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1. Abbreviations

2-DG: 2-Deoxy-D-glucose

3-HAA: 3-hydroxyanthranilic acid

3-HK: 3-hydroxykynurenine

5-HT: 5-hydroxytryptamine, serotonin

5-HTP: 5-hydroxytryptophan

acetyl-CoA: acetyl coenzyme A

ADP: adenosine diphosphate

AhR: aryl hydrocarbon receptor

Ala: alanine

AMP: adenosine monophosphate

AMPs: antimicrobial peptides

ATP: Adenosine triphosphate

ATPsyn: beta subunit of the ATP synthase

CAT: catalase

cDNA: complementary DNA

cn: cinnabar

COX: citocrome c oxidase

COX: cyclo-oxygenases

D2HG: D-2-hydroxyglutarate

DHEA: dehydroepiandrosterone
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Dl: delta

DNA: deoxyribonucleic Acid

ETC: electron transport chain

ey: eyeless

FACS: Fluorescence-activated Cell Sorting

FADH2: flavin adenine dinucleotide

GC-MS: Gas Chromatography coupled to Mass Spectrometry

GFP: green fluorescent protein

GLUT: glucose transporter

GPCR: G Protein-coupled receptor

GSH: glutathione

GSIs: γ-secretase inhibitors

GSK3: glycogen synthase kinase-3

HIF-1: hypoxia-inducible factor–1

IA: indoleacrlylic acid

IAA: indoleacetic acid

IDH: isocitrate dehydrogenase 1 or 2

IDO indoleamine-2,3-dioxygenase

IGF-1: insulin growth factor 1

IHC: inmunohistochemistry

InR: insulin receptor

JNK: c-Jun N-terminal kinase; pJNK: JNK phosphorilated

K: kynurenine
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KA: kynurenic acid

KMO: kynurenine 3-monooxygenase

KP: kynurenine pathway

KYAT: kynurenine aminotransferases

LC-MS: Liquid Chromatography coupled to Mass Spectrometry; UHPLC: ultra-high

precision liquid chromatography

LOPAC1280: Library of Pharmacologically Active Compounds

LOX: lipoxygenase

LPS: lipopolysaccharide

Met: methionine

mTOR: mammalian target of rapamycin

NADPH: nicotinamide adenine dinucleotide

NF‐κB: nuclear factor‐κB

NICD: Notch intracellular domain

NMDA: N-methyl-D-aspartate receptors

NMDA: N-methyl-D-aspartate receptors

NO: nitric oxide; NOS: nitric oxide synthase

NSAIDs: nonsteroidal anti-inflammatory drugs

OXPHOS: oxidative phosphorylation

PBS: phosphate-buffered saline

PDK1: phosphatidyl inositoldependent kinase-1

PFA: paraformaldehyde

PH3: phospho-histone H3
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PHGDH: phosphoglycerate dehydrogenase

PI3K: phosphatidylinositol 3-kinase

PIP3: phosphatidylinositol (3,4,5)-trisphosphate

PPO: prophenoloxidase

PPP: pentose phosphate pathway

PRRs: pattern recognition receptors

PTEN: phosphatase and tensin homolog

QA: quinolinic acid

qPCR: quantitative Polymerase Chain Reaction; RT-qPCR: Real Time qPCR

Rel: reticuloendotheliosis transcription factor

RFP: red fluorescent protein

RNA: ribonucleic Acid

RNAi: RNA interference

ROS: reactive oxygen species

RT: room ttemperature

RTK: tyrosin-kinase receptor

sima: similar

SOD1: superoxide dismutase 1

SREBP: sterol regulatory element–binding protein

ss: spineless

st: scarlet

T-ALL: T cell Acute Lymphoblastic Leukemia

TAMs: tumor-associated macrophages
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TCA: tricarboxylic acid cycle

TDO: tryptophan-2,3-dioxygenase

Thr: threonine

Trh: tryptophan hydroxylase

Trp: tryptophan

v: vermilion

w: white

XanA: xanthurenic acid
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2. Abstract

Although cancer begins locally, symptoms associated with disease progression can be

manifested systemically and be extremely debilitating for the patient. Identifying the

genes that drive and mediate both local and systemic effects of tumorigenesis is

important not only for developing treatments aimed at targeting cancer, but also for

maintaining and improving patient quality of life. Here we use a multidisciplinary

approach to uncover new mechanisms underlying Notch-PI3K/Akt-driven

tumorigenesis in a well-established cancer paradigm in Drosophila melanogaster with

highly predictive value (Palomero et al., 2007; Villegas et al., 2018). First, we designed

an unbiased in vivo chemical screen to identify drugs that can selectively dampen this

oncogenic cooperation without side effects. We identified a novel nitric oxide-

dependent inflammatory pathway that is associated with Notch/Pten-dependent

oncogenesis and perhaps amenable to pharmacological intervention.

On the other hand, phospho-proteomic analysis of these tumors revealed that

aberrant PI3K/Akt signaling fuels Notch tumorigenesis in part by triggering

mitochondrial dysfunction and generating oxidative stress. Our results also indicate that

stress-activated Jnk signal might be restricting tumor progression by inducing apoptosis,

and therefore acting as a tumor suppressor in this context.

Surprisingly, we found that Notch-PI3K/Akt tumors not only consume high

amounts of glucose, but also remotely alter whole-body metabolism. High throughput

large-scale and tissue-specific metabolomics revealed an unexpected interplay between

the tumor and the host tryptophan-kynurenine metabolism, especially in the fat body,

which ultimately leads to a systemic inflammation. Moreover, we detected changes

related to tryptophan metabolism in the hemolymph, gut microbiota and brain of tumor-

bearing hosts, further confirming for the first time that tumors can induce a multi-organ

metabolic reprogramming. Consequently, diet supplementation with tryptophan was

sufficient to prevent tumor formation through different multi-layered mechanisms.

These findings could have important implications, since dietary interventions may hold

the promise for the development of better treatments against cancer.
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Resumen

Aunque el cáncer comienza localmente, los síntomas asociados con la progresión de la

enfermedad pueden manifestarse sistémicamente y ser extremadamente debilitantes para

el paciente. Identificar los genes que impulsan y median tanto los efectos locales como

sistémicos derivados de la tumorigénesis es importante no sólo para desarrollar

tratamientos contra el cáncer, sino también para mejorar la calidad de vida del paciente.

En este estudio hemos utilizado un enfoque multidisciplinario para descubrir nuevos

mecanismos subyacentes a la tumorigénesis impulsada por Notch-PI3K/Akt en un

paradigma de cáncer bien establecido en Drosophila melanogaster con valor altamente

predictivo (Palomero et al., 2007; Villegas et al., 2018). Primero, diseñamos un cribado

imparcial in vivo para identificar medicamentos que pudieran afectar selectivamente

esta cooperación oncogénica sin efectos secundarios. Identificamos una nueva vía

inflamatoria dependiente del óxido nítrico asociada a la oncogénesis de Notch/Pten,

siendo susceptible de intervención farmacológica.

Por otro lado, el análisis fosfoproteómico de estos tumores reveló que la

señalización aberrante de PI3K/Akt desencadena el potencial tumorigénico de Notch en

parte al generar disfunciones en la mitocondria y estrés oxidativo. Nuestros resultados

también indican que la señal Jnk, la cual se activa por estrés, podría estar restringiendo

la progresión del tumor al inducir apoptosis y, por lo tanto, actúa como un supresor de

tumores en este contexto.

Sorprendentemente, descubrimos que los tumores Notch-PI3K/Akt no sólo

consumen grandes cantidades de glucosa, sino que también alteran de forma remota el

metabolismo de todo el cuerpo. Llevando a cabo un estudio de metabolómica de alto

rendimiento a gran escala y específico de tejido, encontramos una interacción

inesperada entre el tumor y el metabolismo del triptófano-quinurenina del hospedador,

especialmente en el cuerpo graso, que finalmente conduce a una inflamación sistémica.

Además, detectamos cambios relacionados con el metabolismo del triptófano en la

hemolinfa, la microbiota intestinal y el cerebro de los hospedadores con tumores, lo que

confirma, por primera vez, que los tumores pueden inducir una reprogramación
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metabólica en múltiples órganos. En consecuencia, la suplementación de la dieta con

triptófano fue suficiente para prevenir la formación de tumores. Estos hallazgos podrían

tener implicaciones importantes, ya que las intervenciones en la dieta prometen ser

clave para el desarrollo de mejores tratamientos contra el cáncer.
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3. Introduction

Cancer is a complex multifactorial process involving several genetic, molecular

and cellular mechanisms that creates a hard-to-treat oncogenic network. Thus, the

development of efficient therapeutic options requires sophisticated in vivo

modelling in whole organisms.

3.1 Cancer, Metabolism and Inflammation

Cancer involves the accumulation of genetic mutations and epigenetic alterations

that allow cells to proliferate uncontrollably (Merlo et al., 2006; Laird, 2005;

Stratton et al., 2009; Janiszewska et al., 2015). Over the course of evolution of

these tumor cells, many diseases emerge, eventually resulting in the death of the

host. Hanahan and Weinberg reviewed twenty years ago that malignant growth

characteristic of cancer cells is the manifestation of six essential physiological

alterations: self-sufficiency in growth signals, insensitivity to antigrowth signals,

evasion of programmed cell death, limitless replicative potential, sustained

angiogenesis, and tissue invasion and metastasis (Hanahan & Weinberg, 2000).

Other features are: genomic instability, reprogramming of energy metabolism and

tumor promotion by inflammation and evasion of the immune response (Fig. 1)

(Hanahan & Weinberg, 2011).
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Figure 1. Acquired capabilities of cancer cells (taken from

Hanahan & Weinberg, 2011).

3.2 Drosophila cancer models

Drosophila melanogaster has been used to understand the genetics of cancer since

more than one hundred years ago (Villegas et al., 2019). Pioneering works by

Mary Stark described the presence of tumors in larvae (Stark, 1918) and first

evidences of metastases in Drosophila (Stark, 1919b). Several years later,

Elizabeth Gateff became a legend by discovering the first tumor suppressor gene

(Gateff & Schneiderman, 1967, 1969, 1974) and further studies in Drosophila

produced crucial knowledge about the genes and proteins relevant to human

cancers (Duronio et al., 2017; Villegas, 2019).

In fact, many genetic screens in flies have revealed genes that result in

tumor growth and/or invasion, many of which have human homologues,

contributing to the identification of pathways and mechanisms underlying the

steps of cancer initiation (Villegas et al., 2019). Furthermore, the powerful genetic

toolkit available coupled with its short life span makes the fruit fly a simple and
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effective animal to mimic some of the steps of mammalian tumorigenesis and

performing high throughput genetic and pharmacological screens (Brumby et al.,

2005; Vidal & Cagan, 2006; Pendse et al., 2013; Villegas et al., 2018).

All these advantages led to groundbreaking works produced in different

labs around the world during the last 15 years that helped to establish Drosophila

as a potent model for cancer research (Edgar and Lehner, 1996; Milán et al., 1996;

Karim & Rubin, 1998; Milán et al., 1997; Bilder et al., 2000; Brumby and

Richardson, 2003; Grifoni et al., 2004; Read et al., 2004; Caussinus & Gonzalez,

2005; Igaki et al., 2006; Ferres-Marco et al., 2006).

3.2.1 The PI3K/Akt/Pten signaling pathway

The PI3K/Akt pathway is a highly conserved signal transduction cascade

that promotes survival and growth in response to many extracellular signals (Fig.

2). Activated Akt protein phosphorylates numerous substrates related to the

regulation of cell proliferation, such as inactivation of glycogen synthase kinase-3

(GSK3) which induces cell cycle progression, membrane translocation of the

glucose transporter (GLUT) and enhancement of protein synthesis by increasing

the phosphorylation of mammalian target of rapamycin (mTOR), for example

(Cross et al., 1995; Wang et al., 1999; Nave et al., 1999; Sekulic et al., 2000;

Lawlor & Alessi, 2001). Another important function of activated PI3K/Akt is the

inhibition of apoptosis, by phosphorylating and inactivating proapoptotic proteins.

This results in a PI3K-dependent cell survival response, by means in a resistance

to cell death (Franke et al., 1997; Stocker & Hafen, 2000).

The critical regulator of this pathway is the tumor suppressor Pten

(phosphatase and tensin homologue deleted on chromosome 10), which is

evolutionary conserved from flies to humans. It is, therefore, required to modulate

Akt activation, (Osaki et al., 2004; Palomero et al., 2007). As such, Pten loss of

function alterations as inactivating mutations or epigenetic silencing result in an

overactive PI3K/Akt pathway followed by increased cell proliferation and
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resistance to apoptosis (Sulis et al., 2003; Altomare & Testa, 2005; Georgescu,

2010), which creates a context for tumor development fueled by other oncogenes.

Importantly, one-third of human cancers show loss of the tumor suppressor PTEN

(Di Cristofano et al., 1998; Hollander et al., 2011), and the consequential chronic

activation of the protein kinase AKT1 (Stambolic et al., 1998; Song et al., 2012).

Chronic activation of PI3K/AKT signaling is commonly associated with a

poor prognosis and chemotherapy resistance (Lee et al., 2001; Perez-Tenorio et

al., 2002; Nam et al., 2003; Yamamoto et al., 2004).

