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Abstract: An analysis of the different emission regimes (continuous wave, Q-switched, and
different forms of modelocking) of a C-band Er:fiber frequency shifted feedback laser at large
frequency shifts is presented. We clarify the role of ASE recirculation in the origin of various
spectral and dynamical properties of this type of lasers. Specifically, we show that Q-switched
pulses are supported by a noisy, quasiperiodic ASE recirculation pattern that univocally identifies
the pulses within the sequence, and that these Q-switched pulses are chirped as a consequence of
the frequency shift. A specific pattern of ASE recirculation, in the form of a periodic stream
of pulses, is identified in resonant cavities, namely, those where the free spectral range and
the shifting frequency are commensurable. The phenomenology associated with this pattern
is explained through the moving comb model of ASE recirculation. Modelocked emission is
induced from both integer and fractional resonant conditions. It is shown that ASE recirculation
coexists with modelocked pulses, originates a secondary peak in the optical spectrum, and also
drives Q-switched modelocking near resonant conditions. Harmonic modelocking with variable
harmonic index is also observed in non-resonant cavities.
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1. Introduction

The incorporation of a frequency-shifting (FS) element in a laser cavity has been long known to
produce an amplified output without the Fabry-Pérot (FP) mode structure of standard lasers [1,2].
It is also known that these Frequency-Shifted Feedback (FSF) lasers are amenable to oscillation
in different dynamical regimes, both continuous-wave (CW) and pulsed, and so they have been
demonstrated in a variety of gain media, emission bands, and cavity configurations [3–19].
The simplicity of the FSF laser architecture has gained renewed attention for the generation of
pulsed emissions in the mid infrared (MIR) band, where more conventional techniques may
become difficult to implement [20–25]. In this band, a wide range of materials shows strong
molecular absorption signatures and, thus, MIR laser emission finds applications in molecular
spectroscopy, sensing, nonlinear optics, medical applications, and line-of-sight communications
in the atmospheric transmission windows. Compact fiber sources based on doped fluoride and
chalcogenide glasses represent an attractive and versatile alternative in this context [26, 27], and
FSF lasers offers the possibility to generate pulsed emission by use of acousto-optics frequency
shifters (AOFS) compatible with the wavelengths of interest.

Much of the current understanding on AOFS-driven FSF lasers relies on the studies following
their first demonstrations [2–4]. The modeless emission of CW FSF lasers is understood as a
consequence of the recirculation of ASE generated at the gain medium, the frequency shift 𝑓𝑠
imparted in each roundtrip being responsible of the absence of frequency discrimination [2].
The buildup of pulsed emission, in turn, involves additional effects, specifically gain dynamics
and Kerr-type nonlinear propagation [9]. A specific question is the role played in the laser
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dynamics by the two scales involved in roundtrip propagation, namely the frequency shift 𝑓𝑠 and
the cavity’s free spectral range FSR = 1/𝜏𝑐, with 𝜏𝑐 the cavity’s roundtrip time, in particular in
the so-called resonant FS cavities [5–7]. A resonant cavity is defined by the condition that the
product 𝑓𝑠𝜏𝑐 has a fractional value; this product represents the phase gained after a roundtrip, in
units of 2𝜋, by a frequency-shifted wavelength. In the configuration of interest here –unseeded
FSL lasers with intracavity bandwidth limiting filter– Sabert and Brinkmeyer [8, 9] identified the
Q-switched (QS) and modelocked (ML) emission in Er and Yb:fiber FSF lasers in both linear
and ring cavity configurations. They also showed the critical role of the spectral broadening
induced by Kerr effect in the development of modelocking, as a means to compensate for the
unidirectional spectral displacement induced by the frequency shifter and also to establish a
phase distribution throughout the optical spectrum. In addition, they reported the buildup of
harmonic modelocking (HML) with different harmonic indices in long fiber cavities and large
pump powers. These results, which were obtained for small frequency shifts 𝑓𝑠𝜏𝑐 < 1, did not
display any selectivity with respect to 𝑓𝑠 .

Subsequent work [10, 11] implemented soliton fiber lasers in Er:fiber based on the related
sliding-frequency filtering concept. Following [10], it was pointed out [12] that ML pulses
need not dispersion to grow up in a FSF cavity, thus opening a different route for pulse buildup.
QS, ML, and Q-switched ML (QML) regimes were also characterized by Perry et al. [13] at
large, resonant frequency shifts 𝑓𝑠𝜏𝑐 = 10 in a linear-cavity Er:fiber FSF laser, and by Bonnet
et al. [14, 15] in a linear-cavity Ti:sapphire FSF laser at nonresonant shifts 𝑓𝑠𝜏𝑐 ≲ 2. The
all-fiber ring-cavity Er:fiber configuration has also been studied by several authors, including the
simulations studies of QS [16] and both experimentally and by numerical methods in the case of
ML [17,18]. The overall picture that arises from these accounts indicates that QS pulses are built
as sustained relaxation oscillations [9], and show a time-varying optical spectrum induced by
the frequency shift with accompanying small variations of the instantaneous gain [16]. ML and
HML are induced by Kerr-type nonlinearity, and are in principle attainable at any frequency shift
by use of a sufficiently large pump power [9]. Nonetheless, ML emission in resonant cavities
shows specific features, such as distinctive pulse-like regimes [13] and lower requirements of
pump power [20].

More recently, interesting dynamical and spectral aspects of pulsed FSF lasers, both in NIR
and MIR bands, have been reported. The spectrum of QS and ML pulses is known to differ
from CW [13,14] and, in particular, ML emission with broad intracavity filters typically shows
a double peak structure [17, 18, 21] that is not fully understood. At high pump levels, ML
emission shows up in a multipulse regime [9,17,19–21] similar to passively ML fiber lasers [28].
Also, it has been identified a specific mechanism in the ML intensity spectrum that drives the
QML dynamics [22], although its origin is unclear. Finally, a recent report has revealed the
spectro-temporal structure of ML buildup at small frequency shifts [29].

The objective of this paper is to address the origin of these features and, in particular, show
how the different forms of ASE recirculation are on the basis of these effects. Our approach is
based on the systematic characterization of the pulsed regimes in a 1.55 µm Frequency-Shifting
Loop (FSL). FSL are all-fiber systems targeted to high-bandwidth photonic signal processing
and generation [30]. They are basically FSF lasers operated below threshold, and in its basic
configuration they comprise a frequency shifting element, in our case an AOFS, an intra-loop
amplifier, typically a low-noise EDFA, and a filter, all placed in a fiber ring configuration. FSF
lasers and FSL, when these are operated above threshold, share the same underlying dynamics,
and the versatility in the FSL implementation enables a precise control of the regimes where
the loop progressively operates. Comparative information can then be extracted from standard
spectral, radio-frequency (RF) and intensity characterization techniques, allowing for the isolation
and identification of different dynamical features in each of the emission regimes.

With this approach we have explored the different pulsed regimes of FSL emission at integer,



fractional, and (approximately) irrational values of large products 𝑓𝑠𝜏𝑐, a range that presents
distinctive ASE recirculation patterns that constitute the starting point for our analysis. We
describe here our main findings in parallel with the organization of the paper. After presenting our
experimental system in Section 2 we introduce in Section 3 two standard models or recirculation
in FS cavities, the so-called frequency-sliding filter model [6, 7, 31] and the moving comb (MC)
model [7, 31–38]. This last model describes CW emission as a periodic stream of chirped waves
and constitutes our theoretical basis for the interpretation of ASE recirculation. We then identify
the observed dynamical regimes in terms of power and spectrum in Section 4 and in terms of
EDFA dynamics in Section 5. In Section 6 we analyze two features of the QS regime that seem
not to have been addressed in the literature: the intrinsic tagging of QS pulses provided by
recirculating ASE and the demonstration of its chirped character, as predicted in the simulations
of [16]. In Section 7 we analyze the ASE recirculation patterns that sustain CW and QS emission
at large frequency shifts, identifying in both regimes a significant change at integer and fractional
resonant conditions. At these values, ASE recirculates in periodic intensity patterns that resemble
sequences of pulses with a periodicity equal to a harmonic of the shifting frequency. This pattern
was identified at 𝑓𝑠𝜏𝑐 = 10 in [13] as a pulsed emission within the CW and QS regimes, but
its origin as a particular form of ASE recirculation was not noticed. In Section 8, devoted to
modelocking, we first induce ML for both integer and fractional values of 𝑓𝑠𝜏𝑐. Emission appears
as a cluster of pulses, or multipulse state [17, 21] together with a residual ASE recirculation field.
Taking advantage of the particular form of ASE recirculation at resonant conditions, evidence is
provided that the double peak in the ML spectra is associated to each of these two fields, ML
pulses and ASE. We also show that this residual ASE field drives the ML dynamics near the
resonance as was described in [22], in particular inducing QML. Away from resonant conditions,
the emission evolves into a ML state composed of separated pulses that drift within the cavity’s
roundtrip time, state that can be stabilized either as QML or as HML, in this last case in a similar
manner as was described in [9, 29] for small frequency shifts. Finally, we end in Section 9 with
our conclusions.

