensions were 68x39mm, measured from the shape the pen 

needed to traverse on the tablet. C) Segment of the pen and target speed and curvature over time for low-frequency 

movements, across three different speed profiles; participant’s pen speed seems to track target speed, but pen logC 

and logV are not strongly correlated D) Segment of the pen and target speed and curvature over time for high-

frequency movements. The exponent of the pen’s trajectory is β=-1/3, regardless of the exponent of the target’s 

trajectory. E) Participants are more accurate in tracking low frequency targets’ positions and speeds and less 

accurate in tracking positions and speeds of high-frequency targets, regardless of target speed profile, suggesting 

poor trajectory control at high frequencies F) The speed-curvature power law is only strong enough (r2 ≥ 0.75, 

arbitrary cutoff) for some high frequency movements (f ≥ 0.94Hz), and has the same exponent of β≈-1/3, regardless 

of target power-law exponent. Each point represents a tracking trial, with the color signifying the target speed profile 

and size the crossing of threshold of r2 G) The coefficient of determination (r2) rises with the frequency of drawing the 

ellipses, and crosses the arbitrary threshold of 0.75 at f=0.94Hz. 
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and pen speed is also very similar to target speed for all participants. As an example, Fig 2C shows 

segments of low-frequency tracking speed and curvature time profiles. For each of the target speed 

profiles (β=0, β=-1/3 and β=-2/3) the participant stays close to the target speed and curvature. 

However, the speed and curvature of the pen vary more than the speed and curvature of the target. 

This variance can be seen as the ‘spread’ on the power-law plot (low r2). Target log-speed and log-

curvature have a strong linear relationship (by design), but participant pen log-speed and log-

curvature are uncorrelated.  

High-frequency target tracking was very different. There are large errors in position (Fig. 2B, 2E) 

and large errors in speed (Fig. 2E); however, most participant pen trajectories conform to a speed-

curvature power law with the same exponent, β≈-1/3, and a high coefficient of determination r2 ≥ 

0.75, even though target exponents are different.  

An example segment plotted on Figure 2D shows that participant speed had very similar range and 

mean across different target speed profiles. The power law plots show very similar exponents and 

high r2s in participants’ trajectories, regardless of target exponent. Position and speed tracking 

accuracy gets worse with the increase in target frequency (Figure 2E), and since the ellipse sizes 

were always equal, higher frequency meant higher average speed. This result is consistent with the 

speed-accuracy tradeoff, and suggests poor trajectory control at high average speeds, if trajectory 

is the controlled variable. 

The main results of the first experiment are summarized in Figure 2. Panels F and G: the exponent 

of the power law of the participants trajectories converges toward β=-1/3 at high frequencies of 

movement, regardless of target speed profile. The power law was only strong enough (r2 ≥ 0.75, 

arbitrary cutoff) for some trajectories with drawing frequency f ≥ 0.94 Hz (period smaller than 

~1.06s), and did not appear for slower movements. The frequency where the power law crosses 

the threshold of 0.75 also depends on the data filtering procedure, here a second order Butterworth 

filter with a 10Hz cutoff was used to smooth the position data, and the smoothed data was used 

estimate curvature and velocity. 

 

Experiment 2: Is the cursor-target distance a salient visual feature and a controlled variable? 

The instruction to participants in the first experiment was to keep the cursor as close as possible 

to the target. The first guess for the salient visual feature (or visual cue, or visual controlled 

variable) was the distance between the cursor (C) and the target (T). However, the Euclidean 

distance is unsigned (always positive), and cannot be used in a proportional feedback control 

system. In random pursuit tracking it is established that the x and y components of the Euclidean 

distance (dx and dy) are good approximations for controlled variables (Viviani and Mounoud 

1990, Parker et al 2017). In the first test, I’ve analyzed weather dx and dy could be controlled, 

where dx=Cx – Tx, and dy = Cy – Ty (see the diagram in Figure 2E) in each point in time.  
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Method 