Figure 2. The PI3K/Akt/Pten pathway (diagram created with BioRender).

Schematic and simplified view: Different growth factors, hormones and cytokines

can stimulate a tyrosin-kinase receptor (RTK) or a G Protein-coupled receptor

(GPCR) triggering the phosphorylation of the enzyme phosphatidylinositol 3-

kinase (PI3K). Activated PI3K then phosphorylates lipids on the plasma

membrane, forming the second messenger phosphatidylinositol (3,4,5)-

trisphosphate (PIP3). Akt, a serine/threonine kinase, is then translocated to the

membrane by interaction through its phosphoinositide docking sites, so that it can

be phosphorylated by phosphatidyl inositol-dependent kinase-1 (PDK1), which is

constitutively activated, leading to stabilization of the Akt active conformation.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707060/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707060/
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The pathway is negatively regulated by Pten gene, which encodes for a lipid

phosphatase that is responsible for PIP3 dephosphorylation and clearance.

Although potent inhibitors of PI3K and Akt are available, the pleiotropic

roles of this pathway during development and in adult tissue homeostasis point a

challenge to target Pten tumors without side effects associated to these inhibitors,

as well as overcome resistance caused by oncogenic addition of cooperating

partners such as Notch (Knoechel et al., 2014; Herranz et al., 2015; Knoechel &

Aster, 2015).

3.2.2 Notch signaling pathway in cancer

The Notch signaling pathway is a highly conserved cell signaling system present

in most multicellular organisms. Notch gene was first described by John S. Dexter

more than one century ago, who noticed the appearance of a notch in the wings of

the fruit fly (Dexter, 1914). This gene encodes for a transmembrane receptor that

is activated upon ligand binding and transduces extracellular signals into changes

in gene expression (Fig. 3) that are important for organizer formation and cell-cell

communication processes such as differentiation, self-renewal, proliferation and

apoptosis during embryonic and adult life (Grabher et al., 2006). While in

mammals there are four NOTCH paralogs (NOTCH1 to NOTCH4) that display

both redundant and unique functions with multiple ligands (Delta-like-1, -3, -4

and Jagged-1 and-2), the fly genome contains only one Notch receptor and two

ligands named Delta and Serrate (Artavanis-Tsakonas et al., 1995; Domínguez,

2014).

Notch signaling is dysregulated in numerous types of human cancers such

as leukemia, breast carcinomas, gliomas and neuroblastoma (Miele et al., 2006;

Palomero et al., 2007), although its role in tumorigenesis was first discovered in

studies in Drosophila (Artavanis-Tsakonas et al., 1995).

https://en.wikipedia.org/wiki/Conserved_sequence
https://en.wikipedia.org/w/index.php?title=Serrate_(ligand)&action=edit&redlink=1
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In humans it was found that NOTCH1 gene was found to be engaged in

chromosomal translocations in a subset of T-cell acute lymphoblastic leukemia

(T-ALL) (Ellisen et al., 1991). Notch pathway has a role in normal T-cell

development; thus, when NOTCH is hyperactivated, the differentiation process is

halted and immature cells can become vulnerable for additional oncogenic

mutations. Hence, deregulated NOTCH constitutes a very important aspect of T-

ALL and mutations in the NOTCH1 receptor are present in more than half of these

tumors (Sjölund et al., 2005; Palomero et al., 2006).

Although the use of Notch inhibitors was proposed as a therapeutic option

for many types of cancers, due to the broad spectrum of biological functions

associated with Notch signaling, their utilization resulted in severe side effects

and precluded its use in the clinic.

The discovery that single activated Notch, like most oncogenes, is

insufficient for developing cancer in vivo, has motivated our laboratory to adopt

genetic approaches to search for Notch partners in tumorigenesis. In 2006, the

Dominguez group established a highly specific forward genetic screen in

Drosophila to search for pairwise combinations of genes that functionally

cooperate with Notch pathway to develop tumors in vivo (Ferres-Marco et al.,

2006; Palomero et al., 2007). To this end, they coupled the UAS-Gal4 system

(Brand & Perrimon, 1993) to overexpress the Notch ligand Delta specifically in

the eye imaginal disc with the Gene Search method (Toba et al., 1999) to

systematically generate random gain or loss of function mutations. Like most

oncogenes, single activation of Notch caused a ‘large eye’ phenotype. However,

they found that a GS line inducing aberrant Akt1 activity synergizes with Notch

hyperactivation to promote tumor development in vivo (Palomero et al., 2007).
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Figure 3. The core Notch signaling pathway (diagram created with BioRender).

Schematic and simplified view: the receptor is composed of an extracellular ligand-

binding domain anchored to the membrane by its interaction with the

transmembrane/cytoplasmic domain. When the Notch receptor is activated by one

of its ligands, two proteolytic cleavage events are elicited: first by an ADAM-family

metalloprotease and second by the γ-secretase complex, which results in the release

of the Notch intracellular domain (NICD). The latter enters the nucleus and interacts

directly with the DNA-binding protein CSL and the co-activator Mastermind to

promote transcription of target genes (Zacharioudaki & Bray, 2014).

3.2.3 A brief overview of Notch-PI3k/Akt/Pten cooperation and challenge:

the T-ALL paradigm

Cooperation between oncogenic Notch and PI3K/Akt/Pten pathways is highly

prevalent in some human cancers (Rizzo et al., 2008; Louvi et al., 2012; Fruman

et al., 2014). For example, mutations or regulatory events leading to increased

activation of the PI3K/Akt/Pten pathway are frequently found together with
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activated NOTCH1 in T-ALL (Palomero et al., 2007; Gutierrez et al., 2009; Silva

et al., 2009), as well as in breast and lung carcinomas (Eliasz et al., 2010;

Muellner et al., 2011; Gonzalez-Garcia et al., 2012; Hales et al., 2014).

Early studies using a Drosophila model of gain-of-function tumorigenesis

and in vitro T-ALL studies have found that activated Notch and PI3K/Akt

signaling cooperate to trigger malignancy. Later studies using cellular lines and

mice demonstrated that cooperation and crosstalk between these signaling

pathways enable heightened proliferative signaling, growth, survival,

angiogenesis and therapy resistance (Palomero et al., 2007; Efstratiadis et al.,

2007).

The prognosis of T-ALL has improved over the years (Van Vlierberghe &

Ferrando, 2012), yet, the therapeutic options available are limited for patients with

resistance to the current treatments or cases of relapse, where lethality is very high

(Oudot et al., 2008). Usually, the simultaneous inhibition of Notch and PI3K/Akt

is necessary for maximal therapeutic response. Unfortunately, therapeutic

targeting of developmental signaling pathways poses substantial challenges owing

to their parallel roles in normal cells (Bray, 2006; Kopan & Ilagan, 2009, Fruman

& Rommel, 2014), resulting in short- and long term severe side effects (van Es et

al., 2005; Micchelli et al., 2003; Gore et al., 2013; Hales et al., 2014,

Ntziachristos et al., 2014; Hernandez Tejada et al., 2014; Fruman & Rommel,

2014). Consecuently, the pharmacological inhibition of these signaling pathways

not only effectively arrests the cell-cycle or kills the cancerous cells (Cullion et al.,

2009), but can also interfere with the normal development, growth, and

maturation of many tissues (Micchelli et al., 2003; van Es et al., 2005;

Ntziachristos et al., 2014).

Notably, gamma-secretase inhibitors (GSIs) were proposed as potential

therapy in T-ALL, since they effectively block Notch signaling (Palomero &

Ferrando, 2008). However, the results of treatment with GSIs in

relapsed/refractory T-ALL have shown no significant clinical responses and a

high incidence of gastrointestinal toxicity (Deangelo et al., 2006). In addition,

Palomero and coworkers (2007) found that the aberrant activation of the PI3K/Akt
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signaling pathway due to the mutational loss of Pten induces resistance to GSI

therapy (Palomero et al., 2007).

Therefore, the challenge now is identifying the different factors and the

molecular events that underlie the disease in order to develop more effective and

less toxic anti-neoplastic drugs.

3.2.4 Identification of drugs targeting oncogenic cooperation using

high‐throughput drug screening in Drosophila

In the past few years, Drosophila has been validated as a model used for

living‐organism‐based chemical screenings (Vidal & Cagan, 2006; Chang et al.,

2008; Pandey & Nichols, 2011; Dar et al., 2012; Gladstone et al., 2012;

Willoughby et al., 2013; Gao et al., 2014; Markstein et al., 2014). However these

studies tested already known antitumor drugs or drugs that target specific patways.

The predictive value of Drosophila to identify novel compounds and the potential

to target cooperative oncogenesis was understudied.

As explained previously, targeting Notch and/or PI3K/Akt pathways is

highly effective in vitro, but inhibition of these crucial developmental pathways in

vivo can have profound side effects with long-lasting impact in animal models and

is inefficient in some cases with resistance due to oncogenic cooperation; this

underscores the need for novel alternatives. Identification of drugs to target Notch

and PI3K/Akt cooperation in cancer is an unmet medical need. Here, we used the

Drosophila eye cancer paradigm of Notch and PI3K/Akt cooperative oncogenesis

in vivo (Palomero et al., 2007) (Fig. 4), to screen the Library of Pharmacologically

Active Compounds (LOPAC1280) (Jones & Bunnage, 2017) with the aim to

identify compounds capable to suppress tumorigenesis without causing side

effects to the treated animals and evaluate their use for treating human T-ALL.
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Figure 4. Hyperactivation of Notch and PI3K/Akt/Pten signaling induces tumorigenesis

in Drosophila.

(A) Scheme of the eye cancer model in larvae carrying eyeless-Gal4 (ey-Gal4) to activate the

constructs UAS-Dl and UAS-Pten-RNAi, inducing the simultaneous overactivation of Notch

and Akt pathways, which triggers the formation of tumors in the eye imaginal disc of third

instar larvae. (B) Tumor development can be monitored directly by visual observation in the

adult fly eye. Representative phenotypes are shown as wild type (ey>), hyperplasia (ey>Dl)

and tumor (ey>Dl>Pten-RNAi).



25

3.3 From inflammation to cancer

3.3.1 Definition of inflammation

Inflammation is, by definition, a defensive reaction involving the innate immune

system in response to harmful stimuli, such as pathogens or injured tissue. The main

function of inflammation is to eliminate the initial cause of cell injury, clear out necrotic

cells and damaged tissues and initiate tissue repair (Ferrero-Miliani et al., 2007).

Inflammation can be classified as acute or chronic. The process of acute

inflammation is initiated by resident immune cells already present in the involved tissue,

mainly macrophages. At the onset of an infection or other injuries, these cells undergo

activation and release inflammatory mediators (Cotran et al., 1998; Kumar et al., 2004)

such as vasoactive amines (histamine and serotonin), as well as eicosanoids

(prostaglandin E2 and leukotriene B4) and nitric oxide (NO) to remodel the local

vasculature (Fukumura et al., 2006; Dennis & Norris, 2015). These mediators induce

vascular changes such as vasodilation, increased permeability and increased blood flow,

facilitating the movement of plasma fluid, containing important proteins such as fibrin

and immunoglobulins (antibodies) into the inflamed tissue.

The cellular phase involves leukocytes which must extravasate from blood into

the inflamed tissue. Some act as phagocytes, removing pathogens and ingesting cellular

debris. If the inflammatory stimulus is a wound, different mediators can clot the injured

area and provide hemostasis, the first step of wound healing (Herrington, 2014). The

inflammatory response ceases when no longer needed to prevent chronic inflammation

and cellular destruction. The anti-inflammatory program includes the production of

mediators as lipoxins from arachidonic acid–derived prostaglandins and leukotrienes,

among other mechanisms (Cotran et al., 1998; Sato et al., 1999; Serhan & Savill, 2005;

Eming et al., 2007). When this does not occur, a chronic inflammation and cellular

destruction ensures, in some cases facilitating tumor formation (Coussens & Werb,

2002; Mantovani et al., 2008; Colotta et al., 2009; Wang & Dubois, 2010; Steinhilber et

al., 2010; Greene et al., 2011; Chen et al., 2009, 2014; Petkau et al., 2017).

https://en.wikipedia.org/wiki/Pathogen
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3.3.3 The innate immune response in Drosophila

Insects use an innate immune system that is homologous to mammals in order to build

different responses against microorganisms. Innate immunity of Drosophila

melanogaster consists first in physical barriers. If they succeed in entering the body

cavity, the animal recognizes them as foreign and activates both humoral and cellular

responses to kill and eliminate them.

Humoral secretion of antimicrobial peptides (AMPs) into the hemolymph by

fat body cells is used as a weapon to lysate microbes as soon as they reach the epithelial

barrier (Leclerc & Reichhart, 2004). The cellular response in Drosophila involves

blood type cells called hemocytes, classified in: plasmatocytes, crystal cells, and

lamellocytes (Meister & Lageux, 2003) (Fig. 5).

