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Abstract

The objective of the present thesis is studying multivalued dynamical systems. In

particular, we pretend to obtain results related with the structure of the attractors

in order to describe the behaviour of solutions for different equations. Therefore,

our research may be situated in the field of Applied Mathematics.

Specifically, Chapter 1 deals with robustness of dynamically gradient multi-

valued semiflows. As an application, we describe the dynamical properties of a

family of Chafee-Infante problems approximating a differential inclusion, proving

that the weak solutions of these problems generate a dynamically gradient multi-

valued semiflow with respect to suitable Morse sets.

Chapter 2 focus on a more general equation called nonlocal reaction-diffusion

equation in which the diffusion depends on the gradient of the solution. Firstly,

we prove the existence and uniqueness of regular and strong solutions. Secondly,

we obtain the existence of global attractors in both situations under rather weak

assumptions by defining a multivalued semiflow. We finish this section character-

izing the attractor either as the unstable manifold of the set of stationary points or

as the stable one when we consider solutions only in the set of bounded complete

trajectories.

In the last chapter we study the structure of the global attractor for the mul-

tivalued semiflow generated by a nonlocal reaction-diffusion equation in which we

cannot guarantee uniqueness of the Cauchy problem. We start analysing the exis-

tence and properties of stationary points, showing that the problem undergoes the

same cascade of bifurcations as in the Chafee-Infante equation. To conclude, we
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study the stability of the fixed points and establish that the semiflow is dynami-

cally gradient. Also, we prove that the attractor consists of the stationary points

and their heteroclinic connections and analyse some of the possible connections.

Apart from these three chapters, the manuscript contains an unnumbered sec-

tion, Introduction (and its Spanish version), as a preamble, where the work as

well as the objetives that we pretend to cover are exposed. Subsequently, we have

included the preliminary Chapter 0 in order to detail the framework and the pre-

vious results needed to achieve the proposed objectives. To end this work, we

have created two unnumbered sections, Appendix A and Conclusions and future

work (and its Spanish version). In the first one, details about generalization of the

lap number property are given whilst in the other one main contributions of our

research and some comments on future research lines are summarized.
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Resumen

El objetivo de esta tesis es estudiar sistemas dinámicos multivaluados. En particu-

lar, pretendemos obtener resultados relacionados con la estructura de los atractores

para describir el comportamiento de las soluciones de diferentes ecuaciones. Por

tanto, nuestra investigación puede situarse en el área de Matemática Aplicada.

Más concretamente, el Capítulo 1 versa sobre la robustez de los semiflujos mul-

tivaluados dinámicamente gradientes. Para aplicar este resultado describimos las

propiedades dinámicas de una familia de problemas Chafee-Infante aproximando

una inclusión diferencial, demostrando que las soluciones débiles de estos proble-

mas generan un semiflujo multivaluado dinámicamente gradiente con respecto a

unos conjuntos de Morse.

El Capítulo 2 se centra en una ecuación más general llamada ecuación de

reacción-difusión no local, donde el término de difusión depende del gradiente de

la solución. En primer lugar, demostramos la existencia y unicidad de solucio-

nes regulares y fuertes. En segundo lugar, obtenemos la existencia de atractores

globales en ambas situaciones bajo supuestos bastante débiles al definir un semi-

flujo multivaluado. Terminamos esta sección caracterizando al atractor como la

variedad inestable del conjunto de puntos estacionarios o como la estable cuando

consideramos soluciones sólo en el conjunto de trayectorias completas acotadas.

En el último capítulo estudiamos la estructura del atractor global para el semi-

flujo multivaluado generado por una ecuación de reacción-difusión no local donde

no podemos garantizar la unicidad del problema de Cauchy. Comenzamos anali-

zando la existencia y propiedades de los puntos estacionarios, mostrando que el
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problema sufre la misma cascada de bifurcaciones que en la ecuación de Chafee-

Infante. Para concluir, estudiamos la estabilidad de los puntos fijos y establecemos

que el semiflujo es dinámicamente gradiente. Además, probamos que el atractor

está formado por los puntos estacionarios y sus conexiones heteroclínicas y anali-

zamos algunas de las posibles conexiones.

Además de estos tres capítulos, este trabajo contiene un apartado no numerado,

Introduction (y su versión en español), a modo de preámbulo, donde se exponen

tanto el trabajo como los objetivos que pretendemos alcanzar. Posteriormente,

hemos incluido el Capítulo 0 preliminar para detallar el marco y los resultados

previos necesarios para obtener los objetivos propuestos. Para terminar el trabajo,

hemos creado dos secciones sin numerar, Appendix A y Conclusions and future

work (y su versión en español de esta última). En el primero se dan detalles sobre

la generalización de la propiedad lap number mientras que en el otro se aportan

las principales contribuciones de nuestra investigación y algunos comentarios sobre

futuras líneas de investigación.
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Introduction

Differential equations play a more than very important role not only in Mathe-
matics but also in other sciences. They have been used for centuries in fields such
as Physics, Chemistry or Biology. There are two important equations which are
used to describe various processes occurring around us in this world. Most common
processes incorporate the variety of the concentration of at least one substance in
time and in space under the impact of two responses, which are, as the name
suggests, diffusion and reaction.

The diffusion equation stands for the procedure that makes things (molecules,
atoms, heat) move from a high concentration part to a low concentration part to
achieve balanced concentration. A simple example of diffusion in gases appears
when we spray a perfume and after a few minutes its smell spreads throughout
the room. Simple diffusion also occurs continuously in the human body while we
breathe, since gas exchange occurs between our lungs and the air that we breathe.
The term reaction refers to the procedure which changes the concentration of the
concerned substance.

Diffusion process when two components interact. Here components A and B are
diffusing and at the same time they are reacting to produce a complex AB which
itself also diffuses.

A generalised formulation of the reaction-diffusion equation for a single subs-
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tance in one spatial dimension is as follows:

∂

∂t
C(x, t) = D

∂

∂x2
C(x, t) +R(C),

where C(x, t) is the concentration of the substance at a specifed x-coordinate and

time t,
∂

∂x2
C(x, t) represents the diffusive transport of the substance, R(C) is the

reaction function which represents the production or destruction of the substance
resulting from reactions among it, and D is the diffusion coefficient. This simple
case of the reaction-diffusion equation is known as the Kolmogorov-Petrovsky-
Piskunov equation [60].

Since in the classical works [60] and [48] the reaction-diffusion model was intro-
duced to describe the propagation of an advantageous gene within a population, a
great deal of work has been carried out to extend their model to take into account
other biological, chemical or physical factors.

In fact, applications in Economics can be found. In particular, capital accumu-
lation distribution in space and time following spatial extensions of the continuous
Ramsey model [74] by Brito [14–16] and others later uses the semilinear parabolic
equation

∂tu− α∆u = f(u)− c.

This spatiality introduces important issues about the steady states distribution as
well as the dynamic evolution, convergence, local interaction among local agents,
and so on.

One of the most beatiful and visual application of this model was obtained
by Turing in [82] where he described how patterns in nature, such as stripes and
spots, can arise naturally and autonomously from a homogeneous, uniform state.
In this work, Turing introduced the concept of pattern to study the behaviour of a
system in which two diffusible substances interact with each other. He found that
such a reaction-diffusion system is able to generate a spatially periodic pattern
even from a random or almost uniform initial condition.
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It is possible to find also applications in areas of medicine such as models about
cancer mechanism for cancer invasion [50]. Recently, research has been developed
and a reaction-diffusion model describing more accurately the spatial distribution
and temporal development of tumor tissue is presented (see [47] and references
therein).

In this line, there are models in epidemiology that make it possible to predict
the characteristics of the spreading of an infectious disease. A general modelling
technique are compartmental models where population is assigned to compart-
ments with labels. The SIR model is one of the simplest with three compartments:
S, the number of Susceptible individuals; I, the number of Infectious individuals;
and R, the number of Removed (and immune) or deceased individuals.

This model is reasonably predictive for infectious diseases that are transmitted
from human to human and try to predict things such as how a disease spreads,
the total number infected, the duration of an epidemic [91]. To allow for spatial
dynamics, disease-spreading theories such as the SIR model have been extended
to reaction–diffusion equations (see [43], [71], [9], [87], [12], [69], [73]).

Therefore, the main aim is to show how different public health interventions
may affect the outcome of the epidemic, e.g., which is the most efficient technique
for issuing a limited number of vaccines in a given population.

As it is well known, in December 2019, in the Chinese city of Wuhan, an
outbreak of a disease caused by a new coronavirus was reported. It rapidly spreaded
to other regions of China and the whole world. Subsequently, the World Health
Organization officially recognized the new coronavirus as SARS-CoV-2 and named
the disease COVID-19. Since then, the disease has caused millions of deaths.

Consequently, studies using reaction-diffusion models about the spreading trend,
long-term dynamic behavior, effects of social distancing, home quarantine or lock-
down were carried out to understand how these factors affect the epidemic sprea-
ding of the COVID-19 (see, e.g., [76], [78], [94], [95] and references therein). This
gives us an idea of the mathematical relevance of the reaction-diffusion model and
the need to continue deepening a broader knowledge of the equation.
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Once several applications of the differential equations, specifically the reaction-
diffusion model, have been seen, it is necessary to focus on the technical part.
Hence, approaching the study part of this thesis, it should be noted that very
often it is important to know how the solutions of differential equations behave
with respect to some parameter and many interesting phenomena can be hidden
in such behavior.

As an example, we can mention various perturbations of differential equations
generating plenty of interesting and intriguing scenarios for the behavior of the
solution, studying of asymptotics of spectral characteristics for various differen-
tial operators, stability and bifurcations in dynamical systems, homogenization of
boundary value problems and many others.

In this thesis, we restrict our attention on reaction-diffusion equations without
uniqueness of solutions of the associated Cauchy problem. Afterward, we analyze
with more precision the structure of the attractor for equations of Chafee–Infante
type which has been extensively studied, starting with the article of the authors
who give name to this equation [33]. Its most interesting feature is a bifurcation
in the system parameter which considerably changes the dynamics. Existence and
regularity of its solutions have been investigated, as well as the fine structure of
the attractor. We refer to the classical books [80], [75], [54], [53] and the references
therein.

We recall some properties of its longtime dynamics and in particular the struc-
ture of its attractor following the classical Chafee-Infante equation, although in [54]
the reaction term is more general and all results are proved.
The equation is given by

∂u

∂t
−∆u+ λ(u3 − u) = 0, t > 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t > 0,

u(0, x) = u0, x ∈ [0, 1].

Existence, uniqueness and regularity results are well known [80, pg. 84].
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The solution flow (t, x) 7→ u(t;x) is continuous in t and x and defines a dynamical
system in H1

0 (0, 1). Moreover, we have continuity with respect to the initial data
in H1

0 (0, 1).
As regards the main features of the steady states, a detailed exposition of the

bifurcation on the elliptic problem can be found in [75]. However, we summarize
them in the following result.

Theorem. Let be λ ≤ π2. Then there is a unique stable fixed point v ≡ 0. For
λ > π2 there are always two stable fixed points φ± ∈ C∞([0, 1]). More precisely, if
(nπ)2 < λ ≤ ((n+1)π)2, n ∈ N there are 2 stable and (2n−1) unstable fixed points
{0, φ±, φ±1 , · · · , φ±n−1}. Thus, the set of steady states Ξλ has the following shape

Ξλ :=



{0} 0 < λ ≤ π2,

{0, φ±} π2 < λ ≤ (2π)2,

{0, φ±, φ±1 , . . . , , . . . , φ±n−1}, (nπ)2 < λ ≤ ((n+ 1)π)2, n ≥ 2.

Moreover, for any initial value u0 ∈ H1
0 (0, 1) the trajectory t 7→ u(t;u0) con-

verges to an element of Ξλ [54]. This fact relies on the existence of an energy
functional called Lyapunov function for the equation. This will be crucial for our
work as we well see.

We also have to focus on the properties of the global attractor of the system.
We need to further specify the fine structure of the attractor of the Chafee–Infante
equation. Note that it depends crucially on the bifurcation parameter λ.

The dynamical system induced by the solution flow of Chafee–Infante equation
is well-known to have a global attractor A ∈ L2(0, 1), C([0, 1]) and H1

0 (0, 1) [80].
Let

Mu(v) := {u0 ∈ H1
0 (0, 1) : there exists a global solution u(t) in H1

0 (0, 1)

such that ∃t0 ∈ R : u0 = u(t0) and ĺım
t→−∞

u(t) = v}

be the unstable manifold of v ∈ Ξλ.
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We define for v, w ∈ Ξλ the set of complete connecting orbits

C(v, w) := {u0 ∈ H1
0 (0, 1) : there exists a solution u(t) in H1

0 (0, 1)

such that ∃t0 ∈ R : ĺım
t→∞

u(t) = w and ĺım
t→−∞

u(t) = v},

when it is non-empty. If such an orbit does not exist, C(v, w) = ∅.
The attractor Aλ consists of all fixed points and all global bounded trajectories
{u(t), t ∈ R}. For v, w ∈ Ξλ, v 6= w, using the notation

v  w ←→ C(v, w) 6= ∅,

from [42] we have

Aλ = Ξλ ∪
⋃
v∈Ξλ

Mu(v), where Mu(v) = {v} ∪
⋃
w∈Ξλ
v w

C(v, w),

for λ > 0.
In other words,

Aλ = {φ+, φ−} ∪
⋃

v∈Ξλ\{φ+,φ−}

{v} ∪
⋃
w∈Ξλ
v w

C(v, w)

 .

As we will see later, a connection from a fixed point to another is allowed only
if the number of zeros of the first one is greater. By this way, it is possible to have
always a connection from the null equilibrium point to another equilibria.

If λ passes (nπ)2 from the left, the connection structure of the elements of Ξλ for
((n−1)π)2 < λ < (nπ)2 is retained in Aλ for λ > (nπ)2 as a substructure, but two
new unstable fixed points φ±n−1 appear in Ξλ. In addition, new connecting orbits
emerge in the attractor: 2(2n−3) ones linking the 2n−3 previously unstable fixed
points {0, φ±1 , . . . , φ±n−2} with each of the new ones {φ+

n−1, φ
−
n−1}, and 4 trajectories

directed from each the latter ones to each of the stable points {φ+, φ−} and hence
4n− 2 newly connected orbits.

xiii



In particular the number of connecting orbits for λ ∈ ((π(n − 1))2, (πn)2) is

exactly
n−1∑
k=1

(4k − 2) = 2(n− 1)2.

We show in Figure 1 the qualitative shape of the attractor. For ((nπ)2 < λ <

((n+ 1)π)2 the elements of Ξλ as well as the entire set Aλ depend continuosly on

λ.

Figura 1: Sketch of Aλ for π2 < λ < (2π)2, (2π)2 < λ < (3π)2, (3π)2 < λ < (4π)2.

As we have just seen, one of the main goals of the theory of dynamical sys-

tems is to characterize the structure of global attractors. It is possible to find a

wide literature about this problem for semigroups; however, it has been recently

when new results in this direction for multivalued dynamical systems have been

proved [7], [57], [58]. As one of the novelties, this thesis works with multivalued

dynamical systems where the uniqueness of the associated Cauchy problem cannot

be guaranteed.
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By this way and focusing now on what will be done throughout this work, the
first chapter is devoted to present definitions and basic results in the framework
of multivalued dynamical systems. We also describe some elements of the theory
of Morse decomposition which play an important role in this area of dynamical
systems. In fact, the existence of a Lyapunov function, the property of being a
dynamically gradient semiflow and the existence of a Morse decomposition are
shown to be equivalent for multivalued dynamical systems in [44].

The second chapter in this thesis focuses on showing under suitable assumptions
that a dynamically gradient multivalued semiflow is stable under perturbations.

For a fixed dynamically gradient multivalued semiflow with a global attractor
we also analyze the rearrangement of a pairwise disjoint finite family of isolated
weakly invariant sets, included in the attractor, in such a way that the dynamically
gradient property is satisfied in the stronger sense of [64].

These results extend previous ones in the single-valued framework in [5, 6, 30]
to the case where uniqueness of solution does not hold. Additionally, it is worth
saying that the m-semiflows here are not supposed to be general dynamical systems
as in [64], where a robustness theorem for Morse decompositions of multivalued
dynamical systems is also proved under a suitable continuity assumption.

We also apply this general robustness theorem in order to show that a family
of Chafee-Infante problems approximating a differential inclusion is dynamically
gradient if it is close enough to the original problem.

Moving onto next question tackled on this thesis, the reaction-diffusion models
studied before are generalized and we introduce a nonlocal term in the diffusion
coeficient.

The study of this model is motivated because in real applications there might
exist several nonlocal effects that influence the evolution of a system. For instance,
usually we do not have enough information about the systems under study and its
features at every point. In reality, the measurements are not made pointwise but
through some local average. Actually, during the last decades many mathemati-
cians have been studying nonlocal problems motivated by its various applications
in Physics, Biology or population dynamics [35–39,66].
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Firstly we might comment about extensions by using some nonlocal operators
acting in the right-hand side of the PDE and/or the boundary conditions as integral
operators, leading to integro-differential equations. Among others we can cite [4]
for a system coupling capital and pollution stock model (pollutants towards which
the environment has low absorptive capacity), a population dynamic model in [46]

∂tu− α∆u = u

(
f(u)− α

∫
RN
g(x− y)u(y, t)dy

)
,

the elliptic (stationary) counterpart in population/physics models as the Fischer-
KPP [1], or a logistic model [45]. Secondly, we wish to point out that the nonlocal
extensions have also been performed on the diffusion operators as well. The li-
terature about fractional laplacian is vast nowadays. However, let us concentrate
in an intermediate step. Coming originally from modeling of bacteria population
in Biology, the introduction of a nonlocal viscosity in front of the laplacian has
become an interesting problem for different applications and for its mathematical
study, as for example occurs in the equation

ut − a(

∫
Ω

g(y)u(t, y)dy)∆u = f(t).

In this way, the spreading (or aggregating/concentrating) effects are given by the
increasing (resp. non-increasing) function a as a viscosity nonlocal coefficient.

In this sense, let consider the problem of finding a function u(t, x) such that
ut − a(

∫
Ω
u(t, x)dx)∆u = g(t, u), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(0) = u0 in Ω.

(1)

Here Ω is a bounded open subset in Rn, n ≥ 1, with smooth boundary and a is
some function from R to (0,+∞). In such equation u could describe the density of
a population subject to spreading. The diffusion coefficient a is then supposed to
depend on the entire population in the domain rather than on the local density.
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A wide literature with significant results about (1) has been developed du-
ring the last few decades (see for example [36, 39, 66]). However, it is possible to
distinguish two basic cases of the following more general equation

ut − a(u)∆u = g(t, u), t > 0, x ∈ Ω,

u = 0, on ∂Ω× (0,∞) ,

u(0, x) = u0(x) x ∈ Ω.

Some authors consider a depending on a linear functional l(u), i.e.,

a(u) = a(l(u))

with
l(u) =

∫
Ω

Φ(x)u(x, t)dx,

where Φ(x) is a given function in L2(Ω).
For g(t, u) = f(t) the existence and uniqueness of solutions and their asymptotic
behavior are studied for example in [37,38,40,93].
For g(t, u) = f(u) + h(t) the existence, uniqueness and asymptotic behaviour of
solutions are studied in [3,23,25,26]. Moreover, the authors prove the existence of
pullback attractors in L2(Ω) and H1

0 (Ω). Extensions in this direction for equations
governed by the p-laplacian operator instead of the laplacian operator ∆ are given
in [24, 27], whereas nonclassical diffusion equations are considered in [72].

On the other hand, it is possible to consider a function a such that a (u) =

a(‖u‖2
H1

0
). The existence and uniqueness of solutions of the following problem


ut − a(‖u‖2

H1
0
)∆u = f, t > 0, x ∈ Ω,

u = 0, on ∂Ω× (0,∞) ,

u(0, x) = u0(x) x ∈ Ω.

is proved in [41, 93], where f ∈ L2(Ω), u0 ∈ H1
0 (Ω) and a = a(s) is a continuous

function such that 0 < m ≤ a(s) ≤M.
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By this way, the following problem will be considered throughout chapters two
and three 

ut − a(‖u‖2
H1

0
)∆u = f(u) + h(t), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(0, x) = u0 (x) in Ω,

(2)

where h ∈ L2(0, T ;L2(Ω)), for all T > 0, a : R+ → R+ is a continuous function such
that a (s) ≥ m > 0 and f is a continuous function satisfying standard dissipative
and growth conditions (see (2.1.5)).

More precisely, the aim of the third chapter is three-fold. First, we will prove the
existence of solutions for problem (2) under different assumptions on the nonlinear
function f . Second, we will obtain the existence of attractors for the semiflows
generated by either regular or strong solutions in the autonomous case, that is,
when h does not depend on time. Third, we establish that the global attractor
can be characterized by the unstable manifold of the set of stationary points. It
is important to notice that the proof of this last fact requires the existence of a
Lyapunov function on the attractor, and for this aim the term a(‖u‖2

H1
0
) is crucial.

In the case when a(u) = a(l(u)) it is not known whether such a function exists or
not.

We prove the existence of strong solutions by assuming that either the function
f is continuously differentiable and f ′ (s) ≤ η or that it satisfies a more strict
growth condition. Supposing additionaly that the function a has sublinear growth
we prove the existence of regular solutions as well. Moreover, when f ′ (s) ≤ η and
the function s 7→ a (s2) s is non-decreasing, uniqueness is proved.

When studying the asymptotic behaviour of solutions, new challenging difficul-
ties arise for problem (2). For this problem we consider the autonomous situation,
that is, h ∈ L2 (Ω) does not depend on t.

If uniqueness holds, then we define classical semigroups (one for regular solu-
tions and one for strong solutions) and prove the existence of the global attractor.
Under some extra assumptions on the functions a, h we are able to obtain that the
global attractor is bounded in H2 (Ω) and L∞ (Ω).
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If uniqueness is not known to be true, then we have to define a (possibly)
multivalued semiflow. Then the existence of the global attractor is proved for
regular solutions in the topology of the space L2 (Ω) and for strong solutions in
the topology of the space H1

0 (Ω) (or H1
0 (Ω) ∩ Lp (Ω)), extending in this way the

known results for the local problem [57].

The structure of the global attractor is an important feature as it gives us an
insight into the long-term dynamics of the solutions. In the multivalued situation it
is a challenging problem that has not been completely understood yet. So far in the
local case several results in this direction have been obtained for reaction-diffusion
equations without uniqueness [7, 18, 57,58].

In our nonlocal problem for both situations (for regular and strong solutions)
we are able under some conditions to define a Lyapunov function on the attractor
and to prove that it is characterized as the unstable set of the stationary points.
Also, the attractor is equal to the stable set of the stationary points when we
consider solutions only in the set of bounded complete trajectories.

If we consider the general equation

ut − a(ΦΩ(u(t))∆u = f(u), (3)

equilibria are difficult to analyse. Here the functional ΦΩ may represent a general
nonlocal functional acting over the whole domain Ω, for instance

‖u(t)‖2
H1

0
or

∫
Ω

g(y)u(t, y)dy.

Opposite to ordinary differential equations, the analysis of existence of statio-
nary states for the above problem is much more involved. Also, comparing with
reaction-diffusion equations with local diffusion, another difficulty is that in gene-
ral a Lyapunov functional is not known to exist in most cases. One should cite
Prof. Chipot and his collaborators [36–41, 93] among others for a detailed analy-
sis including existence, uniqueness, steady states and convergence of evolutionary
solutions to equilibria, in the particular case where f is constant.
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If we consider the non-local equation

∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λf(u) (4)

with Dirichlet boundary conditions, then it is possible to define a suitable Lyapu-
nov functional. As we shall see in the third chapter, regular and strong solutions
generate (possibly) multivalued semiflows having a global attractor which is des-
cribed by the unstable set of the stationary points.

Although this is already a good piece of information, our goal in the last chapter
of this thesis is to describe the structure of the attractor as accurately as possi-
ble. For this aim, in [20] we focus on studying the particular situation where the
domain is one-dimensional and the function f is of the type of the standard Chafee-
Infante problem, for which the dynamics inside the attractor has been completely
understood [55].

The first point in the last chapter studies the existence of strong solutions
of the Cauchy problem in the space H1

0 . As well, we prove that strong solutions
generate a multivalued semiflow in H1

0 having a global attractor which is equal to
the unstable set of the stationary points.

When we study the structure of the attractor, we need to analyse the stationary
points. In the case where the function f is odd and equation (4) generates a
continuous semigroup the existence of fixed points of the type given in the Chafee-
Infante problem was established in [31]. Moreover, if a is non-decreasing, then they
coincide with the ones in the Chafee-Infante problem and, also, in [32] the stability
and hyperbolicity of the fixed points are studied.

In this fourth chapter we extend these results for a more general function f (not
necessarily odd and for which we do not known whether the Cauchy problem has a
unique solution or not), showing that equation (4) undergoes the same cascade of
bifurcations as the Chafee-Infante equation. Moreover, when we allow the function
a to decrease, though the problem possesses at least the same fixed points as
in the Chafee-Infante problem, we show that more equilibria can appear. For a
non-decreasing function a and an odd function f we prove also that even when
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uniqueness fails the stability of the fixed points is the same as for the corresponding
ones in the Chafee-Infante problem.

Finally, we are able to prove that in this last case the semiflow is dynamically
gradient with respect to the disjoint family of isolated weakly invariant sets gene-
rated by the equilibria, which is ordered by the number of zeros of the fixed points.
More precisely, the attractor consists of the set of equilibria and their heteroclinic
connections and a connection from a fixed point to another is allowed only if the
number of zeros of the first one is greater.
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Introducción

Las ecuaciones diferenciales juegan un papel muy importante no solo en
Matemáticas sino también en otras ciencias. Se han utilizado durante siglos en
campos como Física, Química o Biología. Hay dos ecuaciones importantes que
se utilizan para describir varios procesos que ocurren a nuestro alrededor. Los
procesos más comunes incorporan la variedad de concentración de al menos una
sustancia en el tiempo y en el espacio bajo el impacto de dos respuestas, que son,
como su nombre indica, difusión y reacción.

La ecuación de difusión representa el procedimiento que hace que las sustancias
(moléculas, átomos, calor) se muevan desde altas a bajas concentraciones para lo-
grar una concentración equilibrada. Un ejemplo simple de difusión en gases aparece
cuando rociamos un perfume y después de unos minutos su olor se esparce por toda
la estancia. La difusión simple también ocurre continuamente en el cuerpo humano
mientras respiramos, ya que el intercambio de gases se produce entre nuestros pul-
mones y el aire que respiramos. El termino reacción se refiere al procedimiento que
cambia la concentración de la sustancia en cuestión.

Proceso de difusión cuando interactúan dos componentes. Aquí los componentes
A y B se difunden y al mismo tiempo reaccionan para producir un complejo AB
que también se difunde.
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Una formulación generalizada de la ecuación de reacción-difusión para una sola
sustancia en una dimensión es la siguiente:

∂

∂t
C(x, t) = D

∂

∂x2
C(x, t) +R(C),

donde C(x, t) es la concentración de la sustancia en un punto x y un tiempo t

específicos,
∂

∂x2
C(x, t) representa el transporte difusivo de la sustancia, R(C) es

la función de reacción que representa la producción o destrucción de la sustancia
resultante de las reacciones, and D es el coeficiente de difusión. Este caso simple
de la ecuación de reacción-difusión se le conoce como la ecuación de Kolmogorov-
Petrovsky-Piskunov [60].

Desde que en los trabajos clásicos [60] y [48] el modelo de reacción-difusión
fuera introducido para describir la propagación de un gen predominante dentro de
una población, se ha trabajado mucho en el modelo para tener en cuenta otros
factores biológicos, químicos o físicos. De hecho, se pueden encontrar aplicaciones
en Economía. En particular, la distribución de la acumulación de capital en el
espacio y tiempo, siguiendo extensiones espaciales del modelo continuo de Ram-
sey [74] por Brito [14–16] y otros autores posteriores, usa la ecuación semilineal
parabólica siguiente:

∂tu− α∆u = f(u)− c.

Esta espacialidad introduce cuestiones importantes sobre la distribución de los
estados estacionarios, así como sobre la evolución dinámica, convergencia o la
interacción local entre agentes locales.

Una de las aplicaciones más hermosas y visuales de este modelo fue obtenida por
Turing en [82] donde describió cómo patrones en la naturaleza, rayas y manchas,
pueden surgir de forma natural y autónoma a partir de un estado homogéneo y
uniforme. En este trabajo, Turing introdujo el concepto de patrón para estudiar
el comportamiento de un sistema en el que dos sustancias, que presentan difusión,
interactúan entre sí. Descubrió que tal sistema de reacción-difusión es capaz de
generar un patrón espacialmente periódico incluso a partir de una condición inicial
aleatoria o casi uniforme.
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También es posible encontrar aplicaciones en áreas de la medicina, como mo-
delos sobre el mecanismo del cáncer [50]. Recientemente, se ha desarrollado un
modelo de reacción-difusión que describe con mayor precisión la distribución es-
pacial y el desarrollo temporal del tejido tumoral (ver [47] y las referencias en el
mismo).

En esta línea, existen modelos en epidemiología que permiten predecir las ca-
racterísticas de la propagación de una enfermedad infecciosa. Una técnica de mo-
delado general son los modelos compartimentales en los que la población se asigna
a compartimentos con etiquetas. El modelo SIR es uno de los más simples con tres
compartimentos: S, el número de individuos susceptibles a la infección; I, el núme-
ro de individuos infecciosos que infectan; y R, el número de personas recuperadas
(curados o fallecidos).

Este modelo predictivo para enfermedades infecciosas que se transmiten de
persona a persona trata de vaticinar cómo se propaga una enfermedad, el número
total de infectados o la duración de una epidemia [91]. Para permitir un análisis de
la dinámica espacial, las teorías de propagación de enfermedades como el modelo
SIR se han extendido a ecuaciones de reacción-difusión (ver [43], [71], [9], [88], [12],
[69], [73]).

Por lo tanto, el objetivo principal es mostrar cómo las diferentes intervencio-
nes en la salud pública pueden afectar al resultado de la epidemia, por ejemplo,
implementar la técnica más eficiente para emitir un número limitado de vacunas
en una población determinada.

Como bien es sabido, en diciembre de 2019, en la ciudad china de Wuhan, se
reportó un brote de una enfermedad provocada por un nuevo coronavirus. Exten-
dida rápidamente a otras regiones de China y del mundo entero, la Organización
Mundial de la Salud reconoció oficialmente el nuevo coronavirus como SARS-CoV-
2 y nombró a la enfermedad COVID-19. Desde entonces, la enfermedad ha causado
millones de muertes.

En consecuencia, estudios que utilizan modelos de reacción-difusión sobre la
tendencia de propagación, comportamiento dinámico a largo plazo, efectos del
distanciamiento social, cuarentena domiciliaria o confinamientos se llevaron a cabo
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para comprender cómo estos factores afectan a la propagación de la epidemia del
COVID-19 (ver, p. ej., [76], [78], [94], [95] y las referencias en los mismos). Esto nos
da una idea de la relevancia matemática del modelo de reacción-difusión y de la
necesidad de seguir profundizando en un conocimiento más amplio de la ecuación.

Una vez vistas varias aplicaciones de las ecuaciones diferenciales, en particular
el modelo de reacción difusión, es necesario centrarse en la parte técnica. En este
sentido, y acercándonos al contenido de esta tesis, conviene señalar la importancia
de saber cómo se comportan las soluciones de ecuaciones diferenciales con respecto
a algún parámetro y los muchos fenómenos interesantes que pueden esconderse en
dicho comportamiento.

Por ejemplo, podemos mencionar las perturbaciones de varias ecuaciones dife-
renciales que generan situaciones interesantes en el comportamiento de la solución,
el estudio asintótico de las características espectrales para varios operadores dife-
renciales, estabilidad y bifurcaciones en sistemas dinámicos, homogeneización de
problemas de valores límite y muchos otros.

En esta tesis, fijamos nuestra atención en las ecuaciones de reacción-difusión sin
unicidad de soluciones del problema de Cauchy asociado. Posteriormente, analiza-
mos con más precisión la estructura del atractor para ecuaciones de tipo Chafee-
Infante que ha sido ampliamente estudiado, comenzando por el artículo de los
autores que dan nombre a esta ecuación [33]. Su característica más interesante
es una bifurcación en el parámetro del sistema que cambia considerablemente la
dinámica. Existencia y regularidad de soluciones han sido estudiadas, así como
la estructura fina del atractor. Para más detalle, se pueden consultar las fuentes
clásicas [80], [75], [54], [53] y las referencias que contienen.

Vamos a recordar algunas propiedades de su dinámica a largo plazo y, en parti-
cular, la estructura de su atractor planteando la ecuación clásica de Chafee-Infante,
aunque en [54] el término de reacción es más general y se prueban todos los resul-
tados.
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La ecuación está dada por

∂u

∂t
−∆u+ λ(u3 − u) = 0, t > 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t > 0,

u(0, x) = u0, x ∈ [0, 1].

Resultados sobre existencia, unicidad y regularidad son bien conocidos [80, pg. 84].
El flujo que genera la solución (t, x) 7→ u(t;x) es continuo en t y en x y define
un sistema dinámico en el espacio H1

0 (0, 1). Además, tenemos la propiedad de la
continuidad con respecto a la condición inicial en H1

0 (0, 1).
En cuanto a las características principales de los estados estacionarios, se puede

encontrar una exposición detallada de la bifurcación en el problema elíptico en [75].
No obstante, en el siguiente resultado quedan recogidas.

Teorema. Sea λ ≤ π2. Entonces existe un único punto fijo estable v ≡ 0. Para
λ > π2 hay siempre dos puntos fijos estables φ± ∈ C∞([0, 1]). En concreto, si
(nπ)2 < λ ≤ ((n + 1)π)2, n ∈ N hay 2 puntos fijos estables y (2n − 1) inestables
{0, φ±, φ±1 , · · · , φ±n−1}. De esta forma, el conjunto de los estados estacionarios Ξλ

viene determinado por

Ξλ :=



{0} 0 < λ ≤ π2,

{0, φ±} π2 < λ ≤ (2π)2,

{0, φ±, φ±1 , . . . , , . . . , φ±n−1}, (nπ)2 < λ ≤ ((n+ 1)π)2, n ≥ 2.

Más aún, para cada valor inicial u0 ∈ H1
0 (0, 1) la trayectoria t 7→ u(t;u0)

converge a un elemento de Ξλ [54]. Este hecho reside en la existencia de un funcional
de energía asociado a la ecuación llamado función de Lyapunov. Como veremos
más adelante, esta propiedad será crucial a lo largo de nuestro trabajo.
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También tenemos que centrarnos en las propiedades del atractor global del
sistema. Necesitamos especificar más la estructura fina del atractor de la ecuación
de Chafee-Infante, ya que depende fundamentalmente del parámetro de bifurcación
λ.

Se sabe que el sistema dinámico inducido por el flujo de la solución de la ecua-
ción de Chafee–Infante tiene un atractor global A ∈ L2(0, 1), C([0, 1]) y H1

0 (0, 1)

[80]. Sea

Mu(v) := {u0 ∈ H1
0 (0, 1) : existe una solución global u(t) en H1

0 (0, 1)

tal que ∃t0 ∈ R : u0 = u(t0) y ĺım
t→−∞

u(t) = v}

la variedad inestable de v ∈ Ξλ. Definimos para v, w ∈ Ξλ el conjunto de las órbitas
completas y conectadas como

C(v, w) := {u0 ∈ H1
0 (0, 1) : there exists a solution u(t) in H1

0 (0, 1)

such that ∃t0 ∈ R : ĺım
t→∞

u(t) = w and ĺım
t→−∞

u(t) = v},

cuando el conjunto es no vacío. Si tal órbita no existiera, C(v, w) = ∅.
El atractor Aλ está formado por todos los puntos fijos y todas las trayectorias
globales y acotadas {u(t), t ∈ R}. Para v, w ∈ Ξλ, v 6= w, usando la notación

v  w ←→ C(v, w) 6= ∅,

en virtud de [42], tenemos que

Aλ = Ξλ ∪
⋃
v∈Ξλ

Mu(v), donde Mu(v) = {v} ∪
⋃
w∈Ξλ
v w

C(v, w),

para λ > 0. En otras palabras,

Aλ = {φ+, φ−} ∪
⋃

v∈Ξλ\{φ+,φ−}

{v} ∪
⋃
w∈Ξλ
v w

C(v, w)

 .
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Como veremos posteriormente, las conexiones sólo están permitidas desde pun-
tos fijos con más ceros a otros con menos. De esta forma, siempre es posible tener
una conexión desde el punto de equilibrio nulo a otro cualquiera.

Si λ excede (nπ)2, la estructura de las conexiones de los elementos de Ξλ para
((n−1)π)2 < λ < (nπ)2 se mantiene en Aλ para λ > (nπ)2 como una subestructu-
ra, aunque dos nuevos puntos fijos inestables φ±n−1 aparecen en Ξλ. Además, nuevas
órbitas conectadas aparecen en el atractor: 2(2n − 3) uniendo los 2n − 3 puntos
fijos inestables previos {0, φ±1 , . . . , φ±n−2} con cada uno de los nuevos {φ+

n−1, φ
−
n−1},

y 4 trayectorias directas desde cada uno de los últimos hacia los puntos estables
{φ+, φ−} y, por tanto, 4n− 2 nuevas órbitas conectadas. En particular, el número
de órbitas conectadas para λ ∈ ((π(n− 1))2, (πn)2) es exactamente

n−1∑
k=1

(4k − 2) = 2(n− 1)2.

En la Figura 2 se muestra la forma cualitativa del atractor. Para ((nπ)2 <

λ < ((n + 1)π)2, los elementos de Ξλ así como el conjunto completo Aλ depende
continuamente de λ.

Figura 2: Esquema de Aλ para π2<λ<(2π)2, (2π)2<λ< (3π)2, (3π)2<λ< (4π)2.
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Como acabamos de ver, uno de los principales objetivos de la teoría de los sis-
temas dinámicos es caracterizar la estructura de los atractores globales. Es posible
encontrar una amplia literatura sobre este problema para semigrupos; sin embar-
go, ha sido recientemente cuando nuevos resultados en esta dirección para sistemas
dinámicos multivaluados han sido obtenidos [7], [57], [58]. Una de las novedades
que pretende presentar esta tesis reside en la obtención de resultados trabajando
con sistemas dinámicos multivaluados, donde no se puede garantizar la unicidad
del problema de Cauchy asociado.

De esta manera y enfocándonos ahora en lo que se abordará a lo largo de es-
te trabajo, el primer capítulo está dedicado a presentar definiciones y resultados
básicos en el marco de sistemas dinámicos multivaluados. También describimos
algunos elementos de la teoría de la descomposición de Morse que juegan un papel
importante en esta área de sistemas dinámicos. De hecho, se demuestra en [44]
que la existencia de una función de Lyapunov, la propiedad de ser un semiflu-
jo dinámicamente gradiente y la existencia de una descomposición de Morse son
propiedades equivalentes para sistemas dinámicos multivaluados.

El segundo capítulo de esta tesis se centra en mostrar, bajo determinadas con-
diciones, que un semiflujo multivaluado dinámicamente gradiente es estable bajo
perturbaciones; es decir, la familia de semiflujos multivaluados perturbados per-
manece dinámicamente gradiente.

Para un semiflujo multivaluado dinámicamente gradiente con un atractor glo-
bal, también analizamos el reordenamiento de una familia finita disjunta a pares de
conjuntos aislados débilmente invariantes, incluidos en el atractor, de tal manera
que la propiedad de ser dinámicamente gradiente se satisface en un sentido más
fuerte que en [64].

Estos resultados amplían los anteriores en el marco univaluado (ver [5, 6, 30])
al caso donde la unicidad de la solución no se cumple. Además, los semiflujos
multivaluados aquí no se suponen sistemas dinámicos generales como en [64], donde
un teorema de robustez para la descomposición de Morse de un sistema dinámico
multivaluado es obtenido bajo una condición específica de continuidad.
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Adicionalmente, aplicamos este teorema de robustez general para demostrar
que una familia de problemas de tipo Chafee-Infante que aproximan una inclusión
diferencial es dinámicamente gradiente si está lo suficientemente cerca del problema
original.

Pasando a la siguiente cuestión abordada en esta tesis, se generalizan los mo-
delos de reacción-difusión estudiados anteriormente y se introduce un término no
local en el coeficiente de difusión.

El estudio de este modelo viene motivado porque en las aplicaciones reales
pueden existir varios efectos no locales que influyen en la evolución de un sistema.
Por ejemplo, generalmente no tenemos suficiente información sobre los sistemas
en estudio y sus características en cada punto. En realidad, las mediciones no se
realizan puntualmente sino a través de algún promedio local. De hecho, durante
las últimas décadas muchos matemáticos han estado estudiando problemas no
locales motivados por sus diversas aplicaciones en Física, Biología o dinámica de
poblaciones. [35–39,66].

En primer lugar, podríamos hablar acerca de las extensiones utilizando algunos
operadores no locales que actúan en el lado derecho de la EDP y/o en las condicio-
nes de frontera como un operador integral, lo que lleva a unas ecuaciones de tipo
integro-diferencial. Entre otros, cabe mencionar a [4] para un sistema de capital
vinculado y un modelo de contaminantes de stock (contaminantes hacia los cuales
el ambiente tiene una baja capacidad de absorción), [46] para un modelo dinámico
de poblaciones

∂tu− α∆u = u

(
f(u)− α

∫
RN
g(x− y)u(y, t)dy

)
,

el equivalente elíptico (estacionario) en modelos de poblaciones o en física como
el Fischer-KPP [1], o el modelo logístico [45]. En segundo lugar, señalar que las
extensiones no locales también se han realizado en los operadores de difusión. La
literatura sobre el laplaciano fraccionario es muy amplia. Sin embargo, vamos a
centrarnos en un paso intermedio.
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Originario del modelo poblacional de bacterias en el campo de la Biología, la
introducción de una viscosidad no local frente al laplaciano se ha convertido en un
interesante problema para diferentes aplicaciones y para su estudio matemático,
como ocurre por ejemplo en la siguiente ecuación

ut − a(

∫
Ω

g(y)u(t, y)dy)∆u = f(t).

De esta manera, los efectos de propagación (o agregación/concentración) están da-
dos por la función creciente (resp. no creciente) a como un coeficiente de viscosidad
no local.

En este sentido, considérese el problema de encontrar una función u(t, x) tal
que 

ut − a(
∫

Ω
u(t, x)dx)∆u = g(t, u), en Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(0) = u0 en Ω.

(5)

Aquí Ω es un subconjunto abierto y acotado de Rn, n ≥ 1, con frontera suave y a
es una función de R en (0,+∞). En esta ecuación u puede describir la densidad de
una población sujeta a propagación. Por tanto, el coeficiente de difusión a depende
de toda la población del dominio, en lugar de depender de la densidad local.

En las últimas décadas, una amplia literatura con resultados relevantes sobre
(5) ha sido desarrollada (ver por ejemplo [36, 39, 66]). Sin embargo, es posible
distinguir dos casos básicos de la siguiente ecuación más general

ut − a(u)∆u = g(t, u), t > 0, x ∈ Ω,

u = 0, en ∂Ω× (0,∞) ,

u(0, x) = u0(x) x ∈ Ω.

Algunos autores consideran a dependiendo de un funcional lineal l(u); es decir,

a(u) = a(l(u))
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con
l(u) =

∫
Ω

Φ(x)u(x, t)dx,

donde Φ(x) es una función dada en L2(Ω).
Para g(t, u) = f(t), la existencia y unicidad de soluciones y el comportamiento
asintótico es estudiado, por ejemplo, en [37,38,40,93].
Para g(t, u) = f(u) +h(t), en [3,23,25,26] podemos encontrar los resultados sobre
existencia, unicidad y comportamiento asintótico de las soluciones. Además, los
autores prueban la existencia de atractores pullback en L2(Ω) y en H1

0 (Ω). Exten-
siones en esta dirección para ecuaciones donde interviene el operador p-laplaciano
en lugar del operador laplaciano clásico ∆ se pueden encontrar en [24,27], mientras
que en [72] se consideran ecuaciones de difusión no clásicas.

Por otra parte, es posible considerar la función a como a (u) = a(‖u‖2
H1

0
). De

este modo, resultados acerca de la existencia y unicidad de soluciones del siguiente
problema 

ut − a(‖u‖2
H1

0
)∆u = f, t > 0, x ∈ Ω,

u = 0, en ∂Ω× (0,∞) ,

u(0, x) = u0(x) x ∈ Ω.

se pueden encontrar en [41, 93], donde f ∈ L2(Ω), u0 ∈ H1
0 (Ω) y a = a(s) es una

función continua tal que 0 < m ≤ a(s) ≤M.

Vistos ambos casos, el siguiente problema se considerará a lo largo de los capí-
tulos dos y tres

ut − a(‖u‖2
H1

0
)∆u = f(u) + h(t), en Ω× (0,∞),

u = 0 en ∂Ω× (0,∞),

u(0, x) = u0 (x) en Ω,

(6)

donde h ∈ L2(0, T ;L2(Ω)), para todo T > 0, a : R+ → R+ es una función continua
tal que a (s) ≥ m > 0 y f es una función continua que cumple condiciones de
disipación y crecimiento estándar (ver (2.1.5)).

Más precisamente, el objetivo del tercer capítulo es triple. Primero, probaremos
la existencia de soluciones del problema (6) bajo diferentes hipótesis en la función
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no lineal f . Seguidamente, obtendremos la existencia de atractores para los semi-
flujos generados por soluciones regulares o fuertes en el caso autónomo; es decir,
cuando h no depende del tiempo. Por último, estableceremos una caracterización
para el atractor global en términos de las variedades inestables del conjunto de
puntos fijos. Es importante remarcar que la prueba de este último hecho requiere
de la existencia de una función de Lyapunov definida en el atractor, y para este
objetivo el término a(‖u‖2

H1
0
) resulta clave. En el caso cuando a(u) = a(l(u)) no se

sabe si existe o no una función de Lyapunov.

Probamos la existencia de soluciones fuertes asumiendo que o bien la fun-
ción f es continuamente diferenciable y f ′ (s) ≤ η o que satisface una condición
de crecimiento más estricta. Suponiendo adicionalmente que la función a tiene
un crecimiento sublineal, probamos la existencia de soluciones regulares. Además,
cuando f ′ (s) ≤ η y la función s 7→ a (s2) s es no decreciente, se tiene garantizada
la unicidad.

Cuando estudiamos el comportamiento asintótico de las soluciones, nuevas difi-
cultades desafiantes surgen para el problema (6). Para este problema, consideramos
la situación autónoma, esto es, h ∈ L2 (Ω) no depende de t.

Si la propiedad de unicidad se mantiene, entonces podemos definir un semigru-
po clásico (uno para soluciones regulares y otro para las fuertes) y es posible probar
la existencia del atractor global. Bajo condiciones adicionales en las funciones a, h
podemos obtener que el atractor global está acotado en H2 (Ω) y en L∞ (Ω).

Si no se mantiene la propiedad de unicidad, entonces tenemos que definir un
(posible) semiflujo multivaluado. Por tanto, la existencia del atractor global se
prueba para soluciones regulares en la topología del espacio L2 (Ω) y para solucio-
nes fuertes, en la topología del espacio H1

0 (Ω) (o H1
0 (Ω)∩Lp (Ω)), extendiendo de

esta manera los resultados conocidos para el local problema [57].

La estructura del atractor global es una característica importante ya que nos da
una idea de la dinámica a largo plazo de las soluciones. En el marco multivaluado
es un problema desafiante que todavía no ha sido entendido completamente. Hasta
ahora, en el caso local, se han obtenido varios resultados en esta dirección para
ecuaciones de reacción-difusión sin unicidad [7, 18,57,58].
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En nuestro problema no local, para ambas situaciones (para soluciones regula-
res y fuertes) somos capaces, bajo algunas condiciones, de definir una función de
Lyapunov en el atractor y demostrar que se caracteriza como el conjunto inestable
de puntos estacionarios. Además, probamos que el atractor es igual al conjun-
to estable de los puntos estacionarios cuando consideramos soluciones sólo en el
conjunto de trayectorias completas acotadas.

Si consideramos la ecuación general

ut − a(ΦΩ(u(t))∆u = f(u) (7)

los puntos de equilibrio son difíciles de analizar. Aquí ΦΩ puede representar un
funcional no local general actuando sobre todo el dominio Ω, por ejemplo

‖u(t)‖2
H1

0
o

∫
Ω

g(y)u(t, y)dy.

A diferencia de las ecuaciones diferenciales ordinarias, el análisis de la existen-
cia de estados estacionarios para el problema anterior es mucho más complicado.
Además, comparando con las ecuaciones de reacción-difusión con difusión local,
otra dificultad es que, en general, no se sabe que exista una función de Lyapunov
en la mayoría de los casos. En este sentido, podemos citar al Prof. Chipot y sus
colaboradores [36–41,93], entre otros, para tener un análisis detallado, incluyendo
existencia, unicidad, puntos fijos y convergencia de las soluciones hacia los puntos
de equilibrio, en el caso particular en el que f es constante.

Si consideramos la ecuación no local

∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λf(u) (8)

con condiciones de frontera tipo Dirichlet, entonces es posible definir un funcional
de Lyapunov adecuado. Como veremos en el tercer capítulo, soluciones regulares
y fuertes generan (posibles) semiflujos multivaluados teniendo un atractor global
que puede ser descrito por el conjunto inestable de puntos fijos.
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Aunque esto representa un buen avance en el estudio, nuestro objetivo en el
último capítulo de esta tesis es describir la estructura del atractor con la mayor
precisión posible. Para este objetivo, en [20] centramos el estudio en la situación
particular en la que el dominio es unidimensional y la función f es del tipo del
problema estándar de Chafee-Infante, para el cual la dinámica dentro del atractor
se ha entendido completamente [55].

En el primer punto del último capítulo se estudia la existencia de soluciones
fuertes del problema de Cauchy en el espacio H1

0 . Asimismo, se demuestra que las
soluciones fuertes generan un semiflujo multivaluado en el espacio H1

0 , teniendo
un atractor global que es igual al conjunto inestable de los puntos estacionarios.

Cuando estudiamos la estructura del atractor, necesitamos analizar los puntos
estacionarios. En el caso en el que la función f es impar y la ecuación (8) genera
un semigrupo continuo, en [31] se establece la existencia de puntos fijos del tipo
Chafee-Infante. Además, si a es no decreciente, entonces los puntos fijos coinciden
con los mismos del problema clásico de Chafee-Infante y, adicionalmente, en [32]
se estudia la estabilidad e hiperbolicidad de los puntos fijos.

En este cuarto capítulo ampliamos estos resultados para una función más ge-
neral f (no necesariamente impar y no sabemos si el problema de Cauchy asociado
tiene solución única o no), mostrando que la ecuación (8) sufre la misma cascada
de bifurcaciones que la ecuación de Chafee-Infante. Además, en el caso de que la
función a decrezca, aunque el problema posee al menos los mismos puntos fijos
como en el problema de Chafee-Infante, demostramos que pueden aparecer más
puntos fijos. Para una función no decreciente a y una función impar f , demostra-
mos también que incluso cuando la unicidad falla, la estabilidad de los puntos fijos
es la misma que para los correspondientes en el problema de Chafee-Infante.

Finalmente, podemos probar que en este último caso el semiflujo es dinámica-
mente gradiente con respecto a la familia disjunta de conjuntos aislados débilmente
invariantes generados por los puntos fijos, que se ordena por el número de ceros de
los puntos fijos. Más precisamente, el atractor consiste en el conjunto de puntos
de equilibrio y sus conexiones heteroclínicas, donde la conexión de un punto fijo a
otro sólo se permite si el número de ceros del primero es mayor.
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Chapter 0

Preliminaries

This chapter tries to present the definitions and basic results in the framework
of the multivalued dynamical systems. Also, in order to understand properties
related to attractors for multivalued semiflows other results are contemplated.

0.1. Abstract theory of multivalued dynamical sys-

tems

Firstly, we introduce basic concepts and properties related to fixed points,
complete trajectories and global attractors.

Consider a metric space (X, d) and a family of functionsR ⊂ C(R+;X). Denote
by P (X) the class of nonempty subsets of X. Then, define the multivalued map

G : R+ ×X → P (X)

associated with the family R as follows

G(t, u0) = {u(t) : u(·) ∈ R, u(0) = u0}. (0.1.1)

In this abstract setting, the multivalued map G is expected to satisfy some
properties that fit in the framework of multivalued dynamical systems.

1



0.1. Abstract theory 2

The first concept is given now, although a more axiomatic construction will be
provided below.

Definition 0.1. A multivalued map G : R+×X → P (X) is a multivalued semiflow
(or m-semiflow) if G(0, x) = x for all x ∈ X and G(t+ s, x) ⊂ G(t, G(s, x)) for all
t, s ≥ 0 and x ∈ X.
If the above inclusion is an equality, it is said that the m-semiflow is strict.

Once a multivalued semiflow is defined, we recall the concepts of invariance and
global attractor, with evident differences with respect to the single-valued case.

Definition 0.2. A map γ : R→ X is called a complete trajectory of R (resp. of
G) if γ(· + h) |[0,∞)∈ R for all h ∈ R (resp. if γ(t + s) ∈ G(t, γ(s)) for all s ∈ R
and t ≥ 0).

Definition 0.3. A point z ∈ X is a fixed point of R (resp. of G) if ϕ(·) ≡ z ∈ R
(resp. z ∈ G(t, z) for all t ≥ 0).

Definition 0.4. Given an m-semiflow G on a metric space (X, d) a set B ⊂ X is
said to be negatively (positively) invariant if B ⊂ G(t, B) (G(t, B) ⊂ B) for all
t ≥ 0, and strictly invariant (or, simply, invariant) if the above relation is not only
an inclusion but an equality.

Definition 0.5. The set B is said to be weakly invariant if for any x ∈ B there
exists a complete trajectory γ of R contained in B such that γ(0) = x. We observe
that weak invariance implies negative invariance.

Definition 0.6. A closed weakly invariant set B of X is isolated if there is a
neighborhood O of B such that B is the maximal weakly invariant subset on O. If
B belongs to the global attractor A and A is compact, then it is compact. In this
case, it is equivalent to use a δ-neighborhood Oδ(B) = {y ∈ X : dist (y,B) < δ}.

Remark 0.7. If in this definition we use the stronger conditions that O is a
δ−neighborhood, then it follows from the proof of Lemma 19 in [44] that B is
closed, so this assumption is not necessary.
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Definition 0.8. We say that G is asymptotically compact if every sequence yn ∈
G(tn, B), where tn →∞ and B ⊂ X is bounded, is relatively compact.

Definition 0.9. A set A ⊂ X is called a global attractor for an m-semiflow if it is
negatively semi-invariant and it attracts all attainable sets through the m-semiflow
starting in bounded subsets, i.e.,

distX(G(t, B),A)→ 0 as t→∞,

where
distX(A,B) = sup

a∈A
inf
b∈B

d(a, b)

is the Hausdorff semidistance from the G(t, B) to A. When A is compact, it is
the minimal closed attracting set [68, Remark 5].

Definition 0.10. A subset A ⊂ A is a local attractor in A if for some ε > 0 it
follows that ω(Oε(A) ∩ A) = A.

Definition 0.11. Let A be a local attractor in A. Then its repeller A∗ is defined
by

A∗ = {x ∈ A : ω(x)\A 6= ∅}.

Remark 0.12. A global attractor for an m-semiflow does not have to be unique,
nor a bounded set. However, if a global attractor is bounded and closed, it is min-
imal among all closed sets that attract bounded sets [68, Remark 5]. In particular,
a bounded and closed global attractor is unique.

In order to obtain a detailed characterization of the internal structure of a
global attractor, we introduce an axiomatic set of properties on the set R (see [10]
and [57]).

The set of axiomatic properties that we will deal with is the following.

(K1) For any x ∈ X there exists at least one element ϕ ∈ R such that ϕ(0) = x.

(K2) ϕτ (·) := ϕ(·+ τ) ∈ R for any τ ≥ 0 and ϕ ∈ R (translation property).
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(K3) Let ϕ1, ϕ2 ∈ R be such that ϕ2(0) = ϕ1(s) for some s > 0. Then, the
function ϕ defined by

ϕ(t) =

{
ϕ1(t) 0 ≤ t ≤ s,

ϕ2(t− s) s ≤ t,

belongs to R (concatenation property).

(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exist a
subsequence {ϕnk} and ϕ ∈ R such that ϕnk(t)→ ϕ(t) for all t ≥ 0.

In Chapter 1 we will need a stronger condition than (K4). Namely, we shall
consider the following stronger property.

(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exists a
subsequence {ϕn} and ϕ ∈ R such that ϕn converges to ϕ uniformly in
bounded subsets of [0,∞).

Remark 0.13. If in assumption (K1), for every x ∈ X, there exists a unique
ϕ ∈ R such that ϕ(0) = x, then the set {ϕ ∈ R : ϕ(0) = x} consists of a
single trajectory ϕ, and the equality G(t, x) = ϕ(t) defines a classical semigroup
G : R+ ×X → X.

It is immediate to observe [29, Proposition 2] or [59, Lemma 9] that R fulfilling
(K1) and (K2) gives rise to a m-semiflow G through (3.3.1), and if besides (K3)
holds, then this m-semiflow is strict. In such a case, a global bounded attractor,
supposing that it exists, is strictly invariant [68, Remark 8].

Several properties concerning fixed points, complete trajectories and global
attractors are summarized in the following results [57].

Lemma 0.14. Let (K1)-(K2) be satisfied. Then every fixed point (resp. complete
trajectory) of R is also a fixed point (resp. complete trajectory) of G.

If R fulfills (K1)-(K4), then the fixed points of R and G coincide. Besides, a
map γ : R→ X is a complete trajectory of R if and only if it is continuous and a
complete trajectory of G.
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The standard well-known result in the single-valued case for describing the
attractor as the union of bounded complete trajectories (see [61]) reads in the
multivalued case as follows.

Theorem 0.15. Consider R satisfying (K1) and (K2), and either (K3) or (K4).
Assume also that G possesses a compact global attractor A. Then

A = {γ(0) : γ ∈ K} = ∪t∈R{γ(t) : γ ∈ K}, (0.1.2)

where K denotes the set of all bounded complete trajectories in R. Hence, A is
weakly invariant.

Before stating a general result about the existence of attractors, we need the
following definition.

Definition 0.16. The map t 7→ G(t, x) is upper semicontinuous if for any x ∈ X
and any neighborhood O(G(t, x)) in X there exists δ > 0 such that if d(y, x) < δ,
then G(t, y) ⊂ O.

Theorem 0.17. [68, Theorem 4 and Remark 8] Let the map t 7→ G(t, x) be upper
semicontinuous with closed values. If there exists a compact attracting set K, that
is,

distX(G(t, B), K)→ 0, as t→ +∞,

for any bounded set B, then G possesses a global compact attractor A, which is the
minimal closed attracting set. If, moreover, G is strict, then A is invariant.

We observe that, although in the papers [68], [57] the space X is assumed to
be complete, the results are true in a non-complete space.

Now we recall the definitions of some important sets in the literature of dy-
namical systems. Let B ⊂ X and let ϕ ∈ R. We define the ω−limit sets ω(B) and
ω(ϕ) as follows:

ω(B) ={y ∈ X : there are sequences tn →∞, yn ∈ G(tn, B) such that yn → y},

ω(ϕ) ={y ∈ X : there is a sequence tn →∞ such that ϕ(tn)→ y}.
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If γ is a complete trajectory of R, then the α−limit set is defined by

α(γ) = {y ∈ X : there is a sequence tn → −∞ such that γ(tn)→ y}.

Some useful properties of these sets [10, Lemma 3.4 and Proposition 4.1] are
summarized in the following lemma.

Lemma 0.18. Assume that (K1), (K2) and (K4) hold. Let G be asymptotically
compact. Then:

1. For any non-empty bounded set B,ω(B) is non-empty, compact, weakly in-
variant and

distX(G(t, B), ω(B))→ 0, as t→ +∞.

2. For any ϕ ∈ R, ω(ϕ) is non-empty, compact, weakly invariant and

distX(ϕ(t), ω(ϕ))→ 0, as t→ +∞.

3. For any γ ∈ K, α(γ) is non-empty, compact, weakly invariant and

distX(γ(t), α(γ))→ 0, as t→ −∞.

4. For any ϕ ∈ R, ω(ϕ) is connected. If ψ is a complete trajectory then α(ψ)

is connected.

The following definition summarizes additional concepts. They are required in
order to give a more detailed description of the internal structure of the attractor
under special cases.

Definition 0.19. Consider a m-semiflow G.

1. We say that S = {Ξ1, . . . ,Ξn} is a disjoint finite family of isolated weakly
invariant sets if there exists δ > 0 such that

Oδ(Ξi) ∩ Oδ(Ξj) = ∅ for 1 ≤ i < j ≤ n,
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and each Ξi is the maximal weakly invariant subset in

Oδ(Ξi) := {x ∈ X : distX(x,Ξi) < δ}.

2. For an m-semiflow G on (X, d) with a global attractor A and a finite number
of weakly invariant sets S, a homoclinic orbit in A is a collection

{Ξp(1), . . . ,Ξp(k)} ⊂ S

and a collection of complete trajectories {γi}1≤i≤k of R in A such that
(putting p(k + 1) := p(1))

lim
t→−∞

distX(γi(t),Ξp(i)) = 0, lim
t→∞

distX(γi(t),Ξp(i+1)) = 0, 1 ≤ i ≤ k,

and for each i there exists ti ∈ R such

γi(ti) /∈ Ξp(i) ∪ Ξp(i+1).

3. We say that an m-semiflow G on (X, d) with the global attractor A is dy-
namically gradient if the following two properties hold:

(G1) there exists a disjoint finite family S = {Ξ1, . . . ,Ξn} of isolated weakly
invariant sets in A with the property that any complete trajectory γ of R in
A satisfies

lim
t→−∞

distX(γ(t),Ξi) = 0, lim
t→∞

distX(γ(t),Ξj) = 0

for some 1 ≤ i, j ≤ n;

(G2) S does not contain homoclinic orbits.

Remark 0.20. It is possible to establish the definition of being dynamically gra-
dient in terms of α, ω−limit sets. After reordering the sets Ξi, the two defi-
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nitions are equivalent, as will be shown in Chapter 1. We say the m-semiflow
G : R+×X → P (X) is dynamically gradient with respect to the disjoint family of
isolated weakly invariant sets S = {Ξ1, . . . ,Ξn} if for every complete and bounded
trajectory ψ of R we have that either

ψ(R) ⊂ Ξj, for some j ∈ {1, . . . ,m},

or
α(ψ) ⊂ Ξi and ω(ψ) ⊂ Ξj

with 1 ≤ j < i ≤ m.

Definition 0.21. A disjoint family of isolated weakly invariant sets

S = {Ξ1, . . . ,Ξn} ⊂ A

is a Morse decomposition of the global compact attractor A if there is a sequence
of local attractors

∅ = A0 ⊂ A1 ⊂ . . . ⊂ An = A

such that for every k ∈ {1, . . . , n} it holds

Ξk = Ak ∩ A∗k−1.

Remark 0.22. The property of being a dynamically gradient semiflow and the
existence of a Morse decomposition are shown to be equivalent for multivalued
dynamical systems in [44] under conditions (K1)-(K3), (K4).

Remark 0.23. In the single-valued case, dynamically gradient semigroups have
been called also gradient-like semigroups [30]. Observe that the above definitions
are concerned with weakly invariant families, which need not to be unitary sets.
This is to deal with the more general concept of generalized gradient-like semi-
groups [30], in contrast with gradient-like semigroups (when the invariant sets are
unitary).

Now, we introduce the concept of unstable manifold, that will allow us to



9 0.2. Abstract theory

describe more precisely the structure of a global attractor of a dynamically gradient
m-semiflow.

Definition 0.24. Let G be an m-semiflow. The unstable manifold of a set Ξ is

W u(Ξ) = {u0 ∈ X : there exists complete trajectory γ of R such that
γ(0) = u0 and lim

t→−∞
distX(γ(t),Ξ) = 0}.

Now the following result, relating the global attractor with unstable manifolds,
is standard. The first statement is straightforward to see. The second one, sup-
posing that the global attractor is compact, follows directly from the structure
described in Theorem 0.15 and the definition of dynamically gradient semiflows.

Lemma 0.25. Consider a family R ⊂ C(R+;X) satisfying (K1) and (K2). Sup-
pose that the associated m-semiflow has a global attractor A. Then, for any
bounded set Ξ ⊂ X,W u(Ξ) ⊂ Ā.

Moreover, assume that R satisfies either (K3) or (K4), and that the global
attractor A is compact. Suppose also that the associated m-semiflow G defined in
(3.3.1) is dynamically gradient. Then

A =
n⋃
i=1

W u(Ξi). (0.1.3)

0.2. Notation

We end this chapter fixing basic questions about notation. Throughout this
work we will denote by ‖·‖X the norm in the Banach space X. Let Ω ⊂ Rn be a
subset and 1/p+ 1/q = 1. Denote by (·, ·) the scalar product in L2(Ω) and ‖ · ‖H1

0

the norm in H1
0 (Ω) associated to the scalar product of gradients in L2(Ω) thanks to

Poincaré’s inequality. We also denote by (·, ·) the duality product between Lp(Ω)

and Lq(Ω), where p is the conjugate exponent of q. As usual, let H−1(Ω) be the
dual space to H1

0 (Ω). Denote by 〈·, ·〉 pairing between the space Lp(Ω)∩H1
0 (Ω) and

its dual Lq(Ω) + H−1(Ω). Note also that we will use 〈·,·〉 for the duality between
H1

0 (Ω) and H−1 (Ω).





Chapter 1

Robustness of dynamically gradient

multivalued dynamical systems

The basic theory about properties related to fixed points, complete trajectories
and global attractors has been introduced in Chapter 0. In this Chapter we present
the main result about robustness of dynamically gradient multivalued semiflows.
Further, we prove a theorem which allows us to reorder the family of weakly
invariants sets, thus establishing an equivalent definition of dynamically gradient
families.

Afterwards, we consider a Chafee-Infante problem, where the equivalence of
weak and strong solutions is established. Once the set of fixed points is analyzed,
we consider a family of Chafee-Infante equations, approximating the differential
inclusion tackled in [7]. We check that this family of Chafee-Infante equations
verifies the hypotheses of the robustness theorem in order to obtain, therefore,
that the multivalued semiflows generated by the solutions of the approximating
problems are dynamically gradient if this family is close enough to the original
one.

1.1. Robustness of dynamically gradient

m-semiflows

Our first main goal is to prove that a dynamically gradient multivalued semiflow
is stable under suitable perturbations, that is, a family of perturbed multivalued
semiflows remains dynamically gradient if it is close enough to the original semi-

11
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flow, generalizing the corresponding result in the single-valued case [30]. This is
rigorously formulated in the following theorem.

Theorem 1.1. Consider a complete metric space (X, d). Let η be a parameter
in [0,1], Rη ⊂ C(R+;X) fulfill (K1), (K2), (K3) and (K4), and let Gη be the
corresponding m-semiflow on X having the global compact attractor Aη. Assume
that

(H1)
⋃

η∈[0,1]

Aη is compact.

(H2) G0 is a dynamically gradient m-semiflow with a disjoint finite family of iso-
lated weakly invariant sets S0 = {Ξ0

1, . . . ,Ξ
0
n}.

(H3) Aη has a disjoint finite family of isolated weakly invariant sets Sη = {Ξη
1, . . . ,Ξ

η
n},

η ∈ [0, 1], which satisfy

lim
η→0

sup
1≤i≤n

distX(Ξη
i ,Ξ

0
i ) = 0.

(H4) Any sequence {γη} with γη ∈ Rη such that {γη(0)} converges for η → 0+,

possesses a subsequence {γηp} that converges uniformly in bounded intervals
of [0,∞) to γ ∈ R0.

(H5) There exists η > 0 and neighborhoods Vi of Ξ0
i such that Ξη

i is the maximal
weakly invariant set for Gη in Vi for any i = 1, . . . , n and for each 0 < η ≤ η.

Then there exists η0 > 0 such that for all η ≤ η0, {Gη} is a dynamically
gradient m-semiflow. In particular, the structure of Aη is analogous to that given
in (0.1.3).

Proof. Observe that assumption (H5) concerning certain neighborhood Vi of Ξ0
i

involves a hyperbolicity condition of G0 w.r.t. each Ξ0
i , and as far as (H3) is also

assumed, there exist {η(Vi)}i=1,...,n such that Ξη
i ⊂ Vi for all η ≤ η(Vi). W.l.o.g.

assume that δ > 0 is such that {x ∈ X : distX(x,Ξ0
i ) ≤ δ} ⊂ Vi for all i = 1, . . . , n.

By Theorem 0.15, we have that Aη is composed by all the orbits of bounded
complete trajectories of Rη, Kη.
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We are going to prove by contradiction arguments that there exists η0 ∈ (0, 1]

such that {Gη}η≤η0 is dynamically gradient.

Step 1: There exists η0 > 0 such that for all η < η0, any bounded complete
trajectory ξη of Rη satisfies that there exist i ∈ {1, . . . , n} and t0 such that for all
t ≥ t0, distX(ξη(t),Ξ

0
i ) ≤ δ.

After proving the above claim, we consider the sets

Bη := {ξη(s) : s ≥ t0} ⊂ A = {y : distX(y,Ξ0
i ) ≤ δ}

and ω(ξη).
It follows that ω(ξη) ⊂ A, since

distX(ξη(t), ω(ξη))→ 0 as t→ +∞.

On the other hand, by Lemma 0.18 ω(ξη) is a weakly invariant set of Gη contained
in Vi. By assumption (H5) we have that ω(ξη) ⊂ Ξη

i , whence the ‘forward part’ of
property (G1) of a dynamically gradient m-semiflow will follow immediately.

We prove this Step 1 by contradiction. Suppose it does not hold. Then, there
exist a sequence ηk → 0 (as k →∞) and bounded complete trajectories ξk of Rηk

(therefore, from Aηk) such that

sup
t≥t0

distX(ξk(t),S0) > δ ∀t0 ∈ R. (1.1.1)

The set {ξk(0)} ⊂ ∪η∈[0,1]Aη is relatively compact from assumption (H1). So,
there exists a converging subsequence (relabeled the same) in X. From (H4), there
exist a subsequence (relabeled the same, again) and ξ0 ∈ R0, such that {ξk|[0,∞)}
converges to ξ0 in bounded intervals of [0,∞). Actually, if we argue similarly not
for time 0, but now for times −1, −2, . . . , and use a diagonal argument, we have
that ξ0 = γ0|[0,∞) where γ0 ∈ K0, and the convergence of (a subsequence of) {ξk}
toward γ0 holds uniformly in bounded intervals [a, b] of R.

Since G0 is dynamically gradient, there exists i ∈ {1, . . . , n} such that

distX(γ0(t),Ξ0
i )→ 0 as t→∞.
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Therefore, for all r ∈ N, there exist tr and kr such that

distX(ξk(tr),Ξ
0
i ) < 1/r for all k ≥ kr.

Indeed, this is done as follows: distX(γ0(s),Ξ0
i ) < 1/r for all s ≥ tr (for some tr,

w.l.o.g. tr ≥ r > 1/δ); now, combining this with the uniform convergence on [0, tr]

of ξk toward γ0, the existence of kr follows.
However, from (1.1.1), there exists t′r > tr such that distX(ξkr(t),Ξ

0
i ) < δ for

all t ∈ [tr, t
′
r) and distX(ξkr(t

′
r),Ξ

0
i ) = δ.

Now we distinguish two cases and we will arrive to the same conclusion in both
of them.

Case (1a): Suppose that t′r − tr → ∞ as r → ∞ (at least for a certain
subsequence).

Since {ξkr(t′r)} is also relatively compact (by (H1), again), and ξ1
kr

(·) = ξkr(t
′
r+

·) is a bounded complete trajectory ofRkr , from (H4) we deduce that a subsequence
(relabeled the same) is converging on bounded time-intervals of [0,∞), i.e. γ1(t) :=

limr→∞ ξkr(t + t′r) holds for certain γ1 ∈ R0. Moreover, as before, a diagonal
argument, using not t′r above, but t′r−1, t′r−2, . . . implies that γ1 can be extended to
the whole real line (the function will still be denoted the same; and the convergence
holds in bounded time-intervals of R), in particular, by (H1) and (H4), γ1 ∈ K0.

Moreover, by its construction, we have that distX(γ1(t),Ξ0
i ) ≤ δ for all t ≤ 0.

By Lemma 0.18 we have that the α-limit set α(γ1) is weakly invariant.
As long as Ξ0

i is the biggest weakly invariant set contained in Vi, we deduce
that distX(γ1(τ),Ξ0

i )→ 0 when τ → −∞.
On the other hand, from (G1) and (G2) we have that distX(γ1(t),Ξ0

j) → 0 as
t→∞ for j 6= i.

Case (1b): Suppose that there exists C > 0 such that |t′r− tr| ≤ C as r →∞.
(W.l.o.g. we assume that t′r − tr → t∗.)

Recall that distX(ξkr(tr),Ξ
0
i ) < 1/r. By [44, Lemma 19] Ξ0

i is closed, so, up to
a subsequence

ξkr(tr)→ y ∈ Ξ0
i .

Denote ξ1
kr

(·) = ξkr(·+tr). From (H4), there exist a subsequence {ξ1
kr
} and ξ1 ∈ R0

with ξ1(0) = y such that ξ1
kr

converge towards ξ1 uniformly in bounded intervals
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of [0,∞). In particular,
ξ1
kr(t

′
r − tr)→ ξ1(t∗),

so that
distX(ξ1(t∗),Ξ

0
i ) ≥ δ.

Since Ξ0
i is weakly invariant, there exists γ ∈ K0 with γ(0) = ξ1(0) and γ(t) ∈

Ξ0
i for all t ∈ R. By (K3) consider the concatenation

γ1(t) :=

{
γ(t), if t ≤ 0,

ξ1(t), if t ≥ 0.

Then by (G1)-(G2) it follows that

distX(γ1(t),Ξ0
j)→ 0 as t→∞

with j 6= i. This is exactly the same conclusion we arrived in Case (1a).

Reasoning now with the subsequence {ξ1
kr
}, and proceeding as above, we obtain

the existence of γ2 ∈ K0 such that

distX(γ2(t),Ξ0
j)→ 0 as t→ −∞

and
distX(γ2(t),Ξ0

p)→ 0 as t→∞,

with p 6∈ {i, j}.
Thus, in a finite number of steps we arrive to a contradiction, since G0 satisfies

(G2). Therefore, (1.1.1) is absurd, and Step 1 is proved.

Step 2: There exists η1 > 0 such that for all η < η1, any bounded com-
plete trajectory ξη of Rη satisfies that there exist j ∈ {1, . . . , n} and t1 such that
distX(ξη(t),Ξ

0
j) ≤ δ for all t ≤ t1.

The above claim can be proved analogously as before, and since for any bounded
complete trajectory ξη ∈ Kη, by Lemma 0.18, α(ξη) is weakly invariant for Gη,

and contained in some Vj, the ‘backward part’ of property (G1) of a dynamically
gradient m-semiflow will follow immediately. The same argument is valid for the
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‘forward part’, and so, for all suitable small η, {Gη(t) : t ≥ 0} satisfies (G1).

Step 3: There exists η2 > 0 such that {Gη}η≤η2 satisfies (G2).
If not, there exist a sequence ηk → 0, with Gηk having an homoclinic structure.

We may suppose that the number of elements of weakly invariant subsets connected
on each homoclinic chain in Sηk is the same. Moreover, by assumption (H3) each
Ξηk
j is contained in Vj for ηk small enough and w.l.o.g. the order in the route of

the homoclinics visiting the Vj sets is the same.
Therefore, for k ≥ k0 there exist a sequence of subsets Ξηk

p(1), . . . Ξηk
p(l) in Sηk

(with p(l + 1) = p(1)), and a sequence of complete trajectories {{ξki }li=1}k, each
collection of l elements in the corresponding attractor Aηk , with

lim
t→−∞

distX(ξki (t),Ξηk
p(i)) = 0, lim

t→∞
distX(ξki (t),Ξηk

p(i+1)) = 0, 1 ≤ i ≤ l.

If we argue now as in the proof of (G1), we may construct a homoclinic structure
of G0, getting a contradiction with the fact that the m-semiflow G0 is dynamically
gradient.

Remark 1.2. The above result also applies to the particular case of a dynami-
cally gradient m-semiflow when the weakly invariant families of the original and
perturbed problems are reduced to unitary sets (Remark 0.23 and [30, Theorem
1.5]).

1.2. An equivalent definition of dynamically

gradient families.

We will give an equivalent definition of dynamically gradient families. For
proving the main result in this section, we will need a stronger condition than
(K4), that is, the (K4) property defined in Chapter 0.

Remark 1.3. We have seen that the property of being dynamically gradient for
a disjoint family of isolated weakly invariant sets S = {Ξ1, . . . ,Ξn} ⊂ A is stable
under perturbations. We observe that in [64] a slightly different definition was used
for dynamically gradients families. Namely, instead of conditions (G1)-(G2) it is
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assumed that any bounded complete trajectory γ(·) satisfies one of the following
properties:

1. {γ(t) : t ∈ R} ⊂ Ξi for some i.

2. There are i < j for which

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj.

These assumptions are clearly stronger than (G1)-(G2) and imply that the sets
Ξj are ordered. Our aim is to show that when S is a disjoint family of isolated
weakly invariant sets, these conditions are equivalent. For this, the concept of
local attractor and its repeller will be crucial. Therefore, some properties about
local attractors and its repeller as well as the proof of the following lemmas can
be found in [44].

Lemma 1.4. Assume that (K1)−(K4) hold. Then a local attractor A is invariant.

Remark 1.5. Although in [44] the stronger assumption (K4) is assumed, the
proof is valid for just (K4).

Lemma 1.6. Assume that (K1)-(K3), (K4) hold and that a global compact attrac-
tor A exists. Then the repeller A∗ of a local attractor A ⊂ A is weakly invariant
and compact.

Lemma 1.7. Assume that (K1)-(K3), (K4) hold and that a global compact at-
tractor A exists. Let us consider the sequences xk ∈ A, tk → +∞ and ϕk(·) ∈ R
such that ϕk(0) = xk. Then from the sequence of maps ξk(·) : [−tk,+∞) → A
defined by

ξk(t) = ϕk(t+ tk)

one can extract a subsequence converging to some ψ(·) ∈ K uniformly on bounded
subsets of R.

In order to prove the equivalent definition of dynamically gradient families, we
have to ensure the existence of one local attractor in a family of isolated weakly
invariant sets.
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Lemma 1.8. Assume that (K1)-(K3), (K4) hold and that a global compact at-
tractor A exists. Let S = {Ξ1, . . . ,Ξn} ⊂ A be a disjoint family of isolated weakly
invariant sets. If G is dynamically gradient with respect to S, then one of the sets
Ξj is a local attractor in A.

Proof. Let δ0 > 0 be such that Oδ0(Ξi) ∩ Oδ0(Ξj) = ∅ if i 6= j and Ξj is the
maximal weakly invariant set in Oδ0(Ξj) for all j. First we will prove the existence
of j ∈ {1, ..., n} such that for all δ ∈ (0, δ0) there exists δ′ ∈ (0, δ) satisfying

∪t≥0G(t,Oδ′(Ξj) ∩ A) ⊂ Oδ(Ξj). (1.2.1)

If not, there would exist 0 < δ < δ0 and for each j sequences tjk ∈ R+, xjk ∈ A,
ϕjk ∈ R with ϕjk(0) = xjk such that

d(xjk,Ξj) <
1

k
,

d(ϕjk(t
j
k),Ξj) = δ,

d(ϕjk(t),Ξj) < δ for all t ∈ [0, tjk).