For experiment 2, the target trajectory was generated as a smoothed pseudorandom trajectory in 

two dimensions, and used in a pursuit tracking task (Figure 3A). One participant (male, right-

handed) performed the task of following the target with the cursor by moving a pen on an electronic 

tablet (Huion 610ProV2, recording at 60Hz), with the instructions to keep the cursor as close as 

possible to the target. The behavior of participants in the ellipse tracking task was first compared 

to the behavior in the random pursuit tracking task, with the following hypothesis: if the participant 

controlled the same variables in both tasks, then those variables will have the same relationships 

to the target position and cursor position, namely dx and dy will be stable and uncorrelated to Tx 

and Ty, respectively, in both tasks. Next, a numerical model was designed to control dx and dy 

and then fitted to participant behavior in the pursuit tracking task. The model then performed the 

ellipse tracking task. If the participants also control dx and dy, their behavior in ellipse tracking 

should be as well approximated by the model in ellipse tracking task as it is in the random pursuit 

task. 

 

Results 

 

In the pursuit tracking task, the distance (dx and dy) between the target and the cursor in stable 

(Figure 3B) and uncorrelated to the target (T), r(dx, Tx)=0.05, r(dy, Ty) = 0.04. Similarly, in 

tracking elliptic trajectory targets, the distance between the cursor and the target is relatively stable 

(Figure 3C). However, across all trials, the variables dx and dy are not consistently uncorrelated 

to Tx and Ty (Figure 3D). This is suggesting there might be better approximations for salient visual 

features in this task than dx and dy. 

In the second line of evidence, a first-order, distance control model with delay (Figure 3E) was 

fitted to the behavior of the participant. The best fit values for the parameters were found to be: 

gain K=-10, damping B=0.02 and delay tau=0.100s, similar in x and y. The model accounts for 

the pursuit tracking behavior fairly well (Figure 3F). However, when the fitted model is tracking 

the same elliptic trajectory target as the participant, the behavior of the model differs from the 

behavior of the participant – the distance dy is much larger (Figure 3G), there is phase delay in the 

model cursor with respect to the target, not seen in participant trajectories, and the amplitude of 

the model cursor movement is larger than participant amplitude. When the two large-amplitude 

movements in x and y are combined (Figure 3H), the model cursor trajectory creates a larger 

elliptic shape than that of the target; while participants maintain the drawn shape on average equal 

in size to the target-drawn shape. 
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Figure 3. Experiment 2: The cursor-target distances (dx and dy) are controlled variables when tracking 

pseudorandom targets, but not when tracking elliptic targets. Still, the distance tracking model partially reproduces 

the β-frequency relationship because of low-pass filtering. A) Diagram of the experimental setup. B) In a pursuit 

tracking task, the participant closely follows the target; variables d and T and uncorrelated. C) When tracking an 

elliptic trajectory, the participant is still closely following the target, however, D) across the trials in Experiment 1, 

the correlations between variables dx and Tx, and dy and ty, are not low. E) Diagram of a first-order model with 

delay, parameters fitted in a random pursuit task. F) The model controlling the C-T distance follows the target and 

reproduces participant trajectory in a random pursuit task. G) The same model does not account for participant 

behavior in ellipse tracking, as the dy is larger than in participant’s trajectory and H) The elliptic path of the model 

is larger than the path of the target for fast movements I) However, the trajectories of the model converge toward β≈-

1/3 power law at high frequencies. J) Both the human participant and the numerical model can be seen as low-pass 

filters of the target signal, passing the low-frequency fundamentals and attenuating the higher-frequency components. 

 

From these two lines of evidence, we can conclude that dx and dy are not the salient visual features 

in tracking elliptic targets; they are not controlled in this task, and there might be better 

approximations for the controlled variables. 

While the dx-dy distance model does not account for the behavior of participants in the elliptic 

target tracking task, model trajectories do show some interesting properties. The exponents of 
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model trajectories, like those of participants, converge to the value of β=-1/3 at high frequencies 

(Figure 3I). This convergence may be a consequence of low-pass filtering properties of both the 

model and human participant, as shown by the Fourier transform plot (Figure 3J). Target 

trajectories that contain harmonics of a frequency higher than the filter’s cutoff frequency will be 

‘transformed’ to cursor trajectories that contain only the fundamental frequencies. Similarly, target 

trajectories with the exponent β=-1/3 across all trials are already single-frequency sinusoids, and 

when passed through the filter they were phase shifted and amplitude-modulated, they remained 

single-frequency sinusoids, and their 2D elliptic trajectory conformed to the power law. 