Equivalent to what occurs in mammals, in Drosophila, the inflammatory

response consists on the recruitment of innate immune cells to the site of microbial

infection or tissue damage. Injured cells lose their plasma membrane integrity and

release endogenous components which can be recognized as pro-inflammatory

molecules (Shen et al., 2013). Those factors are collectively called alarmins that

ultimately contribute to the downstream cellular and vascular manifestations of

inflammation. Then hemocytes migrate to wound, a process that depends on PI3K

(Wood et al., 2006), and respond triggering a robust inflammatory response to both

fight infection, if present, and clear wound debris (Razzell et al., 2011). However, the

inflammatory response can be also activated under certain circumstances without

infection or tissue injury, for example by tumor cells (Asri et al., 2019).

http://www.bioscience.org/2019/v24/af/4786/2.htm
http://www.bioscience.org/2019/v24/af/4786/2.htm
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Figure 5. Schematic view of the immune response in Drosophila against microbial infection or tissue injury

(diagram created with BioRender).

Left: Expression of AMPs: fungi and Gram‐positive bacteria induce the expression of drosomycin and others genes

through the Toll pathway, whereas Gram‐negative bacteria induce the expression of diptericin and others genes

through the IMD pathway (Lemaitre et al.., 1997; De Gregorio et al.., 2002; Irving P, et al.., 2001). The Toll and Imd

pathways integrate the signals from pattern recognition receptors (PRRs), which are immune proteins able to

recognize general microbial components (Janeway, 1989) and both pathways culminate in the activation of a nuclear

factor‐κB (NF‐κB)/reticuloendotheliosis (Rel) family transcription factor, thus inducing the expression of the

corresponding AMPs. Right: Plasmatocytes are equivalent to the mammalian monocytes/macrophages. Upon

infection, they mediate phagocytosis of microorganisms and apoptotic cells (Pearson et al.., 2003). Crystal cells are

required for melanization, which is an invertebrate‐specific defense mechanism. Melanization produces the black

pigment melanin, which is localized on the clot at the site of infection or injury in the hemocoele, and generates

bactericidal reactive oxygen species (ROS) (Buchon et al.. 2014). The key enzyme to form melanin is phenoloxidase

(PO) whose proenzyme is prophenoloxidase (PPO). PPOs are activated by recognition of microbial elicitors like LPS,

peptidoglycan, or β‐1,3‐glucan (Ashida & Brey, 1997). The Drosophila genome possesses three different genes

encoding PPOs. PPO1 and PPO2 are produced in crystal cells and have an important role in survival after infection.

However, function of PPO3 is not clear yet, although some reports suggest that PPO3 is expressed in lamellocytes as

a defense mechanism against parasitoid wasps (Soderhall & Cerenius, 1998; Dudzic et al., 2015). Lamellocytes

constitute a defense mechanism against parasites that is also typically restricted to invertebrates. They carry out a

process named encapsulation, usually accompanied by melanization, killing the parasite. (Leclerc & Reichhart, 2004).
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3.3. 2 Inflammation is a hallmark of cancer

Although the relationship between inflammation and cancer was first exposed long ago,

in 1863 by Rudolf Virchow (Balkwill & Mantovani, 2001), the molecular mechanisms

by which inflammatory signals help cancer cells to thrieve and form full blown tumors

remains a mystery. Virchow hypothesized that cancer is originated at sites of chronic

inflammation enhancing cell proliferation and nowadays is widely assumed that a pro-

inflammatory environment is a risk factor for neoplastic growth in cells that acquire

overproliferation capacity (Dvorak, 1986; Wu and Zhou, 2009; Grivennikov et al.,

2010).

Cancer cells produce a variety of cytokines that are mitogenic (stimulate cell

division) and chemokines aimed at the recruitment of specific leukocyte populations

that trigger an acute inflammatory response to resolve the neoplastic event (Homey et

al., 2002). However, while tumor-associated macrophages (TAMs) often have an anti-

tumorigenenic roles, they can also be subverted by cancer cells in ways that are not fully

understood to promote, rather that limit, neoplastic progression by further releasing

cytokines and growth factors (Schoppmann et al., 2002; De Palma and Lewis, 2013;

Lee et al., 2013b). Chronically inflamed tissues frequently also inhibit cell death

programs, thus resulting in amplification of aberrant cells with unrepaired DNA defects

that contribute to tumour growth (Coussens & Werb, 2002). Furthermore, tumor cells

take advantage of the trophic factors made by inflammatory cells to migrate alone or

with innate immune cells to spread and colonize distant tissues (Kim et al., 1998;

Coussens & Werb, 2002) (Fig. 6).

Less understood is how local inflammation evolves towards a systemic

inflammation that ultimately leads to multiorgan failure and the death of the host.

Recent epidemiological data suggest that treatments with anti-inflammatory drugs such

as those used to treat ashma can have tumor-prevention activity, supporting the idea that

a chronic systemic inflammation may facilitate tumorigenesis. In addittion, evidence

from studies in long-term users of nonsteroidal anti-inflammatory drugs (NSAIDs)

indicates that use of these drugs reduces cancer risk in different human cancers (Baron

& Sandler, 2000; Garcia-Rodriguez et al., 2001).
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Therefore, it is evident that inflammatory cells have an important role on tumor

development. Remains undefined if the tumor favors its own development by

subverting immune cell functions and evading host defense mechanisms or if, by

contrast, the recruitment of inflammatory cells may also represent an attempt by the host

to suppress tumor growth.

For the development of new therapies is necessary to decipher the mechanisms

involved in the immune response to tumors. Of particular importance is the use of

animal models to test the efficacy of new drugs with fewer side effects in whole body

organisms. Therefore, we have used our Drosophila tumor model to unravel how

inflammation is causally related to Notch and PI3K/Ak-driven tumorigenesis.

Figure 6. Diagram of tumor-inflammatory interplay (diagram created with BioRender).

Tumor cells produce chemokines to recruit macrophages and other leukocyte populations.

Inflammatory cells release cytokines and growth factors to potentiate tumor progression.
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3.4 Why and how cancer cells reprogram their metabolism

Tumor cells exhibit changes in their metabolic activities that are distinct compared to

neighboring normal cells, but similar to high proliferative cells in early development in

order to support their malignant growth. This process is referred to as reprogramming

of energy metabolism (Hanahan & Weinberg, 2011; Pavlova & Thompson, 2016;

Vander Heiden & DeBerardinis, 2017). These reprogrammed activities provide cancer

cells a selective advantage by supporting cell survival under stressful conditions or

allowing cells to grow uncontrollably and overproliferate (Fig. 7). Most classical

examples are focused on highlighting the diversity of cell-autonomous metabolic

changes on tumor cells and the microenvironment, such as altered bioenergetics, redox

balance and enhanced biosynthesis (Vander Heiden & DeBerardinis, 2017).

The general changes of catabolism, anabolism and redox balance in tumors

reflect the upregulation of signaling pathways that are commonly perturbed in cancer

cells (Cantor & Sabatini, 2012), particularly the PI3K/Akt/mTOR pathway (Yuan &

Cantley, 2008; Dibble & Manning; 2013).

3.4.1 Altered bioenergetics and biosynthesis of macromolecules

Otto Warburg in 1920 observed that cancer cells take up higher amounts of glucose and

produce lactate regardless of oxygen availability (Warburg, 1925; Liberti & Locasale,

2016). This phenomenon known as “Warburg Effect” or aerobic glycolysis has been

recognized in the last decade as a common cancer feature (Lunt & Vander Heiden, 2011;

Koppenol et al., 2011). Warburg proposed that cancer cells preferentially use glycolysis

for energy production instead of the more effective pathway, the mitochondrial

oxidative phosphorylation (OXPHOS) (Romero-Garcia et al., 2011), to obtain their

energy even under normoxic conditions, becoming greedy for glucose and increasing

the uptake through up-regulation of glucose transporters (DeBerardinis & Cheng, 2010;

Zheng, 2012). He added, some years later, that dysfunctional mitochondria are the root

of aerobic glycolysis (Warburg, 1956). This classical view has been extensively

challenged. Crabtree studied the heterogeneity of glycolysis in distinct tumor types and
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confirmed Warburg’s findings, corroborating that the tumors display a high rate of

glucose consumption. However, he further discovered that mitochondrial respiration

was variable, and many tumors exhibit a substantial amount of respiration (Crabtree,

1926). In addition, numerous studies failed to demonstrate defective respiration as a

general feature of malignant cells (Galluzzi et al., 2010; Koppenol et al., 2011). By

contrast, many studies have demonstrated that the great majority of tumor cells have the

capacity to produce energy through mitochondrial glucose oxidation (Weinberg et al.,

2010; Martinez-Reyes et al., 2016). Thus, despite their high glycolytic rates, most

cancer cells generate the majority of ATP through mitochondrial function. The

PI3K/Akt/Pten pathway plays an important role in the function of mitochondria and

therefore identifying mitochondrial targets phosphorylated by oncogenic Akt is

important to understand its role in cancer cell metabolism.

In addition, there is large evidence that mitochondria can support cancer cells

through a progressive increase in mitochondrial ROS (a recognized inducer of genomic

instability frequently involved in the malignant transformation process) or through

mitochondrial biogenesis, since energy production also ensures the synthesis of many

molecules indispensable for biosynthesis of macromolecules (Weinberg & Chandel,

2009; Sullivan & Chandel, 2014). Mitochondria are also involved in apoptotic and

autophagic cell death and have a close relationship with oncogenes and tumor-

suppressor genes.

Furthermore, anabolic pathways are essential to enable cells to produce the

macromolecules required for cell division and malignant growth. Biosynthesis of

proteins, lipids, and nucleic acids is under the control of the same signaling pathways

that govern cell growth and are activated in cancer, such as the PI3K-mTOR signaling

(Fig. 7). Therefore, cancer cells exhibit an incredible metabolic flexibility since they can

respond to the changing microenvironment and the intermediates available during tumor

evolution (Boroughs & DeBerardinis, 2015).
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Figure 7. View of signaling pathways that regulate cancer metabolism (picture taken from

DeBerardinis & Chandel, 2016).

TCA cycle intermediates are also used as precursors in biosynthetic pathways, which require

that carbon be resupplied to the cycle. Pyruvate carboxylation produces oxaloacetate from

glucose/pyruvate and glutaminolysis produces α-ketoglutarate from glutamine are commonly

enhanced in cancer cells (Liem et al., 2014). The β-oxidation of fatty acids also generates

acetyl-CoA, NADH and FADH2, which are used to produce mitochondrial ATP. Protein

biosynthesis is highly regulated and requires the acquisition of amino acids from the

extracellular space. The entry of amino acids stimulates mTORC1 exerts its effects on

translation and ribosome biogenesis to synthesize new proteins (Laplante & Sabatini, 2012).

Parallel to this, degradation of intracellular proteins and other macromolecules to supply

amino acids in cancer cells have been characterized extensively. This can be reached by

micropinocytosis, which supplies both nitrogen and carbon to central metabolic pathways

(Commisso et al., 2013). Fatty acids are required for membrane biosynthesis, lipidation

reactions and cellular signaling, thus tumor cells need to rapidly produce them. Fatty acid

synthesis requires acetyl-CoA and cytosolic NADPH. In most cultured cells, glucose is the

most prominent acetyl-CoA source for fatty acid synthesis (Yoo et al., 2004; DeBerardinis et

al., 2007) although glutamine and acetate could be an alternative carbon source (Schug et al.,

2015). On the other hand, it has been recently suggested that most NADPH used for fatty acid

synthesis arises from the pentose phosphate pathway (PPP), which is frequently

upregulated in tumors (Fan et al., 2014; Lewis et al., 2014). Finally, the synthesis of RNA

and DNA requires the complex biosynthesis of nucleotides as purine and pyrimidine. The

phosphoribosylamine backbone of these molecules is produced from ribose-5-phosphate, an

intermediate of the PPP (Stincone et al., 2014).
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3.4.2 Redox balance and oxidative stress in cancer

The reactive oxygen and nitrite species, hereafter referred globally as ROS, are

intracellular metabolites of oxygen that include the superoxide anion (O2−), hydrogen

peroxide (H2O2), and the hydroxyl radical (OH·), among others (Murphy, 2009). ROS

are mainly generated by the mitochondrial respiratory chain and in the cytosol by

NADPH oxidases (NOXs) (Brand, 2010). These free radicals are highly reactive and

can cause oxidative damage to intracellular macromolecules such as proteins, lipids and

DNA (Cross et al., 1987; Trachootham et al., 2008). However, recent studies have

unveiled the physiological role of ROS in cellular signaling, working as redox

messengers in several regulatory processes (Roy et al., 2017). In normal conditions, the

effect of ROS is balanced by non-enzymatic antioxidants as well as by antioxidant

enzymes such as superoxide dismutase (Sod) and catalase (Cat), maintaining ROS

homeostasis without causing collateral damage to cells (Kantner et al., 2013) (Fig. 8).

Notwithstanding, in cancer cells this balance can be broken owing to several

mechanisms such as activation of oncogenes, aberrant metabolism and mitochondrial

dysfunction (Trachootham et al., 2009). The subsequent increase in ROS levels can

contribute to cancer promotion in different manners. For example, mitochondrial ROS

seem to affect the PI3K/Akt pathway (Nemoto & Finkel, 2002) and it is also able to

stabilize hypoxia-inducible factor (HIF), one of the most important mechanisms

involved in the induction of the glycolytic pathway (Hielscher & Gerecht, 2015). The

increased levels of ROS in cancer cells need to be buffered; thus, tumor cells usually

have higher levels of ROS scavenging enzymes, preventing ROS-mediated activation of

pathways that induce cell death, like c-Jun N-terminal kinase (Jnk) and p38 MAPK,

oxidation of lipids, proteins, and DNA (Chandel & Tuveson, 2014).