Along with these findings we show that some of the observed features, specifically the
phenomenology of the periodic intensity pattern of ASE recirculation, find a natural interpretation
within the MC model. This observation is of relevance since it is known that at large frequency
shifts 𝑓𝑠𝜏𝑐 ≥ 1 the detection of recirculating chirps is not possible through direct spectral
filtering [7, 32]. Thus, the present study not only shows the role played by ASE recirculation in
various spectral and dynamical effects within the pulsed regimes of FSF lasers, but also supports
the pertinence of the MC model of recirculation for large frequency shifts.

2. Experimental setup

As is shown in Fig. 1(a), the FSL is composed of an EDFA followed by a spectral filter and a
fiber-coupled AOFS (AA Optoelectronic MT80-B10) providing positive frequency shifts around
80 MHz. An optical isolator is included before the EDFA to assure unidirectional circulation. The
filter is an apodized uniform FBG (Technica T10) with a nominal central wavelength of 1550 nm,
FWHM of 1.63 nm, peak reflectivity of 51%, and a reflectivity spectrum of approximately
Gaussian shape, shown in Fig. 1(b). Polarization filter couplers were inserted before the AOFS
and the isolator to extract the FSL output (≃2% of the power at the EDFA output) and to inject a
probe wavelength for the EDFA, respectively. In this last case, the probe wavelength is 1552.1 nm,
near but out of the FBG reflection band, and is thus not subject to recirculation. This wavelength
is extracted at the FBG transmission port after being spectrally filtered prior to detection by
use of a tunable bandpass filter (EXFO XTM-50, not shown in the figure). The relative power
variations of the probe wavelength provide a direct measurement of the single-pass EDFA gain.

In our default setting the cavity round-trip time 𝜏𝑐, which was not actively stabilized, was
98.4 ns (loop length of ∼19 m of fiber), although in specific experiments we varied the loop



length due to the experimental availability of some components. With these figures the accessible
range of the product 𝑓𝑠𝜏𝑐 is typically 7-8. Single-roundtrip losses were controlled through the RF
power delivered to the AOFS and expressed in terms of the transmittance 𝑇pk < 1 measured at
1550.0 nm, the wavelength that corresponds to the FBG reflectivity peak. Peak transmittance 𝑇pk
was calibrated in terms of the RF power driving the AOFS, up to a maximum value of −14.3 dB.

Fig. 1. (a) Experimental setup. (b) Normalized FBG reflectivity.

The EDFA was constructed from 60 cm of highly doped Erbium fiber (Liekki Er80/8) pumped
at 978 nm with a power of ∼160 mW, which amounts to ∼10 times the doped fiber’s transparency
threshold. Amplifier’s gain was fixed in our experiments, the loop’s transparency being controlled
through the AOFS driving power. Neither the amplifier nor the filter were built on polarization-
maintaining fiber, so that a polarization controller was inserted before the output coupler to align
the polarization. The EDFA showed a small-signal (unsaturated) gain 𝐺0 = 17.2 dB, a saturation
power 𝑃𝑠 = 12 mW, and a noise figure <4.5 dB in the C band. In some occasions we induce
a saturation in the EDFA through the probe wavelength, and denote as 𝐺ss ≤ 𝐺0 the actual
(small-signal) gain offered by the externally saturated EDFA when the ASE recirculation is small
and hence does not contribute to an additional compression. This gain 𝐺ss thus determines, under
arbitrary compression conditions, the loop’s threshold transparency 𝑇 th

pk at the FBG reflectivity
peak through the requirement that 𝐺ss𝑇

th
pk = 1.

3. Recirculation in a frequency-shifting cavity

3.1. The frequency-sliding filter

The frequency-sliding filter picture of light recirculation in a FS cavity is based on the evolution
of monochromatic components in a passive cavity without frequency-selective filters [6, 7]. In
the case of a ring FS cavity it can presented as follows. We refer the intracavity field E(𝑡) to the
output of the AOFS, where the shift by 𝑓𝑠 , here assumed positive, is imparted. The overall loop
loss in amplitude is denoted by 𝜌 < 1. Recirculation induces a recursive relationship between
E(𝑡) and its delayed, attenuated, and frequency-shifted replica of the form:

E(𝑡) = 𝜌𝑒 𝑗2𝜋 𝑓𝑠 𝑡E(𝑡 − 𝜏𝑐) + Ein (𝑡) (1)

where we have assumed that propagation is linear and dispersionless and Ein (𝑡) represents an
injected input field. We note that in CW FSF lasers the seed field Ein (𝑡) is the ASE produced by
the amplifier, but (1) and therefore the present analysis is valid for any externally injected field.

Equation (1) defines a linear, time-variant system where Ein (𝑡) is the input and E(𝑡) the output.
As can be checked by direct substitution, its solution is [7]:

E(𝑡) =
∞∑︁
𝑛=0

𝜌𝑛𝑒− 𝑗 𝜋 𝑓𝑠 𝜏𝑐𝑛(𝑛−1)𝑒 𝑗2𝜋𝑛 𝑓𝑠 𝑡Ein (𝑡 − 𝑛𝜏𝑐) (2)



On the other hand, the solution of a general linear, time-variant system can be expressed in terms
of the Fourier spectrum Êin (𝜈) of the input field in the general form [39]:

E(𝑡) =
∫

𝑑𝜈 Êin (𝜈)𝑇 (𝜈, 𝑡)𝑒 𝑗2𝜋𝜈𝑡 (3)

where 𝑇 (𝜈, 𝑡)𝑒 𝑗2𝜋𝜈𝑡 represents the time-spread response of the system to an oscillatory input
𝑒 𝑗2𝜋𝜈𝑡 of given frequency 𝜈. Time-invariant systems are those for which 𝑇 (𝜈, 𝑡) does not depend
on 𝑡 and so a monochromatic input only changes in amplitude and phase. Function 𝑇 (𝜈, 𝑡) thus
generalizes the concept of transfer function to time-variant systems. In the case at hand, it is
given by a function of a single variable, 𝐹 (𝑥) [7]:

𝑇 (𝜈, 𝑡) =
∞∑︁
𝑛=0

𝜌𝑛𝑒− 𝑗 𝜋 𝑓𝑠 𝜏𝑐𝑛(𝑛−1)𝑒 𝑗2𝜋𝑛( 𝑓𝑠 𝑡−𝜈𝜏𝑐 ) = 𝐹 (𝜈 − 𝛾0𝑡) (4)

where 𝛾0 = 𝑓𝑠/𝜏𝑐 is the natural chirp rate of the FS cavity. Therefore, the system’s frequency
response at the initial instant 𝑡 = 0, namely 𝑇 (𝜈, 0) = 𝐹 (𝜈), slides in time according to rate
𝛾0. For rational values of the product 𝑓𝑠𝜏𝑐, function 𝐹 (𝑥) is known to be peaked at a series of
equispaced passbands, a fact that is ultimately due to the temporal Talbot effect undergone by
each of the recirculating optical frequencies [7]. Moreover, 𝐹 (𝑥) reduces to an Airy function of
equidistant Lorentzian lines in the limit of very small frequency shifts 𝑓𝑠𝜏𝑐 ≪ 1 [7].

We mention that the present approach can be extended to CW FSF lasers by considering the
recirculation of a monochromatic component in an active cavity with an intracavity bandwidth
limiting filter. This leads to the so-called discrete frequency model [31]. In this case, the
frequency response 𝑇 (𝜈, 𝑡) of the associated linear system is no longer a frequency-sliding filter:
the 𝜌𝑛 factor in (4) transforms into a function 𝑟𝑛 (𝜈) of the input frequency that accounts for the
gain in amplitude accumulated by frequency 𝜈 after 𝑛 recirculations. This results in a functional
dependence of the form 𝑇 (𝜈, 𝑡) = 𝐺 (𝜈− 𝛾0𝑡, 𝜈). The details can be consulted in Section 4 of [31].