 

Phase difference and size difference as controlled variables in tracking elliptic targets 

After the confirmation that the cursor-target distances dx and dy are not controlled in tracking 

targets along elliptic paths, I’ve tested several other hypotheses of controlled variables, and here I 

report on the most likely ones – phase difference and size difference. The analysis was performed 

using data from experiment 1. 

Method 

The phase difference (dφ) is here defined as the angle closed by the cursor, the center of the ellipse 

and the target (Figure 4A), or equivalently, as the difference between the cursor angle (or phase) 

φC and the target angle φT. In terms of control systems, dφ is the proposed controlled variable, with 

the assumed reference value of zero radians, meaning ‘cursor on target’. This controlled variable 

is disturbed by the changes in the target angle, so the disturbance is φT, and the participant’s 

behavior acts to bring back the phase difference to zero radians by changing the cursor angle φC. 

The expectation was that participants maintained the controlled variable stable and uncorrelated 

to the disturbance variable. Since the variables were measured in radians, the circular coefficient 

of correlation was used. 

The second proposal for the controlled variable is the size difference (ds), defined as the difference 

between the semimajor axis a of the target ellipse (the ‘x-radius’) and the semimajor axis rC of an 

ellipse with the same center, but passing through the cursor point (Figure 4A). The axis of the 

cursor ellipse is calculated as 𝑟𝐶 = 𝑟√cos(𝜑𝐶)2 + ( (𝑎 𝑏)⁄ sin 𝜑𝐶)2, where r is the instantaneous 

distance of the cursor to the center, and a/b is the constant ratio of target ellipses’ major and minor 

semiaxes. The value is expected to be stable if it is controlled. However, the correlation coefficient 

is not defined when one of the variables is a constant (the size of the target ellipse a), so the 

correlation was not calculated. 

Results 

As shown on the figure 4B, the phase difference is maintained stable in the slow trial as well as in 

a fast trial. Analyzing all the correlations between dφ and φT, for all trials and participants, we can 
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see extremely low values (Figure 4C), supporting the proposal that the phase difference was a 

controlled variable in the elliptic target tracking task in experiment 1.  

Similarly, participants maintained the size difference stable in both slow and fast trials (Figure 

4D), supporting the proposal that the size difference was also a controlled variable in experiment 

1. 

 

Experiment 3: Direct pseudorandom disturbances to phase and size differences 

I’ve verified the proposed controlled variables further in a new experiment where the both the size 

difference and the phase difference were simultaneously disturbed with pseudorandom 

disturbances, while the participant attempted to maintain them stable. Here, the disturbance to the 

controlled variable are the target’s angular position and target ellipse size: the participant tracked 

a target moving along an ellipse in a random-smoothed fashion. Alternatively, the experiment 

could be performed using the same task as experiment 1 – tracking a target that has a constant 

rhythm and draws and ellipse of constant size – and the disturbances could be added to the pen 

position.  

Method 

One participant performed the task of following the target with the cursor by moving the pen on 

an electronic tablet (Huion 610ProV2, recording at 60Hz), with the instructions to keep the cursor 

as close as possible to the target. Both the angle of the target and the size of target ellipse varied 

randomly (Figure 4E). The participant performed 8 trials; the trial number does not signify a 

progression in any of the task properties. 

Results 

Figure 4E shows a segment of both cursor and target paths in experiment 3. Next, Figure 4F shows 

participant performance in trials 1 and 8 - the participant maintained the phase difference stable 

and near zero. The participant also maintained the size difference relatively stable and near zero, 

or in other words the size of the ellipse shape drawn by the cursor was close to the size of the 

ellipse shape drawn by the target (Figure 4G). 

The correlations of disturbance and the controlled variable are very low in the case of phase angles 

(Figure 4H), using the circular correlation coefficient. This again indicates that the phase 

difference is a very good candidate for a controlled variable in tracking elliptic targets. In the case 

of the size difference, the correlations were moderately low (Figure 4I), using the Pearson’s 

correlation coefficient, indicating that size difference might be a controlled variable 

simultaneously with phase difference. 
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Figure 4. Phase difference (dφ) and size difference (ds) are good candidates for controlled variables in following 

elliptic trajectory targets. A) dφ is the difference between the cursor angle (φC) and target angle (φT) measured from 

the x-axis; ds is the difference between the x-axis radius of the target path (a), and the x-axis radius of the cursor path 