The dual role of oxidative stress in promoting cancer development provides two

opposite therapeutic strategies. One one hand, increasing ROS-scavenging capacity

using antioxidants can abrogate ROS signaling and suppress growth in some tumors.

However, several antioxidants used in clinical trials were associated with increased risk

of cancer. This adverse effect of antioxidants might be related to the inhibition of ROS-

mediated apoptosis and the prevention of oxidative damage in tumors that are already

established and may therefore promote tumor-cell survival. An opposite strategy is to

use pharmacological agents that have prooxidant properties. Nevertheless, ROS can



34

modulate the activities and expression of many transcription factors and signaling

proteins that are involved in the stress response, cell survival and inhibition of apoptosis

through multiple mechanisms. Furthermore, it is also possible that such approach might

promote mutations in normal cells (Trachootham et al, 2009). Therefore, information of

the redox status of cancer cells before treatment and predicting outcome relies on the

use of animal models and avatars.

Moreover, tumors and cultured cancer cells exhibit different metabolic

phenotypes. In fact, while many cancer cell lines can quantitatively convert glucose to

lactate, glucose oxidation is prevalent in tumors (Marin-Valencia et al., 2012; Hensley

et al., 2016). The microenvironment can also affect the efficacy of drugs targeting

metabolism (Vander & DeBerardinis, 2017). Although new therapeutic targets are often

discovered by using simple models like cultured cells, it is essential to define their

context-specific roles in vivo, which underscores the need of using accurate whole-

organism models that mimic the genetic events that occur during tumor initiation and

progression in humans and, importantly, that mimic responses. In this study we used our

Drosophila tumor model, with an extensively validated predictive value (Villegas et al.,

2018), to identify the key downstream mechanisms that underlie the Notch-

PI3K/Akt/Pten oncogenic cooperation using a phospho-proteomic approach and diverse

functional assays, further revealing an important role of mitochondrial dysfunction and

ROS in tumor initiation.
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Figure 8. Generation of ROS in the mitochondria (diagram created with BioRender).

Mitochondrial electron transport chain (ETC) is located at the mitochondrial inner membrane and

comprises four protein complexes acting as electron donors and acceptors. Electrons are transferred from

NADH and FADH2 through the different complexes until electrons are passed to oxygen, which is

reduced to water. This process releases energy, which is used to generate a proton gradient by actively

pumping protons into the intermembrane space. Then, Complex V (ATP synthase) uses this

electrochemical gradient to phosphorylate ADP and form ATP. A small percentage of electrons directly

leak to oxygen, resulting in the formation of the free-radicals (ROS) that contribute to oxidative stress.

Antioxidant enzymes as Sod and Cat maintain ROS homeostasis in physiological conditions; however

cancer cells often present mitochondrial dysfunction, which ultimately results in higher levels of ROS.
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3.5 Diet and cancer: the connection between dietary restriction,

immunity and Pten tumors

Cancer is not merely a cell problem, since interactions not only occur within cancer-

containing tissues, but also within normal cells in distant tissues. Consequently, having

a cancer affects other tissues/organs of the host in manners that are not fully understood.

Whereas metabolic reprogramming has been widely studied at cellular level and

extended to the microenvironment of the tumor, the complex association between

whole-body metabolic changes, diet and cancer outcomes remains an open question.

Diet has a recognized benefit on the longevity of the animals. Indeed, numerous

studies in different animal models suggest that caloric restriction prolongs life span of

the tumor-bearing host (Hursting et al,. 2010; Longo and Fontana 2010) and reduces the

incidence and growth rates of various types of tumors (Tannenbaum & Silverstone,

1949; Tannenbaum & Silverstone, 1953; Weindruch & Walford, 1982; Zhu et al., 1997;

Pugh et al., 1999; Thompson et al., 2003; Sell, 2003). However, as first observed by

Rous “some spontaneous and transplantable tumor grafts are not affected by the more

rigorous diet” (Rous, 1914; Tannenbaum, 1954).

In 2009, Kalaany and Sabatini reported that cancer cells carrying mutations that

cause constitutive activation of the PI3K/Akt pathway are resistant to the anti-

tumorigenic effects of dietary restriction (Kalaany & Sabatini, 2009), confirming first

observations of diet-resistant tumors by Rous in 1914. Remarkably, the beneficial

effects of dietary restriction in cancer incidence and longevity (Kritchevsky, 2001; Lien

& Vander Heiden, 2019) are mediated in large part by the reduction of systemic

insulin/IGF-1/PI3K/AKT and TOR pathways (Vellai et al., 2003; Kapahi et al., 2004;

Kaeberlein et al., 2005; Powers et al., 2006). In mammals, mTOR induces protein

synthesis (Guertin & Sabatini, 2007) and can be activated by Akt. Animals exposed to

dietary restriction show a reduction in the levels of circulating insulin and insulin-like

growth factor-1 (IGF-1) (Kalaany & Sabatini, 2009), well-known activators of

PI3K/Akt pathway, further providing a feasible explanation of how those tumors with

overactivating mutations in PI3K/Akt/Pten pathway can overcome resistance to caloric

restriction.
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In Drosophila melanogaster, restriction of dietary yeast (the fly's main source of

protein and amino acids) to 5% of the ad libitum food intake significantly extends

lifespan of wild type animals (Grandison et al., 2009). However, this intervention also

enhances the proliferative potential of cells lacking Pten, promoting tumorigenesis and

leading to the death of the host through an unknown non-autonomous mechanism

(Britton et al., 2002; Nowak et al., 2013).

Importantly, the mechanistic links between metabolism and inflammation

between in the host with cancer is still missing. In Drosophila the fat body is the major

organ for nutrient sensing and immune function. Indeed, immune defense is

energetically costly (Lazzaro & Galac, 2006), thus must draw resources from other

physiological processes (Zerofsky et al., 2005; DiAngel et al., 2009). Therefore, low-

protein diet can also impact immune functions that are highly dependent on the

adequate availability of amino acids and can lead to vulnerability to infection (Kim et

al., 2007).

Moreover, modulating the amino acid composition of the diet can also slow

cancer growth. For example, serine depletion from the diet has a potential role in the

treatment of p53-deficient tumors (Maddocks et al., 2013). Besides, kynurenine, a

breakdown product of the amino acid tryptophan, can modulate both the innate and

adaptive immune system and has been implicated in cancer-associated

immunosuppression (Platten et al., 2014). Drug inhibition of this pathway can help

break immune tolerance and potentiate chemotherapy (Muller et al., 2005).

Nevertheless, investigations into how diet affects tumor growth remain an

underexplored area.

To conclude, diet directly affects tumor growth and the immune response

through several complex mechanisms and tumor cells compete with the host cells for

essential nutrients such as glucose, lipids and amino acids. We hypothesize that

different dietary components may exert different functions and responses in tumor cells

and the host depending on the genetic composition of the tumor. Since malnutrition is a

common accompaniment of cancer patients and tumor cells may have heterogeneous

nutritional requirements, it is important to determine whether such behaviors are

protective or detrimental to the host and what and how different dietary components

affect the host with cancer.
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However, the mechanisms by which cancer cells negative influence the host

metabolism are largely unknown. This area of research holds the promise for the

development of new therapeutic strategies that implement the pharmacological

inhibition of metabolic targets and dietary interventions against cancer. Here, we use an

innovative approach to evaluate the impact of Notch-Akt tumors in the whole-body

metabolism. By performing large-scale and tissue-specific metabolomics we discovered

a novel mechanism by which tumors in the eye imaginal disc of Drosophila can

reprogram the tryptophan-kynurenine pathway in distal organs as the fat body. Our

findings confirm for the first time that tumors can rewire the metabolism of the whole-

organism.
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4. Objectives

Oncogenic cooperation between Notch and PI3K/Akt pathways is associated with

aggressiveness and treatment resistance in many human cancers. Although selective

inhibitors of each pathway are available, targeting each pathway separately fails to

induce a therapeutic response, since together they have potent anticancer effect but also

produce adverse side effects. To identify new ways to specifically target their

cooperative tumorigenesis, we need to understand how activated PI3K/Akt/Pten

cooperates with activated Notch to initiate tumorigenesis and evade the innate anti-

tumor response. To this aim, we have used an unbiased, multidisciplinary approach,

which I hereby present in three sections with their specific objectives:

Section 1:

1.1 Identify compounds that in vivo suppress Notch-PI3K/Akt-induced

tumorigenesis as efficiently as the available Notch and PI3k/Akt inhibitors, but

without their side effects by screening the Library of Pharmacologically Active

Compounds (LOPAC1280).

1.2 Unravel the role of top hit compounds targeting the NOS and LOX-

inflammatory pathways in the Notch-PI3K/Akt-driven tumorigenesis.

1.3 Validate top hit compounds in human T-ALL cells with activated NOTCH and

loss of PTEN.

Section 2:

2.1 Identify phosphorylation targets of oncogenic Akt by performing phospho-

proteomics analysis.

2.2 Elucidate the role of ATP--synthase and mitochondrial dysfunction in Notch-

PI3K/Akt tumorigenesis.

2.3 Determine the role of stress-activated Jnk signaling in this tumorigenic context.

2.4 Characterize the alterations related to glucose catabolism in Notch-PI3K/Akt

tumors.
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Section 3:

3.1 Characterize whole-body metabolic reprogramming associated with

Notch/PI3K/Akt/Pten eye tumours using large-scale and tissue-specific

metabolomics.

3.2 Characterize the role of tryptophan-kynurenine pathway in the fat body of

tumor-bearing animals.

3.3 Identification of tryptophan-kynurenine pathway inhibitors with potential to

suppress Notch-PI3K/Akt tumorigenesis.

3.4 Determine if tryptophan starvation in hosts with Pten-loss tumors contributes to

dietary restriction resistance and the associated host lethality.
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5. Material and methods

Fly husbandry

All crosses were carried out at 26.5ºC and stocks were maintained at 25ºC in standard

fly food and a 12-hr light/dark cycle unless otherwise noted. We used the following

strains: w1118; ey-Gal4/Cyo twist-GFP; ey-Gal4>UAS-Dl/CyO twist-GFP; tubulin-

Gal4>UAS-GFP/TM6b. Other stocks used were: GstD1-GFP (a gift from D. Bohmann),

TRE40-RFP (a gift from Baena-Lopez) and Hml-dsRed.Δ (FBtp0069700) (a gift from

K. Brueckner). The rest of fly stocks used is listed in Table 1.

Symbol Annotation symbol Stock number Genotype

RNAi

ATP syn  CG3612 V34664 w1118; P{GD11030}v34664

ATP syn  CG2968 V100621 P{KK108804}VIE-260B

ATPsynβ CG11154 B28056 y1 v1; P{TRiP.JF02892}attP2

Bsk CG5680 V34138 w1118; P{GD10555}v34138

Bsk CG5680 B32977  y1 sc* v1 sev21; P{TRiP.HMS00777}attP2

Bsk CG5680 B31476 y1 v1; P{TRiP.JF01274}attP2/TM3, Ser1

Bsk CG5680 B31323  y1 v1; P{TRiP.JF01275}attP2

cn CG1555 B65029 y1 sc* v1 sev21; P{TRiP.HMC05903}attP40

Glut1 CG43946 V101365 P{KK108683}VIE-260B

Ldh CG10160 B33640  y1 v1; P{TRiP.HMS00039}attP2

ND42 CG6343 B28894 y1 v1; P{TRiP.HM05104}attP2

ND75 CG2286 V10733 P{KK108222}VIE-260B

ND-ASHI CG3192 V108745 P{KK108448}VIE-260B

Pten CG5671 B25967 y1 v1; P{TRiP.JF01987}attP2/TM3, Sb1

sima CG45051 B26207 y1 v1; P{TRiP.JF02105}attP2

Sod1 CG11793 V31551 w1118; P{GD7385}v31551

ss CG6993 V108732 P{KK107561}VIE-260B

st CG4314 B60134 y1 sc* v1 sev21; P{ TRiP.HMC05128}attP40

Trh CG9122 B25842 y1 sc* v1 sev21; P{TRiP.HMC05128}attP40

v CG2155 B50641 y1 v1; P{TRiP.HMC03041}attP2

w CG2759 B25785 y1 v1; P{y[TRiP.JF01786}attP2

UAS (Gain of Function)

Bsk CG5680 B9310 w*; P{UAS-bsk.B}2

Cat CG6871 B24621 w1; P{UAS-Cat.A}2

Gtpx1 CG12013 Missirlis et al., 2003 P{UAS-PHGPx.M}
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Ldh CG10160 B16829 y1 w67c23; P{EPgy2}EY07426

Nos CG6713 B56830
w*; P{w[+mC]=UAS-Nos.L}2; P{w[+mC]=UAS-

Nos.L}3

sima CG45051 B9582 w*; P{UAS-sima.B}2

Sod1 CG11793 B33605 w1118; P{UAS-Sod1}12.1

Alleles and other lines

Bsk CG5680 B6409 w1118P{UAS-bsk.DN}2

cd CG6969 B3052 cd1

cn CG1555 B263 cn1

P35 - B8421 P{UAS-p35.H}

sima CG45051 B60222 y1 w*; Mi{PT-GFSTF.2}simaMI05111-GFSTF.2C

ss CG6993 B2973 ss1

Trh CG9122 B10531 w1118; PBac{PB}Trhc01440

UAS-mitoGFP - B8442 w1118; P{UAS-mito-HA-GFP.AP}2/CyO

v CG2155 B137 v1

Table 1. List of fly stocks used in this study.