3.2. The moving comb model

One of the consequences of the preceding frequency-sliding filter picture is that, when a chirped
wave with chirp rate 𝛾0 is input in the FS cavity, the filter accompanies the wave, imparting on it
a given amplitude and phase characteristics as in a linear, time-invariant filter. Starting from this
observation we present the filtering properties of the FS cavity in a manner that highlights its
similitude with a standard ring cavity, and apply it to the description of CW FSF laser emission.
Let us decompose the output field E(𝑡) in (1) in terms of waves chirped at 𝛾0, as shown is the left
part of the following equation. The decomposition entails the spectrum of chirped waves, 𝐶 (𝜈̃),
which is defined in terms of E(𝑡) by the inverse transform shown on the right part of the equation:

E(𝑡) = 𝑒 𝑗 𝜋 𝑓𝑠 𝑡
2/𝜏𝑐

∫
𝑑𝜈̃ 𝐶 (𝜈̃)𝑒 𝑗2𝜋𝜈̃𝑡 𝐶 (𝜈̃) =

∫
𝑑𝑡E(𝑡) 𝑒− 𝑗2𝜋𝜈̃𝑡− 𝑗 𝜋 𝑓𝑠 𝑡

2/𝜏𝑐 (5)

We also introduce the corresponding spectrum 𝐶in (𝜈̃) that describes the input Ein (𝑡). In this
representation, the chirped waves have an instantaneous frequency 𝜈𝑖 (𝑡) = 𝜈̃ + 𝑓𝑠𝑡/𝜏𝑐, and so
frequency 𝜈̃ is not the standard optical (Fourier) component of a field, but its instantaneous
frequency at a given reference time arbitrarily set to 𝑡 = 0. Then, it is a simple task to show that
the solution of (1) is given in 𝜈̃ space in terms of the input field through an Airy transfer function
𝐻FS (𝜈̃) similar to that of a FP filter, except for a shift in frequency by 𝑓𝑠/2:

𝐶 (𝜈̃) = 𝐻FS (𝜈̃) 𝐶in (𝜈̃) =
𝐶in (𝜈̃)

1 − 𝜌𝑒− 𝑗2𝜋 ( 𝜈̃+ 𝑓𝑠/2)𝜏𝑐
(6)



Fig. 2. (a) Schematics in the 𝜈𝑖 vs. 𝑡 plane of the chirped fields in a linear dispersionless
FS cavity without bandwidth limiting filter. (b) Net gain region in an active FS cavity
with bandwidth limiting filter, and schematics of the resulting CW optical spectrum.
(c) Schematics in the 𝜈𝑖 vs. 𝑡 plane of the chirped fields in an active FS cavity with
bandwidth limiting filter.

For 𝜌 → 1 the FS cavity thus selects frequencies 𝜈̃𝑘 = 𝑘
𝜏𝑐

− 𝑓𝑠
2 for integer 𝑘 [35], in the form of

sharp passbands of width Δ𝜈̃ ≪ 1/𝜏𝑐. The field is then described by a set of chirped waves:

E(𝑡) =
∑︁
𝑘

𝐴𝑘 (𝑡) 𝑒 𝑗2𝜋𝜈̃𝑘 𝑡+ 𝑗 𝜋 𝑓𝑠 𝑡
2/𝜏𝑐 (7)

where the slowly varying complex amplitude 𝐴𝑘 (𝑡) are given by:

𝐴𝑘 (𝑡) =
1

1 − 𝜌

∫ Δ𝜈̃/2

−Δ𝜈̃/2
𝑑𝜂 𝐶in (𝜈̃𝑘 + 𝜂)𝑒 𝑗2𝜋𝜂𝑡 (8)

Note that transformation (5) and thus both the transfer function 𝐻FS (𝜈̃) and the representation (7)
reduce to a standard FP filtering when 𝑓𝑠 → 0.

Referring to the 𝜈𝑖 vs. 𝑡 plane in Fig. 2(a), field (7) is represented by a set of chirped waves
which, at a given time, show instantaneous frequencies separated by the cavity’s free spectral
range FSR = 1/𝜏𝑐 and, at a given instantaneous frequency, flow with period 1/ 𝑓𝑠 . These chirps
have been detected in the form of a sequence of pulses with periodicity 1/ 𝑓𝑠 after narrowband
optical filtering [32, 33]. Detection thus requires an optical filter with spectral width < 1/𝜏𝑐 and
temporal resolution < 1/ 𝑓𝑠 , conditions that can be jointly fulfilled only at small frequency shifts
𝑓𝑠𝜏𝑐 < 1 [7, 32]. The emitted field (7) is usually referred to as a moving comb, i.e., an optical
frequency comb with teeth spectrally separated by 1/𝜏𝑐 and globally chirped at the natural rate
of the FS cavity.

On the other hand, an active cavity can be operated above threshold (𝜌 > 1) provided that we
include an intracavity filter that controls the growth of the recirculating fields. As is schematically
shown in Fig. 2(b), the intracavity filter defines a region of net gain for optical Fourier components
𝜈− < 𝜈 < 𝜈+. Waves whose instantaneous frequency is above 𝜈− amplify while flowing through
the filter up to 𝜈+, where they become below threshold and progressively attenuate. In our
case, this transit is adiabatic since the frequency shift is much lower than the filter’s width, and
therefore the amplitudes 𝐴𝑘 (𝑡) in (7) still change slowly with time. As a result, a stationary
optical spectrum is built with a pronounced peak at 𝜈+ [35], as is depicted in the upper part of
Fig. 2(b). In addition, if the input field is uniformly generated in the region of net gain, as is the
case of the ASE seeding a CW FSF laser, the observed emission at 𝜈+ is dominated by those
frequencies that were generated at 𝜈− [9], since in this case the accumulated gain is the highest.
The population of the different chirps in (7) is not necessarily uniform: for pump powers leading
to operation near threshold the authors of [32] found that the chirps had all the same amplitude,
but for increasing pump some chirps were absent and the rest were organized in periodic groups
as a consequence, presumably, of nonlinear interactions.



According to (6), the FS cavity acts as a FP filter in 𝜈̃ space that selects the instantaneous
frequency and bandwidth of the constituent chirps (7). The amplitude and phase of these chirps
is determined by chirp spectrum 𝐶in (𝜈̃), a spectrum that depends on both the input field and on
the cavity: its definition in (5) represents the Fourier decomposition of the input field after a
quadratic phase modulation that depends on 𝛾0. In this regard, the present description of the
filtering properties of a FS cavity is complementary to the sliding filter picture: in this last case,
(3) indicates that the frequency response 𝑇 (𝜈, 𝑡) = 𝐹 (𝜈 − 𝛾0 𝑡) is time dependent, but the input to
the filter is simply the Fourier spectrum Êin (𝜈) of the input field. In the present approach, (6)
shows that the frequency response 𝐻FS (𝜈̃) is static (does not slide in time), but the input to the
filter, the chirp spectrum 𝐶in (𝜈̃), now depends on both the input field and on the cavity.

In general, the interpretation of E(𝑡) under coherent inputs is more simple in the sliding filter
picture, as the output of a single-frequency component is 𝑇 (𝜈, 𝑡)𝑒 𝑗2𝜋𝜈𝑡 = 𝐹 (𝜈 − 𝛾0𝑡)𝑒 𝑗2𝜋𝜈𝑡 [7].
In turn, a CW FSF laser is a regenerative amplifier fed by the ASE generated in the gain section,
and therefore is seeded by an incoherent input field. In this case, the output is straightforwardly
described by the MC model as follows. Let us denote by Γin (𝜏) = ⟨Ein (𝑡)∗Ein (𝑡 + 𝜏)⟩ the
stationary autocorrelation of the ASE field, where the brackets stand for statistical average and
the asterisk for complex conjugation. It is not difficult to show from (5) that ⟨𝐶in (𝜈̃1)∗𝐶in (𝜈̃2)⟩ ∝
Γin ((𝜈̃1 − 𝜈̃2)𝜏𝑐/ 𝑓𝑠), and so the amplitudes (8) are mutually incoherent provided that the
coherence time of the input field is ≪ 1/ 𝑓𝑠 . In the case of self-injection with ASE, this condition
is fulfilled since it translates into the requirement that the emission’s spectral width is ≫ 𝑓𝑠 . CW
FSF laser emission is therefore understood as an incoherent moving comb, and thus without FP
mode structure, continuously created from ASE and regeneratively amplified in the FS cavity.
The final picture in the 𝜈𝑖 vs. 𝑡 plane is depicted in Fig. 2(c) [36].