(rC). The ratio a/b is constant. B) Examples from Experiment 1: dφ is stable. C) Phase correlations across all tasks in 

Experiment 1 are very low, using the circular correlation coefficient. D) The size of target path (a) is constant, and 

the size of the cursor path (rC) is nearly equal, with low variance. E) Experiment 3: cursor and target path segments 

– target trajectory varies randomly in phase and size. F) The participant maintains dφ stable, near zero G) The 

participant maintains ds stable, near zero. H) Variables dφ and target angle φT are uncorrelated I) the variables ds 

and a are only weaky correlated. 
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Numerical model, sensorimotor phase-locked loop with amplitude control 

Having found two good candidates for controlled variables, I’ve constructed a numerical model 

that controls them, and fitted the parameters of the model to participant behavior in experiment 1. 

The aim of this model was to reproduce participant behavior in measures such as position, speed, 

and curvature over time and the exponent β and coefficient of determination r2 of the speed-

curvature power law. For further validation, the model performed the experiment 3 in the same 

conditions as the participants, with the same pseudo-random elliptic target trajectories. 

Method 

The model simultaneously controls phase difference and size difference in tracking an elliptically 

moving target (Figure 5A). It directly incorporates the dx-dy tracking model in the lower level - 

the loop on the lower right of Figure 5A is the same model seen in Figure 3E. The output of two 

high-level controllers, phase difference and size difference, is combined to generate the reference 

signal for the lower-level system. The reference is a point in 2D space acting as a virtual target for 

the dx-dy tracking system. This control system is aiming to keep the model cursor near the virtual 

target, using the same controller equation as in experiment 2, and the same parameters obtained 

when fitting the model to participant behavior. 

The phase control loop in this model is a version of the phase-locked-loop (PLL), a very common 

control system in radio communication and information technology used to synchronize phases 

and frequencies of signals. Keeping the phases of two signals in ‘lock’, where their difference is a 

constant value (not necessarily zero), means that their frequencies will be equal. 

The main parts of the phase control loop appear on the diagram (Figure 5A) starting with the phase 

difference ‘detector’. Given positions of the center of the ellipse, the target and the cursor, the 

phase difference detector finds dφ: the angles of φT and φC are calculated as arctangents of the x 

and y components of their positions relative to the center and unwrapped. The output of the phase 

difference detector is dφ = φT - φC. The value dφ is passed to a pure delay element and used as an 

input to a proportional-derivative controller (PD) with an implicit reference of zero, so the phase 

difference is maintained at zero. The error is integrated as passed to the harmonic oscillator as the 

frequency parameter f. The oscillator is implemented as a rotating unit vector with instantaneous 

frequency f and angular velocity ω=2πf, described by the equations 𝑥̇ = −𝑦ω and 𝑦̇ = 𝑥ω with 

initial angle set to the target angle φT. 

The size difference control loop maintains the size of the cursor-drawn ellipse equal to the size of 

the target drawn ellipse. The size rC is calculated as 𝑟𝐶 = 𝑟√cos(𝜑𝐶)2 + ( (𝑎 𝑏)⁄ sin 𝜑𝐶)2, where 

r is the instantaneous distance of the modelled cursor to the center, and a/b is the constant ratio of 

target ellipses’ major and minor semiaxes. The controlled variable ds is the difference between the 

target ellipse size determined by the parameter a, and the size of the cursor ellipse rC. The 

difference is passed to a pure delay element, then a PD controller gives values rx and ry, where ry 
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= (a/b) rx. The values rx and ry are multiplied with oscillator output to generate the 2D location of 

the virtual target. 

The lower-level loop aims to maintain the cursor on the virtual target. It is identical to the dx and 

dy control loop from experiment 2, has the same parameters and therefore identical low-pass 

filtering properties, presumably matching those of the participant. The difference is that the ‘target’ 

is an internal reference signal, and not an external stimulus. In experiment 2, we observed that the 

dx and dy control model lagged in phase behind the target, and that the size of the ellipse drawn 

by the model was different than the size of the ellipse drawn by the target. The role of the virtual 

target was to automatically compensate for the attenuation or amplification of amplitude produced 

by the low-pass filtering process. The size of the ellipse drawn by the virtual target was 

automatically increased when there was a size difference between the cursor and the ‘real’ target. 