All the lines were obtained from either the Bloomington Drosophila Stock Center (B) or the Vienna Drosophila

Research Centre (V).

Drosophila image acquisition

Drosophila eye images were captured on a ZEISS Axiophot optical microscope and a

MicroPublisher 5.0 Camera (QImaging). Different focal planes are taken using a 5X

objective with 1.5 zoom and composite images are generated with AutoMontage

Essentials 5.0 software.

Identification of phosphoproteins by liquid chromatography coupled to mass

spectrometry

To identify activated proteins downstream of Notch-PI3K/Akt overexpression we

combined a standard two-dimensional gel electrophoresis (2-DE) protocol with

subsequent post-staining of gels with phosphospecific fluorescent Pro-Q Diamond dye,

a fluorophore that recognizes phosphate groups on proteins and peptides directly on gels.

The combination of these two methods for fluorescence detection of proteins allows

quantitative detection of phosphoproteins in 2-DE gels. Following, we employed

MALDI-TOF-MS for protein identification. We used eye imaginal discs from L3 larvae
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of the following genotypes: wild type (ey>Gal4) and the tumorigenic combination

Notch-PI3K/Akt overexpression (ey>Dl>Pten-RNAi). For each condition we dissected

out 900 eye imaginal discs (for triplicate biological samples comprising 300 discs each).

The following steps were carried out by the Proteomics Laboratory CSIC/UAB. The

soluble protein fraction was obtained after homogenization in 10 mM HEPES/NaOH

buffer (pH 7.0) containing 10 mM PMSF supplemented with 10 mM NaF and 1 mM

Na3VO4. Then purified and concentrated by acetone precipitation and 2-DE gels were

carried out as follows: in the first dimension, 300 mg protein were separated on IPG

(immobilized pH gradient) strips (18 cm, pH 4- 7; GE Healthcare) followed by SDS-

PAGE (12.5 % acrylamide, 0.75 mm) in the second dimension. Gels were stained with

Pro-Q Diamond phosphoprotein stain (Life Technologies), and SYPRO Ruby used for

total protein stain (Life Technologies). Images of the gels following fluorescent staining

were acquired using a FLA 3000 laser scanner (Fuji Photo Film) with 532 nm excitation

and 580 nm longpass emission filter for Pro-Q Diamond, and 473 nm excitation and 580

nm longpass emission filter for SYPRO Ruby. For 2-DE gel image analysis we used the

software Delta 2D (Decodon). To cut out putative phosphoproteins for the mass

spectrometric identification, the 2-DE gels were stained with colloidal Coomassie. The

resulting spot pattern coincides with that of SYPRO Ruby staining and, thus, the

information from the Pro-Q Diamond/SYPRO Ruby dual views can be used to define

the positions of the phosphoproteins in the Coomassie-stained gels. Finally, interesting

protein spots were excised manually from Coomassie-stained gels, and processed for

MALDI-TOF-Mass Spectrometry protein identification.

Immunostaining

Imaginal discs were dissected in cold PBS 1X, fixed in 4% PFA for 20 minutes and

washed three times in 0,4% PBT at RT. Incubation with primary antibodies was

performed in a wet chamber overnight at 4ºC, followed by three washes in 0,4% PBT

at RT. Secondary antibodies were added and incubated for 120 minutes in gentle

agitation at RT and rinsed thrice in 0,4% PBT. DNA was stained with DAPI (1 g/ml

in PBS) for 7 minutes. Three final washing steps were performed with PBT for 5

minutes each before imaginal discs were finally mounted in mounting medium

(Fluoromount-G®, ref.# 140626).
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The following primary antibodies were diluted in PBS at final concentrations

(1:100): rabbit anti-Caspase (CST, ref.# 9661); mouse anti-phospho-histone H3 (CST,

ref.# 9706); rat anti-Elav (DSHB, ref.#7E8A10); rabbit anti-GFP (Abcam, ref.# ab290,

Polyclonal) and anti-RFP (Evrogen, ref.# ab234).

The following secondary antibodies were used at 1 g/ml in PBS final

concentrations (1:200): donkey anti-rabbit Alexa Fluor® 488 (Invitrogen, ref.#

A21206); donkey anti-mouse Alexa Fluor 647 (Life Tech, ref.# A31571); goat anti-rat

Cy3® (Life Tech, ref.# A10522) and donkey anti-rabbit Alexa Fluor 555 (Life Tech,

ref.# A31572). Acquisition of confocal microscopy images was performed in a vertical

confocal microscope (LEICA SPEII) and processed with ImageJ software.

Cell proliferation analysis

Fixed eye imaginal discs from third instar larvae were immunolabeled with antibodies

against mouse anti-phospho-histone H3 (CST, ref.# 9706). Image stacks were acquired

with a 20x/0.75 objective and average projections from fourteen sections were

generated using ImageJ software. By visual analysis of the image stack, all mitotic cells

within each imaginal disc were counted. The absolute total number of mitotic cells per

disc was quantified and also the relative number normalized by area.

ROS levels visualization

The transgenic strain GstD1-GFP was generously provided by Dirk Bohmann (Sykiotis

& Bohmann, 2008). Fixed eye imaginal discs from third instar larvae with GstD1-GFP

reporter line were mounted in Fluoromount-G™ with DAPI (Invitrogen, ref.# 00-4959-

52) and visualized directly with a Leica SPEII confocal microscope. For direct

determination of ROS levels, the CellROX® Deep Red Reagent kit (Life Technologies,

ref.# C10422) was used. Eye imaginal discs were dissected in Schneider's Drosophila

Medium (Gibco, ref.# 21720024) and incubated with CellROX reagent (1:500) in

agitation at room temperature for 15 minutes. Samples were washed three times with

PBS, fixed in 4% PFA for five minutes, washed and mounted as described before.
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Serotonin immunostaining

Larval brains were dissected in cold PBS 1X, fixed in 4% PFA for 20 minutes and

washed thrice in 0,3% PBT at RT. A 30 minute blocking step with 1% PBT-BSA was

performed before adding the primary antibody. The mouse monoclonal serotonin

antibody (ThermoFisher, ref.#MA5-12111) was diluted in 1% PBT-BSA at a final

concentration of 1:80 and incubated in a wet chamber overnight at 4ºC, followed by

three washes in 0,3% PBT at RT. Samples were incubated with the donkey anti-mouse-

488 (1:1000 in 1% PBT-BSA) secondary antibody for 120 minutes in gentle agitation at

RT. Three final washing steps were performed with PBT for 10 minutes each before the

tissue was finally mounted in Vectashield® Antifade Mounting Medium with DAPI

(Vectorlabs, ref.# H-1200-10). Quantification of serotonin signal was performed using

ImageJ software.

In vitro ROS determination by Fluorescence-activated Cell Sorting (FACS)

T-ALL cells from human donors were treated with CellROX® reagent to detect basal

ROS levels and after treatment with the drug BW B70C (20 g/ml). The reagent was

added to the medium at a final concentration of 5 M and cells were incubated in a CO2

incubator for 30 min, followed by three washes with PBS. Cells were re-suspended in

PBS and analyzed by Fluorescence-activated Cell Sorting (BD FACS Aria III) without

delay.

Protein co-immunoprecipitation assays

Cell culture

To detect the interaction between Akt and ATPsyn in vitro, Kc167 cells were grown in

flasks with Schneider's Drosophila Medium (Gibco, ref.# 21720024) supplemented with

L-Glutamine, 10% fetal bovine serum and 0,5% gentamycin. 2x106cells were collected
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from the plate with a serological pipette, centrifuged for 5 minutes at 2000 r.p.m. and

washed once with sterile PBS. The resulting cell pellets were stored at -80ºC.

Lysate preparation

To extract protein content from cell pellets, 2ml of cold lysis buffer were added. Lysis

buffer is prepared supplementing RIPA buffer, which contains 20 mM Tris‐HCl [pH

7.4], 150 mM NaCl, 1% Triton and 5mM EDTA, with protease and phosphatase

inhibitor: 2 mM Pefabloc (Sigma‐Aldrich, ref.#11873601001), 1X cOmplete Mini

EDTAfree protease inhibitor cocktail (Sigma‐Aldrich, ref.#11836170001), 1mM

Na3VO4 and 1mM NaF. After this step, the samples were sonicated using a Biorruptor

sonicator (Diagenode). In order to completely break the cells, the samples underwent 4

cycles of 30 second ON/OFF at maximum power. After sonication, the lysates were

centrifuged 10 minutes at 4ºC and maximum speed. Supernatants were collected and

total protein concentration measured.

Bradford protein assay

Total protein concentration of the lysate was determined using the Pierce BCA Protein

Assay Kit (Thermo scientific, ref.# 23227) following manufacturer’s instructions.

Absorbance at 562nm was measured by a Biochrom EZ Read Microplate Reader.

Pre-clearing

Pre-clearing the lysate reduces non-specific binding and background. For that, lysates

were cleared adding magnetic beads conjugated with Protein A or G depending on the

species immunoglobulin isotype of the antibody (Millipore, ref. #16‐661), followed by

and incubation at 4ºC in a rotating shaker during 6 hours.

Immunoprecipitation

The cleared lysates were incubated with the primary antibody rabbit anti‐ATP5B

(Sigma-Aldrich, ref.#HPA001528) (1:50) at 4ºC overnight in a rotating shaker. After

the incubation, 60 μl of magnetic beads conjugated with Protein A or G were added to

each sample and incubated for 1 hour at 4ºC in a rotating shaker. The samples were then
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washed four times with lysis buffer. Finally, all the samples were resuspended in 30 μl

of 3X SDS Red Loading Buffer (NEB, ref.#B7703) with 1,25M DTT Reducing Agent

(1 μl for each 10 μl of 3X SDS buffer) and boiled for 10 minutes at 95ºC. Using a

magnet, the magnetic beads were separated from the sample to be analyzed by Western

Blot as described below.

Western blot

Protein samples were separated in 8-16% SDS‐PAGE gels (Bio-Rad, ref. #4561105)

and transferred to a PVDF membrane (Inmovilon‐P Transfer membranes, Millipore, ref.

#IPVH00010) previously activated with methanol. Membranes were blocked in PBS

with 0.1% Tween‐20 and 3% BSA (TBS-BSA) for 1 hour at room temperature. After

that, membranes were incubated overnight with the primary antibody at 4ºC: mouse

anti‐pospho-Ser473-Akt (Cell Signalling, ref.#1294) (1:1000). After incubation,

membranes were washed thrice with TBS and incubated during 1 hour at room

temperature with secondary antibody: HRP-conjugated mouse anti‐IgG (Jackson, ref.

#115‐035‐062, 1:20 000) diluted in TBS-BSA and followed by three washes with TBS.

Proteins were detected using the chemiluminescent substrate Immobilon Western

(Millipore, ref. #WBKLS0050) and the detector Amersham Imager 680 blot and gel

imager (GE Healthcare Life Sciences).

RT-qPCR

Sample extraction

Tissues from third instar larvae were dissected in cold 1X PBS and stored in

RNAlater® Stabilization Reagent (QIAGEN) at -80°C. For RNA extraction from whole

larvae, these were directly collected (5 larvae per sample), washed in PBS and stored at

-80ºC. Each condition was represented thrice.

RNA extraction and purification
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Either tissue or whole larva was disrupted using TissueLyser LT (QIAGEN). RNA was

isolated using the RNeasy Mini Kit (QIAGEN, ref.# 74106), according to the

manufacturer’s protocol. After that, RNA samples were treated with DNase (TURBO

DNA-free Kit, Applied Biosystems, ref.# AM1907) to eliminate the remaining DNA

from the samples, as indicated in the manufacturer’s protocol. Total RNA concentration

(ng/l) was measured using NanoDrop ND-1000 spectrophotometer.

Reverse transcription

To synthesize first-strand cDNA, 1 µg of RNA was reverse-transcribed adding the

following components: 500 ng of oligo(dT)12-18, 500 ng of random hexamers and 1 µl

10 mM dNTP Mix per reaction, reaching a final volume of 13µl. The mixtures were

heated at 65°C for 5 minutes and incubated on ice for at least 1 minute. Then, 4 µl 5X

First-Strand Buffer, 1 µl 0.1 M DTT, 1 µl RNaseOUT™ Recombinant RNase Inhibitor

(Invitrogen, ref.#10777-019) and 1 µl of SuperScript™ III RT (Invitrogen, ref.#18080-

093) were added per reaction (20µl final volume) followed by an incubation at 50°C for

60 minutes. Finally, the reactions were inactivated by heating at 70°C for 15 minutes.

To remove RNA complementary to the cDNA, 1 µl of RNase H were added and

incubated at 37°C for 20 minutes.