4. Dynamical regimes

Our first task was the identification of the different dynamical regimes arising at integer,
rational, and (approximately) irrational values of the product 𝑓𝑠𝜏𝑐 for increasing values of loop’s
transparency. In these experiments we used our default cavity with 𝜏𝑐 = 98.4 ns. The identification
was done by observing the output intensity in a low-bandwidth (200 MHz) oscilloscope and
by measuring the FSL output power and spectra. Starting with the integer value 𝑓𝑠𝜏𝑐 = 8, we
present in Fig. 3(a) the output power and in (b) the corresponding optical spectra for the different
dynamical regimes. Focusing first in the output power curve we found, with increasing loop
transmittance, CW emission due to ASE recirculation (blue points), QS self-pulsing emission
(orange points), and ML emission at a repetition rate equal to the cavity FSR, 10.16 MHz
(magenta points). In Fig. 3(c) we also present the optical spectra for an approximately irrational
value of the product 𝑓𝑠𝜏𝑐 = 7.675 . . . obtained when the shifting frequency was set to 78 MHz.
The analysis for both values of the 𝑓𝑠𝜏𝑐 product will be presented in parallel since the power trace
for the irrational product is similar to that in Fig. 3(a) except for the absence of the ML regime.

Below threshold recirculation is small and the CW output is broadband ASE filtered by the
FBG, as shown by the smooth, light blue traces at the bottom of Figs. 3(b) and (c). Near threshold,
the onset of significant recirculation is manifested in an increase of the output power and in the
generation of a small, asymmetric peak in the spectrum at the FBG center frequency (middle
blue traces in Figs. 3(b) and (c)). At threshold, the optical power undergoes a sudden increase
that initiates a saturation trend due to the progressive compression of the amplifier’s gain. The
spectrum clearly reflects the expected asymmetric ASE peak, which is progressively blueshifted
with respect to the FBG center as transparency increases. Representative traces are those shown
in dark blue in Figs. 3(b) and (c). At the maximum output power in the CW regime, the FWHM
of the emission’s peak is 0.140 nm. As this peak is at threshold, one can infer from it the width
of the filter that is above threshold (41.5 GHz), which amounts to ∼500 recirculations.

At 1.5 dB above transparency, QS pulses are spontaneously built as sustained relaxation



Fig. 3. (a) Output power as a function of relative transparency, in dB, for the different
regimes: blue, CW; orange, QS; and magenta, ML. (b) Optical spectra of emission at
exact resonance conditions 𝑓𝑠𝜏𝑐 = 8. Blue traces: CW emission, from bottom to top,
below threshold, approximately at threshold, and ∼1 dB above threshold. Magenta
trace: ML emission ∼3 dB above threshold. (c) Same as (b) for approximately irrational
values of the 𝑓𝑠𝜏𝑐 product ( 𝑓𝑠 = 78 MHz), except for orange trace: QS emission ∼3 dB
above threshold. The colors in (b) and (c) correspond to the different regimes in (a).

oscillations with increasing repetition rate, in the range 12-16 kHz. The typical optical spectrum
for QS emission is depicted only for irrational 𝑓𝑠𝜏𝑐 (Fig. 3(c), blue trace), as QS emission states
for 𝑓𝑠𝜏𝑐 = 8 were too close to the ML onset to provide a representative trace. This spectrum still
presents the blueshifted peak, indicating that the QS pulses are built from recirculating ASE. We
observe, however, that the peak is centered at lower frequencies as compared to CW emission,
and also that the spectrum entails a smoother high-frequency edge. To explain this effect, let us
briefly describe the QS dynamics as simulated in [16].

A time-varying spectrum is formed from ASE spontaneously generated at the FBG reflectivity
peak and then moves in the direction of the frequency shift. Since the center of the filter is
above threshold, amplified recirculation results in a spectral avalanche that moves towards high
frequencies. Eventually, the increase in power of the amplified recirculating ASE saturates the
amplifier, gain decreases, and the high-frequency end 𝜈+ of the net gain region progressively
becomes below threshold. The ASE avalanche weakens and smoothly dies out. This is the origin
of the smooth high-frequency spectral edge of the blue trace in Fig. 3(c) as compared with the
CW (orange) trace. When the avalanche ceases, the loop is below threshold and the saturated
gain recovers. The cycle starts again from the ASE generated at the filter’s peak. Note that this
view implies that the QS pulses are chirped, i.e., the central frequency of the optical spectrum
varies in time in the direction of the frequency shift as the QS pulse intensity evolves. When the
QS pulse dies out, the central frequency moves back towards the FBG peak where the following
QS pulse is created from ASE. This chirp of the central frequency will be explicitly checked
in Section 6, and contrasts with the behavior of a conventional QS laser. There, the pulse is
created by the release of the energy stored by the population inversion, switched by the cavity’s Q
factor through active or passive means. In this case, the emission has essentially the same central
wavelength along the whole QS pulse, and corresponds to the center of the spectral region where
the population inversion is stored.

For 𝑓𝑠𝜏𝑐 = 8 and with increasing transparency we could induce a transition from QS to ML
after generating a small perturbation in the system through a variation in 𝑓𝑠. In the example
presented in Fig. 3(a) the transition was reached 2.4 dB above transparency, but in some cases
ML emission could be started even at lower values. In general, the ML regime in FSF lasers is
characterized by a pronounced hysteresis with respect to the pump power [14]; in our case, once
ML pulses are formed, the transparency could be decreased down to approximately the QS onset
while preserving the ML emission. ML states otherwise follow the same, smooth increasing
trend in output power; we obtained a maximum value of −6 dBm at the highest available RF



power. For irrational 𝑓𝑠𝜏𝑐 the trend in power is similar, but supported only by QS states. As can
be observed in the blue trace of Fig. 3(b), the emergence of ML emission is accompanied with
the appearance of a double peak in the optical spectrum [17,21], a structure that will be analyzed
in detail in Section 8.

We subsequently changed the shifting frequency 𝑓𝑠 to fulfill additional integer ( 𝑓𝑠𝜏𝑐 = 7) and
fractional ( 𝑓𝑠𝜏𝑐 = 15/2, 22/3 and 23/3) conditions. The full set of emission states (CW, QS,
and ML) was identified only for 𝑓𝑠𝜏𝑐 = 7 and 15/2, whereas for 𝑓𝑠𝜏𝑐 = 22/3 and 23/3 we only
observed the transition from CW to QS. In the case of 𝑓𝑠𝜏𝑐 = 15/2 the transition from QS to ML
was, however, more difficult to induce. The spectra of the different regimes showed the same
features as those described in Figs. 3(b) and (c).

5. EDFA dynamics

The role of the EDFA dynamics and its saturation were analyzed in a specific set of additional
experiments in our default cavity of 𝜏𝑐 = 98.4 ns. First, we used a weak probe wavelength,
with power −25 dBm at the EDFA input, to monitor its instantaneous gain in the three regimes
observed for 𝑓𝑠𝜏𝑐 = 8. The measurements were performed with the low-bandwidth oscilloscope
triggered by the pulses in the FSL output port and a synchronous recording of the probe power at
the FBG port of Fig. 1(a). The results are shown in Figs. 4(a)-(e) for the respective emissions in
CW, QS, ML, QML and HML regimes, these last two being induced by means of a procedure
discussed in Section 8. By QML we refer to a ML state showing a slow, Q-switched envelope in
the form of pulses which is originated by the amplifier’s dynamics. The gain, shown in blue in
the upper part of the corresponding plots, is presented as a relative value with respect to its mean,
whereas the synchronous envelope of the intensity is plotted below in gray without scale. The
intensity of ML, QML, and HML is composed of pulses at a repetition rate equal to the cavity’s
FSR, 10.16 MHz, which are not resolved in the corresponding plots.

As for CW, the EDFA gain shows small variations due to the intensity variations, and evolves
into a switching curve in the self-sustained QS regime similar to that of passive Q-switching
with a slow saturable absorber [40], with peak-to-peak gain variations of ∼2% with respect to
the average gain. This is in agreement with the simulated behavior in [16], where peak-to-peak
relative gain variations of ∼1% were found. Note also that Fig. 4(b) demonstrates that the EDFA
gain presents small variations at rates of ∼12 kHz. Since the QS state built as self-sustained
relaxation oscillations (RO) [9], this rate coincides with the RO frequency observed when the FSF
laser is suddenly turned on by switching the RF power driving the AOFS. As pointed out in [16],
this contrasts with the typical upper state lifetime of Er3+ in silica, 𝜏2 ≃ 10 ms when pumped
at ∼980 nm, a scale that is not sufficiently fast to respond to that repetition rate. This apparent
contradiction is resolved by noticing that the relevant timescale in the EDFA gain dynamics is the
gain’s recovery time after a saturating input [41], also referred to as the effective lifetime 𝜏𝑒 [42].
This scale depends on 𝜏2, the actual pump power 𝑃𝑝 , and the pump power for the doped fiber’s
transparency 𝑃𝑡 , as 𝜏𝑒 = 𝜏2/(1 + 𝑃𝑝/𝑃𝑡 ). Under typical pumping conditions such as that used
here, 𝑃𝑝/𝑃𝑡 ∼10, 𝜏𝑒 lies in the sub-ms scale [43–46], and thus allows for small gain variations at
the observed rate.