Similarly, the virtual target was automatically advanced in phase to compensate for the phase lag 

produced by the low pass filter. 

Another important part of this model is the simulated measurement noise. This a is a small-

amplitude, normally distributed pseudorandom signal (mean=0mm, std=0.06 mm), added to cursor 

in x and y position independently during the task. This signal was primarily aimed at modelling 

the noise arising in the electronic tablet and pen instruments during recording.    

The model performed the same task as the participants of first tracking the target across elliptic 

trajectories from experiment 1, and second across randomly varying phase and size from 

experiment 2. Recorded position trajectories were smoothed with a 10Hz cutoff low-pass, second-

order Butterworth filter. The simulation step was 5ms, using Euler integration. Time derivatives 

of signals were approximated as differences between current and previous time-step signal values, 

divided by the time-step length.  

 

Results 

The parameters of the model – the gains and delays of the phase and size difference control loops 

– were found by fitting the behavior the model to the behavior of one participant. The parameters 

of the inner loop were found in experiment 2, and they remained the same (K=10, B=0.018 and 

delay=100ms). The size difference loop had a delay of 250ms: 150ms on top of 100ms from the 

inner loop, while the phase difference had a delay of 100ms; no additional delay on top of the inner 

loop. The phase difference proportional-derivative (PD) controller had Kp=0.5 and Kd=0.3, while 

the size difference PD controller had Kp=1.33 and Kd=0.016, and an additional slowing term with 

B=0.033. 

Figure 5 shows the performance of the model in the same tracking task performed by the 

participants, analyzed in the same way as participant performance (Figure 2), while Figure 6 shows 

a direct comparison between one participant and the model.  
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The model closely approximates the behavior of the participants – the speed curvature power law 

emerges only for high-frequency target tracking, where r2 ≥ 0.75 only for trials where the target 

frequency was f ≥ 0.81Hz (Figure 5F and 5G), while for participants the power law was present 

for f ≥ 0.94Hz.  

In a slow trial (target f=0.27 Hz, period=3.7s, Figure 5C), for different target speed profiles (β=0, 

β=-1/3, β=-2/3), the model cursor seems to be tracking the low-frequency fundamental, and there 

is some higher-frequency noise, in both speed and curvature profiles. Speed and curvature are only 

weakly related and the power law does not reach r2 ≥ 0.75. This is similar to participant speed and 

curvature profiles for the same task - compare Fig. 5C to Fig. 2C.  

In a fast trial (target f=1.34Hz, period=0.75s, Figure 5D), for different target speed profiles, the 

model has the same speed profile, with the exponent β≈-1/3, and with high r2. This is similar to 

the participant speed profiles, and the relationship between speed and curvature in participant 

trajectories – compare Fig 5D to Fig 2D.  

The position and speed errors across trials with different frequencies were not the same as 

participants (Figure 5E, compare to Figure 2E). The model has lower errors, lowest when the target 

speed profile conforms to β=-1/3 power law. This distinction does not appear strongly in 

participant position and speed errors plot (Figure 2E). The absolute value of the errors is also 

smaller in the model than in participant trajectories. In the given range of target frequencies, the 

position error for targets with β=0 and β=-2/3 is relatively large even for slow targets, and does 

not have a clear trend.  

The similarity of the behavior of the model is to the behavior of the participants is best seen in 

direct comparison of several time profiles: position, speed, phase difference and size (Figure 6). 

In the slow, low frequency trial (Figure 6A) the position of the model closely matched participant 

position in the same task. Speed profiles contain similar amounts of high-frequency components, 

mostly coming from the modelled low-amplitude measurement noise.  

In phase difference and size, the participant’s profiles seem to contain more randomness, while 

model phase difference and size are more repetitive. Direct comparison between the participant 

and the model in fast movement (Figure 6B) reveals very similar position and speed profiles, while 

phase difference and size seem to be more variable in participants trajectories than in the model 

trajectories. 