We have to consider two cases: tjk → +∞ or tjk ≤ C.

Case 1: Let tjk → +∞. We define the sequence

ψjk(t) = ϕjk(t+ tjk) for t ∈ [−tjk,∞).

By Lemma 1.7 we obtain the existence of a complete trajectory of R, ψj(·), such
that a subsequence of ψjk satisfies

ψjk(t)→ ψj(t) for every t ∈ R.

Hence,
d(ψj(t),Ξj) ≤ δ < δ0 for all t ≤ 0.
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Therefore, as ψj ∈ K, condition (G1) implies that

d(ψj(t),Ξj)→ 0 as t→ −∞.

On the other hand, since d(ψj(0),Ξj) = δ, conditions (G1)− (G2) imply that

d(ψj(t),Ξi)→ 0 as t→ +∞,

where i 6= j.

Case 2: Let now tjk ≤ C. We can assume that

tjk → tj.

By (K4) we obtain the existence of ϕj ∈ R such that ϕjk converges to ϕ
j uniformly

on bounded sets of [0,∞). It is clear then that d(ϕj(tj),Ξj) = δ. As ϕj(0) ∈ Ξj

and Ξj is weakly invariant, there exists a complete trajectory of R, ψ−j (·), such
that ψ−j (0) = ϕj(0) and ψ−j (t) ∈ Ξj for all t ≤ 0. Concatenating ψ−j and ϕj we
define

ψj(t) =

{
ψ−j (t) if t ≤ 0,

ϕj(t) if t ≥ 0,

which is a complete trajectory by (K3). Again, conditions (G1)− (G2) imply that

d(ψj(t),Ξi)→ 0 as t→ +∞,

where i 6= j.

We have obtained then a connection from Ξj to a different Ξi. Since this is
true for any Ξj, we would obtain a homoclinic structure, which contradicts (G2).
Therefore, (1.2.1) holds for some j. It follows that

ω(Oδ′(Ξj) ∩ A) ⊂ Oδ(Ξj) ⊂ Oδ0(Ξj).

Since ω(Oδ′(Ξj)∩A) is weakly invariant, we obtain that ω(Oδ′(Ξj)∩A) ⊂ Ξj. But
Ξj ⊂ G(t,Ξj) ⊂ G(t,Oδ′(Ξj) ∩ A) for any t ≥ 0 implies the converse inclusion, so
that Ξj = ω(Oδ′(Ξj) ∩ A). Thus, Ξj is a local attractor in A.
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Now we prove the main result of this section which allows us to establish the
equivalent definition of dynamically gradient families.

Theorem 1.9. Assume that (K1)-(K3), (K4) hold and that a global compact
attractor A exists. Let S = {Ξ1, . . . ,Ξn} ⊂ A be a disjoint family of isolated
weakly invariant sets. Then G is dynamically gradient with respect to S in the
sense of Definition 0.19 if and only if S can be reordered in such a way that any
bounded complete trajectory γ(·) satisfies one of the following properties:

1. {γ(t) : t ∈ R} ⊂ Ξi for some i.

2. There are i < j for which

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj.

Proof. It is obvious that conditions 1-2 imply that G is dynamically gradient. We
shall prove the converse.

By Lemma 1.8 one of the sets Ξi is a local attractor. After reordering the sets,
we can say that Ξ1 is the local attractor. Let

Ξ∗1 = {x ∈ A : ω(x)\Ξ1 6= ∅}

be its repeller, which is weakly invariant by Lemma 1.6. Since Ξj are closed (see
Definition 0.6), weakly invariant and disjoint, we obtain that Ξj ⊂ Ξ∗1 for j ≥ 2.

We will consider only the dynamics inside the repeller Ξ∗1, that is, we define
the following set:

R1 = {ϕ ∈ R : ϕ(t) ∈ Ξ∗1 ∀t ≥ 0}.

Since Ξ∗1 is weakly invariant, R1 satisfies (K1). Further, let

ϕτ (·) = ϕ(·+ τ),

where ϕ ∈ R1 and τ ≥ 0. Then it is clear that

ϕτ (t) ∈ R1, for all t ≥ 0
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and then (K2) holds.
If ϕ1(·), ϕ2(·) ∈ R1, it follows by (K3) that the concatenation belongs also to R1.
Finally, if

ϕn(0)→ ϕ0

with ϕn(0) ∈ Ξ∗1 and ϕn(·) ∈ R1, then ϕ0 ∈ Ξ∗1 (as Ξ∗1 is closed) and by (K4)

passing to a subsequence

ϕn(tn)→ ϕ(t), for tn → t ≥ 0,

where ϕ ∈ R. Again, the closedness of Ξ∗1 implies that ϕ ∈ R1. Hence, (K4) also
holds.

We can define then the multivalued semiflow G1 : R+ × Ξ∗1 → P (Ξ∗1) :

G1(t, x) = {y ∈ Ξ∗1 : y = ϕ(t) for some ϕ ∈ R1, ϕ(0) = x},

which is strict by (K3). This definition is equivalent to the following one:

G1(t, x) = G(t, x) ∩ Ξ∗1 for x ∈ Ξ∗1.

Indeed, G1(t, x) ⊂ G1(t, x) is obvious. Conversely, let y ∈ G1(t, x). Then, y =

ϕ(t), ϕ(·) ∈ R, and y ∈ Ξ∗1. We state that

ϕ(s) ∈ Ξ∗1 for all 0 ≤ s ≤ t.

Assume by contradiction that ϕ(s) 6∈ Ξ∗1 for 0 < s < t. Therefore, ω(ϕ(s)) ⊂ Ξ1.
But then by (K3),

G(T, y) ⊂ G(T,G(t− s, ϕ(s))) ⊂ G(T + t− s, ϕ(s))→ Ξ1 as T →∞,

which is a contradiction with y ∈ Ξ∗1. Using again (K3) one can define a function
ψ(·) ∈ R1 such that ψ(0) = y, so that y ∈ G1(t, x).

It is clear that G1 possesses a global compact attractor, which is the union of
all bounded complete trajectories of R1, and that G1 is dynamically gradient with
respect to {Ξ2, . . . ,Ξn}. Then, again by Lemma 1.8 we can reorder the sets in
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such a way that Ξ2 is a local attractor in Ξ∗1. Let Ξ∗2,1 be the repeller of Ξ2 in Ξ∗1.
Then we restrict as before the dynamics to the set Ξ∗2,1 and so on. Hence, we have
reordered the sets Ξj in such a way that Ξ1 is a local attractor and Ξj is a local
attractor for the dynamics restricted to the repeller of the previous local attractor

Ξ∗j−1,j−2 for j ≥ 2,

and
Ξi ⊂ Ξ∗j−1,j−2 if i ≥ j,

where Ξ∗1,0 = Ξ∗1.

Now, if γ(·) is a bounded complete trajectory such that

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj,

then we shall prove that i ≤ j. Moreover, if γ(·) is not completely contained in
some Ξk, then i < j.

If i = 1, then it is clear that j ≥ 1. Also, if there exists γ(t0) 6∈ Ξ1, then j > 1, as
Ξ1 is a local attractor.
Let i = 2. Then

γ(t) ∈ Ξ∗1 for all t ∈ R,

and then
γ(t) →

t→−∞
Ξ1

is forbidden. Hence, j ≥ 2.
Again, if there exists γ(t0) 6∈ Ξ2, then the fact that Ξ2 is a local attractor in Ξ∗1

implies that j > 2.

Further, note that if i ≥ 3, then γ(t) ∈ Ξ∗1 for all t ∈ R. Also, by induction, it
follows that γ(t) ∈ Ξ∗k,k−1 for all t ∈ R and 2 ≤ k ≤ i− 1. Indeed, let

γ(t) ∈ Ξ∗k−1,k−2 for all t ∈ R

with 2 ≤ k ≤ i− 1.
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Then
γ(t) →

t→∞
Ξi

implies clearly that
γ(t) ∈ Ξ∗k,k−1 for all t ∈ R.

In particular,
γ(t) ∈ Ξ∗i−1,i−2 for all t ∈ R.

Hence, Ξj ∈ Ξ∗i−1,i−2, so that j ≥ i. Finally, if there exists γ(t0) 6∈ Ξi, then j > i

as Ξi is a local attractor in Ξ∗i−1,i−2.

To finish this section, it is worth noting that under conditions (K1)-(K3),(K4),
Theorem 1.9 implies that the family S generates a Morse decomposition if and only
if G is dynamically gradient in view of Remark 0.22.

1.3. Application to a reaction-diffusion equation

In this section we will consider a Chafee-Infante problem where the reaction
term is continuous but only differentiable in the origin. In fact, we have replaced
the condition of being twice derivable by conditions of convexity and concavity
type. This had never been considered in the literature until now.

In order to see how the previous theory is applyied, a study of the fixed points
of this problem is needed. Later on, a family of Chafee-Infante problems depending
on a parameter will be considered. We will check that they fulfill the hypotheses
of Theorem 1.1. By this way, we will have seen that a dynamically gradient
multivalued semiflow generated by the solutions of this Chafee-Infante problem is
stable under perturbations.
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We will consider the following Chafee-Infante problem


∂u

∂t
− ∂2u

∂x2
= f(u), t > 0, x ∈ (0, 1) ,

u(t, 0) = 0, u(t, 1) = 0,

u(0, x) = u0(x),

(1.3.1)

where f satisfies

(A1) f ∈ C(R);

(A2) f(0) = 0;

(A3) f ′ (0) > 0 exists and is finite;

(A4) f is strictly concave if u > 0 and strictly convex if u < 0;

(A5) Growth condition:
|f(u)| ≤ C1 + C2|u|p−1,

where p ≥ 2, C1, C2 > 0;

(A6) Dissipation condition:

a) If p > 2:
f(u)u ≤ C3 − C4|u|p, C3, C4 > 0.

b) If p = 2:

lim sup
u→±∞

f(u)

u
≤ 0.

Remark 1.10. Note that as a consequence of condition (A6)(b), we have that
f(u)u ≤ (λ1 − C5)u2 + C6, where C5, C6 > 0 and λ1 = π2 is the first eigenvalue of
the operator −∂2u

∂x2
with Dirichlet boundary conditions.

Depending on the regularity, we can have different types of solutions.
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Definition 1.11. The function u(·) ∈ C([0, T ], L2(Ω)) is called a strong solution
of (1.3.1) on [0, T ] if:

1. u(0) = u0;

2. u(·) is absolutely continuous on compact subsets of (0, T );

3. u(t) ∈ H2(Ω) ∩H1
0 (Ω), f(u(t)) ∈ L2(Ω) for a.e. t ∈ (0, T ) and

du(t)

dt
−∆u = f(u(t)), a.e. t ∈ (0, T );

where the equality is understood in the sense of the space L2(Ω).

Definition 1.12. The function u(·) ∈ C([0, T ], L2(Ω)) is called a weak solution of
(1.3.1) on [0, T ] if:

1. u ∈ L∞(0, T ;L2(Ω));

2. u ∈ L2(0, T ;H1
0 (Ω)) ∩ Lp(0, T ;Lp(Ω));

3. The equality in (1.3.1) is understood in the weak sense, i.e.

d

dt
(u(t), v)− 〈∆u, v〉 = (f(u(t)), v), ∀v ∈ H1

0 (Ω) ∩ Lp(Ω),

where the equality is understood in the sense of distributions.

Let us make some comments on the natural relation among the above two def-
initions. Let u(·) be a strong solution such that f(u(·)) ∈ L2(0, T ;L2(Ω)). In view
of [7, Proposition 2.2] we have that u ∈ L2(0, T ;H1

0 (Ω)), so ∆u ∈ L2(0, T ;H−1(Ω))

and then du
dt
∈ L2(0, T ;H−1(Ω)). Hence, by [75, Lemma 7.4] we get

〈du
dt
, v〉 − 〈∆u, v〉 = (f(u(t)), v), ∀v ∈ H1

0 (Ω).

Using [79, p.250] we obtain

d

dt
(u, v)− 〈∆u, v〉 = (f(u(t)), v), ∀v ∈ H1

0 (Ω),
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so point 3 of Definition 1.12 is satisfied.

Finally, if p > 2 by condition (A6)(a) we have

|u(t, x)|p ≤ C3

C4

− f(u(t, x))u(t, x)

C4

Thus, f(u)u ∈ L1((0, T ) × Ω) implies that u ∈ Lp((0, T ) × Ω) = Lp(0, T ;Lp(Ω)).
Hence, u(·) is a weak solution as well.

In view of [34, p.283], for any u0 ∈ L2(Ω) there exists at least one weak solution.
Moreover, if f(u(·)) ∈ L2(0, T ;L2(Ω)), then putting g(·) = f(u(·)) we obtain
by [11, p.189] that the problem

dv

dt
−∆v = g(t),

v(0) = u0,

possesses a unique strong solution v(·). Since this problem has also a unique weak
solution ṽ(·) and the strong solution is a weak solution as well, then v(·) = ṽ(·) =

u(·). Hence u(·) is also a strong solution of problem (1.3.1).

Therefore, we have checked that the sets of weak and strong solutions satisfying
f(u(·)) ∈ L2(0, T ;L2(Ω)) coincide.

1.3.1. Stationary points

We now focus on the properties of the stationary points. To this end, we have
followed the classic procedure from [33], [54] and [55]. Moreover, we have also
taken some ideas from [67].

Let R ⊂ C([0,∞), L2(Ω)) be the set of all weak solutions of problem (1.3.1).
Properties (K1) − (K4) are satisfied (cf. [57]), so that a multivalued semiflow is
defined (see Section 0). It is shown in [57, Lemma 12] that v is a fixed point of R
(equivalently, of G) if and only if v ∈ H1

0 (Ω) and

∂2v

∂x2
+ f(v) = 0, in H−1(Ω). (1.3.2)



27 1.3. Application to a reaction-diffusion equation

The inclusion H1
0 (Ω) ⊂ L∞(Ω) implies that f(v) ∈ L∞(Ω), so that v ∈ H2(Ω)∩

H1
0 (Ω). Therefore, v(·) is a strong solution as well.

Let consider the function F : R→ R defined by

F (s) =

∫ s

0

f(r)dr, s ∈ R.

We define
a− = inf{s < 0 : sgn f(x) = sgn x, ∀x; s < x < 0}

and
a+ = sup{s > 0 : sgn f(x) = sgn x, ∀x; 0 < x < s}.

If follows from conditions (A2) and (A3) of f that −∞ ≤ a− < 0 < a+ ≤ +∞.
Since f is positive on (0, a+) and negative on (a−, 0), we have that F is strictly
increasing on [0, a+), strictly decreasing on (a−, 0] and F (0) = 0.

We consider E+, E− ∈ [0,∞] defined by

E+ = lim
s→a+

F (s),

E− = lim
s→a−

F (s).

Then, F has the inverse functions U+ : [0, E+)→ [0, a+), U− : [0, E−)→ (a−, 0].

We also define the following functions with domains (0, E+) and (0, E−), re-
spectively, with values on [0,∞):

τ+(E) =

∫ U+(E)

0

(E − F (u))−1/2 du, 0 < E < E+,

τ−(E) =

∫ 0

U−(E)

(E − F (u))−1/2 du, 0 < E < E−.

Let us consider v0 ∈ R and a solution u of{
∂2u
∂x2

+ f(u) = 0,

u(0) = 0, u′(0) = v0.
(1.3.3)
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Note that the solution of the problem (1.3.3) is unique, since f is convex for
u < 0 and concave for u > 0, so it is Lipschitz on compact intervals (see [89, p.4]
or [52, p.8]).

If we define E = v2
0/2, then:

(u′(x))2

2
+ F (u(x)) = E.

On the other hand, the functions τ+, τ− evaluated in E = v2
0/2 give us

√
2 the

x-time necessary to go from the initial condition u(0) = 0, with initial velocity
v0,−v0 respectively, to the point where u′(T+(E)) = 0. Indeed, u(x) satisfies

(u′(x))2

2
+ F (u(x)) = E,

so
dx

du
=

1√
2

1√
E − F (u)

.

Since u′(T+(E)) = 0 for u = U+(E), then

√
2

∫ T+(E)

0

1 dx =

∫ U+(E)

0

1√
E − F (u)

du = τ+(E).

By symmetry with respect to the u axis, the x−time it takes for u(x) to go from
(U+(E), 0) to (0,−v0) is T+(E). Hence, if 2T+(E) = 1, that is, τ+(E) = 1√

2
, then

u(·) is a solution satisfying the boundary conditions u(0) = u(1) = 0. Applying a
similar reasoning for τ−(E), we obtain that u satisfies the boundary conditions if,
and only if, E satisfies for some k ∈ N only one of the following conditions

:

kτ+(E) + (k − 1)τ−(E) =
1√
2
, (1.3.4)

kτ−(E) + (k − 1)τ+(E) =
1√
2
, (1.3.5)

kτ+(E) + kτ−(E) =
1√
2
. (1.3.6)
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Remark 1.13. Note that if E satisfies (1.3.4) or (1.3.5) for a certain k, then u

has 2k zeros and if E satisfies (1.3.6), then u has 2k+ 1 zeros. Our goal is to solve
these equations for E as a function of f ′(0). To this end, we study the properties
of τ±.

In order to obtain solutions of the equations (1.3.4), (1.3.5) and (1.3.6) it is
necessary to make a change of variable for the functions τ±. Given E ∈ (0, E±),
we put

Ey2 = F (u), 0 ≤ y ≤ 1, 0 ≤ u ≤ U+(E)

and
Ey2 = F (u), −1 ≤ y ≤ 0, U−(E) ≤ u ≤ 0.

Hence, du = (2yE/f(u))dy and E −F (u) = E(1− y2). By this change, we obtain

τ+(E) = 2
√
E

∫ 1

0

(1− y2)−1/2 y

f(u)
dy, 0 < E < E+; u = U+(Ey2), 0 ≤ y ≤ 1;

τ−(E) = 2
√
E

∫ 0

−1

(1− y2)−1/2 y

f(u)
dy, 0 < E < E−;u = U−(Ey2),−1 ≤ y ≤ 0.

The next results show some properties of these functions.

Theorem 1.14. The functions τ± satisfy

lim
E→0+

τ±(E) =
π

(2f ′(0))1/2
.

Proof. Since f ′(0) > 0 and f(0) = 0, given ε ∈ (0, 1), there exists δ > 0 such that

f ′(0)(1− ε)u ≤ f(u) ≤ f ′(0)(1 + ε)u, 0 ≤ u ≤ δ.
1

f ′(0)(1 + ε)
≤ u

f(u)
≤ 1

f ′(0)(1− ε)
, 0 ≤ u ≤ δ.

(1.3.7)

Moreover, as U+(E) is continuous at 0, given δ > 0, there exists η > 0 such that
for 0 < E ≤ η, U+(E) ≤ δ. Now, if we integrate (3.5.5) between 0 and u we obtain



1.3. Application to a reaction-diffusion equation 30

the following inequality

f ′(0)

2
(1− ε)u2 ≤ F (u) ≤ f ′(0)

2
(1 + ε)u2, 0 ≤ u ≤ δ.

Using the change of variable Ey2 = F (u), we have

(
f ′(0)(1− ε)

2E

)1/2

u ≤ y ≤
(
f ′(0)(1 + ε)

2E

)1/2

u, for 0 < E ≤ η, 0 ≤ y ≤ 1.

Dividing the previous expression by f(u) and using (3.5.5) we obtain

(
1− ε

2Ef ′(0)(1 + ε)2

)1/2

≤ y

f(u)
≤
(

1 + ε

2Ef ′(0)(1− ε)2

)1/2

, for 0 < E ≤ η, 0 ≤ y ≤ 1.

Now if we multiply by 2
√
E(1− y2)−

1
2 and integrate from 0 to 1, we get

π

(
1− ε

2f ′(0)(1 + ε)2

)1/2

≤ τ+(E) ≤ π

(
1 + ε

2f ′(0)(1− ε)2

)1/2

, for 0 < E ≤ η.

Finally, taking ε→ 0, the theorem follows. The proof for τ− is analogous.

Theorem 1.15. The functions τ± are strictly increasing on their domains.

Proof. Let consider the expression of τ+ and 0 < E1 < E2 < E+. Then,

τ+(E2)− τ+(E1) =

∫ 1

0

2y√
1− y2

[ √
E2

f(U+(E2y2))
−

√
E1

f(U+(E1y2))

]
dy.

From [52, p.8] we have that the function f is differentiable almost everywhere
in R, so

α(E) =

√
E

f(U+(Ey2))

is differentiable as well. Hence,

α′(E) =
f 2(U+(Ey2))− 2y2Ef ′(U+(Ey2))

2
√
Ef 3(U+(Ey2))

.

Recall the change of variable F (u) = Ey2. Consider the numerator of α′, that is,
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β(u) = f 2(u)− 2F (u)f ′(u). Then we obtain

β(u) = 2

∫ u

0

f(s)(f ′(s)− f ′(u))ds, 0 < s < u.

Since f is strictly concave, if s < u, then f ′(s) > f ′(u) (cf. [89, p.5]). As a result,
β(u) > 0.

In order to finish the proof rigorously, we have to justify the previous calcula-
tions. Indeed, from [52, p.5], we have that the function f is absolutely continuous
and from [11, p.16], f ′ ∈ L1

loc. Therefore, α′ ∈ L1
loc and α′ > 0 a.e., which implies

that α(E) is strictly increasing and the proof is finished.

The claim for τ−(E) follows analogously.

Theorem 1.16. The functions τ± satisfy

lim
E→E±

τ±(E) =∞

Then, τ± : (0, E±)→
(

π

(2f ′(0))1/2
,∞
)
.

Proof. Case a+ < ∞. Then, we have f(a+) = 0 and ū(x) = a+ is a constant
solution to the problem ∂2u

∂x2
+ f(u) = 0. Let us consider E+ = F (a+) and the

solution u to this problem satisfying the conditions u(0) = 0, u′(0) = v0, E = 1
2
v2

0.

As a+ is a constant solution, by uniqueness τ+(E+) =∞. Therefore, given T > 0,
there exists δ > 0 such that if E > E+ − δ, then τ+(E) > T , which follows from
the continuity of u with respect to its initial conditions.

Case a+ = ∞. Note that if p > 2, then a+ < ∞. Therefore, p = 2. In this
case, f(u) > 0 for all u ∈ (0,∞). From condition (A5), there exist α, β > 0 such
that f(u) ≤ α + βu. For u > 0 we have

f(u)

u2
≤ α

u2
+
β

u
.

Hence, f(u)/u2 → 0, as u→∞.
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On the other hand, ∫ u

0

f(s)ds ≤
∫ u

0

(α + βs) ds.

Thus, we have F (u) ≤ αu+ βu2/2 and

0 ≤ F (u)

u3
≤ α

u2
+
β

2

1

u
.

Hence, F (u)/u3 → 0, as u→∞.

We claim that lim
u→0+

f(u)/u2 = ∞. Indeed, since f ′(0) exists, for any ε ∈
(0, f ′(0)), there exists δ > 0 such that

|f ′(0)− f(u)/u| < ε, for any |u| < δ.

Thus, dividing by u2, we obtain

u(f ′(0)− ε)
u2

<
f(u)

u2
<
u(ε+ f ′(0))

u2

and the result follows.

Since
f(u)/u2 → 0, as u→∞,

and
f(u)/u2 →∞, as u→ 0+,

for any ε > 0, there exists a first value u0 ∈ (0,∞) where f(u0)/u2
0 = ε. Hence,

f(u)

u2
> ε, 0 < u < u0.

From the above expression, we have∫ u

0

f(s)ds >

∫ u

0

εs2ds
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and
εu3/3 < F (u).

Then,
F (u)/u3 > ε/3, if 0 < u ≤ u0.

Since
F (u)/u3 → 0, as u→∞,

we deduce that there exists a first u > u0 such that F (u)/u3 = ε/3. Hence, we
have

F (u)

u3
>
ε

3
, 0 < u < u,

with F (u) =
ε

3
u3.

Now, computing τ+ in E = F (u), we have

τ+(E) =

∫ U+(E)

0

1√
E − F (u)

du =

∫ u

0

1√
ε
3
u3 − F (u)

du

≥
∫ u

0

1√
ε
3
u3 − ε

3
u3
du =

√
3√
ε

∫ u

0

1√
u3 − u3

du

=

√
3√
ε

∫ 1

0

u√
u3 − u3t3

dt =

√
3√
ε

u√
u3

∫ 1

0

(
1− t3

)− 1
2 dt

=

√
3√
ε

u√
u3

1

3

∫ 1

0

s
1
3
−1 (1− s)

1
2
−1 ds

=
1

u
1
2

1√
ε

√
3

3
B
(

1

2
,
1

3

)
.

Recall that εu3 = 3F (u). Then,

εu = 3
F (u)

u2 .
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Taking ε→ 0, by construction u→∞. Therefore, from condition (A6)(b) we have
that limu→∞ f(u)/u ≤ 0, so the last expression tends to 0 and τ+(E)→∞.

Theorem 1.17. Consider
λn = n2π2.

Then, for each n ≥ 1, there exist two continuous functions E±n : [λn,∞)→ [0, E±)

with the following properties:

1. For each integer k ≥ 1 and for f ′(0) ∈ [λ2k−1,∞) the only solution of the
equation (1.3.4) (resp. 1.3.5) is the value E+

2k−1(f ′(0)) (resp. E−2k−1(f ′(0)));

2. For each integer k ≥ 1 and for f ′(0) ∈ [λ2k,∞) the only solution of the
equation (1.3.6) is the value E−2k(f

′(0)) = E+
2k(f

′(0)) = E2k;

3. For each integer n ≥ 1, E±n (f ′(0)) = 0, if f ′(0) = λn.

Proof. Let be n ≥ 1. If n is odd, then n = 2k − 1 for k ≥ 1. First, we prove that
we can define the function

E±n : [λn,∞) −→ [0, E±)

by putting E±n (f ′(0)) = E, where E satisfies kτ±(E) + (k − 1)τ∓(E) = 1/
√

2.
Consider the function

hn± : (0, E±) −→ (nπ/
√

2f ′(0),∞),

defined by hn±(E) := kτ±(E) + (k− 1)τ∓(E). If f ′(0) > λn then, as h± is a strictly
increasing function, there exists a unique E±2k−1 ∈ (0, E±) such that hn±(E±2k−1) =

1/
√

2.
Since h± has inverse, E±2k−1 = (hn±)−1(1/

√
2) is the solution of the expressions

(1.3.4) and (1.3.5). Moreover, E±2k−1(λn) = 0 by construction.
Second, if n is even, then n = 2k for k ≥ 1. As before, we consider hn±(E) :=

kτ±(E) + kτ∓(E). Since it is an increasing function, for f ′(0) > λn, there exists
a unique E2k ∈ (0, E±) such that hn±(E2k) = 1/

√
2. Analogously, we obtain the

solution of the expression (1.3.6), E±2k = (hn±)−1(1/
√

2), and E±2k−1(λn) = 0.
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Theorem 1.18. For each n ≥ 0 and f ′(0) ∈ [λn,∞), the equation (1.3.2) has two
new more solutions v±n with the following properties:

1. a− < u±n (x) < a+ for all x ∈ [0, 1];

2. If f ′(0) = λn, then v±n = 0;

3. For f ′(0) ∈ (λn,∞), v±n has n + 1 zeros in [0, 1]. Denoting these zeros by
x±q , q = 0, 1, . . . , n with 0 = x±0 < x±1 < x±2 < . . . < x±n = 1, we have
(−1)qv+

n (x) > 0 for x+
q < x < x+

q+1, q = 0, 1, . . . , n − 1 and (−1)qv−n (x) < 0

for x−q < x < x−q+1, q = 0, 1, . . . , n− 1. Also, v+
n = −v−n , if f is odd;

Proof. The first point follows from F (u±n (x)) ≤ E < E±.

The second point follows from the third one of Theorem 1.17. Indeed, for each
n ≥ 1 and f ′(0) ∈ [λn,∞) we have the values E±n (f ′(0)) by the above theorem.
Also, we have a solution of the equation (1.3.2) which is denoted by v±n . If f ′(0) =

λn, then E±n (λn) = 0 and v0 = 0, so v±n = 0.

The third point follows by Remark 1.13. If f is odd, then −U−(E) = U+(E),
τ+(E) = τ−(E), so we have v+

n = −v−n .

Corollary 1.19. If n2π2 < f ′(0) ≤ (n+ 1)2π2, n ∈ N, then there are 2n+ 1 fixed
points: 0, v±1 , ..., v

±
n , where v

±
j possesses j + 1 zeros in [0, 1].

1.3.2. Approximations

Once we have establish the properties of the fixed points, as it has been men-
tioned at the beginning of the section, we shall consider the following family of
Chafee-Infante equations

∂u

∂t
− ∂2u

∂x2
= fε(u), t > 0, x ∈ (0, 1) ,

u(t, 0) = 0, u(t, 1) = 0,

u(0, x) = u0(x),

(1.3.8)

where ε ∈ (0, 1] is a small parameter and fε satisfies:
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(Ã1) fε ∈ C(R) and is non-decreasing;

(Ã2) fε(0) = 0;

(Ã3) f ′ε (0) > 0 exists, is finite, monotone in ε and f ′ε (0)→∞, as ε→ 0+;

(Ã4) fε is strictly concave if u > 0 and strictly convex if u < 0;

(Ã5) −1 < fε (s) < 1, for all s, and

|fε(s)−H0(s)| < ε, if |s| > ε, (1.3.9)

where

H0(u) =


−1, if u < 0,

[−1, 1] , if u = 0,

1, if u > 0,

is the Heaviside function.

Conditions (A1)-(A6) are satisfied with p = 2, so problem (1.3.8) is a particular
case of (1.3.1).

Our aim now is to prove that for ε sufficiently small the multivalued semiflow
Gε generated by the weak solutions of problem (1.3.8) is dynamically gradient.
Problem (1.3.8) is an approximation of the following problem, governed by a dif-
ferential inclusion 

∂u

∂t
− ∂2u

∂x2
∈ H0(u), on Ω× (0, T ),

u|∂Ω = 0,

u(0, x) = u0(x).

(1.3.10)

This problem is widely studied in [7], where properties of fixed points, connections
between them and structure of the attractor is obtained.
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Definition 1.20. We say that the function u ∈ C([0, T ], L2(Ω)) is a strong solution
of (1.3.10) if

1. u(0) = u0;

2. u(·) is absolutely continuous on (0, T ) and u(t) ∈ H2(Ω) ∩ H1
0 (Ω) for a.e.

t ∈ (0, T );

3. There exists a function g(·) such that g(t) ∈ L2(Ω), a.e. on (0, T ), g(t, x) ∈
H0(u(t, x)), for a.e. (t, x) ∈ (0, T )× Ω, and

du

dt
− ∂2u

∂x2
− g(t) = 0, a.e. t ∈ (0, T ).

In this case we put R as the set of all strong solutions such that the map g

belongs to L2(0, T ;L2(Ω)). Conditions (K1)-(K4) are satisfied (cf. [44]) and the
map

G : R+ × L2(Ω)→ P (L2(Ω))

defined by (3.3.1) is a strict multivalued semiflow possessing a global compact
attractor A0 (cf. [83]) in L2(Ω), which is connected (cf. [84]). The structure of this
attractor is studied in [7]. It is shown that there exists an infinite (but countable)
number of fixed points

v0 = 0, v+
1 , v

−
1 , . . . , v

+
n , v

−
n , . . . ,

and that A0 consists of these fixed points and all bounded complete trajectories
ψ(·), which always connect two fixed points, that is,

ψ(t)→ z1 as t→∞,
ψ(t)→ z2 as t→ −∞,

(1.3.11)

where zi = 0, zi = v+
n or zi = v−n for some n ≥ 1. Moreover, if ψ is not a fixed

point, then either z2 = 0 and z1 = v±n , for some n ≥ 1, or z2 = v±k , z1 = v±n with
k > n.
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We fix some N0 ∈ N. Denote

ZN0 =
(
∪k≥N0{v±k }

)
∪ {v0}

and define the sets
Ξ0
k = {v+

k , v
−
k }, 1 ≤ k ≤ N0 − 1,

Ξ0
N0

=

{
y : ∃ψ ∈ K such that (1.3.11) holds with zj ∈ ZN0 ,

j = 1, 2 and y = ψ(t) for some t ∈ R

}
,

where as before K stands for the set of all bounded complete trajectories. We note
that set Ξ0

N0
contains the fixed points in ZN0 and all bounded complete trajectories

connecting them.

Remark 1.21. It is known [44] that the familyM = {Ξ0
1, . . . ,Ξ

0
N0
} is a disjoint

family of isolated weakly invariant sets and that G0 is dynamically gradient with
respect toM in the sense of Remark 1.3. Hence, G0 is dynamically gradient with
respect toM in the sense of Definition 0.19.

Now our purpose is to adapt some lemmas from [7, p.2979] to problem (1.3.8).
In view of Theorems 1.17 and 1.18 and the third condition on fε, there exists a
sequence εk → 0, as k → ∞, such that for every ε ∈ (εk, εk+1] and any k ≥ 1

problem (1.3.8) has exactly 2k + 1 fixed points {vε0 = 0, {v+
ε,j}kj=1} such that for

each 1 ≤ n ≤ k v±ε,n has n+ 1 zeros in [0, 1].
Let us consider a sequence {εm} converging to zero.

Lemma 1.22. Let n ∈ N be fixed. Then, v+
εm,n (resp. v−εm,n) do not converge to 0

in H1
0 (0, 1) as εm → 0.

Proof. Suppose that
v+
εm,n → 0 in H1

0 (0, 1).

Then
v+
εm,n → 0 in C([0, 1]).

By Remark 1.13, v+
εm,n has a unique maximum in a ∈ (0, x+

1 ) and by the properties
of τ+ described before a =

x+1
2
. We may assume that x+

1 does not converge to 0.
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Let x0(εm) be the first point where v+
εm,n(x0) = εm or x0 = a if such a point does

not exist. We claim that x0(εm)→ 0, as εm → 0. It is clear that

∂2v+
εm,n/∂x

2 = −fεm(v+
εm,n) < 0 in (0, x+

1 ),

and then

v+
εm,n(x0)

x0

x ≤ v+
εm,n(x) ≤ εm, ∀x ∈ [0, x0], (1.3.12)

by concavity. Hence, integrating first on (s, a) and then on (0, x) with x ≤ x0, we
have

d

dx
v+
εm,n(s) =

∫ a

s

fεm(v+
εm,n(τ))dτ, (1.3.13)

v+
εm,n(x) =

∫ x

0

∫ a

x0

fεm(v+
εm,n(τ))dτds+

∫ x

0

∫ x0

s

fεm(v+
εm,n(τ))dτds.

Since fε(u) is concave, we have that fε(u)/u ≥ fε(ε)/ε, for all 0 < u ≤ ε.

Moreover, by assumption (Ã5) of fε we get fε(u) ≥ 1−ε
ε
u, for all 0 < u ≤ ε. Hence,

using (1.3.12) we have

v+
εm,n(x) ≥

∫ x

0

∫ x0

s

1− εm
εm

v+
εm,n(τ)dτds ≥ 1− εm

εm

v+
εm,n(x0)

x0

∫ x

0

∫ x0

s

τdτds.

Thus,

1 ≥ 1− εm
εm

(
xx0

2
− x3

6x0

)
,

so it follows that x0 → 0, as εm → 0.

Let δ1 < 0 < δ2 be such that x0(εm) ≤ δ1 < δ2 ≤ a(εm). Since v+
εm,n(x) ≥

εm ∀x ∈ [x0, a], if we intregate (1.3.13) over (δ1, x) with δ1 < x ≤ δ2, we have

v+
εm,n(x)− v+

εm,n(δ1) =

∫ x

δ1

∫ a

s

f(v+
εm,n(τ))dτds ≥ (1− εm)

∫ x

δ1

∫ a

s

dτds,

which implies a contradiction if v+
εm,n → 0 in C([0, 1]).

The proof is similar for v−εm,n.
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Lemma 1.23. v+
εm,k

(resp. v−εm,k) converges to v
+
k (resp. v−k ) in H

1
0 (Ω) as m→∞

for any k ≥ 1.

Proof. It is easy to see that v+
εmk

is bounded in H2(Ω) ∩ H1
0 (Ω), so v+

εmk
→ v

strongly in H1
0 (Ω) and C1([0, 1]) up to a subsequence. The proof will be finished

if we prove that v = v+
k . We observe that since in such a case every subsequence

would have the same limit, the whole sequence would converge to v+
k

It is clear that the functions gεm = fεn(v+
εmk

) are bounded in L∞(0, 1).

Passing to a subsequence we can then assume that gεn converges to some g
weakly in L2(0, 1). It is clear that −(∂2v/∂x2) = g and v is a fixed point if we
prove the inclusion

g(x) ∈ H0(v(x)) for a.e. x ∈ (0, 1).

By Masur’s theorem [92, p.120] there exist zm ∈ Vm = conv(∪∞k≥mgεk) such
that zm → g, as m → ∞, strongly in L2(0, 1). Taking a subsequence we have
zm(x) → g(x), a.e. in (0, 1). Since zm ∈ Vm, we get zm =

∑Nm
i=1 λigεki , where

λi ∈ [0, 1],
∑Nm

i=1 λi = 1 and ki ≥ m, for all i.

Now (1.3.9) implies that |gεk(x) − H0(v(x))| → 0, as k → ∞, for a.e. x.

Indeed, if v(x) = 0, then gεk(x) ∈ [−1, 1] = H0(v(x)). If v(x) > 0, then |gεk(x) −
H0(v(x))| = |fεk(vεk(x)) − 1| → 0, as k → ∞. If v(x) < 0, we apply a similar
argument.

Thus, for any δ > 0 and a.e. x there exists m(x, δ) such that gεk(x) ⊂ [a(x)−
δ, b(x) + δ], for all k ≥ m, where [a(x), b(x)] = H0(v(x)). Hence, zm(x) ⊂ [a(x) −
δ, b(x) + δ], as well. Passing to the limit we obtain g(x) ∈ [a(x), b(x)], a.e. on
(0, 1).

To conclude the proof, we have to prove that v = v+
k . By Lemma 3.38 v 6= 0.

Hence, as v+
εmk

(x) > 0 for all x ∈ (0, x+
1 (εm)), v = v+

n for some n ∈ N. Since v+
n

has n + 1 zeros, the convergence v+
εmk
→ v+

n implies that v+
εmk

has n + 1 zeros for
m ≥ N . But v+

εmk
possesses k + 1 zeros. Thus, k = n.

For the sequence v−εmk the proof is analogous.
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Lemma 1.24. Let εm → 0, km → ∞ as m → ∞. Then v+
εm,km

(resp. v−εm,km)
converges to 0 as m→∞.

Proof. In the same way as in the proof of Lemma 1.23 we obtain that up to
a subsequence v+

εm,km
→ v in H1

0 (Ω) and C1([0, 1]), where v is a fixed point of
problem (1.3.10). We will prove that v = 0 by contradiction. If not, then v = v±n

for some n ∈ N. However, since v±n has exactly n + 1 zeros and v+
εm,km

→ v in
C1([0, 1]), we have that v+

εm,km
has n+ 1 zeros for any m ≥M with M big enough.

This contradicts the fact that v+
εm,km

possesses km + 1 zeros and km →∞. As the
limit is 0 for every converging subsequence, the whole sequence converges to 0.

For the sequence v−εmk the proof is analogous.

Once we have described the preliminary properties, we are now ready to check
that (1.3.8) satisfies the conditions given in Theorem 1.1 for certain familiesMε.
We recall that [86, Theorem 10] guarantees the existence of the global compact
invariant attractors Aε, where each Aε is the union of all bounded complete tra-
jectories.

Let us check assumptions (H1)-(H5) of Theorem 1.1.

As we have seen before, condition (H2) follows from Remark 1.21. Therefore,
we prove now condition (H1).

Multiplying the equation in (1.3.8) by u, we obtain

1

2

d

dt
‖u‖2

L2 + ‖u‖2
H1

0
≤
∫

Ω

|u|dx ≤ 1

2
‖u‖2

H1
0

+ C, (1.3.14)

where we have used Poincaré’s inequality. Denoting λ1 the first eigenvalue of the
operator −∆ in H1

0 (Ω), we have

d

dt
‖u‖2

L2 ≤ −λ1‖u‖2
L2 +K.

Gronwall’s lemma gives

‖u(t)‖2
L2 ≤ e−λ1t‖u(0)‖2

L2 +
K

λ1

, t ≥ 0. (1.3.15)
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Integrating (1.3.14) over (t, t+ r) with r > 0 we have

‖u(t+ r)‖2
L2 +

∫ t+r

t

‖u‖2
H1

0
ds ≤ ‖u(t)‖2

L2 + rK

Then by (1.3.15),∫ t+r

t

‖u‖2
H1

0
ds ≤ ‖u(0)‖2

L2e−λ1t +

(
1

λ1

+ r

)
K. (1.3.16)

On the other hand, multiplying (1.3.8) by −∆u and using Young’s inequality
we obtain

d

dt
‖u‖2

H1
0

+ 2‖∆u‖2
L2 ≤ ‖fε(u)‖2

L2 + ‖∆u‖2
L2 (1.3.17)

Since fε(u(·)) ∈ L2(0, T ;L2(Ω)), ∀T > 0, we obtain by [11, p.189] that

u ∈ L∞(η, T ;H1
0 (Ω)),

du

dt
∈ L2(η, T ;L2(Ω)), ∀ 0 < η < T.

This regularity guarantees that the equality

1

2

d

dt
‖u‖2

H1
0

= 〈du
dt
,−∆u〉, for a.e. t, (1.3.18)

is correct [77, p.102]. Then

d

dt
‖u‖2

H1
0
≤ K + ‖u‖2

H1
0
.

We apply the uniform Gronwall lemma [79, p. 91] with y(s) = ‖u(s)‖2
H1

0
,

g(s) = 1 and w(s) = K. Also, using (1.3.16) we obtain

‖u(t+ r)‖2
H1

0
≤

(
‖u(0)‖2

L2e−λ1t + ( 1
λ1

+ r)K

r
+Kr

)
er (1.3.19)

It follows from (1.3.15) that ‖y‖L2 ≤ K
λ1

for any y ∈ Aε, 0 < ε ≤ 1. Hence,
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∪0<ε≤1Aε is bounded in L2(Ω). Since Aε ⊂ Gε(t,Aε) for any t ≥ 0, for any y ∈ Aε
there exists z ∈ Aε such that y ∈ Gε(1, z). Then using (1.3.19) with r = 1 and
t = 0 we obtain that

‖y‖2
H1

0
≤
(
‖z‖2

L2 +

(
1

λ1

+ 1

)
K +K

)
e,

so ∪0<ε≤1Aε is bounded in H1
0 (Ω). The compact embedding H1

0 (Ω) ⊂ L2(Ω)

implies that ∪0<ε≤1Aε is relatively compact in L2(Ω). As the global attractor A0

of the differential inclusion (1.3.10) is compact, the set ∪0≤ε≤1Aε is compact in
L2(Ω).

In order to establish that (1.3.8) satisfies the rest of conditions given in Theorem
1.1, we need to proof two previous results related to the convergence of solutions
of the approximations and the connections between fixed points.

Theorem 1.25. If uεn0 → u0 in L2(Ω) as εn → 0, then for any sequence of solu-
tions of (1.3.8) uεn(·) with uεn(0) = uεn0 there exists a subsequence of εn such that
uεn converges to some strong solution u of (1.3.10) in the space C([0, T ], L2(Ω)),
for any T > 0.

Proof. We define gn(t) = fεn(uεn(t)) and un(t) = uεn(t). From (1.3.15) we have
that ‖un(t)‖L2 ≤ C0, for all t ≥ 0, so that ‖gn(t)‖L2 ≤ C1, for a.e. t ≥ 0. Hence,
there exists a subsequence such that un → u weakly in L2(0, T ;L2(Ω)). It follows
from (1.3.17) and ‖gn(t)‖L2 ≤ C1 that∫ T

r

‖∆u‖2
L2ds ≤ C2

1(T − r) + ‖un(r)‖2
H1

0
.

Using (1.3.19) we obtain that∫ T

r

‖∆un‖2
L2ds ≤ C(r).

Hence, dun
dt

is bounded in L2(r, T ;L2(Ω)) for any 0 < r < T, so passing to a
subsequence dun

dt
→ du

dt
weakly in L2(r, T ;L2(Ω)).
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Moreover, Ascoli-Arzelà theorem implies that for any fixed r > 0 we have
un → u in C([r, T ], L2(Ω)) and u is absolutely continuous on [r, T ].

Also, gn converges to some g ∈ L∞(0, T ;L2(Ω)) weakly star in L∞(0, T ;L2(Ω))

and weakly in L2(0, T ;L2(Ω)). On the other hand, since −∆un = −dun
dt

+gn, −∆un

converges to l(t) = −(du
dt

) + g weakly in L2(r, T ;L2(Ω)).

Hence, we find at once that u satisfies

du

dt
−∆u(t) = g(t), a.e. on (0, T ).

We need to prove that u(·) is a strong solution of (1.3.10). Now, we show that
g(t) ∈ H0(u(t)), a.e. in (0, T ). For this, we shall prove first that for a.e. x ∈ Ω and
s ∈ (0, T )

|gn(s, x)−H0(u(s, x))| → 0, as n→∞.

Indeed, if u(s, x) = 0, then

gn(s, x) = fεn(un(s, x)) ∈ [−1, 1] = H0(u(s, x)), for all n,

so that the result is evident. If u(s, x) < 0, then

|gn(s, x)−H0(u(s, x))| = |fεn(un(s, x)) + 1| → 0, as n→∞.

Finally, if u(s, x) > 0, then

|gn(s, x)− f0(u(s, x))| = |fεn(un(s, x))− 1| → 0, as n→∞.

Now, by [81, Proposition 1.1] we have that for a.e. t ∈ (0, T )

g(t) ∈
⋂
n≥0

co
⋃
k≥n

gk(t).
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Then g(t) = lim
n→∞

yn(t) strongly in L2(Ω), where

yn(t) =
M∑
i=1

λigki(t),
M∑
i=1

λi = 1, ki ≥ n.

We note that for any t ∈ [0, T ] and a.e. x ∈ Ω we can find n(ε, x, t) such that if
k ≥ n, then |gk(t, x)−H0(u(t, x))| ≤ ε. Therefore,

|yn(t, x)−H0(u(t, x))| ≤
M∑
i=1

λi|gki(t, x)−H0(u(t, x))| ≤ ε.

Hence, since we can assume that

yn(t, x)→ g(t, x), for a.e. (t, x) ∈ (0, T )× Ω,

it follows that g(t, x) ∈ H0(u(t, x)).

It remains to check that u is continuous as t→ 0+. Let û be the unique solution
of 

du

dt
−∆u = 0,

u|∂Ω = 0,

u(0) = u0,

and let vn(t) = un(t)− û(t).

Multiplying by vn the equation

dvn
dt
−∆vn = fεn(un),

we obtain

1

2

d

dt
‖vn‖2

L2 + ‖vn‖2
H1

0
≤ (fεn(un(t)), vn) ≤ 1

2
‖fεn(un)‖2

L2 +
1

2
‖vn‖2

L2 ,

so that
‖vn(t)‖2

L2 ≤ ‖vn(0)‖2
L2 +Kt.



1.3. Application to a reaction-diffusion equation 46

Hence, ‖u(t)− û(t)‖2
L2 = limn→∞ ‖vn(t)‖2

L2 ≤ Kt, for t > 0, and

‖u(t)− u0‖L2 ≤ ‖u(t)− û(t)‖L2 + ‖û(t)− u0‖L2 < δ,

as soon as t < ε(δ). Therefore, u(·) is a strong solution.

Finally, if tn → 0, then

‖un(tn)− u0‖L2 ≤ ‖vn(tn)‖L2 + ‖û(tn)− u0‖L2

≤
√
‖vn(0)‖2

L2 +Ktn + ‖û(tn)− u0‖L2 → 0.

Hence, un → u in C([0, T ], L2(Ω)). By a diagonal argument we obtain that the
result is true for every T > 0.

As a consequence of the last theorem, condition (H4) follows.

Remark 1.26. Let be uεn(·) a bounded complete trajectory of (1.3.8). Fix T > 0.

Since
⋃

0<ε≤ε0 Aε is precompact in L2(Ω), uεn(−T )→ y in L2 up to a subsequence.
Theorem 1.25 implies that uεn converges in C([0, T ], L2(Ω)) to some solution u

of (1.3.10). If we choose successive subsequences for −2T,−3T, . . . , and apply
the standard diagonal procedure, we obtain that a subsequence uεn converges to
a complete trajectory u of (1.3.10) in C([−T, T ], L2(Ω)) for any T > 0. Since
∪0<ε≤1Aε is bounded in L2(Ω) (in fact in H1

0 (Ω)), it is clear that u is a bounded
complete trajectory of problem (1.3.10).

Now, we need to prove a previous lemma to obtain the convergence of solutions
of the approximations in the space C([0, T ], H1

0 ).

Lemma 1.27. Any sequence ξn ∈ Aεn with εn → 0 is relatively compact in H1
0 (Ω).

Proof. There exists a bounded complete trajectory ψεn of (1.3.8) with ψεn(0) = ξn.

Denote un(·) = ψεn(−T+·) and choose some T > 0. Then ξn = un(T ), un(0) =

ψεn(t0−T ). In view of Remark 1.26 up to a subsequence un → u in C([0, T ], L2(Ω)),
where u is a strong solution of (1.3.10). On top of that, by (1.3.19) and the
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argument in the proof of Theorem 1.25 we obtain that for r > 0,

un → u weakly star in L∞(r, T ;H1
0 (Ω)),

dun
dt
→ du

dt
weakly in L2(r, T ;L2(Ω)),

un → u weakly in L2(r, T ;H2(Ω)).

Therefore, by the Compactness Theorem [65, p.58] we have

un → u strongly in L2(r, T,H1
0 (Ω)),

un(t)→ u (t) in H1
0 (Ω) for a.a. t ∈ (r, T ).

In addition, by standard results [77, p.102] we have that un, u ∈ C([r, T ], H1
0 (Ω)).

Multiplying (1.3.8) by dun
dt

and using (1.3.18), we obtain

∥∥∥∥dundt
∥∥∥∥2

L2

+
d

dt
‖un‖2

H1
0
≤ ‖fε(un)‖2

L2 .

Thus,
‖un(t)‖2

H1
0
≤ ‖un(s)‖2

H1
0

+ C(t− s), C > 0, t ≥ s ≥ r.

The same inequality is valid for the limit function u(·). Hence, the functions

Jn(t) = ‖un(t)‖2
H1

0
− Ct

and
J(t) = ‖u(t)‖2

H1
0
− Ct,

are continuous and non-increasing in [r, T ].

Moreover, Jn(t) → J(t) for a.e. t ∈ (r, T ). Take r < tm < T such that tm → T

and Jn(tm)→ J(tm) for all m. Then

Jn(T )− J(T ) ≤ Jn(tm)− J(T ) ≤ |Jn(tm)− J(tm)|+ |J(tm)− J(T )|.

For any ε > 0 there existm(ε) andN(ε) such that Jn(T )−J(T ) ≤ ε if n ≥ N. Then
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lim sup Jn(T ) ≤ J(T ), so lim sup ‖un(T )‖2
H1

0
≤ ‖u(T )‖2

H1
0
. As un(T )→ u(T ) weakly

in H1
0 implies lim inf ‖un(T )‖2

H1
0
≥ ‖u(T )‖2

H1
0
, we obtain ‖un(T )‖2

H1
0
→ ‖u(T )‖2

H1
0
,

so that un(T )→ u(T ) strongly in H1
0 (Ω). Hence, the result follows.

Corollary 1.28. If uε0 → u0 in L2(Ω), where uε0 ∈ Aε, u0 ∈ A0, then for any
T > 0 there exists a subsequence εn such that uεn converges to some strong solution
u of (1.3.10) in C([0, T ], H1

0 (Ω)).

Proof. We know from Theorem 1.25 that there exists a subsequence such that
uεn converges to some strong solution u of (1.3.10) in C([0, T ], L2(Ω)). Then the
statement follows from the invariance of Aε and Lemma 1.27.

Remark 1.29. Let uεn(·) be a bounded complete trajectory of (1.3.8). Fix T > 0.
By Lemma 1.27 uεn(−T )→ y inH1

0 (Ω) up to a subsequence. Corollary 1.28 implies
then that uεn converges in C([0, T ], H1

0 (Ω)) to some solution u of (1.3.10). If we
choose successive subsequences for −2T,−3T . . . and apply the standard diagonal
procedure we obtain that a subsequence uεn converges to a complete trajectory u
of (1.3.10) in C([−T, T ], H1

0 (Ω)) for any T > 0. By Remark 1.26 this trajectory is
bounded.

Lemma 1.30. distH1
0
(Aε,A0)→ 0, as ε→ 0.

Proof. By contradiction let there exist δ > 0 and a sequence yεn ∈ Aεn such that

distH1
0
(yεn ,A0) > δ.

Hence, as yεn = uεn(0), where uεn is a bounded complete trajectory of problem
(1.3.8), using Remark 1.29 we obtain that up to a sequence, for every T > 0, uεn
converges to a bounded complete trajectory u of the problem (1.3.10) in the spaces
C([−T, T ], H1

0 (Ω)). Thus, u(t) ∈ A0 for any t ∈ R. We infer then that

yεn = uεn(0)→ u(0) ∈ A0,

which is a contradiction.
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We choose some δ > 0 such that

Oδ(Ξ0
i ) ∩ Oδ(Ξ0

j) = ∅ if i 6= j

and Ξ0
i are maximal weakly invariant.

For problem (1.3.8) let us define the sets

M ε
i = {v+

ε,i, v
−
ε,i} for 1 ≤ i < N0,

Zε
N0

=
(
∪k≥N0{v±ε,k}

)
∪{0},

M ε
N0

=

{
y : ∃ψ ∈ Kε such that (1.3.11) holds with zj ∈ Zε

N0
,

j = 1, 2 and y = ψ(t) for some t ∈ R

}
where Kε is the set of all bounded complete trajectories of (1.3.8).

In view of Lemma 1.23 we have

distH1
0
(M ε

i ,Ξ
0
i )→ 0, as ε→ 0, 1 ≤ i < N0

Lemma 1.31. distH1
0
(M ε

N0
,Ξ0

N0
)→ 0, as ε→ 0.

Proof. Suppose the opposite, that is, there exists δ > 0 and a sequence yεk ∈M
εk
0

such that

distH1
0
(yεk ,Ξ

0
N0

) > δ for all k. (1.3.20)

Let ξεk be a sequence of bounded complete trajectories of problem (1.3.8) such
that ξεk(0) = yεk and

ξεk(t)→ zk−1 as t→ −∞,

ξεk(t)→ zk0 as t→∞,

where zk−1, z
k
0 ∈ Z

εk
N0
. By Lemmas 1.23 and 1.24, passing to a subsequence we have

that
zki → zi ∈ ZN0 , i = −1, 0.
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By Remark 1.29 we obtain that up to a subsequence ξεk converges to a complete
trajectory ψ0 of problem (1.3.10) in the spaces C([−T, T ], H1

0 (Ω)) for every T > 0,
so yεk → ψ0(0) in H1

0 (Ω). Thus, either ψ0 is equal to a fixed point z0 6= 0 or there
exist two fixed points of problem (1.3.10), denoted by z−1, z0 such that

E(z−1) > E(z0),

ψ0(t)→ z−1 as t→ −∞,

ψ0(t)→ z0 as t→∞.

If z0 = z0, then z−1, z0 ∈ ZN0 , which means that ψ0(0) ∈ Ξ0
N0
. This would

imply a contradiction with (1.3.20). Therefore, we assume that z0 6= z0. Also, it is
clear that z0 = v±m 6= 0, for some m ∈ N.

Let r0 > 0 be such that Or0(z0) ∩ Or0(z0) 6= ∅ and O2r0(z0) does not contain
any other fixed point of problem (1.3.10). The previous convergences imply that
for each r ≤ r0 there exist a moment of time tr and kr such that ξεk(tr) ∈ Or(z0)

for all k ≥ kr. On the other hand, since ξεk(t)→ zk0 , as t→∞, and zk0 → z0, there
exists t′r > tr such that

ξεkr (t) ∈ Or0(z0) for all t ∈ [tr, t
′
r),

‖ξεkr (t
′
r)− z0‖L2 = r0.

Let us consider two cases:

1. t′r − tr →∞,

2. |t′r − tr| ≤ C.

We begin with the first case. We define the sequence of bounded complete
trajectories of problem (1.3.8) given by

ξ1
kr(t) = ξεkr (t+ t′r).

By Remark 1.29 we can extract a subsequence of this sequence converging to a
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bounded complete trajectory ψ1 of problem (1.3.10). Since t′r− tr →∞, we obtain
that ψ1(t) ∈ Or0(z0) for all t ≤ 0. Since O2r0(z0) does not contain any other fixed
point of problem (1.3.10), it follows that

ψ1(t)→ z0, as t→ −∞.

But ‖ψ1(0) − z0‖L2 = r0, so ψ1 is not a fixed point. Therefore, ψ1(t) → z1 as
t→∞, where z1 is a fixed point such that E(z1) < E(z0).

In the second case we define the sequence

ξ1
kr(t) = ξεkr (t+ tr).

Passing to a subsequence we have that

ξ1
kr(0)→ z0,

t′r − tr → t′.

As ξ1
kr

converges to a solution ξ1 of problem (1.3.10) uniformly in bounded subsets
from [0,∞) such that ξ1(0) = z0, ξ1

kr
(t′r − tr)→ ξ1(t′), so that

‖ξ1(t′)− z0‖L2 = r0.

We put

ψ1(t) =

{
z0 if t ≤ 0,

ξ1(t) if t ≥ 0.

Then ψ1 is a bounded complete trajectory of problem (1.3.10) such that ψ1(t)→ z1

as t→∞, where z1 is a fixed point satisfying E(z1) < E(z0).

Now, if z1 = z0, then we have the chain of connections

ψ0(t)→ z−1 as t→ −∞, ψ0(t)→ z0 as t→ +∞,

ψ1(t)→ z0 as t→ −∞, ψ1(t)→ z1 as t→ +∞,
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which implies that z−1, z0, z1 ∈ Zn, an then ψ0(0) ∈ Ξ0
n. This would imply a

contradiction with (1.3.20).

However, if z1 6= z0, then we proceed in the same way and obtain a new
connection from the point z1 to another fixed point with less energy. Since the
number of fixed points with energy less than or equal to E(z0) is finite, we will
finally obtain a chain of connections of the form

ψ0(t)→ z−1 as t→ −∞, ψ0(t)→ z0 as t→ +∞,

ψ1(t)→ z0 as t→ −∞, ψ1(t)→ z1 as t→ +∞,
...

ψn(t)→ zm−1 as t→ −∞, ψn(t)→ zm = z0 as t→ +∞.

And again, this implies a contradiction with (1.3.20).

These convergences imply the existence of ε0 such that if ε ≤ ε0, then

M ε
i ⊂ Oδ(Ξ0

i ) for any 1 ≤ i ≤ N0.

Further, let

Ξε
i =

{
y : ∃ψ ∈ Kε such that ψ(0) = y

and ψ(t) ∈ Oδ(Ξ0
i ) for all t ∈ R

}
.

These sets are clearly maximal weakly invariant for Gε in Oδ(Ξ0
i ), so condition

(H5) is satisfied for Vi = Oδ(Ξ0
i ). As a consequence of Lemmas 1.23, 1.31, Remark

1.26 and the definition of δ we have

distL2(Ξε
i ,Ξ

0
i )→ 0, as ε→ 0, for 1 ≤ i ≤ N0.

Therefore, condition (H3) is satisfied.

We also get by Remark 1.29 and the definition of δ that

distH1
0
(Ξε

i ,Ξ
0
i )→ 0, as ε→ 0, for 1 ≤ i ≤ N0.
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Moreover,Mε = {Ξε
1, . . . ,Ξ

ε
N0
} is a disjoint family of isolated weakly invariant

sets.
Applying Theorem 1.1 we obtain the following result.

Theorem 1.32. There exists ε1 > 0 such that for all 0 < ε ≤ ε1 the multivalued
semiflow Gε is dynamically gradient with respect to the familyMε.





Chapter 2

Existence and characterization of

attractors for a nonlocal

reaction-diffusion equation with an

energy functional

Once robustness of multivalued semiflows is analyzed, we focus now on nonlocal
reaction-diffusion equation in which the diffusion depends on the gradient of the
solution.

Firstly, we prove the existence and uniqueness of regular and strong solutions.
Thereupon, we obtain the existence of global attractors in both situations under
rather weak assumptions by defining a multivalued semiflow.

Secondly, we characterize the attractor either as the unstable manifold of the
set of stationary points or as the stable one when we consider solutions only in the
set of bounded complete trajectories.
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2.1. Existence of solutions

We consider the following nonlocal reaction-diffusion equation
ut − a(‖u‖2

H1
0
)∆u = f(u) + h(t), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(0, x) = u0(x) in Ω,

(2.1.1)

where Ω is a bounded open set of Rn with smooth boundary ∂Ω.

Let us consider the following conditions on the functions a, f, h :

h ∈ L2(0, T ;L2(Ω)) ∀T > 0, (2.1.2)

a ∈ C(R+), f ∈ C(R), (2.1.3)

a (s) ≥ m > 0, (2.1.4)

−κ− α2|s|p ≤ f(s)s ≤ κ− α1|s|p, (2.1.5)

where m, α1, α2 > 0 and κ ≥ 0, p ≥ 2. Observe that then there exists C > 0

such that

|f(s)| ≤ C(1 + |s|p−1) ∀s ∈ R, (2.1.6)

and that the function F(s) :=
∫ s

0
f(r)dr satisfies

−α̃2|s|p − κ̃ ≤ F(s) ≤ κ̃− α̃1|s|p (2.1.7)

for certain positive constants α̃i, i = 1, 2, and κ̃ ≥ 0, and

|F(s)| ≤ C̃(1 + |s|p) ∀s ∈ R. (2.1.8)

Conditions (2.1.2)-(2.1.5) will be always assumed throughout the chapter. Some-
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times, some of the following additional assumptions will also be used:

f ∈ C1(R) be such that f ′(s) ≤ η, ∀s ∈ R, (2.1.9)

p ≤ 2n− 2

n− 2
, if n ≥ 3, (2.1.10)

a (s) ≤M1 +M2s, ∀s ≥ 0, (2.1.11)

s 7→ a(s2)s is non-decreasing, (2.1.12)

a (·) ∈ C1
(
R+
)
and a′ (s) ≥ 0, ∀s ≥ 0, (2.1.13)

for some constants M1,M2, η ≥ 0.

Remark 2.1. a′ (s) ≥ 0 implies that (2.1.12) holds, so condition (2.1.13) is
stronger than (2.1.12). Assumption (2.1.12) is used to prove uniqueness of so-
lutions. Assumption (2.1.13) is used to obtain the H2 (Ω) regularity of the global
attractor.

Definition 2.2. A weak solution to (2.1.1) is a function u (·) such that u ∈
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩ Lp(0, T ;Lp(Ω)) for any T > 0 and satisfies
in the sense of scalar distributions the equality

d

dt
(u, v) + a(‖u(t)‖2

H1
0
)(∇u(t),∇v) = (f(u(t)), v) + (h(t), v) (2.1.14)

for all v ∈ H1
0 (Ω) ∩ Lp(Ω).

We need to guarantee that the initial condition of the problem makes sense
for a weak solution. This can be achieved in a standard way assuming that the
function a has an upper bound, that is, there exists M > 0 such that

a (s) ≤M for all s ≥ 0. (2.1.15)
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Indeed, if u is a weak solution to (2.1.1), taking into account (2.1.6) and (2.1.15)
it follows that

ut = a(‖u‖2
H1

0
)∆u+ f(u) + h ∈ L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)). (2.1.16)

Therefore, by [34, p.33] u ∈ C([0, T ], L2(Ω)) and the initial condition makes sense
when u0 ∈ L2(Ω).

For the operator A = −∆, thanks to the assumptions on the domain Ω, it is
well known that D(A) = H2(Ω) ∩H1

0 (Ω) [75, Proposition 6.19].

Definition 2.3. A regular solution to (2.1.1) is a weak solution with the extra
regularity u ∈ L∞(ε, T ;H1

0 (Ω)) and u ∈ L2(ε, T ;D(A)) for any 0 < ε < T.

Remark 2.4. Since
du

dt
∈ Lq (ε, T ;Lq (Ω)) for any regular solution, in this case

equality (2.1.14) is equivalent to the following one:∫ T

ε

∫
Ω

du (t, x)

dt
ξ (t, x) dxdt−

∫ T

ε

a(‖u(t)‖2
H1

0
)

∫
Ω

∆uξdxdt (2.1.17)

=

∫ T

ε

∫
Ω

f (u (t, x)) ξ (t, x) dxdt+

∫ T

ε

∫
Ω

h (t, x) ξ (t, x) dxdt,

for all 0 < ε < T and ξ ∈ Lp (0, T ;Lp (Ω)) .

Lemma 2.5. Let u ∈ Lp (ε, T ;X),
du

dt
∈ Lq (ε, T ;X ′) for all 0 < ε < T , where X

is a reflexive and separable Banach space and X ′ denotes its dual space. Assume
that β ∈ C(R+) is such that β ∈ W 1,∞(ε, T ; [β (ε) , β (T )]) and 0 < β (ε) < β (T )

for all 0 < ε < T . Then w (·) = u (β (·)) ∈ Lp (ε, T ;X),
dw

dt
∈ Lq (ε, T ;X ′) , for

all 0 < ε < T , and

dw

dt
(t) =

du

dt
(β (t))

dβ

dt
(t) for a.a. t > 0. (2.1.18)

Proof. We fix 0 < ε < T . There exists a sequence un ∈ C1 ([β (ε) , β(T )], X) such

that un → u in Lp (β (ε) , β(T );X) and
dun
dt
→ du

dt
in Lq (β (ε) , β(T );X ′) [49,

Chapter IV]. We define wn (t) = un (β (t)).
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Following the same proof of [13, Corollary VIII.10] we obtain that

wn (·) ∈ W 1,∞ (ε, T ;X)

and
dwn
dt

(t) =
dun
dt

(β (t))
dβ

dt
(t) for a.a. t > 0.

It is clear that wn → w in Lp (ε, T ;X) and
dun
dt

(β (·))→ du

dt
(β (·)) in Lq (ε, T ;X ′).

Passing to the limit we obtain that

dw

dt
(·) =

du

dt
(β (·))

dβ

dt
(·)

in the sense of distributions D′ (0,+∞;X).

As
du

dt
(β (·))

dβ

dt
(·) ∈ Lq (ε, T ;X ′),

dw

dt
∈ Lq (ε, T ;X ′) and (2.1.18) holds true.

We would like to avoid a being uniformly bounded by above (i.e. to relax
assumption (2.1.15)). We can still prove the continuity in L2 (Ω) of u for regular
solutions by assuming that a has at most linear growth.

Lemma 2.6. Assume that conditions (2.1.2)-(2.1.5), (2.1.11) hold. Then any
regular solution satisfies that u ∈ C([0, T ], L2(Ω)) for all T > 0. Moreover, w (t) =

u (α−1 (t)), where α(t) =
∫ t

0
a(‖u(s)‖2

H1
0
)ds, is a regular solution to the problem


wt −∆w =

f(w) + h(α−1(t))

a(‖w‖2
H1

0
)

, in Ω× (0,∞),

w = 0 on ∂Ω× (0,∞),

w(0, x) = u0(x) in Ω.

(2.1.19)

Proof. Condition (2.1.11) guarantees that if u ∈ L2 (0, T ;H1
0 (Ω)), then

a(‖u(·)‖2
H1

0
) ∈ L1 (0, T ) .

We make the following time rescaling

u(t, x) = w(α(t), x).
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As a(‖u(·)‖2
H1

0
) ∈ L1 (0, T ), the function t 7→ α (t) is continuous and β (·) = α−1 (·)

satisfies the conditions of Lemma 2.5. It is clear that the function

w (t, x) = u(α−1 (t) , x)

belongs to the space L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ Lp(0, T ;Lp(Ω)) and also

to the spaces L∞(ε, T ;H1
0 (Ω)) and L2(ε, T ;D(A)) for any 0 < ε < T .

Moreover,
du

dt
∈ Lq (ε, T ;Lq (Ω)) and Lemma 2.5 give

dw

dt
∈ Lq (ε, T ;Lq (Ω))

and

dw

dt
(t) =

du

dt

(
α−1 (t)

) d
dt
α−1 (t) =

du

dt

(
α−1 (t)

) 1

a
(
‖w(t))‖2

H1
0

) , for a.a. t. (2.1.20)

Equality (2.1.17) implies that

du

dt

(
α−1 (t)

)
− a

(
‖u(α−1(t))‖2

H1
0

)
∆u
(
α−1 (t)

)
= f

(
u
(
α−1 (t)

))
+ h(α−1(t)),

for a.a. t > 0, so (2.1.20) gives

dw

dt
(t)−∆w (t) =

f(w(t))

a(‖w (t) ‖2
H1

0
)

+
h(α−1(t))

a(‖w (t) ‖2
H1

0
)
for a.a. t > 0.

Hence, w is a regular solution to problem (2.1.4119).

Since 0 <
1

a(s)
≤ 1

m
, we obtain that

dw

dt
∈ L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)).

Therefore, w ∈ C([0, T ], L2(Ω)), so that

u ∈ C([0, T ], L2(Ω)).
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Remark 2.7. Under assumptions (2.1.2)-(2.1.5) any regular solution u (·) sat-

isfies that
du

dt
∈ Lq (ε, T ;Lq (Ω)) for all 0 < ε < T . Then by [34, p.33] u ∈

C([ε, T ], L2 (Ω)), t 7→ ‖u (t)‖2 is absolutely continuous on [ε, T ] and

d

dt
‖u (t)‖2

L2 = 2

(
du

dt
, u

)
for a.a. t > ε.

If the initial condition belongs toH1
0 (Ω)∩Lp (Ω), we can define strong solutions

as well.

Definition 2.8. A strong solution to (2.1.1) is a weak solution with the extra regu-

larity u ∈ L∞(0, T ;H1
0 (Ω)∩Lp(Ω)), u ∈ L2(0, T ;D(A)) and

du

dt
∈ L2 (0, T ;L2 (Ω))

for any T > 0.

We observe that if u is a strong solution, then u ∈ C([0, T ], H1
0 (Ω)) (see [77,

p.102]). Also, u ∈ L∞(0, T ;Lp(Ω)) and u ∈ C([0, T ], L2 (Ω)) imply that u ∈
Cw([0, T ], Lp(Ω)) (see [79, p.263]). Thus, an initial condition in H1

0 (Ω) ∩ Lp (Ω)

makes sense. Also, the equality f (u) = ut − a
(
‖u‖2

H1
0

)
∆u − h implies that

f (u) ∈ L2 (0, T ;L2 (Ω))

In addition, if u is a regular solution such that
du

dt
∈ L2 (ε, T ;L2 (Ω)) for all

0 < ε < T , then u ∈ C((0, T ], H1
0 (Ω)).

The phase space for regular solutions will be L2 (Ω), whereas for strong solu-
tions we will use the space H1 (Ω)∩Lp (Ω) (or just H1

0 (Ω) when H1
0 (Ω) ⊂ Lp (Ω)).

The following results will be proved in Theorems 2.9, 2.10, 2.11, 2.12, 2.14:

Conditions (2.1.2)-(2.1.5), (2.1.9), (2.1.11) imply the existence of at least one
regular solution for any u0 ∈ L2(Ω). If, in addition, (2.1.12) holds, then it is
the unique regular solution.

Conditions (2.1.2)-(2.1.5), (2.1.9) imply the existence of at least one strong
solution for any u0 ∈ H1

0 (Ω) ∩ Lp(Ω). If, in addition, (2.1.12) holds, then it
is the unique strong solution.

Conditions (2.1.2)-(2.1.5), (2.1.10) imply the existence of at least one strong
solution for any u0 ∈ H1

0 (Ω).
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Conditions (2.1.2)-(2.1.5), (2.1.10), (2.1.15) imply the existence of at least
one regular solution for any u0 ∈ L2(Ω).

To start with we prove the existence of regular solutions for initial conditions
in L2 (Ω) .

Theorem 2.9. Assume that conditions (2.1.2)-(2.1.5), (2.1.9) and (2.1.11) hold.
Then, for any u0 ∈ L2(Ω) there exists at least one regular solution to (2.1.1).

Proof. We will prove the result by compactness and using Faedo-Galerkin approx-
imations.

Consider a fixed value T > 0. Let {wj}j≥1 be a sequence of eigenfunctions of
−∆ in H1

0 (Ω) with homogeneous Dirichlet boundary conditions, which forms a
special basis of L2(Ω).

We need to ensure that the eigenfunctions are elements of Lp(Ω). Indeed, by
the Sobolev embedding theorem, we have

Hs(Ω) ⊂ Lp(Ω) for s ≥ n(p− 2)/2p.

Taking A = −∆, we define the domain of a fractional power of A as

D(As/2) = {u ∈ L2(Ω) :
∞∑
j=1

λsj(u,wj)
2 <∞},

where λj is the eigenvalue associated to wj. Since the w′js are orthonormal, {wj} ∈
D(As/2). If we assume Ω to be a bounded Cs domain (smoothness condition on
the domain), by Theorem 6.18 in [75], we have that D(As/2) ⊂ Hs(Ω) and so
{wj} ∈ Lp(Ω).

Therefore, we can consider {wj} ⊂ H1
0 (Ω) ∩ Lp(Ω) a basis of L2(Ω), with

s ≥ max{n(p− 2)/2p, 1}. By this way,

Hs
0(Ω) ⊂ H1

0 (Ω) ∩ Lp(Ω)

and the set ∪n∈NVn is dense in L2(Ω) and also in H1
0 (Ω) ∩ Lp(Ω) [62], where

Vn = span[w1, . . . , wn].
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As usual, Pn will be the orthogonal projection in L2 (Ω), that is

zn := Pnz =
n∑
j=1

(z, wj)wj, ∀z ∈ L2(Ω)

and λj will be the eigenvalues associated to the egienfunctions wj.
For each integer n ≥ 1, we consider the Galerkin approximations

un(t) =
n∑
j=1

γnj(t)wj,

which satisfy the following nonlinear ODE system
d

dt
(un, wi) + a(‖un‖2

H1
0
)(∇un,∇wi) = (f(un), wi) + (h,wi) ∀i = 1, . . . , n,

un(0) = Pnu0.

(2.1.21)

where Pnu0 → u0 in L2(Ω).
Using the fact that the w′js are orthonormal, we obtain that (2.1.21) is equiv-

alent to the Cauchy problem

dunj
dt

= −a(‖un‖2
H1

0
)λjunj + (f(un), wj) + (h(t), wj),

(un(0), wj) = (u0, wj), j = 1, . . . , n,

(2.1.22)

where λj is the eigenvalue associated to the eigenfunction wj and the vector
(un1 , . . . , unn) is the unknown.

Since the right hand side of (2.1.22) is continuous in un(t) this Cauchy problem
possesses a solution on some interval [0, tn), 0 < tn < T [75, cf. p. 51].

We claim that for any T > 0 such a solution can be extended to the whole
interval [0, T ], which follows from a priori estimates in the space L2(Ω) of the
sequence {un}.

Multiplying by γni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un(t)‖2

L2 + a(‖un‖2
H1

0
)‖un(t)‖2

H1
0

= (f(un(t)), un(t)) + (h, un(t)) (2.1.23)
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for a.e. t ∈ (0, tn).
Using (2.1.5) and the Young and Poincaré inequalities we deduce that

(f(un(t)), un(t)) ≤ κ|Ω| − α1‖un(t)‖pLp ,

(h(t), un(t)) ≤ m

2
‖un(t)‖2

H1
0

+
1

2λ1m
‖h(t)‖2

L2 .

Hence, from (2.1.23) it follows that

1

2

d

dt
‖un(t)‖2

L2 +
m

2
‖un(t)‖2

H1
0

+ α1‖un(t)‖pLp ≤ κ|Ω|+ 1

2λ1m
‖h(t)‖2

L2 (2.1.24)

for a.e. t ∈ (0, tn).
Then, integrating (2.1.24) from 0 to t ∈ (0, tn) we deduce

1

2
‖un(t)‖2

L2 +
m

2

∫ t

0

‖un(s)‖2
H1

0
ds+ α1

∫ t

0

‖un(s)‖pLpds

≤ κ|Ω|t+
1

2λ1m

∫ t

0

‖h(s)‖2
L2ds+

1

2
‖un(0)‖2

L2

≤ TK2 +K3(T ) +
1

2
‖un(0)‖2

L2 .

(2.1.25)

Therefore, the sequence {un} is well defined and bounded in L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0 (Ω)) ∩ Lp(0, T ;Lp(Ω)). Also, {−∆un} is bounded in L2(0, T ;H−1(Ω)).

On the other hand, by (2.1.6) it follows that∫ T

0

∫
Ω

|f(u(x, t))|qdxdt ≤ 2q−1(Cq
1 |Ω|T + Cq

2

∫ T

0

‖u(t)‖pLpdt),

with 1
p

+ 1
q

= 1. Hence, since {un} bounded in Lp(0, T ;Lp(Ω)), f(un) is bounded
in Lq(0, T ;Lq(Ω)).
On the other hand, multiplying (2.1.21) by λiγni(t) and summing from i = 1 to n,
we obtain

1

2

d

dt
‖un‖2

H1
0

+m‖∆un‖2
L2 ≤ (f(un),−∆un) + (h(t),−∆un)

≤ η‖un‖2
H1

0
+

1

2m
‖h(t)‖2

L2 +
m

2
‖∆un‖2

L2 .
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In this estimate we have assumed that f(0) = 0 when integrating by parts. This
can be done without loss of generality because f(u) + h(t) = f(u)− f(0) + h̃(t) =

f̃(u) + h̃(t), and f̃ , h̃ satisfy the same conditions as f, h.

Integrating the previous expression between s and t, with 0 < s ≤ t ≤ T, and
using (2.1.9) we have

1

2
‖un(t)‖2

H1
0

+
m

2

∫ t

s

‖∆un(r)‖2
L2dr

≤ η

∫ T

0

‖un(r)‖2
H1

0
dr +

1

2
‖un(s)‖2

H1
0

+
1

2m

∫ t

s

‖h(r)‖2
L2dr.

(2.1.26)

Now, integrating in s between 0 and t, it follows that

t‖un(t)‖2
H1

0
≤ (2ηT + 1)

∫ T

0

‖un(r)‖2
H1

0
dr +K3(T )T.

Hence,

‖un(t)‖2
H1

0
≤ 2ηT + 1

ε

∫ T

0

‖un(r)‖2
H1

0
dr +

K3(T )T

ε
. (2.1.27)

for all t ∈ [ε, T ] with ε ∈ (0, T ).

From the last inequality and (2.1.25) we deduce that

{‖un(t)‖H1
0
} is uniformly bounded in [ε, T ]

and by the continuity of the function a we get that

{a(‖un(t)‖2
H1

0
)} is bounded in [ε, T ].

Also, it follows that

{un} is bounded in L∞(ε, T ;H1
0 (Ω)). (2.1.28)
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On the other hand, taking s = ε and t = T in (2.1.26), by (2.1.25) we obtain that

{un} is bounded in L2(ε, T ;D(A)), (2.1.29)

so {−∆un} and {a(‖un‖2
H1

0
)∆un} are bounded in L2(ε, T ;L2(Ω)).