Quantitative PCR

Quantitative PCRs were performed using Power SYBR Green PCR Master Mix

(Applied Biosystems, ref.# 4367659), 10ng of template cDNA and gene-specific

primers, under the following conditions: 10 minutes at 95°C, 40 cycles of 15 seconds at

95°C and 40 seconds at 60°C. Real‐time PCR reactions were performed using a 7500

Real‐Time PCR system (Applied Biosystems), according to the manufacturer’s

recommendations. The results were normalized to endogenous Rp49 expression levels

(Table 2). Three separate samples were collected from each condition and triplicate

measurements were conducted. Data are presented as mean ± standard error of the

mean; statistical analyses were performed using two tailed Student’s t‐test.
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Target gene Forward primer Reverse primer Comments

RP49
TGTCCTTCCAGCTTCAAGATGAC

CATC
CTTGGGCTTGCGCCATTTGTG Housekeeping

puc
TCCGGCGGTCTACGATATAGAA

A
AGCAATAGATGCGGGAAAA Jnk/Bsk pathway

Glut1 TGATGCAGCTGAGCCAGCAA TCCAGGGCAGTCTTCATGCT

Glycolytic pathway

HK-A GGTGCACGAGTTATGTCAGC GTGCGATGGCATCCTTTAGC

Pfk CGAGCCTGTGTCCGTATGG AGTTGGCTTCCTGGATGCAG

Ald CATTCTGGGCATCAAGGTCG GGATCGACTGGTAGGATGGG

Tpi ATCAGGCTCAAGAGGTCCAC GCGTTGATGATGTCCACGAA

Gapdh1 TAAATTCGACTCGACTCACGGT CTCCACCACATACTCGGCTC

Eno CCCGTCAGATCTACGACTCC GATTGGCCTTGATCAGCTCG

PyK GGTCTTGGTGACTGGCTGAA TTCTTTCCGACCTGCAGACC

ImpL3 AGATCCTGACTCCCACCGAA GCCTGGACATCGGACATGAT

Pgi GGCAAACCCGTCAAGTACAG GCCATTAAAGCCTCCGTCTG

PPPPgd ATGAGCGGACAAGCGGATATT TAGGCGCACACCACGAATC

zw AGGAGGTGACTGTCAACATCA CGAAAGGCTTCTCGATAATCACG

sima AGCCCAATCTGCCGCCAACC TGGAGGCCAGGTGGTGGGAC
HIF1/sima

transcriptional factor

Spermine oxidase GCATGGTTGGAGGATGTCTT TCTGGGATTTTCCACCTCAG

Sima targetsSequoia TCGCAGTACACCTTCACGAC AGCAGCTCGTTCTTCAGCTC

fgaB CACCCTTTCTCTGCACAACA
TGTCCAAAAGTTCCCGAAAG

v
TCGATGAAACCAAGACGCTGGA

GA
GAAACCAGATGCGGGTGCCAGG

Kynurenine pathwaycn CGGTTATTGGAGCAGGACTTG TGCGAAAGAGCCAGGTTAATAC

CG6050/Kyat GTGCCCCGCTTTGTTCCCCT TGCGGCAGAGCTCGGCTATC

dNOS AACGTTCGACAAATGCGCAA GTTGCTGTGTCTGTGCCTTC Nitric oxide synthase

4E-BP GAAGGTTGTCATCTCGGATCC ATGAAAGCCCGCTCGTAG

Insulin signaling
InR

GCTGTCAAGCAAGCAGTGAA
TCTTTTTACCCGTCGTCTCC

Table 2. Primer sequences used to perform RT-qPCR experiments. Notice that RP49 is the housekeeping gene for

fly samples.
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Glucose uptake assays

For in vivo assessment of glucose uptake, tissues from dissected larvae were incubated

in PBS with 0.25 mM 2-NBDG (Abcam, ref.# ab146200) for 45 min at room

temperature, washed twice in PBS for 10 min, fixed 20 min in PBS + 4% PFA, and

washed again twice for 10 min in PBS. All washes and the fixation were done with

precooled PBS. Tissues were mounted in Fluoromount-G™ with DAPI (Invitrogen,

ref.# 00-4959-52), and images were immediately collected with a Leica SPEII confocal

microscope. 2-NBDG fluorescence was excited at 488 nm and detected at 500–520 nm.

UHPLC-Q-TOF-MS-based Nontargeted Metabolomics

Metabolite Extraction

Methanol: chloroform: water (3:1:1 v/v/v) at 0ºC was used for sample quenching

extraction. Larvae were then homogenized for 30 seconds at 6m/s speed by using

220mg of glass beads (QIAGEN, ref.#13116-400) and the TissueLyser-LT cell

disruptor (QIAGEN, ref.# 85300). The homogenates were then briefly centrifuged and

removed from the cell debris and glass beads. Finally, extracts were stored at -20ºC

until required. Three replicates were carried out for each condition.

UHPLC-Q-TOF/MS

This step was carried out by the CIAL-Metabolomics Platform core facility

(Universidad Autónoma de Madrid). The samples were analyzed in positive mode by an

Agilent 1290 Infinity UHPC equipment coupled to an Agilent 6540 UHD exact mass

spectrometer with quadrupole-time-of-flight analyzer (Q-TOF) and an ESI Jet Stream

interface.

Metabolic fingerprinting

To obtain the metabolic fingerprint, the M/Z signals corresponding to the metabolites

present in the samples were acquired. Subsequently, through a statistical analysis of the
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signals acquired, relationships based on differences and/or significant similarities of the

"metabolic fingerprint" were established between the groups of study. Those M/Z

signals that allow to classify the groups of samples were identified tentatively using

databases to compare experimental and theoretical exact mass, as explained in more

detail below.

i. Data processing

The processing of the chromatograms obtained was carried out using the Agilent

MassHunter Qualitative software (v. 8.0) together with the Mass Profiler Professional

software (v. 14.5). All the samples, as well as the injection and extraction blanks, were

analyzed simultaneously using the same procedure. A recursive analysis was carried out

to obtain the list of metabolites, with the area of each of them, its exact mass and its

retention time. For the detection of the peaks, the "Find by Molecular Feature"

algorithm of the MH Qualitative software was used. Once the list of peaks for each

sample has been obtained, they are aligned, using the Mass Profiler Professional

software. The integration of this list of aligned peaks is done with the "Find by

Formula" algorithm of the MH Qual platform.

In the post-processing of the samples, the median of the areas of each of the

technical triplicates was taken (triplicate injections of the same sample). Then, all the

peaks whose area was less than 3 times the peak area in the extraction targets were

filtered, as well as all those that are not in at least 66% of all the samples belonging to

the same group. A total of 437 metabolites were found in the samples. To conclude the

processing, the normalization of the areas of each peak was carried out, assuming that

the total sum of the areas of the peaks of each sample must be equal within the same

group and the peaks not found (those that have not been found in any sample due to the

automatic peak detection process) were filled by a value equal to half the lowest value,

with the objective of not showing artifacts in the statistical analysis later.

ii. Statistical analysis

The normal distribution of the data was verified and scaled using the Pareto

algorithm. The statistical analysis was carried out using the software implemented in the
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Metaboanalyst 3.0 tool and is divided into two parts. On the one hand, an analysis of the

4 groups is carried out at the same time, to have an initial look and to detect possible

outliers. On the other hand, once the outliers have been checked, a comparison is made

two to two, that is, between the Notch+, Pten- and Tumor versus the Wild Type. The

results of the significant metabolites in each of the comparisons are summarized in

Table 6 and Suppl. Table 1. Finally, for the comparison of all the groups, a Principal

Components Analysis (PCA) was carried out (Fig. 9).

Figure 9. PCA of all the study samples (“mix” corresponds to the

pools of each group). Each sample is grouped with those of its own

group. A greater variability (greater variation in the first component)

is seen in the Pten- and Notch+ samples, but no outlier was observed,

as the diagrams represent a limit of 95% confidence for each group.

The different genotypes correspond to: ey> (wild type), ey>Dl

(Notch), ey>Pten-RNAi (Pten) and ey>Dl>Pten-RNAi (tumor).

iii. Metabolites identification

The metabolites that present discriminant values in the different comparisons were

identified using the Metlin and KEGG databases. This identification was tentative, since

it simply uses the values of mass, isotopic pattern and retention time as orientation.



57

Gas Chromatography-Mass Spectrometry (GC-MS)-based Targeted Metabolomics

Sample collection

For whole larvae assays, 15 wandering L3 larvae were collected in 1.5mL

microcentrifuge tubes, washed thrice in cold PBS to remove the remaining food and

centrifuged at 2,000×g for 1 min at 4 °C. The residual PBS was removed, samples were

freezed in liquid nitrogen and immediately stored at -80ºC freezer.

For hemolymph extraction, 50 third instar larvae were carefully punctured in the

thorax using a needle. Punctured flies are placed in a 0.5 ml microfuge tube that

contains a hole at the bottom of the tube. This tube was then placed within a 1.5 ml

collection tube and centrifuged at 9,000 × g for 5 minutes at 4°C, yielding

approximately 10 µl of hemolymph per sample. Fat bodies of 30 larvae per sample were

dissected in PBS and collected in eppendorfs placed in a -20ºC freezer to preserve tissue

integrity. Finally, all tissue samples were freezed in liquid nitrogen and immediately

stored at -80ºC freezer.

Transfer of Samples to Bead Tubes

Each larval or tissue sample was transferred to a 2 mL screwcap tubes containing 1.4

mm ceramic beads (Fisherbrand™, ref.# 15-340-153) and quickly weighed using an

analytical balance. The larval/tissue pellet mass was used to normalize the metabolomic

data and sample tubes were keeped in liquid nitrogen prior and after the transfer.

Metabolite Extraction

All sample tubes were placed in a -20 °C cooler during the following steps. We added

0.8 mL of prechilled (-20 °C) 90% methanol containing 2 µg/mL succinic-d4 acid

(internal standard) into each tube. NOTE: for this technique is only used HPLC grade

H2O and methanol. Samples were homogenized for 30 second at 6.45 m/s using the

Omni Bead Ruptor Homogenizer (OMNI, ref.#19-040) at 4 °C. The homogenized

samples were incubated in a -20 °C freezer for 1 h. After that, tubes were centrifuged at

maximum speed for 5 min at 4 °C and 600 µL of the supernatant were transferred into a
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new 1.5 mL tube. To remove all the solvent, sample tubes with open lid were placed in

a vacuum centrifuge at room temperature overnight.

Chemical Derivatization

A solution of 40 mg/mL methoxylamine hydrochloride (MOX) (Sigma-Aldrich, ref.#

226904) in anhydrous pyridine (Millipore Sigma, ref.#PX2012-7) was prepared daily.

Both MOX and pyridine are extremely sensitive to H2O, therefore these chemicals must

be stored in a desiccator. The MOX in the pyridine solution was incubated in a thermal

mixer at 35 °C for 10 min at 600 rpm. Hereafter, 40 µL of MOX-anhydrous pyridine

solution was added to each dried sample, vortexed and incubated at 35 °C for 1 h at 600

rpm in a thermal mixer. All samples were centrifuged at maximum speed for 5 min to

remove the particle matter. After that, 25 µL of supernatant were transferred into an

autosampler vial (Thermo ref.#PD199740) with a 250 µL deactivated glass

microvolume insert (Agilent, ref.#51818872). Finally, 40 µL of N-methyl-N-

trimethylsilyltrifluoracetamide (MSTFA) containing 1% TMCS (Thermo,

ref.#PD199740) was added to each vial. A crimper tool was used to place a cap on the

autosampler vial and the samples were incubated at 37 °C for 1 hour at 250 rpm.

GC-MS Detection

We conducted this step with the assistance of the Mass Spectroscopy Core Facility of

Indiana University (IN, USA). The GC-MS detection was carried out in a 7890B Gas

Chromatograph + 5977 Single Quadrupole instrument (Agilent Technologies). The

mass spectrometer was set to execute a SIM/SCAN acquisition mode over a mass range

of 50–500 m/z, allowing to the high sensitivity identification of the metabolites of

interest.

Data Analysis

Targeted analysis was focused on measuring the abundance of a defined set of

metabolites that we describe below (Table 4). For each compound of interest, the

retention time and the representative peaks of the ion profile were used for the rapid
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identification and subsequent quantification in our samples. Note: the retention time

values detailed in Table 3 are specific for these samples in this instrument. A list of

aminoacids and some intermediates of glycolysis and krebs cycle was already available

in the lab, whereas for compounds related with the kynureine pathway was necessary

the pre-analysis of pure standards (Table 4). Qualitative Analysis B.07.00 and MS

Quantitative Analysis for GC-MS (Agilent MassHunter) software were used for

qualitative and quantitative detection of metabolites, respectively. NIST Mass Spectral

Library allowed the validation of the different compounds.
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Metabolite Retention time (min) Representative ion(s) (Thompsons)

d4-succinate (internal standard) 8.45 251

D-Glucose 22.05 319

Pyruvate 3.69 174

Lactate 3.87 219

Citrate 20.25 273

-ketoglutarate 14.77 198

Succinate 8.52 247

Fumarate 9.26 245

Malate 12.79 245

2-hydroxyglutarate 14.75 247

Alanine 4.44 190

Valine 6.49 218

Leucine 7.62 158

Isoleucine 8.16 218

Proline 8.22 216

Glutamine 19.07 347

Glycine 8.45 276

Serine 9.75 218

Threonine 10.40 218

Methionine 13.36 176

Pyroglutamate 13.40 258

Aspartate 13.50 232

Cysteine 14.27 220

Glutamate 15.75 348

Phenylalanine 15.79 218

Asparagine 16.89 231

Lyisine 22.10 317

Tyrosine 22.42 218

Tryptophan 27.56 291

3-hydroxykynureine 31.24 395

Kynureine 27.17 424

Xanthurenic Acid 28.31 406

Serotonin 31.58 290

Kynurenic acid 24.73 231

Table 3. List of metabolites analyzed by GC-MS in whole larvae, fat body and hemolymph and their respective

retention times (min) and representative ions (Thompsons).
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Compound/standard Ref.# Solvent
Final concentration

(g/l)

L-Tryptophan Fisher Scientific BP395

60% Methanol in water

4

Serotonin hydrochloride

Sigma-Aldrich

H9523 4

L-Kynurenine K8625 4

Xanthurenic acid D120804 pyridine 1

3-Hydroxy-DL-kynurenine H1771
Water for HPLC

1

Kynurenic acid K3375 1

Table 4. List of the standard metabolites. Table shows solvents and final concentrations of each metabolite to

proces by GC-MS.