In the ML regime the amplifier cannot follow the fast repetition rate and the gain only shows
slow variations due to envelope’s fluctuations, as in CW. QML, as QS, is accompanied by small,
synchronous changes of the instantaneous gain. The gain of HML, in turn, is almost constant due
to the absence of envelope variations. This result confirms the expected behavior: the emergence
of the self-pulsing QS and also of the QML emission is dictated by the EDFA relaxation dynamics,
whereas CW, ML, and HML regimes encompass a nearly constant value of the gain.

In a second experiment we monitored the average EDFA gain with increasing transparency,
both at integer 𝑓𝑠𝜏𝑐 = 8 and at approximately irrational values of the 𝑓𝑠𝜏𝑐 product. Here we
present the results for the first case, as both were similar. We activated the weak probe wavelength



Fig. 4. Instantaneous EDFA gain (blue) and synchronous intensity (gray) of different
types of emission (a) CW above threshold, (b) QS, (c) ML, (d) QML, and (e) HML.
(f) EDFA compression with respect to the unsaturated gain (𝐺/𝐺0) as a function of
relative transparency at the FBG peak, 𝐺ss𝑇pk, in dB. Blue trace: unsaturated amplifier.
Orange trace: amplifier slightly saturated by a −13 dBm probe wavelength.

(−25 dBm) and measured its average power 𝑃probe
out after the EDFA at the FBG transmission

port by use of an OSA, not shown in Fig. 1(a). Under this weak probe power the EDFA does
not suffer from compression and operates at the unsaturated gain 𝐺0 = 17.2 dB. When the
transparency is low, 𝑇pk ≪ 1, the power of the recirculating ASE is also low, so it does not
saturates the EDFA either. In this situation, the small-signal EDFA gain coincides with the
unsaturated gain, 𝐺ss = 𝐺0. As we increase transparency, however, the recirculating ASE may
saturate the amplifier, which in general operates at a gain 𝐺.

We measured the probe power 𝑃probe
out with increasing transparency, and normalized it by its

value when 𝑇pk ≪ 1: the quotient thus represents the compression ratio 𝐺/𝐺ss = 𝐺/𝐺0 induced
by ASE recirculation. The results of this measurement are shown with a blue trace in Fig. 4(f) as
a function of the relative transparency 𝐺ss𝑇pk. We observe that, after threshold, gain becomes
clamped to 𝐺 ≃ 𝑇−1

pk in all the emission regimes. Subsequently, the probe power was increased
up to −13 dBm to describe a scenario where the amplifier is compressed by the recirculation of
an externally injected field. The results are also shown in Fig. 4(f), now with an orange trace.
When the saturating probe field was activated, the small-signal gain 𝐺ss becomes compressed by
0.66 dB with respect to the unsaturated gain 𝐺0. This compression level is maintained up to
the threshold; after this point, recirculating ASE induces an additional saturation in the EDFA,
whose gain becomes clamped again.

We mention that these results indicate that gain dynamics and intraloop power are decoupled
below threshold, allowing for an effective description of the loop in terms of a constant gain.
This provides an experimental justification of the standard analysis technique of FSL in signal
processing applications [47,48]. It should be pointed out, however, that the existence of saturation
below threshold cannot be discarded in general but, of course, would involve the use of amplifiers
with a relatively high noise figure together with filters of large spectral width. The global
picture inferred from Fig. 4(f) is thus to be considered as representative for a standard FSL
implementation.

6. Q-switched pulses

In this section we address the characterization of two features of the QS pulses that seem not
to have been documented in the literature, leaving the detailed study of the ASE recirculation
patterns for the following section. As a representative example, we set the frequency shift at



approximately irrational conditions ( 𝑓𝑠 = 78 MHz) in a loop with roundtrip time 𝜏𝑐 = 107.8 ns.
In Fig. 5(a) we present a high-bandwidth (6 GHz, 20 GSa/s) intensity trace of a typical

Q-switched pulse generated 3 dB above threshold. The pulse’s repetition rate was in this case
14.252 kHz and its FWHM, 9.5 µs. As can be observed, the pulses present a symmetric sech2

profile with spiky features, which are organized in a quasiperiodic structure repeated at the
cavity’s roundtrip time. A zoom view of 10 recirculations from the peak of a typical QS pulse
is presented in Fig. 5(b). A similar quasiperiodic structure was found in the QS regime of
Ti:sapphire FSF lasers [14], and also appears when the AOFS is removed from the FS cavity [17].
We thus interpret this quasiperiodic pattern as a consequence of the recirculation of ASE events:
at a given time, the intensity is dominated by the waves that flow near the high-frequency end
𝜈+ of the net gain region, so that they can recirculate several times without significant gain or
attenuation. Intensity is then observed as a random but quasiperiodic pattern with periodicity 𝜏𝑐,
that is adiabatically refreshed with new waves that were originated at the low-frequency end 𝜈−
of the cavity’s net gain region and amplified upon recirculation.

Fig. 5. (a) Intensity of a QS pulse. Gray trace: sech2 profile, shifted upwards to ease
the comparison. (b) Quasiperiodic intensity, relative to the mean intensity, extracted
from the peak of a typical QS pulse. (c) Intensity probability density: Histogram,
experimental data. Blue trace: Gamma distribution with 𝑚 = 3.4. In (b) and (c) the
cavity’s roundtrip time was 𝜏𝑐 = 98.4 ns.

To check this hypothesis, we estimated the intensity distribution of the quasiperiodic pattern as
follows. We first recorded the intensity in a time span comprising the ∼200 central roundtrips
around the QS pulse peak, where the electrical noise contribution from the photodiode is relatively
low. The intensity trace was then normalized by a moving mean, averaged over a roundtrip.
The distribution of the resulting relative intensity was then estimated by a histogram. As is
well known, the intensity of polarized ASE observed in a finite bandwidth 𝐵 is described by a
Gamma distribution, 𝑝𝑚 (𝑥) = 𝑚𝑚𝑥𝑚−1 exp(−𝑚𝑥)/Γ(𝑚), where 𝑥 is the intensity 𝐼 relative to
its average 𝐼av and 𝑚 a parameter that is roughly the ratio between the ASE spectral width Δ𝜈

and the observation bandwidth 𝐵 = 6 GHz [51]. Under typical conditions, the FWHM of the QS
spectrum is about 0.15 nm, so we estimate 𝑚 ∼ 3. The result of the comparison in Fig. 5(c) shows
an excellent agreement. The best fit is attained for 𝑚 = 3.4, in accordance with the estimation.

We also show that these ASE events constitute a noisy pattern that univocally identifies each
pulse in the sequence, as can be inferred from an analysis of the intensity correlation between
different pulses. First, a high-bandwidth trace of the intensity of five consecutive pulses was
recorded. From this trace, the intensity of the central pulse, taken as the reference pulse, was
isolated, and then digitally correlated with the complete sequence of five pulses. The result is
shown Fig. 6(a). The central part of the figure thus represents the intensity auto-correlation of
the reference pulse, whereas the remaining peaks represent the intensity cross-correlation of the
reference pulse and its neighbors. This intensity cross-correlation is composed of smooth peaks,
indicating that the ASE spikes between different pulses are statistically uncorrelated because



ASE recirculation is switched off between pulses. In turn, the intensity auto-correlation of the
reference pulse with itself shows additional peaks at multiples of 𝜏𝑐, as is clearly visible in the
zoom view of Fig. 6(b).

Fig. 6. (a) Intensity cross-correlation of a reference pulse with the pulse sequence.
(b) Zoom of the intensity auto-correlation of the reference pulse.

In a subsequent experiment we characterized the motion of spectral density’s central frequency
by a time-frequency reconstruction of the QS pulse. To this end, we inserted a Mach-Zehnder
intensity modulator (MZM) at the FSL’s output acting as a temporal switch. The MZM switching
signal was generated by a programmable pulse generator and triggered by the pulse detected at
the transmission port of the FBG. Representative traces of this procedure are shown in Fig. 7(a).
The average spectrum of each of the samples was subsequently retrieved in a OSA. The resulting
time-frequency reconstruction is depicted in Fig. 7(b), where it is apparent the pulse’s positive
chirp and the flow of the spectral density towards lower frequencies at its trailing edge.