Thus, {
dun
dt

}
is bounded in Lq(ε, T ;Lq(Ω)). (2.1.30)

Therefore, there exists u ∈ L∞(ε, T ;H1
0 (Ω))∩L2(0, T ;H1

0 (Ω))∩L∞(0, T ;L2(Ω))∩
L2(ε, T ;D(A))∩Lp(0, T ;Lp(Ω)) such that

du

dt
∈ Lq(ε, T ;Lq (Ω)) and a subsequence

{un}, relabelled the same, such that

un
∗
⇀ u in L∞(ε, T ;H1

0 (Ω)),

un
∗
⇀ u in L∞(0, T ;L2(Ω)),

un ⇀ u in L2(0, T ;H1
0 (Ω)),

un ⇀ u in Lp(0, T ;Lp(Ω)),

un ⇀ u in L2(ε, T ;D(A)),

dun
dt

⇀
du

dt
in Lq(ε, T ;Lq(Ω)),

f(un) ⇀ χ in Lq(0, T ;Lq(Ω)),

a(‖un‖2
H1

0
)
∗
⇀ b in L∞(ε, T ),

(2.1.31)

for any 0 < ε < T , where ⇀ means weak convergence and ∗
⇀ weak star conver-

gence.

Moreover, by (2.1.29)-(2.1.30) the Aubin-Lions Compactness Lemma gives that
un → u in L2(ε, T ;H1

0 (Ω)), so un(t)→ u(t) in H1
0 (Ω) a.e. on (ε, T ) for any ε > 0.

Consequently, there exists a subsequence {un}, relabelled the same, such that
un (t, x) → u (t, x) a.e. in Ω × (0, T ) [75, Corollary 1.12]. Also, we know that
Pnf(un) ⇀ χ (see [75, p.224]). Since f is continuous, it follows that f(un (t, x))→
f(u (t, x)) a.e. in Ω× (0, T ). Therefore, in view of (2.1.31), by [65, Lemma 1.3] we
have that χ = f(u).
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As a consequence, by the continuity of a, we get that

a(‖un(t)‖2
H1

0
)→ a(‖u(t)‖2

H1
0
) a.e. on (ε, T ).

Since the sequence is bounded, by the Lebesgue theorem this convergence takes
place in L2(ε, T ) and b = a(‖u‖2

H1
0
) on (ε, T ).

Thus,

a(‖un‖2
H1

0
)∆un ⇀ a(‖u‖2

H1
0
)∆u, in L2(ε, T ;L2(Ω)). (2.1.32)

Finally, since {wi} is dense in H1
0 (Ω)∩Lp(Ω), in view of (2.1.31) and (2.1.32),

we can pass to the limit in (2.1.21) and conclude that (2.1.14) holds for all v ∈
H1

0 (Ω) ∩ Lp(Ω).

To conclude the proof, we have to check that u(0) = u0. Indeed, let be

φ ∈ C1([0, T ]);H1
0 (Ω) ∩ Lp(Ω)),

with φ(T ) = 0, φ(0) 6= 0.
We consider the functions w (t) = u(α−1 (t)), wn (t) = un (α−1

n (t)) (here αn(t) =∫ t
0
a(‖un (r) ‖2

H1
0
dr)), which by Lemma 2.6 are regular solutions to problem (2.1.19)

with initial conditions w (0) = u0 and to the corresponding Galerkin approxima-
tions with initial condition wn (0) = un (0) = Pnu0, respectively.
Since

dw

dt
∈ L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)),

we can multiply the equation in (2.1.19) by φ and integrate by parts in the t
variable to obtain that

∫ T

0

(− (w (t) , φ′ (t))− 〈∆w (t) , φ (t)〉) dt =

∫ T

0

(
f(w(t)) + h(α−1(t))

a(‖w(t)‖2
H1

0
)

, φ (t)

)
dt+ (w (0) , φ (0)) (2.1.33)

∫ T

0

(− (wn (t) , φ′ (t))− 〈∆wn (t) , φ (t)〉) dt =

∫ T

0

(
Pnf(wn(t)) + Pnh(α−1(t))

a(‖wn(t)‖2
H1

0
)

, φ (t)

)
dt+ (wn (0) , φ (0)) (2.1.34)
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We can easily obtain by the previous convergences and (2.1.4) that

wn ⇀ w in L2
(
0, T ;H1

0 (Ω)
)
,

∆wn ⇀ ∆w in L2
(
0, T ;H−1 (Ω)

)
,

Pnf(wn(t)) + Pnh (α−1(t))

a(‖wn(t)‖2
H1

0
)

⇀
f(w(t)) + h (α−1(t))

a(‖w(t)‖2
H1

0
)

in Lq (0, T ;Lq (Ω)) .

Passing to the limit in (2.1.34), taking in to account (2.1.33) and bearing in mind
wn(0) = Pnu0 → u0 we get

(w (0) , φ (0)) = (u0, φ (0)) .

Since φ (0) ∈ H1
0 (Ω) ∩ Lp(Ω) is arbitrary, we infer that w(0) = u (0) = u0.

Hence, u is a regular solution to (2.1.1) satisfying u (0) = u0.

Second, we will prove the existence of strong solutions for initial conditions in
H1

0 (Ω) ∩ Lp(Ω). In this case, we do not need to impose the upper bound (2.1.11)
of the function a.

Theorem 2.10. Suppose that conditions (2.1.2)-(2.1.5) and (2.1.9) are fulfilled.
Then, for any u0 ∈ H1

0 (Ω)∩Lp(Ω) there exists at least a strong solution to (2.1.1).

Proof. We consider, as in Theorem 2.9, the Galerkin approximations {un} and
an element u for which (2.1.31) holds. Under the aforementioned conditions, we
will obtain that un converges to a strong solution to (2.1.1). In this proof it is
important to observe that

Pnu0 → u0

in the spaces H1
0 (Ω) and Lp (Ω) [75, p.199 and 220]. Thus, the sequences ‖Pnu0‖H1

0

and ‖Pnu0‖Lp are bounded.

First, we multiply the equation in (2.1.1) by
dun
dt

to obtain

‖ d
dt
un(t)‖2

L2 + a(‖un‖2
H1

0
)
1

2

d

dt
‖un‖2

H1
0

=
d

dt

∫
Ω

F(un)dx+ (h(t),
dun
dt

).
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Introducing

A(s) =

∫ s

0

a(r)dr, (2.1.35)

we have

1

2
‖ d
dt
un(t)‖2

L2 +
d

dt

[
1

2
A(‖un‖2

H1
0
)−

∫
Ω

F(un(t))dx

]
≤ 1

2
‖h(t)‖2

L2 . (2.1.36)

Now, integrating (2.1.36) we have

1

2

∫ t

0

‖ d
ds
un(s)‖2

L2ds+
1

2
A(‖un(t)‖2

H1
0
)−

∫
Ω

F(un(t))dx

≤ 1

2
A(‖un(0)‖2

H1
0
)−

∫
Ω

F(un(0))dx+
1

2

∫ t

0

‖h(s)‖2
L2ds.

From (2.1.4) and (2.1.7) we get

m

2
‖un(t)‖2

H1
0

+ α̃1‖un(t)‖pLp +
1

2

∫ t

0

‖ d
ds
un(s)‖2

L2ds

≤ 1

2
A(‖un(0)‖2

H1
0
) + α̃2‖un(0)‖pLp +K(T ).

(2.1.37)

Now, from (2.1.37) we obtain that{
dun
dt

}
is bounded in L2(0, T ;L2(Ω)), (2.1.38)

so

dun
dt

⇀
du

dt
in L2(0, T ;L2(Ω)). (2.1.39)

On the other hand, the embedding H1
0 (Ω) ⊂⊂ L2(Ω) and the Aubin-Lion Com-

pactness Lemma imply that

un → u in L2(0, T ;L2(Ω)).
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Hence,
un → u for a.e. (x, t) ∈ Ω× (0, T ).

Moreover, thanks to

‖un(t2)− un(t1)‖2
L2 =

∥∥∥∥∫ t2

t1

d

dt
un(s)ds

∥∥∥∥2

L2

≤ ‖ d
dt
un‖2

L2(0,T ;L2(Ω)) |t2 − t1|, ∀t1, t2 ∈ [0, T ],

(2.1.37), (2.1.38) and H1
0 (Ω) ⊂⊂ L2(Ω), the Ascoli-Arzelà theorem implies that

{un} converges strongly in the space C([0, T ];L2(Ω)) for all T > 0.
Therefore, we obtain from (2.1.37) that

un(t) ⇀ u(t) in H1
0 (Ω) ∩ Lp(Ω),

for any t ≥ 0, and

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω) ∩ Lp(Ω)). (2.1.40)

Also, by the continuity of the function a,
{
a(‖un (t) ‖2

H1
0
)
}

is uniformly bounded
in [0, T ]. Multiplying (2.1.21) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2

H1
0

+m‖ −∆un‖2
L2 = (f(un),−∆un) + (h(t),−∆un)

≤ η‖un‖2
H1

0
+

1

2m
‖h(t)‖2

L2 +
m

2
‖ −∆un‖2

L2 .

Integrating the previous expression between 0 and T it follows that

1

2
‖un(T )‖2

H1
0

+
m

2

∫ T

0

‖∆un(s)‖2
L2ds ≤ η

∫ T

0

‖un(t)‖2
H1

0
dt+

1

2
‖un(0)‖2

H1
0

+K(T ). (2.1.41)

Finally, taking into account (2.1.25), from (2.1.41) we deduce that

un is uniformly bounded in L2(0, T ;D(A)),

so

un ⇀ u in L2(0, T ;D(A)). (2.1.42)
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Arguing as in Theorem 2.9 we also obtain that

un → u in L2
(
0, T ;H1

0 (Ω)
)
,

a
(
‖un‖2

H1
0

)
→ a

(
‖u‖2

H1
0

)
in L2 (0, T ) ,

f (un) ⇀ f (u) in Lq (0, T ;Lq (Ω)) ,

a
(
‖un‖2

H1
0

)
∆un ⇀ a

(
‖u‖2

H1
0

)
∆u in L2(0, T ;L2(Ω)). (2.1.43)

Therefore, we can pass to the limit to conclude that u is a strong solution.
It remains to show that u (0) = u0. This can be done, in a similar way

as in Theorem 2.9, by multiplying the equation in (2.1.1) by a function φ ∈
C1([0, T ]);H1

0 (Ω) ∩ Lp(Ω)), with φ(T ) = 0, φ(0) 6= 0 for the Galerkin approx-
imations un and the limit function u and integrating by parts. Then taking
into account the above convergences and Pnu0 → u0 in L2 (Ω) we obtain that
u (0) = u0.

We can still ensure the existence of strong solutions without using condition
(2.1.9) by imposing extra assumptions on the parameter p. Indeed, if (2.1.10) is
satisfied, then the embedding H1

0 (Ω) ⊂ L2(p−1) (Ω) ⊂ Lp (Ω) and (2.1.6) imply
that

||f(u(t))||2L2 ≤ 2C(1 +

∫
Ω

|u(t, x)|2(p−1)dx) ≤ C̃
(

1 + ‖u (t)‖2(p−1)

H1
0

)
, (2.1.44)

so

f(u) ∈ L2(0, T ;L2(Ω)) (2.1.45)

provided that u ∈ L∞(0, T ;H1
0 (Ω)). Moreover, f (A) is bounded in L2(0, T ;L2(Ω)

if A is a bounded set of L∞(0, T ;H1
0 (Ω)).

Theorem 2.11. Assume that (2.1.2)-(2.1.5) and (2.1.10) hold. Then for any
u0 ∈ H1

0 (Ω) there exists at least one strong solution to (2.1.1).

Proof. Reasoning as in Theorem 2.10 and considering as well the Galerkin scheme,
(2.1.31), (2.1.39) and (2.1.40) hold. We just need to check that (2.1.42) is also true
and then repeat the same lines of Theorem 2.10.
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Multiplying (2.1.21) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2

H1
0

+m‖∆un‖2
L2 = (f(un),−∆un) + (h(t),−∆u)

≤ 1

2m
‖f(un)‖2

L2 +
m

2
‖ −∆un‖2

L2 +
1

m
‖h(t)‖2

L2 +
m

4
‖∆un‖2

L2 .

Integrating between 0 and T it follows that

1

2
‖un(T )‖2

H1
0

+
m

4

∫ T

0

‖∆un(s)‖2
L2ds (2.1.46)

≤ 1

2m

∫ T

0

‖f(un(t))‖2
L2dt+

1

2
‖un(0)‖2

H1
0

+
1

m

∫ T

0

‖h(t)‖2
L2dt.

In view of (2.1.40) and (2.1.44), we have that f (u) is bounded in L2 (0, T ;L2 (Ω)),
so from (2.1) we get that {un} is bounded in L2(0, T ;D(A)). Therefore,

un ⇀ u in L2(0, T ;D(A)), (2.1.47)

as required.

Actually, in the case of regular solutions, we can get rid of the condition (2.1.9)
as well by imposing the extra assumption (2.1.10) on the constant p.

Theorem 2.12. Assume that (2.1.2)-(2.1.5), (2.1.10) and (2.1.15) hold. Then,
for any u0 ∈ L2(Ω) there exists at least one regular solution to (2.1.1).

Proof. Let un0 ∈ H1
0 (Ω) be a sequence such that un0 → u0 in L2(Ω). By Theorem

2.11 there exists a strong solution un(·) of (2.1.1) with un(0) = un0 . Since un ∈
L2 (0, T ;D (A)) and

dun

dt
∈ L2 (0, T ;L2 (Ω)), from [77, p.102] the equality

d

dt
‖un‖2

H1
0

= 2(−∆un, unt )

holds true for a.a. t > 0.
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Now, multiplying (2.1.1) by un and using (2.1.5) it follows that

1

2

d

dt
‖un(t)‖2

L2 +m‖un‖2
H1

0
+ α1‖un(t)‖pLp (2.1.48)

≤ κ|Ω|+ ‖h(t)‖L2‖un(t)‖L2 ≤ κ|Ω|+ 1

2mλ1

‖h(t)‖2
L2 +

m

2
‖un(t)‖2

H1
0
,

so

‖un(t)‖2
L2 ≤ ‖un(0)‖2

L2 +K1(T ). (2.1.49)

Thus, integrating in (2.1.48) between t and t+ r we get

‖un(t+ r)‖2
L2 +m

∫ t+r

t

‖un(s)‖2
H1

0
ds+ 2α1

∫ t+r

t

‖un(s)‖pLpds

≤ 2κ|Ω|r +
1

mλ1

∫ t+r

t

‖h(s)‖2
L2ds+ ‖un(t)‖2

L2 ≤ ‖un(0)‖2
L2 +K2(T ).

(2.1.50)

Also, by (2.1.7) and (2.1.15) we deduce that∫ t+r

t

(
1

2
A(‖un(s)‖2

H1
0
)−

∫
Ω

F(un(s))dx

)
ds

≤
∫ t+r

t

(
M

2
‖un(s)‖2

H1
0

)
ds+ κ̃ |Ω| r + α̃2

∫ t+r

t

‖un(s)‖pLpds

≤ K3(T )
(
1 + ‖un(0)‖2

L2

)
,

(2.1.51)

for all n > 0 and t ≥ 0. On the other hand, multiplying (2.1.1) by unt we have

1

2
‖unt (t)‖2

L2 +
d

dt

(
1

2
A(‖un(t)‖2

H1
0
)−

∫
Ω

F(un(t))dx

)
≤ 1

2
‖h(t)‖2

L2 , (2.1.52)

where the fact that t 7→
∫

Ω
F(un(t))dx is absolutely continuous on [0, T ] and

d

dt

∫
Ω

F(un(t))dx =

(
f (un (t)) ,

dun

dt
(t)

)
, for a.a. t > 0,

is proved by regularization using the regularity of strong solutions and (2.1.44)
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(see Lemma 2.20). By the Uniform Gronwall Lemma [80] we obtain

1

2
A(‖un(t+ r)‖2

H1
0
)−

∫
Ω

F(un(t+ r))dx ≤
K3(T )(1 + ‖un(0)‖2

L2)

r
+K4(T ), (2.1.53)

for all 0 ≤ t ≤ t+ r, so that by (2.1.4) and (2.1.7) we have that

‖un(t+ r)‖2
H1

0
+ ‖un (t+ r)‖pLp ≤

K5(T )(1 + ‖un(0)‖2
L2)

r
+K6(T ), (2.1.54)

for all t ≥ 0.
Therefore, the sequence un(·) is bounded in L∞(r, T ;H1

0 (Ω)) for all 0 < r < T .
Consequently, a(‖un (·) ‖2

H1
0
) is bounded in [r, T ].

Integrating (2.1.52) over (r, T ), from (2.1.4), (2.1.7) and (2.1.53) it follows that

1

2

∫ T

r

‖ d
dt
un(t)‖2

L2dt+
m

2
‖un(T )‖2

H1
0

+ α̃1‖un(T )‖pLp − κ|Ω|

≤ 1

2

∫ T

r

‖ d
dt
un(t)‖2

L2dt+
1

2
A(‖un(T )‖2

H1
0
)−

∫
Ω

F(un(T ))dx

≤ 1

2

∫ T

r

‖h(t)‖2
L2dt+

1

2
A(‖un(r)‖2

H1
0
)−

∫
Ω

F(un(r))dx

≤ 1

2

∫ T

r

‖h(t)‖2
L2dt+

K3(T )(1 + ‖un(0)‖2
L2)

r
+K4(T ).

(2.1.55)

Thus
dun

dt
is bounded in L2(r, T ;L2(Ω)) for all 0 < r < T .

Taking into account (2.1.44) and (2.1.54) we infer that f (un) is bounded in
L2 (r, T ;L2 (Ω)). By this way, the equality

a(‖un‖2
H1

0
)∆un = unt − f(un) + h(t)

implies that

{un} is bounded in L2(r, T ;D(A)),

a(‖un‖2
H1

0
)∆un is bounded in L2(r, T ;L2(Ω)),

for all 0 < r < T .
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By the compact embedding H1
0 (Ω) ⊂ L2(Ω), we can apply the Ascoli-Arzelà

theorem and obtain that, up to a sequence, there exists a function u such that

un
∗
⇀ u in L∞(r, T ;H1

0 (Ω)),

un → u in C([r, T ], L2(Ω)),

un ⇀ u in L2(r, T ;D(A)),

dun

dt
⇀

du

dt
in L2(r, T ;L2(Ω)),

(2.1.56)

for all 0 < r < T .
On the other hand, from (2.1.50) we infer that

un is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ Lp(0, T ;Lp(Ω)),

for all T > 0.
Therefore, there exists a subsequence un, relabelled the same, such that

un
∗
⇀ u in L∞(0, T ;L2(Ω)),

un ⇀ u in L2(0, T ;H1
0 (Ω)),

un ⇀ u in Lp(0, T ;Lp(Ω)),

(2.1.57)

for all T > 0.
Moreover, arguing as in the proof of Theorem 2.9 we obtain that

f(un) ⇀ f(u) in Lq(0, T ;Lq(Ω)),

un → u in L2(r, T ;H1
0 (Ω)),

a(‖un‖2
H1

0
)→ a(‖u‖2

H1
0
) in L2 (0, T ) ,

a(‖un(t)‖2
H1

0
)∆un ⇀ a(‖u(t)‖2

H1
0
)∆u in L2(r, T ;L2(Ω)).

Passing to the limit we obtain that u (·) is a regular solution.
Finally, by a similar argument as in the proof of Theorem 2.9 we establish that

u (0) = u0.
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Remark 2.13. Under the conditions of Theorem 2.12 any regular solution u (·)
satisfies from (2.1.44) that f (u) ∈ L2 (ε, T ;L2 (Ω)) for all 0 < ε < T , and then
du

dt
∈ L2 (ε, T ;L2 (Ω)) as well. Hence, u ∈ C((0, T ], H1

0 (Ω)) for all T > 0.

We finish this section by giving a sufficient condition ensuring the uniqueness
of solutions.

Theorem 2.14. Assume the conditions of Theorem 2.9 and additionally that
(2.1.12) is satisfied. Then there can exists at most one regular solution to the
Cauchy problem (2.1.1) for u0 ∈ L2 (Ω) .

If, moreover, M2 = 0 in condition (2.1.11), then there can be at most one weak
solution.

Under the conditions of Theorem 2.10 and (2.1.12), there can exists at most
one strong solution to the Cauchy problem (2.1.1) for u0 ∈ H1

0 (Ω) ∩ Lp (Ω) .

Proof. Suppose that u and v are two regular solutions to (2.1.1) with the same
initial condition u0 = v0. Then by subtraction and multiplying by u− v we get by
Remark 2.7 that

1

2

d

dt
‖u−v‖2

L2 + 〈−a(‖u (t) ‖2
H1

0
)∆u+a(‖v (t) ‖2

H1
0
)∆v, u−v〉 = (f(u)−f(v), u−v).

Let us consider

I = 〈−a(‖u (t) ‖2
H1

0
)∆u+ a(‖v (t) ‖2

H1
0
)∆v, u− v〉.

After integrating by parts, we obtain

I =

∫
Ω

(a(‖u (t) ‖2
H1

0
)|∇u|2 − a(‖u (t) ‖2

H1
0
)∇u∇v − a(‖v (t) ‖2

H1
0
)∇u∇v + a(‖v (t) ‖2

H1
0
)|∇v|2)dx

≥ a(‖u (t) ‖2
H1

0
)‖u (t) ‖2

H1
0
−
(
a(‖u (t) ‖2

H1
0
) + a(‖v (t) ‖2

H1
0
)
)
‖u (t) ‖H1

0
‖v (t) ‖H1

0
+ a(‖v (t) ‖2

H1
0
)‖v (t) ‖2

H1
0

=
(
a(‖u (t) ‖2

H1
0
)‖u (t) ‖H1

0
− a(‖v (t) ‖2

H1
0
)‖v (t) ‖H1

0

)(
‖u (t) ‖H1

0
− ‖v (t) ‖H1

0

)
≥ 0,

(2.1.58)

where we have used (2.1.12) in the last inequality.
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Hence, from (2.1.58) and f ′ (s) ≤ η, we infer

1

2

d

dt
‖u− v‖2

L2 ≤
∫

Ω

(f(u)− f(v)) (u− v)dx

=

∫
Ω

(∫ u

v

f ′(s)ds

)
(u− v)dx ≤ η‖u− v‖2

L2 .

By Remark 2.7 it is correct to apply the Gronwall lemma over an arbitrary interval
(ε, t), so

‖u(t)− v(t)‖2
L2 ≤ ‖u (ε)− v (ε) ‖2

L2 e2η(t−ε), t ≥ 0.

Since Lemma 2.6 implies that u, v ∈ C([0, T ], L2 (Ω)), we pass to the limit as ε→ 0

to get
‖u(t)− v(t)‖2

L2 ≤ ‖u (0)− v (0) ‖2
L2 e2ηt, t ≥ 0.

Hence, the uniqueness follows.
If M2 = 0 in (2.1.11), then by (2.1.16) the above argument is valid for weak

solutions as well.
The proof of the last statement is the same with the only difference that con-

dition (2.1.11) is not needed.

2.2. Existence and structure of attractors

In this section we will prove the existence of global attractors for the semiflows
generated by regular and strong solutions under different assumptions in the au-
tonomous case, that is, when the function h does not depend on t. We will also
establish that the attractor is equal to the unstable set of the stationary points or
to the stable one when we only consider solutions in the set of bounded complete
trajectories.

We consider the following condition instead of (2.1.2):

h ∈ L2 (Ω) . (2.2.1)
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Throughout this section, for a metric space X with metric ρ we will denote
by distX (C,D) the Hausdorff semidistance from C to D, that is, distX(C,D) =

supc∈C infd∈D ρ (c, d) .

It is important to observe that in the theorems of existence of solutions of the
previous section we have used either assumption (2.1.9) or (2.1.10). Now, when
we use condition (2.1.9) in some cases it is necessary to add a restriction on the
constant p given below in (2.2.23).

We summarize the main results of this section:

Conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.12), (2.1.15) and (2.2.1) imply that
the regular solutions generate a semigroup in the phase space L2 (Ω) possess-
ing a global attractor, which is compact in H1

0 (Ω) and bounded in Lp (Ω)

(Theorem 2.17 and Lemma 2.31). If, in addition, either h ∈ L∞ (Ω) or
p ≤ 2n/(n− 2) for n ≥ 3, then it is characterized by the unstable set of the
stationary points (Proposition 2.32). Moreover, condition (2.1.13) implies
that the attractor is bounded in H2 (Ω) (Proposition 2.19).

Conditions (2.1.3)-(2.1.5), (2.1.15), (2.2.1) and either (2.1.10) or (2.1.9),
(2.2.23) imply that the regular solutions generate a (possibly) multivalued
semiflow in the phase space L2 (Ω) possessing a global attractor, which is
compact in H1

0 (Ω) and Lp (Ω) and is equal to the unstable set of the sta-
tionary points (Theorems 2.25, 2.29).

Conditions (2.1.3)-(2.1.5), (2.1.15), (2.2.1) and either (2.1.10) or (2.1.9),
(2.2.23) imply that the strong solutions generate a (possibly) multivalued
semiflow in the phase space H1

0 (Ω) possessing a global attractor, which is
compact in H1

0 (Ω) and Lp (Ω) and is equal to the unstable set of the sta-
tionary points (Theorems 2.37, 2.40).

Conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.12), (2.1.15), (2.2.1) and (2.2.23) im-
ply that the strong solutions generate a semigroup in the phase space H1

0 (Ω)

possessing a global attractor, which is compact in H1
0 (Ω) and Lp (Ω) and

is equal to the unstable set of the stationary points (Theorems 2.42, 2.45).
Moreover, condition (2.1.13) implies that the attractor is bounded in H2 (Ω)

(Proposition 2.46).
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Conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.12), (2.1.15) and (2.2.1) imply that
the strong solutions generate a semigroup in the phase space H1

0 (Ω)∩Lp (Ω)

(endowed with the induced topology of H1
0 (Ω)) possessing a global attractor,

which is compact in H1
0 (Ω) and bounded in Lp (Ω) (Theorem 2.49). If,

in addition, either h ∈ L∞ (Ω) or p ≤ 2n/(n − 2) for n ≥ 3, then it is
characterized by the unstable set of the stationary points (Theorem 2.52).
Moreover, condition (2.1.13) implies that the attractor is bounded in H2 (Ω)

(Proposition 2.53).

In all the above situations h ∈ L∞ (Ω) implies that the global attractor is
bounded in L∞ (Ω) (Theorems 2.18, 2.28, 2.39, 2.51).

2.2.1. Regular solutions

We split this part into three subsections.

2.2.2. The case of uniqueness

If we assume conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.11), (2.1.12), (2.2.1), then
by Theorems 2.9 and 2.14 we can define the following continuous semigroup Tr :

R+ × L2(Ω)→ L2(Ω) :

Tr(t, u0) = u(t), (2.2.2)

where u (·) is the unique regular solution to (2.1.1). We denote by R the set of
fixed points of Tr, that is, the points z such that Tr(t, z) = z for any t ≥ 0.

We also observe that if we assume (2.1.15), then using the calculations in
(2.1.51)-(2.1.54) for the Galerkin approximations of any regular solution u (·)
one can obtain that u ∈ L∞ (ε, T ;Lp (Ω)), for all 0 < ε < T , and then u ∈
Cw((0,+∞), Lp (Ω)).

Our first purpose is to obtain a global attractor. We recall that the set A is a
global compact attractor for Tr if it is compact, invariant (which means Tr(t,A) =

A for any t ≥ 0) and it attracts any bounded set B, that is,

distL2 (Tr(t, B) ,A)→ 0 as t→ +∞.
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For this aim, we follow the classical procedure and we start with the existence of
an absorbing set.

Proposition 2.15. Let (2.1.3)-(2.1.5), (2.1.9), (2.1.11), (2.1.12) and (2.2.1)
hold. Then the semigroup Tr has a bounded absorbing set in L2; that is, there
exists a constant K such that for any R > 0 there is a time t0 = t0(R) such that

‖u(t)‖L2 ≤ K for all t ≥ t0, (2.2.3)

where ‖u0‖L2 ≤ R, u (t) = Tr(t, u0). Moreover, there is a constant L such that∫ t+1

t

‖u(s)‖2
H1

0
ds ≤ L for all t ≥ t0. (2.2.4)

Proof. Multiplying equation (2.1.1) by u and using (2.1.5) and Remark 2.7 we
have

1

2

d

dt
‖u(t)‖2

L2 +
m

2
‖u(t)‖2

H1
0

+ α1‖u(t)‖p
LP
≤ κ|Ω|+ 1

2λ1m
‖h‖2

L2 =
κ1

2
. (2.2.5)

The Gronwall lemma and the inequality ‖u(t)‖2
H1

0
≥ λ1‖u(t)‖2

L2 give

‖u(t)‖2
L2 ≤ ‖u(ε)‖2

L2e−λ1m(t−ε) +
κ1

λ1m
, for any ε > 0.

As u ∈ C([0, T ], L2 (Ω) by Lemma 2.6, passing to the limit we have

‖u(t)‖2
L2 ≤ ‖u(0)‖2

L2e−λ1mt +
κ1

λ1m
. (2.2.6)

Hence, taking

t ≥ t0 ≡
1

λ1m
ln

(
λ1mR

2

κ1

)
we get (3.3.6) for K = 2κ1

λ1m
. On the other hand, integrating (3.3.8) between t and

t+ 1 and using (2.2.6) we obtain

m

∫ t+1

t

‖u(s)‖2
H1

0
ds ≤ ‖u(t)‖2

L2 + κ1
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and using the previous bound we get∫ t+1

t

‖u(s)‖2
H1

0
ds ≤ κ1

m
+

2κ1

λ1m2
, for all t ≥ t0,

so that (2.2.4) follows.

Proposition 2.16. Let (2.1.3)-(2.1.5), (2.1.9), (2.1.12), (2.1.15) and (2.2.1)
hold. Then there exists a bounded absorbing set in H1

0 (Ω) ∩ Lp (Ω); that is, there
is a constant M such that for any R > 0 there is a time t1 = t1(R) such that

‖u(t)‖H1
0

+ ‖u (t)‖Lp ≤M for all t ≥ t1,

where ‖u0‖L2 ≤ R, u (t) = Tr(t, u0).

Proof. The following calculations are formal but can be justified by the Galerkin
approximations. Arguing as in (2.1.51)-(2.1.54) we obtain the existence of a con-
stant C such that

‖Tr(1, u (0))‖2
H1

0
+ ‖Tr (1, u (0))‖pLp ≤ C(1 + ‖u(0)‖2

L2).

Hence, the semigroup property Tr(t + 1, u0) = Tr(1, Tr(t, u0)) and (3.3.6) imply
that

‖Tr(t+ 1, u0)‖2
H1

0
+ ‖Tr (t+ 1, u0)‖pLp ≤ C(1 +K2) ∀t ≥ t0 (R) ,

if ‖u0‖L2 ≤ R, which proves the statement.

Theorem 2.17. Let (2.1.3)-(2.1.5), (2.1.9), (2.1.12), (2.1.15) and (2.2.1). Then
equation (2.1.1) has a connected global compact attractor Ar, which is bounded in
H1

0 (Ω) ∩ Lp (Ω).

Proof. Since a bounded set in H1
0 (Ω) is relatively compact in L2(Ω) which is a

connected space, the result follows from Theorem 10.5 in [75] and Proposition
2.16.
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We will also obtain the boundedness of the attractor in the spaces L∞ (Ω) and
H2 (Ω).

First, we recall that a function φ : R→ L2 (Ω) is a complete trajectory of the
semigroup Tr if

φ (t) = Tr(t− s, φ (s))

for any t ≥ s.
We say that φ is bounded if the set ∪s∈Rφ (s) is bounded. It is well known [61]
that the global attractor is characterized by

Ar = {φ (0) : φ is a bounded complete trajectory}. (2.2.7)

Theorem 2.18. Let (2.1.3)-(2.1.5), (2.1.9), (2.1.12), (2.1.15) and (2.2.1) hold.
Then the global attractor Ar is bounded in L∞(Ω), provided that h ∈ L∞(Ω).

Proof. We define v+ = max{v, 0}, v− = −max{−v, 0}. We multiply equation
(2.1.1) by (u − M)+ for some appropriate constant M and integrate over Ω to
obtain

1

2

d

dt

∫
Ω

|(u−M)+|2dx+a(‖u(t)‖2
H1

0
)

∫
Ω

|∇(u−M)+|2dx =

∫
Ω

(f(u(t))+h)(u−M)+dx,

where we have used the equality 1
2

d

dt

∫
Ω
|(u−M)+|2dx = (ut, (u−M)+) , which is

proved by regularization.

Since h ∈ L∞(Ω), by (2.1.5) we deduce that

(f(u) + h)u ≤ κ̃− α̃|u|p.

It follows that
f(u) + h ≤ 0 when u ≥ (

κ̃

α̃
)1/p = M.

Therefore, we have
(f(u) + h)(u−M)+ ≤ 0.
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Thus, by (2.1.4) and the the Poincaré inequality, we deduce that

d

dt

∫
Ω

|(u−M)+|2dx ≤ −2mλ1

∫
Ω

|(u−M)+|2dx.

Using the Gronwall inequality, we have∫
Ω

|(u(t)−M)+|2dx ≤ e−2mλ(t−τ)

∫
Ω

|(u (τ)−M)+|2dx.

For any y ∈ Ar there is by (2.2.7) a bounded complete trajectory φ such that
φ (0) = y. Then taking t = 0 and τ → −∞ in the last inequality, we obtain
y (x) = φ(0, x) ≤ M, for a.a. x ∈ Ω. The same arguments can be applied to
(u−M)−, which shows that

‖y‖L∞ ≤M, ∀y ∈ Ar.

If we assume (2.1.13), then it is possible to show that the global attractor is
more regular.

Proposition 2.19. Let (2.1.3)-(2.1.5), (2.1.9), (2.1.15) and (2.2.1) hold. If,
additionally, (2.1.13) is satisfied, then there exists an absorbing set in H2 (Ω) and
the global attractor is bounded in H2(Ω).

Proof. We will prove the existence of an absorbing set in H2 (Ω). The boundedness
of the global attractor in this space follows then immediately. We proceed formally,
but the estimates can be justified via Galerkin approximations.

Let u(t) = Tr(t, u0) with ‖u0‖L2 ≤ R. First, we differentiate the equation with
respect to t

utt − a′(‖u‖2
H1

0
)
d

dt
‖u‖2

H1
0
∆u− a(‖u‖2

H1
0
)∆ut = f ′(u)ut.

Multiplying by ut we get

1

2

d

dt
‖ut‖2

L2 +
1

2
a′(‖u‖2

H1
0
)(
d

dt
‖u‖2

H1
0
)2 + a(‖u‖2

H1
0
)‖ut‖2

H1
0

=

∫
Ω

f ′(u)(ut)
2dx. (2.2.8)
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By (2.1.4), a′ (s) ≥ 0 and f ′ (s) ≤ η we obtain

1

2

d

dt
‖ut‖2

L2 +m‖ut‖2
H1

0
≤ η‖ut‖2

L2 . (2.2.9)

Second, multiplying (2.1.1) by ut and reordering terms, it follows that

d

dt

(
a(‖u‖2

H1
0
)

2
‖u‖2

H1
0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
+ ‖ut‖2

L2 =
a′(‖u‖2

H1
0
)

2
‖u‖2

H1
0

d

dt
‖u‖2

H1
0
. (2.2.10)

Proposition 2.16 implies that

a′(‖z‖2
H1

0
) ≤ γ := sup|s|≤Ma

′(s2)

if z belongs to the absorbing set in H1
0 (Ω). On the other hand, multiplying the

equation by −∆u and using Proposition 2.16, we obtain

d

dt
‖u‖2

H1
0

+m‖∆u(t)‖2
L2 ≤ 2η‖u(t)‖2

H1
0

+
1

m
‖h‖2

L2 ≤ K1 ∀t ≥ t1(R).

Hence, by (2.2.10) and Proposition 2.16, it follows that

d

dt

(
a(‖u‖2

H1
0
)

2
‖u‖2

H1
0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
+ ‖ut‖2

L2 ≤
γ

2
K1M

2, ∀t ≥ t1(R). (2.2.11)

Multiplying both sides of the inequality f ′(s) ≤ η by s and integrating between 0

and s, we obtain

sf(s) ≤ F(s) +
s2

2
η, ∀s ∈ R. (2.2.12)

Moreover, integrating f ′(s) ≤ η twice between 0 and s, we infer

F(s) ≤ η

2
s2 + Cs, ∀s ∈ R. (2.2.13)

Now, we multiply (2.1.1) by u and integrate between t and t+ 1 to obtain

1

2
‖u(t+ 1)‖2

L2 +

∫ t+1

t

(
a(‖u‖2

H1
0
)‖u(s)‖2

H1
0
−
∫

Ω

f(u)udx−
∫

Ω

h(x)udx

)
ds =

1

2
‖u(t)‖2

L2 . (2.2.14)
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From (2.2.12), (2.2.14) and Proposition 2.15 it follows

∫ t+1

t

(
a(‖u‖2

H1
0
)

2
‖u‖2

H1
0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
ds

≤ 1

2
‖u(t)‖2

L2 +
η

2

∫ t+1

t

‖u‖2
L2ds ≤ L̃, ∀t ≥ t0.

The last inequality allows us to apply the Uniform Gronwall Lemma [80] to (2.2.11)
in order to obtain

a(‖u‖2
H1

0
)

2
‖u‖2

H1
0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx ≤ L̃+
γ

2
K1M

2, ∀t ≥ t1 + 1. (2.2.15)

Using (2.1.4) and (2.2.13) we get

a(‖u‖2
H1

0
)

2
‖u‖2

H1
0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx ≥ −η
2
‖u‖2

L2 − C̃‖u‖L2 . (2.2.16)

Now, integrating (2.2.11) from t to t + 1, using (2.2.15), (2.2.16), by Proposition
2.15 we have∫ t+1

t

‖us‖2
L2ds ≤ L̃+ γK1M

2 +
η

2
K2 + C̃K = ρ1, ∀t ≥ t1 + 1. (2.2.17)

Hence, the last equation allow us to apply to (2.2.9) the Uniform Gronwall Lemma
to obtain

‖du
dt

(t)‖2
L2 ≤ ρ2, ∀t ≥ t1 + 2. (2.2.18)

Finally, we multiply (2.1.1) by −∆u and use (2.1.4) to obtain

m

2
‖∆u‖2

L2 ≤ η‖u‖2
H1

0
+

1

m
‖h‖2

L2 +
1

m
‖ut‖2

L2 .

Thus, by Proposition 2.16 and (2.2.18), we deduce that

‖u(t)‖2
H2 ≤ ρ3 ∀t ≥ t1 + 2.
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2.2.3. The case of non-uniqueness

We recall that the multivalued map G : R+ ×X → P (X) associated with the
family R is defined as follows

G(t, u0) = {u(t) : u(·) ∈ R, u(0) = u0}, (2.2.19)

where R ⊂ C(R+;X) is a family of functions satisfiying the set of axomatic prop-
erties described in Chapter 0. The set of all fixed points will be denoted by RR.

In this section we will show that regular solutions genrate a multivalued semi-
flow possessing a global attractor.

If we do not assume the additional assumptions on the function a (·) of Section
2.2.2 ensuring uniqueness of the Cauchy problem, we have to define a multivalued
semiflow.

We have two possibilities: either to consider the conditions of Theorem 2.9 with
an extra growth assumption or to use the conditions of Theorem 2.12.

If we assume conditions (2.1.3)-(2.1.5), (2.1.10), (2.1.15) and (2.2.1), then by
Theorem 2.12 for any u0 ∈ L2 (Ω) there exists at least one regular solution and

(2.1.44) implies that f(u) ∈ L2(ε, T ;L2(Ω)) for any regular solution, so
du

dt
∈

L2(ε, T ;L2(Ω)) as well. In this case, as H1
0 (Ω) ⊂ Lp (Ω), we have that u ∈

C((0,+∞), H1
0 (Ω)) ⊂ C ((0,+∞) , Lp (Ω)) .

If we assume conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.11) and (2.2.1) as well,
then we known by Theorem 2.9 that for any u0 ∈ L2 (Ω) there exists at least one
regular solution.

In order to obtain the necessary estimates leading to the existence of a global
attractor, we need to ensure that

du

dt
∈ L2(ε, T ;L2(Ω)), for all 0 < ε < T, (2.2.20)

holds, as by [77, p.102] we obtain that

d

dt
‖u‖2

H1
0

= 2(−∆u, ut) for a.a. t. (2.2.21)

and u ∈ C((0,+∞), H1
0 (Ω)).
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We note that the set of regular solutions of that kind is non-empty if we assume
(2.1.15), as using inequalities (2.1.51)-(2.1.55) in the proof of Theorem 2.9 we prove
that the regular solution satisfies (2.2.20).

We also observe that we can force all the regular solutions to satisfy

du

dt
∈ L2(ε, T ;L2(Ω))

with an additional assumption on the constant p, which is weaker than (2.1.10).
This is achieved by obtaining that f(u) ∈ L2(ε, T ;L2(Ω)), which can be done by
using an interpolation inequality. Indeed, for

u ∈ L∞(ε, T ;H1
0 (Ω)) ∩ L2(ε, T ;D(A))

we have the interpolation inequality

‖u‖2(γ+1)

L2(γ+1)(ε,T ;L2(γ+1)(Ω))
≤ ‖u‖2γ

L∞(ε,T ;Lp1 (Ω))‖u‖
2
L2(ε,T ;Lp2 (Ω)), (2.2.22)

where γ = 4
n−2

, p1 = 2n
n−2

, p2 = 2n
n−4

, provided that n > 4; γ < 2, p1 = 4, p2 = 4
2−γ

if n = 4; γ = 3, p1 = 6, p2 = +∞ if n = 3; and γ ≥ 0 is arbitrary for n = 1, 2. We
have used the embeddings H1

0 (Ω) ⊂ Lp1 (Ω) , H2 (Ω) ⊂ Lp2 (Ω) and [90, Lemma
II.4.1, p. 72]. Thus, (2.1.6) implies that f(u) ∈ L2(ε, T ;L2(Ω)) if

p ≤ γ + 2 (2.2.23)

and also that

‖f(u)‖2
L2(ε,T ;L2(Ω)) =

∫ T

ε

∫
Ω

|f(u(x, t))|2dxdt ≤ C1 + C2

∫ T

ε

∫
Ω

|u(x, t)|2(γ+1)dxdt.

(2.2.24)

Condition (2.2.23) also implies H1
0 (Ω) ⊂ Lp (Ω), so u ∈ C((0,+∞), Lp(Ω)).

Using the regularity of regular solutions and either (2.1.44) or (2.2.24), another
necessary property to obtain estimates is proved by regularization.
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Lemma 2.20. Assume condition (2.1.5) for f ∈ (R) and one of the following
assumptions:

1. p ≤ 2n−2
n−2

, for n ≥ 3, u ∈ Lp(0, T ;Lp(Ω)) ∩ L∞(ε, T ;H1
0 (Ω)) and

du

dt
∈

L2(ε, T ;L2(Ω)), for all 0 < ε < T .

2. p ≤ γ + 2 (where γ comes from the interpolation), u ∈ Lp(0, T ;Lp(Ω)) ∩
L∞(ε, T ;H1

0 (Ω)) ∩ L2(ε, T ;D(A)) and
du

dt
∈ L2(ε, T ;L2(Ω)), for all 0 < ε <

T.

3. u ∈ L∞(0, T ;L∞(Ω)) and du
dt
∈ L2(ε, T ;L2(Ω)), for all 0 < ε < T .

Then the map t 7→
∫

Ω
F(u(t))dx is absolutely continuous on [ε, T ] for all 0 < ε < T

and the equality

d

dt

∫
Ω

F(u(t))dx =

(
f (u (t)) ,

du

dt
(t)

)
, for a.a. t > 0, (2.2.25)

is true for any regular solution.

Proof. Let first assume condition 1. Arguing as in [49, pp. 173-175] one can show
that there exists a sequence {un} such that

un ∈ C1([0,∞);Lp(Ω)), (2.2.26)

un → u in Lp(0, T ;Lp(Ω)), (2.2.27)
dun

dt
→ du

dt
in L2(ε, T ;L2(Ω)), (2.2.28)

{un} is bounded in L∞(ε, T ;H1
0 (Ω)), (2.2.29)

for all 0 < ε < T. We can deduce that

d

dt

∫
Ω

F(un(t, x))dx =

(
f(un(t)),

dun

dt
(t)

)
, for all t ≥ 0. (2.2.30)

By (2.2.27) we have passing to a subsequence that un(t, x)→ u(t, x) for a.a. (t, x).
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Hence, by (2.1.5) and the Lebesgue theorem we infer that

F(un)→ F(u) in L1(0, T ;L1(Ω)), (2.2.31)

so

d

dt

∫
Ω

F(un(t, x))dx→ d

dt

∫
Ω

F(u(t, x))dx, (2.2.32)

in the sense of distributions.
Finally, the inequality

‖f(un(t))‖2
L2 ≤ 2C

(
1 +

∫
Ω

|un(t, x)|2(p−1)dx

)
≤ C̃

(
1 + ‖un(t)‖2(p−1)

H1
0

)
implies that

{f(un)} is bounded in L2(ε, T ;L2(Ω)), (2.2.33)

which gives by a standard argument that

f(un) ⇀ f(u) in L2(ε, T ;L2(Ω)), (2.2.34)

so (
f(un(·)), du

n

dt
(·)
)
→
(
f(u(·)), du

dt
(·)
)

in L1(ε, T ). (2.2.35)

Passing to the limit we have

d

dt

∫
Ω

F(u(·, x))dx =

(
f(u(·)), du

dt
(·)
)

(2.2.36)

in the sense of distributions.
As
(
f(u(·)), du

dt
(·)
)
∈ L1(ε, T ) for all 0 < ε < T, we obtain that

∫
Ω
F(u(t, x))dx

is absolutely continuous on [ε, T ] and (2.2.25) holds true.
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Assuming now condition 2, as before, we obtain (2.2.26)-(2.2.32) and addition-
ally that

un → u in L2(ε, T ;D(A)).

Hence, the inequalities (2.2.22), (2.2.24) and the embedding H1
0 (Ω) ⊂ Lp1(Ω),

H2(Ω) ⊂ Lp1(Ω) imply that (2.2.33)-(2.2.36) hold and we finish the proof in the
same way.

Finally, for condition 3 we obtain as before that (2.2.26)-(2.2.28), (2.2.30)-
(2.2.32) hold. In addition,

{un} is bounded in L∞(0, T ;L∞(Ω)),

so
{f(un)} is bounded in L∞(0, T ;L∞(Ω)).

The rest of the proof follows the same lines.

Therefore, under either the conditions of Theorem 2.9 with the extra assump-
tion (2.2.23) or the conditions of Theorem 2.12 we define the set

R = K+
r := {u(·) : u is a regular solution of (2.1.1)}.

We define the (possibly multivalued) map Gr : R+ × L2(Ω)→ P (L2(Ω)) by

Gr(t, u0) = {u(t) : u ∈ K+
r and u(0) = u0}.

With respect to the axiomatic properties (K1) − (K4) given in Chapter 0, we
observe that obviously (K1) is true, and (K2) can be proved easily using equality
(2.1.17). Therefore, Gr is a multivalued semiflow by the results of the previous
section. In this case we are not able to prove (K3), so Gr could be non-strict.
Further we will prove that (K4) holds true.

Lemma 2.21. Let us assume (2.1.3)-(2.1.5), (2.1.15) and (2.2.1). Additionally,
assume one of the following assumptions:
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1. (2.1.9) and (2.2.23) hold;

2. (2.1.10) is true.

Given a sequence {un} ⊂ K+
r such that un(0) → u0 weakly in L2(Ω), there

exists a subsequence of {un} (relabeled the same) and u ∈ K+
r , satisfying u(0) = u0,

such that
un(t)→ u(t) strongly in H1

0 (Ω) ∀t > 0.

Proof. We take an arbitrary T > 0. Arguing as in the proof of Theorem 2.9 we
obtain the existence of a subsequence of un such that

{un} is bounded in L∞(0, T ;L2(Ω)),

{un} is bounded in Lp(0, T ;Lp(Ω)),

{f(un)} is bounded in Lq(0, T ;Lq(Ω)).

(2.2.37)

The only difference is that we obtain inequality (2.1.25) in an arbitrary interval
[ε, T ] and then pass to the limit as ε→ 0 (see the proof of Proposition 2.15).

Since
dun

dt
∈ L2(ε, T ;L2(Ω)), for any ε > 0, we have that u ∈ C((0, T ], H1

0 (Ω))

and we know that (2.2.21), (2.2.25) are true. Therefore, arguing as in the proofs of
Theorems 2.9 and 2.12 and using (2.2.24) and (2.1.44) there exists u ∈ L∞(ε, T ;L2(Ω))∩
L2(0, T ;H1

0 (Ω)) and a subsequence {un}, relabelled the same, such that

un
∗
⇀ u in L∞(0, T ;L2(Ω))

un
∗
⇀ u in L∞(ε, T ;H1

0 (Ω))

un ⇀ u in L2(0, T ;H1
0 (Ω))

un ⇀ u in Lp(0, T ;Lp(Ω))

un ⇀ u in L2(ε, T ;D(A)),

dun
dt

⇀
du

dt
in L2(ε, T ;L2(Ω))

f(un) ⇀ f(u) in Lq(0, T ;Lq(Ω)),

f(un) ⇀ f(u) in L2(ε, T ;L2 (Ω)) ,

a(‖un‖2
H1

0
)∆un ⇀ a(‖u‖2

H1
0
)∆u in L2(ε, T ;L2(Ω)).

(2.2.38)
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In view of (2.2.38), the Aubin-Lions Compactness Lemma gives

un → u in L2(ε, T ;H1
0 (Ω)). (2.2.39)

Since the sequence {un} is equicontinuous in L2(Ω) on [ε, T ] and bounded in
C([ε, T ], H1

0 (Ω)), by the compact embeddingH1
0 (Ω) ⊂ L2(Ω) and the Ascoli-Arzelà

theorem, a subsequence fulfills

un → u in C([ε, T ], L2(Ω)),

un(t) ⇀ u(t) in H1
0 (Ω) ∀t ∈ [ε, T ].

By a similar argument as in the proof of Theorem 2.9 we establish that u ∈ K+
r ,

u (0) = u0.

Finally, we shall prove that un(t)→ u(t) in H1
0 (Ω) for all t ∈ [ε, T ].

Multiplying (2.1.1) by unt and using (2.1.35), (2.2.21), and (2.2.25) we obtain

1

2

∥∥∥∥dundt
∥∥∥∥2

L2

+
d

dt

(
1

2
A(‖un(t)‖2

H1
0
−
∫

Ω

F(un(t))dx

)
≤ 1

2
‖h‖2

L2 = D.

Thus,

1

2
A(‖un(t)‖2

H1
0
)−

∫
Ω

F(un(t))dx ≤ 1

2
A(‖un(s)‖2

H1
0
)−

∫
Ω

F(un(s))dx+D(t− s),

where t ≥ s ≥ ε > 0.

The same inequality is valid for the limit function u(·). We observe that the map

y 7−→
∫

Ω

F(y (x))dx

is continuous in the topology of H1
0 (Ω), which follows easily from H1

0 (Ω) ⊂ Lp (Ω)

and (2.1.8) using Lebesgue’s theorem.
Hence, the functions

Jn(t) =
1

2
A(‖un(t)‖2

H1
0
)−

∫
Ω

F(un(t))dx−Dt
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and
J(t) =

1

2
A(‖u(t)‖2

H1
0
)−

∫
Ω

F(u(t))dx−Dt

are continuous and non-increasing in [ε, T ].

Moreover, from (2.2.39) we deduce that Jn(t) → J(t) for a.e. t ∈ (ε, T ). Take
ε < tm < T such that tm → T and Jn(tm)→ J(tm) for all m. Then

Jn(T )− J(T ) ≤ Jn(tm)− J(T ) ≤ |Jn(tm)− J(tm)|+ |J(tm)− J(T )|.

For any δ > 0 there exist m(δ) and N(m(δ)) such that Jn(T ) − J(T ) ≤ δ if
n ≥ N. Then lim sup Jn(T ) ≤ J(T ), so lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0
(see the

explanation below).
As un(T ) → u(T ) weakly in H1

0 (Ω) implies lim inf ‖un(T )‖2
H1

0
≥ ‖u(T )‖2

H1
0
, we

obtain
‖un(T )‖2

H1
0
→ ‖u(T )‖2

H1
0
,

so that un(T )→ u(T ) strongly in H1
0 (Ω).

In order to finish the proof rigorously, we have to justify that lim sup Jn(T ) ≤
J(T ) implies the inequality lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0
. First, we observe that

by (2.1.8) we have∣∣∣∣∫
Ω

F(un (T, x))dx

∣∣∣∣ ≤ C

∫
Ω

(1 + |un (T, x)|p) dx,

so the boundedness of un (T ) in Lp (Ω) implies that −
∫

Ω
F(un (T, x))dx < ∞.

Also, (2.1.7) gives −F(un (T, x)) ≥ −κ̃, so by Fatou’s lemma we obtain

lim inf

(
−
∫

Ω

F(un (T, x))dx

)
≥
∫

Ω

lim inf (−F(un (T, x))) dx

= −
∫

Ω

F(u (T, x))dx,

where we have used that F(un (T, x)→ F(u (T, x)) for a.a. x ∈ Ω. By contradic-
tion let us assume that lim sup ‖un (T )‖H1

0
> ‖u (T )‖.
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Then using the continuity of the function A (s) we have

lim sup

(
1

2
A
(
‖un(T )‖2

H1
0

)
−
∫

Ω

F(un (T, x))dx

)
≥ lim sup

1

2

∫ ‖un(T )‖2
H1
0

0

a (s) ds+ lim inf

(
−
∫

Ω

F(un (T, x))dx

)
≥ 1

2

∫ lim sup ‖un(T )‖2
H1
0

0

a (s) ds−
∫

Ω

F(un (T, x))dx

>
1

2

∫ ‖u(T )‖2
H1
0

0

a (s) ds−
∫

Ω

F(un (T, x))dx,

which is a contradiction with lim sup Jn(T ) ≤ J(T ).

Corollary 2.22. Assume the conditions of Lemma 2.21. Then the set K+
r satisfies

condition (K4).

Proposition 2.23. Assume the conditions of Lemma 2.21. The multivalued semi-
flow Gr is upper semicontinuous for all t ≥ 0, that is, for any neighborhood
O(Gr(t, u0)) in L2(Ω) there exists δ > 0 such that if ‖u0−v0‖ < δ, then Gr(t, v0) ⊂
O. Also, it has compact values.

Proof. We argue by contradiction. Assume that there exists t ≥ 0, u0 ∈ L2(Ω),
a neighbourhood O(Gr(t, u0)) and a sequence {yn} which fulfills that each yn ∈
Gr(t, u

n
0 ), where un0 converges strongly to u0 in L2(Ω), and yn /∈ O(Gr(t, un)) for

all n ∈ N. Since yn ∈ Gr(t, u
n
0 ) for all n, there exists un ∈ K+

r , un (0) = un0 , such
that yn = un(t).
Now, since {un0} is a convergent sequence of initial data, making use of Lemma
2.21 there exists a subsequence of {un} which converges to a function u ∈ K+

r .
Hence,

yn → y ∈ Gr(t, u0).

This is a contradiction because yn /∈ O(Gr(t, u0)) for any n ∈ N.

Proposition 2.24. Assume the conditions of Lemma 2.21. Then there exists an
absorbing set B1 for Gr, which is compact in H1

0 (Ω) and Lp (Ω).
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Proof. Reasoning as in Proposition 2.15, we obtain an absorbing set B0 in L2 (Ω) .

Let K > 0 be such that ‖y‖ ≤ K for all y ∈ B0. Since
du

dt
∈ L (ε, T ;L2 (Ω))

and (2.2.25) holds, we are allowed to multiply (2.1.1) by ut, use (2.2.21) and argue
as in (2.1.51)-(2.1.54) to obtain the existence of a constant C such that

‖u (1) ‖2
H1

0
+ ‖u (1)‖pLp ≤ C(1 + ‖u(0)‖2

L2), (2.2.40)

for any regular solution u (·) with initial condition u (0).

For any u0 ∈ L2 (Ω) with ‖u0‖L2 ≤ R and any u ∈ K+
r such that u (0) = u0, the

semiflow property Gr(t+1, u0) ⊂ Gr(1, Gr(t, u0)) and Gr(t, u0) ⊂ B0, if t ≥ t0 (R) ,

imply that

‖u (t+ 1) ‖2
H1

0
+ ‖u (t+ 1)‖pLp ≤ C(1 +K2) ∀t ≥ t0 (R) .

Then there exists M > 0 such that the closed ball BM in H1
0 (Ω) centered at 0

with radius M is absorbing for Gr.

By Lemma 2.21 the set B1 = Gr(1, BM) is an absorbing set which is compact
in H1

0 (Ω). The embedding H1
0 (Ω) ⊂ Lp(Ω) implies that it is compact in Lp (Ω) as

well.

Theorem 2.25. Assume the conditions of Lemma 2.21. Then the multivalued
semiflow Gr possesses a global compact attractor Ar. Moreover, for any set B
bounded in L2(Ω) we have

distH1
0
(Gr(t, B),Ar)→ 0 as t→∞. (2.2.41)

Also Ar is compact in H1
0 (Ω) and Lp (Ω).

Proof. From Propositions 2.23 and 2.24 we deduce that the multivalued semiflow
Gr is upper semicontinuous with closed values and the existence of an absorbing
which is compact in H1

0 (Ω) and Lp (Ω). Therefore, by Theorem 0.17 the existence
of the global attractor and its compactness in H1

0 (Ω) and Lp (Ω) follow.

The proof of (2.2.41) is analogous to that in Theorem 29 in [57].
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The set of all complete trajectories of K+
r (see Definition 0.2) will be denoted

by Fr. Moreover, we write Kr as the set of all complete trajectories which are
bounded in L2(Ω), and K1

r as the ones bounded in H1
0 (Ω).

Lemma 2.26. Assume the conditions of Lemma 2.21. Then the sets defined above
coincide, that is, Kr = K1

r.

Proof. Let γ(·) ∈ Kr. Then there is C such that ‖γ (t)‖L2 ≤ C for any t ∈ R. Let
uτ (·) = γ (· + τ) for any τ , which is a regular solution. Since

du

dt
∈ L2(ε, T ;L2(Ω)),

for any ε > 0, the equality (2.2.21) holds true. Also, (2.2.25) is satisfied. Therefore,
we can multiply the equation in (2.1.1) by ut and apply again similar arguments
as in Theorem 2.12 to deduce that

‖u(t+ r)‖2
H1

0
≤
K1 (T ) (1 + ‖u(0)‖2

L2)

r
+K2 (T ) for any 0 < r < T. (2.2.42)

Denote Bγ = ∪t∈Rγ(t). Therefore,

Bγ ⊂ Gr(1, Bγ)

and (2.2.42) implies that Bγ is bounded in H1
0 (Ω), so γ(·) ∈ K1

r.
The other inclusion is obvious.

In view of Corollary 2.22 and Theorem 0.15, the global attractor is character-
ized in terms of bounded complete trajectories:

Ar = {γ(0) : γ(·) ∈ Kr} = {γ(0) : γ(·) ∈ K1
r}

=
⋃
t∈R

{γ(t) : γ(·) ∈ Kr} =
⋃
t∈R

{γ(t) : γ(·) ∈ K1
r}.

(2.2.43)

The set RK+
r

was defined at the beginning of this section as the set of fixed
points of K+

r , which means that z ∈ RK+
r
if the function u (·) defined by u (t) = z,

for all t ≥ 0, belongs to K+
r . This set can be characterized as follows.
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Lemma 2.27. Assume the conditions of Lemma 2.21. Let R be the set of z ∈
H2 (Ω) ∩H1

0 (Ω) such that

−a(‖z‖2
H1

0
)∆z = f(z) + h in L2 (Ω) . (2.2.44)

Then RK+
r

= R.

Proof. If z ∈ RK+
r
, then u (t) ≡ z ∈ K+

r . Thus, u (·) satisfies (2.1.17) and

du

dt
= 0 in L2

(
0, T ;L2 (Ω)

)
,

so (2.2.44) is satisfied.

Let z ∈ R. Then the map u (t) ≡ z satisfies (2.2.44) for any t ≥ 0 and

du

dt
= 0 in L2

(
0, T ;L2 (Ω)

)
,

so (2.1.17) holds true.

The following result is proved exactly as Theorem 2.18.

Theorem 2.28. Assume the conditions of Lemma 2.21. Then the global attractor
A is bounded in L∞(Ω), provided that h ∈ L∞(Ω).

We are now ready to obtain the characterization of the global attractor.

Theorem 2.29. Assume the conditions of Lemma 2.21. Then it holds that

Ar = Mu
r (R) = M s

r (R),

where

M s
r (R) = {z : ∃γ(·) ∈ Kr, γ(0) = z, distL2(Ω)(γ(t),R)→ 0, t→ +∞}, (2.2.45)

Mu
r (R) = {z : ∃γ(·) ∈ Fr, γ(0) = z, dist L2(Ω)(γ(t),R)→ 0, t→ −∞}. (2.2.46)
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Remark 2.30. In the definition of Mu
r (R) we can replace Fr by Kr. Also, as the

global attractor A is compact in H1
0 (Ω), in the definitions of M s

r (R) and Mu
r (R),

it is equivalent to write H1
0 (Ω) instead of L2 (Ω) .

Proof. We consider the function E : Ar → R

E(y) =
1

2
A(‖y‖2

H1
0
)−

∫
Ω

F(y (x))dx−
∫

Ω

h (x) y (x) dx, (2.2.47)

where A(r) =
∫ r

0
a(s)ds.

We observe that E(y) is continuous in H1
0 (Ω). Indeed, the maps

y 7→ 1

2
A(‖y‖2

H1
0
)

and
y 7→

∫
Ω

h (x) y (x) dx

are obviously continuous in H1
0 (Ω).

On the other hand, both conditions (2.1.10) and (2.2.23) imply that

H1
0 (Ω) ⊂ Lp (Ω) ,

so making use of the Lebesgue theorem the continuity of

y 7→
∫

Ω

F(y (x))dx

follows as well.

Since
du

dt
∈ L2 (ε, T ;L2 (Ω)) and (2.2.25) holds for any u ∈ K+

r and 0 < ε < T ,
we obtain the energy equality∫ t

s

‖ d
dr
u(r)‖2

L2dr + E(u(t)) = E(u(s)) for all t ≥ s > 0. (2.2.48)

Hence, E (u (t)) is non-increasing and, by (2.1.4) and (2.1.7), bounded from below.
Thus, E(u(t))→ l, as t→ +∞, for some l ∈ R.
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Let x ∈ Ar and γ (0) = x, where γ ∈ Kr. We reason by contradiction, so let
suppose that there exists ε > 0 and a sequence γ(tn), tn → +∞, such that

dist L2(Ω)(γ(tn),R) > ε.

In view of Theorem 2.25, Ar is compact in H1
0 (Ω), so we can take a converging

subsequence (relabeled the same) such that γ(tn)→ y in H1
0 (Ω), where tn → +∞.

Since the function E : H1
0 (Ω) → R is continuous, it follows that E(y) = l. We

obtain a contradiction by proving that y ∈ R. In view of Lemma 2.21, there
exists v ∈ K+

r and a subsequence vn (·) = γ(· + tn) such that v(0) = y and
vn(t) → v(t) = z in H1

0 (Ω) for t > 0. Thus, E(vn(t)) → E(z) implies that
E(z) = l. Also, v(·) satisfies the energy equality for all 0 ≤ s ≤ t, so that

l +

∫ t

0

‖vr‖2
L2dr = E(z) +

∫ t

0

‖vr‖2
L2dr = E(v(0)) = E(y) = l.

Therefore,
dv

dt
(t) = 0 for a.a. t, and then by Lemma 2.27 we have y ∈ RK+

r
= R.

As a consequence, Ar ⊂M s
r (R). The converse inclusion follows from (2.2.43).

For the second equality we observe that for any γ ∈ Fr the energy equality
(2.2.48) is satisfied for all −∞ < s ≤ t. Let x ∈ Ar and let γ ∈ Kr = K1

r (cf.
Lemma 2.26) be such that γ(0) = x. Since the second term of the energy function
is bounded from above by (2.1.7), E(γ(t)) → l, as t → −∞, for some l ∈ R. We
reason as before, so let suppose that there exists ε > 0 and a sequence γ(−tn),
tn →∞, such that

dist L2(Ω)(γ(−tn),R) > ε,

and we have that γ(−tn) → y in H1
0 (Ω), E(y) = l. Moreover, for a fixed t > 0,

there exists v ∈ K+
r and a subsequence of vn(·) = γ(· − tn) (relabeled the same)

such that v(0) = y and vn(t) → v(t) = z in H1
0 (Ω). Therefore, E(vn(t)) → E(z)

implies that E(z) = l and reasoning as before we get a contradiction since it
follows that y ∈ R. Hence, Ar ⊂ Mu

r (R) and the converse inclusion follows from
(2.2.43).
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We can improve the regularity of the global attractor of the semigroup Tr of
Section 2.2.2 and obtain its characterization

Lemma 2.31. Let the conditions of Theorem 2.17 hold. Then the global attractor
Ar of the semigroup Tr is compact in H1

0 (Ω), bounded in Lp (Ω) and the conver-
gence takes place in the topology of H1

0 (Ω), that is,

distH1
0 (Ω)(Tr(t, B),A)→ 0, as t→ +∞,

for any set B bounded in L2 (Ω) .

Proof. The estimates of Lemma 2.21 can be justified for Tr via Galerkin approx-
imations, so in this case we do not need to impose assumption (2.2.23) in order
to use (2.2.25). Thus, the proof follows the same lines as in Proposition 2.24 and
Theorem 2.25.

Proposition 2.32. Let the conditions of Theorem 2.17 hold. Also, assume one of
the following conditions:

1. h ∈ L∞ (Ω) ;

2. p ≤ 2n
n−2

if n ≥ 3.

Then the global attractor Ar can be characterized as follows:

Ar = Mu
r (R) = M s

r (R),

where M s
r (R), Mu

r (R) are defined in (2.2.45)-(2.2.46).

Proof. We recall that a function E : A → R is a Lyapunov functional if E is
continuous (with respect to the topology of H1

0 (Ω)), for any u0 ∈ A the map
t 7→ E(Tr(t, u0)) is non-increasing and E(Tr(τ, u0)) = E(u0), for some τ > 0,
implies that u (·) is a fixed point. We estate that the function E given in (2.2.47)
is a Lyapunov functional for the semigroup Tr.
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We prove that E (y) is continuous. First, the maps

y 7→ 1

2
A(‖y‖2

H1
0
),

and
y 7→

∫
Ω

h (x) y (x) dx

are obviously continuous in H1
0 (Ω). Second, if h ∈ L∞ (Ω), taking into account

that A is bounded in L∞ (Ω) by Theorem 2.18, it follows that

∣∣∣∣∫
Ω

F(y1)−F(y2)dx

∣∣∣∣ =

∣∣∣∣∣
∫

Ω

∫ y1(x)

y2(x)

f(s)dsdx

∣∣∣∣∣
≤
∫

Ω

C1|y1 (x)− y2 (x) |dx ≤ C2‖y1 − y2‖L2 ,

so
y 7→

∫
Ω

F(y (x))dx

is continuous as well. In the case of the second condition, this result follows from
the embedding H1

0 (Ω) ⊂ Lp (Ω) and the Lebesgue theorem.

Multiplying the equation in (2.1.1) by ut we obtain the energy inequality∫ t

s

‖ d
dr
u(r)‖2

L2dr + E(u(t)) ≤ E(u(s)), for all t ≥ s,

if u (·) is a bounded complete trajectory of Tr. This calculation is rigorous when
h ∈ L∞(Ω) as the boundedness of the solutions in L∞ (R;L∞(Ω)) implies by
Lemma 2.20 that (2.2.25) is true. Under the second condition, the calculations
are formal but can be justified via Galerkin approximations. Hence, E(u(t)) is
non-increasing as a function of t. Also, if E(u(τ)) = E (u0) , then

‖du
dt

(t) ‖2
L2 = 0

for a.a. 0 < t < τ , so u must be a fixed point.

The result follows then from [8, p.160].
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2.2.4. Strong solutions

We split this part into two cases.

2.2.5. Attractor in the phase space H1
0 (Ω)

If we assume conditions (2.1.3)-(2.1.5), (2.2.1) and that either p satisfies (2.1.10)
or that (2.1.9) is satisfied, then we know by Theorems 2.10 and 2.11 that for any
u0 ∈ H1

0 (Ω) ∩ Lp (Ω) there exists at least one strong solution u (·).
In the first case, H1

0 (Ω) ⊂ Lp (Ω) implies that H1
0 (Ω)∩Lp (Ω) = H1

0 (Ω). This
is also true in the second case if we assume additionally that (2.2.23) holds true.
Under such assumptions we define then the set

R = K+
s := {u(·) : u is a strong solution of (2.1.1) with u (0) ∈ H1

0 (Ω)}.

We define the (possibly multivalued) map Gs : R+ ×H1
0 (Ω)→ P (H1

0 (Ω)) by

Gs(t, u0) = {u(t) : u ∈ K+
s and u(0) = u0}.

With respect to the axiomatic properties (K1)−(K4) given in Chapter 0, property
(K1) is obviously true, and (K2) − (K3) can be proved easily using equality
(2.1.17). Therefore, Gs is a strict multivalued semiflow by the results of Chapter
0.

We shall obtain a similar result as in Lemma 2.21.

Lemma 2.33. Let assume conditions (2.1.3)-(2.1.5), (2.2.1). Additionally, as-
sume one of the following assumptions:

1. (2.1.9) and (2.2.23) hold;

2. (2.1.10) is true.

Given a sequence {un} ⊂ K+
s such that un(0) → u0 weakly in H1

0 (Ω), there
exists a subsequence of {un} (relabeled the same) and u ∈ K+

s , satisfying u(0) = u0,
such that

un(t)→ u(t) in H1
0 (Ω), ∀t > 0.
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Proof. Since
dun

dt
∈ L2 (0, T ;L2 (Ω)) and (2.2.25) hold, we can use (2.2.21) and

multiplying (2.1.1) by ut and integrating between s and t we obtain∫ t

s

‖ d
dr
‖u(r)‖2

L2dr + E(u(t)) = E(u(s)) for all t ≥ s ≥ 0,

where E was defined in (2.2.47). Therefore, by (2.1.4) and (2.1.7) we have that∫ t

0

‖ d
dr
u(r)‖2

L2dr +
m

4
‖u(t)‖2

H1
0

+ α̃1‖u(t)‖pLp

≤ 1

2
A(‖u(0)‖2

H1
0
) + α̃2‖u(0)‖pLp +K1 ‖u (0)‖2

L2 +K2

(2.2.49)

holds for all t > 0.

In the first case, multiplying by −∆u, integrating over (0, T ) and using (2.2.49)
it follows that

1

2
‖u(T )‖2

H1
0

+
m

2

∫ T

0

‖∆u(s)‖2
L2ds

≤ η

∫ T

0

‖u(s)‖2
H1

0
ds+

1

2
‖u(0)‖2

H1
0

+K3 ≤ K4 (T ) ,

(2.2.50)

for all T > 0. In the second case, combining (2.2.49) with (2.1.44) the boundedness
of f (un) in L2 (0, T ;L2 (Ω)) follows for any T > 0. Hence, the equality

a
(
‖u‖2

H1
0

)
∆u =

dun

dt
− f (un)− h

and (2.1.4) imply that un is bounded in L2 (0, T ;D(A)) .

Thus, the sequence

un is bounded in L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;D(A))

and
dun

dt
, f (un) are bounded in L2(0, T ;L2(Ω)),

for all T > 0.



2.2. Existence and structure of attractors 104

Therefore, there is u such that

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω)),

un ⇀ u in L2(0, T ;D(A)),

unt ⇀ ut in L2(0, T ;L2(Ω)).

Arguing in a similar way as in Theorem 2.9 we have

un → u in L2(0, T ;H1
0 (Ω)),

un(t, x)→ u(t, x) a.e. on (0, T )× Ω,

f (un) ⇀ f (u) in L2(0, T ;L2(Ω)),

a(‖un‖2
H1

0
)∆un ⇀ a(‖u‖2

H1
0
)∆u in L2(0, T ;L2(Ω)).

Hence, we can pass to the limit and obtain that u ∈ K+
s . Following the same lines

of Theorem 2.10 we check that u (0) = u0.

Moreover, arguing as in Lemma 2.21 we obtain

un(t)→ u(t) in H1
0 (Ω) for all t > 0.

Corollary 2.34. Assume the conditions of Lemma 2.33. Then the set K+
s satisfies

condition (K4).

Using Lemma 2.33 and reasoning as before the following result holds.

Proposition 2.35. Assume the conditions of Lemma 2.33. Then the map Gs (t, ·)
is upper semicontinuous for all t ≥ 0 with compact values.

Proposition 2.36. Assume the conditions of Lemma 2.33 and (2.1.15). Then
there exists an absorbing set B1 for Gs, which is compact in H1

0 (Ω) and Lp (Ω).

Proof. The proof follows the same lines of that in Proposition 2.24 but using
Lemma 2.33.
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From these results and Theorem 0.17 we obtain the existence of the global
attractor.

Theorem 2.37. Assume the conditions of Lemma 2.33 and (2.1.15). Then the
multivalued semiflow Gs possesses a global compact invariant attractor As, which
is compact in Lp (Ω).

Lemma 2.38. Assume the conditions of Lemma 2.33 and (2.1.15). Then As =

Ar, where Ar is the global attractor in Theorem 2.25.

Proof. Since Gs (t, u0) ⊂ Gr (t, u0) for all u0 ∈ H1
0 (Ω), it is clear that Ar is a

compact attracting set. Hence, the minimality of the global attractor gives As ⊂
Ar.

Let z ∈ Ar. Since z = γ (0), where γ ∈ K1
r, and γ |[s,+∞) is a strong solution of

(2.1.1) for any s ∈ R, we get that z ∈ Gs(tn, γ (−tn)) for tn → +∞. Hence,

dist (z,As) ≤ dist (Gs(tn, γ (−tn)),As)→ 0 as n→∞,

so z ∈ As.

The set of all complete trajectories of K+
s (see Definition 0.2) will be denoted

by Fs. Let Ks be the set of all complete trajectories which are bounded in H1
0 (Ω).

In view of Theorem 0.15, the global attractor is characterized in terms of
bounded complete trajectories:

As = {γ(0) : γ(·) ∈ Ks} =
⋃
t∈R

{γ(t) : γ(·) ∈ Ks}. (2.2.51)

In the same way as in Lemma 2.27 we obtain that RK+
s

= R.

Reasoning as in Theorem 2.18 we obtain the following result.

Theorem 2.39. Assume the conditions of Lemma 2.33 and (2.1.15)). Then the
global attractor As is bounded in L∞(Ω), provided that h ∈ L∞(Ω).

Following the same procedure of Theorem 2.29 we can prove an analogous
characterization of the global attractor.
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Theorem 2.40. Assume the conditions of Lemma 2.33 and (2.1.15). Then it
holds that

As = Mu
s (R) = M s

s (R),

where

M s
s (R) = {z : ∃γ(·) ∈ Ks, γ(0) = z, dist H1

0 (Ω(γ(t),R)→ 0, t→ +∞},
(2.2.52)

Mu
s (R) = {z : ∃γ(·) ∈ Fs, γ(0) = z, distH1

0 (Ω(γ(t),R)→ 0, t→ −∞}.
(2.2.53)

Remark 2.41. In the definition of Mu
s (R) we can replace Fr by Kr.

Let us consider now the particular situation when Gs is single-valued semi-
group. Under the conditions (2.1.3)-(2.1.5), (2.1.9), (2.2.1), (2.2.23), if we assume
additionally that (2.1.12) is satisfied, then by Theorem 2.14 for any u0 ∈ H1

0 (Ω)

there exists a unique strong solution u (·). Then we can define the following semi-
group Ts : R+ ×H1

0 (Ω)→ H1
0 (Ω) :

Ts(t, u0) = u(t),

where u (·) is the unique strong solution to (2.1.1). We recall also that u ∈
C([0, T ], H1

0 (Ω)) for any T > 0. Also, by Lemma 2.33 if un0 → u0 weakly in
H1

0 (Ω), then Ts(t, un0 )→ T (t, u0) in H1
0 (Ω) for all t > 0.

Since Ts = Gs, by Theorems 2.37, 2.39, 2.40 and Lemma 2.38 we obtain the
following results.

Theorem 2.42. Assume the conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.12), (2.1.15),
(2.2.1) and (2.2.23). Then the semigroup Ts possesses a global invariant attractor
As, which is compact in H1

0 (Ω) and Lp (Ω).
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Lemma 2.43. Under the conditions of Theorem 2.42, As = Ar, where Ar is the
attractor of Theorem 2.17.

Theorem 2.44. Assume the conditions of Theorem 2.42. Then the global attractor
As is bounded in L∞(Ω) provided that h ∈ L∞(Ω).

As before, we denote by R the set of fixed points of Ts. Also, the global
attractor is the union of all bounded complete trajectories

As = {φ (0) : φ is a bounded complete trajectory of Ts}.

Theorem 2.45. Assume the conditions of Theorem 2.42. Then the global attractor
As can be characterized as follows

As = Mu
s (R) = M s

s (R),

where the sets Mu
s (R), M s

s (R) are defined in (2.2.52)-(2.2.53).

In this case we can obtain additionally that the attractor is bounded in H2 (Ω) .

Proposition 2.46. Assume the conditions of Theorem 2.42 and also that (2.1.13)
holds true. Then As is bounded in H2 (Ω) .

Proof. The proof follows the same lines as in Proposition 2.19, so we omit it.

2.2.6. Attractor in the phase space H1
0 (Ω) ∩ Lp (Ω)

We consider the metric space X = H1
0 (Ω) ∩ Lp (Ω) endowed with the induced

topology of the space H1
0 (Ω).

If we assume conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.12) and (2.2.1), then by
Theorems 2.10 and 2.14 for any u0 ∈ H1

0 (Ω) ∩ Lp (Ω) there exists a unique strong
solution u (·). Then we can define the following semigroup Ts : R+ ×X → X :

Ts(t, u0) = u(t),
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where u (·) is the unique strong solution to (2.1.1). We recall also that u ∈
C([0, T ], H1

0 (Ω)) ∩ Cw ([0, T ], Lp (Ω)) for any T > 0.

Lemma 2.47. Assume conditions (2.1.3)-(2.1.5), (2.1.9), (2.1.12) and (2.2.1).
If un0 → u0 weakly in H1

0 (Ω)∩Lp (Ω), then Ts(t, un0 )→ Ts(t, u0) strongly in H1
0 (Ω)

and weakly in Lp (Ω) for any t > 0.

Proof. Repeating the same proof of Lemma 2.33 we obtain that Ts(t, un0 ) →
Ts(t, u0) strongly in H1

0 (Ω) for all t > 0. We observe that in this case the es-
timates are justified via Galerkin approximations, so we do not need condition
(2.2.23) in order to provide property (2.2.25).

Finally, by the Ascoli-Arzelà theorem we deduce

un → u in C([0, T ], L2(Ω))

and combining this with (2.2.49) we infer that

un (t) ⇀ u (t) in Lp (Ω) ∀t ≥ 0.

Proposition 2.48. Assume the conditions of Lemma 2.47 and (2.1.15). Then
there exists an absorbing set B1 for Ts, which is compact in H1

0 (Ω) and bounded
Lp (Ω).

Proof. Following the same lines of that in Proposition 2.24 (and justifying the
estimates via Galerkin approximations), we obtain that there exists M > 0 such
that the closed ball BM in H1

0 (Ω)∩Lp (Ω) centered at 0 with radiusM is absorbing
for Ts. By Lemma 2.47 the set B1 = Ts(1, BM) is an absorbing set which is compact
in H1

0 (Ω) and bounded in Lp (Ω).