Without changing the parameters, the model performed a tracking trial identical to experiment 3 

(Figure 6C and 6D). The model maintained simultaneously the phase difference (Figure 6C) and 

the size difference (Figure 6C) stable and near zero, in a very similar range to that of participants, 

even when both target phase and ellipse sizes had a randomly-varying time profile.  
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Figure 5. The numerical model reproduces participant trajectories and the dependence of the power law exponent 

on target frequency found in experiment 1 (Figure 2) A) Diagram of the model: a visuomotor phase-locked loop 

with amplitude control B) Model maintains the size of the cursor path equal to the size of the target path for both slow 

and fast targets by modifying the amplitude of the virtual target C) For slow movements, the model’s speed and 

curvature are similar to participants, including the non-conformity to the speed-curvature power law. D) In fast 

movement, all model cursor trajectories follow the β=-1/3 speed curvature power law, regardless of the target speed 

profile. E) In the given frequency range, the model is much more accurate than participants in both position and speed 

F) The model is reproducing the relationship between the power law exponent β and the movement frequency found 

in Experiment 1, as well as G) the relationship between the coefficient of determination r2 and movement frequency.  
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Figure 6. Direct comparison of one participant and model behavior in the same tasks (model in orange, participant 

in green). A) In tracking a low frequency (slow) target, model and participant behave similarly in measures of position 

in the x dimension, speed, phase difference and ellipse size. B) In tracking a high-frequency (fast) target, the model 

shows more regularity, while the participant shows more randomness in behavior, however the positions and speeds 

are very similar C) The model also reproduces participant phase angles from Experiment 3, where the target phase 

varied randomly D) The model reproduces participant ellipse sizes from Experiment 3, where the target size varied 

randomly. 
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Discussion 

 

The power law does not necessarily appear for low-speed trajectories. The main empirical 

finding in experiment 1 (Figure 2) was that the speed-curvature power law appeared (r2 ≥0.75) 

only for high frequency movements, when the fundamental frequency was larger than 0.94Hz, or 

equivalently, when the period of drawing an ellipse was shorter than 1.04 seconds, and average 

speed higher than 158mm/s. For higher rhythms, participants did not track instantaneous target 

speeds well. Instead, participants’ speed profiles were nearly the same from trial to trial, following 

the β=-1/3 speed-curvature power law, regardless of the target’s power law exponent. In other 

words, for fast rhythms, participants always moved slightly slower in the curves than in the straight 

parts, even when the target moved at a constant speed (β=0) or had a higher speed difference profile 

(β=-2/3) (Figure 2D). In contrast, for low frequencies, (low average speed, cycle periods longer 

than 1.04s) the fit to the speed-curvature power law was poor. Participants roughly tracked 

instantaneous positions and speeds of the targets (Figure 2E) but the curvature and speed profiles 

contained a lot of high-frequency components, possibly coming from movement noise and 

measurement noise. 

The limit where the power law fit (r2) reaches 0.75, at period time of 1 second, or frequency of 

1Hz, might be specific to small-size elliptic trajectories of the hand, since the target ellipse had a 

constant size, 6.8cm in width and 3.7 cm in height. It has already been reported that drawing larger 

elliptic shapes does not always result in a good fit to the power law (Schaal and Sternad, 2001). 

Future research should look into the interaction of average speed, size of the trajectory and rhythm 

or period of drawing, and their influence on the exponent and the strength of the speed-curvature 

power law. 

At low speeds, the participants did closely reproduce the low-frequency target trajectories in both 

speed and position (Figure 2E). If participants can explicitly track or control trajectories, this 

ability seems to have a fairly low bandwidth, as the errors steadily increase with frequency, and 

yet, the size of the elliptic shape and the rhythmic synchronization to the target were still preserved. 

This seems to suggest a non-trivial control scheme, where trajectory is not the controlled variable. 

Cursor-target lineal distance is not controlled. In experiment 1, participants were instructed to 

‘keep the cursor as close to the target as possible’, and the first approximation for the controlled 

variables were the x and y components of the cursor-target distance, variables called dx and dy. 

There are several independent lines of evidence suggesting dx and dy are not controlled in ellipse 

tracking. First, in random pursuit tracking, dx and dy are demonstrably good approximations for 

controlled variables (Parker, 2017), and as expected, there are very low correlations between dx 

and Tx, as well as between dy and Ty in experiment 2 (random pursuit, Figure 3B). However, 

those correlations were higher in ellipse tracking, suggesting that dx and dy are not controlled in 

ellipse tracking (Figure 3D). 
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Second, the dx-dy model made much bigger ellipse drawings than the participants, and created a 

large phase lag, again suggesting that dx and dy are not controlled in ellipse tracking. 