Fig. 7. (a) Temporal samples of width 1 µs (orange, yellow, magenta, and green
traces) used in the time-frequency reconstruction of the QS pulse (blue trace). (b)
Time-frequency contour plot of a QS pulse. The dotted trace is the time-varying ASE
center frequency 𝜈0 (𝑡). The dotted line at 193.394 THz is the FBG center frequency.
The black line in the left upper corner represents the natural chirp rate 𝛾0 of the FS
cavity. (c) Pulse chirp 𝑑𝜈0/𝑑𝑡 (blue) and pulse intensity (gray).

From this plot we extracted the center frequency 𝜈0 (𝑡) of the moving spectrum and plotted its
evolution 𝑑𝜈0/𝑑𝑡 in Fig. 7(c). In this last figure we also depict the synchronous pulse intensity
obtained by projecting in time the total pulse power in the two-dimensional plot of Fig. 7(b).
The existence of chirp is clearly captured, with a maximum value of 𝛾 = 0.20 GHz/µs slightly
before the pulse’s peak. The measured chirp rate 𝛾 is lower than the cavity’s natural rate,
𝛾0 = 𝑓𝑠/𝜏𝑐 = 0.72 GHz/µs, a rate that has been added in the upper left corner of Fig. 7(b) with
a black line to help the comparison. This feature is a consequence of the pulse buildup as an
avalanche of recirculating ASE events, on-off switched by the EDFA dynamics: the actual chirp
rate 𝛾 of the central frequency is a spectral average that depends not only on the chirp rates 𝛾0
of the individual ASE events, but also on the frequency and time when these ASE events are
generated.



7. ASE recirculation patterns in CW and QS regimes

The ASE recirculation in CW and QS regimes shows interesting intensity patterns that depend on
the actual value of the 𝑓𝑠𝜏𝑐 product. We found that these patterns are similar in both regimes for
the same value of 𝑓𝑠𝜏𝑐, indicating that its origin is due to the ASE recirculation process and not to
the QS pulse dynamics. In Fig. 8 we present, in the first column, the different patterns appearing
inside the QS pulses, for which the high SNR at the pulse’s center permits a clear visualization.
We stress, however, that the ASE recirculation patterns in CW emission are qualitatively similar
to those of QS emission for the same values of 𝑓𝑠𝜏𝑐. The central column depicts the RF intensity
spectra in CW emission, whereas the spectra in the right column refers to QS emission, so that
their differences can be comparatively analyzed. These experiments were performed in our
default cavity of 𝜏𝑐 = 98.4 ns.

Fig. 8. Left column: intensity patterns of ASE recirculation in QS regime for different
values of the 𝑓𝑠𝜏𝑐 product: (a1) approximately irrational product ( 𝑓𝑠 = 78 MHz,
𝜏𝑐 = 98.4 ns), (b1) resonant integer product 𝑓𝑠𝜏𝑐 = 8, (c1) resonant fractional product
𝑓𝑠𝜏𝑐 = 15/2, and (d1) resonant fractional product 𝑓𝑠𝜏𝑐 = 23/3. Middle column: RF
intensity spectrum of the corresponding CW regimes measured at the cavity fundamental
(a2) and at the cavity 𝑝-th harmonic for integer or fractional products 𝑓𝑠𝜏𝑐 = 𝑝/𝑞
(b2-d2). In (b2) two almost resonant products are also shown (orange and yellow traces).
Right column: RF intensity spectrum of the QS regimes measured at baseband (a3)
and at the cavity 𝑝-th harmonic (b3-d3). All RF spectra were taken at an IF bandwidth
of 30 Hz.



As is shown in Fig. 8(a1), at an approximately irrational value of 𝑓𝑠𝜏𝑐 ( 𝑓𝑠 = 78 MHz), the
intensity of the recirculating ASE appears as the quasiperiodic pattern discussed before. In
Fig. 8(a2) we present the RF spectrum of the CW intensity at the cavity’s fundamental harmonic
of 10.16 MHz. The spectrum at the other harmonics is similar in width but with decreasing
amplitude. According to the MC model of recirculation, the observed RF peak represents the
aggregate spectrum of the incoherent optical beats between consecutive chirps of indices 𝑘 and
𝑘 + 1. Its width (24 kHz FWHM) is thus

√
2 times the spectral width Δ𝜈̃ of the amplitudes

𝐴𝑘 (𝑡) in (7). Similar spectra appear at the output of a Michelson interferometer when fed with
CW FSF laser light [36]. Since the complex amplitude’s bandwidth is induced by the filtering
capacities of the loop, one can ascribe an effective finesse to the active FS cavity given by
F = FSR/Δ𝜈̃ = 10.16 MHz/17 kHz = 600, of the order of the number of roundtrips necessary
to cross the filter when the loop is above threshold. Finally, in Fig. 8(a3) we present the baseband
spectrum of the intensity in the QS regime (excluding the dc level), where the harmonics at the
QS repetition rate (15.65 kHz) are apparent.

The ASE intensity patterns arising when the frequency shift is near resonant products
𝑓𝑠𝜏𝑐 = 𝑝/𝑞 are shown in Fig. 8(b1) and (c1) for the respective cases of 8 and 15/2. The
plot evidences that ASE recirculation is organized in a series of ASE pulses with a respective
periodicity of 𝑓𝑠 and 2 𝑓𝑠 that amounts to 8 and 15 pulses per roundtrip, respectively. The
height of the pulses within each roundtrip is not uniform, and changes adiabatically in the same
experiment and also from one experiment to another. The ASE intensity pattern also shows up as
a sharp tone in the RF intensity spectra of CW emission at the corresponding 8th and 15th FSR
harmonics, respectively, as is shown in (b2) and (c2). In (b2) we varied 𝑓𝑠 around 8/𝜏𝑐 = 8 FSR,
revealing that the tone is stimulated most at the exact resonant value. At this exact resonant
conditions we also observed that the form of the ASE pulses are sharper. We checked that, as
𝑓𝑠 departs from the resonance, the tone progressively disappears, the periodic intensity pattern
becomes smoother and, when the mismatch 𝛿 𝑓 = 𝑞 𝑓𝑠 − 𝑝/𝜏𝑐 substantially departs from Δ𝜈̃,
becomes random-like and thus similar to that of Fig. 8(a1). The noise skirts around 𝑓𝑠 at the exact
resonant condition (in blue in (b2) and (c2)) are due to the excitation of relaxation oscillations in
the EDFA. These skirts become tones when the FSL reaches the QS regime, as is shown in (b3)
and (c3). This periodic ASE recirculation pattern was identified in [13] in a linear-cavity Er:fiber
FSF laser in both CW and QS regimes at the resonant product 𝑓𝑠𝜏𝑐 = 10, but its origin as a form
of ASE recirculation was not recognized. We also point out that the same periodic organization
in pulses is obtained when the loop is seeded with a monochromatic carrier [49, 50]. In this case,
however, the pulses are not composed of recirculating ASE, but are created through temporal
Talbot effect and are thus optically coherent.

In the fourth row of Fig. 8 we depict the results for 𝑓𝑠𝜏𝑐 = 23/3. Here, we observe in (d1)
that the intensity is similar to an irrational value of the product 𝑓𝑠𝜏𝑐 despite the fact that the
expected tone at 3 𝑓𝑠 is present at the 23th cavity harmonic, both in CW (d2) and QS (d3) regimes.
However, the tone is too weak to produce discernible features in the intensity trace. Finally,
products 𝑓𝑠𝜏𝑐 = 𝑝/𝑞 in the available range with 𝑞 > 3 (not shown in the figure) did not show any
perceptible trace of the tone at 𝑞 𝑓𝑠 .