Theorem 2.49. We assume the conditions of Lemma 2.47 and (2.1.15). Then the
semigroup Ts possesses a global attractor As, which is compact in X and bounded
in Lp (Ω).
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Proof. We cannot apply directly the general theory of attractors for semigroup
because we do not know whether the semigroup Ts is continuous with respect to
the initial datum in X.

We state that

As = ω (B1) = {y : ∃tn → +∞, yn ∈ Ts (tn, B1) such that yn → y in X}

is a global compact attractor. The fact that set ω (B1) is non-empty, compact
and the minimal closed set attracting B1 can be proved in a standard way (see
for example Theorem 10.5 in [75]). Since B1 is absorbing, ω (B1) attracts any
bounded set B. As ω (B1) ⊂ B1, As is bounded in Lp (Ω) .

We need to prove that it is invariant.

First, we prove that it is negatively invariant. Let y ∈ As and t > 0 be
arbitrary. We take a sequence yn ∈ Ts (tn, B1) such that

yn → y, tn → +∞.

Since Ts (tn, B1) = Ts(t, Ts(tn − t, B1)), there are xn ∈ Ts(tn − t, B1) such that
yn = Ts(t, xn). As for n large Ts(tn − t, B1) ⊂ B1, the sequence {xn} is bounded
in Lp (Ω) and relatively compact in H1

0 (Ω). Hence, there exists x ∈ As such that
up to a subsequence

xn ⇀ x in Lp (Ω) ,

xn → x in H1
0 (Ω) .

We deduce by Lemma 2.47 that

Ts (t, xn) ⇀ Ts(t, x) in Lp (Ω) ,

Ts (t, xn)→ Ts(t, x) in H1
0 (Ω) .

Thus, y = Ts(t, x) ⊂ Ts (t,As) .

Second, we prove that it is positively invariant. As As = Ts(τ,As) for any
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τ ≥ 0, this follows from

distX (Ts (t,As) ,As) = distX (Ts (t, Ts(τ,As)) ,As) = distX (Ts (t+ τ,As) ,As) →
τ→+∞

0.

Lemma 2.50. Under the conditions of Theorem 2.49, As = Ar, where Ar is the
attractor of Theorem 2.17.

Proof. Since Tr (t, u0) = Ts (t, u0) for any u0 ∈ X, we have

distL2 (As,Ar) = distL2 (Ts(t,As),Ar) = distL2 (Tr(t,As),Ar) →
t→+∞

0,

so As ⊂ Ar. In the same way,

distX (Ar,As) = distX (Tr(t,Ar),As) = distX (Ts(t,Ar),As) →
t→+∞

0,

and then Ar ⊂ As.

The following two theorems are proved in the same way as Theorem 2.18 and
Proposition 2.32

Theorem 2.51. Assume the conditions of Theorem 2.49. Then the global attractor
As is bounded in L∞(Ω) provided that h ∈ L∞(Ω).

As before, we denote by R the set of fixed points of Ts. Also, the global
attractor is the union of all bounded complete trajectories

As = {φ (0) : φ is a bounded complete trajectory of Ts}.

Theorem 2.52. We assume the conditions of Theorem 2.49 and one of the fol-
lowing assumptions:

1. h ∈ L∞ (Ω);

2. p ≤ 2n
n−2

if n ≥ 3.
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Then the global attractor As can be characterized as follows

As = Mu
s (R) = M s

s (R),

where the sets Mu
s (R), M s

s (R) are defined in (2.2.45)-(2.2.46).

We obtain additionally that the attractor is bounded in H2 (Ω) .

Proposition 2.53. Assume the conditions of Theorem 2.49 and also that (2.1.13)
is satisfied. Then As is bounded in H2 (Ω) .

Proof. The proof follows the same lines as in Proposition 2.19, so we omit it.





Chapter 3

Structure of attractors for a

nonlocal Chafee-Infante problem

In this chapter, we study the structure of the global attractor for the multi-
valued semiflow generated by a nonlocal reaction-diffusion equation in which we
cannot guarantee uniqueness of the Cauchy problem.

The main aim consists in describing in as much detail as possible the internal
structure of the global attractor in a similar way as for the classical Chafee-Infante
equation.

First, we analyse the existence and properties of stationary points, showing
that the problem undergoes the same cascade of bifurcations as in the Chafee-
Infante equation. Second, we study the stability of the fixed points and establish
that the semiflow is dynamically gradient. We prove that the attractor consists of
the stationary points and their heteroclinic connections and analyse some of the
possible connections.

3.1. Setting of the problem

Let us consider the following problem
∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λf(u) + h(t), t > 0, x ∈ Ω,

u(t, 0) = u(t, 1) = 0,

u(0, x) = u0(x),

(3.1.1)

113
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where Ω = (0, 1) and λ > 0.
Throughout the chapter we will use the following conditions (but not all of them
at the same time):

(A1) f ∈ C(R).

(A2) f(0) = 0.

(A3) f ′(0) exists and f ′(0) = 1.

(A4) f is strictly concave if u > 0 and strictly convex if u < 0.

(A5) Growth and dissipation conditions: for p ≥ 2, Ci > 0, i = 1, .., 4, we have

|f(u)| ≤ C1 + C2|u|p−1, (3.1.2)

f(u)u ≤ C3 − C4|u|p, if p > 2, (3.1.3)

lim sup
u→±∞

f(u)

u
≤ 0, if p = 2. (3.1.4)

(A6) The function a ∈ C(R+) satisfies:

a(s) ≥ m > 0.

(A7) The function a ∈ C(R+) satisfies:

a(s) ≤M1, ∀s ≥ 0,

where M1 > 0.

(A8) The function a ∈ C(R+) is non-decreasing.

(A9) h ∈ L2
loc (0,+∞;L2 (Ω)) .

(A10) h does not depend on time and h ∈ L2 (Ω) .
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As usual, defining the function F(u) =
∫ u

0
f(s)ds, we observe that from (3.1.2)

we have

|F(s)| ≤ C̃(1 + |s|p) ∀s ∈ R, (3.1.5)

whereas (3.1.3) implies

F(s) ≤ κ̃− α̃1|s|p. (3.1.6)

Also, from condition (3.1.4) it follows that for all ε > 0, there exists a constant
M > 0 such that f(u)

u
≤ ε, for all |u| ≥M . Hence, there exists mε > 0 such that

f(u)u ≤ mε + εu2, ∀u ∈ R. (3.1.7)

In addition, it follows that

F(u) ≤ εu2 + Cε, (3.1.8)

where Cε > 0. These two inequaities are also true under condition (3.1.3).
Some of these conditions will be used all the time, whereas other ones will be

used only in certain results. In particular, the function h will be considered as a
time-dependent function satisfying (A9) only for establishing the existence of so-
lution for problem (3.1.1). However, since we will study the asymptotic behaviour
of solutions in the autonomous situation, for the second part concerning the exis-
tence and properties of global attractors the function h will be time-independent,
so assumption (A10) will be used instead. Finally, in order to study the struc-
ture of the global attractors in terms of the stationary points and their possible
heteroclinic connections we will assume that h ≡ 0.

3.2. Existence of solutions
In this section we will establish the existence of strong solutions for problem

(3.1.1) with initial condition in the phase space H1
0 (Ω). Although we will follow

the same lines of a similar result given in Chapter 2, we would like to point out
that in the present case, as we are working in a one-dimensional problem, the
assumptions on the function f are much weaker. In particular, we do not need to
impose a growth assumption of any kind.

Definition 3.1. For u0 ∈ L2(Ω), a weak solution to (3.1.1) is an element u ∈
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L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), for any T > 0, such that

d

dt
(u, v) + a(‖u‖2

H1
0
)(∇u,∇v) = λ(f(u), v) + (h(t), v) ∀v ∈ H1

0 (Ω), (3.2.1)

where the equation is understood in the sense of distributions.

As before, let A : D(A) → H, D(A) = H2(Ω) ∩ H1
0 (Ω) , be the operator

A = − d2

dx2
with Dirichlet boundary conditions. This operator is the generator of

a C0-semigroup T (t) = e−At.

Definition 3.2. For u0 ∈ H1
0 (Ω), a strong solution to (3.1.1) is a weak solution

with the extra regularity u ∈ L∞(0, T ;H1
0 (Ω)), u ∈ L2(0, T ;D(A)) and

du

dt
∈

L2(0, T ;L2(Ω)) for any T > 0.

Remark 3.3. We observe that if u is a strong solution, then u ∈ C([0, T ];H1
0 (Ω))

(see [77, p.102]). By this way, the initial condition makes sense.

Remark 3.4. Since
du

dt
∈ L2 (0, T ;L2 (Ω)) for any strong solution, in this case

equality (3.2.1) is equivalent to the following one:∫ T

0

∫
Ω

du (t, x)

dt
ξ (t, x) dxdt−

∫ T

0

a(‖u(t)‖2
H1

0
)

∫
Ω

∂2u

∂x2
ξdxdt (3.2.2)

=

∫ T

0

∫
Ω

λf (u (t, x)) ξ (t, x) dxdt+

∫ T

0

∫
Ω

h (t, x) ξ (t, x) dxdt,

for all ξ ∈ L2 (0, T ;L2 (Ω)) .

Theorem 3.5. Assume conditions (A1), (A6) and (A9). Assume also the exis-
tence of constants β, γ > 0 such that

f (u)u ≤ γ + βu2 for all u ∈ R. (3.2.3)

Then, for any u0 ∈ H1
0 (Ω) problem (3.1.1) has at least one strong solution.

Remark 3.6. Assumption (3.2.3) is weaker than the dissipative property (3.1.7)
as the constant ε is arbitrarily small. Due to the fact that we are working in a one-
dimensional domain, no growth condition of the type given in (A5) is necessary in
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order to prove existence of solutions. Also, (3.2.3) implies that

F (u) ≤ γ̃ + β̃u2 (3.2.4)

for some constants γ̃, β̃ > 0.

Proof. Consider a fixed value T > 0. In order to use the Faedo-Galerkin method
let {wj}j≥1 be the sequence of eigenfunctions of −∆ in H1

0 (Ω) with homogeneous
Dirichlet boundary conditions, which forms a special basis of L2(Ω). Since Ω is
a bounded regular domain, it is known that {wj} ⊂ H1

0 (Ω) and that ∪n∈NVn is
dense in the spaces L2(Ω) and H1

0 (Ω), where Vn = span[w1, . . . , wn].

As usual, Pn will be the orthogonal projection in L2 (Ω), that is

zn := Pnz =
n∑
j=1

(z, wj)wj,

and λj will be the eigenvalues associated to the eigenfunctions wj.
For each integer n ≥ 1, we consider the Galerkin approximations

un(t) =
n∑
j=1

γnj(t)wj,

which are given by the following nonlinear ODE system
d

dt
(un, wi) + a(‖un‖2

H1
0
)(∇un,∇wi) = λ(f(un), wi) + (h,wi) ∀i = 1, . . . , n,

un(0) = Pnu0.
(3.2.5)

We observe that Pnu0 → u0 in H1
0 (Ω).

This Cauchy problem possesses a solution on some interval [0, tn) and by the
estimates in the space L2(Ω) of the sequence {un} given below for any T > 0 such
a solution can be extended to the whole interval [0, T ] (cf. Theorem 2.9).

Firstly, multiplying the equation in (3.2.5) by γni(t) and summing from i = 1
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to n, we obtain

1

2

d

dt
‖un(t)‖2

L2 + a(‖un‖2
H1

0
)‖un(t)‖2

H1
0

= λ(f(un(t), un(t)) + (h(t), un(t)), (3.2.6)

for a.e. t ∈ (0, tn).
Using the Young and Poincaré inequalities we deduce that

(h(t), un(t)) ≤ m

2
‖un(t)‖2

H1
0

+
1

2λ1m
‖h(t)‖2

L2 ,

where m is the constant from (A6).
Hence, from (A6), (3.2.3) and (3.2.6) it follows that

1

2

d

dt
‖un(t)‖2

L2 +
m

2
‖un(t)‖2

H1
0
≤ λγ|Ω|+ βλ‖un(t)‖2

L2 +
1

2λ1m
‖h(t)‖2

L2 .

We infer that

‖un(t)‖2
L2 ≤ ‖un (0)‖2

L2 e
2βλt +

∫ t

0

e2βλ(t−s)
(

2λγ|Ω|+ 1

λ1m
‖h(s)‖2

L2

)
ds

≤ ‖un (0)‖2
L2 e

2βλT +K1 (T ) .

(3.2.7)

Therefore, the solution exists on any given interval [0, T ] and

{un} is bounded in L∞(0, T ;L2(Ω)). (3.2.8)

Now, we multiply the equation (3.1.1) by
dun
dt

to obtain

‖dun
dt

(t)‖2
L2 + a(‖un‖2

H1
0
)
1

2

d

dt
‖un‖2

H1
0

=
d

dt

∫
Ω

λF(un)dx+ (h(t),
dun
dt

).

Introducing

A(s) =

∫ s

0

a(r)dr (3.2.9)
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we have

1

2
‖dun
dt

(t)‖2
L2 +

d

dt

(
1

2
A(‖un‖2

H1
0
)−

∫
Ω

λF(un)dx

)
≤ 1

2
‖h(t)‖2

L2 .

Integrating the previous expression between 0 and t we get

1

2
A(‖un(t)‖2

H1
0
) + λ

∫
Ω

F(un(0))dx+
1

2

∫ t

0

‖ d
ds
un(s)‖2

L2ds

≤ 1

2
A(‖un(0)‖2

H1
0
) + λ

∫
Ω

F(un(t))dx+
1

2

∫ t

0

‖h(s)‖2
L2ds.

(3.2.10)

By (A6), (3.2.4) and (3.2.7) it follows that

m

2
‖un(t)‖2

H1
0

+ λ

∫
Ω

F(un(0))dx+
1

2

∫ t

0

‖ d
ds
un(s)‖2

L2ds

≤ 1

2
A(‖un(0)‖2

H1
0
) + λβ̃‖un(t)‖2

L2 + λγ̃|Ω|+K2(T )

≤ 1

2
A(‖un(0)‖2

H1
0
) + λβ̃e2βλT‖un(0)‖2

L2 +K3(T ).

(3.2.11)

Since dim(Ω) = 1, H1
0 (Ω) ⊂ L∞(Ω), so un (0) is bounded in L∞(Ω). Thus, as f

maps bounded sets of R into bounded ones, F (un (0)) is bounded in L∞(Ω) as
well. Therefore, we deduce that

{un} is bounded in L∞(0, T ;H1
0 (Ω))

and

dun
dt

is bounded in L2(0, T ;L2(Ω)). (3.2.12)

Using again the embedding H1
0 (Ω) ⊂ L∞(Ω) we obtain that un is bounded in the

space L∞(0, T ;L∞(Ω)). Thus,

f(un) is bounded in L∞(0, T ;L∞(Ω)). (3.2.13)
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Also, we deduce that ‖un(t)‖2
H1

0
is uniformly bounded in [0, T ] and then by the

continuity of the function a (·) we get that the sequence a
(
‖un (t)‖2

H1
0

)
is also

uniformly bounded in [0, T ].

Finally, multiplying (3.2.5) by λjγni(t) and summing from i = 1 to n we obtain

1

2

d

dt
‖un‖2

H1
0

+m‖∆un‖2
L2 ≤ λ(f(un),−∆un) + (h(t),−∆u).

By (3.2.13) and applying the Young inequality, we get

1

2

d

dt
‖un‖2

H1
0

+m‖∆un‖2
L2 ≤

λ2

m
‖f(un)‖2

L2 +
m

4
‖∆un‖2

L2 +
1

m
‖h(t)‖2

L2 +
m

4
‖∆u‖2

L2 .

Integrating the previous expression between 0 and t, it follows that

‖un(t)‖2
H1

0
+m

∫ t

0

‖∆un(s)‖2
L2ds

≤ ‖un(0)‖2
H1

0
+

2λ2

m

∫ t

0

‖f(un(s))‖2
L2ds+

2

m

∫ t

0

‖h(s)‖2
L2ds.

Taking into account (3.2.13), the last inequality implies that

un is bounded in L2(0, T ;D(A)), (3.2.14)

so {−∆un} and {a(‖un‖2
H1

0
)∆un} are bounded in L2(0, T ;L2(Ω)).

As a consequence, there exists u ∈ L∞(0, T ;H1
0 (Ω)) and a subsequence un (rela-

beled the same) such that

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω)),

un ⇀ u in L2(0, T ;D(A)),

f(un)
∗
⇀ χ in L∞(0, T ;L∞(Ω)),

a(‖un‖2
H1

0
)
∗
⇀ b in L∞(0, T ),

(3.2.15)
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where ⇀ ( ∗⇀) stands for the weak (weak star) convergence.

By (3.2.12) and (3.2.14) the Aubin-Lions Compactness Lemma gives that

un → u in L2(0, T ;H1
0 (Ω)),

so

un(t)→ u(t) in H1
0 (Ω), a.e. on (0, T ).

Consequently, there exists a subsequence un, relabelled the same, such that

un(t, x)→ u(t, x) a.e. in Ω× (0, T ).

Moreover, thanks to the inequality

‖un(t2)− un(t1)‖2
L2 =

∥∥∥∥∫ t2

t1

d

dt
un(s)ds

∥∥∥∥2

L2

≤ ‖ d
dt
un‖2

L2(0,T ;L2(Ω)) |t2 − t1|, ∀t1, t2 ∈ [0, T ],

(3.2.11), (3.2.12) and H1
0 (Ω) ⊂⊂ L2(Ω), the Ascoli-Arzelà theorem implies that

{un} → u in C([0, T ];L2(Ω)),

for all T > 0.

Therefore, we obtain from (3.2.11) that

un(t) ⇀ u(t) in H1
0 (Ω),

for any t ≥ 0.

Also, by (3.2.15) we have that

Pnf(un)) ⇀ χ in Lq(0, T ;Lq(Ω)),

for any q ≥ 1 (see [75, p.224]).
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Since f is continuous, it follows that

f(un(t, x))→ f(u(t, x)) a.e. in Ω× (0, T ).

Therefore, in view of (3.2.15), by [65, Lemma 1.3] we have that χ = f(u).

As a consequence, by the continuity of a we get that

a(‖un(t)‖2
H1

0
)→ a(‖u(t)‖2

H1
0
) a.e. on (0, T ).

Since the sequence is uniformly bounded, by Lebesgue’s theorem this convergence
takes place in L2(0, T ), so b = a(‖u‖2

H1
0
). Thus,

a(‖un‖2
H1

0
)∆un ⇀ a(‖u‖2

H1
0
)∆u in L2(0, T ;L2(Ω)).

Therefore, we can pass to the limit to conclude that u is a strong solution.

It remains to show that u(0) = u0 which makes sense since u ∈ C([0, T ];H1
0 (Ω))

(see Remark 4). Indeed, let be φ ∈ C1([0, T ];H1
0 (Ω)) with φ(T ) = 0, φ(0) 6= 0.

We multiply the equation in (3.1.1) and (3.2.5) by φ and integrate by parts in the
t variable to obtain that∫ T

0

(
−(u(t), φ′(t))− a(‖u(t)‖2

H1
0
)(∆u(t), φ(t))

)
dt (3.2.17)

=

∫ T

0

(λf(u(t)) + h(t), φ(t))dt+ (u(0), φ(0)),

∫ T

0

(
−(un(t), φ′(t))− a(‖un(t)‖2

H1
0
)(∆un(t), φ(t))

)
dt (3.2.18)

=

∫ T

0

(λf(un(t)) + h(t), φ(t))dt+ (un(0), φ(0)).

In view of the previous convergences, we can pass to the limit in (3.2.18). Taking
into account (3.2.17) and bearing in mind un(0) = Pnu0 → u0, since φ (0) ∈ H1

0 (Ω)

is arbitrary, we infer that u(0) = u0.
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3.3. Existence and structure of attractors

In this section, we will prove the existence of a global attractor for the semiflow

generated by strong solutions in the autonomous case. Thus, the function h will

be an independent of time function satisfying (A10) instead of (A9). Also, we will

establish that the attractor is equal to the unstable set of the stationary points

(see the definition in (3.3.18)).

Recall that for a metric space X with metric d, we denote by distX (C,D) the

Hausdorff semidistance from C to D, that is,

distX(C,D) = sup
c∈C

inf
d∈D

ρ (c, d) .

Let us consider the phase space X = H1
0 (Ω) and the sets

K (u0) = {u(·) : u is a strong solution of (3.1.1) such that u (0) = u0},

R =
⋃
u0∈X

K (u0) .

Denote by P (X) the class of nonempty subsets of X. We define the (possibly
multivalued) map G : R+ ×X → P (X) by

G(t, u0) = {u(t) : u ∈ R and u(0) = u0}. (3.3.1)

In order to study the map G and for the convenience of the reader, let us recall
the axiomatic properties of the set R described in Chapter 0:

(K1) For every x ∈ X there is φ ∈ R satisfying φ(0) = x.

(K2) φτ (·) := φ(·+ τ) ∈ R for every τ ≥ 0 and φ ∈ R (translation property).

(K3) Let φ1, φ2 ∈ R be such that φ2(0) = φ1(s) for some s > 0. Then, the function
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φ defined by

φ(t) =

{
φ1(t) 0 ≤ t ≤ s,

φ2(t− s) s ≤ t,

belongs to R (concatenation property).

(K4) For every sequence {φn} ⊂ R satisfying φn(0) → x0 in X, there is a subse-
quence {φnk} and φ ∈ R such that φnk(t)→ φ(t) for every t ≥ 0.

We shall obtain that the set R defined above satisfies properties (K1)− (K4).
Firstly, assuming conditions (A1), (A6), (A10) and (3.2.3) property (K1) follows
from Theorem 3.5, whereas (K2)-(K3) can be proved easily using equality (3.2.2).
As we have seen in Chapter 0, we know that R fulfilling (K1) and (K2) gives rise
to a multivalued semiflow G through (3.3.1) (m-semiflow for short), which means
that:

G(0, x) = x for all x ∈ X;

G(t+ s, x) ⊂ G(t, G(s, x)) for all t, s ≥ 0 and x ∈ X.

Moreover, (K3) implies that the m-semiflow is strict, that is,

G(t+ s, x) = G(t, G(s, x))

for all t, s ≥ 0 and x ∈ X.
Finally, in order to show that property (K4) is satisfied, we will show first that

the m-semiflow G possesses a bounded absorbing set in the space L2 (Ω).

Lemma 3.7. Assume conditions (A1), (A6), (A10) and (3.2.3). Given {un} ⊂ R,
un(0) → u0 weakly in H1

0 (Ω), there exists a subsequence of {un} (relabeled the
same) and u ∈ K(u0) such that

un(t)→ u(t) in H1
0 (Ω), ∀t > 0.
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Also, if un(0)→ u0 strongly in H1
0 (Ω), then for tn → 0 we get un(tn)→ u0 strongly

in H1
0 (Ω).

Proof. Since
dun

dt
∈ L2(0, T ;L2(Ω)) and un ∈ L2(0, T ;H1

0 (Ω)), we have by [77, pg.
102] that

d

dt
‖un‖2

H1
0

= 2(−∆un, unt ) for a.a. t (3.3.2)

and un ∈ C([0, T ];H1
0 (Ω)).

Also, by Lemma 2.20 (F (un(t)), 1) is an absolutely continuous function on [0, T ]

and

d

dt
(F (un(t)), 1) = (f(un(t)),

dun

dt
) for a.a. t > 0. (3.3.3)

By a similar argument as in Theorem 3.5, there is a subsequence of un such
that

un is bounded in L∞(0, T ;L∞(Ω)),

un is bounded in L∞(0, T ;H1
0 (Ω)),

f(un) is bounded in L∞(0, T ;L∞(Ω)),

un is bounded in L2(0, T ;D(A)).

(3.3.4)

Therefore, arguing as in the proof of Theorem 3.5, there exists u ∈ K (u0) and
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a subsequence un, relabelled the same, such that

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω))

un ⇀ u in L2(0, T ;D(A))

f(un)
∗
⇀ f(u) in L∞(0, T ;L∞(Ω))

dun

dt
⇀

du

dt
in L2(0, T ;L2(Ω))

a(‖un‖2
H1

0
)∆un ⇀ a(‖u‖2

H1
0
)∆u in L2(0, T ;L2(Ω)),

un → u in L2(0, T ;H1
0 (Ω)),

un → u in C([0, T ], L2(Ω)),

un(t) ⇀ u(t) in H1
0 (Ω) ∀t ∈ (0, T ].

(3.3.5)

We also need to prove that

un(t)→ u(t) in H1
0 (Ω)

for all t ∈ (0, T ].
For this end, we multiply (3.1.1) by unt and using (A10), (3.3.2) and (3.3.4) we
have

1

2

∥∥∥∥dundt
∥∥∥∥2

L2

+
d

dt

(
1

2
A(‖un(t)‖2

H1
0
)

)
≤ C.

Thus, we obtain

A(‖un(t)‖2
H1

0
) ≤ A(‖un(s)‖2

H1
0
) + 2C(t− s), t ≥ s ≥ 0.

Since this inequality is also true for u(·), the functions

Qn(t) = A(‖un(t)‖2
H1

0
)− 2Ct

and
Q(t) = A(‖u(t)‖2

H1
0
)− 2Ct
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are continuous and non-increasing in [0, T ]. Moreover, from (3.3.5) we deduce that

Qn(t)→ Q(t) for a.e. t ∈ (0, T ).

Take 0 < t ≤ T and 0 < tj < t such that tj → t and Qn(tj) → Q(tj) for all j.
Then

Qn(t)−Q(t) ≤ Qn(tj)−Q(t) ≤ |Qn(tj)−Q(tj)|+ |Q(tj)−Q(t)|.

For any δ > 0 there exist j(δ) and N(j(δ)) such that Qn(t)−Q(t) ≤ δ if n ≥ N .
Then lim supQn(t) ≤ Q(t), so lim sup ‖un(t)‖2

H1
0
≤ ‖u(t)‖2

H1
0
, which follows by

contradiction using the continuity of the function A(s). As un(t) → u(t) weakly
in H1

0 (Ω) implies that lim inf ‖un(t)‖2
H1

0
≥ ‖u(t)‖2

H1
0
, we obtain

‖un(t)‖2
H1

0
→ ‖u(t)‖2

H1
0
,

so that un(t)→ u(t) strongly in H1
0 (Ω).

Finally, if un(0)→ u0 strongly in H1
0 (Ω) and we take tn → 0, then

Qn(tn)−Q(0) ≤ Qn(0)−Q(0) = A(‖un (0) ‖2
H1

0
)− A(‖u0‖2

H1
0
)→ 0,

so lim supQn(tn) ≤ Q(0). Repeating the above argument, we infer that un(tn)→
u0 strongly in H1

0 (Ω).

Corollary 3.8. Assume the conditions of Lemma 3.7. Then the set R satisfies
condition (K4).

The map t 7→ G(t, x) satisfies the important property of being upper semicon-
tinuous, which is fundamental to establish the existence of a global attractor.

Proposition 3.9. Assume the conditions of Lemma 3.7. The multivalued semiflow
G is upper semicontinuous for all t ≥ 0. Also, it has compact values.

Proof. By contradiction let us assume that there exist t ≥ 0, u0 ∈ H1
0 (Ω), a

neighbourhood O(G(t, u0)) and sequences {yn}, {un0} such that yn ∈ G(t, un0 ), un0
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converges strongly to u0 in H1
0 (Ω) and yn /∈ O(G(t, un)) for all n ∈ N. Thus, there

exist un ∈ K(un0 ) such that yn = un(t). From Lemma 3.7 there exists a subsequence
of yn which converges to some y ∈ G(t, u0). This contradicts yn /∈ O(G(t, u0)) for
any n ∈ N.

In order to prove the existence of an absorbing set in the space L2 (Ω) we need
to use the stronger condition (A5) instead of (3.2.3).

Proposition 3.10. Assume that conditions (A1), (A5), (A6) and (A10) hold.
Then the m-semiflow G has a bounded absorbing set in L2 (Ω), that is, there exists
a constant K > 0 such that for any R > 0 there is a time t0 = t0(R) such that

‖y‖L2 ≤ K for all t ≥ t0, y ∈ G(t, u0), (3.3.6)

where ‖u0‖L2 ≤ R. Moreover, there is L > 0 such that∫ t+1

t

‖u(s)‖2
H1

0
ds ≤ L for all t ≥ t0, u ∈ K (u0) . (3.3.7)

Proof. Multiplying equation (3.1.1) by u and using (A6) and (3.1.7) we get

1

2

d

dt
‖u(t)‖2

L2 +m‖u(t)‖2
H1

0
≤ (f(u), u)) + (h, u) (3.3.8)

≤ mε|Ω|+ ε‖u(t)‖2
L2 +

1

2λ1m
‖h‖2

L2 +
λ1m

2
‖u‖2

L2 .

Using the Poincaré inequality it follows that

d

dt
‖u‖2

L2 ≤ 2mε|Ω|+ 2(ε− m

2
λ1)‖u(t)‖2

L2 +
1

λ1m
‖h‖2

L2 = −δ‖u(t)‖2
L2 + κ,

where δ = mλ1 − 2ε, κ = 2mε|Ω| + 1
λ1m
‖h‖2

L2 . We take ε > 0 small enough, so
δ > 0. Then Gronwall’s lemma gives

‖u(t)‖2
L2 ≤ ‖u(0)‖2

L2e−δt +
κ

δ
. (3.3.9)
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Hence, taking

t ≥ t0 =
1

δ
ln

(
δR2

κ

)
we get (3.3.6) for K =

√
2κ
δ
.

On the other hand, using again the Poincaré inequality from (3.3.8) we get

d

dt
‖u(t)‖2

L2 +

(
mλ1 − 2ε

λ1

)
‖u(t)‖2

H1
0
≤ κ

and integrating from t to t+ 1 we obtain(
mλ1 − 2ε

λ1

)∫ t+1

t

‖u(s)‖2
H1

0
ds ≤ ‖u(t)‖2

L2 + κ.

Therefore, applying (3.3.6), (3.3.7) follows.

Further, in order to obtain an absorbing set in H1
0 (Ω) we need to assume

additionally that either the function a (·) is bounded above or that it is non-
decreasing.

Proposition 3.11. Assume the conditions in Proposition 3.10 and that either
(A7) or (A8) holds true. Then there exists an absorbing set B1 for G, which is
compact in H1

0 (Ω).

Proof. In view of Proposition 3.10 we have an absorbing set B0 in L2(Ω). Let
K > 0 be such that ‖y‖ ≤ K for all y ∈ B0.

Multiplying (3.1.1) by u and using (3.1.7) and (3.3.9) we get

d

dt
‖u(t)‖2

L2 + a
(
‖u(t)‖2

H1
0

)
‖u(t)‖2

H1
0
≤ 2mε|Ω|+ 2ε‖u(t)‖2

L2 +
1

λ1m
‖h‖2

L2 ≤ K1 +K2‖u(0)‖2
L2 .

Thus, integrating between t and t+ r, 0 < r ≤ 1, we deduce by using (3.3.9) again
that

‖u(t+ r)‖2
L2 +

∫ t+r

t

a
(
‖u(s)‖2

H1
0

)
‖u(s)‖2

H1
0
ds

≤ K1 +K2‖u(0)‖2
L2 + ‖u(t)‖2

L2 ≤ K3‖u(0)‖2
L2 +K4.

(3.3.10)
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Also, if p > 2 in (A5), we multiply again by (3.1.1) by u and use (3.1.3) and (A6)
to obtain

1

2

d

dt
‖u(t)‖2

L2 +
m

2
‖u(t)‖2

H1
0

+ C4 ‖u (t)‖pLp ≤ C3 +
1

2λ1m
‖h‖2

L2 .

Integrating over (t, t+ r) we have

‖u(t+ r)‖2
L2 + 2C4

∫ t+r

t

‖u (s)‖pLp ds ≤ K5 + ‖u(t)‖2
L2 ≤ K6 + ‖u(0)‖2

L2 . (3.3.11)

If we assume (A7), by (3.3.10) and (A6) we have that∫ t+r

t

A(‖u(s)‖2
H1

0
)ds ≤

∫ t+r

t

M1‖u(s)‖2
H1

0
ds ≤ K7(1 + ‖u(0)‖2

L2). (3.3.12)

If we assume (A8), by (3.3.10) we obtain

∫ t+r

t

A(‖u(s)‖2
H1

0
)ds =

∫ t+r

t

∫ ‖u(s)‖2
H1
0

0

a (r) drds

≤
∫ t+r

t

a
(
‖u(s)‖2

H1
0

)
‖u(s)‖2

H1
0
ds ≤ K3‖u(0)‖2

L2 +K4. (3.3.13)

On the other hand, by (3.1.5) we get

−
∫

Ω

F (u (t)) dx ≥ −C̃
∫

Ω

(1 + |u (t) |p)dx. (3.3.14)

Using (3.3.2) and (3.3.3) we can argue as in Theorem 3.5 to obtain

1

2
‖ut‖2

L2 +
d

dt

(
1

2
A(‖u(t)‖2

H1
0
−
∫

Ω

λF(un)dx

)
≤ 1

2
‖h‖2

L2 .

Since (3.3.11)-(3.3.14) imply that∫ t+r

t

(
1

2
A(‖u(s)‖2

H1
0
−
∫

Ω

λF(u (s))dx

)
ds ≤ K8 +K9‖u(0)‖2

L2 ,
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we can apply the Uniform Gronwall Lemma to get

1

2
A(‖u(t+r)‖2

H1
0
)−
∫

Ω

λF(u (t+ r))dx ≤
K8 +K9‖u(0)‖2

L2

r
+K10, for all t ≥ 0,

so by condition (A6), (3.1.8) and (3.3.9) it follows that

‖u(t+ 1)‖2
H1

0
≤ K11 +K12‖u(0)‖2

L2 ,

for all t ≥ 0.
In particular,

‖u(1)‖2
H1

0
≤ K11 +K12‖u(0)‖2

L2 ,

for any strong solution u(·) with initial condition u(0).

For any u0 ∈ H1
0 (Ω) with ‖u0‖H1

0
≤ R and any u ∈ R such that u (0) = u0,

the semiflow property

G(t+ 1, u0) ⊂ G(1, G(t, u0)) and G(t, u0) ⊂ B0, if t ≥ t0 (R) ,

imply that
‖u (t+ 1) ‖2

H1
0
≤ C(1 +K2) ∀t ≥ t0 (R) .

Then there exists M > 0 such that the closed ball BM in H1
0 (Ω) centered at 0

with radius M is absorbing for G. By Lemma 3.7 the set B1 = G(1, BM) is an
absorbing set which is compact in H1

0 (Ω).

Now, the conditions to ensure the existence of a global attractor have been

established.

Theorem 3.12. Assume the conditions of Proposition 3.11. Then the multivalued

semiflow G possesses a global compact invariant attractor A.

Proof. From Propositions 3.9 and 3.11 we deduce that the multivalued semiflow

G is upper semicontinuous with closed values and the existence of an absorbing
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which is compact in H1
0 (Ω). Therefore, by Theorem 0.17 the existence of the

global invariant attractor and its compactness in H1
0 (Ω) follow.

Recalling Theorem 0.15, the global attractor can be characterized as the union

of bounded complete trajectories, i.e.

A = {γ(0) : γ ∈ K} = ∪t∈R{γ(t) : γ ∈ K}, (3.3.15)

where K denotes the set of all bounded complete trajectories in R. As R satisfies

(K3) and (K4) by Corollary 3.8, (3.3.15) follows.

Moreover, since the set B is said to be weakly invariant if for any x ∈ B

there exists a complete trajectory γ of R contained in B such that γ(0) = x,

characterization (3.3.15) implies that the attractor A is weakly invariant.

As before, we denote the set of all fixed points by RR. It can be characterized

as follows.

Lemma 3.13. Assume the conditions of Lemma 3.7. Let R be the set of z ∈
H2(Ω) ∩H1

0 (Ω) such that

−a(‖z‖2
H1

0
)
d2z

dx2
= λf(z) + h in L2(Ω). (3.3.16)

Then RR = R.

Proof. If z ∈ RR, then u(t) ≡ z ∈ R. Thus, u(·) satisfies (3.2.2) and

du

dt
= 0 in L2(0, T ;L2(Ω)),

so (3.3.16) is satisfied.

Let z ∈ R. Then the map u(t) ≡ z satisfies (3.3.16) for any t ≥ 0 and

du

dt
= 0 in L2(0, T ;L2(Ω)),
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so (3.2.2) holds true.

Finally, we shall obtain the characterization of the global attractor in terms of
the unstable and stable sets of the stationary points.

Theorem 3.14. Assume the conditions of Proposition 3.11. Then it holds that

A = M+(R) = M−(R),

where

M+(R) = {z : ∃γ(·) ∈ K, γ(0) = z, dist H1
0
(γ(t),R)→ 0, t→ +∞}, (3.3.17)

M−(R) = {z : ∃γ(·) ∈ F, γ(0) = z, dist H1
0
(γ(t),R)→ 0, t→ −∞}, (3.3.18)

and F denotes the set of all complete trajectories of R (see Definition 0.2).

Remark 3.15. In (3.3.18) it is equivalent to use K instead of F because all the
solutions are bounded forward in time.

Proof. We consider the function E : A → R

E(y) =
1

2
A(‖y‖2

H1
0
)− λ

∫
Ω

F (y(x))dx−
∫

Ω

h(x)y(x)dx. (3.3.19)

Note that E(y) is continuous in H1
0 (Ω). Indeed, the maps

y 7→ 1

2
A(‖y‖2

H1
0
)

and
y 7→

∫
Ω

h (x) y (x) dx

are obviously continuous in H1
0 (Ω).

On the other hand, by the embedding H1
0 (Ω) ⊂ L∞(Ω) and using Lebesgue’s



3.3. Existence and structure of attractors 134

theorem, the continuity of

y →
∫

Ω

F (y(x))dx

follows.

Using (3.3.2)-(3.3.3) and multiplying the equation (3.1.1) by
du

dt
for any u ∈ R

we can obtain the following energy equality∫ t

s

‖ d
dr
u(r)‖2

L2dr + E(u(t)) = E(u(s)) for all t ≥ s ≥ 0.

Hence, E(u(t)) is non-increasing and by (A6), (3.1.8) and the boundedness of A,
it is bounded from below. Thus E(u(t))→ l, as t→ +∞, for some l ∈ R.

Let z ∈ A and u ∈ K be such that u(0) = z. By contradiction, suppose the
existence of ε > 0 and u(tn), where tn → +∞, for which

distH1
0
(u(tn),R) > ε.

Since A is compact in H1
0 (Ω), we can take a converging subsequence (relabeled the

same) such that
u(tn)→ y in H1

0 (Ω),

where tn →∞. By the continuity of the function E, it follows that E(y) = l.
We will obtain a contradiction by proving that y ∈ R. Define vn (·) = u(· + tn).
By Lemma 3.7, there exist v ∈ R and a subsequence satisfying v(0) = y and

vn(t)→ v(t) in H1
0 (Ω)

for t ≥ 0.

Thus, from E(vn(t)) → E(v(t)) we infer that E(v (t)) = l. Also, v(·) satisfies
the energy equality, so that

l +

∫ t

0

‖vr‖2
L2dr = E(v (t)) +

∫ t

0

‖vr‖2
L2dr = E(v(0)) = E(y) = l.

Therefore,
dv

dt
(s) = 0 for a.a. s
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and then by Lemma 3.13 we have y ∈ RR = R. As a consequence, A ⊂ M+(R).
The converse inclusion follows from (3.3.15).

As before, take arbitrary z ∈ A and u ∈ K satisfying u(0) = z. Since by the
embedding H1

0 (Ω) ⊂ C([0, 1]) the energy function is bounded from above in A,
E(u(t))→ l, as t→ −∞, for some l ∈ R. Suppose that there are ε > 0 and u(tn),
where tn → +∞, such that

distH1
0
(u(−tn),R) > ε.

Up to a subsequence we have that u(−tn)→ y in H1
0 (Ω), E(y) = l. Moreover, for

vn(·) = u(· − tn) there are v ∈ R and a subsequence such that v(0) = y and

vn(t)→ v(t) in H1
0 (Ω)

for t ≥ 0.

Therefore, E(vn(t)) → E(v(t)) gives E(v(t)) = l and then by the above argu-
ments we get a contradiction because y ∈ R. Hence, A ⊂ M−(R) and we deduce
the converse inclusion from (3.3.15).

Finally, we are able to obtain that the global attractor is compact in the space
C1 ([0, 1]). This property will be important in order to study a more precise struc-
ture of the global attractor in terms of the stationary points and their heteroclinic
connections.

We define the function w (t) = u (α−1 (t)) , where

α(t) =

∫ t

0

a(‖u(s)‖2
H1

0
)ds,

which is under the conditions of Proposition 3.11 (see [19] for more details) a strong
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solution to the problem
∂w

∂t
− ∂2w

∂x2
=
f(w) + h

a(‖w‖2
H1

0
)
, in (0,∞)× Ω,

w = 0 on (0,∞)× ∂Ω,

w(0, x) = u0(x) in Ω.

(3.3.20)

Let V 2r = D(Ar), r ≥ 0. We will prove that the attractor is compact in any

space V 2r with 0 ≤ r < 1. For this aim we will need the concept of mild solution.

Definition 3.16. Let consider the auxiliary problem
dv

dt
+ Av(t) = g (t) , t > 0,

v (0) = u0,
(3.3.21)

where g ∈ L2
loc (0,+∞;L2 (Ω)). The function u ∈ C([0,+∞), L2 (Ω)) is called a

mild solution to problem (3.3.21) if

v (t) = e−Atu0 +

∫ t

0

e−A(t−s)g(s)ds, ∀t ≥ 0. (3.3.22)

Remark 3.17. In the same way as in Lemma 2 in [85] we obtain that a strong

solution to problem (3.3.20) is a mild solution to problem (3.3.21) with

g (t) = (f(w (t)) + h) /a(‖w (t) ‖2
H1

0
).

Lemma 3.18. Assume the conditions of Proposition 3.11. Then the global attrac-

tor A is compact in V 2r for every 0 ≤ r < 1.

Proof. Let z ∈ A be arbitrary. Since A is invariant, there exist u0 ∈ A and u ∈ R
such that z = u (1) and u (t) ∈ A for all t ≥ 0. Since w (t) = u (α−1 (t)) is a
mild solution of (3.3.21) with g (t) = (f(w (t)) + h) /a(‖w (t) ‖2

H1
0
), the variation of
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constants formula (3.3.22) gives

z = w(α (1)) = e−Aα(1)u0 +

∫ α(1)

0

e−A(α(1)−s)g(s)ds.

AsA is bounded inH1
0 (Ω) (and then in L∞ (Ω)), condition (A6) and the continuity

of f imply that

‖u0‖L2 ≤ C and ‖g‖L∞(0,α(1);L2(Ω)) ≤ C,

where C > 0 does not depend on z. The standard estimate
∥∥e−At∥∥L(L2(Ω),D(Ar))

≤
Mrt

−re−at, Mr, a > 0 [77, Theorem 37.5], implies that

‖Arz‖L2 ≤
∥∥Are−Aα(1)u0

∥∥
L2 +

∫ α(1)

0

∥∥Are−A(α(1)−s)g(s)
∥∥
L2 ds

≤Mre
−aα(1)α (1)−r C +MrC

∫ α(1)

0

(α (1)− s)−r ds,

so A is bounded in V 2r for every 0 ≤ r < 1.

From the compact embedding V α ⊂ V β, for α > β, and the fact that A is
closed in any V 2r we obtain the result.

Corollary 3.19. Assume the conditions of Proposition 3.11. Then the global
attractor A is compact in C1([0, 1]).

Proof. We obtain by Lemma 37.8 in [77] the continuous embedding

V 2r ⊂ C1([0, 1]) if r >
3

4
.

Hence, the statement follows from Lemma 3.18.
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3.4. Fixed points

In this section we are interested in studying the fixed points of problem (3.1.1)
when h ≡ 0, that is, the solutions of the boundary-value problem −a(‖u‖2

H1
0
)
d2u

dx2
= λf(u), 0 < x < 1,

u (0) = u (1) = 0.
(3.4.1)

For this aim we will use the properties of the fixed points of the standard Chafee-
Infante equation. In order to do that, for any d ≥ 0 we will study the following
boundary-value problem −a(d)

d2u

dx2
= λf(u), 0 < x < 1,

u (0) = u (1) = 0,
(3.4.2)

as it is obvious that u (·) is solution to problem (3.4.1) if and only if u (·) is a
solution to problem (3.4.2) with d = ‖u‖2

H1
0
.

3.4.1. Dependence on the parameters of the fixed points for

the Chafee-Infante equation

Denoting λ̃ =
λ

a (d)
problem (3.4.2) becomes

 −
d2u

dx2
= λ̃f(u), 0 < x < 1,

u (0) = u (1) = 0.
(3.4.3)

Assuming conditions (A1)-(A5), it is known [18] that if n2π2 < λ̃ ≤ (n+ 1)2 π2,
then this problem has exactly 2n+ 1 solutions, denoted by v0 ≡ 0, v±1 , ..., v

±
n . The

function v±k has k + 1 simple zeros in [0, 1].

We need to study the dependence of the norm of these fixed points on the
parameter λ̃. First, we will show that the H1-norm of the fixed points of problem
(3.4.3) is strictly increasing with respect to the parameter λ̃.
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Lemma 3.20. Assume conditions (A1)-(A5). Let v1 = v+
k,λ1

, v2 = v+
k,λ2

with
k2π2 < λ1 < λ2. Then ‖v1‖H1

0
< ‖v2‖H1

0
.

Proof. We consider the equivalent norm in H1
0 (Ω) given by ‖v′‖L2 . The fixed

points are the solutions of the initial value problem
d2u

dx2
+ λ̃f(u) = 0,

u(0) = 0, u′(0) = v0

(3.4.4)

such that u (1) = 0. The solutions of (3.4.4) satisfy the relation

(u′(x))2

2
+ λ̃F (u(x)) = λ̃E, 0 ≤ x ≤ 1, (3.4.5)

for some constant E ≥ 0.
Denote uλ̃ = v+

k,λ̃
. By Theorem 7 in [18] we have that uλ̃ is associated with a

unique value E = E+
k (λ̃) > 0.Moreover, E+

k (λ̃) is a solution of one of the following
equations:

mτ λ̃+(E) + (m− 1)τ λ̃−(E) =
1√
2
,

mτ λ̃−(E) + (m− 1)τ λ̃+(E) =
1√
2
,

mτ λ̃+(E) +mτ λ̃−(E) =
1√
2
, (3.4.6)

where either k = 2m− 1 or k = 2m and

τ λ̃+(E) = λ̃−1/2

∫ U+(E)

0

(E − F (u))−1/2 du, (3.4.7)

τ λ̃−(E) = λ̃−1/2

∫ 0

U−(E)

(E − F (u))−1/2 du, (3.4.8)

being U+(E) (U−(E)) the positive (negative) inverse of F at E. It is obvious that
for E fixed the functions τ λ̃+(E), τ λ̃−(E) are strictly decreasing with respect to λ̃.
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Then from (3.4.6) we deduce that the root E+
k (λ̃) is strictly increasing with respect

to λ̃. Thus, If λ1 < λ2, we have√
2λ1(E+

k (λ1)− F (u)) <
√

2λ2(E+
k (λ2)− F (u)), (3.4.9)

for U−(E+
k (λ1)) ≤ u ≤ U+(E+

k (λ1)).

We will prove now that ‖u′
λ̃
‖L2 is strictly increasing in λ̃.

The function uλ̃ has k + 1 simple zeros in [0, 1] and uλ̃ is positive in the first
subinterval. Let T+(E+

k (λ)) be the x-time necessary to go from the initial condition
uλ(0) = 0 to the point where u′λ(T+(E+

k (λ))) = 0. Then the length of the first
subinterval is 2T+(E+

k (λ)) [18]. By (3.4.5),

(u′
λ̃
(x))2 =

√
2λ̃

√
E+
k (λ̃)− F (uλ̃(x)) u′

λ̃
(x),

so we have∫ T+(E+
k (λ̃))

0

(u′
λ̃
(x))2dx =

∫ T+(E+
k (λ̃))

0

√
2λ̃

√
E+
k (λ̃)− F (uλ̃(x)) u′

λ̃
(x)dx.

By the change of variable v = uλ̃(x) we obtain

∫ T+(E+
k (λ̃))

0

(u′
λ̃
(x))2dx =

∫ U+(E+
k (λ̃))

0

√
2λ̃

√
E+
k (λ̃)− F (v) dv = g(λ̃).

Since
λ̃ 7→ U+(E+

k (λ̃))

is strictly increasing and using (3.4.9), we conclude that the function g(λ̃) is strictly
increasing. Hence, putting x1(λ̃) = 2T+(E+

k (λ̃)) we obtain that the norm of uλ̃ in
the first subinterval, ‖u′

λ̃
‖L2(0,x1(λ̃)), is strictly increasing. Arguing in the same way

in the other subintervals we obtain that

λ̃ 7→ ‖u′
λ̃
‖L2

is strictly increasing.
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Let us prove the same result but with respect to the norm
∥∥uλ̃∥∥Lp with p ≥ 1.

Lemma 3.21. Assume conditions (A1)-(A5) and let f be odd. Let v1 = v+
k,λ1

, v2 =

v+
k,λ2

with k2π2 < λ1 < λ2. Then ‖v1‖Lp < ‖v2‖Lp for any p ≥ 1.

Proof. As in the previous lemma, denote uλ̃ = v+

k,λ̃
. The function uλ̃ has k + 1

zeros in [0, 1] at the points

0 < x1 < x2 < ... < xk−1 < 1.

When f is odd, by symmetry, the length of all subintervals has to be the same, so
xj = j

k
regardless the value of λ̃.

We shall prove that in the first subinterval we have that uλ1 (x) < uλ2 (x) , for
all x ∈

(
0, 1

k

)
. By (3.4.5) for x ∈ [0, 1

2k
] we have

x =

∫ x

0

ds =

∫ u
λ̃

(x)

0

du√
2λ̃
(
E+
k

(
λ̃
)
− F (u)

) ,
so (3.4.9) yields

x =

∫ uλ2 (x)

0

du√
2λ2

(
E+
k (λ2)− F (u)

) =

∫ uλ1 (x)

0

du√
2λ1

(
E+
k (λ1)− F (u)

)
>

∫ uλ1 (x)

0

du√
2λ2

(
E+
k (λ2)− F (u)

) , if x ∈ (0,
1

2k
].

Thus, uλ1 (x) < uλ2 (x) , for all x ∈ (0, 1
2k

]. By symmetry we obtain that the
inequality is true in

(
0, 1

k

)
.

Repeating the same argument in the other subintervals we get that

|uλ1 (x)| < |uλ2 (x)| for all x ∈ (0, 1) , x 6= j

k
, j = 1, ...k − 1.

This implies that ‖uλ1‖Lp < ‖uλ2‖Lp for any p ≥ 1.
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Remark 3.22. The statements in Lemmas 3.20-3.21 are also true for v−
k,λ̃
, because

v−
k,λ̃

(x) = v+

k,λ̃
(1− x), so the H1

0 and Lp norms of v−
k,λ̃

and v+

k,λ̃
are the same.

Lemma 3.23. Assume conditions (A1)-(A5). Then ‖v+

k,λ̃
‖H1

0
and ‖v−

k,λ̃
‖H1

0
are

contiunous with respect λ̃.

Proof. For λ > (πk)2 put φλ̃ = v±
k,λ̃

.

Let us to show that if λ̃n → λ̃0 ∈ ((πk)2,∞), we must have that

‖φλ̃n − φλ̃0‖H1
0
→ 0.

Since

(φλ̃)xx(r) + λ̃f(φλ̃) = 0 (3.4.10)

and

lim sup
|u|→+∞

f(u)

u
< 0

we have that there is a constant M > 0 such that∫ 1

0

((φλ̃)x)
2 = λ̃

∫ 1

0

f(φλ̃)φλ̃ ≤ λ̃M

Therefore, the family

((πk)2,∞) 3 λ̃ 7→ φλ̃ ∈ H
1
0 (0, 1)

is bounded in bounded subsets of ((πk)2,∞). Since H1
0 (0, π) ↪→ C([0, π]), it is also

uniformly bounded in C([0, π]) uniformly in bounded subsets of (j2,∞).

From the continuity of f , the same is true for

((πk)2,∞) 3 λ̃ 7→ f ◦ φλ̃ ∈ C([0, 1])
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and, using (3.4.10), for

((πk)2,∞)λ̃ 7→ (φλ̃)xx ∈ C([0, 1]).

It follows from the compact embedding of H2(0, 1) into H1
0 (0, 1) that there is

a subsequence {λ̃nk} of {λ̃n}n such that

φλ̃nk
k→∞−→ w in H1

0 (0, 1).

Now, since ∫ 1

0

(φλ̃nk
)xvx = λ̃n

∫ 1

0

f(φλ̃nk
)v,

for all v ∈ H1
0 (0, 1), passing to the limit as k →∞ we have that

∫ 1

0

wxvx = λ̃0

∫ 1

0

f(w)v,

and w is a weak solution of (3.4.10).

Hence, since w also converges in the C1([0, 1]) norm, we deduce that

w ≡ 0 or w = φλ̃0 .

To see that w 6≡ 0 we recall that

((πk)2,∞) 3 λ̃ 7→
∫ 1

0

((φλ̃)x)
2

is an strictly increasing function of λ̃.

This shows the continuity of the function

((πk)2,∞) 3 λ̃ 7→ φλ̃ ∈ H
1
0 (0, 1).
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3.4.2. Nonlocal fixed points

Although we are mainly interested in problem (3.1.1), we will study the ex-
istence of stationary points for an elliptic problem with a more general nonlocal
term than in (3.4.1). Namely, let us consider the following problem:{

−a (l(u))uxx = λf (u) , 0 < x < 1,

u (0) = u(1) = 0,
(3.4.11)

where
l (u) = ‖u‖rH1

0

or
l (u) = ‖u‖rLp ,

for p ≥ 1, r > 0.

Let
dk = sup{d : λ > a

(
d
)
π2k2 ∀d ≤ d}.

Then for any d < dk there exists the fixed point udk of (3.4.2), where udk is either
equal to u+

k or u−k .
It is obvious that any solution of (3.4.11) is a solution of (3.4.2) with d = l (u) .

Therefore, all the solutions to problem (3.4.11) have to be solutions udk to problem
(3.4.2) for a suitable d.

In the same line as for the classical Chafee-Infante equation (see [33]), we
are now interested in analyzing how many equilibria there are. In this case, the
nonlocal term will play an important role since it is crucial when the behaviour
of the bifurcations is studied. We want to construct a sequence of bifurcations
similar to the one in Theorem 1.18 where as long as the parameter λ > 0 increases,
a bifurcation from 0 happens.
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Theorem 3.24. Assume conditions (A1)-(A6) and, additionally, that

a (0)π2k2 < λ. (3.4.12)

Then:

For any 1 ≤ j ≤ k there exists d∗j < dk such that u
d∗j
j is a fixed point of

problem (3.4.11).

If λ ≤ a (0)π2 (k + 1)2 and a(0) = mins≥0{a (s)}, there are no fixed points
for j > k.

If N ≥ k is the first integer such that λ ≤ infs≥0{a (s) π2 (N + 1)2}, there
are no fixed points for j > N.

If l (u) = ‖u‖rH1
0
, λ ≤ a (0)π2 (k + 1)2 and a is non-decreasing, there are

exactly 2k + 1 solutions to problem (3.4.11): 0, u±1,d∗1 , ..., u
±
k,d∗k

.

If l (u) = ‖u‖rLp, λ ≤ a (0)π2 (k + 1)2, f is odd and a is non-decreasing, there
are exactly 2k + 1 solutions to problem (3.4.11): 0, u±1,d∗1 , ..., u

±
k,d∗k

.

Proof. For the first statement, it is enough to prove the result for j = k. By
condition (3.4.12) we have that dk ∈ (0,+∞].

Consider first the case where dk is finite. We need to obtain the existence of
d∗k < dk such that l

(
u
d∗k
k

)
= d∗k. When d = 0 it is clear that l (u0

k) > 0. Also, we

know that l
(
udkk

)
= 0. Multiplying (3.4.2) by udk and using (3.1.7), (A6) and the

Poincaré inequality we obtain∥∥∥(udk)′∥∥∥2

L2
≤ λ

a (d)

(
f
(
udk
)
, udk
)
≤ λ

m

(
mε + ε

∥∥udk∥∥2

L2

)
≤ K1 +

1

2

∥∥∥(udk)′∥∥∥2

L2
,

so, by using the embedding H1
0 (Ω) ⊂ L∞ (Ω) , l

(
udk
)
is bounded in d. This implies

that the function g (d) = l
(
udk
)
has to intersect the line y (d) = d at some point d∗k.

It remains to check that d∗k < dk. For this aim we prove first that udk →
d→dk

0 strongly

in H1
0 (Ω). Indeed, as udk is bounded in H1

0 (Ω), there exist v and a sequence {udjk }
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such that udjk → v in L2 (Ω). The embeddingH1
0 (Ω) ⊂ C ([0, 1]) and the continuity

of the function f (u) imply that {f(u
dj
k )} is bounded in C([0, 1]), so from∥∥∥∥(udjk )′′∥∥∥∥

L2

≤ λ

a (dj)

∥∥∥f (udjk )∥∥∥
L2
≤ λ

m

∥∥∥f (udjk )∥∥∥
L2
≤ C

we deduce that {udjk } is bounded in H2 (Ω). Hence, udjk → v in H1
0 (Ω) and

C1([0, 1]). Also, f(u
dj
k ) → f(v) in C ([0, 1]). Therefore, for any ψ ∈ H1

0 (Ω) we
have that ((

u
dj
k

)′
, ψ′
)

= λ
a(dj)

(
f
(
u
dj
k

)
, ψ
)

↓ ↓
(v′, ψ′) = λ

a(dk)
(f (v) , ψ) ,

which implies that v is a solution to problem (3.4.2) with d = dk. But from u
dj
k → v

in C1([0, 1]) it follows that v cannot be a point with less than k + 1 simple zeros
in [0, 1] and then λ/a (dk) = k2π2 implies that v ≡ 0. As the limit is the same
for every converging subsequence, udk →

d→dk
0 strongly in H1

0 (Ω). Thus, dk > 0 and

limd→dk

∥∥∥(udk)′∥∥∥
L2

= 0 imply that d∗k < dk.

Second, let dk = +∞. Then the existence of d∗k < +∞ follows by the same
argument as before.

The second and third statements are a consequence of

λ ≤ a (0)π2 (k + 1)2 ≤ a (d) π2 (k + 1)2 for any d ≥ 0

and
λ ≤ inf

s≥0
{a (s)}π2 (N + 1)2 ≤ a (d)π2 (N + 1)2 for any d ≥ 0,

respectively, because in such a case for problem (3.4.2) the fixed points v±j , j > k

(respectively j > N), do not exist.

The last two statements are a consequence of the first two statements and of
the fact that the points of intersection of the functions g (d) = l

(
udk
)
and y (d) = d

has to be unique, because if a is non-decreasing, then g(d) is non-increasing by
Lemmas 3.20 and 3.21.
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In view of this theorem, we have exactly the same equilibria and bifurcations
as in the classical Chafee-Infante equation (see [18] and [55]) when the function
a(d) is non-decreasing, because in this case in view of the monotone dependence
between the functions a(d) and g(d), there is only one intersection point of the
function g (d) with the bisector, as it is shown in Figure 3.1. This follows from
the fact that g(d) − d is strictly decreasing, but there may be weaker conditions
on a (·) that would lead g(d)− d to be strictly decreasing.

Figure 3.1: a(d) non-decreasing

When the function a (·) is not assumed to be monotone, an interesting situation
appears. More precisely, it is possible to have more than two equilibria with the
same number of zeros. If l (u) = ‖u‖2

H1
0
, for the equilibria with k+ 1 zeros in [0, 1]

this happens when the equation

d =

∫ 1

0

∣∣∣∣dudk(x)

dx

∣∣∣∣2 dx = g(d) (3.4.13)
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has more than one solution. For instance, if a(0) = a(d) for some 0 < d̄ < g(0),
then g(0) = g(d). Assuming that there are 0 < d1

k < d2
k < d such that a(d2

k) =

a(d1
k) = λ

π2k2
, there must exist 0 < d∗1 < d1

k < d2
k < d∗2 < d such that g(d∗i ) = d∗i .

Now, by the argument in Theorem 3.24, there must exist a d∗3 > d such that
g(d∗3) = d∗3, obtaining six fixed points with k + 1 zeros in [0, 1]. This situation is
shown in Figure 3.2, where d∗1, d∗2 and d∗3 are solutions of (3.4.13), that is, there are
three intersection points with the bisector. We notice that when a(d) > λ/(π2k2),
the function g(d) is not defined since the condition for such equilibria to exist is not
satisfied, but we can make this function continuous by putting g (d) = 0 whenever
a(d) ≥ λ/(π2k2). This procedure establishes that, having fixed a natural number
k, for any j ∈ N we may construct a (·) in such a way that we have 2(2j + 1)

equilibria with k + 1 zeros in [0, 1].

Figure 3.2: a(d) whatever

At least there is always one intersection point with the bisector, but the function
g(d) could be even tangent to the bisector at some point or not cut it again.
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3.4.3. Lap number and some forbidden connections

With Theorem 3.24 at hand we can improve the description of the global at-
tractor given in Theorem 3.14.

Under conditions (A1)-(A6), (A8) and h ≡ 0, if

a (0)π2n2 < λ ≤ a (0)π2 (n+ 1)2 (3.4.14)

then problem (3.1.1) possesses exactly 2n+ 1 fixed points: v0 = 0, u±1,d∗1 , ..., u
±
n,d∗n

.

Let φ be a bounded complete trajectory. We know by Theorem 3.14 that

distH1
0
(φ (t) ,R)→ 0, as t→ ±∞.

As the number of fixed points is finite, we will prove that in fact the solution has
to converge to one fixed point forwards and backwards. We recall the omega and
alpha limit sets of φ, given by

ω (φ) = {y : ∃tn → +∞ such that φ (tn)→ y},

α (φ) = {y : ∃tn → −∞ such that φ (tn)→ y},

are non-empty, compact and connected (cf. Lemma 0.18). Also, we have that
distH1

0
(φ (t) , ω (φ)) →

t→+∞
0, distH1

0
(φ (t) , α (φ)) →

t→−∞
0. Since ω (φ) , α (φ) ⊂ R

and R is finite, the only possibility is that ω (φ) = z1 ∈ R, α (φ) = z2 ∈ R.

Thus, we have established the following result.

Theorem 3.25. Let assume conditions (A1)-(A6), (A8), (3.4.14) and h ≡ 0.
Then

A =
2n+1⋃
k=0

M+ (vk) =
2n+1⋃
k=0

M− (vk) ,

where n is given in (3.4.14) and v0 = 0, v1 = u+
1,d∗1

, v2 = u−1,d∗1 , ...

In other words, the global attractor A consists of the set of stationary points
R (which has 2n+ 1 elements) and the bounded complete trajectories that connect
them (the heteroclinic connections).
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Remark 3.26. As the Lyapunov function (3.3.19) is strictly decreasing along a
trajectory φ which is not a fixed point, then there cannot exist homoclinic connec-
tions for any fixed point. This implies in particular that if n = 0, then A = {0}.

Remark 3.27. If we use condition (A7) instead of (A8), then we cannot guarantee
that the number of fixed points is finite. But if we suppose that this is the case,
then the result remains valid. In this situation, there could be more than two fixed
points with the same number of zeros.

Using the concept of lap number of the solutions we can discard some hetero-
clinic connections.

We consider the function w (t) = u(α−1 (t)), which is a strong solution to
problem (3.3.20). For any strong solution u (·) conditions (A1), (A3), (A6) and
u ∈ C([0,+∞), H1

0 (Ω)) imply that the function

r (t, x) =
λ

a(‖w (t) ‖2
H1

0
)

f (w (t, x))

w (t, x)

is continuous and w (·) is a solution of the linear equation

∂w

∂t
− ∂2w

∂x2
= r (t, x)w. (3.4.15)

Thus, by Theorem A.3 in the Appendix A (see also Theorem C in [2]) the
number of zeros of w (t) in [0, 1] is a nonincreasing function of t. Since α−1 (t) is
an increasing function of time, the result is also true for the solution u (·). Making
use of this property we will prove the following result.

Lemma 3.28. Let assume conditions (A1)-(A6), h ≡ 0 and either (A7) or (A8).
Then if n > k, there cannot exist a connection from the fixed point u±k,d∗k to the
fixed point u±n,d∗n, that is, there cannot exist a bounded complete trajectory φ such
that

φ (t)→ u±n,d∗n as t→ +∞,

φ (t)→ u±k,d∗k
as t→ −∞.
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Proof. By contradiction assume that such complete trajectory exists. Denote by
l (z) the number of zeros of z in [0, 1]. Using the compactness of the attractor in
C1([0, 1]) (see Corollary 3.19) we obtain that

φ (t)→ u±n,d∗n in C1([0, 1]) as t→ +∞,

φ (t)→ u±k,d∗k
in C1([0, 1]) as t→ −∞.

Then, as the zeros are simple, we can choose t1 > 0 large enough such that

l (φ (−t1)) = l
(
u±k,d∗k

)
= k + 1.

Put u (t) = φ (t− t1), which is a strong solution of (3.1.1). Now we choose t2 > 0

such that
l (u (t2)) = l

(
u±n,d∗n

)
= n+ 1.

Therefore,
l (u (0)) = k + 1

and
l (u(t2)) = n+ 1 > k + 1.

This contradicts the fact that the number of zeros of u (t) is non-increasing.

Lemma 3.29. Let assume conditions (A1)-(A6), h ≡ 0 and either (A7) or (A8).
Let u+

k,d∗k
, u−k,d∗k

be a pair of fixed points corresponding to the same value d∗k. Then
there cannot be an heteroclinic connection between them.

Proof. Let k be even. The function v (x) = u+
k,d∗k

(1− x) is a fixed point corre-
sponding to d∗k as

−∂
2v

∂x2
(x) = −

∂2u+
k,d∗k

∂x2
(1− x) =

λ

a (d∗k)
f
(
u+
k,d∗k

(1− x)
)

=
λ

a (d∗k)
f (v (x)) ,

so u−k,d∗k (x) = v (x) = u+
k,d∗k

(1− x).
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The equalities

∫ 1

0

(
∂u−k,d∗k
∂x

(x)

)2

dx =

∫ 1

0

(
∂u+

k,d∗k

∂x
(1− x)

)2

dx =

∫ 1

0

(
∂u+

k,d∗k

∂x
(y)

)2

dy,

∫ 1

0

∫ u−
d∗
k

(x)

0

f (s) dsdx =

∫ 1

0

∫ u+
d∗
k

(1−x)

0

f (s) dsdx =

∫ 1

0

∫ u+
d∗
k

(y)

0

f (s) dsdy

imply that E(u−k,d∗k
) = E

(
u+
k,d∗k

)
, where E is the Lyapunov function (3.3.19). Since

this function is strictly decreasing along a trajectory φ which is not a fixed point,
there cannot exist a heteroclinic connection between these two points.

When k is odd, we make use of the lap-number property. For a global solution
u (·) let

Q+ (t) = {x ∈ (0, 1) : u (t, x) > 0},

Q− (t) = {x ∈ (0, 1) : u (t, x) < 0}.

In the proof of Theorem A.3 in the Appendix A it is shown that if t1 > t0, then
there is an injective map for the connected components of Q+ (t1) (Q− (t1)) to
connected components of Q+ (t0) (Q− (t0)). Let, for example, u (·) be a global
solution such that

u (t) →
t→−∞

φ−k.d∗k
, u (t) →

t→+∞
φ+
k.d∗k

.

Since we have convergence in C1([0, π]), there are t0 < t1 such that the number
of components of Q+ (t0) is equal to (j − 1) /2 and the number of components of
Q+ (t1) is equal to (j + 1) /2. This contradicts the existence of the above injective
map. Thus, such heteroclinic connection is impossible. A similar argument (but
using Q− (t)) is valid for the connection from φ+

k.d∗k
to φ−k.d∗k .

Remark 3.30. In the case where condition (A7) is assumed, there could be more
than two equilibria with k+ 1 zeros in [0, 1]. In this case there could exist connec-
tions between fixed points with different values of the constant d.
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3.5. Morse decomposition

In this section we study in more detail the structure of the global attactor in the
case where the function f is odd. More precisely, we obtain that the m-semiflow
G is dynamically gradient, which is equivalent to saying that there is a Morse
decomposition of the attractor [44], and study the stability of the fixed points.

3.5.1. Aproximations

We consider now the situation when conditions (A1)-(A6), h = 0 and either
(A7) or (A8) are satisfied and, moreover, the function f is odd.

In this section we consider the following problems:
∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λfεn(u), t > 0, x ∈ (0, 1),

u(t, 0) = 0, u(t, 1) = 0,

u(0, x) = u0(x),

(3.5.1)

where the function fεn is defined below and εn → 0, as n→∞.
Let set up the convolution. We consider the mollifier ρεn(·) in R with the

explicit construction

ρεn(x) :=
ψεn(x)∫
R ψεn

, where ψεn(x) :=

 exp
(

1
x2−εn

)
, if |x| < εn;

0, otherwise.

We define the function

f εn(u) =

∫
R
ρεn(s)f(u− s)ds.

It is well known that f εn(·) ∈ C∞(R) and that for any compact subset A ⊂ R, f εn

converges uniformly to f ,
‖f εn − f‖C0 → 0,

as εn → 0 (see [51]).
It is clear that for u > εn the function f εn (u) is strictly concave.
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We need the approximation to fulfil (A2)-(A3). For that end, we consider the
approximation except on the interval [−εn, εn], for any εn > 0. There exists a
polynomial of sixth degree p(x) such that

p(0) = 0, p(εn) = f εn(εn),

p′(0) = 1, p′(εn) = f εn ′(εn),

p′′(0) = 0, p′′(εn) = f εn ′′(εn),

p′′′(0) = −1.

We choose γ > 0 such that p′′ (s) < 0 for all s ∈ (0, γ]. We can assume that εn < γ

for all n.

Thus, by construction the function

fεn(x) =


−f εn(−x) if x < −εn,
−p(−x) if −εn ≤ x ≤ 0,

p(x) if 0 ≤ x ≤ εn,

f εn(x) if x > εn

(3.5.2)

approximates the function f uniformly in compact sets, that is, for any [−M,M ]

and δ > 0 there exists n0(M, δ) ∈ N such that

|f(x)− fεn(x)| < δ, for all n ≥ n0, x ∈ [−M,M ]. (3.5.3)

Also, it satisfies the following properties:

(B1) fεn ∈ C2(R);

(B2) fεn(0) = 0;

(B3) f ′εn (0) = 1;

(B4) fεn is strictly concave if u > 0 and strictly convex if u < 0;

(B5) fεn is odd.
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Lemma 3.31. Let f satisfy (A5). Then the functions fεn satisfy condition (A5)
and (3.1.7) with independent constants of εn.

Proof. We assume without loss of generality that εn < 1. In order to check (3.1.2)-
(3.1.3) we only need to consider u outside the interval [−1, 1], because the sequence
{fεn} is uniformly bounded in any compact set of R. Then for u 6∈ [−1, 1] the
Hölder inequality and

∫
R ρεn (s) ds = 1 give

|fεn (u)| =
∣∣∣∣∫

R
f (u− s) ρεn (s) ds

∣∣∣∣ ≤ ∫
R
|f (u− s)| ρεn (s) ds

≤
∫
R

(
C1 + C2|u− s|p−1

)
ρεn (s) ds

≤ C1 + C22p−2

(∫ εn

−εn

(
|u|p−1 + |s|p−1) ρεn (s) ds

)
≤ C̃1 + C̃2 |u|p−1 .

If f satisfies (3.1.3), then

fεn (u)u =

∫
R
f (u− s) (u− s) ρεn (s) ds+

∫
R
f (u− s) sρεn (s) ds

≤
∫
R

(C3 − C4|u− s|p) ρεn (s) ds+

∫
R

(
C1 + C2|u− s|p−1

)
sρεn (s) ds

≤ K1 − C4

∫
R

(
21−p |u|p − |s|p

)
ρεn (s) ds

+ C22p−2

∫
R

(
|u|p−1 + |s|p−1) sρεn (s) ds

≤ C̃3 − C̃4|u|p,

where we have used |u|p ≤ 2p−1 (|sp|+ |u− s|p) and the Young inequality.

For (3.1.7) we put in the above inequality p = 2, C3 = mε, C4 = −ε and obtain

fεn (u)u ≤ m̃ε + εu2,

which obviously implies (3.1.4).
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Our next aim is to focus on the convergence of solutions of the approximations.

Theorem 3.32. Let conditions (A1)-(A6), h = 0 and either (A7) or (A8) be
satisfied and let, moreover, the function f be odd. If uεn,0 → u0 in H1

0 (Ω) as
εn → 0, then for any sequence of solutions of (3.5.1) uεn(·) with uεn(0) = uεn,0

there exists a subsequence of εn such that uεn converges to some strong solution
u (·) of (3.1.1) in the space C([0, T ], H1

0 (Ω)), for any T > 0.

Proof. Using (3.3.2) and (3.3.3) we can repeat the same lines of the proof of Theo-
rem 3.5 and obtain the existence of a function u (·) and a subsequence of uεn such
that

uεn
∗
⇀ u in L∞(0, T ;H1

0 (Ω)),

uεn ⇀ u in L2(0, T ;D(A)),

duεn
dt

⇀
du

dt
in L2(0, T ;L2(Ω)),

uεn → u in C([0, T ];L2(Ω)),

uεn → u in L2(0, T ;H1
0 (Ω)),

fεn(unε)
∗
⇀ f(u) in L∞(0, T ;L∞(Ω)),

a(‖uεn‖2
H1

0
)∆uεn ⇀ a(‖u‖2

H1
0
)∆u in L2(0, T ;L2(Ω)).

Also, in the same way we prove that u (·) is a strong solution to problem (3.1.1)
such that u (0) = u0.

The uniform estimate in the space H1
0 (Ω) implies also that if tn → t0, then

uεn (tn) ⇀ u (t0) in H1
0 (Ω). We need to prove that this convergence is in fact

strong, proving then the convergence in C([0, T ], H1
0 (Ω)) for any T > 0.

In the same way as in the proof of Lemma 3.7 we deduce that for some C > 0

the functions
Qn(t) = A(‖uεn(t)‖2

H1
0
)− 2Ct,

Q(t) = A(‖u(t)‖2
H1

0
)− 2Ct

are continuous and non-increasing in [0, T ].
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Moreover,
Qn(t)→ Q(t) for a.e. t ∈ (0, T ).

Let first t0 > 0. Then we take 0 < tj < t0 such that tj → t0 and Qn(tj)→ Q(tj)

for all j. Then

Qn(tn)−Q(t0) ≤ Qn(tj)−Q(t0) ≤ |Qn(tj)−Q(tj)|+ |Q(tj)−Q(t0)| for tn > tj.

For any δ > 0 there exist j(δ) and N(j(δ)) such that Qn(tn) − Q(t0) ≤ δ if
n ≥ N, so lim supQn(tn) ≤ Q(t0). Hence, a contradiction argument using the
continuity of A (s) shows that lim sup ‖uεn(tn)‖2

H1
0
≤ ‖u(t0)‖2

H1
0
. This, together

with lim inf ‖uεn(tn)‖2
H1

0
≥ ‖u(t0)‖2

H1
0
, implies that

‖uεn(tn)‖2
H1

0
→ ‖u(t0)‖2

H1
0
,

so that
uεn(tn)→ u(t0) in H1

0 (Ω).

For the case when t0 = 0 we use the same argument as in Lemma 3.7.

We denote by Aεn the global attractor for the semiflow Gεn corresponding to
problem (3.5.1).

Lemma 3.33. Assume the condition of Theorem 3.32. Then ∪
n∈NAεn is bounded

in H1
0 (Ω). Hence, the set ∪n∈NAεn is compact in L2(Ω).

Proof. By Lemma 3.31 inequality (3.1.7) is satisfied for any n with constants which
are independent of εn, so inequality (3.3.9) holds true with constants independent
of εn. Thus, there a exists a common absorbing ball B0 in L2 (Ω) (with radius K >

0) for problems (3.5.1). Further, by repeating the same steps as in Proposition 3.11
we obtain a common absorbing ball in H1

0 (Ω) (with radius K̃ > 0) as by Lemma
3.31 the constants which are involved are independent of εn. Thus, ‖y‖H1

0
≤ K̃ for

any y ∈ ∪
n∈NAεn .
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Lemma 3.34. Assume the condition of Theorem 3.32. Then ∪
n∈NAεn is bounded

in V 2r for any 0 ≤ r < 1. Hence, ∪
n∈NAεn is compact in V 2r and C1([0, 1]).

Proof. Using Lemma 3.33 we obtain the boundedness of ∪
n∈NAεn in V 2r by repeat-

ing the same lines in Lemma 3.18. The rest of the proof follows from the compact
embedding V α ⊂ V β, α > β, and the continuous embedding V 2r ⊂ C1([0, 1]) if
r > 3

4
.

Corollary 3.35. Assume the condition of Theorem 3.32. Then any sequence
ξn ∈ Aεn with εn → 0 is relatively compact in C1([0, 1]).

Lemma 3.36. Assume the condition of Theorem 3.32. Then up to a subsequence
any bounded complete trajectory uεn of (3.5.1) converges to a bounded complete
trajectory u of (3.1.1) in C([−T, T ], H1

0 (Ω)) for any T > 0. On top of that, if
yn ∈ Aεn, then passing to a subsequence yn → y ∈ A in H1

0 (Ω) . Hence,

distH1
0

(Aεn ,A)→ 0 as n→∞. (3.5.4)

Proof. Let fix T > 0. Up to a subsequence, by Corollary 3.35 we have

uεn(−T )→ y in H1
0 (Ω).

Theorem 3.32 implies that uεn converges in C([−T, T ], H1
0 (Ω)) to some solution u

of (3.1.1). If we choose successive subsequences for −2T,−3T . . . and apply the
standard diagonal procedure, we obtain that a subsequence uεn converges to a
complete trajectory u of (3.1.1) in C([−T, T ], H1

0 (Ω)) for any T > 0. Finally, from
Lemma 3.33 this trajectory is bounded.

If yn ∈ Aεn , by Corollary 3.35 we can extract a subsequence converging to some
y. If we take a sequence of bounded complete trajectories φn (·) of (3.5.1) such
that φn (0) = yn, then by the previous result it converges in C([−T, T ], H1

0 (Ω)) to
some bounded complete trajectory φ (·) of (3.1.1), so y ∈ A.

Finally, if (3.5.4) was not true, there would exist δ > 0 and a sequence yn ∈ Aεn
such that distH1

0
(y,A) > δ. But passing to a subsequence yn → y ∈ A, which is a

contradiction.
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Lemma 3.37. Assume the conditions of Theorem 3.32. Let τ dn,εn± be the functions
(3.4.7)-(3.4.8) for problem (3.4.2) but replacing f by fεn and d by dn. Let dn, En →
0 as n→∞. Then

lim
n→∞

τ dn,εn± (En) =

√
a (0)π√

2λ
.

Proof. Let us consider

fdn,εn(u) =
λfεn(u)

a(dn)
.

In view of property (B4) and (3.5.3), since f ′εn(0) = f ′(0) = 1 and fεn(0) = f(0) =

0, given γ ∈ (0, 1) there exists δ > 0 (independent of εn) such that

(1− γ)u ≤ fεn(u) ≤ (1 + γ)u, for any u ∈ (0, δ).
1

1 + γ
≤ u

fεn(u)
≤ 1

1− γ
, for any u ∈ (0, δ).