Low-pass filtering accounts for the power law. The low-pass filtering properties of the dx-dy 

model may account for the convergence of the power-law exponents toward a value of β=-1/3 at 

high speeds (Figure 3I and 3J). A similar result was found by Gribble and Ostry (1996), where 

they concluded that the power law may arise from the low-pass filtering properties of the 

musculoskeletal system of the arm. Schaal and Sternad (2001) found that even a simple 

Butterworth filter with an appropriate cutoff frequency can produce power-law trajectories out of 

constant-speed trajectories. Recently, we have shown that a robot arm following a constant-speed 

visual target can also produce power law trajectories because it behaves as second order system 

with delay, also a low-pass filter (Matić et al., 2021). Similarly, as recognized by Lacquanity et al 

(1983), an ellipse composed of pure sinewave components, without any harmonics, will conform 

to the -1/3 speed-curvature power law. Low-pass filtering creates smooth trajectories for 

frequencies below the cutoff, and this alone might explain the speed-curvature relationship – if the 

target trajectory is the input signal, the visuomotor and proprioceptive-motor loops are filters that 

smooth it out, and create pure sinewaves in the cursor (or pen) trajectory as output.  

The difficulty with this explanation is that low-pass filters distort the input signal by introducing 

amplitude modulation and phase lags – filtered trajectories in Schaal and Sternad (2001), Gribble 

and Ostry (2003) and Matić et al (2021) all show that output ellipses have a different size than 

input ellipses. Participants in experiment 1 generally maintained the size of the cursor trajectory 

equal to that of the target’s trajectory, and followed the targets without phase lags – similar results 

were found by Viviani and Mounoud (1990) when tracking ellipses and by Parker (2020) when 

tracking one-dimensional sine waves. 

A possible solution is that higher-order systems somehow compensate for the distortions 

introduced by the filter.  

Phase and size difference may be controlled. I’ve proposed that higher order systems directly 

observe and control the visual phase difference and the size difference between the ellipses drawn 

by the cursor and the target. In experiment 1, the phase difference was maintained stable, and also 

had a very low correlation with disturbances (Figure 4B, 4C), which means it was unaffected by 

the disturbances and likely controlled. Participants also maintained the size of the cursor-drawn 

ellipse relatively constant (Figure 4D), which means that the size difference was also likely 

controlled. 

In experiment 3, direct disturbances were applied to the phase difference and size difference 

variables by designing an elliptic target trajectory that had a randomly changing phase and size. 

The stability and correlation measures confirmed the findings from the first experiment (Figure 

4E, 4F, 4G, 4I).  
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Instead of creating new target trajectories, an alternative strategy might be to apply random 

perturbations in the pathway between the pen and the cursor, making the disturbances invisible to 

the participants, and maintaining task visually equal to experiment 1, but altering the pen 

movement patterns necessary to maintain phase difference and size difference stable. 

Numerical model reproduces participant trajectories. For the next verification step, I’ve 

created a numerical model, a simulation of the perceptual and control processes of participants. It 

is implemented as a two-level hierarchical control system that perceives and controls the cursor-

target phase difference and the cursor-target ellipse size difference (Figure 5A). The phase 

difference is integrated in time and used as a frequency parameter to a harmonic oscillator. The 

output of the oscillator is multiplied by the size difference error to create a virtual target – a phase-

advanced and amplitude-corrected reference for the inner loop. When the model cursor follows 

the virtual target, the phase difference and size difference can be kept low in the whole range of 

target frequencies tested; making the behavior of the model similar to human participants. The 

low-pass filtering properties of the dx-dy model are maintained because the inner loop has the 

same structure and parameters. 

The model replicated some important measures of participant behavior – namely the absence of 

the speed-curvature power law at low frequencies and the emergence of the power law at high 

frequencies, with the same exponent β≈-1/3, and r2 ≥ 0.75 for higher frequencies (f ≥ 0.84Hz). For 

participants this frequency was f ≥ 0.94Hz, and the difference is possibly a consequence of 

unmodelled, multiplicative noise (Faisal et al., 2008). Speed and position profiles of the model 

cursor were also similar to participants (Figure 6). On the other hand, the speed and position errors 

(the distance between the cursor and the target) in the model (Figure 5E) were lower than the speed 

and position errors in participant trajectories (Figure 2E) - the model was more accurate. This 

might suggest some changes in the model that would make it less accurate in speed and position 

tracking, while still maintaining a good fit in other measures.  