These results point to the existence of a phase locking mechanism among recirculating waves
whose instantaneous frequencies differ by 𝑞 𝑓𝑠 . Such a mechanism has to be effective only in the
vicinity of resonant products 𝑓𝑠𝜏𝑐 ≃ 𝑝/𝑞. This can be explained from the MC model of ASE
recirculation as follows. In this model, any pair of chirped waves in (7) with indices differing by
𝑝 units can support, if phase-locked, the observed periodic intensity pattern at the frequency
difference 𝑞 𝑓𝑠, since in that case 𝜈̃𝑘+𝑝 − 𝜈̃𝑘 = 𝑝/𝜏𝑐 ≃ 𝑞 𝑓𝑠 for any 𝑘 . This is schematically
exemplified in Fig. 9 for 𝑓𝑠𝜏𝑐 = 2. In order for the FS cavity to be able to support such pairs of
locked chirps, the frequency mismatch 𝛿 𝑓 must lie within the Δ𝜈̃ ∼ 17 kHz bandwidth of each of
the chirp’s amplitudes. Also, at exact resonant conditions 𝑞 𝑓𝑠 = 𝑝/𝜏𝑐 (and in the absence of



Fig. 9. Schematics of the 𝜈𝑖 vs. 𝑡 plane near the resonant condition 𝑓𝑠𝜏𝑐 ≃ 2, showing
four chirped waves. The center difference between the instantaneous frequencies of
next-to-neighbor chirps is 2 FSR = 2/𝜏𝑐 (blue lines). Coupled chirps with frequency
difference 𝑓𝑠 ≃ 2 FSR can recirculate in the FS cavity due to the finite spectral width
Δ𝜈̃ of the recirculating chirps (blue and green lines).

significant dispersion), the locked chirps could form larger groups with indices 𝑘 , 𝑘 ± 𝑝, 𝑘 ± 2𝑝,
. . . resulting in sharper ASE pulses. All these implications are in accordance with the observed
phenomenology.

This view, however, has its limitations. First, it does explain the weakening of the effect
when 𝑞 ≥ 3. Second, when 𝑝 > 1 several locked groups of chirps with indices differing by 𝑝

units can be independently formed. The intensity would then be an incoherent sum of periodic
patterns associated to each group of chirped waves, and the temporal coincidence among different
patterns cannot be assured unless we assume a phase locking between groups of chirps, or the
preeminence of a single group of chirps. Otherwise, the periodic patterns in Figs. 8(b1) and (c1)
would be washed out. And third, within a framework of ASE recirculation in a linear cavity
there is no mechanism for the alleged phase locking among chirped waves. At this point it is
necessary to recall the results of [22], where the tone at 𝑓𝑠 was identified in the RF intensity
spectrum of a MIR FSF laser based on a Ho/Pr-doped ZBLAN gain fiber section, mode-locked
near the resonant product 𝑓𝑠𝜏𝑐 ≃ 1. In this regard our results show that the presence of this tone
is not associated to any dynamical effect within the ML regime, but to the ASE generation and
recirculation processes. The ML dynamics, however, is influenced by this pattern as will be
analyzed later.

As for the possible coupling mechanism, in [22] it was suggested the existence of a residual
frequency modulation in the AOFS, a hypothesis that could be certainly translated to our setup
despite the different architectures involved. A second possibility is that alleged in [32] to justify
the preeminence of groups of chirps with increasing pump power, namely a coupling induced by
Kerr effect, presumably through four-wave mixing among different chirped waves when they are
spontaneously created at the low-frequency end 𝜈− of the net gain region. These coupled chirps
would then get amplified, arriving at the high-frequency end 𝜈+ in the form of the observed
pattern.

8. Modelocked emission

Well above threshold and both at integer and fractional values of the product 𝑓𝑠𝜏𝑐 = 7, 8 and
15/2, ML emission emerges as a series of pulses with a periodicity dictated by the cavity’s
rountrip time. As is typical of FSF lasers at large gain [17, 20], ML pulses appear in the form of
a cluster grouped here in a sub-ns interval, as is shown in Fig. 10(a) for 𝑓𝑠𝜏𝑐 = 8, the default
situation in the present section. The resolution of this plot does not provide an evidence of this
multipulse state, but can be indirectly inferred if one decreases the pump power or the loop’s
transmittance. In this case, it is observed how pulses leak, i.e., are adiabatically ejected from the
cluster and die out [17], eventually ending in a single, sub-ns pulse as that shown in Fig. 10(b).

For the analysis of the ML emission we first refer to the optical spectrum in Fig. 3(b) and to
the first row of plots in Fig. 11(a1)-(a4). The ML spectrum in Fig. 3(b) is characterized by the



Fig. 10. (a) High-bandwidth (6 GHz) intensity trace of the multipulse cluster state in
the ML regime at exact resonant conditions 𝑓𝑠𝜏𝑐 = 8 and maximum transparency (∼3
dB above threshold). (b) Single ML pulse obtained from (a) after decreasing the pump
power down to ∼1 dB above threshold. (c) Single ML pulse ejected from the cluster
(a) when the shifting frequency is detuned ∼200 kHz from resonance. Experiments
performed with a cavity roundtrip time of 𝜏𝑐 = 98.4 ns.

development of a dominant spectral peak near the center of the FBG with a power higher than
that of a secondary peak located at the same frequency as the recirculating ASE peak [17,21].
We will refer to these peaks as main and secondary in what follows. This structure is known to
be more visible with increasing intracavity filter bandwidth, since in that case the high-frequency
end 𝜈+ of the net gain region and the filter’s center are more apart. It is also known that the
location of the secondary peak is reversed with respect to the main peak when the sign of the
frequency shift is flipped [17].

A second feature, which seems to have been overlooked, is that the recirculation of ASE
coexists with the ML pulses, as is evidenced in the intensity trace of Fig. 11(a1) and its inset.
This pattern is more visible near the ML onset, condition under which this trace was recorded.
In this setting, the difference in power between main and secondary spectral peaks is lower, as
is exemplified in blue trace of Fig. 12(a). On the other hand, at longer time scales ML pulses
present an irregular envelope, as depicted in Fig. 11(a2). The spectrum of these fluctuations
is given by the baseband spectrum of the intensity, shown in (a3), where we observe a main
resonance at ∼28 kHz together with its harmonics. The fluctuations are transferred as noise
sidebands to all the intensity harmonics, as can be observed in (a4) for the fundamental, where
the peak-to-pedestal value is 60 dB.

The interpretation of these features is the following. We first show, through a specific
experiment, that for arbitrary values of 𝑓𝑠𝜏𝑐 the double peak in the spectrum of ML emission
is associated to two different fields, the ASE recirculation which accounts to the secondary
peak, and the ML field, whose spectrum extends along the whole observed spectral trace and is
centered in the main peak. To this end, we take advantage of our identification of the periodic
ASE recirculation pattern at resonant conditions, which is used as a probe to assess the relative
power of ASE and ML pulses in different parts of the spectrum.

The FSL output at 𝑓𝑠𝜏𝑐 = 8, set about 2 dB above threshold, was directed to a narrowband
tunable bandpass filter (TBF) and then detected with a photodiode in the 200 MHz oscilloscope
with the aid of a transimpedance amplifier. The intensity trace was first recorded by zooming
the pedestal of ML pulses, and then divided by the peak amplitude of the ML pulses under the
same filtering conditions. As can be observed in Fig. 12 (blue traces in (a) and (b)), when the
spectrum is not filtered both ML pulses and the ASE recirculation pattern are detected with
a relative intensity of 0.35%. When the spectrum is filtered at the main peak (magenta traces
in (a) and (c)), ASE does not form any definite pattern; a noisy pedestal is observed instead.
The TBF center wavelength was then shifted, without change in its width, up to the secondary
peak of the spectrum (red traces in (a) and (d)): we observe that the ASE recirculation pattern
becomes visible again, but now with an increase in its relative intensity up to a 3% (note the



Fig. 11. Left column: high-bandwidth (6 GHz) intensity trace of different ML emission
states: (a1) ML multipulse cluster at exact resonance conditions 𝑓𝑠𝜏𝑐 = 8 ( 𝑓𝑠 =

81.286 MHz), inset: detail of the periodic ASE recirculation pattern. (b1) emission at
a mismatch 𝛿 𝑓 = −14 kHz supported by a multipulse cluster. (c1) QML emission at a
mismatch 𝛿 𝑓 = −28 kHz, also supported by a multipulse cluster. (d1) QML emission
supported by a pattern of several pulses ejected from the multipulse cluster. (e1) HML
emission at a mismatch 𝛿 𝑓 = −3.107 MHz. Second column: (a2)-(e2) Envelopes of the
correspoding ML emission states. Third column: (a3)-(d3) Baseband spectrum of the
corresponding intensities. (e3) Wideband spectrum of the HML state. Right column:
(a4)-(d4) Spectrum of the fundamental harmonics of the corresponding intensities.
(e4) Spectrum of the 𝑁 = 4 harmonic in the HML state. All RF spectra were taken at a
IF bandwidth of 10 Hz, except (d3) where it is 3 kHz. The cavity’s roundtrip time was
𝜏𝑐 = 98.4 ns.

change of scale). If the shifting frequency is now displaced by a few tens of kHz from the
resonant condition, the periodic pattern disappears, a small noise level is observed instead, and
the secondary peak in the spectrum decreases by ∼2.5 dB. This shows that ASE recirculation
with periodic intensity is favored at resonance. Nonetheless, the secondary spectral peak persists
out of the resonance, now as a shoulder of the main peak, indicating that ASE recirculation is
still present in the form of a noise-like waveform.