(3.5.5)

The sequence Fεn (·) converges uniformly to F (·) in compact sets. Moreover,
as U+(E) is continuous and using [70, p. 60], given δ > 0, there exists η > 0 such
that

U εn
+ (E) ≤ δ, for any 0 < E ≤ η.

Now, if we integrate the first inequality in (3.5.5) between 0 and u we obtain

1

2
(1− γ)u2 ≤ Fεn(u) ≤ 1

2
(1 + γ)u2, for any 0 ≤ u ≤ δ.

Using the change of variable Eny2 = Fεn(u), we have

(
1− γ
2En

)1/2

u ≤ y ≤
(

1 + γ

2En

)1/2

u, if 0 < En ≤ η, 0 ≤ y ≤ 1.

Dividing the previous expression by
√

λ
a(dn)

fdn,εn(u) and using (3.5.5) we obtain

(
a(dn)(1− γ)

2λEn(1 + γ)2

)1/2

≤
√
a (dn)y√

λfdn,εn(u)
≤
(
a(dn)(1 + γ)

2λEn(1− γ)2

)1/2

if 0 < En ≤ η, 0 ≤ y ≤ 1.
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Now if we multiply by 2
√
En(1− y2)−

1
2 and integrate from 0 to 1, we get

π

(
a(dn)(1− γ)

2λ(1 + γ)2

)1/2

≤ τ εn+ (En) ≤ π

(
a(dn)(1 + γ)

2λ(1− γ)2

)1/2

, if 0 < En ≤ η.

Then the theorem follows as a (dn)→ a (0) when n→∞.

The proof for τ εn− is analogous.

Under the conditions of Theorem 3.32, if (A8) is satisfied and

a (0)π2k2 < λ ≤ a (0)π2 (k + 1)2 , k ∈ Z, k ≥ 0, (3.5.7)

holds, then by Theorem 3.24 problem (3.5.1) has exactly 2k + 1 fixed points (de-
noted by v0 = 0, v±

1,dεn1
, ..., v±

k,dεnk
) and v±

m,dεnm
has m + 1 zeros in [0, 1] for each

1 ≤ m ≤ k. The same is valid for problem (3.1.1) and we denote the 2k + 1 fixed
points by v0 = 0, u±1,d∗1 , ..., u

±
k,d∗k

.

Lemma 3.38. Assume the conditions of Theorem 3.32, (A8) and (3.5.7). Let
m ∈ N, 1 ≤ m ≤ k, be fixed. Then v+

m,dεnm
(resp. v−

m,dεnm
) do not converge to 0 in

H1
0 (Ω) as εn → 0.

Proof. Assume that v+
m,dεnm

→ 0 in H1
0 (0, 1). Then it converges to 0 in C ([0, 1])

and the equality

−
d2v+

m,dεnm

dx2
(x) =

λfεn

(
v+
m,dεnm

(x)
)

a(dεnm )

implies that
v+
m,dεnm

→ in C2 ([0, 1]) .

In particular,
dv+

m,dεnm

dx
(0)→ 0

and
dεnm =

∥∥∥v+
m,dεnm

∥∥∥2

H1
0

→ 0.
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The value En corresponding to the fixed point v+
m,dεnm

is equal to

a (dεnm )

2λ

dv+
m,dεnm

dx
(0) ,

so En → 0. We will show that this is not possible. We know by Lemma 3.37 that

lim
n→∞

τ d
εn
m ,εn
± (En) =

π
√
a(0)√
2λ

.

Also, since v+
m,dεnm

is a fixed point with d = dεnm one of the following conditions has

to be satisfied (see (3.4.6)):

jτ d
εn
m ,εn

+ (En) + (j − 1) τ d
εn
m ,εn
− (En) =

(
1

2

) 1
2

, (3.5.8)

jτ d
εn
m ,εn
− (En) + (j − 1) τ d

εn
m ,εn

+ (En) =

(
1

2

) 1
2

, if m = 2j − 1 (3.5.9)

jτ d
εn
m ,εn

+ (En) + jτ d
εn
m ,εn
− (En) =

(
1

2

) 1
2

, if m = 2j. (3.5.10)

Since En → 0 and λ > k2π2a(0) ≥ m2π2a(0), there exists εn0 such that

τ
d
εn0
m ,εn0
± (En0) <

1√
2m

.

Hence, neither of (3.5.8)-(3.5.10) is possible.

Lemma 3.39. Assume the conditions of Theorem 3.32, (A8) and (3.5.7). Let
m ∈ N, 1 ≤ m ≤ k, be fixed. Then v+

m,dεnm
(resp. v−

m,dεnm
) converges to u+

m,d∗m
in

H1
0 (Ω) (resp. u−m,d∗m) as εn → 0.
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Proof. We consider v+
m,dεnm

. In view of Corollary 3.35, v+
m,dεnm

is relatively compact
in C1 ([0, 1]) , so up to a subsequence

v+
m,dεnm

→ v in C1([0, 1])

and
dεnm → d∗ = ‖v‖2

H1
0
.

The proof will be finished if we prove that v = u+
m,d∗m

. We observe that since
in such a case every subsequence would have the same limit, the whole sequence
would converge to u+

m,d∗m
.

In view of (3.5.3), we get that

fεn(v+
m,dεnm

)→ f (v) in C([0, 1]).

It follows that
−∂

2v

∂x2
=

λf (v)

a(‖v‖2
H1

0
)

and v is a solution of (3.4.1), so v is a fixed point of (3.1.1).

We need to prove that v = u+
m,d∗m

. From Lemma 3.38, it follows that v 6= 0,
and then

v = u±j,d∗j
, for some 1 ≤ j ≤ k.

Since u±j,d∗j has j + 1 simple zeros, the convergence

v+
m,dεnm

→ u±j,d∗j
in C1([0, 1])

implies that v+
m,dεnm

has j + 1 zeros for n ≥ N . But v+
m,dεnm

possesses m+ 1 zeros in
[0, 1]. Thus, m = j.

For the sequence v−
m,dεnm

the proof is analogous.
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3.5.2. Instability

We will prove that the fixed points 0 and u±k,d∗k , k ≥ 2, are unstable under some
additional assumptions on the functions f and a. For this aim we need to use the
approximative problems (3.5.1).

Theorem 3.40. Assume that the conditions (A1)-(A8), h = 0, (3.5.7) with k ≥
1 are satisfied and let, moreover, the function f (·) be odd and a (·) be globally
Lipschitz continuous. Then the equilibria v0 = 0 and u±j,d∗j , 2 ≤ j ≤ k (if k ≥ 2),
are unstable.

Remark 3.41. The condition that a (·) is globally Lipschitz continuous could be
dropped, as we can replace a (·) in (3.5.1) by a sequence aεn (·) of globally Lipschitz
continuous functions.

Proof. Problem (3.5.1) generates a single-valued semigroup {Tεn(t); t ≥ 0} with a
finite number of fixed points: v0 = 0, v±

1,dεn1
, ..., v±

k,dεnk
[32]. We know by Theorems

3.5 and 3.6 in [32] that for any v+
j,dεnj

with j ≥ 2 and v0 there exists a bounded
complete trajectory uεn such that

uεn(t)→ v+
j,dεnj

as t→ −∞, for k ≥ 2,

so v0, v
+
j,dεnj

are unstable. The same is valid for v−
j,dεnj

. On the other hand, by
Lemma 3.39 we have

v±
j,dεnj
→ u±j,d∗j

, (3.5.11)

where u±j,d∗j is a fixed point of problem (3.1.1) with j + 1 zeros in [0, 1]. We prove
the result for u+

j,d∗j
. For u−j,d∗j and v0 the proof is the same.

By Lemma 3.36 we obtain that up to a subsequence uεn converges to a bounded
complete trajectory u of problem (3.1.1) in the space C([−T, T ], H1

0 (Ω)) for every
T > 0. Thus, either u (·) is a fixed point v−1 or by Theorem 3.14 there exists a
fixed point v−1 of problem (3.1.1) such that

u(t)→ v−1 as t→ −∞ in H1
0 (Ω).
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In the second case, if v−1 = u+
j,d∗j
, the proof would be finished, so let assume the

opposite.

Assume first that either u (·) is not a fixed point or it is a fixed point but
v−1 6= u+

j,d∗j
. We consider r0 > 0 such that the neighborhood O2r0(v−1) does not

contain any other fixed point of problem (3.1.1). For any r ≤ r0 we can choose
tr → −∞ and nr such that uεn(tr) ∈ Or(v−1) for all n ≥ nr. On the other hand,
since uεn(t) → v+

j,dεnj
, as t → −∞, and v+

j,dεnj
→ u+

j,d∗j
6∈ B2r0(v−1), there exists

t′r < tr such that
uεnr (t) ∈ Or0(v−1) for t ∈ (t′r, tr],

‖uεnr (t′r)− v−1‖H1
0

= r0.

Let first tt − t′r → +∞. We define the sequence uεnr1 (t) = uεnr (t + t′r), which
passing to a subsequence converges to a bounded complete trajectory φ (t) such
that φ (t) ∈ Or0(v−1) for all t ≥ 0. As there is no other fixed point in O2r0(v−1),
φ (t)→ v−1 as t→ +∞. But ‖φ (0)− v−1‖ = r0, so φ (·) is not a fixed point. Then
φ (t)→ v−2 as t→ −∞, where v−2 is a fixed point different from v−1. Second, let
|tt − t′r| ≤ C. Then put uεnr1 (t) = uεnr (t + tr). Passing to a subsequence we have
that

u
εnr
1 (0)→ v−1,

tr − t′r → t0, as r → 0.

Also, uεnr1 (·) converges to a bounded complete trajectory u1 (·) of problem (3.1.1)
such that u1(0) = v−1. Let

ψ1(t) =

{
u1 (t) if t ≤ 0,

v−1 if t ≥ 0.

We note that ‖u1(−t0)− v−1‖H1
0

= r0 implies that u1 (·) is not a fixed point. Then
ψ1 is a bounded complete trajectory of problem (3.1.1) such that ψ1(t) → v−2 6=
v−1 as t→ −∞. If v−2 = u+

j,d∗j
, the proof is finished.

If v−2 6= u+
j,d∗j

, we continue constructing by the same procedure a chain of
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connections in which the new fixed point is always different from the previous
ones, because the existence of the Lyapunov function (3.3.19) avoids the existence
of a cyclic chain of connections. Since the number of fixed points is finite, at some
moment we obtain a bounded complete trajectory φ (·) such that

φ (t)→ u+
j,d∗j
, as t→ −∞,

proving that u+
j,d∗j

is unstable.

Now let u (·) = v−1 = u+
j,d∗j

. Defining the neighborhood O2r0(v−1) as before, for
any r ≤ r0 we can choose nr such that uεn(0) ∈ Or(v−1) for all n ≥ nr. Also, since

uεn(t)→ zn0 , as t→ +∞,

where zn0 6= v+
j,dεnj

is a fixed point of (3.5.1), there exists tr > 0 such that

uεnr (t) ∈ Or0(v−1) for t ∈ [0, tr),

‖uεnr (tr)− v−1‖H1
0

= r0.

The sequence {tr} cannot be bounded. Indeed, if tr → t0, then

uεnr (tr)→ u (t0) = v−1,

which is a contradiction with ‖uεnr (t0)− v−1‖H1
0

= r0. Then tr → +∞. We
define the functions uεnr1 (t) = uεnr (t + tr), which satisfy that uεnr1 (t) ∈ Or0(v−1)

for all t ∈ [−tr, 0). Passing to a subsequence it converges to a bounded complete
trajectory φ (·) such that φ (t) ∈ Or0(v−1) for all t ≤ 0. This trajectory is not a
fixed point as ‖φ(0)− v−1‖H1

0
= r0 and

φ (t)→ u+
j,d∗j

as t→ −∞,

so u+
j,d∗j

is unstable.
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Further, we will prove that there is also a connection from 0 to the point u±k,d∗k .

Theorem 3.42. Assume the conditions of Theorem 3.40. Then there exists a
bounded complete trajectory φ (·) such that φ (t) →

t→−∞
0, φ (t) →

t→+∞
u+
k,d∗k

(and the

same is valid for u−k,d∗k). Thus, E(0) = 0 > E(u±k,d∗k
).

Proof. We start with the case k = 1. We have three fixed points: 0, u+
1,d∗1

, u−1,d∗1 .
By Theorem 3.40 there exists a bounded complete trajectory φ (·) such that

φ (t) →
t→−∞

0,

whereas Theorem 3.14 and Remark 3.26 imply that it has to converge forward
to a fixed point different from 0, that is, to either u+

1,d∗1
or u−1,d∗1 . If, for example,

φ (t) →
t→+∞

u+
1,d∗1

, then as the function f is odd, ψ (t) = −φ (t) is another bounded

complete trajectory and ψ (t) →
t→+∞

−u+
1,d∗1

= u−1,d∗1 .

Further we consider the problem
∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λfk(u), t > 0, 0 < x < 1

k
,

u(t, 0) = u(t, 1
k
) = 0,

u(0, x) = u0(x),

(3.5.12)

where fk(u) =
√
kf
(
u/
√
k
)
satisfies (A1)-(A5). In this problem, condition (3.5.7)

implies that there are again three fixed points: 0, u+
1,d∗1,

1
k

, u−
1,d∗1,

1
k

. By the above
argument there is a connection φ 1

k
(·) from 0 to u+

1,d∗1,
1
k

(also to u−
1,d∗1,

1
k

). Since the
function f is odd, u+

k,d∗k
(x) is equal to 1√

k
u+

1,d∗1,
1
k

(x) on [0, 1
k
], to − 1√

k
u+

1,d∗1,
1
k

(
x− 1

k

)
on [ 1

k
, 2
k
], etc. Then the function φ (·) such that φ (t, x) = (−1)j√

k
φ 1
k

(
t, x− j

k

)
on

[ j
k
, j+1

k
], j = 0, 1, ..., k − 1, is a bounded complete trajectory of problem (3.1.1)

which goes from 0 to u+
k,d∗k

.

Remark 3.43. When k = 1 the structure of the global attractor is the same as
in the Chafee-Infante equation.
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3.5.3. Gradient structure

We will obtain that the m-semiflow G is dynamically gradient (see Definition
0.19).

Let us consider the case when the conditions of Theorem 3.40 hold. Then
(3.1.1) possesses exactly 2k + 1 fixed points:

v0 = 0, u±1,d∗1 , ..., u
±
k,d∗k

.

Also, as f is odd, u+
j,d∗j

= −u−j,d∗j for any j. We define the following sets:

M1 = {u+
1,d∗1

, u−1,d∗1}, ..., Mk = {u+
k,d∗k

, u−k,d∗k
}, Mk+1 = {0}. (3.5.13)

They are weakly invariant and using Lemma 3.29 we deduce easily that they are
isolated. Then the family M = {M1, . . . ,Mk+1} is a finite disjoint family of
isolated weakly invariant sets.

Proposition 3.44. Assume the conditions of Theorem 3.40. Then G is dynami-
cally gradient with respect to the family (3.5.13) after (possibly) reordering them.

Proof. We reorder the family (3.5.13) in such a way that if the value of the Lya-
punov function E given in (3.3.19) is equal to Li for the set M̃i, then Lj ≤ Ln

for j < n. Then Theorem 25 in [44] implies that G is dynamically gradient with
respect to this family.

We will obtain then that the fixed points u+
1,d∗1

, u−1,d∗1 are asymptotically stable.
The compact set M ⊂ A is a local attractor for G in X if there is ε > 0 such that
ω (Oε(M)) = M, where

ω (B) = {y : ∃tn → +∞, yn ∈ G(tn, B) such that yn → y}

is the ω-limit set of B. By Lemma 14 in [44] if M is a local attractor in X, then
it is stable. Thus, a local attractor is asymptotically stable.
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Theorem 3.45. Assume the conditions of Theorem 3.40. Then the stationary
points u+

1,d∗1
, u−1,d∗1 are asymptotically stable.

Proof. By [44, Theorem 23 and Lemma 15] M̃1 is a local attractor in X, so it is
asymptotically stable. By Theorem 3.40 the sets Mj, j ≥ 2, are unstable. Thus,
M̃1 = M1. As M1 consists of the two elements u+

1,d∗1
, u−1,d∗1 , which are obviously

disjoint, they are asymptotically stable as well.

We will prove that there is a connection from 0 to any other fixed point u±j,d∗j .

Theorem 3.46. Assume the conditions of Theorem 3.40. Then there exists a
bounded complete trajectory φ (·) such that φ (t) →

t→−∞
0, φ (t) →

t→+∞
u+
j,d∗j

for all

1 ≤ j ≤ k (and the same is valid for u−j,d∗j ).

Proof. Let us consider problem (3.5.12) with k = j. The function

u+
1,d∗j ,

1
j

(x) =
√
j u+

j,d∗j
(x), x ∈ [0, 1/j] ,

is the unique positive fixed point of problem (3.5.12).
Let

X+
j = {u ∈ H1

0 (0, 1/j) : u(x) ≥ 0 ∀x ∈ [0, 1/j]}

be the positive cone of H1
0 (0, 1/j). If we consider the restriction of the semigroup

T εnj (·) of problem (3.5.1) in the interval (0, 1/j) to X+
j , denoted by T εn,+j (·), then

there exists a global attractor A+
n,j [31]. Since 0 and

v+
1,dεnj , 1

j

=
√
j v+

j,dεnj
|[0, 1

j
]

are the unique fixed points of T εn,+j , A+
n,j is connected, v+

1,dεn1 , 1
j

is stable [32] and

A+
n,j consists of the fixed points and their heteroclinic connections, there must exist

a bounded complete trajectory φεnj (·) of T εn,+j which goes from 0 to v+
1,dεnj , 1

j

.
By Lemma 3.36 up to a subsequence it converges to a bounded complete trajectory
φj (·) of problem (3.5.12) with k = j such that φj (t) ≥ 0 for all t ∈ R.
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Since by Theorem 3.45 the fixed point u+
1,d∗j ,

1
j

is stable, the only possibility is
that

φj (t)→ 0, as t→ −∞,

φj (t)→ u+
1,d∗j ,

1
j

, as t→ +∞.

Then the function φ (·) such that

φ (t, x) =
(−1)i√

j
φj

(
t, x− i

j

)
, on

[
i

j
,
i+ 1

j

]
, i = 0, 1, ..., j − 1,

is a bounded complete trajectory of problem (3.1.1) which goes from 0 to u+
j,d∗j

.
For u−j,d∗j , noting that u−j,d∗j = −u+

j,d∗j
, the result follows by choosing the bounded

complete trajectory φ̃(t) = −φ (t).

As a consequence we obtain that the order of the familyM has to be the one
given in (3.5.13).

Theorem 3.47. The semiflow G is dynamically gradient with respect to the family
M in the order given in (3.5.13), that is, M̃i = Mi for any i.

Proof. As by Theorem 3.46 there is a connection from 0 to u±j,d∗j , 1 ≤ j ≤ k, we

have proved that M̃k+1 = {0} = Mk+1. The fact that the order of the other sets is
the one given in (3.5.13) follows from Lemma 3.28.





Conclusions and future work

This thesis begins obtaining a theoretical result about the robustness of dynam-
ically gradient multivalued semiflows. By this way, Theorem 1.1 generalizes the
previous results where the solution is unique. Subsequently, it is applied to (1.3.8),
a family of problems of the Chafee-Infante type. To do this, we have analyzed the
properties of the fixed points of (1.3.1), a Chafee-Infante problem with more gen-
eral conditions than those usual in the literature in the reaction term, f .

The growth and dissipation conditions of the reaction term are maintained
throughout the Chapter 2. In this part, we focus on the equation

ut − a(‖u‖2
H1

0
)∆u = f(u) + h(t),

a nonlocal problem in view of the structure of the diffusion coefficient which is
given by the function a(‖u‖2

H1
0
). This leads to a number of mathematical difficulties

which make the analysis of the problem particularly interesting.
In this sense, one of the problems left open consists on obtaining analogous

results to those of the Chapter 2 relaxing conditions on the nonlinear term f(u),
without imposing upper bounds.

Actually in [3] existence of solutions and global attractor is proved for a very
large class of nonlinearities that in particular covers those contemplated in this
thesis. Nevertheless, the authors work with a nonlocal term a(l(u)) which depends
on a continuous functional defined in L2(Ω).

Therefore, it is an open and very stimulating problem that involves obtaining
new results to try to adapt this theory to the conditions of the nonlocal term used
in this thesis.
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It should be noted that, when the study of the fixed points in Chapter 1 is
carried out, the derivative of the function f is finite in 0. In addition, this condition
is also imposed in Chapter 3 when the non-local case is analyzed. Therefore, there
is much to know about the subject when this condition does not fulfill and we can
assume

lim
u→0

f(u)

u
=∞, ,

i.e. the derivative of f does not exist in 0. It would be very interesting to be
able to describe the properties of fixed points, analyze their connections and study
their stability.

On the other hand, we have obtained another robustness result. Specifically,
in [21] we consider a parametric family of reaction-diffusion equations with nonlocal
viscosity depending of the continuous functional defined in L2(Ω). In this work
we obtain a robustness result of the attractors toward the corresponding minimal
pullback attractor of the limiting problem. This result extends the ones obtained
in [28]. Actually here all terms (reactions, external forces and nonlocal viscosity
functions) may vary with the parameter. Consequently, the problem remains open
for the other type of nonlocal term.

As we have seen in Chapter 3, when the function a (·) is not assumed to be
monotone, an interesting situation appears. In fact, it is possible to have more than
two equilibria with the same number of zeros, as it is shown on Figure 3.2. Under
these conditions, we propose as a future work the problem about the behavior or
the connections of the fixed points, even studying the structure that may exist
between equilibria of the same level.

One of the questions to be addressed in this section would be to raise the
equation from the point of view of stochastic dynamical systems. Indeed, in [22] we
have proved the existence of weak pullback mean random attractors for a non-local
stochastic reaction-diffusion equation with a nonlinear multiplicative noise. The
existence and uniqueness of solutions and weak pullback mean random attractors
is also established for a deterministic non-local reaction-diffusion equations with
random initial data.
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We apply the theory of weak mean-square random attractors developed in [87]
to the following stochastic non-local reaction-diffusion problem

du = (a(‖u‖2
H1

0
)∆u+ f(u) + h(t, x))dt+ σ (u) dw (t) in (τ,∞)×O,

u = 0 on (τ,∞)× ∂O,
u(τ, x) = uτ (x) for x ∈ O.

The question that remains open is to obtain analogous results for a function
a(l(u)). The difficulty is that we have not been able to find a Lyapunov function
for the solutions. This makes the structure of the attractor difficult to analyze.

Therefore, an important problem due to the theoretical implications (see e.g.
Theorem 2.29) consists on proving the existence of a Lyapunov function for the
nonlocal problem with a(l(u)). This problem could be addressed from the results
in [63], although some authors suggest that such a function does not exist.
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Esta tesis comienza con la obtención de un resultado teórico acerca de la robus-
tez de los semiflujos multivaluados dinámicamente gradientes. De esta manera,
el Teorema 1.1 generaliza los resultados previos en los que se tiene unicidad del
problema. Posteriormente, se aplica a (1.3.8), una familia de problemas de tipo
Chafee-Infante. Para ello, se analiza en profundidad las propiedades de los pun-
tos fijos de (1.3.1), un problema de tipo Chafee-Infante con unas condiciones más
generales que las habituales en la literatura en el término de reacción, f .

Las condiciones de crecimiento y disipación del término de reacción se mantie-
nen a lo largo del Capítulo 2. En esta parte, consideramos la ecuación

ut − a(‖u‖2
H1

0
)∆u = f(u) + h(t),

un problema no local cuyo coeficiente de difusión viene dado por la función a(‖u‖2
H1

0
).

Esto conduce a una serie de dificultades matemáticas que hacen que el análisis del
problema sea particularmente interesante. En este sentido, uno de los problemas
que se dejan abiertos consiste en obtener resultados análogos a los del Capítu-
lo 2 relajando las condiciones en el término no lineal f(u), no imponiendo cotas
superiores.

De hecho, en [3] se prueba la existencia de soluciones y de atractor global para
una amplia classe de no linearidades que, en particular, incluyen las contempladas
en esta tesis. No obstante, los autores manejan el funcional continuo definido en
L2(Ω), a(l(u)). Por tanto, es un problema abierto y muy estimulante que involucra
obtener resultados nuevos para intentar adaptar esta teoría a las condiciones del
término no local que se maneja en esta tesis.
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Cabe destacar que, cuando se realiza el estudio de los puntos fijos en el Capítulo

1, la derivada de la función f es finita en el origen. Además, también se impone

esta condición en el Capítulo 3 cuando se analiza el caso no local. Por tanto, queda

mucho por conocer sobre el tema cuando esta condición no se cumple y podemos

suponer

ĺım
u→0

f(u)

u
=∞;

es decir, la derivada de f no existe en 0. Sería muy interesante poder describir las

propiedades de los puntos fijos, analizar sus conexiones y estudiar su estabilidad.

Por otra parte, hemos obtenido otro resultado de robustez. Concretamente,

en [21] consideramos una familia paramétrica de ecuaciones de reacción-difusión

con una viscosidad no local dependiendo de un funcional continuo definido en

L2(Ω). En este trabajo obtenemos un resultado de robustez de los atractores hacia

el correspondiente atractor pullback minimal del problema límite. Este resultado

extiende los obtenidos en [28]. De hecho, aquí todos los términos (reacción, fuerzas

externas y funciones de viscosidad no local) pueden variar con el parámetro. En

consecuencia, el problema queda abierto para el otro tipo de término no local.

Como hemos visto en el Capítulo 3, cuando la función a (·) no se asume monó-

tona, aparece una interesante situación. En concreto, es posible tener más de dos

puntos de equilibrio con el mismo número de ceros, como se puede ver en la Figura

3.2. Bajo estas condiciones, planteamos como trabajo futuro el problema sobre el

comportamiento o las conexiones de los puntos fijos, incluso estudiar la estructura

que puede haber entre puntos de un mismo nivel.

Una de las cuestiones que abordar en este apartado consistiría en plantear

la ecuación desde un punto de vista de los sistemas dinámicos estocásticos. Sin

embargo, en [22] hemos probado la existencia de atractores débiles aleatorio tipo

pullback en media cuadrática para una ecuación de reacción-difusión no local con

un ruido multiplicativo no lineal. La existencia y unicidad de soluciones y atractores

pullback débiles aleatorios en media también se obtiene para una ecuación de

reacción-difusión no local y determinística con una condición inicial aleatoria.
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Aplicamos la teoría de los atractores pullback débiles aleatorios en media de-
sarrollada en [87] al siguiente problema de reacción-difusión no local y estocástico

du = (a(‖u‖2
H1

0
)∆u+ f(u) + h(t, x))dt+ σ (u) dw (t) en (τ,∞)×O,

u = 0 en (τ,∞)× ∂O,
u(τ, x) = uτ (x) para x ∈ O.

La cuestión que queda abierta es obtener resultados análogos para una función
a(l(u)). La dificultad reside en que no hemos sido capaces de encontrar una función
de Lyapunov para las soluciones. Esto hace que la estructura del atractor sea difícil
de analizar.

Por tanto, un problema importante por las implicaciones teóricas que tiene
(ver por ejemplo Teorema 2.29) consiste en probar la existencia de una función de
Lyapunov para el problema no local con a(l(u)). Este problema podría enfrentarse
a partir de los resultados de [63], aunque algunos autores sugieren que tal función
no existe.
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Appendix A

In this appendix we generalize the lap number property of solutions of linear
equations proved in [55] to the case when we do not have classical solutions. For
this we will use a maximum principle for non-smooth functions from [56].

Let O be a region in R2 and let (t0, x0) ∈ O and ρ, σ > 0. We denote

Qρ,σ = {(t, x) : t ∈ (t0 − σ, t0), |x− x0| < ρ},

where we assume that t0, x0, ρ, σ are such that Qρ,σ ⊂ O.
We denote by W the space of all functions from L2 (O) such that

∫
O

(
|u (t, x)|2 +

∣∣∣∣∂u∂x (t, x)

∣∣∣∣2
)
dµ < +∞.

As a particular case of Theorem 6.4 in [56] we obtain the following maximum
and minimum principles.

Theorem A.1. (Maximum principle) Let u ∈ W be such that

∂u

∂t
− ∂2u

∂x2
≤ 0 (A.0.1)

in the sense of distributions. If

sup ess(t,x)∈Qρν,σ1u(t, x) = M,

for some ν, 0 < ν < 1, and any σ1, where 0 < σ1 < σ, then u (t, x) = M for a.a.
(t, x) ∈ Qρ,σ.
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Theorem A.2. (Minimum principle) Let u ∈ W be such that

∂u

∂t
− ∂2u

∂x2
≥ 0 (A.0.2)

in the sense of distributions. If

inf ess(t,x)∈Qρν,σ1u(t, x) = M,

for some ν, 0 < ν < 1, and any σ1, where 0 < σ1 < σ, then u (t, x) = M for a.a.
(t, x) ∈ Qρ,σ.

We are ready to prove the lap-number property, saying that the number of
zeros is a non-increasing function of time.

Theorem A.3. Let r (t, x) be a continuous function and u ∈ C([t0, t1], H1
0 (Ω)) ∩

L2 (t0, t1;H2 (Ω)) be such that
du

dt
∈ L2 (t0, t1;L2 (Ω)) and satisfies the equation

∂u

∂t
− ∂2u

∂x2
= r(t, x)u, 0 < x < 1, t0 < t ≤ t1. (A.0.3)

Then the number of components of

{x : 0 < x < 1, u (t, x) 6= 0}

is a non-increasing function of t.

Proof. We follow similar lines as in [55, Theorem 6].
Denote

Q (t) = {x ∈ (0, 1) : u (t, x) 6= 0}.

We need to show that there is an injective map from the components of Q (t1) to
the components of Q (t0) if t1 > t0. If we denote by C a component of Q (t1) and
by SC the component of [t0, t1]× (0, 1)∩ {u (t, x) 6= 0)} which contains C, then in
order to obtain the injective map it is necessary to prove two facts:
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1. SC ∩Q(t0) 6= ∅;

2. If C1, C2 are two components of Q (t1), then SC1 ∩ SC2 = ∅.

Let us prove the first statement by contradiction, so assume that SC ∩Q(t0) =

∅.We can assume without loss of generality that r (t, x) < 0, because this property
is satisfied for the functionW (t, x) = u (t, x) e−λt with λ > 0 large enough and the
components of these two functions coincide. Consider for example that u (t, x) > 0

in SC . Let M = max(t,x)∈SC u (t, x). By hypothesis and the Dirichlet boundary
conditions this maximum has to be attained at a point (t′, x′) such that t0 < t′ ≤ t1,
0 < x′ < 1. Also, there has to be an ε > 0 such that if (t, x) ∈ SC and t0 < t ≤
t0 + ε, then u (t, x) < M , as otherwise there would be a sequence (tn, xn) ∈ SC ,
tn > t0, such that tn → t0 and u (tn, xn) = M . By the continuity of u this would
imply that u (t0, x0) = M for some (t0, x0) ∈ SC , which is a contradiction. Then
we can choose t′ as the first time when the maximum is attained, so u (t, x) < M

for all (t, x) ∈ SC , t0 < t < t′. By the continuity of u there exists a rectangle
R = [t′ − δ, t′] × [x′ − γ, x′ + γ] such that R belongs to SC . In order to apply
Theorem A.1 we put O = R and

Qγ,δ = {(t, x) : t ∈ (t′ − δ, t′), |x− x′| < γ}.

We have that
sup

(t,x)∈Qνγ,σ1
u(t, x) = M,

for some 0 < ν < 1 and any 0 < σ1 < δ. Since u satisfies (A.0.1), we conclude
from Theorem A.1 that u (t, x) = M for all (t, x) ∈ Qρ,σ, which is a contradiction.

For the second statement suppose the existence of two disjoints components
C1, C2 of Q (t1) such that SC1 ∩ SC2 6= ∅, which implies in fact that SC1 = SC2 .
In this case we can assume that r (t, x) > 0, being this justified by the function
W (t, x) = u (t, x) eλt with λ > 0 large enough. Let for example u (t, x) > 0 in
SC1 and assume that the interval C1 has lesser values than the interval C2. Also,
it is clear that between C1 and C2 there must exist a point (t1, x0) such that
u (t1, x0) = 0. On the other hand, the set SC1 ∩ (t0, t1) × [0, 1] is path connected.
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Thus, there exists a simple path ξ such that one end point is in {t1}×C1 and the
other one is in {t1} × C2. Let us consider the set L of all points which are above
the curve ξ and such that the function u vanishes at them. This set is non-empty
because (t1, x0) ∈ L. Since L is compact, the function g : L → [t0, t1] given by
g (t, x) = t attains it minimum at a certain point (t′, x′) ∈ L such that t0 < t′.
Then there exists a set R = [t′ − δ, t′)× [x′ − γ, x′ + γ] which belongs to SC1 . Let
O = R and

Qγ,δ = {(t, x) : t ∈ (t′ − δ, t′), |x− x′| < γ}.

We have that
inf

(t,x)∈Qνγ,σ1
u(t, x) = 0,

for some 0 < ν < 1 and any 0 < σ1 < δ. Since u satisfies (A.0.2), we conclude
from Theorem A.2 that u (t, x) = 0 for all (t, x) ∈ Qρ,σ, which is a contradiction.
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In this section, we include the original manuscripts of [18], [19] and [20].
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1. Introduction. One of the main goals of the theory of dynamical systems is to
characterize the structure of global attractors. It is possible to find a wide literature
about this problem for semigroups; however, it has been recently when new results
in this direction for multivalued dynamical systems have been proved [3], [13], [14].

In this sense, the theory of Morse decomposition plays an important role. In fact,
the existence of a Lyapunov function, the property of being a dynamically gradient
semiflow and the existence of a Morse decomposition are shown to be equivalent for
multivalued dynamical systems in [9].

In this work we show under suitable assumptions that a dynamically gradient
multivalued semiflow is stable under perturbations, that is, the family of perturbed
multivalued semiflows remains dynamically gradient.

For a fixed dynamically gradient multivalued semiflow with a global attractor
we also analyze the rearrangement of a pairwise disjoint finite family of isolated
weakly invariant sets, included in the attractor, in such a way that the dynamically
gradient property is satisfied in the stronger sense of [16].

These results extend previous ones in the single-valued framework in [7, 1, 2]
to the case where uniqueness of solution does not hold. Additionally, it is worth
saying that the m-semiflows here are not supposed to be general dynamical systems
as in [16], where a robustness theorem for Morse decompositions of multivalued
dynamical systems is also proved under a suitable continuity assumption.

We also apply this general robustness theorem in order to show that a family
of Chafee-Infante problems approximating a differential inclusion is dynamically
gradient if it is close enough to the original problem.

This paper is organized as follows.
Firstly, we introduce in Section 2 basic concepts and properties related to fixed

points, complete trajectories and global attractors. In this way we are able to
present in Section 3 the main result about robustness of dynamically gradient mul-
tivalued semiflows. Further, in Section 4 we prove a theorem which allows us to
reorder the family of weakly invariants sets, thus establishing an equivalent defini-
tion of dynamically gradient families.

Afterwards, we consider a Chafee-Infante problem in Section 5, where the equi-
valence of weak and strong solutions is established. Once the set of fixed points
is analyzed, we consider a family of Chafee-Infante equations, approximating the
differential inclusion tackled in [3]. We check that this family of Chafee-Infante
equations verifies the hypotheses of the robustness theorem in order to obtain,
therefore, that the multivalued semiflows generated by the solutions of the approx-
imating problems are dynamically gradient if this family is close enough to the
original one.

2. Preliminaries. Consider a metric space (X, d) and a family of functions R ⊂
C(R+;X). Denote by P (X) the class of nonempty subsets of X. Then, define the
multivalued map G : R+ ×X → P (X) associated with the family R as follows

G(t, u0) = {u(t) : u(·) ∈ R, u(0) = u0}. (1)

In this abstract setting, the multivalued map G is expected to satisfy some prop-
erties that fit in the framework of multivalued dynamical systems. The first concept
is given now, although a more axiomatic construction will be provided below.

Definition 1. Let (X, d) be a metric space. A multivalued map G : R+ × X →
P (X) is a multivalued semiflow (or m-semiflow) if G(0, x) = x for all x ∈ X and
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G(t+ s, x) ⊂ G(t, G(s, x)) for all t, s ≥ 0 and x ∈ X.
If the above is not only an inclusion, but an equality, it is said that the m-semiflow
is strict.

Once a multivalued semiflow is defined, we recall the concepts of invariance and
global attractor, with evident differences with respect to the single-valued case.

Definition 2. A map γ : R→ X is called a complete trajectory of R (resp. of G)
if γ(· + h) |[0,∞)∈ R for all h ∈ R (resp. if γ(t + s) ∈ G(t, γ(s)) for all s ∈ R and
t ≥ 0).

A point z ∈ X is a fixed point of R (resp. of G) if ϕ(·) ≡ z ∈ R (resp. z ∈ G(t, z)
for all t ≥ 0).

Definition 3. Given an m-semiflow G on a metric space (X, d) a set B ⊂ X is said
to be negatively invariant if B ⊂ G(t, B) for all t ≥ 0, and strictly invariant (or,
simply, invariant) if the above relation is not only an inclusion but an equality.

The set B is said to be weakly invariant if for any x ∈ B there exists a complete
trajectory γ of R contained in B such that γ(0) = x. We observe that weak
invariance implies negative invariance.

A set A ⊂ X is called a global attractor for an m-semiflow if it is negatively
semi-invariant and it attracts all attainable sets through the m-semiflow starting
in bounded subsets, i.e., distX(G(t, B),A) → 0 as t → ∞, where distX(A,B) =
supa∈A infb∈B d(a, b).

Remark 1. A global attractor for an m-semiflow does not have to be unique, nor
a bounded set. However, if a global attractor is bounded and closed, it is minimal
among all closed sets that attract bounded sets [19]. In particular, a bounded and
closed global attractor is unique.

In order to obtain a detailed characterization of the internal structure of a global
attractor, we introduce an axiomatic set of properties on the set R (see [4] and
[13]).

The set of axiomatic properties that we will deal with is the following.

(K1) For any x ∈ X there exists at least one element ϕ ∈ R such that ϕ(0) = x.
(K2) ϕτ (·) := ϕ(·+ τ) ∈ R for any τ ≥ 0 and ϕ ∈ R (translation property).
(K3) Let ϕ1, ϕ2 ∈ R be such that ϕ2(0) = ϕ1(s) for some s > 0. Then, the function

ϕ defined by

ϕ(t) =

{
ϕ1(t) 0 ≤ t ≤ s,
ϕ2(t− s) s ≤ t,

belongs to R (concatenation property).
(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exist a sub-

sequence {ϕnk} and ϕ ∈ R such that ϕnk(t)→ ϕ(t) for all t ≥ 0.

It is immediate to observe [6, Proposition 2] or [15, Lemma 9] that R fulfilling
(K1) and (K2) gives rise to an m-semiflow G through (1), and if besides (K3) holds,
then this m-semiflow is strict. In such a case, a global bounded attractor, supposing
that it exists, is strictly invariant [19, Remark 8].

Several properties concerning fixed points, complete trajectories and global at-
tractors are summarized in the following results [13].

Lemma 1. Let (K1)-(K2) be satisfied. Then every fixed point (resp. complete
trajectory) of R is also a fixed point (resp. complete trajectory) of G.
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If R fulfills (K1)-(K4), then the fixed points of R and G coincide. Besides, a
map γ : R → X is a complete trajectory of R if and only if it is continuous and a
complete trajectory of G.

The standard well-known result in the single-valued case for describing the at-
tractor as the union of bounded complete trajectories reads in the multivalued case
as follows.

Theorem 1. Consider R satisfying (K1) and (K2), and either (K3) or (K4).
Assume also that G possesses a compact global attractor A. Then

A = {γ(0) : γ ∈ K} = ∪t∈R{γ(t) : γ ∈ K}, (2)

where K denotes the set of all bounded complete trajectories in R.

Now we recall the definitions of some important sets in the literature of dynamical
systems. Let B ⊂ X and let ϕ ∈ R. We define the ω−limit sets ω(B) and ω(ϕ) as
follows:

ω(B) ={y ∈ X : there are sequences tn →∞, yn ∈ G(tn, B) such that yn → y},
ω(ϕ) ={y ∈ X : there is a sequence tn →∞ such that ϕ(tn)→ y}.

If γ is a complete trajectory of R, then the α−limit set is defined by

α(γ) = {y ∈ X : there is a sequence tn → −∞ such that γ(tn)→ y}.
Some useful properties of these sets [4, Lemma 3.4] are summarized in the fol-

lowing lemma.

Lemma 2. Assume that (K1), (K2) and (K4) hold. Let G be asymptotically com-
pact, that is, every sequence yn ∈ G(tn, B), where tn →∞ and B ⊂ X is bounded,
is relatively compact. Then:

1. For any non-empty bounded set B,ω(B) is non-empty, compact, weakly in-
variant and

distX(G(t, B), ω(B))→ 0, as t→ +∞.
2. For any ϕ ∈ R, ω(ϕ) is non-empty, compact, weakly invariant and

distX(ϕ(t), ω(ϕ))→ 0, as t→ +∞.
3. For any γ ∈ K, α(γ) is non-empty, compact, weakly invariant and

distX(γ(t), α(γ))→ 0, as t→ −∞.

In order to give a more detailed description of the internal structure of the at-
tractor under special cases, additional concepts are required.

Definition 4. Consider a metric space (X, d) and an m-semiflow G.

1. We say that S = {Ξ1, . . . ,Ξn} is a family of isolated weakly invariant sets
if there exists δ > 0 such that Oδ(Ξi) ∩ Oδ(Ξj) = ∅ for 1 ≤ i < j ≤ n,
and each Ξi is the maximal weakly invariant subset in Oδ(Ξi) := {x ∈ X :
distX(x,Ξi) < δ}.

2. For an m-semiflow G on (X, d) with a global attractor A and a finite number of
weakly invariant sets S, a homoclinic orbit inA is a collection {Ξp(1), . . . ,Ξp(k)}
⊂ S and a collection of complete trajectories {γi}1≤i≤k of R in A such that
(putting p(k + 1) := p(1))

lim
t→−∞

distX(γi(t),Ξp(i)) = 0, lim
t→∞

distX(γi(t),Ξp(i+1)) = 0, 1 ≤ i ≤ k,
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and

for each i there exists ti ∈ R such that γi(ti) /∈ Ξp(i) ∪ Ξp(i+1).

3. We say that an m-semiflow G on (X, d) with the global attractor A is dynam-
ically gradient if the following two properties hold:
(G1) there exists a finite family S = {Ξ1, . . . ,Ξn} of isolated weakly invariant
sets in A with the property that any complete trajectory γ of R in A satisfies

lim
t→−∞

distX(γ(t),Ξi) = 0, lim
t→∞

distX(γ(t),Ξj) = 0

for some 1 ≤ i, j ≤ n;
(G2) S does not contain homoclinic orbits.

Remark 2. In the single-valued case, dynamically gradient semigroups have been
called also gradient-like semigroups [7]. Observe that the above definitions are
concerned with weakly invariant families, which need not to be unitary sets. This
is to deal with the more general concept of generalized gradient-like semigroups [7],
in contrast with gradient-like semigroups (when the invariant sets are unitary).

Now, we introduce the concept of unstable manifold, that will allow us to describe
more precisely the structure of a global attractor of a dynamically gradient m-
semiflow.

Definition 5. Let G be an m-semiflow on a metric space (X, d). The unstable
manifold of a set Ξ is

Wu(Ξ) = {u0 ∈ X : there exists complete trajectory γ of R such that
γ(0) = u0 and lim

t→−∞
distX(γ(t),Ξ) = 0}.

Now the following result, relating the global attractor with unstable manifolds, is
standard. The first statement is straightforward to see. The second one, supposing
that the global attractor is compact, follows directly from the structure described
in Theorem 1 and the definition of dynamically gradient semiflows.

Lemma 3. Consider a complete metric space (X, d) and a family R ⊂ C(R+;X)
satisfying (K1) and (K2). Suppose that the associated m-semiflow has a global
attractor A. Then, for any bounded set Ξ ⊂ X,Wu(Ξ) ⊂ Ā.

Moreover, assume that R satisfies either (K3) or (K4), and that the global at-
tractor A is compact. Suppose also that the associated m-semiflow G defined in (1)
is dynamically gradient. Then

A =
n⋃
i=1

Wu(Ξi). (3)

3. Robustness of dynamically gradient m-semiflows. Our first main goal is
to prove that a dynamically gradient multivalued semiflow is stable under suitable
perturbations, that is, a family of perturbed multivalued semiflows remains dy-
namically gradient if it is close enough to the original semiflow, generalizing the
corresponding result in the single-valued case [7]. This is rigorously formulated in
the following theorem.

Theorem 2. Consider a complete metric space (X, d). Let η be a parameter in
[0,1], Rη ⊂ C(R+;X) fulfill (K1), (K2), (K3) and (K4), and let Gη be the corres-
ponding m-semiflow on X having the global compact attractor Aη. Assume that
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(H1)
⋃

η∈[0,1]

Aη is compact.

(H2) G0 is a dynamically gradient m-semiflow with finitely many isolated weakly
invariant sets S0 = {Ξ0

1, . . . ,Ξ
0
n}.

(H3) Aη has a finite number of isolated weakly invariant sets Sη = {Ξη1 , . . . ,Ξηn},
η ∈ [0, 1], which satisfy

lim
η→0

sup
1≤i≤n

distX(Ξηi ,Ξ
0
i ) = 0.

(H4) Any sequence {γη} with γη ∈ Rη such that {γη(0)} converges for η → 0+,
possesses a subsequence {γηp} that converges uniformly in bounded intervals
of [0,∞) to γ ∈ R0.

(H5) There exists η > 0 and neighborhoods Vi of Ξ0
i such that Ξηi is the maximal

weakly invariant set for Gη in Vi for any i = 1, . . . , n and for each 0 < η ≤ η.
Then there exists η0 > 0 such that for all η ≤ η0, {Gη} is a dynamically gradient

m-semiflow. In particular, the structure of Aη is analogous to that given in (3).

Proof. Observe that assumption (H5) concerning certain neighborhood Vi of Ξ0
i

involves a hyperbolicity condition of G0 w.r.t. each Ξ0
i , and as far as (H3) is also

assumed, there exist {η(Vi)}i=1,...,n such that Ξηi ⊂ Vi for all η ≤ η(Vi). W.l.o.g.
assume that δ > 0 is such that {x ∈ X : distX(x,Ξ0

i ) ≤ δ} ⊂ Vi for all i = 1, . . . , n.
By Theorem 1, we have thatAη is composed by all the orbits of bounded complete

trajectories of Rη, Kη.
We are going to prove by contradiction arguments that there exists η0 ∈ (0, 1]

such that {Gη}η≤η0 is dynamically gradient.
Step 1: There exists η0 > 0 such that for all η < η0, any bounded complete

trajectory ξη of Rη satisfies that there exist i ∈ {1, . . . , n} and t0 such that for all
t ≥ t0, distX(ξη(t),Ξ0

i ) ≤ δ.
After proving the above claim, we consider the sets Bη := {ξη(s) : s ≥ t0} ⊂ A =

{y : distX(y,Ξ0
i ) ≤ δ} and ω(ξη). It follows that ω(ξη) ⊂ A, since distX(ξη(t), ω(ξη))

goes to 0 as t→ +∞. On the other hand, by Lemma 2 ω(ξη) is a weakly invariant
set of Gη contained in Vi. By assumption (H5) we have that ω(ξη) ⊂ Ξηi , whence
the ‘forward part’ of property (G1) of a dynamically gradient m-semiflow will follow
immediately.

We prove this Step 1 by contradiction. Suppose it does not hold. Then, there
exist a sequence ηk → 0 (as k → ∞) and bounded complete trajectories ξk of Rηk
(therefore, from Aηk) such that

sup
t≥t0

distX(ξk(t),S0) > δ ∀t0 ∈ R. (4)

The set {ξk(0)} ⊂ ∪η∈[0,1]Aη is relatively compact from assumption (H1). So,
there exists a converging subsequence (relabeled the same) in X. From (H4), there
exist a subsequence (relabeled the same, again) and ξ0 ∈ R0, such that {ξk|[0,∞)}
converges to ξ0 in bounded intervals of [0,∞). Actually, if we argue similarly not
for time 0, but now for times −1, −2, . . . , and use a diagonal argument, we have
that ξ0 = γ0|[0,∞) where γ0 ∈ K0, and the convergence of (a subsequence of) {ξk}
toward γ0 holds uniformly in bounded intervals [a, b] of R.

Since G0 is dynamically gradient, there exists i ∈ {1, . . . , n} such that

distX(γ0(t),Ξ0
i )→ 0 as t→∞.
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Therefore, for all r ∈ N, there exist tr and kr such that distX(ξk(tr),Ξ
0
i ) < 1/r for

all k ≥ kr. Indeed, this is done as follows: distX(γ0(s),Ξ0
i ) < 1/r for all s ≥ tr (for

some tr, w.l.o.g. tr ≥ r > 1/δ); now, combining this with the uniform convergence
on [0, tr] of ξk toward γ0, the existence of kr follows.

However, from (4), there exists t′r > tr such that distX(ξkr (t),Ξ0
i ) < δ for all

t ∈ [tr, t
′
r) and distX(ξkr (t′r),Ξ

0
i ) = δ.

Now we distinguish two cases and we will arrive to the same conclusion in both
of them.

Case (1a): Suppose that t′r − tr → ∞ as r → ∞ (at least for a certain sub-
sequence).

Since {ξkr (t′r)} is also relatively compact (by (H1), again), and ξ1
kr

(·) = ξkr (t′r+·)
is a bounded complete trajectory of Rkr , from (H4) we deduce that a subsequence
(relabeled the same) is converging on bounded time-intervals of [0,∞), i.e. γ1(t) :=
limr→∞ ξkr (t+ t′r) holds for certain γ1 ∈ R0. Moreover, as before, a diagonal argu-
ment, using not t′r above, but t′r − 1, t′r − 2, . . . implies that γ1 can be extended to
the whole real line (the function will still be denoted the same; and the convergence
holds in bounded time-intervals of R), in particular, by (H1) and (H4), γ1 ∈ K0.

Moreover, by its construction, we have that distX(γ1(t),Ξ0
i ) ≤ δ for all t ≤ 0.

By Lemma 2 we have that the α-limit set α(γ1) is weakly invariant.
As long as Ξ0

i is the biggest weakly invariant set contained in Vi, we deduce that
distX(γ1(τ),Ξ0

i )→ 0 when τ → −∞.
On the other hand, from (G1) and (G2) we have that distX(γ1(t),Ξ0

j ) → 0 as
t→∞ for j 6= i.

Case (1b): Suppose that there exists C > 0 such that |t′r − tr| ≤ C as r →∞.
(W.l.o.g. we assume that t′r − tr → t∗.)

Recall that distX(ξkr (tr),Ξ
0
i ) < 1/r. By [9, Lemma 19] Ξ0

i is closed, so, up to a
subsequence ξkr (tr) → y ∈ Ξ0

i . Denote ξ1
kr

(·) = ξkr (· + tr). From (H4), there exist

a subsequence {ξ1
kr
} and ξ1 ∈ R0 with ξ1(0) = y such that ξ1

kr
converge towards

ξ1 uniformly in bounded intervals of [0,∞). In particular, ξ1
kr

(t′r − tr)→ ξ1(t∗), so

that distX(ξ1(t∗),Ξ
0
i ) ≥ δ.

Since Ξ0
i is weakly invariant, there exists γ ∈ K0 with γ(0) = ξ1(0) and γ(t) ∈ Ξ0

i

for all t ∈ R. By (K3) consider the concatenation

γ1(t) :=

{
γ(t), if t ≤ 0,
ξ1(t), if t ≥ 0.

Then γ1 6≡ ξ1, and by (G1)-(G2) it follows that distX(γ1(t),Ξ0
j )→ 0 as t→∞ with

j 6= i. This is exactly the same conclusion we arrived in Case (1a).
Reasoning now with the subsequence {ξ1

kr
}, and proceeding as above, we ob-

tain the existence of γ2 ∈ K0 such that distX(γ2(t),Ξ0
j ) → 0 as t → −∞ and

distX(γ2(t),Ξ0
p)→ 0 as t→∞, with p 6∈ {i, j}.

Thus, in a finite number of steps we arrive to a contradiction, since G0 satisfies
(G2). Therefore, (4) is absurd, and Step 1 is proved.

Step 2: There exists η1 > 0 such that for all η < η1, any bounded com-
plete trajectory ξη of Rη satisfies that there exist j ∈ {1, . . . , n} and t1 such that
distX(ξη(t),Ξ0

j ) ≤ δ for all t ≤ t1.
The above claim can be proved analogously as before, and since for any bounded

complete trajectory ξη ∈ Kη, by Lemma 2, α(ξη) is weakly invariant for Gη, and
contained in some Vj , the ‘backward part’ of property (G1) of a dynamically gradient
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m-semiflow will follow immediately. The same argument is valid for the ‘forward
part’, and so, for all suitable small η, {Gη(t) : t ≥ 0} satisfies (G1).

Step 3: There exists η2 > 0 such that {Gη}η≤η2 satisfies (G2).
If not, there exist a sequence ηk → 0, with Gηk having an homoclinic structure.

We may suppose that the number of elements of weakly invariant subsets connected
on each homoclinic chain in Sηk is the same. Moreover, by assumption (H3) each
Ξηkj is contained in Vj for ηk small enough and w.l.o.g. the order in the route of the
homoclinics visiting the Vj sets is the same.

Therefore, for k ≥ k0 there exist a sequence of subsets Ξηkp(1), . . . Ξηkp(l) in Sηk (with

p(l+1) = p(1)), and a sequence of complete trajectories {{ξki }li=1}k, each collection
of l elements in the corresponding attractor Aηk , with

lim
t→−∞

distX(ξki (t),Ξηkp(i)) = 0, lim
t→∞

distX(ξki (t),Ξηkp(i+1)) = 0, 1 ≤ i ≤ l.

If we argue now as in the proof of (G1), we may construct a homoclinic structure
of G0, getting a contradiction with the fact that the m-semiflow G0 is dynamically
gradient.

Remark 3. The above result also applies to the particular case of a dynamically
gradient m-semiflow when the weakly invariant families of the original and per-
turbed problems are reduced to unitary sets (Remark 2 and [7, Theorem 1.5]).

4. An equivalent definition of dynamically gradient families. We will give
an equivalent definition of dynamically gradient families. For proving the main
result in this section we will need a stronger condition than (K4). Namely, we shall
consider the following stronger condition:

(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exists a sub-
sequence {ϕn} and ϕ ∈ R such that ϕn converges to ϕ uniformly in bounded
subsets of [0,∞).

Remark 4. We have seen that the property of being dynamically gradient for
a disjoint family of isolated weakly invariant sets S = {Ξ1, . . . ,Ξn} ⊂ A is stable
under perturbations. We observe that in the paper [16] a slightly different definition
was used for dynamically gradients families. Namely, instead of conditions (G1)-
(G2) it is assumed that any bounded complete trajectory γ(·) satisfies one of the
following properties:

1. {γ(t) : t ∈ R} ⊂ Ξi for some i.
2. There are i < j for which

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj .

These assumptions are clearly stronger than (G1)-(G2) and imply that the sets
Ξj are ordered. Our aim is to show that when S is a disjoint family of isolated
weakly invariant sets, these conditions are equivalent. For this we will need to
introduce the concept of local attractor and its repeller and study their properties.

We say that A ⊂ A is a local attractor in A if for some ε > 0 we have that
ω(Oε(A)∩A) = A. Let A be a local attractor in A. Then its repeller A∗ is defined
by

A∗ = {x ∈ A : ω(x)\A 6= ∅}.
Some properties about local attractors and its repeller as well as the proof of the

following lemmas can be found in [9].
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Lemma 4. Assume that (K1)− (K4) hold. Then a local attractor A is invariant.

Remark 5. Although in [9] the stronger assumption (K4) is assumed, the proof is
valid for just (K4).

Lemma 5. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Then the repeller A∗ of a local attractor A ⊂ A is weakly invariant and
compact.

Lemma 6. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Let us consider the sequences xk ∈ A, tk → +∞ and ϕk(·) ∈ R such that
ϕk(0) = xk. Then from the sequence of maps ξk(·) : [−tk,+∞)→ A defined by

ξk(t) = ϕk(t+ tk)

one can extract a subsequence converging to some ψ(·) ∈ K uniformly on bounded
subsets of R.

In order to prove the equivalent definition of dynamically gradient families, we
have to ensure the existence of one local attractor in a family of isolated weakly
invariant sets.

Lemma 7. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Let S = {Ξ1, . . . ,Ξn} ⊂ A be a disjoint family of isolated weakly invariant
sets. If G is dynamically gradient with respect to S, then one of the sets Ξj is a
local attractor in A.

Proof. Let δ0 > 0 be such that Oδ0(Ξi) ∩ Oδ0(Ξj) = ∅ if i 6= j and Ξj is the
maximal weakly invariant set in Oδ0(Ξj) for all j. First we will prove the existence
of j ∈ {1, ..., n} such that for all δ ∈ (0, δ0) there exists δ′ ∈ (0, δ) satisfying

∪t≥0 G(t,Oδ′(Ξj) ∩ A) ⊂ Oδ(Ξj). (5)

If not, there would exist 0 < δ < δ0 and for each j sequences tjk ∈ R+, xjk ∈ A,

ϕjk ∈ R with ϕjk(0) = xjk such that

d(xjk,Ξj) <
1

k
,

d(ϕjk(tjk),Ξj) = δ,

d(ϕjk(t),Ξj) < δ for all t ∈ [0, tjk).

We have to consider two cases: tjk → +∞ or tjk ≤ C.

Let tjk → +∞. We define the sequence

ψjk(t) = ϕjk(t+ tjk) for t ∈ [−tjk,∞).

By Lemma 6 we obtain the existence of a complete trajectory ofR, ψj(·), such that a

subsequence of ψjk satisfies ψjk(t)→ ψj(t) for every t ∈ R. Hence, d(ψj(t),Ξj) ≤ δ <
δ0 for all t ≤ 0. Therefore, as ψj ∈ K, condition (G1) implies that d(ψj(t),Ξj)→ 0
as t → −∞. On the other hand, since d(ψj(0),Ξj) = δ, conditions (G1) − (G2)
imply that d(ψj(t),Ξi)→ 0 as t→ +∞, where i 6= j.

Let now tjk ≤ C. We can assume that tjk → tj . By (K4) we obtain the existence

of ϕj ∈ R such that ϕjk converges to ϕj uniformly on bounded sets of [0,∞). It is
clear then that d(ϕj(tj),Ξj) = δ. As ϕj(0) ∈ Ξj and Ξj is weakly invariant, there
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exists a complete trajectory of R, ψ−j (·), such that ψ−j (0) = ϕj(0) and ψ−j (t) ∈ Ξj
for all t ≤ 0. Concatenating ψ−j and ϕj we define

ψj(t) =

{
ψ−j (t) if t ≤ 0,

ϕj(t) if t ≥ 0,

which is a complete trajectory by (K3). Again, conditions (G1)− (G2) imply that
d(ψj(t),Ξi)→ 0 as t→ +∞, where i 6= j.

We have obtained then a connection from Ξj to a different Ξi. Since this is
true for any Ξj , we would obtain a homoclinic structure, which contradicts (G2).
Therefore, (5) holds for some j. It follows that

ω(Oδ′(Ξj) ∩ A) ⊂ Oδ(Ξj) ⊂ Oδ0(Ξj).

Since ω(Oδ′(Ξj)∩A) is weakly invariant, we obtain that ω(Oδ′(Ξj)∩A) ⊂ Ξj . But
Ξj ⊂ G(t,Ξj) ⊂ G(t,Oδ′(Ξj) ∩ A) for any t ≥ 0 implies the converse inclusion, so
that Ξj = ω(Oδ′(Ξj) ∩ A). Thus, Ξj is a local attractor in A.

Now we prove the main result of this section which allows us to establish the
equivalent definition of dynamically gradient families.

Theorem 3. Assume that (K1)-(K3), (K4) hold and that a global compact attractor
A exists. Let S = {Ξ1, . . . ,Ξn} ⊂ A be a disjoint family of isolated weakly invariant
sets. Then G is dynamically gradient with respect to S in the sense of Definition 4
if and only if S can be reordered in such a way that any bounded complete trajectory
γ(·) satisfies one of the following properties:

1. {γ(t) : t ∈ R} ⊂ Ξi for some i.
2. There are i < j for which

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj .

Proof. It is obvious that conditions 1-2 imply that G is dynamically gradient. We
shall prove the converse.

By Lemma 7 one of the sets Ξi is a local attractor. After reordering the sets, we
can say that Ξ1 is the local attractor. Let

Ξ∗1 = {x ∈ A : ω(x)\Ξ1 6= ∅}

be its repeller, which is weakly invariant by Lemma 5. Since Ξj are closed (cf. [9,
Lemma 19]), weakly invariant and disjoint, we obtain that Ξj ⊂ Ξ∗1 for j ≥ 2.

We will consider only the dynamics inside the repeller Ξ∗1, that is, we define the
following set:

R1 = {ϕ ∈ R : ϕ(t) ∈ Ξ∗1 ∀t ≥ 0}.
Since Ξ∗1 is weakly invariant, R1 satisfies (K1). Further, let ϕτ (·) = ϕ(·+ τ), where
ϕ ∈ R1 and τ ≥ 0. Then it is clear that ϕτ (t) ∈ R1 for all t ≥ 0, and then (K2)
holds. If ϕ1(·), ϕ2(·) ∈ R1, it follows by (K3) that the concatenation belongs also
to R1. Finally, if ϕn(0) → ϕ0 with ϕn(0) ∈ Ξ∗1 and ϕn(·) ∈ R1, then ϕ0 ∈ Ξ∗1 (as
Ξ∗1 is closed) and by (K4) passing to a subsequence ϕn(tn)→ ϕ(t), for tn → t ≥ 0,
where ϕ ∈ R. Again, the closedness of Ξ∗1 implies that ϕ ∈ R1. Hence, (K4) also
holds. We can define then the multivalued semiflow G1 : R+ × Ξ∗1 → P (Ξ∗1) :

G1(t, x) = {y ∈ Ξ∗1 : y = ϕ(t) for some ϕ ∈ R1, ϕ(0) = x},
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which is strict by (K3). This definition is equivalent to the following one:

G1(t, x) = G(t, x) ∩ Ξ∗1 for x ∈ Ξ∗1.

Indeed, G1(t, x) ⊂ G1(t, x) is obvious. Conversely, let y ∈ G1(t, x). Then, y =
ϕ(t), ϕ(·) ∈ R, and y ∈ Ξ∗1. We state that ϕ(s) ∈ Ξ∗1 for all 0 ≤ s ≤ t. Assume by
contradiction that ϕ(s) 6∈ Ξ∗1 for 0 < s < t. Therefore, ω(ϕ(s)) ⊂ Ξ1. But then by
(K3),

G(T, y) ⊂ G(T,G(t− s, ϕ(s))) ⊂ G(T + t− s, ϕ(s))→ Ξ1 as T →∞,

which is a contradiction with y ∈ Ξ∗1. Using again (K3) one can define a function
ψ(·) ∈ R1 such that ψ(0) = y, so that y ∈ G1(t, x).

It is clear that G1 possesses a global compact attractor, which is the union of
all bounded complete trajectories of R1, and that G1 is dynamically gradient with
respect to {Ξ2, . . . ,Ξn}. Then, again by Lemma 7 we can reorder the sets in such a
way that Ξ2 is a local attractor in Ξ∗1. Let Ξ∗2,1 be the repeller of Ξ2 in Ξ∗1. Then we
restrict as before the dynamics to the set Ξ∗2,1 and so on. Hence, we have reordered
the sets Ξj in such a way that Ξ1 is a local attractor and Ξj is a local attractor for
the dynamics restricted to the repeller of the previous local attractor Ξ∗j−1,j−2 for
j ≥ 2, and Ξi ⊂ Ξ∗j−1,j−2 if i ≥ j, where Ξ∗1,0 = Ξ∗1.

Now, if γ(·) is a bounded complete trajectory such that

γ(t) →
t→∞

Ξi, γ(t) →
t→−∞

Ξj ,

then we shall prove that i ≤ j. Moreover, if γ(·) is not completely contained in
some Ξk, then i < j.

If i = 1, then it is clear that j ≥ 1. Also, if there exists γ(t0) 6∈ Ξ1, then j > 1,
as Ξ1 is a local attractor.

Let i = 2. Then γ(t) ∈ Ξ∗1 for all t ∈ R, and then γ(t) →
t→−∞

Ξ1 is forbidden.

Hence, j ≥ 2. Again, if there exists γ(t0) 6∈ Ξ2, then the fact that Ξ2 is a local
attractor in Ξ∗1 implies that j > 2.

Further, note that if i ≥ 3, then γ(t) ∈ Ξ∗1 for all t ∈ R. Also, by induction, it
follows that γ(t) ∈ Ξ∗k,k−1 for all t ∈ R and 2 ≤ k ≤ i−1. Indeed, let γ(t) ∈ Ξ∗k−1,k−2

for all t ∈ R with 2 ≤ k ≤ i−1. Then γ(t) →
t→∞

Ξi implies clearly that γ(t) ∈ Ξ∗k,k−1

for all t ∈ R. In particular, γ(t) ∈ Ξ∗i−1,i−2 for all t ∈ R. Hence, Ξj ∈ Ξ∗i−1,i−2, so
that j ≥ i. Finally, if there exists γ(t0) 6∈ Ξi, then j > i as Ξi is a local attractor in
Ξ∗i−1,i−2.

To finish this section, we recall that the disjoint family of isolated weakly invariant
sets S = {Ξ1, . . . ,Ξn} ⊂ A is a Morse decomposition of the global compact attractor
A if there is a sequence of local attractors ∅ = A0 ⊂ A1 ⊂ . . . ⊂ An = A such that
for every k ∈ {1, . . . , n} it holds

Ξk = Ak ∩A∗k−1.

It is well known [16] that for general dynamical systems conditions 1-2 in Theorem
3 are equivalent to the fact that S generates a Morse decomposition. This fact can
be proved also under conditions (K1)-(K3), (K4) [9].

Thus, Theorem 3 implies that under conditions (K1)-(K3),(K4) the family S
generates a Morse decomposition if and only if G is dynamically gradient.
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5. Application to a reaction-diffusion equation. We will consider the Chafee-
Infante problem 

∂u

∂t
− ∂2u

∂x2
= f(u), t > 0, x ∈ (0, 1) ,

u(t, 0) = 0, u(t, 1) = 0,
u(0, x) = u0(x),

(6)

where f satisfies

(A1) f ∈ C(R);
(A2) f(0) = 0;
(A3) f ′ (0) > 0 exists and is finite;
(A4) f is strictly concave if u > 0 and strictly convex if u < 0;
(A5) Growth condition:

|f(u)| ≤ C1 + C2|u|p−1,

where p ≥ 2, C1, C2 > 0;
(A6) Dissipation condition:

(a) If p > 2:

f(u)u ≤ C3 − C4|u|p, C3, C4 > 0.

(b) If p = 2:

lim sup
u→±∞

f(u)

u
≤ 0.

Remark 6. Note that as a consequence of condition (A6)(b), we have that f(u)u ≤
(λ1−C5)u2+C6, where C5, C6 > 0 and λ1 = π2 is the first eigenvalue of the operator

−∂
2u
∂x2 with Dirichlet boundary conditions.

Let Ω = (0, 1) and 1/p+ 1/q = 1. Denote by (·, ·) and ‖ · ‖L2 the scalar product
and norm in L2(Ω), by ‖ · ‖H1

0
the norm in H1

0 (Ω) associated to the scalar product

of gradients in L2(Ω) thanks to Poincaré’s inequality. As usual, let H−1(Ω) be the
dual space to H1

0 (Ω). Denote by 〈·, ·〉 pairing between the space Lp(Ω)∩H1
0 (Ω) and

its dual Lq(Ω) ∩H−1(Ω).

Definition 6. The function u(·) ∈ C([0, T ], L2(Ω)) is called a strong solution of (6)
on [0, T ] if:

1. u(0) = u0;
2. u(·) is absolutely continuous on compact subsets of (0, T );
3. u(t) ∈ H2(Ω) ∩H1

0 (Ω), f(u(t)) ∈ L2(Ω) for a.e. t ∈ (0, T ) and

du(t)

dt
−∆u = f(u(t)), a.e. t ∈ (0, T );

where the equality is understood in the sense of the space L2(Ω).

Definition 7. The function u(·) ∈ C([0, T ], L2(Ω)) is called a weak solution of (6)
on [0, T ] if:

1. u ∈ L∞(0, T ;L2(Ω));
2. u ∈ L2(0, T ;H1

0 (Ω)) ∩ Lp(0, T ;Lp(Ω));
3. The equality in (6) is understood in the weak sense, i.e.

d

dt
〈u(t), v〉 − 〈∆u, v〉 = 〈f(u(t)), v〉, ∀v ∈ H1

0 (Ω) ∩ Lp(Ω),

where the equality is understood in the sense of distributions.
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Let us make some comments on the natural relation among the above two defin-
itions. Let u(·) be a strong solution such that f(u(·)) ∈ L2(0, T ;L2(Ω)). In view of
[3, Proposition 2.2] we have that u ∈ L2(0, T ;H1

0 (Ω)), so ∆u ∈ L2(0, T ;H−1(Ω))
and then du

dt ∈ L
2(0, T ;H−1(Ω)). Hence, by [20, Lemma 7.4] we get

〈du
dt
, v〉 − 〈∆u, v〉 = 〈f(u(t)), v〉, ∀v ∈ H1

0 (Ω).

Using [22, p.250] we obtain

d

dt
〈u, v〉 − 〈∆u, v〉 = 〈f(u(t)), v〉, ∀v ∈ H1

0 (Ω),

so point 3 of Definition 7 is satisfied.
Finally, if p > 2 by condition (A6)(a) we have

|u(t, x)|p ≤ C3

C4
− f(u(t, x))u(t, x)

C4

Thus, f(u)u ∈ L1((0, T ) × Ω) implies that u ∈ Lp((0, T ) × Ω) = Lp(0, T ;Lp(Ω)).
Hence, u(·) is a weak solution as well.

In view of [8, p.283], for any u0 ∈ L2(Ω) there exists at least one weak solution.
Moreover, if f(u(·)) ∈ L2(0, T ;L2(Ω)), then putting g(·) = f(u(·)) we obtain by [5,
p.189] that the problem {

dv

dt
−∆v = g(t),

v(0) = u0,

possesses a unique strong solution v(·). Since this problem has also a unique weak
solution ṽ(·) and the strong solution is a weak solution as well, then v(·) = ṽ(·) =
u(·). Hence u(·) is also a strong solution of problem (6).

Therefore, we have checked that the sets of weak and strong solutions satisfying
f(u(·)) ∈ L2(0, T ;L2(Ω)) coincide.

5.1. Stationary points. We now focus on the properties of the stationary points.
To this end, we have followed the classic procedure from [11] and [12]. Moreover,
we have also taken some ideas from [18].

Let R ⊂ C([0,∞), L2(Ω)) be the set of all weak solutions of problem (6). Proper-
ties (K1)−(K4) are satisfied [cf. [13]], so that a multivalued semiflow is defined (see
Section 2). It is shown in [13, Lemma 12] that v is a fixed point of R (equivalently,
of G) if and only if v ∈ H1

0 (Ω) and

∂2v

∂x2
+ f(v) = 0, in H−1(Ω). (7)

The inclusion H1
0 (Ω) ⊂ L∞(Ω) implies that f(v) ∈ L∞(Ω), so that v ∈ H2(Ω) ∩

H1
0 (Ω). Therefore, v(·) is a strong solution as well.
Let consider the function F : R→ R defined by

F (s) =

∫ s

0

f(r)dr, s ∈ R.

We define

a− = inf{s < 0 : sgn f(x) = sgn x, ∀x; s < x < 0}
and

a+ = sup{s > 0 : sgn f(x) = sgn x, ∀x; 0 < x < s}.
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If follows from conditions (A2) and (A3) of f that −∞ ≤ a− < 0 < a+ ≤ +∞.
Since f is positive on (0, a+) and negative on (a−, 0), we have that F is strictly
increasing on [0, a+), strictly decreasing on (a−, 0] and F (0) = 0. We consider
E+, E− ∈ [0,∞] defined by

E+ = lim
s→a+

F (s),

E− = lim
s→a−

F (s).

Then, F has the inverse functions U+ : [0, E+)→ [0, a+), U− : [0, E−)→ (a−, 0].
We also define the following functions with domains (0, E+) and (0, E−), respect-

ively, with values on [0,∞):

τ+(E) =

∫ U+(E)

0

(E − F (u))−1/2 du, 0 < E < E+,

τ−(E) =

∫ 0

U−(E)

(E − F (u))−1/2 du, 0 < E < E−.

Let us consider v0 ∈ R and a solution u of{
∂2u
∂x2 + f(u) = 0,

u(0) = 0, u′(0) = v0.
(8)

Note that the solution of the problem (8) is unique, since f is convex for u < 0
and concave for u > 0, so it is Lipschitz on compact intervals (see [27, p.4] or [10,
p.8]).

If we define E = v2
0/2, then:

(u′(x))2

2
+ F (u(x)) = E.

On the other hand, the functions τ+, τ− evaluated in E = v2
0/2 give us

√
2 the

x-time necessary to go from the initial condition u(0) = 0, with initial velocity
v0,−v0 respectively, to the point where u′(T+(E)) = 0. Indeed, u(x) satisfies
(u′(x))2

2 + F (u(x)) = E, so dx
du = 1√

2
1√

E−F (u)
. Since u′(T+(E)) = 0 for u = U+(E),

then
√

2

∫ T+(E)

0

1 dx =

∫ U+(E)

0

1√
E − F (u)

du = τ+(E).

By symmetry with respect to the u axis, the x−time it takes for u(x) to go from
(U+(E), 0) to (0,−v0) is T+(E). By this way, if 2T+(E) = 1, that is, τ+(E) = 1√

2
,

then u(·) is a solution satisfying the boundary conditions u(0) = u(1) = 0. Applying
a similar reasoning for τ−(E), we obtain that u satisfies the boundary conditions
if, and only if, E satisfies for some k ∈ N only one of the following conditions:

kτ+(E) + (k − 1)τ−(E) =
1√
2
, (9)

kτ−(E) + (k − 1)τ+(E) =
1√
2
, (10)

kτ+(E) + kτ−(E) =
1√
2
. (11)

Remark 7. Note that if E satisfies (9) or (10) for a certain k, then u has 2k zeros
and if E satisfies (11), then u has 2k+ 1 zeros. Our goal is to solve these equations
for E as a function of f ′(0). To this end, we study the properties of τ±.
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In order to obtain solutions of the equations (9), (10) and (11) it is necessary to
make a change of variable for the functions τ±. Given E ∈ (0, E±), we put

Ey2 = F (u), 0 ≤ y ≤ 1, 0 ≤ u ≤ U+(E)

and

Ey2 = F (u), −1 ≤ y ≤ 0, U−(E) ≤ u ≤ 0.

Hence, du = (2yE/f(u))dy and E − F (u) = E(1− y2). By this change, we obtain

τ+(E) = 2
√
E

∫ 1

0

(1− y2)−1/2 y

f(u)
dy, 0 < E < E+; u = U+(Ey2), 0 ≤ y ≤ 1;

τ−(E) = 2
√
E

∫ 0

−1

(1− y2)−1/2 y

f(u)
dy, 0 < E < E−;u = U−(Ey2),−1 ≤ y ≤ 0.

The next results show some properties of these functions.

Theorem 4. The functions τ± satisfy

lim
E→0+

τ±(E) =
π

(2f ′(0))1/2
.

Proof. Since f ′(0) > 0 and f(0) = 0, given ε ∈ (0, 1), there exists δ > 0 such that

f ′(0)(1− ε)u ≤ f(u) ≤ f ′(0)(1 + ε)u, 0 ≤ u ≤ δ.
1

f ′(0)(1 + ε)
≤ u

f(u)
≤ 1

f ′(0)(1− ε)
, 0 ≤ u ≤ δ. (12)

Moreover, as U+(E) is continuous at 0, given δ > 0, there exists η > 0 such that
for 0 < E ≤ η, U+(E) ≤ δ. Now, if we integrate (12) between 0 and u we obtain
the following inequality

f ′(0)

2
(1− ε)u2 ≤ F (u) ≤ f ′(0)

2
(1 + ε)u2, 0 ≤ u ≤ δ.

Using the change of variable Ey2 = F (u), we have(
f ′(0)(1− ε)

2E

)1/2

u ≤ y ≤
(
f ′(0)(1 + ε)

2E

)1/2

u, for 0 < E ≤ η, 0 ≤ y ≤ 1.

Dividing the previous expression by f(u) and using (12) we obtain(
1− ε

2Ef ′(0)(1 + ε)2

)1/2

≤ y

f(u)
≤
(

1 + ε

2Ef ′(0)(1− ε)2

)1/2

, for 0 < E ≤ η, 0 ≤ y ≤ 1.

Now if we multiply by 2
√
E(1− y2)−

1
2 and integrate from 0 to 1, we get

π

(
1− ε

2f ′(0)(1 + ε)2

)1/2

≤ τ+(E) ≤ π
(

1 + ε

2f ′(0)(1− ε)2

)1/2

, for 0 < E ≤ η.

Finally, taking ε→ 0, the theorem follows. The proof for τ− is analogous.

Theorem 5. The functions τ± are strictly increasing on their domains.

Proof. Let consider the expression of τ+ and 0 < E1 < E2 < E+. Then,

τ+(E2)− τ+(E1) =

∫ 1

0

2y√
1− y2

[ √
E2

f(U+(E2y2))
−

√
E1

f(U+(E1y2))

]
dy.
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From [10, p.8] we have that the function f is differentiable almost everywhere in

R, so α(E) =

√
E

f(U+(Ey2))
is differentiable as well. Hence,

α′(E) =
f2(U+(Ey2))− 2y2Ef ′(U+(Ey2))

2
√
Ef3(U+(Ey2))

.

Recall the change of variable F (u) = Ey2. Consider the numerator of α′, that is,
β(u) = f2(u)− 2F (u)f ′(u). Then we obtain

β(u) = 2

∫ u

0

f(s)(f ′(s)− f ′(u))ds, 0 < s < u.

Since f is strictly concave, if s < u, then f ′(s) > f ′(u) (cf. [27, p.5]). As a result,
β(u) > 0.

In order to finish the proof rigorously, we have to justify the previous calculations.
Indeed, from [10, p.5], we have that the function f is absolutely continuous and from
[5, p.16], f ′ ∈ L1

loc. Therefore, α′ ∈ L1
loc and α′ > 0 a.e., which implies that α(E)

is strictly increasing and the proof is finished.
The claim for τ−(E) follows analogously.

Theorem 6. The functions τ± satisfy

lim
E→E±

τ±(E) =∞

Then, τ± : (0, E±)→
(

π

(2f ′(0))1/2
,∞
)

.

Proof. Case a+ < ∞. Then, we have f(a+) = 0 and ū(x) = a+ is a constant

solution to the problem ∂2u
∂x2 + f(u) = 0. Let us consider E+ = F (a+) and the

solution u to this problem satisfying the conditions u(0) = 0, u′(0) = v0, E = 1
2v

2
0 .

As a+ is a constant solution, by uniqueness τ+(E+) =∞. Therefore, given T > 0,
there exists δ > 0 such that if E > E+− δ, then τ+(E) > T , which follows from the
continuity of u with respect to its initial conditions.

Case a+ =∞. Note that if p > 2, then a+ <∞. Therefore, p = 2. In this case,
f(u) > 0 for all u ∈ (0,∞). From condition (A5), there exist α, β > 0 such that
f(u) ≤ α+ βu. For u > 0 we have

f(u)

u2
≤ α

u2
+
β

u
.