The model also replicated participant behavior in non-rhythmical target trajectories, namely when 

both the phase of the target and size of the target ellipse had pseudorandom profiles (experiment 

3, Figure 6D and 6E), suggesting that the model might be more general – the target trajectory does 

not need to be rhythmical, and the size of the target ellipse does not need to be constant. The model 

performed all the tasks without any changes in the parameter after initial fitting. 

Parameter measurement implications. If model parameters represent some internal 

characteristics of the participant, their values might be informative about the characteristics of the 

participant. The delay parameter represents the time it takes for a signal to make a ‘full trip’ around 

the loop, and longer delays might indicate longer computational processing or longer nerve 

pathways, implying hierarchically higher systems. As expected for a hierarchically higher system 

- the size difference control loop has a large delay (250ms), but the phase difference loop is only 

at 100ms, the same as the inner control loop. This might indicate that the model needs some 

reorganizing. I’ve proposed the phase control loop as superordinate to the inner cursor position 
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loop, but those two loops might also be on the same organizational level. The proposed oscillator 

is ‘cortical’, since it sends outputs downstream to the visual system, however it might be a spinal 

or a brainstem central pattern generator. This proposal could be verified in a future study. 

Alternative and additional controlled variables. As mentioned in the introduction, there are 

always potential improvements to the approximation of the controlled variables. Similar measures 

to phase and size difference might also be used, such as the arc-length distance instead of the phase 

difference. This might be a more useful measure when the target path is not elliptical. The size of 

the ellipse, as proposed, might be split into the horizontal and vertical amplitude components, 

allowing the control of elliptic paths of independently varying width and height. Alternatively, 

path accuracy might be controlled more locally, by perceiving the distance between the cursor and 

the path, and altering the direction of movement. The velocity of the target itself might play a role, 

as in one-dimensional sinewave tracking (Parker et al., 2021). An additional control variable in 

the task might be the center of the oscillation.  

Limitations of the study. Participants were not trained to perform the task. The task was not 

difficult, however, training until there is no more improvement should remove the influence of 

learning on performance and make the participant trajectories less variable from cycle to cycle.  

There were only three participants in the first experiment, and a single participant in the second 

and third. A larger number of participants who would perform all three experiments would allow 

fitting the model to each participant individually, and then testing how well the model predicts 

their behavior in a new task. While I have not used any statistical inference tests that would require 

a large number of participants, a higher number of participants might still be useful to gather the 

ranges and consistency measures of model parameters, such as gains and delays, in the sample. 

Summary and outcome. In this study, I’ve attempted to answer why there is a relationship 

between speed and curvature in elliptic hand movement, why is the exponent of the speed-

curvature power law often found to be -1/3, and more broadly – how people track elliptic 

trajectories. 

I’ve found that the power law only appears in fast movement, here when elliptic paths are traversed 

in less than 1 second, for relatively small elliptic shapes (6.8 cm width and 3.7 cm height). 

Based on the recorded data, I’ve proposed phase difference and size difference as controlled 

variables in the ellipse tracking task and supported the hypothesis by finding that participants can 

maintain them stable when they are directly perturbed in a tracking task. Also, there are low 

correlations between controlled variables and disturbance variables in two different tasks.  

Finally, a numerical model that controlled phase and size difference reproduced many of the 

behavioral measures found in participants’ hand trajectories, such as the emergence of the speed-

curvature power law, as well as position and speed profiles of participants’ hand trajectories. 
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In conclusion, it appears that in ellipse tracking, the speed-curvature power law emerges because 

of the low-pass filtering properties of the whole visuomotor loop, including visual processing and 

musculoskeletal elements. The effects of the low-pass filter – phase delay and amplitude 

modulation – are compensated by two higher level loops that maintain the phase of the cursor 

equal to the target and the size of the drawn ellipse equal to the size of the target ellipse by 

modulating the frequency and amplitude of a simple harmonic oscillator.  
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