Protein restriction analysis

According to Bjordal et al, a corn-flour-based food without yeast is deficient in protein

content (~60% less than normal food) and specially poor in tryptophan and lysine

essential aminoacids. Therefore, to assess the effect of protein restriction in

tumorigenesis levels, our standard food recipe was prepared reducing the amount of

yeast to a final concentration of 5g/L (Table 5).

Ingredient Amount

Water 1L

Agar 9,5g

Sucrose 63g

Yeast 31,5g (5g in low yeast diet)

Wheat flour 47g

Nipagin 4,4mL

Propionic acid 8,2mL

Table 5. Standard and low-yeast food recipes.
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Feeding experiments

2-deoxyglucose (Sigma-Aldrich, ref. #D8375) was dissolved in water and added to the

standard food at 100 g/ml final concentration. Tryptophan (Sigma-Aldrich, ref.

#T0254) was dissolved in water and added to the standard/low yeast food at 0,09 and

0,2 mg/ml final concentration (Grandison et al., 2009). TDO inhibitor 680C91 (ref.

#4392) and KMO inhibitor UPF 648 (ref. #4926/10, Tocris Bioscience, Bristol, UK)

were dissolved in dimethyl sulfoxide (DMSO; 0.001% final) and in 100% ethanol

respectively and subsequently added to the standard food at several concentrations (30,

100, 300 and 500 M). 3-hydroxykynurenine (Sigma-Aldrich, ref. #H1771) and

Xanthurenic acid (Sigma-Aldrich, ref. #D120804) were dissolved in water and DMSO

respectively, and then mixed with standard maize food at the concentrations of 1 and 2

mg/ml. All crosses were set up on the supplemented media, and tumor incidence was

scored in emerged adult flies.
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6. Results

Section 1. PI3K/Akt cooperates with oncogenic Notch by inducing Nitric Oxide-

dependent inflammation

Section 2. PI3K/Akt/Pten-induced mitochondrial dysfunction cooperates with Notch in

tumorigenesis

Section 3. Notch-PI3K/Akt/Pten tumors reprogram whole-body metabolism via the

Tryptophan-Kynurenine pathway
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Section 1. PI3K/Akt cooperates with oncogenic Notch by

inducing Nitric Oxide-dependent inflammation
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Esther Ballesta-Illán, József Mihály,
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SUMMARY

The PI3K/Akt signaling pathway, Notch, and other
oncogenes cooperate in the induction of aggressive
cancers. Elucidating how the PI3K/Akt pathway
facilitates tumorigenesis by other oncogenes may
offer opportunities to develop drugs with fewer side
effects than those currently available. Here, using
an unbiased in vivo chemical genetic screen in
Drosophila, we identified compounds that inhibit
the activity of proinflammatory enzymes nitric oxide
synthase (NOS) and lipoxygenase (LOX) as selective
suppressors of Notch-PI3K/Akt cooperative onco-
genesis. Tumor silencing of NOS and LOX signaling
mirrored the antitumor effect of the hit compounds,
demonstrating their participation in Notch-PI3K/
Akt-induced tumorigenesis. Oncogenic PI3K/Akt
signaling triggered inflammation and immunosup-
pression via aberrant NOS expression. Accordingly,
activated Notch tumorigenesis was fueled by
hampering the immune response or by NOS overex-
pression to mimic a protumorigenic environment.
Our lead compound, the LOX inhibitor BW B70C,
also selectively killed human leukemic cells by damp-
ening the NOTCH1-PI3K/AKT-eNOS axis.

INTRODUCTION

Tumorigenesis requires cooperative action among two or more

signaling pathways or genes, but the basis of cooperation often

remains undefined. Concurrent activation of Notch and phos-

phatidylinositol 3-kinase (PI3K)/Pten/Akt pathways can trigger

tumorigenesis in flies and mice (Palomero et al., 2007; Piovan

et al., 2013; Hales et al., 2014; Kwon et al., 2016). This oncogenic

combination is also prevalent in aggressive cancers in humans

(Eliasz et al., 2010; Kwon et al., 2016; Muellner et al., 2011),

such as pediatric T cell acute lymphoblastic leukemia (T-ALL)

(Palomero et al., 2007; Gutierrez et al., 2009). Although Notch

and PI3K/Akt inhibitors effectively kill cancer cells, only their

combination can bypass single-agent pathway inhibitor resis-

tance (Hales et al., 2014). Unfortunately, these pathways have

many physiological functions (Bray, 2016; Engelman, 2009;

Fruman and Rommel, 2014; Kopan and Ilagan, 2009), so the

systemic inhibition of Notch or PI3K/Akt results in severe and

lasting side effects (Akinleye et al., 2013; Ntziachristos et al.,

2014). Therefore, to minimize side effects, drugs that dampen

oncogenic interactions more selectively are needed.

The fruit flyDrosophila is a suitable genetic model for exploring

themolecular mechanisms of cancer (Bangi, 2013; Pagliarini and

Xu, 2003; Ferres-Marco et al., 2006; Vidal and Cagan, 2006;

Palomero et al., 2007) and for developing drugs using pheno-

type-based screening approaches (Dar et al., 2012; Gladstone

and Su, 2011; Gonzalez, 2013;Markstein et al., 2014;Willoughby

et al., 2013; Bangi et al., 2016). Here, using a Drosophila cancer

model (Palomero et al., 2007) to screen the Library of Pharmaco-

logically Active Compounds (LOPAC1280), we have identified

compounds capable of suppressing Notch-PI3K/Akt coopera-

tive tumorigenesis. Notch inhibitors impeded the development

of these tumors, but this was accompanied by high animal

mortality and notched wings—two effects characteristic of

Notch deficiency. However, we found many other compounds

capable of blocking tumor formation by this oncogene coopera-

tion without side effects. These include the anti-inflammatory

drug BWB70C (our top hit compound, which suppressed tumor-

igenesis with the lower dose), a lipoxygenase (LOX) inhibitor, and

drugs inhibiting nitric oxide (NO) production.

NO is generated by nitric oxide synthase (NOS) and is a key

signaling molecule in inflammation, immune response, and can-

cer (Fukumura et al., 2006). Arachidonate metabolites produced

by LOX enzymes are also primary mediators of inflammation

(Dennis and Norris, 2015) and cancer (Chen et al., 2009, 2014;

Wang and Dubois, 2010; Greene et al., 2011; Steinhilber et al.,

2010). Inflammation is an important contributing factor to solid

cancer associated with infection and autoimmunity (Coussens

and Werb, 2002) and with certain oncogenes (e.g., Myc

and Ras) (Mantovani et al., 2008). Therefore, it is particularly

important to understand the interplay between these inflamma-

tory mediators and Notch-PI3K/Akt cooperative oncogenesis.
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In vertebrates, the expression of inflammatory markers such

as reactive oxygen species, NO, and macrophage infiltration

are hallmarks of inflammation in cancer (Colotta et al., 2009;

Mantovani et al., 2008). In Drosophila, inflammation contributes

to adult gut tumorigenesis (Petkau et al., 2017), and both LOX

(Miller et al., 1994; Merchant et al., 2008; Stanley, 2006) and

NO (Nappi et al., 2000) pathways participate in general inflam-

matory responses to infection and/or epithelial tissue repair

(Wood and Martin, 2017). However, whether Drosophila NOS

and LOX have a role in tumorigenesis was unknown. To address

this, we genetically validated the contribution of the NOS and

LOX pathways and inflammation in Notch-PI3K/Akt-driven

tumorigenesis. Furthermore, we provide proof-of-concept evi-

dence that BWB70C blocks tumorigenesis in human T-ALL cells

by dampening a conserved NOTCH1-PI3K/AKT-eNOS axis.

RESULTS

Unbiased Drug Screen for Targeting Notch-PI3K/Akt
Oncogenic Cooperation
We devised a phenotype-based chemical screen to identify

agents that blockNotch-PI3K/Akt oncogenic cooperationwithout

harming normal cells. We used our Drosophila eye cancer model,

which captures themolecular features ofNotch-PI3K/Akt cooper-

ative oncogenesis (Figures 1A and S1A) (Palomero et al., 2007).

The Notch ligand Delta (Dl) is co-expressed with Akt or with an

RNAi transgene to silence Pten, a PI3K-negative regulator, using

the eye-specific promoter eyeless (ey)-Gal4. The cooperative ac-

tion of these pathways is what causes the development of eye

tumors, and the activation of either pathway alone is not sufficient

to promote tumorigenesis (Figure 1A) (Ferres-Marco et al., 2006;

Palomero et al., 2007). The ey > Dl > Akt and ey > Dl > Pten-RNAi

models yield a similar robust eye tumor phenotype (tumor

incidence, 70%) (Figures 1A and S1A), allowing the identification

of compounds that suppress or further enhance the tumor

phenotype. Systemic inhibition of Notch using the g-secretase

inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine

t-butyl ester (DAPT) not only blocks tumorigenesis but also inter-

feres with normal growth, resulting in smaller notched wings and

lethality (Figures 1A and S1B). Systemic inhibition of PI3K/Akt

signaling using LY294002 or wortmannin also resulted in high

lethality (Figure S1B), indicating toxic side effects comparable

to those seen in mice and humans (Muellner et al., 2011).

We screened the LOPAC1280 library of 1,280 small molecules,

including a set of U.S. Food and Drug Administration (FDA)-

approved anticancer drugs as internal controls. An annotated

list of the known targets of the LOPAC1280 drugs is readily

available, enabling the transformation of phenotypic screening

results into a target-based drug discovery approach (Jones

and Bunnage, 2017). We administered each drug in food during

the larval period at a concentration of 100 mg/mL in three double-

blind rounds (Rs) and then assessed the impact on tumorigen-

esis and normal tissue growth in adults (Figure 1B). This allowed

us to directly evaluate responses and side effects. Antitumor

response was calculated as the ratio of non-tumor eyes to

tumor eyes in treated flies, normalized to the vehicle control

Figure 1. Drug Screen Selectively Targeting Notch-PI3K/Akt Cooperative Oncogenesis

(A) Larval eye imaginal discs (upper row) and adult eyes (lower row) of the control and two tumor models, involving co-overexpression of Dl and either Akt or

Pten-RNAi (BL25967) using ey-Gal4 (ey >). Below: example of the adult resulting from GSI (DAPT)-treated, tumor-bearing larva. The side effect (notched wings)

mimics genetic Notch pathway inhibition.

(B) Schematic of the screen design. Tumor-bearing larvae (non-GFP) were treatedwith compounds (100 mg/mL in the food) or vehicle. Below: representative adult

fly ey > Dl > Akt treated with the top hit compound BW B70C during the larval stage.

(C) Heatmap of the screen results (right column, mean effect). Green, suppression; red, enhancement; gray, no significant change. Arrows point to anticancer

drugs in the LOPAC1280. n, number of larvae per drug per round (R).
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group (Figure S1C). Compounds that showed a lethal effect in R1

(n = 30 larvae/drug) were re-tested at lower doses (20 mg/mL).

After R1, any compound causing a response greater than 20%

was re-screened (198 suppressor and 276 enhancer com-

pounds) (Figure S1D) using a larger number of animals (n = 60

larvae/drug/R). This significantly reduced the number of false

positives and increased reproducibility (>80%) between R2

and R3 (Figure 1C). After screening approximately 100,000 tu-

mor-bearing flies, we found 90 compounds (Figure 1C) that

strongly (>60% response) suppressed (61) or enhanced (29)

tumorigenesis (see representative eyes and wings in Figures

1A and 1B to compare responses and side effects of DAPT

and BW B70C) (Tables S1 and S2). All positive hits were

counter-screened in larvae with single oncogene overexpres-

sion; none of them rescued single Dl- or Akt-induced pheno-

Figure 2. NOS Facilitates Notch-Induced

Tumorigenesis

(A) Tumor incidence (as a percentage) in control

flies and after pharmacological or genetic inhibi-

tion or activation of NOS. Below: representative

images of control and L-NAME-treated eyes.

(B) Schematic of NO pathway and antitumorigenic

drugs identified in our screen and RNAi-based

validation.

(C) Tumor incidence (as a percentage, left graph)

and normalized survival (right graph) in RNAi-

silenced flies (n = 50–100 eyes/genotype).

(D) Tumor incidence (as a percentage) in flies co-

expressing Dl and NOS. Below: representative

images of control and BW B70C-treated animals.

(E) Tumor incidence (as a percentage) in Notch-

pipsqueak (psq) lola (eyeful cancer) flies with or

without trichostatin A (TSA) or BW B70C treat-

ment.