Hence, f(u)/u2 → 0, as u→∞.
On the other hand,

∫ u
0
f(s)ds ≤

∫ u
0

(α+βs) ds. Thus, we have F (u) ≤ αu+βu2/2
and

0 ≤ F (u)

u3
≤ α

u2
+
β

2

1

u
.

Hence, F (u)/u3 → 0, as u→∞.
We claim that lim

u→0+
f(u)/u2 = ∞. Indeed, since f ′(0) exists, for any ε ∈

(0, f ′(0)), there exists δ > 0 such that |f ′(0) − f(u)/u| < ε, for any |u| < δ.
Thus, dividing by u2, we obtain

u(f ′(0)− ε)
u2

<
f(u)

u2
<
u(ε+ f ′(0))

u2

and the result follows.
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Since f(u)/u2 → 0, as u → ∞, and f(u)/u2 → ∞, as u → 0+, for any ε > 0,
there exists a first value u0 ∈ (0,∞) where f(u0)/u2

0 = ε. Hence,

f(u)

u2
> ε, 0 < u < u0.

From the above expression, we have
∫ u

0
f(s)ds >

∫ u
0
εs2ds and εu3/3 < F (u).

Then, F (u)/u3 > ε/3, if 0 < u ≤ u0. Since F (u)/u3 → 0, as u → ∞, we deduce
that there exists a first u > u0 such that F (u)/u3 = ε/3. Hence, we have

F (u)

u3
>
ε

3
, 0 < u < u,

with F (u) = ε
3u

3.

Now, computing τ+ in E = F (u), we have

τ+(E) =

∫ U+(E)

0

1√
E − F (u)

du =

∫ u

0

1√
ε
3u

3 − F (u)
du

≥
∫ u

0

1√
ε
3u

3 − ε
3u

3
du =

√
3√
ε

∫ u

0

1√
u3 − u3

du

=

√
3√
ε

∫ 1

0

u√
u3 − u3t3

dt =

√
3√
ε

u√
u3

∫ 1

0

(
1− t3

)− 1
2 dt

=

√
3√
ε

u√
u3

1

3

∫ 1

0

s
1
3−1 (1− s)

1
2−1

ds

=
1

u
1
2

1√
ε

√
3

3
B
(

1

2
,

1

3

)
.

Recall that εu3 = 3F (u). Then,

εu = 3
F (u)

u2 .

Taking ε→ 0, by construction u→∞. Therefore, from condition (A6)(b) we have
that limu→∞ f(u)/u ≤ 0, so the last expression tends to 0 and τ+(E)→∞.

Theorem 7. Consider

λn = n2π2.

Then, for each n ≥ 1, there exist two continuous functions E±n : [λn,∞)→ [0, E±)
with the following properties:

1. For each integer k ≥ 1 and for f ′(0) ∈ [λ2k−1,∞) the only solution of the
equation (9) (resp. 10) is the value E+

2k−1(f ′(0)) (resp. E−2k−1(f ′(0)));
2. For each integer k ≥ 1 and for f ′(0) ∈ [λ2k,∞) the only solution of the

equation (11) is the value E−2k(f ′(0)) = E+
2k(f ′(0)) = E2k;

3. For each integer n ≥ 1, E±n (f ′(0)) = 0, if f ′(0) = λn.

Proof. Let be n ≥ 1. If n is odd, then n = 2k − 1 for k ≥ 1. First, we prove that
we can define the function

E±n : [λn,∞) −→ [0, E±)
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by putting E±n (f ′(0)) = E, where E satisfies kτ±(E) + (k − 1)τ∓(E) = 1/
√

2.
Consider the function

hn± : (0, E±) −→ (nπ/
√

2f ′(0),∞),

defined by hn±(E) := kτ±(E) + (k− 1)τ∓(E). If f ′(0) > λn then, as h± is a strictly

increasing function, there exists a unique E±2k−1 ∈ (0, E±) such that hn±(E±2k−1) =

1/
√

2.

Since h± has inverse, E±2k−1 = (hn±)−1(1/
√

2) is the solution of the expressions

(9) and (10). Moreover, E±2k−1(λn) = 0 by construction.
Second, if n is even, then n = 2k for k ≥ 1. As before, we consider hn±(E) :=

kτ±(E) + kτ∓(E). Since it is an increasing function, for f ′(0) > λn, there exists

a unique E2k ∈ (0, E±) such that hn±(E2k) = 1/
√

2. Analogously, we obtain the

solution of the expression (11), E±2k = (hn±)−1(1/
√

2), and E±2k−1(λn) = 0.

Theorem 8. For each n ≥ 0 and f ′(0) ∈ [λn,∞), the equation (7) has two new
more solutions v±n with the following properties:

1. a− < u±n (x) < a+ for all x ∈ [0, 1];
2. If f ′(0) = λn, then v±n = 0;
3. For f ′(0) ∈ (λn,∞), v±n has n + 1 zeros in [0, 1]. Denoting these zeros by

x±q , q = 0, 1, . . . , n with 0 = x±0 < x±1 < x±2 < . . . < x±n = 1, we have

(−1)qv+
n (x) > 0 for x+

q < x < x+
q+1, q = 0, 1, . . . , n − 1 and (−1)qv−n (x) < 0

for x−q < x < x−q+1, q = 0, 1, . . . , n− 1. Also, v+
n = −v−n , if f is odd;

Proof. The first point follows from F (u±n (x)) ≤ E < E±.
The second point follows from the third one of Theorem 7. Indeed, for each n ≥ 1

and f ′(0) ∈ [λn,∞) we have the values E±n (f ′(0)) by the above theorem. Also, we
have a solution of the equation (7) which is denoted by v±n . If f ′(0) = λn, then
E±n (λn) = 0 and v0 = 0, so v±n = 0.

The third point follows by Remark 7. If f is odd, then −U−(E) = U+(E),
τ+(E) = τ−(E), so we have v+

n = −v−n .

Corollary 1. If n2π2 < f ′(0) ≤ (n + 1)2π2, n ∈ N, then there are 2n + 1 fixed
points: 0, v±1 , ..., v

±
n , where v±j possesses j + 1 zeros in [0, 1].

5.2. Approximations. From now on, we shall consider the following family of
Chafee-Infante equations

∂u

∂t
− ∂2u

∂x2
= fε(u), t > 0, x ∈ (0, 1) ,

u(t, 0) = 0, u(t, 1) = 0,
u(0, x) = u0(x),

(13)

where ε ∈ (0, 1] is a small parameter and fε satisfies

(Ã1) fε ∈ C(R) and is non-decreasing;

(Ã2) fε(0) = 0;

(Ã3) f ′ε (0) > 0 exists, is finite, monotone in ε and f ′ε (0)→∞, as ε→ 0+;

(Ã4) fε is strictly concave if u > 0 and strictly convex if u < 0;

(Ã5) −1 < fε (s) < 1, for all s, and

|fε(s)−H0(s)| < ε, if |s| > ε, (14)

where
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H0(u) =

 −1, if u < 0,
[−1, 1] , if u = 0,
1, if u > 0,

is the Heaviside function.

Conditions (A1)-(A6) are satisfied with p = 2, so problem (13) is a particular
case of (6).

Our aim now is to prove that for ε sufficiently small the multivalued semiflow
Gε generated by the weak solutions of problem (13) is dynamically gradient. Prob-
lem (13) is an approximation of the following problem, governed by a differential
inclusion 

∂u

∂t
− ∂2u

∂x2
∈ H0(u), on Ω× (0, T ),

u|∂Ω = 0,
u(0, x) = u0(x).

(15)

We say that the function u ∈ C([0, T ], L2(Ω)) is a strong solution of (15) if

1. u(0) = u0;
2. u(·) is absolutely continuous on (0, T ) and u(t) ∈ H2(Ω) ∩ H1

0 (Ω) for a.e.
t ∈ (0, T );

3. There exists a function g(·) such that g(t) ∈ L2(Ω), a.e. on (0, T ), g(t, x) ∈
H0(u(t, x)), for a.e. (t, x) ∈ (0, T )× Ω, and

du

dt
− ∂2u

∂x2
− g(t) = 0, a.e. t ∈ (0, T ).

In this case we put R as the set of all strong solutions such that the map g
belongs to L2(0, T ;L2(Ω)). Conditions (K1)-(K4) are satisfied (cf. [9]) and the
map G : R+ × L2(Ω) → P (L2(Ω)) defined by (1) is a strict multivalued semiflow
possessing a global compact attractor A0 (cf. [24]) in L2(Ω), which is connected
(cf. [25]). The structure of this attractor is studied in [3]. It is shown that there
exists an infinite (but countable) number of fixed points

v0 = 0, v+
1 , v

−
1 , . . . , v

+
n , v

−
n , . . . ,

and that A0 consists of these fixed points and all bounded complete trajectories
ψ(·), which always connect two fixed points, that is,

ψ(t)→ z1 as t→∞,
ψ(t)→ z2 as t→ −∞, (16)

where zi = 0, zi = v+
n or zi = v−n for some n ≥ 1. Moreover, if ψ is not a fixed

point, then either z2 = 0 and z1 = v±n , for some n ≥ 1, or z2 = v±k , z1 = v±n with
k > n.

We fix some N0 ∈ N. Denote

ZN0
=
(
∪k≥N0

{v±k }
)
∪ {v0}

and define the sets
Ξ0
k = {v+

k , v
−
k }, 1 ≤ k ≤ N0 − 1,

Ξ0
N0

=

{
y : ∃ψ ∈ K such that (16) holds with zj ∈ ZN0

,
j = 1, 2 and y = ψ(t) for some t ∈ R

}
,

where K stands for the set of all bounded complete trajectories. We note that
set Ξ0

N0
contains the fixed points in ZN0 and all bounded complete trajectories

connecting them.
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Remark 8. It is known [9] that the familyM = {Ξ0
1, . . . ,Ξ

0
N0
} is a disjoint family

of isolated weakly invariant sets and that G0 is dynamically gradient with respect
to M in the sense of Remark 4. Hence, G0 is dynamically gradient with respect to
M in the sense of Definition 4.

Now our purpose is to adapt some lemmas from [3, p.2979] to problem (13). In
view of Theorems 7 and 8 and the third condition on fε, there exists a sequence
εk → 0, as k → ∞, such that for every ε ∈ (εk, εk+1] and any k ≥ 1 problem (13)
has exactly 2k + 1 fixed points {vε0 = 0, {v+

ε,j}kj=1} such that for each 1 ≤ n ≤ k

v±ε,n has n+ 1 zeros in [0, 1].
Let us consider a sequence {εm} converging to zero.

Lemma 8. Let n ∈ N be fixed. Then, v+
εm,n (resp. v−εm,n) do not converge to 0 in

H1
0 (0, 1) as εm → 0.

Proof. Suppose that v+
εm,n → 0 in H1

0 (0, 1). Then v+
εm,n → 0 in C([0, 1]). By Remark

7, v+
εm,n has a unique maximum in a ∈ (0, x+

1 ) and by the properties of τ+ described

before a =
x+
1

2 . We may assume that x+
1 does not converge to 0. Let x0(εm) be the

first point where v+
εm,n(x0) = εm or x0 = a if such a point does not exist. We claim

that x0(εm) → 0, as εm → 0. It is clear that ∂2v+
εm,n/∂x

2 = −fεm(v+
εm,n) < 0 in

(0, x+
1 ), and then

v+
εm,n(x0)

x0
x ≤ v+

εm,n(x) ≤ εm, ∀x ∈ [0, x0], (17)

by concavity. Hence, integrating first on (s, a) and then on (0, x) with x ≤ x0, we
have

d

dx
v+
εm,n(s) =

∫ a

s

fεm(v+
εm,n(τ))dτ, (18)

v+
εm,n(x) =

∫ x

0

∫ a

x0

fεm(v+
εm,n(τ))dτds+

∫ x

0

∫ x0

s

fεm(v+
εm,n(τ))dτds.

Since fε(u) is concave, we have that fε(u)/u ≥ fε(ε)/ε, ∀ 0 < u ≤ ε. Moreover,

by assumption (Ã5) of fε we get fε(u) ≥ 1−ε
ε u, for all 0 < u ≤ ε. Hence, using (17)

we have

v+
εm,n(x) ≥

∫ x

0

∫ x0

s

1− εm
εm

v+
εm,n(τ)dτds ≥ 1− εm

εm

v+
εm,n(x0)

x0

∫ x

0

∫ x0

s

τdτds.

Thus,

1 ≥ 1− εm
εm

(
xx0

2
− x3

6x0

)
,

so it follows that x0 → 0, as εm → 0.
Let δ1 < 0 < δ2 be such that x0(εm) ≤ δ1 < δ2 ≤ a(εm). Since v+

εm,n(x) ≥
εm ∀x ∈ [x0, a], if we intregate (18) over (δ1, x) with δ1 < x ≤ δ2, we have

v+
εm,n(x)− v+

εm,n(δ1) =

∫ x

δ1

∫ a

s

f(v+
εm,n(τ))dτds ≥ (1− εm)

∫ x

δ1

∫ a

s

dτds,

which implies a contradiction if v+
εm,n → 0 in C([0, 1]).

The proof is similar for v−εm,n.

Lemma 9. v+
εm,k

(resp. v−εm,k) converges to v+
k (resp. v−k ) in H1

0 (Ω) as m → ∞
for any k ≥ 1.
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Proof. It is easy to see that v+
εmk

is bounded in H2(Ω)∩H1
0 (Ω), so v+

εmk
→ v strongly

in H1
0 (Ω) and C([0, 1]) up to a subsequence. The proof will be finished if we prove

that v = v+
k . We observe that since in such a case every subsequence would have

the same limit, the whole sequence would converge to v+
k

It is clear that the functions gεm = fεn(v+
εmk

) are bounded in L∞(0, 1).
Passing to a subsequence we can then assume that gεn converges to some g weakly

in L2(0, 1). It is clear that −(∂2v/∂x2) = g and v is a fixed point if we prove the
inclusion g(x) ∈ H0(v(x)) for a.e. x ∈ (0, 1). By Masur’s theorem [28, p.120] there
exist zm ∈ Vm = conv(∪∞k≥mgεk) such that zm → g, as m→∞, strongly in L2(0, 1).

Taking a subsequence we have zm(x)→ g(x), a.e. in (0, 1). Since zm ∈ Vm, we get

zm =
∑Nm

i=1 λigεki
, where λi ∈ [0, 1],

∑Nm

i=1 λi = 1 and ki ≥ m, for all i.

Now (14) implies that |gεk(x)−H0(v(x))| → 0, as k →∞, for a.e. x. Indeed, if
v(x) = 0, then gεk(x) ∈ [−1, 1] = H0(v(x)). If v(x) > 0, then |gεk(x)−H0(v(x))| =
|fεk(vεk(x))− 1| → 0, as k →∞. If v(x) < 0, we apply a similar argument.

Thus, for any δ > 0 and a.e. x there exists m(x, δ) such that gεk(x) ⊂ [a(x) −
δ, b(x) + δ], for all k ≥ m, where [a(x), b(x)] = H0(v(x)). Hence, zm(x) ⊂ [a(x) −
δ, b(x) + δ], as well. Passing to the limit we obtain g(x) ∈ [a(x), b(x)], a.e. on (0, 1).

To conclude the proof, we have to prove that v = v+
k . By Lemma 8 v 6= 0. Hence,

as v+
εmk

(x) > 0 for all x ∈ (0, x+
1 (εm)), v = v+

n for some n ∈ N. Since v+
n has n+ 1

zeros, the convergence v+
εmk
→ v+

n implies that v+
εmk

has n + 1 zeros for m ≥ N .

But v+
εmk

possesses k + 1 zeros. Thus, k = n.

For the sequence v−εmk the proof is analogous.

Lemma 10. Let εm → 0, km → ∞ as m → ∞. Then v+
εm,km

(resp. v−εm,km)
converges to 0 as m→∞.

Proof. In the same way as in the proof of Lemma 9 we obtain that up to a sub-
sequence v+

εm,km
→ v in H1

0 (Ω) and C([0, 1]), where v is a fixed point of problem

(15). We will prove that v = 0 by contradiction. If not, then v = v±n for some
n ∈ N. However, since v±n has exactly n + 1 zeros and v+

εm,km
→ v in C([0, 1]),

we have that v+
εm,km

has n + 1 zeros for any m ≥ M with M big enough. This

contradicts the fact that v+
εm,km

possesses km + 1 zeros and km →∞. As the limit
is 0 for every converging subsequence, the whole sequence converges to 0.

For the sequence v−εmk the proof is analogous.

Once we have described the preliminary properties, we are now ready to check
that (13) satisfies the conditions given in Theorem 2 for certain families Mε. We
recall that [26, Theorem 10] guarantees the existence of the global compact invariant
attractors Aε, where each Aε is the union of all bounded complete trajectories.

Let us check assumptions (H1)-(H5) of Theorem 2.
As we have seen before, condition (H2) follows from Remark 8. Therefore, we

prove now condition (H1).
Multiplying the equation in (13) by u, we obtain

1

2

d

dt
‖u‖2L2 + ‖u‖2H1

0
≤
∫

Ω

|u|dx

≤ 1

2
‖u‖2H1

0
+ C, (19)
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where we have used Poincaré’s inequality. Denoting λ1 the first eigenvalue of the
operator −∆ in H1

0 (Ω), we have

d

dt
‖u‖2L2 ≤ −λ1‖u‖2L2 +K.

Gronwall’s lemma gives

‖u(t)‖2L2 ≤ e−λ1t‖u(0)‖2L2 +
K

λ1
, t ≥ 0. (20)

Integrating (19) over (t, t+ r) with r > 0 we have

‖u(t+ r)‖2L2 +

∫ t+r

t

‖u‖2H1
0
ds ≤ ‖u(t)‖2L2 + rK

Then by (20), ∫ t+r

t

‖u‖2H1
0
ds ≤ ‖u(0)‖2L2e−λ1t +

(
1

λ1
+ r

)
K. (21)

On the other hand, multiplying (13) by −∆u and using Young’s inequality we
obtain

d

dt
‖u‖2H1

0
+ 2‖∆u‖2L2 ≤ ‖fε(u)‖2L2 + ‖∆u‖2L2 (22)

Since fε(u(·)) ∈ L2(0, T ;L2(Ω)),∀T > 0, we obtain by [5, p.189] that

u ∈ L∞(η, T ;H1
0 (Ω)),

du

dt
∈ L2(η, T ;L2(Ω)), ∀ 0 < η < T.

This regularity guarantees that the equality

1

2

d

dt
‖u‖2H1

0
= 〈du

dt
,−∆u〉, for a.e. t, (23)

is correct [21, p.102]. Then

d

dt
‖u‖2H1

0
≤ K + ‖u‖2H1

0
.

We apply the uniform Gronwall lemma [22, p. 91] with y(s) = ‖u(s)‖2
H1

0
, g(s) = 1

and w(s) = K. Also, using (21) we obtain

‖u(t+ r)‖2H1
0
≤

(
‖u(0)‖2L2e−λ1t + ( 1

λ1
+ r)K

r
+Kr

)
er (24)

It follows from (20) that ‖y‖L2 ≤ K
λ1

for any y ∈ Aε, 0 < ε ≤ 1. Hence, ∪0<ε≤1Aε
is bounded in L2(Ω). Since Aε ⊂ Gε(t,Aε) for any t ≥ 0, for any y ∈ Aε there
exists z ∈ Aε such that y ∈ Gε(1, z). Then using (24) with r = 1 and t = 0 we
obtain that

‖y‖2H1
0
≤
(
‖z‖2L2 +

(
1

λ1
+ 1

)
K +K

)
e,

so ∪0<ε≤1Aε is bounded inH1
0 (Ω). The compact embeddingH1

0 (Ω) ⊂ L2(Ω) implies
that ∪0<ε≤1Aε is relatively compact in L2(Ω). As the global attractor A0 of the

differential inclusion (15) is compact, the set ∪0≤ε≤1Aε is compact in L2(Ω).
In order to establish that (13) satisfies the rest of conditions given in Theorem

2, we need to proof two previous results related to the convergence of solutions of
the approximations and the connections between fixed points.
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Theorem 9. If uεn0 → u0 in L2(Ω) as εn → 0, then for any sequence of solutions
of (13) uεn(·) with uεn(0) = uεn0 there exists a subsequence of εn such that uεn
converges to some strong solution u of (15) in the space C([0, T ], L2(Ω)), for any
T > 0.

Proof. We define gn(t) = fεn(uεn(t)) and un(t) = uεn(t). From (20) we have that
‖un(t)‖L2 ≤ C0, for all t ≥ 0, so that ‖gn(t)‖L2 ≤ C1, for a.e. t ≥ 0. Hence, there
exists a subsequence such that un → u weakly in L2(0, T ;L2(Ω)). It follows from

(22) and ‖gn(t)‖L2 ≤ C1 that
∫ T
r
‖∆u‖2L2ds ≤ C2

1 (T − r) + ‖un(r)‖2
H1

0
. Using (24)

we obtain that
∫ T
r
‖∆un‖2L2ds ≤ C(r). Hence, dun

dt is bounded in L2(r, T ;L2(Ω)) for

any 0 < r < T, so passing to a subsequence dun

dt →
du
dt weakly in L2(r, T ;L2(Ω)).

Moreover, Ascoli-Arzelà theorem implies that for any fixed r > 0 we have un → u
in C([r, T ], L2(Ω)) and u is absolutely continuous on [r, T ].

Also, gn converges to some g ∈ L∞(0, T ;L2(Ω)) weakly star in L∞(0, T ;L2(Ω))
and weakly in L2(0, T ;L2(Ω)). On the other hand, since −∆un = −dun

dt +gn, −∆un
converges to l(t) = −(dudt )+g weakly in L2(r, T ;L2(Ω)). Hence, we find at once that
u satisfies

du

dt
−∆u(t) = g(t), a.e. on (0, T ).

We need to prove that u(·) is a strong solution of (15). Now, we show that
g(t) ∈ H0(u(t)), a.e. in (0, T ). For this, we shall prove first that for a.e. x ∈ Ω and
s ∈ (0, T )

|gn(s, x)−H0(u(s, x))| → 0, as n→∞.

Indeed, if u(s, x) = 0, then gn(s, x) = fεn(un(s, x)) = 0 ∈ [−1, 1] = H0(u(s, x)),
for all n, so that the result is evident. If u(s, x) < 0, then

|gn(s, x)−H0(u(s, x))| = |fεn(un(s, x)) + 1| → 0, as n→∞.

Finally, if u(s, x) > 0, then

|gn(s, x)− f0(u(s, x))| = |fεn(un(s, x))− 1| → 0, as n→∞.

Now, by [23, Proposition 1.1] we have that for a.e. t ∈ (0, T )

g(t) ∈
⋂
n≥0

co
⋃
k≥n

gk(t).

Then g(t) = lim
n→∞

yn(t) strongly in L2(Ω), where

yn(t) =
M∑
i=1

λigki(t),
M∑
i=1

λi = 1, ki ≥ n.

We note that for any t ∈ [0, T ] and a.e. x ∈ Ω we can find n(ε, x, t) such that if
k ≥ n, then |gk(t, x)−H0(u(t, x))| ≤ ε. Therefore,

|yn(t, x)−H0(u(t, x))| ≤
M∑
i=1

λi|gki(t, x)−H0(u(t, x))| ≤ ε.

Hence, since we can assume that for a.e. (t, x) ∈ (0, T ) × Ω, yn(t, x) → g(t, x), it
follows that g(t, x) ∈ H0(u(t, x)).
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It remains to check that u is continuous as t→ 0+. Let û be the unique solution
of 

du

dt
−∆u = 0,

u|∂Ω = 0,
u(0) = u0,

and let vn(t) = un(t)− û(t). Multiplying by vn the equation

dvn
dt
−∆vn = fεn(un),

we obtain

1

2

d

dt
‖vn‖2L2 + ‖vn‖2H1

0
≤ (fεn(un(t)), vn) (25)

≤ 1

2
‖fεn(un)‖2L2 +

1

2
‖vn‖2L2 , (26)

so that

‖vn(t)‖2L2 ≤ ‖vn(0)‖2L2 +Kt.

Hence, ‖u(t)− û(t)‖2L2 = limn→∞ ‖vn(t)‖2L2 ≤ Kt, for t > 0, and

‖u(t)− u0‖L2 ≤ ‖u(t)− û(t)‖L2 + ‖û(t)− u0‖L2 < δ,

as soon as t < ε(δ). Therefore, u(·) is a strong solution.
Finally, if tn → 0, then

‖un(tn)− u0‖L2 ≤ ‖vn(tn)‖L2 + ‖û(tn)− u0‖L2

≤
√
‖vn(0)‖2L2 +Ktn + ‖û(tn)− u0‖L2 → 0.

Hence, un → u in C([0, T ], L2(Ω)). By a diagonal argument we obtain that the
result is true for every T > 0.

As a consequence of the last theorem, condition (H4) follows.

Remark 9. Let be uεn(·) a bounded complete trajectory of (13). Fix T > 0.
Since

⋃
0<ε≤ε0 Aε is precompact in L2(Ω), uεn(−T )→ y in L2 up to a subsequence.

Theorem 9 implies that uεn converges in C([0, T ], L2(Ω)) to some solution u of (15).
If we choose successive subsequences for −2T,−3T, . . . , and apply the standard
diagonal procedure, we obtain that a subsequence uεn converges to a complete
trajectory u of (15) in C([−T, T ], L2(Ω)) for any T > 0. Since ∪0<ε≤1Aε is bounded
in L2(Ω) (in fact in H1

0 (Ω)), it is clear that u is a bounded complete trajectory of
problem (15).

Now, we need to prove a previous lemma to obtain the convergence of solutions
of the approximations in the space C([0, T ], H1

0 ).

Lemma 11. Any sequence ξn ∈ Aεn with εn → 0 is relatively compact in H1
0 (Ω).

Proof. There exists a bounded complete trajectory ψεn of (13) with ψεn(0) = ξn.
Denote un(·) = ψεn(−T+·) and choose some T > 0. Then ξn = un(T ), un(0) =
ψεn(t0 − T ). In view of Remark 9 up to a subsequence un → u in C([0, T ], L2(Ω)),
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where u is a strong solution of (15). On top of that, by (24) and the argument in
the proof of Theorem 9 we obtain that for r > 0,

un → u weakly star in L∞(r, T ;H1
0 (Ω)),

dun
dt
→ du

dt
weakly in L2(r, T ;L2(Ω)),

un → u weakly in L2(r, T ;H2(Ω)).

Therefore, by the Compactness Theorem [17, p.58] we have

un → u strongly in L2(r, T,H1
0 (Ω)),

un(t)→ u (t) in H1
0 (Ω) for a.a. t ∈ (r, T ).

In addition, by standard results [21, p.102] we have that un, u ∈ C([r, T ], H1
0 (Ω)).

Multiplying (13) by dun

dt and using (23), we obtain∥∥∥∥dundt
∥∥∥∥2

L2

+
d

dt
‖un‖2H1

0
≤ ‖fε(un)‖2L2 .

Thus,

‖un(t)‖2H1
0
≤ ‖un(s)‖2H1

0
+ C(t− s), C > 0, t ≥ s ≥ r.

The same inequality is valid for the limit function u(·). Hence, the functions Jn(t) =
‖un(t)‖2

H1
0
− Ct, J(t) = ‖u(t)‖2

H1
0
− Ct, are continuous and non-increasing in [r, T ].

Moreover, Jn(t)→ J(t) for a.e. t ∈ (r, T ). Take r < tm < T such that tm → T and
Jn(tm)→ J(tm) for all m. Then

Jn(T )− J(T ) ≤ Jn(tm)− J(T ) ≤ |Jn(tm)− J(tm)|+ |J(tm)− J(T )|.

For any ε > 0 there exist m(ε) and N(ε) such that Jn(T ) − J(T ) ≤ ε if n ≥ N.
Then lim sup Jn(T ) ≤ J(T ), so lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0
. As un(T ) → u(T )

weakly in H1
0 implies lim inf ‖un(T )‖2

H1
0
≥ ‖u(T )‖2

H1
0
, we obtain

‖un(T )‖2H1
0
→ ‖u(T )‖2H1

0
,

so that un(T )→ u(T ) strongly in H1
0 (Ω). Hence, the result follows.

Corollary 2. If uε0 → u0 in L2(Ω), where uε0 ∈ Aε, u0 ∈ A0, then for any T > 0
there exists a subsequence εn such that uεn converges to some strong solution u of
(15) in C([0, T ], H1

0 (Ω)).

Proof. We know from Theorem 9 that there exists a subsequence such that uεn
converges to some strong solution u of (15) in C([0, T ], L2(Ω)). Then the statement
follows from the invariance of Aε and Lemma 11.

Remark 10. Let uεn(·) be a bounded complete trajectory of (13). Fix T > 0. By
Lemma 11 uεn(−T ) → y in H1

0 (Ω) up to a subsequence. Corollary 2 implies then
that uεn converges in C([0, T ], H1

0 (Ω)) to some solution u of (15). If we choose suc-
cessive subsequences for −2T,−3T . . . and apply the standard diagonal procedure
we obtain that a subsequence uεn converges to a complete trajectory u of (15) in
C([−T, T ], H1

0 (Ω)) for any T > 0. By Remark 9 this trajectory is bounded.

Lemma 12. distH1
0
(Aε,A0)→ 0, as ε→ 0.
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Proof. By contradiction let there exist δ > 0 and a sequence yεn ∈ Aεn such that

distH1
0
(yεn ,A0) > δ.

Hence, as yεn = uεn(0), where uεn is a bounded complete trajectory of problem
(13), using Remark 10 we obtain that up to a sequence uεn converges to a bounded
complete trajectory u of the problem (15) in the spaces C([−T, T ], H1

0 (Ω)) for every
T > 0. Thus, u(t) ∈ A0 for any t ∈ R. We infer then that

yεn = uεn(0)→ u(0) ∈ A0,

which is a contradiction.

We choose some δ > 0 such that

Oδ(Ξ0
i ) ∩ Oδ(Ξ0

j ) = ∅ if i 6= j

and Ξ0
i are maximal weakly invariant.

For problem (13) let us define the sets

Mε
i = {v+

ε,i, v
−
ε,i} for 1 ≤ i < N0,

ZεN0
=
(
∪k≥N0

{v±ε,k}
)
∪{0},

Mε
N0

=

{
y : ∃ψ ∈ Kε such that (16) holds with zj ∈ ZεN0

,
j = 1, 2 and y = ψ(t) for some t ∈ R

}
where Kε is the set of all bounded complete trajectories of (13).

In view of Lemma 9 we have

distH1
0
(Mε

i ,Ξ
0
i )→ 0, as ε→ 0, 1 ≤ i < N0

Lemma 13. distH1
0
(Mε

N0
,Ξ0

N0
)→ 0, as ε→ 0.

Proof. Suppose the opposite, that is, there exists δ > 0 and a sequence yεk ∈ M
εk
0

such that

distH1
0
(yεk ,Ξ

0
N0

) > δ for all k. (27)

Let ξεk be a sequence of bounded complete trajectories of problem (13) such that
ξεk(0) = yεk and

ξεk(t)→ zk−1 as t→ −∞,
ξεk(t)→ zk0 as t→∞,

where zk−1, z
k
0 ∈ Z

εk
N0

. By Lemmas 9 and 10, passing to a subsequence we have that

zki → zi ∈ ZN0
, i = −1, 0.

By Remark 10 we obtain that up to a subsequence ξεk converges to a complete
trajectory ψ0 of problem (15) in the spaces C([−T, T ], H1

0 (Ω)) for every T > 0, so
yεk → ψ0(0) in H1

0 (Ω). Thus, either ψ0 is equal to a fixed point z0 6= 0 or there
exist two fixed points of problem (15), denoted by z−1, z0 such that

E(z−1) > E(z0),

ψ0(t)→ z−1 as t→ −∞,
ψ0(t)→ z0 as t→∞.

If z0 = z0, then z−1, z0 ∈ ZN0
, which means that ψ0(0) ∈ Ξ0

N0
. This would imply

a contradiction with (27). Therefore, we assume that z0 6= z0. Also, it is clear that
z0 = v±m 6= 0, for some m ∈ N.
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Let r0 > 0 be such that Or0(z0) ∩ Or0(z0) 6= ∅ and O2r0(z0) does not contain
any other fixed point of problem (15). The previous convergences imply that for
each r ≤ r0 there exist a moment of time tr and kr such that ξεk(tr) ∈ Or(z0) for
all k ≥ kr. On the other hand, since ξεk(t) → zk0 , as t → ∞, and zk0 → z0, there
exists t′r > tr such that

ξεkr
(t) ∈ Or0(z0) for all t ∈ [tr, t

′
r),

‖ξεkr
(t′r)− z0‖L2 = r0.

Let us consider two cases: 1) t′r − tr → ∞; 2)|t′r − tr| ≤ C. We begin with the
first case. We define the sequence of bounded complete trajectories of problem (13)
given by

ξ1
kr (t) = ξεkr

(t+ t′r).

By Remark 10 we can extract a subsequence of this sequence converging to a
bounded complete trajectory ψ1 of problem (15). Since t′r−tr →∞, we obtain that
ψ1(t) ∈ Or0(z0) for all t ≤ 0. Since O2r0(z0) does not contain any other fixed point
of problem (15), it follows that ψ1(t)→ z0 as t→ −∞. But ‖ψ1(0)−z0‖L2 = r0, so
ψ1 is not a fixed point. Therefore, ψ1(t)→ z1 as t→∞, where z1 is a fixed point
such that E(z1) < E(z0).

In the second case we define the sequence

ξ1
kr (t) = ξεkr

(t+ tr).

Passing to a subsequence we have that

ξ1
kr (0)→ z0,

t′r − tr → t′.

As ξ1
kr

converges to a solution ξ1 of problem (15) uniformly in bounded subsets

from [0,∞) such that ξ1(0) = z0, ξ1
kr

(t′r− tr)→ ξ1(t′), so that ‖ξ1(t′)− z0‖L2 = r0.
We put

ψ1(t) =

{
z0 if t ≤ 0,
ξ1(t) if t ≥ 0.

Then ψ1 is a bounded complete trajectory of problem (15) such that ψ1(t)→ z1 as
t→∞, where z1 is a fixed point satisfying E(z1) < E(z0).

Now, if z1 = z0, then we have the chain of connections

ψ0(t)→ z−1 as t→ −∞, ψ0(t)→ z0 as t→ +∞,
ψ1(t)→ z0 as t→ −∞, ψ1(t)→ z1 as t→ +∞,

which implies that z−1, z0, z1 ∈ Zn, an then ψ0(0) ∈ Ξ0
n. This would imply a

contradiction with (27).
However, if z1 6= z0, then we proceed in the same way and obtain a new connec-

tion from the point z1 to another fixed point with less energy. Since the number of
fixed points with energy less than or equal to E(z0) is finite, we will finally obtain
a chain of connections of the form

ψ0(t)→ z−1 as t→ −∞, ψ0(t)→ z0 as t→ +∞,
ψ1(t)→ z0 as t→ −∞, ψ1(t)→ z1 as t→ +∞,

...

ψn(t)→ zm−1 as t→ −∞, ψn(t)→ zm = z0 as t→ +∞.

And again, this implies a contradiction with (27).
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These convergences imply the existence of ε0 such that if ε ≤ ε0, then

Mε
i ⊂ Oδ(Ξ0

i ) for any 1 ≤ i ≤ N0.

Further, let

Ξεi =

{
y : ∃ψ ∈ Kε such that ψ(0) = y
and ψ(t) ∈ Oδ(Ξ0

i ) for all t ∈ R

}
.

These sets are clearly maximal weakly invariant for Gε in Oδ(Ξ0
i ), so condition

(H5) is satisfied for Vi = Oδ(Ξ0
i ). As a consequence of Lemmas 9, 13, Remark 9

and the definition of δ we have

distL2(Ξεi ,Ξ
0
i )→ 0, as ε→ 0, for 1 ≤ i ≤ N0.

Therefore, condition (H3) is satisfied.
We also get by Remark 10 and the definition of δ that

distH1
0
(Ξεi ,Ξ

0
i )→ 0, as ε→ 0, for 1 ≤ i ≤ N0.

Moreover, Mε = {Ξε1, . . . ,ΞεN0
} is a disjoint family of isolated weakly invariant

sets.
Applying Theorem 2 we obtain the following result.

Theorem 10. There exists ε1 > 0 such that for all 0 < ε ≤ ε1 the multivalued
semiflow Gε is dynamically gradient with respect to the family Mε.

Acknowledgments. This paper is dedicated to the memory of Professor Valery
Melnik, on the tenth anniversary of his passing away, with our deepest respect and
sorrow.
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Abstract

In this paper we study a nonlocal reaction-diffusion equation in which the diffusion depends on
the gradient of the solution.

Firstly, we prove the existence and uniqueness of regular and strong solutions. Secondly, we obtain
the existence of global attractors in both situations under rather weak assumptions by defining a
multivalued semiflow (which is a semigroup in the particular situation when uniqueness of the Cauchy
problem is satisfied). Thirdly, we characterize the attractor either as the unstable manifold of the
set of stationary points or as the stable one when we consider solutions only in the set of bounded
complete trajectories.

Keywords: reaction-diffusion equations, nonlocal equations, global attractors, multivalued dynami-
cal systems, structure of the attractor

AMS Subject Classification (2010): 35B40, 35B41, 35B51, 35K55, 35K57

1 Introduction

In real applications there might exist several nonlocal effects that influence the evolution of a system. For
instance, usually we do not have enough information about the systems under study and its features at
every point. In reality, the measurements are not made pointwise but through some local average. This is
just one possible reason of introducing nonlocal terms in models. Actually, during the last decades many
mathematicians have been studying nonlocal problems motivated by its various applications in physics,
biology or population dynamics [13, 14, 15, 16, 17, 27].

For instance, let consider the problem of finding a function u(t, x) such that ut − a(
∫

Ω
u(t, x)dx)∆u = g(t, u), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω.

(1)

Here Ω is a bounded open subset in Rn, n ≥ 1, with smooth boundary and a is some function from R
to (0,+∞). In such equation u could describe the density of a population subject to spreading. The
diffusion coefficient a is then supposed to depend on the entire population in the domain rather than on
the local density.

A wide literature with significant results about (1) have been developed during the last few decades
(see for example [14, 17, 27]). However, it is possible to distinguish two basic cases of the following more
general equation  ut − a(u)∆u = g(t, u), t > 0, x ∈ Ω,

u = 0, on ∂Ω× (0,∞) ,
u(0, x) = u0(x) x ∈ Ω.
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Some authors consider a depending on a linear functional l(u), i.e.,

a(u) = a(l(u))

with

l(u) =

∫
Ω

Φ(x)u(x, t)dx,

where Φ(x) is a given function in L2(Ω). For g(t, u) = f(t) the existence and uniqueness of solutions
and their asymptotic behavior are studied for example in [15, 16, 18, 32]. For g(t, u) = f(u) + h(t)
the existence, uniqueness and asymptotic behaviour of solutions is studied in [1, 6, 8, 9]. Moreover, the
authors prove the existence of pullback attractors in L2(Ω) and H1

0 (Ω). Extensions in this direction for
equations governed by the p-laplacian operator instead of the laplacian operator ∆ are given in [7, 10],
whereas nonclassical diffusion equations are considered in [29].

On the other hand, it is possible to consider a function a such that a (u) = a(‖u‖2
H1

0
). The existence

and uniqueness of solutions of the following problem
ut − a(‖u‖2

H1
0
)∆u = f, t > 0, x ∈ Ω,

u = 0, on ∂Ω× (0,∞) ,
u(0, x) = u0(x) x ∈ Ω.

is proved in [32, 19], where f ∈ L2(Ω), u0 ∈ H1
0 (Ω) and a = a(s) is a continuous function such that

0 < m ≤ a(s) ≤M.
By this way, in this paper the following problem is considered

ut − a(‖u‖2
H1

0
)∆u = f(u) + h(t), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0, x) = u0 (x) in Ω,

(2)

where h ∈ L2(0, T ;L2(Ω)), for all T > 0, a : R+ → R+ is a continuous function such that a (s) ≥ m > 0
and f is a continuous function satisfying standard dissipative and growth conditions (see (7) below).

The aim of this paper is three-fold. First, we will prove the existence of solutions for problem (2) under
different assumptions on the nonlinear function f . Second, we will obtain the existence of attractors for
the semiflows generated by either regular or strong solutions in the autonomous case, that is, when h does
not depend on time. Third, we establish that the global attractor can be characterized by the unstable
manifold of the set of stationary points. It is important to notice that the proof of this last fact requires
the existence of a Lyapunov function on the attractor, and for this aim the term a(‖u‖2

H1
0
) is crucial. In

the case when a(u) = a(l(u)) it is not known whether such a function exists or not.
We prove the existence of strong solutions by assuming that either the function f is continuously

differentiable and f ′ (s) ≤ η or a more strict growth condition on f. Supposing additionaly that the
function a has sublinear growth we prove the existence of regular solutions as well. Moreover, when
f ′ (s) ≤ η and the function s 7→ a

(
s2
)
s is non-decreasing, uniqueness is proved.

When studying the asymptotic behaviour of solutions, new challenging difficulties arise for problem
(2). For this problem we consider the autonomous situation, that is, h ∈ L2 (Ω) does not depend on t.

If uniqueness holds, then we define classical semigroups (one for regular solutions and one for strong
solutions) and prove the existence of the global attractor. Under some extra assumptions on the functions
a, h we are able to obtain that the global attractor is bounded in H2 (Ω) and L∞ (Ω).

If uniqueness is not known to be true, then we have to define a (possibly) multivalued semiflow. Then
the existence of the global attractor is proved for regular solutions in the topology of the space L2 (Ω)
and for strong solutions in the topology of the space H1

0 (Ω) (or H1
0 (Ω) ∩ Lp (Ω)), extending in this way

the known results for the local problem [21].
The structure of the global attractor is an important feature as it gives us an insight into the long-term

dynamics of the solutions. In the multivalued situation it is a challenging problem that has not been
completely understood yet. So far in the local case several results in this direction have been obtained
for reaction-diffusion equations without uniqueness [2, 5, 21, 22].
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In our nonlocal problem for both situations (for regular and strong solutions) we are able under some
conditions to define a Lyapunov function on the attractor and to prove that it is characterized as the
unstable set of the stationary points (denoted by Mu (R)). Also, the attractor is equal to the stable
set of the stationary points when we consider solutions only in the set of bounded complete trajectories
(denoted by Ms (R)).

2 Existence of solutions

Throughout this paper we will denote by ‖·‖X the norm in the Banach space X.
We consider the following nonlocal reaction-diffusion equation

ut − a(‖u‖2
H1

0
)∆u = f(u) + h(t), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0, x) = u0(x) in Ω,

(3)

where Ω is a bounded open set of Rn with smooth boundary ∂Ω.
Let us consider the following conditions on the functions a, f, h :

h ∈ L2(0, T ;L2(Ω)) ∀T > 0, (4)

a ∈ C(R+), f ∈ C(R), (5)

a (s) ≥ m > 0, (6)

−κ− α2|s|p ≤ f(s)s ≤ κ− α1|s|p, (7)

where m, α1, α2 > 0 and κ ≥ 0, p ≥ 2. Observe that then there exists C > 0 such that

|f(s)| ≤ C(1 + |s|p−1) ∀s ∈ R, (8)

and that the function F(s) :=
∫ s

0
f(r)dr satisfies

−α̃2|s|p − κ̃ ≤ F(s) ≤ κ̃− α̃1|s|p (9)

for certain positive constants α̃i, i = 1, 2, and κ̃ ≥ 0, and

|F(s)| ≤ C̃(1 + |s|p) ∀s ∈ R. (10)

Conditions (4)-(7) will be always assumed throughout the paper. Sometimes, some of the following
additional assumptions will also be used:

f ∈ C1(R) be such that f ′(s) ≤ η, ∀s ∈ R, (11)

p ≤ 2n− 2

n− 2
, if n ≥ 3, (12)

a (s) ≤M1 +M2s, ∀s ≥ 0, (13)

s 7→ a(s2)s is non-decreasing, (14)

a (·) ∈ C1
(
R+
)

and a′ (s) ≥ 0, ∀s ≥ 0, (15)

for some constants M1,M2, η ≥ 0.

Remark 1 a′ (s) ≥ 0 implies that (14) holds, so condition (15) is stronger than (14). Assumption (14)
is used to prove uniqueness of solutions. Assumption (15) is used to obtain the H2 (Ω) regularity of the
global attractor.
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Definition 2 A weak solution to (3) is a function u (·) such that u ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω))∩

Lp(0, T ;Lp(Ω)) for any T > 0 and satisfies the equality

d

dt
(u, v) + a(‖u(t)‖2H1

0
)(∇u(t),∇v) = (f(u(t)), v) + (h(t), v) ∀v ∈ H1

0 (Ω) ∩ Lp(Ω), (16)

in the sense of scalar distributions.

Here, we denote by (·, ·) the inner product in L2(Ω) (or
(
L2(Ω)

)d
for d ∈ N) and also the duality

product between Lp(Ω) and Lq(Ω) (where q is the conjugate exponent of p, that is, q = p/(p− 1)). The
duality between H1

0 (Ω) and H−1 (Ω) will be denoted by 〈·,·〉 .
We need to guarantee that the initial condition of the problem makes sense for a weak solution. This

can be achieved in a standard way assuming that the function a has an upper bound, that is, there exists
M > 0 such that

a (s) ≤M for all s ≥ 0. (17)

Indeed, if u is a weak solution to (3), taking into account (8) and (17) it follows that

ut = a(‖u‖2H1
0
)∆u+ f(u) + h ∈ L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)). (18)

Therefore, by [12, p.33] u ∈ C([0, T ], L2(Ω)) and the initial condition makes sense when u0 ∈ L2(Ω).
For the operator A = −∆, thanks to the assumptions on the domain Ω, it is well known that

D(A) = H2(Ω) ∩H1
0 (Ω) [30, Proposition 6.19].

Definition 3 A regular solution to (3) is a weak solution with the extra regularity u ∈ L∞(ε, T ;H1
0 (Ω))

and u ∈ L2(ε, T ;D(A)) for any 0 < ε < T.

Remark 4 Since
du

dt
∈ Lq (ε, T ;Lq (Ω)) for any regular solution, in this case equality (16) is equivalent

to the following one: ∫ T

ε

∫
Ω

du (t, x)

dt
ξ (t, x) dxdt−

∫ T

ε

a(‖u(t)‖2H1
0
)

∫
Ω

∆uξdxdt (19)

=

∫ T

ε

∫
Ω

f (u (t, x)) ξ (t, x) dxdt+

∫ T

ε

∫
Ω

h (t, x) ξ (t, x) dxdt,

for all 0 < ε < T and ξ ∈ Lp (0, T ;Lp (Ω)) .

Lemma 5 Let u ∈ Lp (ε, T ;X),
du

dt
∈ Lq (ε, T ;X ′) for all 0 < ε < T , where X is a reflexive and

separable Banach space and X ′ denotes its dual space. Assume that β ∈ C(R+) is such that β ∈
W 1,∞(ε, T ; [β (ε) , β (T )]) and 0 < β (ε) < β (T ) for all 0 < ε < T . Then w (·) = u (β (·)) ∈ Lp (ε, T ;X),
dw

dt
∈ Lq (ε, T ;X ′) , for all 0 < ε < T , and

dw

dt
(t) =

du

dt
(β (t))

dβ

dt
(t) for a.a. t > 0. (20)

Proof. We fix arbitrary 0 < ε < T . There exists a sequence un ∈ C1 ([β (ε) , β(T )], X) such that

un → u in Lp (β (ε) , β(T );X) and
dun
dt
→ du

dt
in Lq (β (ε) , β(T );X ′) [20, Chapter IV]. We define wn (t) =

un (β (t)). Following the same proof of [4, Corollary VIII.10] we obtain that wn (·) ∈W 1,∞ (ε, T ;X) and

dwn
dt

(t) =
dun
dt

(β (t))
dβ

dt
(t) for a.a. t > 0.

It is clear that wn → w in Lp (ε, T ;X) and
dun
dt

(β (·))→ du

dt
(β (·)) in Lq (ε, T ;X ′). Passing to the limit

we obtain that
dw

dt
(·) =

du

dt
(β (·))

dβ

dt
(·)
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in the sense of distributions D′ (0,+∞;X). As
du

dt
(β (·))

dβ

dt
(·) ∈ Lq (ε, T ;X ′),

dw

dt
∈ Lq (ε, T ;X ′) and

(20) holds true.

We would like to avoid a being uniformly bounded by above (i.e. to relax assumption (17)). We
can still prove the continuity in L2 (Ω) of u for regular solutions by assuming that a has at most linear
growth.

Lemma 6 Assume that conditions (4)-(7), (13) hold. Then any regular solution satisfies that u ∈
C([0, T ], L2(Ω)) for all T > 0. Moreover, w (t) = u

(
α−1 (t)

)
, where α(t) =

∫ t
0
a(‖u(s)‖2

H1
0
)ds, is a regular

solution to the problem 
wt −∆w =

f(w) + h(t)

a(‖w‖2
H1

0
)
, in Ω× (0,∞),

w = 0 on ∂Ω× (0,∞),
w(0, x) = u0(x) in Ω.

(21)

Proof. Condition (13) guarantees that a(‖u(·)‖2
H1

0
) ∈ L1 (0, T ) if u ∈ L2

(
0, T ;H1

0 (Ω)
)
. We make the

following time rescaling
u(t, x) = w(α(t), x).

As a(‖u(·)‖2
H1

0
) ∈ L1 (0, T ), the function t 7→ α (t) is continuous and β (·) = α−1 (·) satisfies the conditions

of Lemma 5. It is clear that the function w (t, x) = u(α−1 (t) , x) belongs to the space L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0 (Ω)) ∩ Lp(0, T ;Lp(Ω)) and also to the spaces L∞(ε, T ;H1
0 (Ω)) and L2(ε, T ;D(A)) for any

0 < ε < T . Moreover,
du

dt
∈ Lq (ε, T ;Lq (Ω)) and Lemma 5 give

dw

dt
∈ Lq (ε, T ;Lq (Ω)) and

dw

dt
(t) =

du

dt

(
α−1 (t)

) d
dt
α−1 (t) =

du

dt

(
α−1 (t)

) 1

a
(
‖w(t))‖2

H1
0

) , for a.a. t. (22)

Equality (19) implies that

du

dt

(
α−1 (t)

)
− a

(
‖u(α−1(t))‖2H1

0

)
∆u
(
α−1 (t)

)
= f

(
u
(
α−1 (t)

))
+ h(t), for a.a. t > 0,

so (22) gives
dw

dt
(t)−∆w (t) =

f(w(t))

a(‖w (t) ‖2
H1

0
)

+
h(t)

a(‖w (t) ‖2
H1

0
)

for a.a. t > 0.

Hence, w is a regular solution to problem (21). Since 0 <
1

a(s)
≤ 1

m
, we obtain that

dw

dt
∈ L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)).

Therefore, w ∈ C([0, T ], L2(Ω)), so that

u ∈ C([0, T ], L2(Ω)).

Remark 7 Under assumptions (4)-(7) any regular solution u (·) satisfies that
du

dt
∈ Lq (ε, T ;Lq (Ω)) for

all 0 < ε < T . Then by [12, p.33] u ∈ C([ε, T ], L2 (Ω)), t 7→ ‖u (t)‖2 is absolutely continuous on [ε, T ]
and

d

dt
‖u (t)‖2L2 = 2

(
du

dt
, u

)
for a.a. t > ε.

If the initial condition belongs to H1
0 (Ω) ∩ Lp (Ω), we can define strong solutions as well.
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Definition 8 A strong solution to (3) is a weak solution with the extra regularity u ∈ L∞(0, T ;H1
0 (Ω)∩

Lp(Ω)), u ∈ L2(0, T ;D(A)) and
du

dt
∈ L2

(
0, T ;L2 (Ω)

)
for any T > 0.

We observe that if u is a strong solution, then u ∈ C([0, T ], H1
0 (Ω)) (see [31, p.102]). Also, u ∈

L∞(0, T ;Lp(Ω)) and u ∈ C([0, T ], L2 (Ω)) imply that u ∈ Cw([0, T ], Lp(Ω)) (see [33, p.263]). Thus, an

initial condition in H1
0 (Ω)∩Lp (Ω) makes sense. Also, the equality f (u) = ut−a

(
‖u‖2H1

0

)
∆u−h implies

that f (u) ∈ L2
(
0, T ;L2 (Ω)

)
Also, if u is a regular solution such that

du

dt
∈ L2

(
ε, T ;L2 (Ω)

)
for all 0 < ε < T , then u ∈

C((0, T ], H1
0 (Ω)).

The phase space for regular solutions will be L2 (Ω), whereas for strong solutions we will use the space
H1 (Ω) ∩ Lp (Ω) (or just H1

0 (Ω) when H1
0 (Ω) ⊂ Lp (Ω)).

The following results will be proved in Theorems 9, 10, 11, 12, 14:

• Conditions (4)-(7), (11), (13) imply the existence of at least one regular solution for any u0 ∈ L2(Ω).
If, in addition, (14) holds, then it is the unique regular solution.

• Conditions (4)-(7), (11) imply the existence of at least one strong solution for any u0 ∈ H1
0 (Ω) ∩

Lp(Ω). If, in addition, (14) holds, then it is the unique strong solution.

• Conditions (4)-(7), (12) imply the existence of at least one strong solution for any u0 ∈ H1
0 (Ω).

• Conditions (4)-(7), (12), (17) imply the existence of at least one regular solution for any u0 ∈ L2(Ω).

To start with we prove the existence of regular solutions for initial conditions in L2 (Ω) .

Theorem 9 Assume that conditions (4)-(7), (11) and (13) hold. Then, for any u0 ∈ L2(Ω) there exists
at least one regular solution to (3).

Proof. We will prove the result by compactness and using Faedo-Galerkin approximations.
Consider a fixed value T > 0. Let {wj}j≥1 be a sequence of eigenfunctions of −∆ in H1

0 (Ω) with ho-
mogeneous Dirichlet boundary conditions, which forms a special basis of L2(Ω). If Ω is a bounded regular
domain, then it is well known that {wj} ⊂ H1

0 (Ω)∩Lp(Ω) and that for the set Vn = span[w1, . . . , wn] we
have that ∪n∈NVn is dense in L2(Ω) and also in H1

0 (Ω)∩Lp(Ω) [25]. As usual, Pn will be the orthogonal
projection in L2 (Ω), that is

zn := Pnz =
n∑
j=1

(z, wj)wj ,

and λj will be the eigenvalues associated to the egienfunctions wj . For each integer n ≥ 1, we consider
the Galerkin approximations

un(t) =
n∑
j=1

γnj(t)wj ,

which satisfy the following nonlinear ODE system{
d

dt
(un, wi) + a(‖un‖2H1

0
)(∇un,∇wi) = (f(un), wi) + (h,wi) ∀i = 1, . . . , n,

un(0) = Pnu0.
(23)

where Pnu0 → u0 in L2(Ω). Since (23) can be written in the normal form with a continuous right-hand
side, this Cauchy problem possesses a solution on some interval [0, tn). We claim that for any T > 0 such
a solution can be extended to the whole interval [0, T ], which follows from a priori estimates in the space
L2(Ω) of the sequence {un}.

Multiplying by γni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un(t)‖2L2 + a(‖un‖2H1

0
)‖un(t)‖2H1

0
= (f(un(t)), un(t)) + (h, un(t)) for a.e. t ∈ (0, tn). (24)
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Using (7) and the Young and Poincaré inequalities we deduce that

(f(un(t)), un(t)) ≤ κ|Ω| − α1‖un(t)‖pLp ,

(h(t), un(t)) ≤ m

2
‖un(t)‖2H1

0
+

1

2λ1m
‖h(t)‖2L2 .

Hence, from (24) it follows that

1

2

d

dt
‖un(t)‖2L2 +

m

2
‖un(t)‖2H1

0
+ α1‖un(t)‖pLp ≤ κ|Ω|+

1

2λ1m
‖h(t)‖2L2 for a.e. t ∈ (0, tn). (25)

Then, integrating (25) from 0 to t ∈ (0, tn) we deduce

1

2
‖un(t)‖2L2 +

m

2

∫ t

0

‖un(s)‖2H1
0
ds+ α1

∫ t

0

‖un(s)‖pLpds

≤ κ|Ω|t+
1

2λ1m

∫ t

0

‖h(s)‖2L2ds+
1

2
‖un(0)‖2L2 ≤ TK2 +K3(T ) +

1

2
‖un(0)‖2L2 .

(26)

Therefore, the sequence {un} is well defined and bounded in L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω))∩Lp(0, T ;Lp(Ω)).

Also, {−∆un} is bounded in L2(0, T ;H−1(Ω)).
On the other hand, by (8) it follows that∫ T

0

∫
Ω

|f(u(x, t))|qdxdt ≤ 2q−1Cq(|Ω|T +

∫ T

0

‖u(t)‖pLpdt),

with 1
p + 1

q = 1. Hence, since {un} is bounded in Lp(0, T ;Lp(Ω)), {f(un)} is bounded in Lq(0, T ;Lq(Ω)).

On the other hand, multiplying (23) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2H1

0
+m‖∆un‖2L2 ≤ 〈f(un),−∆un〉+ (h(t),−∆un) ≤ η‖un‖2H1

0
+

1

2m
‖h(t)‖2L2 +

m

2
‖∆un‖2L2 .

Integrating the previous expression between s and t, with 0 < s ≤ t ≤ T, and using (11) we have

1

2
‖un(t)‖2H1

0
+
m

2

∫ t

s

‖∆un(r)‖2L2dr ≤ η
∫ T

0

‖un(r)‖2H1
0
dr +

1

2
‖un(s)‖2H1

0
+

1

2m

∫ t

s

‖h(r)‖2L2dr. (27)

Now, integrating in s between 0 and t, it follows that

t‖un(t)‖2H1
0
≤ (2ηT + 1)

∫ T

0

‖un(r)‖2H1
0
dr +K3(T )T.

Hence,

‖un(t)‖2H1
0
≤ 2ηT + 1

ε

∫ T

0

‖un(r)‖2H1
0
dr +

K3(T )T

ε
. (28)

for all t ∈ [ε, T ] with ε ∈ (0, T ). From the last inequality and (26) we deduce that {‖un(t)‖H1
0
} is uniformly

bounded in [ε, T ] and by the continuity of the function a we get that {a(‖un(t)‖2
H1

0
)} is bounded in [ε, T ].

Also, it follows that
{un} is bounded in L∞(ε, T ;H1

0 (Ω)). (29)

On the other hand, taking s = ε and t = T in (27), by (26) we obtain that

{un} is bounded in L2(ε, T ;D(A)), (30)

so {−∆un} and {a(‖un‖2H1
0
)∆un} are bounded in L2(ε, T ;L2(Ω)). Thus,{

dun
dt

}
is bounded in Lq(ε, T ;Lq(Ω)). (31)
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Therefore, there exists u ∈ L∞(ε, T ;H1
0 (Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ L2(ε, T ;D(A)) ∩

Lp(0, T ;Lp(Ω)) such that
du

dt
∈ Lq(ε, T ;Lq (Ω)) and a subsequence {un}, relabelled the same, such that

un
∗
⇀ u in L∞(ε, T ;H1

0 (Ω)),

un
∗
⇀ u in L∞(0, T ;L2(Ω)),

un ⇀ u in L2(0, T ;H1
0 (Ω)),

un ⇀ u in Lp(0, T ;Lp(Ω)),

un ⇀ u in L2(ε, T ;D(A)),

dun
dt

⇀
du

dt
in Lq(ε, T ;Lq(Ω)),

f(un) ⇀ χ in Lq(0, T ;Lq(Ω)),

a(‖un‖2H1
0
)
∗
⇀ b in L∞(ε, T ),

(32)

for any 0 < ε < T , where ⇀ means weak convergence and
∗
⇀ weak star convergence.

Moreover, by (30)-(31) the Aubin-Lions Compactness Lemma gives that un → u in L2(ε, T ;H1
0 (Ω)),

so un(t) → u(t) in H1
0 (Ω) a.e. on (ε, T ) for any ε > 0. Consequently, there exists a subsequence {un},

relabelled the same, such that un (t, x)→ u (t, x) a.e. in Ω×(0, T ). Also, we know that Pnf(un) ⇀ χ (see
[30, p.224]). Since f is continuous, it follows that f(un (t, x))→ f(u (t, x)) a.e. in Ω× (0, T ). Therefore,
in view of (32), by [26, Lemma 1.3] we have that χ = f(u).

As a consequence, by the continuity of a, we get that

a(‖un(t)‖2H1
0
)→ a(‖u(t)‖2H1

0
) a.e. on (ε, T ).

Since the sequence is bounded, by the Lebesgue theorem this convergence takes place in L2(ε, T ) and
b = a(‖u‖2

H1
0
) on (ε, T ). Thus,

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u, in L2(ε, T ;L2(Ω)). (33)

Finally, since {wi} is dense in H1
0 (Ω) ∩ Lp(Ω), in view of (32) and (33), we can pass to the limit in

(23) and conclude that (16) holds for all v ∈ H1
0 (Ω) ∩ Lp(Ω).

To conclude the proof, we have to check that u(0) = u0. Indeed, let be φ ∈ C1([0, T ]);H1
0 (Ω)∩Lp(Ω)),

with φ(T ) = 0, φ(0) 6= 0. We consider the functions w (t) = u(α−1 (t)), wn (t) = un
(
α−1
n (t)

)
(here

αn(t) =
∫ t

0
a(‖un (r) ‖2

H1
0
dr)), which by Lemma 6 are regular solutions to problem (21) with initial

conditions w (0) = u0 and to the corresponding Galerkin approximations with initial condition wn (0) =

un (0) = Pnu0, respectively. Since
dw

dt
∈ L2(0, T ;H−1(Ω))+Lq(0, T ;Lq(Ω)), we can multiply the equation

in (21) by φ and integrate by parts in the t variable to obtain that∫ T

0

(− (w (t) , φ′ (t))− 〈∆w (t) , φ (t)〉) dt =

∫ T

0

(
f(w(t)) + h(t)

a(‖w(t)‖2
H1

0
)
, φ (t)

)
dt+ (w (0) , φ (0)) , (34)

∫ T

0

(− (wn (t) , φ′ (t))− 〈∆wn (t) , φ (t)〉) dt =

∫ T

0

(
Pnf(wn(t)) + Pnh(t)

a(‖wn(t)‖2
H1

0
)

, φ (t)

)
dt+ (wn (0) , φ (0)) .

(35)
We can easily obtain by the previous convergences and (6) that

wn ⇀ w in L2
(
0, T ;H1

0 (Ω)
)
,

∆wn ⇀ ∆w in L2
(
0, T ;H−1 (Ω)

)
,

Pnf(wn(t)) + Pnh (t)

a(‖wn(t)‖2
H1

0
)

⇀
f(w(t)) + h (t)

a(‖w(t)‖2
H1

0
)

in Lq (0, T ;Lq (Ω)) .

8



Passing to the limit in (35), taking in to account (34) and bearing in mind wn(0) = Pnu0 → u0 we get

(w (0) , φ (0)) = (u0, φ (0)) .

Since φ (0) ∈ H1
0 (Ω) ∩ Lp(Ω) is arbitrary, we infer that w(0) = u (0) = u0.

Hence, u is a regular solution to (3) satisfying u (0) = u0.

Second, we will prove the existence of strong solutions for initial conditions in H1
0 (Ω)∩Lp(Ω). In this

case, we do not need to impose the upper bound (13) of the function a.

Theorem 10 Suppose that conditions (4)-(7) and (11) are fulfilled. Then, for any u0 ∈ H1
0 (Ω) ∩ Lp(Ω)

there exists at least a strong solution to (3).

Proof. We consider, as in Theorem 9, the Galerkin approximations {un} and an element u for which
(32) holds. Under the aforementioned conditions, we will obtain that un converges to a strong solution
to (3). In this proof it is important to observe that Pnu0 → u0 in the spaces H1

0 (Ω) and Lp (Ω) [30,
p.199 and 220]. Thus, the sequences ‖Pnu0‖H1

0
and ‖Pnu0‖Lp are bounded.

First, we multiply the equation in (23) by
dun
dt

to obtain

‖ d
dt
un(t)‖2L2 + a(‖un‖2H1

0
)
1

2

d

dt
‖un‖2H1

0
=

d

dt

∫
Ω

F(un)dx+ (h(t),
dun
dt

).

Introducing

A(s) =

∫ s

0

a(r)dr, (36)

we have
1

2
‖ d
dt
un(t)‖2L2 +

d

dt

[
1

2
A(‖un‖2H1

0
)−

∫
Ω

F(un(t))dx

]
≤ 1

2
‖h(t)‖2L2 . (37)

Now, integrating (37) we have

1

2

∫ t

0

‖ d
ds
un(s)‖2L2ds+

1

2
A(‖un(t)‖2H1

0
)−

∫
Ω

F(un(t))dx

≤ 1

2
A(‖un(0)‖2H1

0
)−

∫
Ω

F(un(0))dx+
1

2

∫ t

0

‖h(s)‖2L2ds.

From (6) and (9) we get

m

2
‖un(t)‖2H1

0
+ α̃1‖un(t)‖pLp +

1

2

∫ t

0

‖ d
ds
un(s)‖2L2ds

≤ 1

2
A(‖un(0)‖2H1

0
) + α̃2‖un(0)‖pLp +K(T ).

(38)

Now, from (38) we obtain that {
dun
dt

}
is bounded in L2(0, T ;L2(Ω)), (39)

so
dun
dt

⇀
du

dt
in L2(0, T ;L2(Ω)). (40)

On the other hand, the embedding H1
0 (Ω) ⊂⊂ L2(Ω) and the Aubin-Lion Compactness Lemma imply

that
un → u in L2(0, T ;L2(Ω)).

Hence,
un → u for a.e. (x, t) ∈ Ω× (0, T ).
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Moreover, thanks to

‖un(t2)− un(t1)‖2L2 =

∥∥∥∥∫ t2

t1

d

dt
un(s)ds

∥∥∥∥2

L2

≤ ‖ d
dt
un‖2L2(0,T ;L2(Ω)) |t2 − t1| ∀t1, t2 ∈ [0, T ],

(38), (39) and H1
0 (Ω) ⊂⊂ L2(Ω), the Ascoli-Arzelà theorem implies that {un} converges strongly in the

space C([0, T ];L2(Ω)) for all T > 0. Therefore, we obtain from (38) that un(t) ⇀ u(t) in H1
0 (Ω)∩Lp(Ω),

for any t ≥ 0, and
un

∗
⇀ u in L∞(0, T ;H1

0 (Ω) ∩ Lp(Ω)). (41)

Also, by the continuity of the function a,
{
a(‖un (t) ‖2

H1
0
)
}

is uniformly bounded in [0, T ].

Multiplying (23) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2H1

0
+m‖−∆un‖2L2 = (f(un),−∆un) + (h(t),−∆un) ≤ η‖un‖2H1

0
+

1

2m
‖h(t)‖2L2 +

m

2
‖−∆un‖2L2 .

Integrating the previous expression between 0 and T it follows that

1

2
‖un(T )‖2H1

0
+
m

2

∫ T

0

‖∆un(s)‖2L2ds ≤ η
∫ T

0

‖un(t)‖2H1
0
dt+

1

2
‖un(0)‖2H1

0
+K(T ). (42)

Finally, taking into account (26), from (42) we deduce that

un is uniformly bounded in L2(0, T ;D(A)),

so
un ⇀ u in L2(0, T ;D(A)). (43)

Arguing as in Theorem 9 we also obtain that

un → u in L2
(
0, T ;H1

0 (Ω)
)
,

a
(
‖un‖2H1

0

)
→ a

(
‖u‖2H1

0

)
in L2 (0, T ) ,

f (un) ⇀ f (u) in Lq (0, T ;Lq (Ω)) ,

a
(
‖un‖2H1

0

)
∆un ⇀ a

(
‖u‖2H1

0

)
∆u in L2(0, T ;L2(Ω)). (44)

Therefore, we can pass to the limit to conclude that u is a strong solution.
It remains to show that u (0) = u0. This can be done, in a similar way as in Theorem 9, by multiplying

the equation in (3) by a function φ ∈ C1([0, T ]);H1
0 (Ω)∩Lp(Ω)), with φ(T ) = 0, φ(0) 6= 0 for the Galerkin

approximations un and the limit function u and integrating by parts. Then taking into account the above
convergences and Pnu0 → u0 in L2 (Ω) we obtain that u (0) = u0.

We can still ensure the existence of strong solutions without using condition (11) by imposing extra
assumptions on the parameter p. Indeed, if (12) is satisfied, then the embedding H1

0 (Ω) ⊂ L2(p−1) (Ω) ⊂
Lp (Ω) and (8) imply that

||f(u(t))||2L2 ≤ 2C(1 +

∫
Ω

|u(t, x)|2(p−1)dx) ≤ C̃
(

1 + ‖u (t)‖2(p−1)

H1
0

)
, (45)

so
f(u) ∈ L2(0, T ;L2(Ω)) (46)

provided that u ∈ L∞(0, T ;H1
0 (Ω)). Moreover, f (A) is bounded in L2(0, T ;L2(Ω) if A is a bounded set

of L∞(0, T ;H1
0 (Ω)).

Theorem 11 Assume that (4)-(7) and (12) hold. Then for any u0 ∈ H1
0 (Ω) there exists at least one

strong solution to (3).
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Proof. Reasoning as in Theorem 10 and considering as well the Galerkin scheme, (32), (40) and (41)
hold. We just need to check that (43) is also true and then repeat the same lines of Theorem 10.

Multiplying (23) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2H1

0
+m‖∆un‖2L2 = (f(un),−∆un) + (h(t),−∆u)

≤ 1

2m
‖f(un)‖2L2 +

m

2
‖ −∆un‖2L2 +

1

m
‖h(t)‖2L2 +

m

4
‖∆un‖2L2 .

Integrating between 0 and T it follows that

1

2
‖un(T )‖2H1

0
+
m

4

∫ T

0

‖∆un(s)‖2L2ds

≤ 1

2m

∫ T

0

‖f(un(t))‖2L2dt+
1

2
‖un(0)‖2H1

0
+

1

m

∫ T

0

‖h(t)‖2L2dt.

(47)

In view of (41) and (45), we have that f (u) is bounded in L2
(
0, T ;L2 (Ω)

)
, so from (47) we get that

{un} is bounded in L2(0, T ;D(A)). Therefore,

un ⇀ u in L2(0, T ;D(A)), (48)

as required.

Actually, in the case of regular solutions, we can get rid of the condition (11) as well by imposing the
extra assumption (12) on the constant p.

Theorem 12 Assume that (4)-(7), (12) and (17) hold. Then, for any u0 ∈ L2(Ω) there exists at least
one regular solution to (3).

Proof. Let un0 ∈ H1
0 (Ω) be a sequence such that un0 → u0 in L2(Ω). By Theorem 11 there exists a strong

solution un(·) of (3) with un(0) = un0 . Since un ∈ L2 (0, T ;D (A)) and
dun

dt
∈ L2

(
0, T ;L2 (Ω)

)
, from [31,

p.102] the equality
d

dt
‖un‖2H1

0
= 2(−∆un, unt )

holds true for a.a. t > 0.
Now, multiplying (3) by un and using (7) it follows that

1

2

d

dt
‖un(t)‖2L2 +m‖un‖2H1

0
+ α1‖un(t)‖pLp (49)

≤ κ|Ω|+ ‖h(t)‖L2‖un(t)‖L2 ≤ κ|Ω|+ 1

2mλ1
‖h(t)‖2L2 +

m

2
‖un(t)‖2H1

0
,

so
‖un(t)‖2L2 ≤ ‖un(0)‖2L2 +K1(T ). (50)

Thus, integrating in (49) between t and t+ r we get

‖un(t+ r)‖2L2 +m

∫ t+r

t

‖un(s)‖2H1
0
ds+ 2α1

∫ t+r

t

‖un(s)‖pLpds

≤ 2κ|Ω|r +
1

mλ1

∫ t+r

t

‖h(s)‖2L2ds+ ‖un(t)‖2L2 ≤ ‖un(0)‖2L2 +K2(T ).

(51)

Also, by (9) and (17) we deduce that∫ t+r

t

(
1

2
A(‖un(s)‖2H1

0
)−

∫
Ω

F(un(s))dx

)
ds

≤
∫ t+r

t

M

2
‖un (s) ‖2H1

0
ds+ κ̃ |Ω| r + α̃2

∫ t+r

t

‖un(s)‖pLpds

≤ K3(T )
(
1 + ‖un(0)‖2L2

)
,

(52)
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for all n > 0 and t ≥ 0.
On the other hand, multiplying (3) by unt we have

1

2
‖unt (t)‖2L2 +

d

dt

(
1

2
A(‖un(t)‖2H1

0
)−

∫
Ω

F(un(t))dx

)
≤ 1

2
‖h(t)‖2L2 , (53)

where the fact that t 7→
∫

Ω
F(un(t))dx is absolutely continuous on [0, T ] and

d

dt

∫
Ω

F(un(t))dx =

(
f (un (t)) ,

dun

dt
(t)

)
, for a.a. t > 0,

is proved by regularization using the regularity of strong solutions and (45). By the Uniform Gronwall
Lemma [34] we obtain

1

2
A(‖un(t+ r)‖2H1

0
)−
∫

Ω

F(un(t+ r))dx ≤
K3(T )(1 + ‖un(0)‖2L2)

r
+K4(T ), for all 0 ≤ t ≤ t+ r, (54)

so that by (6) and (9) we obtain that

‖un(t+ r)‖2H1
0

+ ‖un (t+ r)‖pLp ≤
K5(T )(1 + ‖un(0)‖2L2)

r
+K6(T ), (55)

for all t ≥ 0. Therefore, the sequence un(·) is bounded in L∞(r, T ;H1
0 (Ω)) for all 0 < r < T . Consequently,

a(‖un (·) ‖2
H1

0
) is bounded in [r, T ].

Integrating (53) over (r, T ), from (6), (9) and (54) it follows that

1

2

∫ T

r

‖ d
dt
un(t)‖2L2dt+

m

2
‖un(T )‖2H1

0
+ α̃1‖un(T )‖pLp − κ|Ω|

≤ 1

2

∫ T

r

‖ d
dt
un(t)‖2L2dt+

1

2
A(‖un(T )‖2H1

0
)−

∫
Ω

F(un(T ))dx

≤ 1

2

∫ T

r

‖h(t)‖2L2dt+
1

2
A(‖un(r)‖2H1

0
)−

∫
Ω

F(un(r))dx

≤ 1

2

∫ T

r

‖h(t)‖2L2dt+
K3(T )(1 + ‖un(0)‖2L2)

r
+K4(T ).

(56)

Thus
dun

dt
is bounded in L2(r, T ;L2(Ω)) for all 0 < r < T .

Taking into account (45) and (55) we infer that f (un) is bounded in L2
(
r, T ;L2 (Ω)

)
. By this way,

the equality a(‖un‖2
H1

0
)∆un = unt − f(un) + h(t) implies that un and a(‖un‖2

H1
0
)∆un are bounded in

L2(r, T ;D(A)) and L2(r, T ;L2(Ω)), respectively, for all 0 < r < T .
By the compact embedding H1

0 (Ω) ⊂ L2(Ω), we can apply the Ascoli-Arzelà theorem and obtain that,
up to a sequence, there exists a function u such that

un
∗
⇀ u in L∞(r, T ;H1

0 (Ω)),

un → u in C([r, T ], L2(Ω)),

un ⇀ u in L2(r, T ;D(A)),

dun

dt
⇀

du

dt
in L2(r, T ;L2(Ω)),

(57)

for all 0 < r < T .
On the other hand, from (51) we infer that un is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩
Lp(0, T ;Lp(Ω)), for all T > 0. Therefore, there exists a subsequence un, relabelled the same, such that

un
∗
⇀ u in L∞(0, T ;L2(Ω)),

un ⇀ u in L2(0, T ;H1
0 (Ω)),

un ⇀ u in Lp(0, T ;Lp(Ω)),

(58)
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for all T > 0. On the other hand, arguing as in the proof of Theorem 9 we obtain that

f(un) ⇀ f(u) in Lq(0, T ;Lq(Ω)),

un → u in L2(r, T ;H1
0 (Ω)),

a(‖un‖2H1
0
)→ a(‖u‖2H1

0
) in L2 (0, T ) ,

a(‖un(t)‖2H1
0
)∆un ⇀ a(‖u(t)‖2H1

0
)∆u in L2(r, T ;L2(Ω)).

Passing to the limit we obtain that u (·) is a regular solution.
Finally, by a similar argument as in the proof of Theorem 9 we establish that u (0) = u0.

Remark 13 Under the conditions of Theorem 12 any regular solution u (·) satisfies from (45) that f (u) ∈

L2
(
ε, T ;L2 (Ω)

)
for all 0 < ε < T , and then

du

dt
∈ L2

(
ε, T ;L2 (Ω)

)
as well. Hence, u ∈ C((0, T ], H1

0 (Ω))

for all T > 0.

We finish this section by giving a sufficient condition ensuring the uniqueness of solutions.

Theorem 14 Assume the conditions of Theorem 9 and additionally that (14) is satisfied. Then there
can exists at most one regular solution to the Cauchy problem (3) for u0 ∈ L2 (Ω) .

If, moreover, M2 = 0 in condition (13), then there can be at most one weak solution.
Under the conditions of Theorem 10 and (14), there can exists at most one strong solution to the

Cauchy problem (3) for u0 ∈ H1
0 (Ω) ∩ Lp (Ω) .

Proof. Suppose that u and v are two regular solutions to (3) with the same initial condition u0 = v0.
Then by subtraction and multiplying by u− v we get by Remark 7 that

1

2

d

dt
‖u− v‖2L2 + 〈−a(‖u (t) ‖2H1

0
)∆u+ a(‖v (t) ‖2H1

0
)∆v, u− v〉 = (f(u)− f(v), u− v).

Let us consider
I = 〈−a(‖u (t) ‖2H1

0
)∆u+ a(‖v (t) ‖2H1

0
)∆v, u− v〉.

After integrating by parts, we obtain

I =

∫
Ω

(a(‖u (t) ‖2H1
0
)|∇u|2 − a(‖u (t) ‖2H1

0
)∇u∇v − a(‖v (t) ‖2H1

0
)∇u∇v + a(‖v (t) ‖2H1

0
)|∇v|2)dx

≥ a(‖u (t) ‖2H1
0
)‖u (t) ‖2H1

0
−
(
a(‖u (t) ‖2H1

0
) + a(‖v (t) ‖2H1

0
)
)
‖u (t) ‖H1

0
‖v (t) ‖H1

0
+ a(‖v (t) ‖2H1

0
)‖v (t) ‖2H1

0

=
(
a(‖u (t) ‖2H1

0
)‖u (t) ‖H1

0
− a(‖v (t) ‖2H1

0
)‖v (t) ‖H1

0

)(
‖u (t) ‖H1

0
− ‖v (t) ‖H1

0

)
≥ 0, (59)

where we have used (14) in the last inequality.
Hence, from (59) and f ′ (s) ≤ η, we infer

1

2

d

dt
‖u− v‖2L2 ≤

∫
Ω

(f(u)− f(v)) (u− v)dx =

∫
Ω

(∫ u

v

f ′(s)ds

)
(u− v)dx ≤ η‖u− v‖2L2 .

By Remark 7 it is correct to apply the Gronwall lemma over an arbitrary interval (ε, t), so

‖u(t)− v(t)‖2L2 ≤ ‖u (ε)− v (ε) ‖2L2 e2η(t−ε), t ≥ 0.