These results are to be compared with the recent report of the spectro-temporal structure of the
ML buildup in a Er:fiber FSF laser at small frequency shifts [29]. There, it was shown that ML
evolves from QS, and this evolution is accompanied with a different regime of recirculation of



Fig. 12. (a) Blue: optical spectrum of ML emission with 𝑓𝑠𝜏𝑐 = 8. Magenta: filtered
spectrum at the main spectral peak. Orange: filtered spectrum at the secondary peak.
(b) Intensity of the ASE recirculation pattern between ML pulse clusters, normalized by
the peak intensity of the ML cluster. (c) Normalized intensity of the ASE recirculation
pattern when the emission is filtered at the main peak. (d) Normalized intensity of the
ASE recirculation pattern when the emission is filtered at the secondary peak.

the fields: QS pulses appear centered at a higher frequency than ML and constituted by chirped
waves. These results are in accordance with the picture inferred here. In fact, and given the data
in that report ( 𝑓𝑠 = 2 × 1.0515 MHz and 𝜏𝑐 = 82 ns), the chirp rate observed in the QS regime
(Figs. 3(c) and (d) in [29]) is compatible with the cavity’s natural rate 𝛾0, as predicted by the
MC model, and the downshift of the spectrum when evolving from QS to ML is similar to that
reported here and in other demonstrations in regard to its double peak structure [17, 21].

As for the noisy envelope in Fig. 11(a2), it is ascribed to the excitation of relaxation oscillations
in the EDFA, but now at a frequency of ∼28 kHz which is roughly twice that observed in the
QS regime (∼14 kHz). In fact, a careful observation of Fig. 11(a3) shows that the ∼14 kHz
resonance is still present as a shoulder in the low-frequency skirt of the dominant noise resonance
at ∼28 kHz. The reason for this identification is because, following [22], we could induce
QML from ML by varying the frequency shift out of the resonant value. The spectrum of
the intensity, both at baseband and at the eighth harmonic, develops a modulation tone at the
mismatch frequency 𝛿 𝑓 = 𝑓𝑠 − 8 FSR originated by the periodic ASE recirculation pattern.

When this mismatch is ∼14 kHz, the noisy envelope becomes almost periodic but does
not develop a series of well-defined QML pulses, as is shown in the plots of the second row
of Fig. 11(b1)-(b4). When the mismatch becomes ∼28 kHz, the ASE tone drives the EDFA
relaxation oscillations and QML is induced, as is clearly observable in the third row (c1)-(c4) of
Fig. 11. If the mismatch 𝛿 𝑓 is further increased beyond some tens of kHz, ejection of pulses
from the multipulse cluster is observed. A sample ejected pulse is plotted in Fig. 10(c). This
ejection does not provide, in general, a periodic pattern of the intensity: pulses drift within each
period of duration 𝜏𝑐. This phenomenon has also been observed in other FSF lasers at large
pump powers [20]. The envelope, however, becomes stabilized, as will be exemplified below. At
this point, if ones goes back to the QML conditions, namely 𝛿 𝑓 ≃ 28 kHz, a stable QML state
is observed where the ejected pulses are now fixed at definite positions within period 𝜏𝑐, as is
depicted in plots (d1)-(d4) of Fig. 11.

The ML state in the form of a series of drifting pulses, or even in the form of QML, could be
observed for values of the mismatch 𝛿 𝑓 in the complete AOFS operation range 80 ± 5 MHz. In
this range, ML emission shows the double peak in the spectrum. Also, a decrease in transparency
in this range of 𝑓𝑠 leads to ML states where pulses are ejected and die out, drifting within the
period 𝜏𝑐, as in [20]. When the frequency shift approaches 𝑓𝑠𝜏𝑐 = 7 or 15/2, the output collapses
into the multipulse ML cluster of Fig. 11(a1)-(a4). At certain values of the mismatch we observed
that the pulses ejected from the original cluster, say 𝑁 in number, progressively became equally
spaced, thus resulting in harmonic mode locking (HML). In this regard, the process of HML
formation is similar to that reported in [9] or, more recently, in [21, 29]. This process has been



ascribed to the amplifier’s dynamics, which favors emission in equidistant pulses as a means to
equalize gain [9]. In our loop, stable HML was difficult to achieve, requiring a fine tuning of
shifting frequency, loop transparency, or even the induction of a small amount of compression in
the EDFA through the probe wavelength.

A typical HML state obtained this way is exemplified in Fig. 11(e1)-(e4) for 𝑁 = 4, where
the peak-to-pedestal value of the fourth harmonic in (e4) is 64 dB. Note that here (e3) is the
wideband spectrum of the intensity displaying the locked harmonics at multiples of 40.64 MHz,
and (e4) is the zoom view of the fourfold increased fundamental. Also, the stabilized intensity
envelope shown in (e2) is representative of all envelopes out of the vicinity of resonances. Using
this procedure, we could induce HML with different degrees of stability for various values of
𝑁 ≤ 11, as was originally reported in [9]. The order 𝑁 of the obtained HML depends on the
number of ejected pulses of the original cluster, and so on the actual value of the transparency
upon which the initial ML multipulse cluster is formed.

9. Conclusions

A systematic characterization of the different pulsed dynamical regimes of an Er:fiber FSL at
large frequency shifts has been presented, and connection with different results in the literature
has been provided. The main findings can be summarized as follows. Within the QS regime, we
have shown the intrinsic tagging of individual QS pulses through the intensity of the underlying
ASE recirculation patterns and the demonstration of its chirped character as predicted in [16]. A
specific periodic recirculation mode of ASE near resonant conditions has been identified in both
CW and QS regimes, previously interpreted as a pulsed regime without reference to its origin as
an ASE recirculation mode [13]. The phenomenology associated with this ASE recirculation
regime has been shown to be partially explained through the MC model of ASE recirculation [36],
which has been presented here as a static FP filter for the first time. As for the ML regime, it
has been induced from resonant FS cavities at fractional values of the product 𝑓𝑠𝜏𝑐. It has been
clarified the origin of the double peak structure of the ML FSF laser spectrum [17, 21], and
connection has been established with recent results describing the spectro-temporal structure
of the ML buildup process in FSF lasers at small frequency shifts [29]. It has also been shown
that, near resonant conditions, recirculating ASE in the form of a periodic intensity drives the
QML emission by inducing relaxation oscillations, this being the cause of the phenomenology
described in [22].

The global picture arising from these results can also be summarized as follows. With
increasing transparency, FSF laser emission evolves from CW to QS due to the amplifier’s
dynamics, the supporting optical fields being in both cases recirculating ASE. At and near
resonant conditions ASE takes the form of a periodic intensity pattern, presumably due to Kerr
interactions between the chirped waves described by the MC model [32]. The transition from QS
to ML is also ascribed to Kerr effect, which generates a phase distribution throughout the optical
spectrum [9]. Since in the time domain a moving comb of chirped waves of the form (7) with
fixed relative phases leads to ML pulses [32], it is thus expected that the ML buildup is favored at
resonant cavities because of the previous coupling of these chirped waves, this being a possible
justification for the lower ML threshold pump power at resonance [20]. ML is also accompanied
with a change in the spectral shape that moves to the high-gain region at the filter’s peak. But
the underlying ASE recirculation persists in the form of a small perturbation, reflected in the
secondary peak of the spectrum. This opens the possibility to reduce the ASE level by filtering
this secondary peak. When the cavity is near the resonant value, ASE recirculation drives the
ML state, in particular inducing QML. ML emission shows typically as a cluster of pulses, and
also with a prominent hysteresis in pump power or transparency. Pulses are forced to be ejected
from the cluster by changes in transparency or shifting frequency over broad frequency ranges,
and HML results when these ejected pulses are stabilized at equal time intervals.



In conclusion, our study has clarified the role of the underlying ASE recirculation in the
origin of various spectral and dynamical properties of pulsed FSF lasers. It has also pointed
to the existence of specific mechanisms that deserve further study, such as the development of
periodic ASE patterns at resonant conditions and the rich ML dynamics leading to QML and
HML. Though our findings have been derived from a Er:fiber FSL, the number of related results
described in the literature, comprising different lasing media and cavity configurations, indicate
that these features are at the root of the dynamics of pulsed FSF lasers.
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