Since Lemma 6 implies that u, v ∈ C([0, T ], L2 (Ω)), we pass to the limit as ε→ 0 to get

‖u(t)− v(t)‖2L2 ≤ ‖u (0)− v (0) ‖2L2 e2ηt, t ≥ 0.

Hence, the uniqueness follows.
If M2 = 0 in (13), then by (18) the above argument is valid for weak solutions as well.
The proof of the last statement is the same with the only difference that condition (13) is not needed.
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3 Existence and structure of attractors

In this section we will prove the existence of global attractors for the semiflows generated by regular and
strong solutions under different assumptions in the autonomous case, that is, when the function h does
depend on t. We will also establish that the attractor is equal to the unstable set of the stationary points
or to the stable one when we only consider solutions in the set of bounded complete trajectories.

We consider the following condition instead of (4):

h ∈ L2 (Ω) . (60)

Throughout this section, for a metric space X with metric ρ we will denote by distX (C,D) the
Hausdorff semidistance from C to D, that is, distX(C,D) = supc∈C infd∈D ρ (c, d) .

It is important to observe that in the theorems of existence of solutions of the previous section we
have used either assumption (11) or (12). Now, when we use condition (11) in some cases it is necessary
to add a restriction on the constant p given below in (83).

We summarize the main results of this section:

• Conditions (5)-(7), (11), (17), (14) and (60) imply that the regular solutions generate a semigroup
in the phase space L2 (Ω) possessing a global attractor, which is compact in H1

0 (Ω) and bounded in
Lp (Ω) (Theorem 17 and Lemma 39). If, in addition, either h ∈ L∞ (Ω) or p ≤ 2n/(n−2) for n ≥ 3,
then it is characterized by the unstable set of the stationary points (Proposition 40). Moreover,
condition (15) implies that the attractor is bounded in H2 (Ω) (Proposition 19).

• Conditions (5)-(7), (17), (60) and either (12) or (11), (83) imply that the regular solutions generate
a (possibly) multivalued semiflow in the phase space L2 (Ω) possessing a global attractor, which is
compact in H1

0 (Ω) and Lp (Ω) and is equal to the unstable set of the stationary points (Theorems
33, 37).

• Conditions (5)-(7), (17), (60) and either (12) or (11), (83) imply that the strong solutions generate
a (possibly) multivalued semiflow in the phase space H1

0 (Ω) possessing a global attractor, which is
compact in H1

0 (Ω) and Lp (Ω) and is equal to the unstable set of the stationary points (Theorems
45, 48).

• Conditions (5)-(7), (11), (17), (14), (60) and (83) imply that the strong solutions generate a semi-
group in the phase space H1

0 (Ω) possessing a global attractor, which is compact in H1
0 (Ω) and

Lp (Ω) and is equal to the unstable set of the stationary points (Theorems 50, 53). Moreover,
condition (15) implies that the attractor is bounded in H2 (Ω) (Proposition 54).

• Conditions (5)-(7), (11), (17), (14) and (60) imply that the strong solutions generate a semigroup
in the phase space H1

0 (Ω) ∩ Lp (Ω) (endowed with the induced topology of H1
0 (Ω)) possessing a

global attractor, which is compact in H1
0 (Ω) and bounded in Lp (Ω) (Theorem 57). If, in addition,

either h ∈ L∞ (Ω) or p ≤ 2n/(n − 2) for n ≥ 3, then it is characterized by the unstable set of the
stationary points (Theorem 60). Moreover, condition (15) implies that the attractor is bounded in
H2 (Ω) (Proposition 61).

• In all the above situations h ∈ L∞ (Ω) implies that the global attractor is bounded in L∞ (Ω)
(Theorems 18, 36, 47, 59).

3.1 Regular solutions

We split this part into three subsections.

3.1.1 The case of uniqueness

If we assume conditions (5)-(7), (11), (14), (60), then by Theorems 9 and 14 we can define the following
continuous semigroup Tr : R+ × L2(Ω)→ L2(Ω) :

Tr(t, u0) = u(t), (61)
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where u (·) is the unique regular solution to (3). We denote by R the set of fixed points of Tr, that is,
the points z such that Tr(t, z) = z for any t ≥ 0.

We also observe that if we assume (17), then using the calculations in (52)-(55) for the Galerkin
approximations of any regular solution u (·) one can obtain that u ∈ L∞ (ε, T ;Lp (Ω)) , for all 0 < ε < T ,
and then u ∈ Cw((0,+∞), Lp (Ω)).

Our first purpose is to obtain a global attractor. We recall that the set A is a global compact attractor
for Tr if it is compact, invariant (which means Tr(t,A) = A for any t ≥ 0) and it attracts any bounded
set B, that is,

distL2 (Tr(t, B) ,A)→ 0 as t→ +∞.

Proposition 15 Let (5)-(7), (11), (13), (14) and (60) hold. Then the semigroup Tr has a bounded
absorbing set in L2; that is, there exists a constant K such that for any R > 0 there is a time t0 = t0(R)
such that

‖u(t)‖L2 ≤ K for all t ≥ t0, (62)

where ‖u0‖L2 ≤ R, u (t) = Tr(t, u0). Moreover, there is a constant L such that∫ t+1

t

‖u(s)‖2H1
0
ds ≤ L for all t ≥ t0. (63)

Proof. Multiplying equation (3) by u and using (7) and Remark 7 we have

1

2

d

dt
‖u(t)‖2L2 +

m

2
‖u(t)‖2H1

0
+ α1‖u(t)‖p

LP
≤ κ|Ω|+ 1

2λ1m
‖h‖2L2 =

κ1

2
. (64)

The Gronwall lemma and the inequality ‖u(t)‖2
H1

0
≥ λ1‖u(t)‖2L2 give

‖u(t)‖2L2 ≤ ‖u(ε)‖2L2e−λ1m(t−ε) +
κ1

λ1m
, for any ε > 0.

As u ∈ C([0, T ], L2 (Ω) by Lemma 6, passing to the limit we have

‖u(t)‖2L2 ≤ ‖u(0)‖2L2e−λ1mt +
κ1

λ1m
. (65)

Hence, taking

t ≥ t0 ≡
1

λ1m
ln

(
λ1mR

2

κ1

)
we get (62) for K = 2κ1

λ1m
. On the other hand, integrating (64) between t and t + 1 and using (65) we

obtain

m

∫ t+1

t

‖u(s)‖2H1
0
ds ≤ ‖u(t)‖2L2 + κ1

and using the previous bound we get∫ t+1

t

‖u(s)‖2H1
0
ds ≤ κ1

m
+

2κ1

λ1m2
, for all t ≥ t0,

so that (63) follows.

Proposition 16 Let (5)-(7), (11), (17), (14) and (60) hold. Then there exists a bounded absorbing set
in H1

0 (Ω) ∩ Lp (Ω); that is, there is a constant M such that for any R > 0 there is a time t1 = t1(R)
such that

‖u(t)‖H1
0

+ ‖u (t)‖Lp ≤M for all t ≥ t1,

where ‖u0‖L2 ≤ R, u (t) = Tr(t, u0).
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Proof. The following calculations are formal but can be justified by the Galerkin approximations.
Arguing as in (52)-(55) we obtain the existence of a constant C such that

‖Tr(1, u (0))‖2H1
0

+ ‖Tr (1, u (0))‖pLp ≤ C(1 + ‖u(0)‖2L2).

Hence, the semigroup property Tr(t+ 1, u0) = Tr(1, Tr(t, u0)) and (62) imply that

‖Tr(t+ 1, u0)‖2H1
0

+ ‖Tr (t+ 1, u0)‖pLp ≤ C(1 +K2) ∀t ≥ t0 (R) ,

if ‖u0‖L2 ≤ R, which proves the statement.

Theorem 17 Let (5)-(7), (11), (17), (14) and (60). Then the equation (3) has a connected global
compact attractor Ar, which is bounded in H1

0 (Ω) ∩ Lp (Ω).

Proof. Since a bounded set in H1
0 (Ω) is relatively compact in L2(Ω) which is a connected space, the

result follows from Theorem 10.5 in [30] and Proposition 16.

We will also obtain the boundedness of the attractor in the spaces L∞ (Ω) and H2 (Ω).
First, we recall that a function φ : R → L2 (Ω) is a complete trajectory of the semigroup Tr if

φ (t) = Tr(t− s, φ (s)) for any t ≥ s. φ is bounded if the set ∪s∈Rφ (s) is bounded. It is well known [24]
that the global attractor is characterized by

Ar = {φ (0) : φ is a bounded complete trajectory}. (66)

Theorem 18 Let (5)-(7), (11), (17), (14) and (60) hold. Then the global attractor Ar is bounded in
L∞(Ω), provided that h ∈ L∞(Ω).

Proof. We define v+ = max{v, 0}, v− = −max{−v, 0}. We multiply equation (3) by (u−M)+ for some
appropriate constant M and integrate over Ω to obtain

1

2

d

dt

∫
Ω

|(u−M)+|2dx+ a(‖u(t)‖2H1
0
)

∫
Ω

|∇(u−M)+|2dx =

∫
Ω

(f(u(t)) + h)(u−M)+dx,

where we have used the equality 1
2

d

dt

∫
Ω
|(u−M)+|2dx = (ut, (u−M)+) , which is proved by regulariza-

tion.
Since h ∈ L∞(Ω), by (7) we deduce that

(f(u) + h)u ≤ κ̃− α̃|u|p.

It follows that

f(u) + h ≤ 0 when u ≥ (
κ̃

α̃
)1/p = M.

Therefore, we have
(f(u) + h)(u−M)+ ≤ 0.

Thus, by (6) and the the Poincaré inequality, we deduce that

d

dt

∫
Ω

|(u−M)+|2dx ≤ −2mλ1

∫
Ω

|(u−M)+|2dx.

Using the Gronwall inequality, we have∫
Ω

|(u(t)−M)+|2dx ≤ e−2mλ(t−τ)

∫
Ω

|(u (τ)−M)+|2dx.

For any y ∈ Ar there is by (66) a bounded complete trajectory φ such that φ (0) = y. Then taking t = 0
and τ → −∞ in the last inequality, we obtain y (x) = φ(0, x) ≤M, for a.a. x ∈ Ω. The same arguments
can be applied to (u−M)−, which shows that

‖y‖L∞ ≤M, ∀y ∈ Ar.

If we assume (15), then it is possible to show that the global attractor is more regular.
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Proposition 19 Let (5)-(7), (11), (17) and (60) hold. If, additionally, (15) is satisfied, then there exists
an absorbing set in H2 (Ω) and the global attractor is bounded in H2(Ω).

Proof. We will prove the existence of an absorbing set in H2 (Ω). The boundedness of the global
attractor in this space follows then immediately. We proceed formally, but the estimates can be justified
via Galerkin approximations.

Let u(t) = Tr(t, u0) with ‖u0‖L2 ≤ R. First, we differentiate the equation with respect to t

utt − a′(‖u‖2H1
0
)
d

dt
‖u‖2H1

0
∆u− a(‖u‖2H1

0
)∆ut = f ′(u)ut.

Multiplying by ut we get

1

2

d

dt
‖ut‖2L2 +

1

2
a′(‖u‖2H1

0
)(
d

dt
‖u‖2H1

0
)2 + a(‖u‖2H1

0
)‖ut‖2H1

0
=

∫
Ω

f ′(u)(ut)
2dx. (67)

By (6), a′ (s) ≥ 0 and f ′ (s) ≤ η we obtain

1

2

d

dt
‖ut‖2L2 +m‖ut‖2H1

0
≤ η‖ut‖2L2 . (68)

Second, multiplying (3) by ut and reordering terms, we obtain

d

dt

(
a(‖u‖2

H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
+ ‖ut‖2L2 =

a′(‖u‖2
H1

0
)

2
‖u‖2H1

0

d

dt
‖u‖2H1

0
. (69)

Proposition 16 implies that
a′(‖z‖2H1

0
) ≤ γ := sup|s|≤Ma

′(s2)

if z belongs to the absorbing set in H1
0 (Ω). On the other hand, multiplying the equation by −∆u and

using Proposition 16, we obtain

d

dt
‖u‖2H1

0
+m‖∆u(t)‖2L2 ≤ 2η‖u(t)‖2H1

0
+

1

m
‖h‖2L2 ≤ K1 ∀t ≥ t1(R).

Hence, by (69) and Proposition 16, it follows

d

dt

(
a(‖u‖2

H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
+ ‖ut‖2L2 ≤

γ

2
K1M

2, ∀t ≥ t1(R). (70)

Multiplying both sides of the inequality f ′(s) ≤ η by s and integrating between 0 and s, we obtain

sf(s) ≤ F(s) +
s2

2
η, ∀s ∈ R. (71)

Moreover, integrating f ′(s) ≤ η twice between 0 and s, we infer

F(s) ≤ η

2
s2 + Cs, ∀s ∈ R. (72)

Now, we multiply (3) by u and integrate between t and t+ 1 to obtain

1

2
‖u(t+ 1)‖2L2 +

∫ t+1

t

(
a(‖u‖2H1

0
)‖u(s)‖2H1

0
−
∫

Ω

f(u)udx−
∫

Ω

h(x)udx

)
ds =

1

2
‖u(t)‖2L2 . (73)

From (71), (73) and Proposition 15 it follows∫ t+1

t

(
a(‖u‖2

H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
ds ≤ 1

2
‖u(t)‖2L2 +

η

2

∫ t+1

t

‖u‖2L2ds ≤ L̃ ∀t ≥ t0
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The last inequality allows us to apply the Uniform Gronwall Lemma to (70) in order to obtain

a(‖u‖2
H1

0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx ≤ L̃+
γ

2
K1M

2 ∀t ≥ t1 + 1. (74)

Using (6) and (72) we get

a(‖u‖2
H1

0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx ≥ −η
2
‖u‖2L2 − C̃‖u‖L2 . (75)

Now, integrating (70) from t to t+ 1, using (74), (75), by Proposition 15 we have∫ t+1

t

‖us‖2L2ds ≤ L̃+ γK1M
2 +

η

2
K2 + C̃K = ρ1, ∀t ≥ t1 + 1. (76)

Hence, the last equation allow us to apply to (68) the Uniform Gronwall Lemma [34] to obtain

‖du
dt

(t)‖2L2 ≤ ρ2, ∀t ≥ t1 + 2. (77)

Finally, we multiply (3) by −∆u and use (6) to obtain

m

2
‖∆u‖2L2 ≤ η‖u‖2H1

0
+

1

m
‖h‖2L2 +

1

m
‖ut‖2L2 .

Thus, by Proposition 16 and (77), we deduce that

‖u(t)‖2H2 ≤ ρ3 ∀t ≥ t1 + 2.

3.1.2 Abstract theory of attractors for multivalued semiflows

Prior to studying the case of non-uniqueness, we recall some well-known results concerning the structure
of attractors for multivalued semiflows.

Consider a metric space (X, d) and a family of functions R ⊂ C(R+;X). Denote by P (X) the class
of nonempty subsets of X. Then we define the multivalued map G : R+ × X → P (X) associated with
the family R as follows

G(t, u0) = {u(t) : u(·) ∈ R, u(0) = u0}. (78)

In this abstract setting, the multivalued map G is expected to satisfy some properties that fit in the
framework of multivalued dynamical systems. The first concept is given now.

Definition 20 A multivalued map G : R+ × X → P (X) is a multivalued semiflow (or m-semiflow) if
G(0, x) = x for all x ∈ X and G(t+ s, x) ⊂ G(t, G(s, x)) for all t, s ≥ 0 and x ∈ X.
If the above is not only an inclusion, but an equality, it is said that the m-semiflow is strict.

Once a multivalued semiflow is defined, we recall the following concepts.

Definition 21 A map γ : R→ X is called a complete trajectory of R (resp. of G) if γ(·+ h) |[0,∞)∈ R
for all h ∈ R (resp. if γ(t+ s) ∈ G(t, γ(s)) for all s ∈ R and t ≥ 0).

A point z ∈ X is a fixed point of R if ϕ(·) ≡ z ∈ R. The set of all fixed points will be denoted by RR.
A point z ∈ X is a stationary point of G if z ∈ G(t, z) for all t ≥ 0.

Definition 22 Given an m-semiflow G a set B ⊂ X is said to be negatively (positively) invariant if
B ⊂ G(t, B) (G(t, B) ⊂ B) for all t ≥ 0, and strictly invariant (or, simply, invariant) if it is both
negatively and positively invariant.

The set B is said to be weakly invariant if for any x ∈ B there exists a complete trajectory γ of R
contained in B such that γ(0) = x. We observe that weak invariance implies negative invariance.
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Definition 23 A set A ⊂ X is called a global attractor for the m-semiflow G if it is negatively invariant
and it attracts all bounded subsets, i.e., distX(G(t, B),A)→ 0 as t→ +∞.

Remark 24 When A is compact, it is the minimal closed attracting set [28, Remark 5].

In order to obtain a detailed characterization of the internal structure of a global attractor, we
introduce an axiomatic set of properties on the set R.

(K1) For any x ∈ X there exists at least one element ϕ ∈ R such that ϕ(0) = x.

(K2) ϕτ (·) := ϕ(·+ τ) ∈ R for any τ ≥ 0 and ϕ ∈ R (translation property).

(K3) Let ϕ1, ϕ2 ∈ R be such that ϕ2(0) = ϕ1(s) for some s > 0. Then, the function ϕ defined by

ϕ(t) =

{
ϕ1(t) 0 ≤ t ≤ s,
ϕ2(t− s) s ≤ t,

belongs to R (concatenation property).

(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exist a subsequence {ϕnk} and
ϕ ∈ R such that ϕnk(t)→ ϕ(t) for all t ≥ 0.

Remark 25 If in assumption (K1), for every x ∈ X, there exists a unique ϕ ∈ R such that ϕ(0) = x,
then the set {ϕ ∈ R : ϕ(0) = x} consists of a single trajectory ϕ, and the equality G(t, x) = ϕ(t) defines
a classical semigroup G : R+ ×X → X.

It is immediate to observe [11, Proposition 2] or [23, Lemma 9] that R fulfilling (K1) and (K2) gives
rise to an m-semiflow G through (78), and if besides (K3) holds, then this m-semiflow is strict. In such
a case, a global bounded attractor, supposing that it exists, is strictly invariant [28, Remark 8].

Several properties concerning fixed points, complete trajectories and global attractors are summarized
in the following results [21].

Lemma 26 Let (K1)-(K2) be satisfied. Then every fixed point (resp. complete trajectory) of R is also a
fixed point (resp. complete trajectory) of G.

If R fulfills (K1)-(K4), then the fixed points of R and G coincide. Besides, a map γ : R → X is a
complete trajectory of R if and only if it is continuous and a complete trajectory of G.

The standard well-known result in the single-valued case for describing the attractor as the union of
bounded complete trajectories (see [24]) reads in the multivalued case as follows.

Theorem 27 Consider R satisfying (K1) and (K2) and either (K3) or (K4). Assume that G possesses
a compact global attractor A. Then

A = {γ(0) : γ ∈ K} = ∪t∈R{γ(t) : γ ∈ K}, (79)

where K denotes the set of all bounded complete trajectories in R. Hence, A is weakly invariant.

We finish this section by stating a general result about the existence of attractors. We recall that the
map t 7→ G(t, x) is upper semicontinuous if for any x ∈ X and any neighborhood O(G(t, x)) in X there
exists δ > 0 such that if d(y, x) < δ, then G(t, y) ⊂ O.

Theorem 28 [28, Theorem 4 and Remark 8] Let the map t 7→ G(t, x) be upper semicontinuous with
closed values. If there exists a compact attracting set K, that is,

distX(G(t, B),K)→ 0, as t→ +∞,

for any bounded set B, then G possesses a global compact attractor A, which is the minimal closed
attracting set. If, moreover, G is strict, then A is invariant.

We observe that, although in the papers [28], [21] the space X is assumed to be complete, the results
are true in a non-complete space.
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3.1.3 The case of non-uniqueness

If we do not assume the additional assumptions on the function a (·) of Section 3.1.1 ensuring uniqueness
of the Cauchy problem, we have to define a multivalued semiflow.

We have two possibilities: either to consider the conditions of Theorem 9 with an extra growth as-
sumption or to use the conditions of Theorem 12.

If we assume conditions (5)-(7), (12), (17) and (60), then by Theorem 12 for any u0 ∈ L2 (Ω) there
exists at least one regular solution and (45) implies that f(u) ∈ L2(ε, T ;L2(Ω)) for any regular solution,

so
du

dt
∈ L2(ε, T ;L2(Ω)) as well. In this case, as H1

0 (Ω) ⊂ Lp (Ω), we have that u ∈ C((0,+∞), H1
0 (Ω)) ⊂

C ((0,+∞) , Lp (Ω)) .
If we assume conditions (5)-(7), (11), (13) and (60) as well, then we known by Theorem 9 that for

any u0 ∈ L2 (Ω) there exists at least one regular solution.
In order to obtain the necessary estimates leading to the existence of a global attractor, we need to

ensure that
du

dt
∈ L2(ε, T ;L2(Ω)), for all 0 < ε < T, (80)

holds, as by [31, p.102] we obtain that

d

dt
‖u‖2H1

0
= 2(−∆u, ut) for a.a. t. (81)

and u ∈ C((0,+∞), H1
0 (Ω)).

We note that the set of regular solutions of that kind is non-empty if we assume (17), as using
inequalities (52)-(56) in the proof of Theorem 9 we prove that the regular solution satisfies (80).

We also observe that we can force all the regular solutions to satisfy
du

dt
∈ L2(ε, T ;L2(Ω)) with

an additional assumption on the constant p, which is weaker than (12). This is achieved by obtaining
that f(u) ∈ L2(ε, T ;L2(Ω)), which can be done by using an interpolation inequality. Indeed, for u ∈
L∞(ε, T ;H1

0 (Ω)) ∩ L2(ε, T ;D(A)) we have the interpolation inequality

‖u‖2(γ+1)

L2(γ+1)(ε,T ;L2(γ+1)(Ω))
≤ ‖u‖2γL∞(ε,T ;Lp1 (Ω))‖u‖

2
L2(ε,T ;Lp2 (Ω)), (82)

where γ = 4
n−2 , p1 = 2n

n−2 , p2 = 2n
n−4 , provided that n > 4; γ < 2, p1 = 4, p2 = 4

2−γ if n = 4; γ =

3, p1 = 6, p2 = +∞ if n = 3; and γ ≥ 0 is arbitrary for n = 1, 2. We have used the embeddings H1
0 (Ω) ⊂

Lp1 (Ω) , H2 (Ω) ⊂ Lp2 (Ω) and [35, Lemma II.4.1, p. 72]. Thus, (8) implies that f(u) ∈ L2(ε, T ;L2(Ω))
if

p ≤ γ + 2 (83)

and also that

‖f(u)‖2L2(ε,T ;L2(Ω)) =

∫ T

ε

∫
Ω

|f(u(x, t))|2dxdt ≤ C1 + C2

∫ T

ε

∫
Ω

|u(x, t)|2(γ+1)dxdt. (84)

Condition (83) also implies H1
0 (Ω) ⊂ Lp (Ω), so u ∈ C((0,+∞), Lp(Ω)).

Another necessary property to obtain estimates is the fact that t 7→
∫

Ω
F(u(t))dx is absolutely con-

tinuous on [ε, T ] for all 0 < ε < T and

d

dt

∫
Ω

F(u(t))dx =

(
f (u (t)) ,

du

dt
(t)

)
, for a.a. t > 0. (85)

This can be proved by regularization in both situations by using the regularity of regular solutions and
either (45) or (84).

Therefore, under either the conditions of Theorem 9 with the extra assumption (83) or the conditions
of Theorem 12 we define the set

R = K+
r := {u(·) : u is a regular solution of (3)}.
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We define the (possibly multivalued) map Gr : R+ × L2(Ω)→ P (L2(Ω)) by

Gr(t, u0) = {u(t) : u ∈ K+
r and u(0) = u0}.

With respect to the axiomatic properties (K1) − (K4) given above, we observe that obviously (K1) is
true, and (K2) can be proved easily using equality (19). Therefore, Gr is a multivalued semiflow by the
results of the previous section. In this case we are not able to prove (K3), so Gr could be non-strict.
Further we will prove that (K4) holds true.

Lemma 29 Let us assume (5)-(7), (17) and (60). Additionally, assume one of the following assumptions:

1. (11) and (83) hold;

2. (12) is true.

Given a sequence {un} ⊂ K+
r such that un(0) → u0 weakly in L2(Ω), there exists a subsequence of

{un} (relabeled the same) and u ∈ K+
r , satisfying u(0) = u0, such that

un(t)→ u(t) strongly in H1
0 (Ω) ∀t > 0.

Proof. We take an arbitrary T > 0. Arguing as in the proof of Theorem 9 we obtain the existence of a
subsequence of un such that

{un} is bounded in L∞(0, T ;L2(Ω)),

{un} is bounded in Lp(0, T ;Lp(Ω)),

{f(un)} is bounded in Lq(0, T ;Lq(Ω)).

(86)

The only difference is that we obtain inequality (26) in an arbitrary interval [ε, T ] and then pass to the
limit as ε→ 0 (see the proof of Proposition 15).

Since
dun

dt
∈ L2(ε, T ;L2(Ω)), for any ε > 0, we have that u ∈ C((0, T ], H1

0 (Ω)) and we know that

(81), (85) are true. Therefore, arguing as in the proofs of Theorems 9 and 12 and using (84) and (45)
there exists u ∈ L∞(ε, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) and a subsequence {un}, relabelled the same, such
that

un
∗
⇀ u in L∞(0, T ;L2(Ω))

un
∗
⇀ u in L∞(ε, T ;H1

0 (Ω))

un ⇀ u in L2(0, T ;H1
0 (Ω))

un ⇀ u in Lp(0, T ;Lp(Ω))

un ⇀ u in L2(ε, T ;D(A)),

dun
dt

⇀
du

dt
in L2(ε, T ;L2(Ω))

f(un) ⇀ f(u) in Lq(0, T ;Lq(Ω)),

f(un) ⇀ f(u) in L2(ε, T ;L2 (Ω)) ,

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u in L2(ε, T ;L2(Ω)).

(87)

In view of (87), the Aubin-Lions Compactness Lemma gives

un → u in L2(ε, T ;H1
0 (Ω)). (88)

Since the sequence {un} is equicontinuous in L2(Ω) on [ε, T ] and bounded in C([ε, T ], H1
0 (Ω)), by the

compact embedding H1
0 (Ω) ⊂ L2(Ω) and the Ascoli-Arzelà theorem, a subsequence fulfills

un → u in C([ε, T ], L2(Ω)),

un(t) ⇀ u(t) in H1
0 (Ω) ∀t ∈ [ε, T ].
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By a similar argument as in the proof of Theorem 9 we establish that u ∈ K+
r , u (0) = u0.

Finally, we shall prove that un(t)→ u(t) in H1
0 (Ω) for all t ∈ [ε, T ].

Multiplying (3) by unt and using (36), (81), and (85) we obtain

1

2

∥∥∥∥dundt
∥∥∥∥2

L2

+
d

dt

(
1

2
A(‖un(t)‖2H1

0
−
∫

Ω

F(un(t))dx

)
≤ 1

2
‖h‖2L2 = D.

Thus,

1

2
A(‖un(t)‖2H1

0
)−

∫
Ω

F(un(t))dx ≤ 1

2
A(‖un(s)‖2H1

0
)−

∫
Ω

F(un(s))dx+D(t− s), t ≥ s ≥ ε > 0.

The same inequality is valid for the limit function u(·). We observe that the map y 7−→
∫

Ω
F(y (x))dx is

continuous in the topology of H1
0 (Ω), which follows easily from H1

0 (Ω) ⊂ Lp (Ω) and (10) using Lebesgue’s
theorem. Hence, the functions Jn(t) = 1

2A(‖un(t)‖2
H1

0
) −

∫
Ω
F(un(t))dx − Dt, J(t) = 1

2A(‖u(t)‖2
H1

0
) −∫

Ω
F(u(t))dx − Dt are continuous and non-increasing in [ε, T ]. Moreover, from (88) we deduce that

Jn(t)→ J(t) for a.e. t ∈ (ε, T ). Take ε < tm < T such that tm → T and Jn(tm)→ J(tm) for all m. Then

Jn(T )− J(T ) ≤ Jn(tm)− J(T ) ≤ |Jn(tm)− J(tm)|+ |J(tm)− J(T )|.

For any δ > 0 there exist m(δ) and N(m(δ)) such that Jn(T )−J(T ) ≤ δ if n ≥ N. Then lim sup Jn(T ) ≤
J(T ), so lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0

(see the explanation below). As un(T )→ u(T ) weakly in H1
0 (Ω)

implies lim inf ‖un(T )‖2
H1

0
≥ ‖u(T )‖2

H1
0
, we obtain

‖un(T )‖2H1
0
→ ‖u(T )‖2H1

0
,

so that un(T )→ u(T ) strongly in H1
0 (Ω).

In order to finish the proof rigorously, we have to justify that lim supJn(T ) ≤ J(T ) implies the
inequality lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0
. First, we observe that by (10) we have∣∣∣∣∫

Ω

F(un (T, x))dx

∣∣∣∣ ≤ C ∫
Ω

(1 + |un (T, x)|p) dx,

so the boundedness of un (T ) in Lp (Ω) implies that−
∫

Ω
F(un (T, x))dx <∞. Also, (9) gives−F(un (T, x)) ≥

−κ̃, so by Fatou’s lemma we obtain

lim inf

(
−
∫

Ω

F(un (T, x))dx

)
≥
∫

Ω

lim inf (−F(un (T, x))) dx

= −
∫

Ω

F(u (T, x))dx,

where we have used that F(un (T, x)→ F(u (T, x)) for a.a. x ∈ Ω. By contradiction let us assume that
lim sup ‖un (T )‖H1

0
> ‖u (T )‖. Then using the continuity of the function A (s) we have

lim sup

(
1

2
A
(
‖un(T )‖2H1

0

)
−
∫

Ω

F(un (T, x))dx

)
≥ lim sup

1

2

∫ ‖un(T )‖2
H1

0

0

a (s) ds+ lim inf

(
−
∫

Ω

F(un (T, x))dx

)
≥ 1

2

∫ lim sup ‖un(T )‖2
H1

0

0

a (s) ds−
∫

Ω

F(un (T, x))dx

>
1

2

∫ ‖u(T )‖2
H1

0

0

a (s) ds−
∫

Ω

F(un (T, x))dx,

which is a contradiction with lim supJn(T ) ≤ J(T ).
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Corollary 30 Assume the conditions of Lemma 29. Then the set K+
r satisfies condition (K4).

Proposition 31 Assume the conditions of Lemma 29. The multivalued semiflow Gr is upper semicon-
tinuous for all t ≥ 0, that is, for any neighborhood O(Gr(t, u0)) in L2(Ω) there exists δ > 0 such that if
‖u0 − v0‖ < δ, then Gr(t, v0) ⊂ O. Also, it has compact values.

Proof. We argue by contradiction. Assume that there exists t ≥ 0, u0 ∈ L2(Ω), a neighbourhood
O(Gr(t, u0)) and a sequence {yn} which fulfills that each yn ∈ Gr(t, un0 ), where un0 converges strongly to
u0 in L2(Ω), and yn /∈ O(Gr(t, un)) for all n ∈ N. Since yn ∈ Gr(t, un0 ) for all n, there exists un ∈ K+

r ,
un (0) = un0 , such that yn = un(t). Now, since {un0} is a convergent sequence of initial data, making
use of Lemma 29 there exists a subsequence of {un} which converges to a function u ∈ K+

r . Hence,
yn → y ∈ Gr(t, u0). This is a contradiction because yn /∈ O(Gr(t, u0)) for any n ∈ N.

Proposition 32 Assume the conditions of Lemma 29. Then there exists an absorbing set B1 for Gr,
which is compact in H1

0 (Ω) and Lp (Ω).

Proof. Reasoning as in Proposition 15, we obtain an absorbing set B0 in L2 (Ω) .

Let K > 0 be such that ‖y‖ ≤ K for all y ∈ B0. Since
du

dt
∈ L

(
ε, T ;L2 (Ω)

)
and (85) holds, we are

allowed to multiply (3) by ut, use (81) and argue as in (52)-(55) to obtain the existence of a constant C
such that

‖u (1) ‖2H1
0

+ ‖u (1)‖pLp ≤ C(1 + ‖u(0)‖2L2), (89)

for any regular solution u (·) with initial condition u (0).
For any u0 ∈ L2 (Ω) with ‖u0‖L2 ≤ R and any u ∈ K+

r such that u (0) = u0, the semiflow property
Gr(t+ 1, u0) ⊂ Gr(1, Gr(t, u0)) and Gr(t, u0) ⊂ B0, if t ≥ t0 (R) , imply that

‖u (t+ 1) ‖2H1
0

+ ‖u (t+ 1)‖pLp ≤ C(1 +K2) ∀t ≥ t0 (R) .

Then there exists M > 0 such that the closed ball BM in H1
0 (Ω) centered at 0 with radius M is absorbing

for Gr.
By Lemma 29 the set B1 = Gr(1, BM ) is an absorbing set which is compact in H1

0 (Ω). The embedding
H1

0 (Ω) ⊂ Lp(Ω) implies that it is compact in Lp (Ω) as well.

Theorem 33 Assume the conditions of Lemma 29. Then the multivalued semiflow Gr possesses a global
compact attractor Ar. Moreover, for any set B bounded in L2(Ω) we have

distH1
0
(Gr(t, B),Ar)→ 0 as t→∞. (90)

Also Ar is compact in H1
0 (Ω) and Lp (Ω).

Proof. From Propositions 31 and 32 we deduce that the multivalued semiflow Gr is upper semicontinuous
with closed values and the existence of an absorbing which is compact in H1

0 (Ω) and Lp (Ω). Therefore,
by Theorem 28 the existence of the global attractor and its compactness in H1

0 (Ω) and Lp (Ω) follow.
The proof of (90) is analogous to that in Theorem 29 in [21].

The set of all complete trajectories of K+
r (see Definition 21) will be denoted by Fr. Moreover, we

write Kr as the set of all complete trajectories which are bounded in L2(Ω), and K1
r as the ones bounded

in H1
0 (Ω).

Lemma 34 Assume the conditions of Lemma 29. Then the sets defined above coincide, that is, Kr = K1
r.

Proof. Let γ(·) ∈ Kr. Then there is C such that ‖γ (t)‖L2 ≤ C for any t ∈ R. Let uτ (·) = γ (· + τ)

for any τ , which is a regular solution. Since
du

dt
∈ L2(ε, T ;L2(Ω)), for any ε > 0, the equality (81) holds

true. Also, (85) is satisfied. Therefore, we can multiply the equation in (3) by ut and apply again similar
arguments as in Theorem 12 to deduce that

‖u(t+ r)‖2H1
0
≤
K1 (T ) (1 + ‖u(0)‖2L2)

r
+K2 (T ) for any 0 < r < T. (91)
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Denote Bγ = ∪t∈Rγ(t). Therefore,
Bγ ⊂ Gr(1, Bγ)

and (91) implies that Bγ is bounded in H1
0 (Ω), so γ(·) ∈ K1

r.
The other inclusion is obvious.

In view of Corollary 30 and Theorem 27, the global attractor is characterized in terms of bounded
complete trajectories:

Ar = {γ(0) : γ(·) ∈ Kr} = {γ(0) : γ(·) ∈ K1
r}

=
⋃
t∈R
{γ(t) : γ(·) ∈ Kr} =

⋃
t∈R
{γ(t) : γ(·) ∈ K1

r}. (92)

The set RK+
r

was defined in the previous section as the set of fixed points of K+
r , which means

that z ∈ RK+
r

if the function u (·) defined by u (t) = z, for all t ≥ 0, belongs to K+
r . This set can be

characterized as follows.

Lemma 35 Assume the conditions of Lemma 29. Let R be the set of z ∈ H2 (Ω) ∩H1
0 (Ω) such that

−a(‖z‖2H1
0
)∆z = f(z) + h in L2 (Ω) . (93)

Then RK+
r

= R.

Proof. If z ∈ RK+
r

, then u (t) ≡ z ∈ K+
r . Thus, u (·) satisfies (19) and

du

dt
= 0 in L2

(
0, T ;L2 (Ω)

)
, so

(93) is satisfied.

Let z ∈ R. Then the map u (t) ≡ z satisfies (93) for any t ≥ 0 and
du

dt
= 0 in L2

(
0, T ;L2 (Ω)

)
, so

(19) holds true.

The following result is proved exactly as Theorem 18.

Theorem 36 Assume the conditions of Lemma 29. Then the global attractor A is bounded in L∞(Ω),
provided that h ∈ L∞(Ω).

We are now ready to obtain the characterization of the global attractor.

Theorem 37 Assume the conditions of Lemma 29. Then it holds that

Ar = Mu
r (R) = Ms

r (R),

where
Ms
r (R) = {z : ∃γ(·) ∈ Kr, γ(0) = z, dist L2(Ω)(γ(t),R)→ 0, t→ +∞}, (94)

Mu
r (R) = {z : ∃γ(·) ∈ Fr, γ(0) = z, dist L2(Ω)(γ(t),R)→ 0, t→ −∞}. (95)

Remark 38 In the definition of Mu
r (R) we can replace Fr by Kr. Also, as the global attractor A is

compact in H1
0 (Ω), in the definitions of Ms

r (R) and Mu
r (R), it is equivalent to write H1

0 (Ω) instead of
L2 (Ω) .

Proof. We consider the function E : Ar → R

E(y) =
1

2
A(‖y‖2H1

0
)−

∫
Ω

F(y (x))dx−
∫

Ω

h (x) y (x) dx, (96)

where A(r) =
∫ r

0
a(s)ds. We observe that E(y) is continuous in H1

0 (Ω). Indeed, the maps y 7→
1
2A(‖y‖2

H1
0
), y 7→

∫
Ω
h (x) y (x) dx are obviously continuous in H1

0 (Ω). On the other hand, both con-

ditions (12) and (83) imply that H1
0 (Ω) ⊂ Lp (Ω), so making use of the Lebesgue theorem the continuity

of y 7→
∫

Ω
F(y (x))dx follows as well.

24



Since
du

dt
∈ L2

(
ε, T ;L2 (Ω)

)
and (85) holds for any u ∈ K+

r and 0 < ε < T , we obtain the energy

equality ∫ t

s

‖ d
dr
u(r)‖2L2dr + E(u(t)) = E(u(s)) for all t ≥ s > 0. (97)

Hence, E (u (t)) is non-increasing and, by (6) and (9), bounded from below. Thus, E(u(t)) → l, as
t→ +∞, for some l ∈ R.

Let x ∈ Ar and γ (0) = x, where γ ∈ Kr. We reason by contradiction, so let suppose that there exists
ε > 0 and a sequence γ(tn), tn → +∞, such that

dist L2(Ω)(γ(tn),R) > ε.

In view of Theorem 33, Ar is compact in H1
0 (Ω), so we can take a converging subsequence (relabeled the

same) such that γ(tn)→ y in H1
0 (Ω), where tn → +∞. Since the function E : H1

0 (Ω)→ R is continuous,
it follows that E(y) = l. We obtain a contradiction by proving that y ∈ R. In view of Lemma 29, there
exists v ∈ K+

r and a subsequence vn (·) = γ(· + tn) such that v(0) = y and vn(t) → v(t) = z in H1
0 (Ω)

for t > 0. Thus, E(vn(t)) → E(z) implies that E(z) = l. Also, v(·) satisfies the energy equality for all
0 ≤ s ≤ t, so that

l +

∫ t

0

‖vr‖2L2dr = E(z) +

∫ t

0

‖vr‖2L2dr = E(v(0)) = E(y) = l.

Therefore,
dv

dt
(t) = 0 for a.a. t, and then by Lemma 35 we have y ∈ RK+

r
= R. As a consequence,

Ar ⊂Ms
r (R). The converse inclusion follows from (92).

For the second equality we observe that for any γ ∈ Fr the energy equality (97) is satisfied for all
−∞ < s ≤ t. Let x ∈ Ar and let γ ∈ Kr = K1

r (cf. Lemma 34) be such that γ(0) = x. Since the second
term of the energy function is bounded from above by (9), E(γ(t))→ l, as t→ −∞, for some l ∈ R. We
reason as before, so let suppose that there exists ε > 0 and a sequence γ(−tn), tn →∞, such that

dist L2(Ω)(γ(−tn),R) > ε,

and we have that γ(−tn)→ y in H1
0 (Ω), E(y) = l. Moreover, for a fixed t > 0, there exists v ∈ K+

r and a
subsequence of vn(·) = γ(· − tn) (relabeled the same) such that v(0) = y and vn(t)→ v(t) = z in H1

0 (Ω).
Therefore, E(vn(t)) → E(z) implies that E(z) = l and reasoning as before we get a contradiction since
it follows that y ∈ R. Hence, Ar ⊂Mu

r (R) and the converse inclusion follows from (92).

We can improve the regularity of the global attractor of the semigroup Tr of Section 3.1.1 and obtain
its characterization

Lemma 39 Let the conditions of Theorem 17 hold. Then the global attractor Ar of the semigroup Tr is
compact in H1

0 (Ω), bounded in Lp (Ω) and the convergence takes place in the topology of H1
0 (Ω), that is,

distH1
0 (Ω)(Tr(t, B),A)→ 0, as t→ +∞,

for any set B bounded in L2 (Ω) .

Proof. The estimates of Lemma 29 can be justified for Tr via Galerkin approximations, so in this case
we do not need to impose assumption (83) in order to use (85). Thus, the proof follows the same lines as
in Proposition 32 and Theorem 33.

Proposition 40 Let the conditions of Theorem 17 hold. Also, assume one of the following conditions:

1. h ∈ L∞ (Ω) ;

2. p ≤ 2n
n−2 if n ≥ 3.
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Then the global attractor Ar can be characterized as follows:

Ar = Mu
r (R) = Ms

r (R),

where Ms
r (R), Mu

r (R) are defined in (94)-(95).

Proof. We recall that a function E : A → R is a Lyapunov functional if E is continuous (with respect to
the topology of H1

0 (Ω)), for any u0 ∈ A the map t 7→ E(Tr(t, u0)) is non-increasing and E(Tr(τ, u0)) =
E(u0), for some τ > 0, implies that u (·) is a fixed point. We estate that the function E given in (96) is
a Lyapunov functional for the semigroup Tr.

We prove that E (y) is continuous. First, the maps y 7→ 1
2A(‖y‖2

H1
0
), y 7→

∫
Ω
h (x) y (x) dx are

obviously continuous in H1
0 (Ω). Second, if h ∈ L∞ (Ω), taking into account that A is bounded in L∞ (Ω)

by Theorem 18, it follows that∣∣∣∣∫
Ω

F(y1)−F(y2)dx

∣∣∣∣ =

∣∣∣∣∣
∫

Ω

∫ y1(x)

y2(x)

f(s)dsdx

∣∣∣∣∣ ≤
∫

Ω

C1|y1 (x)− y2 (x) |dx ≤ C2‖y1 − y2‖L2 ,

so y 7→
∫

Ω
F(y (x))dx is continuous as well. In the case of the second condition, this result follows from

the embedding H1
0 (Ω) ⊂ Lp (Ω) and the Lebesgue theorem.

Multiplying the equation in (3) by ut we obtain the energy inequality∫ t

s

‖ d
dr
u(r)‖2L2dr + E(u(t)) ≤ E(u(s)), for all t ≥ s,

if u (·) is a bounded complete trajectory of Tr. This calculation is rigorous when h ∈ L∞(Ω) as the
boundedness of the solutions in L∞ (R;L∞(Ω)) implies by regularization that (85) is true. Under the
second condition, the calculations are formal but can be justified via Galerkin approximations. Hence,

E(u(t)) is non-increasing as a function of t. Also, if E(u(τ)) = E (u0) , then ‖du
dt

(t) ‖2L2 = 0 for a.a.

0 < t < τ , so u must be a fixed point.
The result follows then from [3, p.160].

3.2 Strong solutions

We split this part into two cases.

3.2.1 Attractor in the phase space H1
0 (Ω)

If we assume conditions (5)-(7), (60) and that either p satisfies (12) or that (11) is satisfied, then we know
by Theorems 10 and 11 that for any u0 ∈ H1

0 (Ω) ∩ Lp (Ω) there exists at least one strong solution u (·).
In the first case, H1

0 (Ω) ⊂ Lp (Ω) implies that H1
0 (Ω) ∩ Lp (Ω) = H1

0 (Ω). This is also true in the
second case if we assume additionally that (83) holds true. Under such assumptions we define then the
set

R = K+
s := {u(·) : u is a strong solution of (3) with u (0) ∈ H1

0 (Ω)}.

We define the (possibly multivalued) map Gs : R+ ×H1
0 (Ω)→ P (H1

0 (Ω)) by

Gs(t, u0) = {u(t) : u ∈ K+
s and u(0) = u0}.

With respect to the axiomatic properties (K1)− (K4) given above, property (K1) is obviously true, and
(K2)− (K3) can be proved easily using equality (19). Therefore, Gs is a strict multivalued semiflow by
the results of Section 3.1.2.

We shall obtain a similar result as in Lemma 29.

Lemma 41 Let assume conditions (5)-(7), (60). Additionally, assume one of the following assumptions:

1. (11) and (83) hold;
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2. (12) is true.

Given a sequence {un} ⊂ K+
s such that un(0) → u0 weakly in H1

0 (Ω), there exists a subsequence of
{un} (relabeled the same) and u ∈ K+

s , satisfying u(0) = u0, such that

un(t)→ u(t) in H1
0 (Ω), ∀t > 0.

Proof. Since
dun

dt
∈ L2

(
0, T ;L2 (Ω)

)
and (85) hold, we can use (81) and multiplying (3) by ut and

integrating between s and t we obtain∫ t

s

‖ d
dr
‖u(r)‖2L2dr + E(u(t)) = E(u(s)) for all t ≥ s ≥ 0,

where E was defined in (96). Therefore, by (6) and (9) we have that∫ t

0

‖ d
dr
u(r)‖2L2dr +

m

4
‖u(t)‖2H1

0
+ α̃1‖u(t)‖pLp ≤

1

2
A(‖u(0)‖2H1

0
) + α̃2‖u(0)‖pLp +K1 ‖u (0)‖2L2 +K2 (98)

holds for all t > 0.
In the first case, multiplying by −∆u, integrating over (0, T ) and using (98) it follows that

1

2
‖u(T )‖2H1

0
+
m

2

∫ T

0

‖∆u(s)‖2L2ds ≤ η
∫ T

0

‖u(s)‖2H1
0
ds+

1

2
‖u(0)‖2H1

0
+K3 ≤ K4 (T ) , (99)

for all T > 0. In the second case, combining (98) with (45) the boundedness of f (un) in L2
(
0, T ;L2 (Ω)

)
follows for any T > 0. Hence, the equality

a
(
‖u‖2H1

0

)
∆u =

dun

dt
− f (un)− h

and (6) imply that un is bounded in L2 (0, T ;D(A)) .

Thus, the sequence {un} is bounded in L∞(0, T ;H1
0 (Ω))∩L2(0, T ;D(A)) and

dun

dt
, f (un) are bounded

in L2(0, T ;L2(Ω)), for all T > 0. Therefore, there is u such that

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω)),

un ⇀ u in L2(0, T ;D(A)),

unt ⇀ ut in L2(0, T ;L2(Ω)), .

Arguing in a similar way as in Theorem 9 we have

un → u in L2(0, T ;H1
0 (Ω)),

un(t, x)→ u(t, x) a.e. on (0, T )× Ω,

f (un) ⇀ f (u) in L2(0, T ;L2(Ω)),

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u in L2(0, T ;L2(Ω)).

Hence, we can pass to the limit and obtain that u ∈ K+
s . Following the same lines of Theorem 10 we

check that u (0) = u0.
Moreover, arguing as in Lemma 29 we obtain

un(t)→ u(t) in H1
0 (Ω) for all t > 0.

Corollary 42 Assume the conditions of Lemma 41. Then the set K+
s satisfies condition (K4).
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Using Lemma 41 and reasoning as before the following result holds.

Proposition 43 Assume the conditions of Lemma 41. Then the map Gs (t, ·) is upper semicontinuous
for all t ≥ 0 with compact values.

Proposition 44 Assume the conditions of Lemma 41 and (17). Then there exists an absorbing set B1

for Gs, which is compact in H1
0 (Ω) and Lp (Ω).

Proof. The proof follows the same lines of that in Proposition 32 but using Lemma 41.

From these results and Theorem 28 we obtain the existence of the global attractor.

Theorem 45 Assume the conditions of Lemma 41 and (17). Then the multivalued semiflow Gs possesses
a global compact invariant attractor As, which is compact in Lp (Ω).

Lemma 46 Assume the conditions of Lemma 41 and (17). Then As = Ar, where Ar is the global
attractor in Theorem 33.

Proof. Since Gs (t, u0) ⊂ Gr (t, u0) for all u0 ∈ H1
0 (Ω), it is clear that Ar is a compact attracting set.

Hence, the minimality of the global attractor gives As ⊂ Ar.
Let z ∈ Ar. Since z = γ (0), where γ ∈ K1

r, and γ |[s,+∞) is a strong solution of (3) for any s ∈ R, we
get that z ∈ Gs(tn, γ (−tn)) for tn → +∞. Hence,

dist (z,As) ≤ dist (Gs(tn, γ (−tn)),As)→ 0 as n→∞,

so z ∈ As.

The set of all complete trajectories of K+
s (see Definition 21) will be denoted by Fs. Let Ks be the

set of all complete trajectories which are bounded in H1
0 (Ω).

In view of Theorem 27, the global attractor is characterized in terms of bounded complete trajectories:

As = {γ(0) : γ(·) ∈ Ks} =
⋃
t∈R
{γ(t) : γ(·) ∈ Ks}. (100)

In the same way as in Lemma 35 we obtain that RK+
s

= R.
Reasoning as in Theorem 18 we obtain the following result.

Theorem 47 Assume the conditions of Lemma 41 and (17). Then the global attractor As is bounded in
L∞(Ω), provided that h ∈ L∞(Ω).

Following the same procedure of Theorem 37 we can prove an analogous characterization of the global
attractor.

Theorem 48 Assume the conditions of Lemma 41 and (17).Then it holds that

As = Mu
s (R) = Ms

s (R),

where
Ms
s (R) = {z : ∃γ(·) ∈ Ks, γ(0) = z, dist H1

0 (Ω(γ(t),R)→ 0, t→ +∞}, (101)

Mu
s (R) = {z : ∃γ(·) ∈ Fs, γ(0) = z, distH1

0 (Ω(γ(t),R)→ 0, t→ −∞}. (102)

Remark 49 In the definition of Mu
s (R) we can replace Fr by Kr.

Let us consider now the particular situation when Gs is single-valued semigroup. Under the conditions
(5)-(7), (11), (60), (83), if we assume additionally that (14) is satisfied, then by Theorem 14 for any
u0 ∈ H1

0 (Ω) there exists a unique strong solution u (·). Then we can define the following semigroup
Ts : R+ ×H1

0 (Ω)→ H1
0 (Ω) :

Ts(t, u0) = u(t),

where u (·) is the unique strong solution to (3). We recall also that u ∈ C([0, T ], H1
0 (Ω)) for any T > 0.

Also, by Lemma 41 if un0 → u0 weakly in H1
0 (Ω), then Ts(t, u

n
0 )→ T (t, u0) in H1

0 (Ω) for all t > 0.
Since Ts = Gs, by Theorems 45, 47, 48 and Lemma 46 we obtain the following results.
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Theorem 50 Assume the conditions (5)-(7), (11), (17), (60), (83) and (14). Then the semigroup Ts
possesses a global invariant attractor As, which is compact in H1

0 (Ω) and Lp (Ω).

Lemma 51 Under the conditions of Theorem 50, As = Ar, where Ar is the attractor of Theorem 17.

Theorem 52 Assume the conditions of Theorem 50. Then the global attractor As is bounded in L∞(Ω)
provided that h ∈ L∞(Ω).

As before, we denote by R the set of fixed points of Ts. Also, the global attractor is the union of all
bounded complete trajectories

As = {φ (0) : φ is a bounded complete trajectory of Ts}.

Theorem 53 Assume the conditions of Theorem 50. Then the global attractor As can be characterized
as follows

As = Mu
s (R) = Ms

s (R),

where the sets Mu
s (R), Ms

s (R) are defined in (101)-(102).

In this case we can obtain additionally that the attractor is bounded in H2 (Ω) .

Proposition 54 Assume the conditions of Theorem 50 and also that (15) holds true. Then As is bounded
in H2 (Ω) .

Proof. The proof follows the same lines as in Proposition 19, so we omit it.

3.2.2 Attractor in the phase space H1
0 (Ω) ∩ Lp (Ω)

We consider the metric space X = H1
0 (Ω) ∩ Lp (Ω) endowed with the induced topology of the space

H1
0 (Ω).

If we assume conditions (5)-(7), (11), (14) and (60), then by Theorems 10 and 14 for any u0 ∈
H1

0 (Ω) ∩ Lp (Ω) there exists a unique strong solution u (·). Then we can define the following semigroup
Ts : R+ ×X → X :

Ts(t, u0) = u(t),

where u (·) is the unique strong solution to (3). We recall also that u ∈ C([0, T ], H1
0 (Ω))∩Cw ([0, T ], Lp (Ω))

for any T > 0.

Lemma 55 Assume conditions (5)-(7), (11), (14) and (60). If un0 → u0 weakly in H1
0 (Ω)∩Lp (Ω), then

Ts(t, u
n
0 )→ Ts(t, u0) strongly in H1

0 (Ω) and weakly in Lp (Ω) for any t > 0.

Proof. Repeating the same proof of Lemma 41 we obtain that Ts(t, u
n
0 ) → Ts(t, u0) strongly in H1

0 (Ω)
for all t > 0. We observe that in this case the estimates are justified via Galerkin approximations, so we
do not need condition (83) in order to provide property (85).

Finally, by the Ascoli-Arzelà theorem we deduce

un → u in C([0, T ], L2(Ω))

and combining this with (98) we infer that

un (t) ⇀ u (t) in Lp (Ω) ∀t ≥ 0.

Proposition 56 Assume the conditions of Lemma 55 and (17). Then there exists an absorbing set B1

for Ts, which is compact in H1
0 (Ω) and bounded Lp (Ω).

Proof. Following the same lines of that in Proposition 32 (and justifying the estimates via Galerkin
approximations), we obtain that there exists M > 0 such that the closed ball BM in H1

0 (Ω) ∩ Lp (Ω)
centered at 0 with radius M is absorbing for Ts. By Lemma 55 the set B1 = Ts(1, BM ) is an absorbing
set which is compact in H1

0 (Ω) and bounded in Lp (Ω).
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Theorem 57 We assume the conditions of Lemma 55 and (17). Then the semigroup Ts possesses a
global attractor As, which is compact in X and bounded in Lp (Ω).

Proof. We cannot apply directly the general theory of attractors for semigroup because we do not know
whether the semigroup Ts is continuous with respect to the initial datum in X.

We state that

As = ω (B1) = {y : ∃tn → +∞, yn ∈ Ts (tn, B1) such that yn → y in X}

is a global compact attractor. The fact that set ω (B1) is non-empty, compact and the minimal closed
set attracting B1 can be proved in a standard way (see for example Theorem 10.5 in [30]). Since B1 is
absorbing, ω (B1) attracts any bounded set B. As ω (B1) ⊂ B1, As is bounded in Lp (Ω) .

We need to prove that it is invariant.
First, we prove that it is negatively invariant. Let y ∈ As and t > 0 be arbitrary. We take a

sequence yn ∈ Ts (tn, B1) such that yn → y, tn → +∞. Since Ts (tn, B1) = Ts(t, Ts(tn− t, B1)), there are
xn ∈ Ts(tn − t, B1) such that yn = Ts(t, xn). As for n large Ts(tn − t, B1) ⊂ B1, the sequence {xn} is
bounded in Lp (Ω) and relatively compact in H1

0 (Ω). Hence, up to a subsequence xn → x ∈ As weakly
in Lp (Ω) and strongly in H1

0 (Ω) . We deduce by Lemma 55 that Ts (t, xn) → Ts(t, x) weakly in Lp (Ω)
and strongly in H1

0 (Ω). Thus, y = Ts(t, x) ⊂ Ts (t,As) .
Second, we prove that it is positively invariant. As As = Ts(τ,As) for any τ ≥ 0, this follows from

distX (Ts (t,As) ,As) = distX (Ts (t, Ts(τ,As)) ,As) = distX (Ts (t+ τ,As) ,As) →
τ→+∞

0.

Lemma 58 Under the conditions of Theorem 57, As = Ar, where Ar is the attractor of Theorem 17.

Proof. Since Tr (t, u0) = Ts (t, u0) for any u0 ∈ X, we have

distL2 (As,Ar) = distL2 (Ts(t,As),Ar) = distL2 (Tr(t,As),Ar) →
t→+∞

0,

so As ⊂ Ar. In the same way,

distX (Ar,As) = distX (Tr(t,Ar),As) = distX (Ts(t,Ar),As) →
t→+∞

0,

and then Ar ⊂ As.

The following two theorems are proved in the same way as Theorem 18 and Proposition 40

Theorem 59 Assume the conditions of Theorem 57. Then the global attractor As is bounded in L∞(Ω)
provided that h ∈ L∞(Ω).

As before, we denote by R the set of fixed points of Ts. Also, the global attractor is the union of all
bounded complete trajectories

As = {φ (0) : φ is a bounded complete trajectory of Ts}.

Theorem 60 We assume the conditions of Theorem 57 and one of the following assumptions:

1. h ∈ L∞ (Ω);

2. p ≤ 2n
n−2 if n ≥ 3.

Then the global attractor As can be characterized as follows

As = Mu
s (R) = Ms

s (R),

where the sets Mu
s (R), Ms

s (R) are defined in (101)-(102).
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We obtain additionally that the attractor is bounded in H2 (Ω) .

Proposition 61 Assume the conditions of Theorem 57 and also that (15) is satisfied. Then As is
bounded in H2 (Ω) .

Proof. The proof follows the same lines as in Proposition 19, so we omit it.
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Abstract

In this paper, we study the structure of the global attractor for the multivalued semiflow generated
by a nonlocal reaction-diffusion equation in which we cannot guarantee uniqueness of the Cauchy
problem.

First, we analyse the existence and properties of stationary points, showing that the problem
undergoes the same cascade of bifurcations as in the Chafee-Infante equation. Second, we study the
stability of the fixed points and establish that the semiflow is dynamically gradient. We prove that
the attractor consists of the stationary points and their heteroclinic connections and analyse some of
the possible connections.

Keywords: reaction-diffusion equations, nonlocal equations, global attractors, multivalued dynami-
cal systems, structure of the attractor, stability, Morse decomposition

AMS Subject Classification (2010): 35B40, 35B41, 35B51, 35K55, 35K57

1 Introduction

Ordinary and partial differential equations play a key role in modeling for all sciences: Engineering,
Physics, Chemistry, Biology, Medicine, Economy and many others. The right understanding of the
behavior of solutions (in particular, well-posedness versus blow-up) means not only to predict the future of
trajectories but also to establish strategies for control (i.e. optimization). Concerning PDE and Economy,
it is interesting to cite the nice survey [9] and the references therein on many different problems dealing
with effects as aggregation and repulsion, optimal control, mean-field games, and so on as applications.

Parabolic PDE models reflect the diffusion phenomena due to local touching of molecules and dissipa-
tion of energy, and when different internal and external factors come into play, it links naturally to some
reaction-diffusion models, as the growth versus capacity of the environment in Biology or the endogenous
growth versus the neoclassical theories in economy. In particular, capital accumulation distribution in
space and time following spatial extensions of the continuous Ramsey model [35] by Brito [6, 7, 8] and
others later uses the semilinear parabolic PDE

∂tu− α∆u = f(u)− c.

This spatiality introduces important issues about the steady states distribution as well as the dynamic
evolution, convergence, local interaction among local agents, and so on.
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Not for the sake of generality but for real modeling purposes, in the last two decades the increment of
nonlocal PDE models that attempt to capture in a more accurate way the real spreading of the problem
(density of population, capital accumulation, consumption or prices and innovation indexes, and so on)
has been very important. Firstly we might comment about extensions by using some nonlocal operators
acting in the right-hand side of the PDE and/or the boundary conditions as integral operators, leading to
integro-differential equations. Among others we can cite [4] for a system coupling capital and pollution
stock model, a population dynamic model in [28]

∂tu− α∆u = u

(
f(u)− α

∫
RN

g(x− y)u(y, t)dy

)
,

the elliptic (stationary) counterpart in population/physics models as the Fischer-KPP [2], or a logistic
model [27]. Secondly, we wish to point out that the nonlocal extensions have also been performed on the
diffusion operators as well. The literature about fractional laplacian is vast nowadays. However, let us
concentrate in an intermediate step. Coming originally from modeling of bacteria population in Biology,
the introduction of a nonlocal viscosity in front of the laplacian has become an interesting problem for
different applications and for its mathematical study, as for example occurs in the equation

ut − a(

∫
Ω

g(y)u(t, y)dy)∆u = f(t).

In this way, the spreading (or aggregating/concentrating) effects are given by the increasing (resp. non-
increasing) function a as a viscosity nonlocal coefficient. One should cite Prof. Chipot and his collab-
orators [20, 21, 22, 23, 24, 25, 39] among others for a detailed analysis including existence, uniqueness,
steady states and convergence of evolutionary solutions to equilibria.

When the reaction term f depends on the unknown u

ut − a(ΦΩ(u(t))∆u = f(t, u) (1)

(here the functional ΦΩ may represent a general nonlocal functional acting over the whole domain Ω, for
instance ‖u(t)‖2

H1
0

or
∫

Ω
g(y)u(t, y)dy) equilibria are difficult to analyse. Opposite to ordinary differential

equations, the analysis of existence of stationary states for the above problem is much more involved.
Also, comparing with reaction-diffusion equations with local diffusion, another difficulty is that in general
a Lyapunov functional is not known to exist in most cases.

The dynamical analysis of problem (1) and in particular the existence of global attractors have been
established till now in several papers (cf. [3, 11, 12, 14, 15]). Other differential operators as the p-laplacian
coupled with nonlocal viscosity has also been considered (cf. [13, 15, 16]). However, in general little is
known about the internal structure of the attractor, which is very important as it gives us a deep insight
into the long-term dynamics of the problem. When we manage to obtain a Lyapunov functional some
insights can be obtained.

If we consider the non-local equation

∂u

∂t
− a(‖u‖2H1

0
)
∂2u

∂x2
= λf(u) (2)

with Dirichlet boundary conditions, then it is possible to define a suitable Lypaunov functional. In [11]
it is shown that regular and strong solutions generate (possibly) multivalued semiflows having a global
attractor which is described by the unstable set of the stationary points. Although this is already a good
piece of information, our goal is to describe the structure of the attractor as accurately as possible. For
this aim we need to study the particular situation where the domain is one-dimensional and the function
f is of the type of the standard Chafee-Infante problem, for which the dynamics inside the attractor has
been completely understood [29].

The first step when studying the structure of the attractor consists in analysing the stationary points.
In the case where the function f is odd and equation (2) generates a continuous semigroup the existence
of fixed points of the type given in the Chafee-Infante problem was established in [18]. Moreover, if a is
non-decreasing, then they coincide with the ones in the Chafee-Infante problem and, moreover, in [19] the
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stability and hyperbolicity of the fixed points is studied. In this paper we extend these results for a more
general function f (not necessarily odd and for which we do not known whether the Cauchy problem
has a unique solution or not), showing that equation (2) undergoes the same cascade of bifurcations as
the Chafee-Infante equation. Moreover, when we allow the function a to decrease, though the problem
possesses at least the same fixed point as in the Chafee-Infante problem, we show that more equilibria can
appear. For a non-decreasing function a and an odd function f we prove also that even when uniqueness
fails the stability of the fixed points is the same as for the corresponding ones in the Chafee-Infante
problem. Finally, we are able to prove that in this last case the semiflow is dynamically gradient with
respect to the disjoint family of isolated weakly invariant sets generated by the equilibria, which is ordered
by the number of zeros of the fixed points. More precisely, the attractor consists of the set of equilibria
and their heteroclinic connections and a connection from a fixed point to another is allowed only if the
number of zeros of the first one is greater.

In Section 3 we study the existence of strong solutions of the Cauchy problem in the space H1
0 . In

Section 4 we prove that strong solutions generate a multivalued semiflow in H1
0 having a global attractor

which is equal to the unstable set of the stationary points. In Section 5 we study the existence and
properties of equilibria. In Section 6 we analyse the stability of the fixed points and establish that the
semiflow is dynamically gradient.

2 Setting of the problem

Let us consider the following problem
∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λf(u) + h(t), t > 0, x ∈ Ω,

u(t, 0) = u(t, 1) = 0,
u(0, x) = u0(x),

(3)

where Ω = (0, 1) and λ > 0. Throughout the paper we will use the following conditions (but not all of
them at the same time):

(A1) f ∈ C(R).

(A2) f(0) = 0.

(A3) f ′(0) exists and f ′(0) = 1.

(A4) f is strictly concave if u > 0 and strictly convex if u < 0.

(A5) Growth and dissipation conditions: for p ≥ 2, Ci > 0, i = 1, .., 4, we have

|f(u)| ≤ C1 + C2|u|p−1, (4)

f(u)u ≤ C3 − C4|u|p, if p > 2, (5)

lim sup
u→±∞

f(u)

u
≤ 0, if p = 2. (6)

(A6) The function a ∈ C(R+) satisfies:
a(s) ≥ m > 0.

(A7) The function a ∈ C(R+) satisfies:
a(s) ≤M1, ∀s ≥ 0,

where M1 > 0.

(A8) The function a ∈ C(R+) is non-decreasing.

(A9) h ∈ L2
loc

(
0,+∞;L2 (Ω)

)
.
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(A10) h does not depend on time and h ∈ L2 (Ω) .

We define the function F(u) =
∫ u

0
f(s)ds. We observe that from (4) we have

|F(s)| ≤ C̃(1 + |s|p) ∀s ∈ R, (7)

whereas (5) implies
F(s) ≤ κ̃− α̃1|s|p. (8)

Also, from condition (6) it follows that for all ε > 0, there exists a constant M > 0 such that f(u)
u ≤ ε,

for all |u| ≥M . Hence, there exists mε > 0 such that

f(u)u ≤ mε + εu2, ∀u ∈ R. (9)

In addition, it follows that
F(u) ≤ εu2 + Cε, (10)

where Cε > 0. These two inequaities are also true under condition (5).
The main aim of this paper consists in describing in as much detail as possible the internal structure

of the global attractor in a similar way as for the classical Chafee-Infante equation.
Some of these conditions will be used all the time, whereas other ones will be used only in certain

results. In particular, the function h will be considered as a time-dependent function satisfying (A9) only
for establishing the existence of solution for problem (3). However, since we will study the asymptotic
behaviour of solutions in the autonomous situation, for the second part concerning the existence and
properties of global attractors the function h will be time-independent, so assumption (A10) will be used
instead. Finally, in order to study the structure of the global attractors in terms of the stationary points
and their possible heteroclinic connections we will assume that h ≡ 0.

Throughout the paper, ‖·‖X will denote the norm in the Banach space X.

3 Existence of solutions

In this section we will establish the existence of strong solutions for problem (3) with initial condition
in the phase space H1

0 (Ω). Although we will follow the same lines of a similar result given in [11], we
would like to point out that in the present case, as we are working in a one-dimensional problem, the
assumptions on the function f are much weaker. In particular, we do not need to impose a growth
assumption of any kind.

Definition 1 For u0 ∈ L2(Ω), a weak solution to (3) is an element u ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω)),

for any T > 0, such that

d

dt
(u, v) + a(‖u‖2H1

0
)(∇u,∇v) = λ(f(u), v) + (h(t), v) ∀v ∈ H1

0 (Ω), (11)

where the equation is understood in the sense of distributions.

As usual, let A : D(A) → H, D(A) = H2(Ω) ∩ H1
0 (Ω) , be the operator A = − d2

dx2
with Dirichlet

boundary conditions. This operator is the generator of a C0-semigroup T (t) = e−At.

Definition 2 For u0 ∈ H1
0 (Ω), a strong solution to (3) is a weak solution with the extra regularity

u ∈ L∞(0, T ;H1
0 (Ω)), u ∈ L2(0, T ;D(A)) and

du

dt
∈ L2(0, T ;L2(Ω)) for any T > 0.

Remark 3 We observe that if u is a strong solution, then u ∈ C([0, T ];H1
0 (Ω)) (see [37, p.102]). By

this way, the initial condition makes sense.

4



Remark 4 Since
du

dt
∈ L2

(
0, T ;L2 (Ω)

)
for any strong solution, in this case equality (11) is equivalent

to the following one: ∫ T

0

∫
Ω

du (t, x)

dt
ξ (t, x) dxdt−

∫ T

0

a(‖u(t)‖2H1
0
)

∫
Ω

∂2u

∂x2
ξdxdt (12)

=

∫ T

0

∫
Ω

λf (u (t, x)) ξ (t, x) dxdt+

∫ T

0

∫
Ω

h (t, x) ξ (t, x) dxdt,

for all ξ ∈ L2
(
0, T ;L2 (Ω)

)
.

Theorem 5 Assume conditions (A1), (A6) and (A9). Assume also the existence of constants β, γ > 0
such that

f (u)u ≤ γ + βu2 for all u ∈ R. (13)

Then, for any u0 ∈ H1
0 (Ω) problem (3) has at least one strong solution.

Remark 6 Assumption (13) is weaker than the dissipative property (9) as the constant ε is arbitrarily
small. Due to the fact that we are working in a one-dimensional domain, no growth condition of the type
given in (A5) is necessary in order to prove existence of solutions. Also, (13) implies that

F (u) ≤ γ̃ + β̃u2 (14)

for some constants γ̃, β̃ > 0.

Proof. Consider a fixed value T > 0. In order to use the Faedo-Galerkin method let {wj}j≥1 be the
sequence of eigenfunctions of −∆ in H1

0 (Ω) with homogeneous Dirichlet boundary conditions, which forms
a special basis of L2(Ω). Since Ω is a bounded regular domain, it is known that {wj} ⊂ H1

0 (Ω) and that
∪n∈NVn is dense in the spaces L2(Ω) and H1

0 (Ω), where Vn = span[w1, . . . , wn]. As usual, Pn will be the
orthogonal projection in L2 (Ω), that is

zn := Pnz =
n∑
j=1

(z, wj)wj ,

and λj will be the eigenvalues associated to the eigenfunctions wj . For each integer n ≥ 1, we consider
the Galerkin approximations

un(t) =
n∑
j=1

γnj(t)wj ,

which are given by the following nonlinear ODE system{
d

dt
(un, wi) + a(‖un‖2H1

0
)(∇un,∇wi) = λ(f(un), wi) + (h,wi) ∀i = 1, . . . , n,

un(0) = Pnu0.
(15)

We observe that Pnu0 → u0 in H1
0 (Ω). This Cauchy problem possesses a solution on some interval [0, tn)

and by the estimates in the space L2(Ω) of the sequence {un} given below for any T > 0 such a solution
can be extended to the whole interval [0, T ].

Firstly, multiplying the equation in (15) by γni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un(t)‖2L2 + a(‖un‖2H1

0
)‖un(t)‖2H1

0
= λ(f(un(t), un(t)) + (h(t), un(t)) for a.e. t ∈ (0, tn). (16)

Using the Young and Poincaré inequalities we deduce that

(h(t), un(t)) ≤ m

2
‖un(t)‖2H1

0
+

1

2λ1m
‖h(t)‖2L2 ,
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where m is the constant from (A6). Hence, from (A6), (13) and (16) it follows that

1

2

d

dt
‖un(t)‖2L2 +

m

2
‖un(t)‖2H1

0
≤ λγ|Ω|+ βλ‖un(t)‖2L2 +

1

2λ1m
‖h(t)‖2L2 .

We infer that

‖un(t)‖2L2 ≤ ‖un (0)‖2L2 e
2βλt +

∫ t

0

e2βλ(t−s)
(

2λγ|Ω|+ 1

λ1m
‖h(s)‖2L2

)
ds (17)

≤ ‖un (0)‖2L2 e
2βλT +K1 (T ) .

Therefore, the solution exists on any given interval [0, T ] and

{un} is bounded in L∞(0, T ;L2(Ω)). (18)

Now, we multiply the equation (3) by
dun
dt

to obtain

‖dun
dt

(t)‖2L2 + a(‖un‖2H1
0
)
1

2

d

dt
‖un‖2H1

0
=

d

dt

∫
Ω

λF(un)dx+ (h(t),
dun
dt

).

Introducing

A(s) =

∫ s

0

a(r)dr (19)

we have
1

2
‖dun
dt

(t)‖2L2 +
d

dt

(
1

2
A(‖un‖2H1

0
)−

∫
Ω

λF(un)dx

)
≤ 1

2
‖h(t)‖2L2 .

Integrating the previous expression between 0 and t we get

1

2
A(‖un(t)‖2H1

0
) + λ

∫
Ω

F(un(0))dx+
1

2

∫ t

0

‖ d
ds
un(s)‖2L2ds

≤ 1

2
A(‖un(0)‖2H1

0
) + λ

∫
Ω

F(un(t))dx+
1

2

∫ t

0

‖h(s)‖2L2ds.

(20)

By (A6), (14) and (17) it follows that

m

2
‖un(t)‖2H1

0
+ λ

∫
Ω

F(un(0))dx+
1

2

∫ t

0

‖ d
ds
un(s)‖2L2ds

≤ 1

2
A(‖un(0)‖2H1

0
) + λβ̃‖un(t)‖2L2 + λγ̃|Ω|+K2(T )

≤ 1

2
A(‖un(0)‖2H1

0
) + λβ̃e2βλT ‖un(0)‖2L2 +K3(T ).

(21)

Since dim(Ω) = 1, H1
0 (Ω) ⊂ L∞(Ω), so un (0) is bounded in L∞(Ω). Thus, as f maps bounded sets of R

into bounded ones, F (un (0)) is bounded in L∞(Ω) as well. Therefore, we deduce that

{un} is bounded in L∞(0, T ;H1
0 (Ω))

and
dun
dt

is bounded in L2(0, T ;L2(Ω)). (22)

Using again the embedding H1
0 (Ω) ⊂ L∞(Ω) we obtain that un is bounded in the space L∞(0, T ;L∞(Ω)).

Thus,
f(un) is bounded in L∞(0, T ;L∞(Ω)). (23)

Also, we deduce that ‖un(t)‖2
H1

0
is uniformly bounded in [0, T ] and then by the continuity of the function

a (·) we get that the sequence a
(
‖un (t)‖2H1

0

)
is also uniformly bounded in [0, T ].
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Finally, multiplying (15) by λjγni(t) and summing from i = 1 to n we obtain

1

2

d

dt
‖un‖2H1

0
+m‖∆un‖2L2 ≤ λ(f(un),−∆un) + (h(t),−∆u).

By (23) and applying the Young inequality, we get

1

2

d

dt
‖un‖2H1

0
+m‖∆un‖2L2 ≤

λ2

m
‖f(un)‖2L2 +

m

4
‖∆un‖2L2 +

1

m
‖h(t)‖2L2 +

m

4
‖∆u‖2L2 .

Integrating the previous expression between 0 and t, it follows that

‖un(t)‖2H1
0

+m

∫ t

0

‖∆un(s)‖2L2ds ≤ ‖un(0)‖2H1
0

+
2λ2

m

∫ t

0

‖f(un(s))‖2L2ds+
2

m

∫ t

0

‖h(s)‖2L2ds.

Taking into account (23), the last inequality implies that

un is bounded in L2(0, T ;D(A)), (24)

so {−∆un} and {a(‖un‖2H1
0
)∆un} are bounded in L2(0, T ;L2(Ω)).

As a consequence, there exists u ∈ L∞(0, T ;H1
0 (Ω)) and a subsequence un (relabeled the same) such

that

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω)),

un ⇀ u in L2(0, T ;D(A)),

f(un)
∗
⇀ χ in L∞(0, T ;L∞(Ω)),

a(‖un‖2H1
0
)
∗
⇀ b in L∞(0, T ),

(25)

where ⇀ (
∗
⇀) stands for the weak (weak star) convergence. By (22) and (24) the Aubin-Lions Compact-

ness Lemma gives that un → u in L2(0, T ;H1
0 (Ω)), so un(t)→ u(t) in H1

0 (Ω) a.e. on (0, T ). Consequently,
there exists a subsequence un, relabelled the same, such that un(t, x)→ u(t, x) a.e. in Ω× (0, T ).

Moreover, thanks to the inequality

‖un(t2)− un(t1)‖2L2 =

∥∥∥∥∫ t2

t1

d

dt
un(s)ds

∥∥∥∥2

L2

≤ ‖ d
dt
un‖2L2(0,T ;L2(Ω)) |t2 − t1| ∀t1, t2 ∈ [0, T ],

(21), (22) and H1
0 (Ω) ⊂⊂ L2(Ω), the Ascoli-Arzelà theorem implies that {un} converges strongly in

C([0, T ];L2(Ω)) for all T > 0. Therefore, we obtain from (21) that un(t) ⇀ u(t) in H1
0 (Ω), for any t ≥ 0.

Also, by (25) we have that Pnf(un)) ⇀ χ in Lq(0, T ;Lq(Ω)) for any q ≥ 1 (see [36, p.224]). Since f is
continuous, it follows that f(un(t, x))→ f(u(t, x)) a.e. in Ω× (0, T ). Therefore, in view of (25), by [33,
Lemma 1.3] we have that χ = f(u).

As a consequence, by the continuity of a we get that

a(‖un(t)‖2H1
0
)→ a(‖u(t)‖2H1

0
) a.e. on (0, T ).

Since the sequence is uniformly bounded, by Lebesgue’s theorem this convergence takes place in L2(0, T ),
so b = a(‖u‖2

H1
0
). Thus,

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u, in L2(0, T ;L2(Ω)).

Therefore, we can pass to the limit to conclude that u is a strong solution.
It remains to show that u(0) = u0 which makes sense since u ∈ C([0, T ];H1

0 (Ω)) (see Remark 4).
Indeed, let be φ ∈ C1([0, T ];H1

0 (Ω)) with φ(T ) = 0, φ(0) 6= 0. We multiply the equation in (3) and (15)
by φ and integrate by parts in the t variable to obtain that∫ T

0

(
−(u(t), φ′(t))− a(‖u(t)‖2H1

0
)(∆u(t), φ(t))

)
dt (26)

=

∫ T

0

(λf(u(t)) + h(t), φ(t))dt+ (u(0), φ(0)),
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∫ T

0

(
−(un(t), φ′(t))− a(‖un(t)‖2H1

0
)(∆un(t), φ(t))

)
dt (27)

=

∫ T

0

(λf(un(t)) + h(t), φ(t))dt+ (un(0), φ(0)).

In view of the previous convergences, we can pass to the limit in (27). Taking into account (26) and
bearing in mind un(0) = Pnu0 → u0, since φ (0) ∈ H1

0 (Ω) is arbitrary, we infer that u(0) = u0.

4 Existence and structure of attractors

In this section, we will prove the existence of a global attractor for the semiflow generated by strong
solutions in the autonomous case. Thus, the function h will be an independent of time function satisfying
(A10) instead of (A9). Also, we will establish that the attractor is equal to the unstable set of the
stationary points (see the definition in (45)).

Throughout this section, for a metric space X with metric d we will denote by distX (C,D) the
Hausdorff semidistance from C to D, that is,

distX(C,D) = sup
c∈C

inf
d∈D

ρ (c, d) .

Let us consider the phase space X = H1
0 (Ω) and the sets

K (u0) = {u(·) : u is a strong solution of (3) such that u (0) = u0},

R = ∪u0∈XK (u0) .

Denote by P (X) the class of nonempty subsets of X. We define the (possibly multivalued) map G :
R+ ×X → P (X) by

G(t, u0) = {u(t) : u ∈ R and u(0) = u0}. (28)

In order to study the map G let us consider the following axiomatic properties of the set R:

(K1) For every x ∈ X there is φ ∈ R satisfying φ(0) = x.

(K2) φτ (·) := φ(·+ τ) ∈ R for every τ ≥ 0 and φ ∈ R (translation property).

(K3) Let φ1, φ2 ∈ R be such that φ2(0) = φ1(s) for some s > 0. Then, the function φ defined by

φ(t) =

{
φ1(t) 0 ≤ t ≤ s,
φ2(t− s) s ≤ t,

belongs to R (concatenation property).

(K4) For every sequence {φn} ⊂ R satisfying φn(0)→ x0 in X, there is a subsequence {φnk} and φ ∈ R
such that φnk(t)→ φ(t) for every t ≥ 0.

Assuming conditions (A1), (A6), (A10) and (13) property (K1) follows from Theorem 5, whereas
(K2)-(K3) can be proved easily using equality (12). By [17, Proposition 2] or [32, Lemma 9] we know
that R fulfilling (K1) and (K2) gives rise to a multivalued semiflow G through (28) (m-semiflow for short),
which means that:

• G(0, x) = x for all x ∈ X;

• G(t+ s, x) ⊂ G(t, G(s, x)) for all t, s ≥ 0 and x ∈ X.

Moreover, (K3) implies that the m-semiflow is strict, that is, G(t+ s, x) = G(t, G(s, x)) for all t, s ≥ 0
and x ∈ X.

We will show first that the m-semiflow G possesses a bounded absorbing set in the space L2 (Ω) and
that property (K4) is satisfied.
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Lemma 7 Assume conditions (A1), (A6), (A10) and (13). Given {un} ⊂ R, un(0) → u0 weakly in
H1

0 (Ω), there exists a subsequence of {un} (relabeled the same) and u ∈ K(u0) such that

un(t)→ u(t) in H1
0 (Ω), ∀t > 0.

Also, if un(0)→ u0 strongly in H1
0 (Ω), then for tn → 0 we get un(tn)→ u0 strongly in H1

0 (Ω).

Proof. Since
dun

dt
∈ L2(0, T ;L2(Ω)) and un ∈ L2(0, T ;H1

0 (Ω)), we have by [37, pg. 102] that

d

dt
‖un‖2H1

0
= 2(−∆un, unt ) for a.a. t (29)

and un ∈ C([0, T ];H1
0 (Ω)). Also, as f(un) ∈ L∞(0, T ;L∞(Ω)), by regularization one can show that

(F (un(t)), 1) is an absolutely continuous function on [0, T ] and

d

dt
(F (un(t)), 1) = (f(un(t)),

dun

dt
) for a.a. t > 0. (30)

By a similar argument as in Theorem 5, there is a subsequence of un such that

un is bounded in L∞(0, T ;L∞(Ω)),

un is bounded in L∞(0, T ;H1
0 (Ω)),

f(un) is bounded in L∞(0, T ;L∞(Ω)),

un is bounded in L2(0, T ;D(A)).

(31)

Therefore, arguing as in the proof of Theorem 5, there exists u ∈ K (u0) and a subsequence un,
relabelled the same, such that

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω))

un ⇀ u in L2(0, T ;D(A))

f(un)
∗
⇀ f(u) in L∞(0, T ;L∞(Ω))

dun

dt
⇀

du

dt
in L2(0, T ;L2(Ω))

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u in L2(0, T ;L2(Ω)),

un → u in L2(0, T ;H1
0 (Ω)),

un → u in C([0, T ], L2(Ω)),

un(t) ⇀ u(t) in H1
0 (Ω) ∀t ∈ (0, T ].

(32)

We also need to prove that un(t)→ u(t) in H1
0 (Ω) for all t ∈ (0, T ]. For this end, we multiply (3) by

unt and using (A10), (29) and (31) we have

1

2

∥∥∥∥dundt
∥∥∥∥2

L2

+
d

dt

(
1

2
A(‖un(t)‖2H1

0
)

)
≤ C.

Thus, we obtain
A(‖un(t)‖2H1

0
) ≤ A(‖un(s)‖2H1

0
) + 2C(t− s), t ≥ s ≥ 0.

Since this inequality is also true for u(·), the functions Qn(t) = A(‖un(t)‖2
H1

0
)−2Ct, Q(t) = A(‖u(t)‖2

H1
0
)−

2Ct are continuous and non-increasing in [0, T ]. Moreover, from (32) we deduce that

Qn(t)→ Q(t) for a.e. t ∈ (0, T ).

Take 0 < t ≤ T and 0 < tj < t such that tj → t and Qn(tj)→ Q(tj) for all j. Then

Qn(t)−Q(t) ≤ Qn(tj)−Q(t) ≤ |Qn(tj)−Q(tj)|+ |Q(tj)−Q(t)|.

9



For any δ > 0 there exist j(δ) and N(j(δ)) such that Qn(t)−Q(t) ≤ δ if n ≥ N . Then lim supQn(t) ≤
Q(t), so lim sup ‖un(t)‖2

H1
0
≤ ‖u(t)‖2

H1
0
, which follows by contradiction using the continuity of the function

A(s). As un(t)→ u(t) weakly in H1
0 (Ω) implies that lim inf ‖un(t)‖2

H1
0
≥ ‖u(t)‖2

H1
0
, we obtain

‖un(t)‖2H1
0
→ ‖u(t)‖2H1

0
,

so that un(t)→ u(t) strongly in H1
0 (Ω).

Finally, if un(0)→ u0 strongly in H1
0 (Ω) and we take tn → 0, then

Qn(tn)−Q(0) ≤ Qn(0)−Q(0) = A(‖un (0) ‖2H1
0
)−A(‖u0‖2H1

0
)→ 0,

so lim supQn(tn) ≤ Q(0). Repeating the above argument, we infer that un(tn)→ u0 strongly in H1
0 (Ω).

Corollary 8 Assume the conditions of Lemma 7. Then the set R satisfies condition (K4).

The map t 7→ G(t, x) is said to be upper semicontinuous if for every x ∈ X and for an arbitrary
neighborhood O(G(t, x)) in X there is δ > 0 such that as soon as d(y, x) < δ, we have G(t, y) ⊂ O.

Proposition 9 Assume the conditions of Lemma 7. The multivalued semiflow G is upper semicontinuous
for all t ≥ 0. Also, it has compact values.

Proof. By contradiction let us assume that there exist t ≥ 0, u0 ∈ H1
0 (Ω), a neighbourhood O(G(t, u0))

and sequences {yn}, {un0} such that yn ∈ G(t, un0 ), un0 converges strongly to u0 in H1
0 (Ω) and yn /∈

O(G(t, un)) for all n ∈ N. Thus, there exist un ∈ K(un0 ) such that yn = un(t). From Lemma 7 there
exists a subsequence of yn which converges to some y ∈ G(t, u0). This contradicts yn /∈ O(G(t, u0)) for
any n ∈ N.

In order to prove the existence of an absorbing set in the space L2 (Ω) we need to use the stronger
condition (A5) instead of (13).

Proposition 10 Assume that conditions (A1), (A5), (A6) and (A10) hold. Then the m-semiflow G has
a bounded absorbing set in L2 (Ω), that is, there exists a constant K > 0 such that for any R > 0 there
is a time t0 = t0(R) such that

‖y‖L2 ≤ K for all t ≥ t0, y ∈ G(t, u0), (33)

where ‖u0‖L2 ≤ R. Moreover, there is L > 0 such that∫ t+1

t

‖u(s)‖2H1
0
ds ≤ L for all t ≥ t0, u ∈ K (u0) . (34)

Proof. Multiplying equation (3) by u and using (A6) and (9) we get

1

2

d

dt
‖u(t)‖2L2 +m‖u(t)‖2H1

0
≤ (f(u), u) + (h, u) (35)

≤ mε|Ω|+ ε‖u(t)‖2L2 +
1

2λ1m
‖h‖2L2 +

λ1m

2
‖u‖2L2 .

Using the Poincaré inequality it follows that

d

dt
‖u‖2L2 ≤ 2mε|Ω|+ 2(ε− m

2
λ1)‖u(t)‖2L2 +

1

λ1m
‖h‖2L2 = −δ‖u(t)‖2L2 + κ,

where δ = mλ1 − 2ε, κ = 2mε|Ω|+ 1
λ1m
‖h‖2L2 . We take ε > 0 small enough, so δ > 0. Then Gronwall’s

lemma gives

‖u(t)‖2L2 ≤ ‖u(0)‖2L2e−δt +
κ

δ
. (36)
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Hence, taking

t ≥ t0 =
1

δ
ln

(
δR2

κ

)
we get (33) for K =

√
2κ
δ .

On the other hand, using again the Poincaré inequality from (35) we get

d

dt
‖u(t)‖2L2 +

(
mλ1 − 2ε

λ1

)
‖u(t)‖2H1

0
≤ κ

and integrating from t to t+ 1 we obtain(
mλ1 − 2ε

λ1

)∫ t+1

t

‖u(s)‖2H1
0
ds ≤ ‖u(t)‖2L2 + κ.

Therefore, applying (33), (34) follows.

Further, in order to obtain an absorbing set in H1
0 (Ω) we need to assume additionally that either the

function a (·) is bounded above or that it is non-decreasing.

Proposition 11 Assume the conditions in Proposition 10 and that either (A7) or (A8) holds true. Then
there exists an absorbing set B1 for G, which is compact in H1

0 (Ω).

Proof. In view of Proposition 10 we have an absorbing set B0 in L2(Ω). Let K > 0 be such that ‖y‖ ≤ K
for all y ∈ B0.

Multiplying (3) by u and using (9) and (36) we get

d

dt
‖u(t)‖2L2 + a

(
‖u(t)‖2H1

0

)
‖u(t)‖2H1

0
≤ 2mε|Ω|+ 2ε‖u(t)‖2L2 +

1

λ1m
‖h‖2L2

≤ K1 +K2‖u(0)‖2L2 .

Thus, integrating between t and t+ r, 0 < r ≤ 1, we deduce by using (36) again that

‖u(t+ r)‖2L2 +

∫ t+r

t

a
(
‖u(s)‖2H1

0

)
‖u(s)‖2H1

0
ds

≤ K1 +K2‖u(0)‖2L2 + ‖u(t)‖2L2 ≤ K3‖u(0)‖2L2 +K4.

(37)

Also, if p > 2 in (A5), we multiply again by (3) by u and use (5) and (A6) to obtain

1

2

d

dt
‖u(t)‖2L2 +

m

2
‖u(t)‖2H1

0
+ C4 ‖u (t)‖pLp ≤ C3 +

1

2λ1m
‖h‖2L2 .

Integrating over (t, t+ r) we have

‖u(t+ r)‖2L2 + 2C4

∫ t+r

t

‖u (s)‖pLp ds ≤ K5 + ‖u(t)‖2L2 ≤ K6 + ‖u(0)‖2L2 . (38)

If we assume (A7), by (37) and (A6) we have that∫ t+r

t

A(‖u(s)‖2H1
0
)ds ≤

∫ t+r

t

M1‖u(s)‖2H1
0
ds ≤ K7(1 + ‖u(0)‖2L2). (39)

If we assume (A8), by (37) we obtain∫ t+r

t

A(‖u(s)‖2H1
0
)ds =

∫ t+r

t

∫ ‖u(s)‖2
H1

0

0

a (r) drds

≤
∫ t+r

t

a
(
‖u(s)‖2H1

0

)
‖u(s)‖2H1

0
ds ≤ K3‖u(0)‖2L2 +K4. (40)
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On the other hand, by (7) we get

−
∫

Ω

F (u (t)) dx ≥ −C̃
∫

Ω

(1 + |u (t) |p)dx. (41)

Using (29) and (30) we can argue as in Theorem 5 to obtain

1

2
‖ut‖2L2 +

d

dt

(
1

2
A(‖u(t)‖2H1

0
−
∫

Ω

λF(un)dx

)
≤ 1

2
‖h‖2L2 .

Since (38)-(41) imply that∫ t+r

t

(
1

2
A(‖u(s)‖2H1

0
−
∫

Ω

λF(u (s))dx

)
ds ≤ K8 +K9‖u(0)‖2L2 ,

we can apply the Uniform Gronwall Lemma to get

1

2
A(‖u(t+ r)‖2H1

0
)−

∫
Ω

λF(u (t+ r))dx ≤
K8 +K9‖u(0)‖2L2

r
+K10, for all t ≥ 0,

so by condition (A6), (10) and (36) it follows that

‖u(t+ 1)‖2H1
0
≤ K11 +K12‖u(0)‖2L2 ,

for all t ≥ 0. In particular,
‖u(1)‖2H1

0
≤ K11 +K12‖u(0)‖2L2 ,

for any strong solution u(·) with initial condition u(0).
For any u0 ∈ H1

0 (Ω) with ‖u0‖H1
0
≤ R and any u ∈ R such that u (0) = u0, the semiflow property

G(t+ 1, u0) ⊂ G(1, G(t, u0)) and G(t, u0) ⊂ B0, if t ≥ t0 (R) , imply that

‖u (t+ 1) ‖2H1
0
≤ C(1 +K2) ∀t ≥ t0 (R) .

Then there exists M > 0 such that the closed ball BM in H1
0 (Ω) centered at 0 with radius M is absorbing

for G.
By Lemma 7 the set B1 = G(1, BM ) is an absorbing set which is compact in H1

0 (Ω).

Given an m-semiflow G, a set B ⊂ X is said to be negatively (positively) invariant if B ⊂ G(t, B)
(G(t, B) ⊂ B) for all t ≥ 0, and strictly invariant (or, simply, invariant) if it is both negatively and
positively invariant.

We recall that a set A ⊂ X is called a global attractor for the m-semiflow G if it is negatively invariant
and attracts all bounded subsets, i.e., distX(G(t, B),A) → 0 as t → +∞. When A is compact, it is the
minimal closed attracting set [34, Remark 5].

Theorem 12 Assume the conditions of Proposition 11. Then the multivalued semiflow G possesses a
global compact invariant attractor A.

Proof. From Propositions 9 and 11 we deduce that the multivalued semiflow G is upper semicontinuous
with closed values and the existence of an absorbing which is compact in H1

0 (Ω). Therefore, by [34,
Theorem 4 and Remark 8] the existence of the global invariant attractor and its compactness in H1

0 (Ω)
follow.

We recall some concepts which are necessary to study the structure of the global attractor.

Definition 13 A map φ : R→ X is a complete trajectory of R if φ(·+ s) |[0,∞)∈ R for all s ∈ R. It is
a complete trajectory of G if φ(t+ s) ∈ G(t, φ(s)) for every s ∈ R, t ≥ 0.

An element z ∈ X is a fixed point of R if ϕ(·) ≡ z ∈ R. We denote the set of all fixed points by RR.
An element z ∈ X is a fixed point of G if z ∈ G(t, z) for every t ≥ 0.
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Several properties concerning fixed points, complete trajectories and global attractors are summarized
in the following results [31].

Lemma 14 Let (K1)-(K2) hold. Then each fixed point (complete trajectory) of R is also a fixed point
(complete trajectory) of G.

Let (K1)-(K4) hold. Then the fixed points of R and G are the same. In addition, a map φ : R→ X
is a complete trajectory of R if and only if it is continuous and a complete trajectory of G.

The standard well-known result in the single-valued case for describing the attractor as the union of
bounded complete trajectories reads in the multivalued case as follows.

Theorem 15 Suppose that (K1)-(K2) are satisfied and that either (K3) or (K4) holds true. The semiflow
G is assumed to have a compact global attractor A. Then

A = {γ(0) : γ ∈ K} = ∪t∈R{γ(t) : γ ∈ K}, (42)

where K stands for the set of all bounded complete trajectories in R.

In view of Theorem 15, as R satisfies (K3) and (K4) (by Corollary 8), the global attractor is charac-
terized in terms of bounded complete trajectories, so (42) follows.

The set B is said to be weakly invariant if for any x ∈ B there exists a complete trajectory γ of R
contained in B such that γ(0) = x. Characterization (42) implies that the attractor A is weakly invariant.

The set of fixed points RR is characterized as follows.

Lemma 16 Assume the conditions of Lemma 7. Let R be the set of z ∈ H2(Ω) ∩H1
0 (Ω) such that

−a(‖z‖2H1
0
)
d2z

dx2
= λf(z) + h in L2(Ω). (43)

Then RR = R.

Proof. If z ∈ RR, then u(t) ≡ z ∈ R. Thus, u(·) satisfies (12) and du
dt = 0 in L2(0, T ;L2(Ω)), so (43) is

satisfied. Let z ∈ R. Then the map u(t) ≡ z satisfies (43) for any t ≥ 0 and du
dt = 0 in L2(0, T ;L2(Ω)),

so (12) holds true.

Finally, we shall obtain the characterization of the global attractor in terms of the unstable and stable
sets of the stationary points.

Theorem 17 Assume the conditions of Proposition 11. Then it holds that

A = M+(R) = M−(R),

where
M+(R) = {z : ∃γ(·) ∈ K, γ(0) = z, dist H1

0
(γ(t),R)→ 0, t→ +∞}, (44)

M−(R) = {z : ∃γ(·) ∈ F, γ(0) = z, dist H1
0
(γ(t),R)→ 0, t→ −∞}, (45)

and F denotes the set of all complete trajectories of R (see Definition 13).

Remark 18 In (45) it is equivalent to use K instead of F because all the solutions are bounded forward
in time.

Proof. We consider the function E : A → R

E(y) =
1

2
A(‖y‖2H1

0
)− λ

∫
Ω

F (y(x))dx−
∫

Ω

h(x)y(x)dx. (46)

Note that E(y) is continuous in H1
0 (Ω). Indeed, the maps y 7→ 1

2A(‖y‖2
H1

0
) and y 7→

∫
Ω
h (x) y (x) dx

are obviously continuous in H1
0 (Ω). On the other hand, by the embedding H1

0 (Ω) ⊂ L∞(Ω) and using
Lebesgue’s theorem, the continuity of y →

∫
Ω
F (y(x))dx follows.

13



Using (29)-(30) and multiplying the equation (3) by
du

dt
for any u ∈ R we can obtain the following

energy equality ∫ t

s

‖ d
dr
u(r)‖2L2dr + E(u(t)) = E(u(s)) for all t ≥ s ≥ 0.

Hence, E(u(t)) is non-increasing and by (A6), (10) and the boundedness of A, it is bounded from below.
Thus E(u(t))→ l, as t→ +∞, for some l ∈ R.

Let z ∈ A and u ∈ K be such that u(0) = z. By contradiction, suppose the existence of ε > 0 and
u(tn), where tn → +∞, for which distH1

0
(u(tn),R) > ε. Since A is compact in H1

0 (Ω), we can take a

converging subsequence (relabeled the same) such that u(tn) → y in H1
0 (Ω), where tn → ∞. By the

continuity of the function E, it follows that E(y) = l. We will obtain a contradiction by proving that
y ∈ R. Define vn (·) = u(·+ tn). By Lemma 7, there exist v ∈ R and a subsequence satisfying v(0) = y
and vn(t) → v(t) in H1

0 (Ω) for t ≥ 0. Thus, from E(vn(t)) → E(v(t)) we infer that E(v (t)) = l. Also,
v(·) satisfies the energy equality, so that

l +

∫ t

0

‖vr‖2L2dr = E(v (t)) +

∫ t

0

‖vr‖2L2dr = E(v(0)) = E(y) = l.

Therefore,
dv

dt
(s) = 0 for a.a. s, and then by Lemma 16 we have y ∈ RR = R. As a consequence,

A ⊂M+(R). The converse inclusion follows from (42).
As before, take arbitrary z ∈ A and u ∈ K satisfying u(0) = z. Since by the embedding H1

0 (Ω) ⊂
C([0, 1]) the energy function is bounded from above in A, E(u(t)) → l, as t → −∞, for some l ∈ R.
Suppose that there are ε > 0 and u(tn), where tn → +∞, such that distH1

0
(u(−tn),R) > ε. Up to

a subsequence we have that u(−tn) → y in H1
0 (Ω), E(y) = l. Moreover, for vn(·) = u(· − tn) there

are v ∈ R and a subsequence such that v(0) = y and vn(t) → v(t) in H1
0 (Ω) for t ≥ 0. Therefore,

E(vn(t)) → E(v(t)) gives E(v(t)) = l and then by the above arguments we get a contradiction because
y ∈ R. Hence, A ⊂M−(R) and we deduce the converse inclusion from (42).

Finally, we are able to obtain that the global attractor is compact in the space C1 ([0, 1]). This
property will be important in order to study a more precise structure of the global attractor in terms of
the stationary points and their heteroclinic connections.

We define the function w (t) = u
(
α−1 (t)

)
, where α(t) =

∫ t
0
a(‖u(s)‖2

H1
0
)ds, which is under the condi-

tions of Proposition 11 (see [11] for more details) a strong solution to the problem
∂w

∂t
− ∂2w

∂x2
=

f(w) + h

a(‖w‖2
H1

0
)
, in (0,∞)× Ω,

w = 0 on (0,∞)× ∂Ω,
w(0, x) = u0(x) in Ω.

(47)

Let V 2r = D(Ar), r ≥ 0. We will prove first that the attractor is compact in any space V 2r with
0 ≤ r < 1. For this aim we will need the concept of mild solution. We consider the auxiliary problem{

dv

dt
+Av(t) = g (t) , t > 0,

v (0) = u0,
(48)

where g ∈ L2
loc

(
0,+∞;L2 (Ω)

)
. The function u ∈ C([0,+∞), L2 (Ω)) is called a mild solution to problem

(48) if

v (t) = e−Atu0 +

∫ t

0

e−A(t−s)g(s)ds, ∀t ≥ 0. (49)

In the same way as in Lemma 2 in [40] we obtain that a strong solution to problem (47) is a mild solution
to problem (48) with g (t) = (f(w (t)) + h) /a(‖w (t) ‖2

H1
0
).

Lemma 19 Assume the conditions of Proposition 11. Then the global attractor A is compact in V 2r for
every 0 ≤ r < 1.
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Proof. Let z ∈ A be arbitrary. Since A is invariant, there exist u0 ∈ A and u ∈ R such that
z = u (1) and u (t) ∈ A for all t ≥ 0. Since w (t) = u

(
α−1 (t)

)
is a mild solution of (48) with g (t) =

(f(w (t)) + h) /a(‖w (t) ‖2
H1

0
), the variation of constants formula (49) gives

z = w(α (1)) = e−Aα(1)u0 +

∫ α(1)

0

e−A(α(1)−s)g(s)ds.

As A is bounded in H1
0 (Ω) (and then in L∞ (Ω)), condition (A6) and the continuity of f imply that

‖u0‖L2 ≤ C, ‖g‖L∞(0,α(1);L2(Ω)) ≤ C,

where C > 0 does not depend on z. The standard estimate
∥∥e−At∥∥L(L2(Ω),D(Ar))

≤Mrt
−re−at, Mr, a > 0

[37, Theorem 37.5], implies that

‖Arz‖L2 ≤
∥∥∥Are−Aα(1)u0

∥∥∥
L2

+

∫ α(1)

0

∥∥∥Are−A(α(1)−s)g(s)
∥∥∥
L2
ds

≤Mre
−aα(1)α (1)

−r
C +MrC

∫ α(1)

0

(α (1)− s)−r ds,

so A is bounded in V 2r for every 0 ≤ r < 1.
From the compact embedding V α ⊂ V β , for α > β, and the fact that A is closed in any V 2r we obtain

the result.

Corollary 20 Assume the conditions of Proposition 11. Then the global attractor A is compact in
C1([0, 1]).

Proof. We obtain by Lemma 37.8 in [37] the continuous embedding

V 2r ⊂ C1([0, 1]) if r >
3

4
.

Hence, the statement follows from Lemma 19.

5 Fixed points

In this section we are interested in studying the fixed points of problem (3) when h ≡ 0, that is, the
solutions of the boundary-value problem −a(‖u‖2

H1
0
)
d2u

dx2
= λf(u), 0 < x < 1,

u (0) = u (1) = 0.
(50)

For this aim we will use the properties of the fixed points of the standard Chafee-Infante equation. In
order to do that, for any d ≥ 0 we will study the following boundary-value problem −a(d)

d2u

dx2
= λf(u), 0 < x < 1,

u (0) = u (1) = 0,
(51)

as it is obvious that u (·) is solution to problem (50) if and only if u (·) is a solution to problem (51) with
d = ‖u‖2

H1
0
.
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5.1 Dependence on the parameters of the fixed points for the Chafee-Infante
equation

Denoting λ̃ =
λ

a (d)
problem (51) becomes

 −d
2u

dx2
= λ̃f(u), 0 < x < 1,

u (0) = u (1) = 0.
(52)

Assuming conditions (A1)-(A5), it is known [10] that if n2π2 < λ̃ ≤ (n+ 1)
2
π2, then this problem has

exactly 2n+ 1 solutions, denoted by v0 ≡ 0, v±1 , ..., v
±
n . The function v±k has k + 1 simple zeros in [0, 1].

We need to study the dependence of the norm of these fixed points on the parameter λ̃. First, we
will show that the H1-norm of the fixed points of problem (52) is strictly increasing with respect to the

parameter λ̃.

Lemma 21 Assume conditions (A1)-(A5). Let v1 = v+
k,λ1

, v2 = v+
k,λ2

with k2π2 < λ1 < λ2. Then
‖v1‖H1

0
< ‖v2‖H1

0
.

Proof. We consider the equivalent norm in H1
0 (Ω) given by ‖v′‖L2 . The fixed points are the solutions

of the initial value problem  d2u

dx2
+ λ̃f(u) = 0,

u(0) = 0, u′(0) = v0

(53)

such that u (1) = 0. The solutions of (53) satisfy the relation

(u′(x))2

2
+ λ̃F (u(x)) = λ̃E, 0 ≤ x ≤ 1, (54)

for some constant E ≥ 0. Denote uλ̃ = v+

k,λ̃
. By Theorem 7 in [10] we have that uλ̃ is associated with a

unique value E = E+
k (λ̃) > 0. Moreover, E+

k (λ̃) is a solution of one of the following equations:

mτ λ̃+(E) + (m− 1)τ λ̃−(E) =
1√
2
,

mτ λ̃−(E) + (m− 1)τ λ̃+(E) =
1√
2
,

mτ λ̃+(E) +mτ λ̃−(E) =
1√
2
, (55)

where either k = 2m− 1 or k = 2m and

τ λ̃+(E) = λ̃−1/2

∫ U+(E)

0

(E − F (u))−1/2 du, (56)

τ λ̃−(E) = λ̃−1/2

∫ 0

U−(E)

(E − F (u))−1/2 du, (57)

being U+(E) (U−(E)) the positive (negative) inverse of F at E. It is obvious that for E fixed the functions

τ λ̃+(E), τ λ̃−(E) are strictly decreasing with respect to λ̃. Then from (55) we deduce that the root E+
k (λ̃)

is strictly increasing with respect to λ̃. Thus, If λ1 < λ2, we have√
2λ1(E+

k (λ1)− F (u)) <
√

2λ2(E+
k (λ2)− F (u)), U−(E+

k (λ1)) ≤ u ≤ U+(E+
k (λ1)). (58)

We will prove now that ‖u′
λ̃
‖L2 is strictly increasing in λ̃.
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The function uλ̃ has k+1 simple zeros in [0, 1] and uλ̃ is positive in the first subinterval. Let T+(E+
k (λ))

be the x-time necessary to go from the initial condition uλ(0) = 0 to the point where u′λ(T+(E+
k (λ))) = 0.

Then the length of the first subinterval is 2T+(E+
k (λ)) [10]. By (54),

(u′
λ̃
(x))2 =

√
2λ̃

√
E+
k (λ̃)− F (uλ̃(x))u′

λ̃
(x),

so we have ∫ T+(E+
k (λ̃))

0

(u′
λ̃
(x))2dx =

∫ T+(E+
k (λ̃))

0

√
2λ̃

√
E+
k (λ̃)− F (uλ̃(x))u′

λ̃
(x)dx.

By the change of variable v = uλ̃(x) we obtain

∫ T+(E+
k (λ̃))

0

(u′
λ̃
(x))2dx =

∫ U+(E+
k (λ̃))

0

√
2λ̃

√
E+
k (λ̃)− F (v)dv = g(λ̃).

Since λ̃ 7→ U+(E+
k (λ̃)) is strictly increasing and using (58), we conclude that the function g(λ̃) is strictly

increasing. Hence, putting x1(λ̃) = 2T+(E+
k (λ̃)) we obtain that the norm of uλ̃ in the first subinterval,∥∥∥u′

λ̃

∥∥∥
L2(0,x1(λ̃))

, is strictly increasing. Arguing in the same way in the other subintervals we obtain that

λ̃ 7→ ‖u′
λ̃
‖L2 is strictly increasing.

Let us prove the same result but with respect to the norm
∥∥uλ̃∥∥Lp with p ≥ 1.

Lemma 22 Assume conditions (A1)-(A5) and let f be odd. Let v1 = v+
k,λ1

, v2 = v+
k,λ2

with k2π2 < λ1 <
λ2. Then ‖v1‖Lp < ‖v2‖Lp for any p ≥ 1.

Proof. As in the previous lemma, denote uλ̃ = v+

k,λ̃
. The function uλ̃ has k + 1 zeros in [0, 1] at the

points 0 < x1 < x2 < ... < xk−1 < 1. When f is odd, by symmetry, the length of all subintervals has to

be the same, so xj = j
k regardless the value of λ̃.

We shall prove that in the first subinterval we have that uλ1
(x) < uλ2

(x) , for all x ∈
(
0, 1

k

)
. By (54)

for x ∈ [0, 1
2k ] we have

x =

∫ x

0

ds =

∫ u
λ̃

(x)

0

du√
2λ̃
(
E+
k

(
λ̃
)
− F (u)

) ,
so (58) yields

x =

∫ uλ2 (x)

0

du√
2λ2

(
E+
k (λ2)− F (u)

) =

∫ uλ1 (x)

0

du√
2λ1

(
E+
k (λ1)− F (u)

)
>

∫ uλ1 (x)

0

du√
2λ2

(
E+
k (λ2)− F (u)

) , if x ∈ (0,
1

2k
].

Thus, uλ1
(x) < uλ2

(x) , for all x ∈ (0, 1
2k ]. By symmetry we obtain that the inequality is true in

(
0, 1

k

)
.

Repeating the same argument in the other subintervals we get that

|uλ1
(x)| < |uλ2

(x)| for all x ∈ (0, 1) , x 6= j

k
, j = 1, ...k − 1.

This implies that ‖uλ1‖Lp < ‖uλ2‖Lp for any p ≥ 1.

Remark 23 The statements in Lemmas 21-22 are also true for v−
k,λ̃
, because v−

k,λ̃
(x) = v+

k,λ̃
(1− x), so

the H1
0 and Lp norms of v−

k,λ̃
and v+

k,λ̃
are the same.
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5.2 Nonlocal fixed points

Although in this paper we are mainly interested in problem (3), we will study the existence of stationary
points for an elliptic problem with a more general nonlocal term than in (50). Namely, let us consider
the following problem: {

−a (l(u))uxx = λf (u) , 0 < x < 1,
u (0) = u(1) = 0,

(59)

where
l (u) = ‖u‖rH1

0
or ‖u‖rLp , p ≥ 1, r > 0.

Let
dk = sup{d : λ > a

(
d
)
π2k2 ∀d ≤ d}.

Then for any d < dk there exists the fixed point udk of (51), where udk is either equal to u+
k or u−k .

It is obvious that any solution of (59) is a solution of (51) with d = l (u) . Therefore, all the solutions
to problem (59) have to be solutions udk to problem (51) for a suitable d.

Theorem 24 Assume conditions (A1)-(A6) and, additionally, that

a (0)π2k2 < λ. (60)

Then:

• For any 1 ≤ j ≤ k there exists d∗j < dk such that u
d∗j
j is a fixed point of problem (59).

• If λ ≤ a (0)π2 (k + 1)
2

and a(0) = mins≥0{a (s)}, there are no fixed points for j > k.

• If N ≥ k is the first integer such that λ ≤ infs≥0{a (s)π2 (N + 1)
2}, there are no fixed points for

j > N.

• If l (u) = ‖u‖rH1
0
, λ ≤ a (0)π2 (k + 1)

2
and a is non-decreasing, there are exactly 2k+ 1 solutions to

problem (59): 0, u±1,d∗1
, ..., u±k,d∗k

.

• If l (u) = ‖u‖rLp , λ ≤ a (0)π2 (k + 1)
2
, f is odd and a is non-decreasing, there are exactly 2k + 1

solutions to problem (59): 0, u±1,d∗1
, ..., u±k,d∗k

.

Proof. For the first statement, it is enough to prove the result for j = k. By condition (60) we have
that dk ∈ (0,+∞].

Consider first the case where dk is finite. We need to obtain the existence of d∗k < dk such that

l
(
u
d∗k
k

)
= d∗k. When d = 0 it is clear that l

(
u0
k

)
> 0. Also, we know that l

(
udkk

)
= 0. Multiplying (51)

by udk and using (9), (A6) and the Poincaré inequality we obtain∥∥∥(udk)′∥∥∥2

L2
≤ λ

a (d)

(
f
(
udk
)
, udk
)
≤ λ

m

(
mε + ε

∥∥udk∥∥2

L2

)
≤ K1 +

1

2

∥∥∥(udk)′∥∥∥2

L2
,

so, by using the embedding H1
0 (Ω) ⊂ L∞ (Ω) , l

(
udk
)

is bounded in d. This implies that the function

g (d) = l
(
udk
)

has to intersect the line y (d) = d at some point d∗k. It remains to check that d∗k < dk.
For this aim we prove first that udk →

d→dk
0 strongly in H1

0 (Ω). Indeed, as udk is bounded in H1
0 (Ω), there

exist v and a sequence {udjk } such that u
dj
k → v in L2 (Ω). The embedding H1

0 (Ω) ⊂ C ([0, 1]) and the

continuity of the function f (u) imply that {f(u
dj
k )} is bounded in C([0, 1]), so from∥∥∥∥(udjk )′′∥∥∥∥

L2

≤ λ

a (dj)

∥∥∥f (udjk )∥∥∥
L2
≤ λ

m

∥∥∥f (udjk )∥∥∥
L2
≤ C
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we deduce that {udjk } is bounded in H2 (Ω). Hence, u
dj
k → v in H1

0 (Ω) and C1([0, 1]). Also, f(u
dj
k )→ f(v)

in C ([0, 1]). Therefore, for any ψ ∈ H1
0 (Ω) we have that((

u
dj
k

)′
, ψ′
)

= λ
a(dj)

(
f
(
u
dj
k

)
, ψ
)

↓ ↓
(v′, ψ′) = λ

a(dk) (f (v) , ψ) ,

which implies that v is a solution to problem (51) with d = dk. But from u
dj
k → v in C1([0, 1]) it follows

that v cannot be a point with less than k+ 1 simple zeros in [0, 1] and then λ/a (dk) = k2π2 implies that
v ≡ 0. As the limit is the same for every converging subsequence, udk →

d→dk
0 strongly in H1

0 (Ω). Thus,

dk > 0 and limd→dk

∥∥∥(udk)′∥∥∥
L2

= 0 imply that d∗k < dk.

Second, let dk = +∞. Then the existence of d∗k < +∞ follows by the same argument as before.
The second and third statements are a consequence of

λ ≤ a (0)π2 (k + 1)
2 ≤ a (d)π2 (k + 1)

2
for any d ≥ 0

and
λ ≤ inf

s≥0
{a (s)}π2 (N + 1)

2 ≤ a (d)π2 (N + 1)
2

for any d ≥ 0,

respectively, because in such a case for problem (51) the fixed points v±j , j > k (respectively j > N), do
not exist.

The last two statements are a consequence of the first two statements and of the fact that the points of
intersection of the functions g (d) = l

(
udk
)

and y (d) = d has to be unique, because if a is non-decreasing,
then g(d) is non-increasing by Lemmas 21 and 22.

In view of this theorem, we have exactly the same equilibria and bifurcations as in the classical Chafee-
Infante equation (see [29], [10]) when the function a(d) is non-decreasing, because in this case in view
of the monotone dependence between the functions a(d) and g(d), there is only one intersection point of
the function g (d) with the bisector, as it is shown in Figure 1. This follows from the fact that g(d) − d
is strictly decreasing, but there may be weaker conditions on a (·) that would lead g(d)− d to be strictly
decreasing.

When the function a (·) is not assumed to be monotone, an interesting situation appears. More

precisely, it is possible to have more than two equilibria with the same number of zeros. If l (u) = ‖u‖2H1
0
,

for the equilibria with k + 1 zeros in [0, 1] this happens when the equation

d =

∫ 1

0

∣∣∣∣dudk(x)

dx

∣∣∣∣2 dx = g(d) (61)

has more than one solution. For instance, if a(0) = a(d) for some 0 < d̄ < g(0), then g(0) = g(d).
Assuming that there are 0 < d1

k < d2
k < d such that a(d2

k) = a(d1
k) = λ

π2k2 , there must exist 0 < d∗1 <

d1
k < d2

k < d∗2 < d such that g(d∗i ) = d∗i . Now, by the argument in Theorem 24, there must exist a d∗3 > d
such that g(d∗3) = d∗3, obtaining six fixed points with k + 1 zeros in [0, 1]. This situation is shown in
Figure 2, where d∗1, d

∗
2 and d∗3 are solutions of (61), that is, there are three intersection points with the

bisector. We notice that when a(d) > λ/(π2k2), the function g(d) is not defined since the condition for
such equilibria to exist is not satisfied, but we can make this function continuous by putting g (d) = 0
whenever a(d) ≥ λ/(π2k2). This procedure establishes that, having fixed a natural number k, for any
j ∈ N we may construct a (·) in such a way that we have 2(2j + 1) equilibria with k + 1 zeros in [0, 1].

At least there is always one intersection point with the bisector, but the function g(d) could be even
tangent to the bisector at some point or not cut it again.

Figure 1: a(d) non-decreasing Figure 2: a(d) whatever
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5.3 Lap number and some forbidden connections

With Theorem 24 at hand we can improve the description of the global attractor given in Theorem 17.
Under conditions (A1)-(A6), (A8) and h ≡ 0, if

a (0)π2n2 < λ ≤ a (0)π2 (n+ 1)
2

(62)

then problem (3) possesses exactly 2n+ 1 fixed points: v0 = 0, u±1,d∗1
, ..., u±n,d∗n

.

Let φ be a bounded complete trajectory. We know by Theorem 17 that

distH1
0
(φ (t) ,R)→ 0, as t→ ±∞.

As the number of fixed points is finite, we will prove that in fact the solution has to converge to one fixed
point forwards and backwards. We recall the omega and alpha limit sets of φ, given by

ω (φ) = {y : ∃tn → +∞ such that φ (tn)→ y},
α (φ) = {y : ∃tn → −∞ such that φ (tn)→ y},

are non-empty, compact and connected [5, Lemma 3.4 and Proposition 4.1]. Also, distH1
0

(φ (t) , ω (φ)) →
t→+∞

0, distH1
0

(φ (t) , α (φ)) →
t→−∞

0. Since ω (φ) , α (φ) ⊂ R and R is finite, the only possibility is that

ω (φ) = z1 ∈ R, α (φ) = z2 ∈ R.
Thus, we have established the following result.

Theorem 25 Let assume conditions (A1)-(A6), (A8), (62) and h ≡ 0. Then

A = ∪2n+1
k=0 M+ (vk) = ∪2n+1

k=0 M− (vk) ,

where n is given in (62) and v0 = 0, v1 = u+
1,d∗1

, v2 = u−1,d∗1
, ...

In other words, the global attractor A consists of the set of stationary points R (which has 2n + 1
elements) and the bounded complete trajectories that connect them (the heteroclinic connections).

Remark 26 As the Lyapunov function (46) is strictly decreasing along a trajectory φ which is not a
fixed point, then there cannot exist homoclinic connections for any fixed point. This implies in particular
that if n = 0, then A = {0}.

Remark 27 If we use condition (A7) instead of (A8), then we cannot guarantee that the number of fixed
points is finite. But if we suppose that this is the case, then the result remains valid. In this situation,
there could be more than two fixed points with the same number of zeros.

Lemma 28 Let assume conditions (A1)-(A6), h ≡ 0 and either (A7) or (A8). Let u+
k,d∗k

, u−k,d∗k
be a

pair of fixed points corresponding to the same value d∗k. Then there cannot be an heteroclinic connection
between them.

Proof. The function v (x) = u+
k,d∗k

(1− x) is a fixed point corresponding to d∗k as

−∂
2v

∂x2
(x) = −

∂2u+
k,d∗k

∂x2
(1− x) =

λ

a (d∗k)
f
(
u+
k,d∗k

(1− x)
)

=
λ

a (d∗k)
f (v (x)) ,

so u−k,d∗k
(x) = v (x) = u+

k,d∗k
(1− x). The equalities

∫ 1

0

(
∂u−k,d∗k
∂x

(x)

)2

dx =

∫ 1

0

(
∂u+

k,d∗k

∂x
(1− x)

)2

dx =

∫ 1

0

(
∂u+

k,d∗k

∂x
(y)

)2

dy,

∫ 1

0

∫ u−
d∗
k

(x)

0

f (s) dsdx =

∫ 1

0

∫ u+
d∗
k

(1−x)

0

f (s) dsdx =

∫ 1

0

∫ u+
d∗
k

(y)

0

f (s) dsdy

imply that E(u−k,d∗k
) = E

(
u+
k,d∗k

)
, where E is the Lyapunov function (46). Since this function is strictly

decreasing along a trajectory φ which is not a fixed point, there cannot exist a heteroclinic connection
between these two points.
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Remark 29 In the case where condition (A7) is assumed, there could be more than two equilibria with
k + 1 zeros in [0, 1]. In this case there could exist connections between fixed points with different values
of the constant d.

Using the concept of lap number of the solutions we can discard some more heteroclinic connections.
We consider the function w (t) = u(α−1 (t)), which is a strong solution to problem (47). For any

strong solution u (·) conditions (A1), (A3), (A6) and u ∈ C([0,+∞), H1
0 (Ω)) imply that the function

r (t, x) =
λ

a(‖w (t) ‖2
H1

0
)

f (w (t, x))

w (t, x)

is continuous and w (·) is a solution of the linear equation

∂w

∂t
− ∂2w

∂x2
= r (t, x)w. (63)

Thus, by Theorem 51 in the Appendix (see also Theorem C in [1]) the number of zeros of w (t) in
[0, 1] is a nonincreasing function of t. Since α−1 (t) is an increasing function of time, the result is also
true for the solution u (·). Making use of this property we will prove the following result.

Lemma 30 Let assume conditions (A1)-(A6), h ≡ 0 and either (A7) or (A8). Then if n > k, there
cannot exist a connection from the fixed point u±k,d∗k

to the fixed point u±n,d∗n
, that is, there cannot exist a

bounded complete trajectory φ such that

φ (t)→ u±n,d∗n
as t→ +∞, φ (t)→ u±k,d∗k

as t→ −∞.

Proof. By contradiction assume that such complete trajectory exists. Denote by l (z) the number of
zeros of z in [0, 1]. Using the compactness of the attractor in C1([0, 1]) (see Corollary 20) we obtain that

φ (t)→ u±n,d∗n
in C1([0, 1]) as t→ +∞,

φ (t)→ u±k,d∗k
in C1([0, 1]) as t→ −∞.

Then, as the zeros are simple, we can choose t1 > 0 large enough such that l (φ (−t1)) = l
(
u±k,d∗k

)
= k+1.

Put u (t) = φ (t− t1), which is a strong solution of (3). Now we choose t2 > 0 such that l (u (t2)) =

l
(
u±n,d∗n

)
= n+ 1. Then l (u (0)) = k+ 1 and l (u(t2)) = n+ 1 > k+ 1. This contradicts the fact that the

number of zeros of u (t) is non-increasing.

6 Morse decomposition

In this section we study in more detail the structure of the global attactor in the case where the function
f is odd. More precisely, we obtain that the m-semiflow G is dynamically gradient, which is equivalent
to saying that there is a Morse decomposition of the attractor [26], and study the stability of the fixed
points.

6.1 Aproximations

We consider now the situation when conditions (A1)-(A6), h = 0 and either (A7) or (A8) are satisfied
and, moreover, the function f is odd.

In this section we consider the following problems:
∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λfεn(u), t > 0, x ∈ (0, 1),

u(t, 0) = 0, u(t, 1) = 0,
u(0, x) = u0(x),

(64)
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where the function fεn is defined below and εn → 0, as n→∞.
Let ρεn(·) be a mollifier in R. We define the function fεn(u) =

∫
R ρεn(s)f(u− s)ds. It is well known

that fεn(·) ∈ C∞(R) and that for any compact subset A ⊂ R we have fεn → f uniformly on A. It is
clear that for u > εn the function fεn (u) is strictly concave.

We need the approximation to fulfil (A2)-(A3). For that end, we consider the approximation except
on the interval [−εn, εn], for any εn > 0. There exists a polynomial of sixth degree p(x) such that

p(0) = 0, p(εn) = h(εn),

p′(0) = 1, p′(εn) = h′(εn),

p′′(0) = 0, p′′(εn) = h′′(εn),

p′′′(0) = −1.

We choose γ > 0 such that p′′ (s) < 0 for all s ∈ (0, γ]. We can assume that εn < γ for all n.
Thus, by construction the function

fεn(x) =


−fεn(−x) if x < −εn,
−p(−x) if −εn ≤ x ≤ 0,
p(x) if 0 ≤ x ≤ εn,
fεn(x) if x > εn

(65)

approximates the function f uniformly in compact sets, that is, for any [−M,M ] and δ > 0 there exists
n0(M, δ) ∈ N such that

|f(x)− fεn(x)| < δ, for all n ≥ n0, x ∈ [−M,M ]. (66)

Also, it satisfies the following properties:

(B1) fεn ∈ C2(R);

(B2) fεn(0) = 0;

(B3) f ′εn (0) = 1;

(B4) fεn is strictly concave if u > 0 and strictly convex if u < 0;

(B5) fεn is odd.

Lemma 31 Let f satisfy (A5). Then the functions fεn satisfy condition (A5) and (9) with independent
constants of εn.

Proof. We assume without loss of generality that εn < 1. In order to check (4)-(5) we only need to
consider u outside the interval [−1, 1], because the sequence {fεn} is uniformly bounded in any compact
set of R. Then for u 6∈ [−1, 1] the Hölder inequality and

∫
R ρεn (s) ds = 1 give

|fεn (u)| =
∣∣∣∣∫

R
f (u− s) ρεn (s) ds

∣∣∣∣ ≤ ∫
R
|f (u− s)| ρεn (s) ds

≤
∫
R

(
C1 + C2|u− s|p−1

)
ρεn (s) ds

≤ C1 + C22p−2

(∫ εn

−εn

(
|u|p−1

+ |s|p−1
)
ρεn (s) ds

)
≤ C̃1 + C̃2 |u|p−1

.
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If f satisfies (5), then

fεn (u)u =

∫
R
f (u− s) (u− s) ρεn (s) ds+

∫
R
f (u− s) sρεn (s) ds

≤
∫
R

(C3 − C4|u− s|p) ρεn (s) ds+

∫
R

(
C1 + C2|u− s|p−1

)
sρεn (s) ds

≤ K1 − C4

∫
R

(
21−p |u|p − |s|p

)
ρεn (s) ds

+ C22p−2

∫
R

(
|u|p−1

+ |s|p−1
)
sρεn (s) ds

≤ C̃3 − C̃4|u|p,

where we have used |u|p ≤ 2p−1 (|sp|+ |u− s|p) and the Young inequality.
For (9) we put in the above inequality p = 2, C3 = mε, C4 = −ε and obtain

fεn (u)u ≤ m̃ε + εu2,

which obviously implies (6).

Our next aim is to focus on the convergence of solutions of the approximations.

Theorem 32 Let conditions (A1)-(A6), h = 0 and either (A7) or (A8) be satisfied and let, moreover,
the function f be odd. If uεn,0 → u0 in H1

0 (Ω) as εn → 0, then for any sequence of solutions of (64) uεn(·)
with uεn(0) = uεn,0 there exists a subsequence of εn such that uεn converges to some strong solution u (·)
of (3) in the space C([0, T ], H1

0 (Ω)), for any T > 0.

Proof. Using (29) and (30) we can repeat the same lines of the proof of Theorem 5 and obtain the
existence of a function u (·) and a subsequence of uεn such that

uεn
∗
⇀ u in L∞(0, T ;H1

0 (Ω)),

uεn ⇀ u in L2(0, T ;D(A)),

duεn
dt

⇀
du

dt
in L2(0, T ;L2(Ω)),

uεn → u in C([0, T ];L2(Ω)),

uεn → u in L2(0, T ;H1
0 (Ω)),

fεn(unε)
∗
⇀ f(u) in L∞(0, T ;L∞(Ω)),

a(‖uεn‖2H1
0
)∆uεn ⇀ a(‖u‖2H1

0
)∆u in L2(0, T ;L2(Ω)).

Also, in the same way we prove that u (·) is a strong solution to problem (3) such that u (0) = u0.
The uniform estimate in the space H1

0 (Ω) implies also that if tn → t0, then uεn (tn) ⇀ u (t0) in H1
0 (Ω).

We need to prove that this convergence is in fact strong, proving then the convergence in C([0, T ], H1
0 (Ω))

for any T > 0.
In the same way as in the proof of Lemma 7 we deduce that for some C > 0 the functions Qn(t) =

A(‖uεn(t)‖2
H1

0
) − 2Ct, Q(t) = A(‖u(t)‖2

H1
0
) − 2Ct are continuous and non-increasing in [0, T ]. Moreover,

Qn(t) → Q(t) for a.e. t ∈ (0, T ). Let first t0 > 0̇. Then we take 0 < tj < t0 such that tj → t0 and
Qn(tj)→ Q(tj) for all j. Then

Qn(tn)−Q(t0) ≤ Qn(tj)−Q(t0) ≤ |Qn(tj)−Q(tj)|+ |Q(tj)−Q(t0)| for tn > tj .

For any δ > 0 there exist j(δ) and N(j(δ)) such that Qn(tn) −Q(t0) ≤ δ if n ≥ N, so lim supQn(tn) ≤
Q(t0). Hence, a contradiction argument using the continuity of A (s) shows that lim sup ‖uεn(tn)‖2

H1
0
≤

‖u(t0)‖2
H1

0
. This, together with lim inf ‖uεn(tn)‖2

H1
0
≥ ‖u(t0)‖2

H1
0
, implies that ‖uεn(tn)‖2

H1
0
→ ‖u(t0)‖2

H1
0
,

so that uεn(tn) → u(t0) strongly in H1
0 (Ω). For the case when t0 = 0 we use the same argument as in

Lemma 7.

We denote by Aεn the global attractor for the semiflow Gεn corresponding to problem (64).
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Lemma 33 Assume the condition of Theorem 32. Then ∪
n∈NAεn is bounded in H1

0 (Ω). Hence, the set
∪n∈NAεn is compact in L2(Ω).

Proof. By Lemma 31 inequality (9) is satisfied for any n with constants which are independent of εn,
so inequality (36) holds true with constants independent of εn. Thus, there a exists a common absorbing
ball B0 in L2 (Ω) (with radius K > 0) for problems (64). Further, by repeating the same steps as in

Proposition 11 we obtain a common absorbing ball in H1
0 (Ω) (with radius K̃ > 0) as by Lemma 31 the

constants which are involved are independent of εn. Thus, ‖y‖H1
0
≤ K̃ for any y ∈ ∪

n∈NAεn .

Lemma 34 Assume the condition of Theorem 32. Then ∪
n∈NAεn is bounded in V 2r for any 0 ≤ r < 1.

Hence, ∪
n∈NAεn is compact in V 2r and C1([0, 1]).

Proof. Using Lemma 33 we obtain the boundedness of ∪
n∈NAεn in V 2r by repeating the same lines

in Lemma 19. The rest of the proof follows from the compact embedding V α ⊂ V β , α > β, and the
continuous embedding V 2r ⊂ C1([0, 1]) if r > 3

4 .

Corollary 35 Assume the condition of Theorem 32. Then any sequence ξn ∈ Aεn with εn → 0 is
relatively compact in C1([0, 1]).

Lemma 36 Assume the condition of Theorem 32. Then up to a subsequence any bounded complete
trajectory uεn of (64) converges to a bounded complete trajectory u of (3) in C([−T, T ], H1

0 (Ω)) for any
T > 0. On top of that, if yn ∈ Aεn , then passing to a subsequence yn → y ∈ A in H1

0 (Ω) . Hence,

distH1
0

(Aεn ,A)→ 0 as n→∞. (67)

Proof. Let fix T > 0. By Corollary 35 uεn(−T )→ y in H1
0 (Ω) up to a subsequence. Theorem 32 implies

that uεn converges in C([−T, T ], H1
0 (Ω)) to some solution u of (3). If we choose successive subsequences for

−2T,−3T . . . and apply the standard diagonal procedure, we obtain that a subsequence uεn converges
to a complete trajectory u of (3) in C([−T, T ], H1

0 (Ω)) for any T > 0. Finally, from Lemma 33 this
trajectory is bounded.

If yn ∈ Aεn , by Corollary 35 we can extract a subsequence converging to some y. If we take a
sequence of bounded complete trajectories φn (·) of (64) such that φn (0) = yn, then by the previous
result it converges in C([−T, T ], H1

0 (Ω)) to some bounded complete trajectory φ (·) of (3), so y ∈ A.
Finally, if (67) was not true, there would exist δ > 0 and a sequence yn ∈ Aεn such that distH1

0
(y,A) >

δ. But passing to a subsequence yn → y ∈ A, which is a contradiction.

Lemma 37 Assume the conditions of Theorem 32. Let τdn,εn± be the functions (56)-(57) for problem
(51) but replacing f by fεn and d by dn. Let dn, En → 0 as n→∞. Then

lim
n→∞

τdn,εn± (En) =

√
a (0)π√

2λ
.

Proof. Let us consider fdn,εn(u) =
λfεn (u)
a(dn) . In view of property (B4) and (66), since f ′εn(0) = f ′(0) = 1

and fεn(0) = f(0) = 0, given γ ∈ (0, 1) there exists δ > 0 (independent of εn) such that

(1− γ)u ≤ fεn(u) ≤ (1 + γ)u, for any u ∈ (0, δ).
1

1+γ ≤
u

fεn (u) ≤
1

1−γ , for any u ∈ (0, δ).
(68)

The sequence Fεn (·) converges uniformly to F (·) in compact sets. Moreover, as U+(E) is continuous
and using [38, p. 60], given δ > 0, there exists η > 0 such that Uεn+ (E) ≤ δ for any 0 < E ≤ η. Now, if
we integrate the first inequality in (68) between 0 and u we obtain

1

2
(1− γ)u2 ≤ Fεn(u) ≤ 1

2
(1 + γ)u2, for any 0 ≤ u ≤ δ.

Using the change of variable Eny
2 = Fεn(u), we have(

1−γ
2En

)1/2

u ≤ y ≤
(

1+γ
2En

)1/2

u, if 0 < En ≤ η, 0 ≤ y ≤ 1.

24



Dividing the previous expression by
√

λ
a(dn)fdn,εn(u) and using (68) we obtain

(
a(dn)(1−γ)
2λEn(1+γ)2

)1/2

≤
√
a(dn)y√

λfdn,εn (u)
≤
(
a(dn)(1+γ)
2λEn(1−γ)2

)1/2

,if 0 < En ≤ η, 0 ≤ y ≤ 1.

Now if we multiply by 2
√
En(1− y2)−

1
2 and integrate from 0 to 1, we get

π
(
a(dn)(1−γ)
2λ(1+γ)2

)1/2

≤ τεn+ (En) ≤ π
(
a(dn)(1+γ)
2λ(1−γ)2

)1/2

, if 0 < En ≤ η.

Then the theorem follows as a (dn)→ a (0) when n→∞. The proof for τεn− is analogous.

Under the conditions of Theorem 32, if (A8) is satisfied and

a (0)π2k2 < λ ≤ a (0)π2 (k + 1)
2
, k ∈ Z, k ≥ 0, (69)

holds, then by Theorem 24 problem (64) has exactly 2k+1 fixed points (denoted by v0 = 0, v±
1,dεn1

, ..., v±
k,dεnk

)

and v±
m,dεnm

has m+ 1 zeros in [0, 1] for each 1 ≤ m ≤ k. The same is valid for problem (3) and we denote

the 2k + 1 fixed points by v0 = 0, u±1,d∗1
, ..., u±k,d∗k

.

Lemma 38 Assume the conditions of Theorem 32, (A8) and (69). Let m ∈ N, 1 ≤ m ≤ k, be fixed.
Then v+

m,dεnm
(resp. v−

m,dεnm
) do not converge to 0 in H1

0 (Ω) as εn → 0.

Proof. Assume that v+
m,dεnm

→ 0 in H1
0 (0, 1). Then it converges to 0 in C ([0, 1]) and the equality

−
d2v+

m,dεnm

dx2
(x) =

λfεn

(
v+
m,dεnm

(x)
)

a(dεnm )

implies that v+
m,dεnm

→ 0 in C2 ([0, 1]). In particular,
dv+
m,dεnm

dx
(0) → 0 and dεnm =

∥∥∥v+
m,dεnm

∥∥∥2

H1
0

→ 0. The

value En corresponding to the fixed point v+
m,dεnm

is equal to
a (dεnm )

2λ

dv+
m,dεnm

dx
(0), so En → 0. We will

show that this is not possible. We know by Lemma 37 that

lim
n→∞

τ
dεnm ,εn
± (En) =

π
√
a(0)√
2λ

.

Also, since v+
m,dεnm

is a fixed point with d = dεnm one of the following conditions has to be satisfied (see

(55)):

jτ
dεnm ,εn
+ (En) + (j − 1) τ

dεnm ,εn
− (En) =

(
1

2

) 1
2

, (70)

jτ
dεnm ,εn
− (En) + (j − 1) τ

dεnm ,εn
+ (En) =

(
1

2

) 1
2

, if m = 2j − 1 (71)

jτ
dεnm ,εn
+ (En) + jτ

dεnm ,εn
− (En) =

(
1

2

) 1
2

, if m = 2j. (72)

Since En → 0 and λ > k2π2a(0) ≥ m2π2a(0), there exists εn0
such that

τ
d
εn0
m ,εn0
± (En0

) <
1√
2m

.

Hence, neither of (70)-(72) is possible.
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Lemma 39 Assume the conditions of Theorem 32, (A8) and (69). Let m ∈ N, 1 ≤ m ≤ k, be fixed.
Then v+

m,dεnm
(resp. v−

m,dεnm
) converges to u+

m,d∗m
in H1

0 (Ω) (resp. u−m,d∗m
) as εn → 0.

Proof. We consider v+
m,dεnm

. In view of Corollary 35, v+
m,dεnm

is relatively compact in C1 ([0, 1]) , so up to

a subsequence v+
m,dεnm

→ v strongly in C1([0, 1]) and dεnm → d∗ = ‖v‖2H1
0
. The proof will be finished if

we prove that v = u+
m,d∗m

. We observe that since in such a case every subsequence would have the same

limit, the whole sequence would converge to u+
m,d∗m

.

In view of (66) fεn(v+
m,dεnm

) converges to f (v) in C([0, 1]). It follows that

−∂
2v

∂x2
=

λf (v)

a(‖v‖2H1
0
)

and v is a solution of (50), so v is a fixed point of (3). We need to prove that v = u+
m,d∗m

. By Lemma

38 v 6= 0, and then v = u±j,d∗j
for some 1 ≤ j ≤ k. Since u±j,d∗j

has j + 1 simple zeros, the convergence

v+
m,dεnm

→ u±j,d∗j
in C1([0, 1]) implies that v+

m,dεnm
has j + 1 zeros for n ≥ N . But v+

m,dεnm
possesses m + 1

zeros in [0, 1]. Thus, m = j.
For the sequence v−

m,dεnm
the proof is analogous.

6.2 Instability

We will prove that the fixed points 0 and u±k,d∗k
, k ≥ 2, are unstable under some additional assumptions

on the functions f and a. For this aim we need to use the approximative problems (64).

Theorem 40 Assume that the conditions (A1)-(A8), h = 0, (69) with k ≥ 1 are satisfied and let,
moreover, the function f (·) be odd and a (·) be globally Lipschitz continuous. Then the equilibria v0 = 0
and u±j,d∗j

, 2 ≤ j ≤ k (if k ≥ 2), are unstable.

Remark 41 The condition that a (·) is globally Lipschitz continuous could be dropped, as we can replace
a (·) in (64) by a sequence aεn (·) of globally Lipschitz continuous functions.

Proof. Problem (64) generates a single-valued semigroup {Tεn(t); t ≥ 0} with a finite number of fixed
points: v0 = 0, v±

1,dεn1
, ..., v±

k,dεnk
[19]. We know by Theorems 3.5 and 3.6 in [19] that for any v+

j,dεnj
with

j ≥ 2 and v0 there exists a bounded complete trajectory uεn such that

uεn(t)→ v+
j,dεnj

as t→ −∞, for k ≥ 2,

so v0, v
+
j,dεnj

are unstable. The same is valid for v−
j,dεnj

. On the other hand, by Lemma 39 we have

v±
j,dεnj

→ u±j,d∗j
, (73)

where u±j,d∗j
is a fixed point of problem (3) with j + 1 zeros in [0, 1]. We prove the result for u+

j,d∗j
. For

u−j,d∗j
and v0 the proof is the same.

By Lemma 36 we obtain that up to a subsequence uεn converges to a bounded complete trajectory u
of problem (3) in the space C([−T, T ], H1

0 (Ω)) for every T > 0. Thus, either u (·) is a fixed point v−1 or
by Theorem 17 there exists a fixed point v−1 of problem (3) such that

u(t)→ v−1 as t→ −∞ in H1
0 (Ω).

In the second case, if v−1 = u+
j,d∗j

, the proof would be finished, so let assume the opposite.

Assume first that either u (·) is not a fixed point or it is a fixed point but v−1 6= u+
j,d∗j

. We consider

r0 > 0 such that the neighborhood O2r0(v−1) does not contain any other fixed point of problem (3). For
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any r ≤ r0 we can choose tr → −∞ and nr such that uεn(tr) ∈ Or(v−1) for all n ≥ nr. On the other
hand, since uεn(t)→ v+

j,dεnj
, as t→ −∞, and v+

j,dεnj
→ u+

j,d∗j
6∈ B2r0(v−1), there exists t′r < tr such that

uεnr (t) ∈ Or0(v−1) for t ∈ (t′r, tr],

‖uεnr (t′r)− v−1‖H1
0

= r0.

Let first tt − t′r → +∞. We define the sequence u
εnr
1 (t) = uεnr (t + t′r), which passing to a subsequence

converges to a bounded complete trajectory φ (t) such that φ (t) ∈ Or0(v−1) for all t ≥ 0. As there is
no other fixed point in O2r0(v−1), φ (t) → v−1 as t → +∞. But ‖φ (0)− v−1‖ = r0, so φ (·) is not a
fixed point. Then φ (t) → v−2 as t → −∞, where v−2 is a fixed point different from v−1. Second, let
|tt − t′r| ≤ C. Then put u

εnr
1 (t) = uεnr (t+ tr). Passing to a subsequence we have that

u
εnr
1 (0)→ v−1,

tr − t′r → t0, as r → 0.

Also, u
εnr
1 (·) converges to a bounded complete trajectory u1 (·) of problem (3) such that u1(0) = v−1.

Let

ψ1(t) =

{
u1 (t) if t ≤ 0,
v−1 if t ≥ 0.

We note that
∥∥u1(−t0)− v−1

∥∥
H1

0
= r0 implies that u1 (·) is not a fixed point. Then ψ1 is a bounded

complete trajectory of problem (3) such that ψ1(t)→ v−2 6= v−1 as t→ −∞. If v−2 = u+
j,d∗j

, the proof is

finished.
If v−2 6= u+

j,d∗j
, we continue constructing by the same procedure a chain of connections in which the

new fixed point is always different from the previous ones, because the existence of the Lyapunov function
(46) avoids the existence of a cyclic chain of connections. Since the number of fixed points is finite, at
some moment we obtain a bounded complete trajectory φ (·) such that φ (t)→ u+

j,d∗j
as t→ −∞, proving

that u+
j,d∗j

is unstable.

Now let u (·) = v−1 = u+
j,d∗j

. Defining the neighborhood O2r0(v−1) as before, for any r ≤ r0 we can

choose nr such that uεn(0) ∈ Or(v−1) for all n ≥ nr. Also, since uεn(t) → zn0 , as t → +∞, where
zn0 6= v+

j,dεnj
is a fixed point of (64), there exists tr > 0 such that

uεnr (t) ∈ Or0(v−1) for t ∈ [0, tr),

‖uεnr (tr)− v−1‖H1
0

= r0.

The sequence {tr} cannot be bounded. Indeed, if tr → t0, then uεnr (tr) → u (t0) = v−1, which is
a contradiction with ‖uεnr (t0)− v−1‖H1

0
= r0. Then tr → +∞. We define the functions u

εnr
1 (t) =

uεnr (t + tr), which satisfy that u
εnr
1 (t) ∈ Or0(v−1) for all t ∈ [−tr, 0). Passing to a subsequence it

converges to a bounded complete trajectory φ (·) such that φ (t) ∈ Or0(v−1) for all t ≤ 0. This trajectory
is not a fixed point as ‖φ(0)− v−1‖H1

0
= r0 and φ (t)→ u+

j,d∗j
as t→ −∞, so u+

j,d∗j
is unstable.

Further, we will prove that there is also a connection from 0 to the point u±k,d∗k
.

Theorem 42 Assume the conditions of Theorem 40. Then there exists a bounded complete trajectory
φ (·) such that φ (t) →

t→−∞
0, φ (t) →

t→+∞
u+
k,d∗k

(and the same is valid for u−k,d∗k
). Thus, E(0) = 0 >

E(u±k,d∗k
).

Proof. We start with the case where k = 1. We have three fixed points: 0, u+
1,d∗1

, u−1,d∗1
. By Theorem

40 there exists a bounded complete trajectory φ (·) such that φ (t) →
t→−∞

0, whereas Theorem 17 and

Remark 26 imply that it has to converge forward to a fixed point different from 0, that is, to either
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u+
1,d∗1

or u−1,d∗1
. If, for example, φ (t) →

t→+∞
u+

1,d∗1
, then as the function f is odd, ψ (t) = −φ (t) is another

bounded complete trajectory and ψ (t) →
t→+∞

−u+
1,d∗1

= u−1,d∗1
.

Further we consider the problem
∂u

∂t
− a(‖u‖2

H1
0
)
∂2u

∂x2
= λfk(u), t > 0, 0 < x < 1

k ,

u(t, 0) = u(t, 1
k ) = 0,

u(0, x) = u0(x),

(74)

where fk(u) =
√
kf
(
u/
√
k
)

satisfies (A1)-(A5). In this problem, condition (69) implies that there are

again three fixed points: 0, u+
1,d∗1 ,

1
k

, u−
1,d∗1 ,

1
k

. By the above argument there is a connection φ 1
k

(·) from

0 to u+
1,d∗1 ,

1
k

(also to u−
1,d∗1 ,

1
k

). Since the function f is odd, u+
k,d∗k

(x) is equal to 1√
k
u+

1,d∗1 ,
1
k

(x) on [0, 1
k ],

to − 1√
k
u+

1,d∗1 ,
1
k

(
x− 1

k

)
on [ 1

k ,
2
k ], etc. Then the function φ (·) such that φ (t, x) = (−1)j√

k
φ 1
k

(
t, x− j

k

)
on

[ jk ,
j+1
k ], j = 0, 1, ..., k − 1, is a bounded complete trajectory of problem (3) which goes from 0 to u+

k,d∗k
.

Remark 43 When k = 1 the structure of the global attractor is the same as in the Chafee-Infante
equation.

6.3 Gradient structure

We will obtain that the m-semiflow G is dynamically gradient. Let us recall this concept.
A weakly invariant set M of X is isolated if there is a neighborhood O of M such that M is the

maximal weakly invariant subset on O. If M belongs to the global attractor A, then it is compact [26,
Lemma 19]. In this case, it is equivalent to use a δ-neighborhood Oδ(M) = {y ∈ X : dist (y,M) < δ}.

Suppose that there is a finite disjoint family of isolated weakly invariant sets M = {M1, . . . ,Mm} in
A, that is, for every j ∈ {1, . . . , n} there is εj > 0 such that Mj ⊂ A is the maximal weakly invariant set
on Oεj (Mj), and suppose that there exists δ > 0 such that Oδ(Mi) ∩ Oδ(Mj) = ∅, if i 6= j.

Definition 44 We say the m-semiflow G : R+ ×X → P (X) is dynamically gradient with respect to the
disjoint family of isolated weakly invariant sets M = {M1, . . . ,Mm} if for every complete and bounded
trajectory ψ of R we have that either ψ(R) ⊂Mj, for some j ∈ {1, . . . ,m}, or α(ψ) ⊂Mi and ω(ψ) ⊂Mj

with 1 ≤ j < i ≤ m.

Let us consider the case when the conditions of Theorem 40 hold. Then (3) possesses exactly 2k + 1
fixed points: v0 = 0, u±1,d∗1

, ..., u±k,d∗k
. Also, as f is odd, u+

j,d∗j
= −u−j,d∗j for any j. We define the following

sets:
M1 = {u+

1,d∗1
, u−1,d∗1

}, ..., Mk = {u+
k,d∗k

, u−k,d∗k
}, Mk+1 = {0}. (75)

They are weakly invariant and using Lemma 28 we deduce easily that they are isolated. Then the family
M = {M1, . . . ,Mk+1} is a finite disjoint family of isolated weakly invariant sets.

Proposition 45 Assume the conditions of Theorem 40. Then G is dynamically gradient with respect to
the family (75) after (possibly) reordering them.

Proof. We reorder the family (75) in such a way that if the value of the Lyapunov function E given in

(46) is equal to Li for the set M̃i, then Lj ≤ Ln for j < n. Then Theorem 25 in [26] implies that G is
dynamically gradient with respect to this family.

We will obtain then that the fixed points u+
1,d∗1

, u−1,d∗1
are asymptotically stable. The compact set

M ⊂ A is a local attractor for G in X if there is ε > 0 such that ω (Oε(M)) = M, where

ω (B) = {y : ∃tn → +∞, yn ∈ G(tn, B) such that yn → y}

is the ω-limit set of B. By Lemma 14 in [26] if M is a local attractor in X, then it is stable. Thus, a
local attractor is asymptotically stable.
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Theorem 46 Assume the conditions of Theorem 40. Then the stationary points u+
1,d∗1

, u−1,d∗1
are asymp-

totically stable.

Proof. By [26, Theorem 23 and Lemma 15] M̃1 is a local attractor in X, so it is asymptotically stable.

By Theorem 40 the sets Mj , j ≥ 2, are unstable. Thus, M̃1 = M1. As M1 consists of the two elements
u+

1,d∗1
, u−1,d∗1

, which are obviously disjoint, they are asymptotically stable as well.

We will prove that there is a connection from 0 to any other fixed point u±j,d∗j
.

Theorem 47 Assume the conditions of Theorem 40. Then there exists a bounded complete trajectory
φ (·) such that φ (t) →

t→−∞
0, φ (t) →

t→+∞
u+
j,d∗j

for all 1 ≤ j ≤ k (and the same is valid for u−j,d∗j
).

Proof. Let us consider problem (74) with k = j. The function u+
1,d∗j ,

1
j

(x) =
√
ju+
j,d∗j

(x), x ∈ [0, 1
j ], is

the unique positive fixed point of problem (74). Let X+
j = {u ∈ H1

0

(
0, 1

j

)
: u (x) ≥ 0 ∀x ∈ [0, 1

j ]} be

the positive cone of H1
0

(
0, 1

j

)
. If we consider the restriction of the semigroup T εnj (·) of problem (64) in

the interval
(

0, 1
j

)
to X+

j , denoted by T εn,+j (·), then there exists a global attractor A+
n,j [18]. Since 0

and v+
1,dεnj , 1j

=
√
jv+
j,dεnj

|[0, 1j ] are the unique fixed points of T εn,+j , A+
n,j is connected, v+

1,dεn1 , 1j
is stable

[19] and A+
n,j consists of the fixed points and their heteroclinic connections, there must exist a bounded

complete trajectory φεnj (·) of T εn,+j which goes from 0 to v+
1,dεnj , 1j

. By Lemma 36 up to a subsequence it

converges to a bounded complete trajectory φj (·) of problem (74) with k = j such that φj (t) ≥ 0 for all
t ∈ R. Since by Theorem 46 the fixed point u+

1,d∗j ,
1
j

is stable, the only possibility is that φj (t) → 0, as

t→ −∞, φj (t)→ u+
1,d∗j ,

1
j

, as t→ +∞. Then the function φ (·) such that φ (t, x) = (−1)i√
j
φj

(
t, x− i

j

)
on

[ ij ,
i+1
j ], i = 0, 1, ..., j − 1, is a bounded complete trajectory of problem (3) which goes from 0 to u+

j,d∗j
.

For u−j,d∗j
, noting that u−j,d∗j

= −u+
j,d∗j

, the result follows by choosing the bounded complete trajectory

φ̃(t) = −φ (t).

As a consequence we obtain that the order of the family M has to be the one given in (75).

Theorem 48 The semiflow G is dynamically gradient with respect to the family M in the order given
in (75), that is, M̃i = Mi for any i.

Proof. As by Theorem 47 there is a connection from 0 to u±j,d∗j
, 1 ≤ j ≤ k, we have proved that

M̃k+1 = {0} = Mk+1. The fact that the order of the other sets is the one given in (75) follows from
Lemma 30.

7 Appendix

In this appendix we generalize the lap number property of solutions of linear equations proved in [29] to
the case when we do not have classical solutions. For this we will use a maximum principle for non-smooth
functions from [30].

Let O be a region in R2 and let (t0, x0) ∈ O and ρ, σ > 0. We denote

Qρ,σ = {(t, x) : t ∈ (t0 − σ, t0), |x− x0| < ρ},

where we assume that t0, x0, ρ, σ are such that Qρ,σ ⊂ O.
We denote by W the space of all functions from L2 (O) such that∫

O

(
|u (t, x)|2 +

∣∣∣∣∂u∂x (t, x)

∣∣∣∣2
)
dµ < +∞.

As a particular case of Theorem 6.4 in [30] we obtain the following maximum and minimum principles.
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Theorem 49 (Maximum principle) Let u ∈W be such that

∂u

∂t
− ∂2u

∂x2
≤ 0 (76)

in the sense of distributions. If
sup ess(t,x)∈Qρν,σ1u(t, x) = M,

for some ν, 0 < ν < 1, and any σ1, where 0 < σ1 < σ, then u (t, x) = M for a.a. (t, x) ∈ Qρ,σ.

Theorem 50 (Minimum principle) Let u ∈W be such that

∂u

∂t
− ∂2u

∂x2
≥ 0 (77)

in the sense of distributions. If
inf ess(t,x)∈Qρν,σ1u(t, x) = M,

for some ν, 0 < ν < 1, and any σ1, where 0 < σ1 < σ, then u (t, x) = M for a.a. (t, x) ∈ Qρ,σ.

We are ready to prove the lap-number property, saying that the number of zeros is a non-increasing
function of time.

Theorem 51 Let r (t, x) be a continuous function and u ∈ C([t0, t1], H1
0 (Ω))∩L2

(
t0, t1;H2 (Ω)

)
be such

that
du

dt
∈ L2

(
t0, t1;L2 (Ω)

)
and satisfies the equation

∂u

∂t
− ∂2u

∂x2
= r(t, x)u, 0 < x < 1, t0 < t ≤ t1. (78)

Then the number of components of

{x : 0 < x < 1, u (t, x) 6= 0}

is a non-increasing function of t.

Proof. We follow similar lines as in [29, Theorem 6].
Denote Q (t) = {x ∈ (0, 1) : u (t, x) 6= 0}. We need to show that there is an injective map from the

components of Q (t1) to the components of Q (t0) if t1 > t0. If we denote by C a component of Q (t1)
and by SC the component of [t0, t1] × (0, 1) ∩ {u (t, x) 6= 0)} which contains C, then in order to obtain
the injective map it is necessary to prove two facts:

1. SC ∩Q(t0) 6= ∅;

2. If C1, C2 are two components of Q (t1), then SC1
∩ SC2

= ∅.

Let us prove the first statement by contradiction, so assume that SC ∩ Q(t0) = ∅. We can assume
without loss of generality that r (t, x) < 0, because this property is satisfied for the function W (t, x) =
u (t, x) e−λt with λ > 0 large enough and the components of these two functions coincide. Consider for
example that u (t, x) > 0 in SC . Let M = max(t,x)∈SC u (t, x). By hypothesis and the Dirichlet boundary
conditions this maximum has to be attained at a point (t′, x′) such that t0 < t′ ≤ t1, 0 < x′ < 1. Also,
there has to be an ε > 0 such that if (t, x) ∈ SC and t0 < t ≤ t0 + ε, then u (t, x) < M , as otherwise there
would be a sequence (tn, xn) ∈ SC , tn > t0, such that tn → t0 and u (tn, xn) = M . By the continuity of
u this would imply that u (t0, x0) = M for some (t0, x0) ∈ SC , which is a contradiction. Then we can
choose t′ as the first time when the maximum is attained, so u (t, x) < M for all (t, x) ∈ SC , t0 < t < t′.
By the continuity of u there exists a rectangle R = [t′− δ, t′]× [x′− γ, x′+ γ] such that R belongs to SC .
In order to apply Theorem 49 we put O = R and

Qγ,δ = {(t, x) : t ∈ (t′ − δ, t′), |x− x′| < γ}.
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We have that
sup

(t,x)∈Qνγ,σ1
u(t, x) = M,

for some 0 < ν < 1 and any 0 < σ1 < δ. Since u satisfies (76), we conclude from Theorem 49 that
u (t, x) = M for all (t, x) ∈ Qρ,σ, which is a contradiction.

For the second statement suppose the existence of two disjoints components C1, C2 of Q (t1) such that
SC1 ∩ SC2 6= ∅, which implies in fact that SC1 = SC2 . In this case we can assume that r (t, x) > 0, being
this justified by the function W (t, x) = u (t, x) eλt with λ > 0 large enough. Let for example u (t, x) > 0
in SC1

and assume that the interval C1 has lesser values than the interval C2. Also, it is clear that
between C1 and C2 there must exist a point (t1, x0) such that u (t1, x0) = 0. On the other hand, the set
SC1 ∩ (t0, t1)× [0, 1] is path connected. Thus, there exists a simple path ξ such that one end point is in
{t1} × C1 and the other one is in {t1} × C2. Let us consider the set L of all points which are above the
curve ξ and such that the function u vanishes at them. This set is non-empty because (t1, x0) ∈ L. Since
L is compact, the function g : L → [t0, t1] given by g (t, x) = t attains it minimum at a certain point
(t′, x′) ∈ L such that t0 < t′. Then there exists a set R = [t′ − δ, t′) × [x′ − γ, x′ + γ] which belongs to
SC1

. Let O = R and
Qγ,δ = {(t, x) : t ∈ (t′ − δ, t′), |x− x′| < γ}.

We have that
inf

(t,x)∈Qνγ,σ1
u(t, x) = 0,

for some 0 < ν < 1 and any 0 < σ1 < δ. Since u satisfies (77), we conclude from Theorem 50 that
u (t, x) = 0 for all (t, x) ∈ Qρ,σ, which is a contradiction.
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[10] Caballero, R.; Carvalho, A.N.; Maŕın-Rubio, P.; Valero, J. Robustness of dynamically gradient
multivalued dynamical systems. Discrete Contin. Dyn. Syst. Ser. B 2019, 24, 1049-1077.
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