Mean ±SD. *p < 0.05, **p < 0.01, ***p < 0.001 (one-

way ANOVA followed by Bonferroni’s multiple

comparisons test).

types (data not shown), indicating that

the identified drugs target the coopera-

tive action of Notch and Akt.

Our screen identified 15of the 21 known

anticancer compounds included in the

library (Figure 1C; Table S3) as strong (13)

and moderate (2) suppressors of tumori-

genesis. Of the remaining 6, 2 were strong

enhancers, 2 were lethal, and 2 had no

effect. We were able to single out these

anticancer drugs, some of which are

approved by the FDA for the treatment of

leukemia and solid cancers, thus confirm-

ing the validity of our screen. These results

show a strong positive correlation with the

response observed in human cells.

RNAi-Based Validation of Drug
Screen Results
The remaining 48 strong suppressors

(excluding the 13 known anticancer

drugs) are previously unappreciated modulators of Notch-

PI3K/Akt-driven tumorigenesis. Because most compounds

have a known human molecular target, we validated these re-

sults genetically by examining whether tumor-specific RNAi

downregulation of candidate target genes (Figures S2A and

S3A) mimicked the action of the corresponding compounds.

We targeted 92 RNAi lines corresponding to 77 ortholog genes

of the annotated and predicted molecular targets of the hit com-

pounds (Table S4). We reasoned that an antineoplastic effect

would also rescue tumor-associated lethality. PI3K-RNAi was

used as a blind positive control, and effects were assessed in

adult flies. As a result, we confirmed that 64% of the compounds

act through conserved targets rather than indirect side effects

(Figures S2B and S2C). This indicates that despite the evolu-

tionary distance of Drosophila from humans, we can use our
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Drosophila-based strategy to identify anticancer drugs, as well

as their clinically relevant targets.

PI3K/Akt Fuels Notch-Driven Tumorigenesis through
NOS
A survey of the hit compounds classified as strong to moderate

suppressors revealed the presence of numerous anti-inflamma-

tory agents targeting the NO/NOS and LOX signaling pathways

(Table S1), including BW B70C and nordihydroguaiaretic acid

(NDGA), each ofwhich inhibits 5- and 12/15-LOX enzymes (Payne

et al., 1991; Hussey and Tisdale, 1996; Rudhard et al., 2015).

BWB70C drew considerable attention because it blocked tumor-

igenesis at a very low dose (20 mg/mL) (Figure 1B; Table S1),

especially compared with DAPT (Figures 1A and S1A).

We first investigated how NO signaling contributes to

Notch-PI3K/Akt-induced tumorigenesis. Using the NOS

reporter NOSMI09718 (Venken et al., 2011), we observed

aberrant expression of NOS within the tumor eye tissue

(Figure S3B), an action induced by Pten depletion (Figures

S3A and S3C). Treatment of ey > Dl > Pten-RNAi larvae with

N(G)-nitro-L-arginine methyl ester (L-NAME), a selective NOS

inhibitor with documented activity in Drosophila (Mukherjee

et al., 2011), significantly suppressed tumor growth (Figure 2A).

Similarly, genetic silencing of the single Drosophila NOS gene

(ey > Dl > Pten-RNAi > NOS-RNAi) or a NOS endogenous

mutation (ey > Dl > Pten-RNAi; NOSMI09718/+) selectively sup-

pressed tumorigenesis (Figures 2A and S2C).

Moreover, targeting the NO canonical pathway within tumor

cells by RNAi silencing of genes encoding soluble guanylyl

cyclases (sGC-a and sGC-b), cyclic guanosine monophosphate

(cGMP)-PKG21D, and its target, myosin light-chain kinase

(Mlck), suppressed tumorigenesis (Figures 2B and 2C).

These results validate another of the top hit compounds that

we identified in our screen: ML-7, an inhibitor of Mlck (Figures

2B and 2C). Altogether, we found that NOS was aberrantly

expressed in tumor cells and that tumor cell-specific knock-

down of NO signaling suppressed tumorigenesis. These

results highlight the importance of the NO-sGC/cGMP/PKG

(cGMP-dependent protein kinase G) pathway in Notch-PI3K/

Akt-driven tumorigenesis.

Figure 3. Genetic Targeting of LOX Signaling Blocks Notch-PI3K/Akt Cooperative Oncogenesis

(A) Schematic LOX signaling pathway. Left labels: antitumorigenic drugs identified in our screen and RNAi-based silenced genes. Right labels: homologous

Drosophila genes. In response to inflammatory stimuli, PLA2 releases arachidonic acid (AA) and/or linoleic acid (LA) from themembrane phospholipids, which are

converted to a variety of bioactive lipids via LOX enzymes.

(B) Tumor incidence (left) and normalized survival to adulthood (right) of control and ey > Dl > Pten-RNAi flies after depleting the indicated genes via RNAi or

mutation. PI3K92E-RNAi is the internal positive control. n = 50–100 eyes/genotype.

(C) Example eyes of ey > Dl > Pten-RNAi without or with depleted PI3K92E or GXIVsPLA2 via RNAi.

Mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 (one-way ANOVA followed by Bonferroni’s multiple comparisons test).
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Overexpression of NOS, together with overexpression of Dl,

induced tumorigenesis in the absence of further hyperactivation

of PI3K/Akt (ey > Dl > NOS) (Figure 2D). Eye-specific silencing or

overexpression of the NOS gene alone is inconsequential for

eye growth (Cáceres et al., 2011; Jaszczak et al., 2015). BW

B70C treatment blocked Notch-NOS-driven tumorigenesis

(Figure 2D), suggesting that this process involves an axis with

LOX/NOS interdependency. Conversely, tumors induced by

the cooperation of Notch with the epigenetic regulators

Pisqueak and Lola (Ferres-Marco et al., 2006) were not sensitive

to BW B70C, even though they could be suppressed using the

epigenetic drug trichostatin A (Figure 2E). Hence, BW B70C

does not generally suppress Notch-driven tumorigenesis

but dampens a tumor formation process orchestrated by inflam-

matory NOS.

LOX Pathway Inhibition Blocks Notch-PI3K/Akt-Driven
Tumorigenesis
LOX enzymatic activity and LOX-derived lipids have been de-

tected in Drosophila extracts and other insects, but the LOX

gene or genes remained undefined (Pagés et al., 1986; Tan

et al., 2016). We therefore searched for Drosophila LOX pathway

homologs that could be suitable for further validation of our

screen results.

Leukotriene A4 hydrolase (LTA4H) catalyzes the production

of leukotriene B4 (LTB4), a major lipid product of LOX enzymes

that is highly expressed in some cancers (Steinhilber et al.,

2010). The Drosophila gene CG10602 encodes an LTA4H

homolog (Figure 3A). Halving its gene dosage (ey > Dl >

Pten-RNAi > CG10602f04195/+) markedly suppressed tumori-

genesis and rescued tumor-associated lethality (Figures 3B

and S3A). Leukotrienes act through G protein-coupled recep-

Figure 4. Tumor-Associated Hemocytes

and Response to LOX Inhibitor

(A) Hemocytes (arrowhead) in control eye discs

(ey >) are rounded and form clusters attached to

the disc epithelium.

(B) Representative hemocytes in a neoplastic

tumor disc with a migratory spindle shape (arrow).

(C) Hemocyte counts in the indicated genotypes

(n = 14 eye discs/genotype). Mean ± SD.

**p < 0.01, ***p < 0.001, ****p < 0.0001 (one-way

ANOVA followed by Bonferroni’s multiple

comparisons test).

(D) Hemocytes in a Notch-PI3K/Akt eye disc

treated with BW B70C (20 mg/mL, 63.2 mM). Right:

magnifications of the outlined area. Arrow and

arrowhead point to round (pancake-like) and

clustered hemocytes, respectively.

Tissue and tumor resident hemocytes are labeled

with GstD1-GFP (green, A and B), Hml-dsRed.D

(red, D), and DAPI (blue). For co-localization of

GstD1-GFP with the pan-hemocyte marker

Hml-dsRed.D, see Figure S4.

tors (Wang and Dubois, 2010), and we

silenced the allatostatin receptors, the

structural orthologs of leukotriene recep-

tors in Drosophila (Figure 3A; Table S4).

Inactivation of AstA-R1 suppressed tumorigenesis, whereas

silencing AstA-R2, AstC-R1, and AstC-R2 did not affect it

(Figure 3B).

Themost upstream step in LOX-mediated production of proin-

flammatory lipid metabolites is the release of arachidonic acid

from the plasma membrane, mediated by phospholipase A2

(PLA2) (Dennis and Norris, 2015) (Figure 3A). Five suppressor

drugs identified in our screen target this step (Figure 3A;

Table S1). We tested the seven predicted Drosophila PLA2

genes (Renault et al., 2002) and found that tumor-specific

RNAi silencing of GXIVsPLA2, as well as halving its gene dosage

(GXIVsPLA2f00744/+), strongly suppressed tumorigenesis (Fig-

ures 3B and 3C), mirroring the antitumor effect of the identified

drugs. This confirmed that LOX-generated lipids are required

for Notch-PI3K/Akt-driven tumors.

Protumorigenic Immune Inflammation Underlies Notch-
PI3K/Akt Cooperation
The participation of the NO/NOS and LOX pathways in Notch-

PI3K/Akt-promoted tumorigenesis hints at an unanticipated

connection between inflammation and this oncogenic coopera-

tion. Work in vertebrates has implicated macrophage infiltration

and expression of inflammatory markers such as NO as key

hallmarks of inflammation in solid cancer (Colotta et al., 2009;

Mantovani et al., 2008), and immune cells that infiltrate

tumors facilitate tumor growth or survival (Grivennikov et al.,

2010). In Drosophila, macrophage-like hemocytes (Lemaitre and

Hoffmann, 2007) have been implicated in the immune response

against epithelial tumors (Pastor-Pareja et al., 2008; Cordero

et al., 2010).

We examined the hemocytes associated with these tumors

using the hemocyte-specific marker Hml-dsRed.D (Makhijani
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et al., 2011) and the oxidative stress reporter GstD1-GFP, which

we found is expressed in hemocytes (Figure S4A). Wild-type and

hyperplastic eye disc-associated hemocytes typically form

aggregates with a rounded morphology (Figures 4A, S4B, and

S4C) and are attached to the basal membrane (Cordero et al.,

2010). We observed that hemocytes within Notch-PI3K/Akt

discs were dispersed and became polarized (spindle shaped)

(Figures 4B, S4D, and S4E), infiltrating the tumor epithelium

(Figures 4C, S4F, and S4G). This suggests that hemocytes

change their morphology in response to signals from tumor cells.

Consistent with this idea, these morphological changes were

suppressed in mutant discs treated with BW B70C (Figures 4C

and 4D), suggesting that NOS/LOX activity shapes the inflamma-

tory response in Notch-PI3K/Akt tumors. Altogether, these data

link inflammation to tumorigenesis driven by these oncogenes.

Genetic Depletion of Prophenoloxidase in Immune Cells
Fuels Notch-Mediated Tumorigenesis
A salient feature of cancer-related inflammation is immunosup-

pression (Coussens and Werb, 2002; Mellman et al., 2011). In

Drosophila, melanization—a process mediated by the enzyme

phenoloxidase (PO) encoded by the prophenoloxidase (PPO)

genes—is a critical innate immune response to tumor cells

(Minakhina and Steward, 2006). Platelet-like crystal cells,

another class of hemocytes present in larval stages, are the

site of PPO gene synthesis (Binggeli et al., 2014). We examined

PPO expression and function to further investigate the participa-

tion of inflammation and immunosuppression in Notch-PI3K/Akt

tumorigenesis. Larvae with single Notch pathway overactivation

(ey > Dl) showed robust stimulation of PPO1 and PPO2 expres-

sion in immune cells (Figure 5A). Conversely, tumor-bearing

(ey > Dl > Pten-RNAi) and single PI3K/Akt (ey > Pten-RNAi)

larvae did not show this response (Figure 5A), suggesting that

activated PI3K/Akt signaling dampens a secreted signal

required in crystal cells to activate the immune response.

To ascertain the role of immune cell-derived PPO/PO in single

Dl-induced overgrowth, we created a genetic immunosup-

pressed condition using a triple PPO1, PPO1, PPO3 knockout

(Binggeli et al., 2014). Halving PPO gene dosage resulted

in 55% of the emerging adults bearing full-blown tumors

(ey > Dl, PPO1�/+, PPO2�/+, PPO3�/+) (Figure 5B), equal to the

effect of NOS overexpression (Figure 2D). Reducing PPO in

Notch-PI3K/Akt larvae with already-low PPO levels did not

enhance tumorigenesis. Furthermore, we found that aberrant

NOS expression was sufficient to dampen PPO expression (Fig-

ure 5C) and the immune response triggered by the PO-acti-

vating cascade manifested as a strong reduction of melanized

crystal cell response after heat stress (Neyen et al., 2015) (Fig-

ures 5D and 5E) (see Supplemental Experimental Procedures).

Altogether, these observations indicate that immunosuppres-

sion is driven by aberrant NOS promoted by activated PI3K/

Akt in the tumor cells, which explains how activated PI3K/Akt

unleashes the oncogenic potential of Notch.

Validation in Human T Cell Acute Lymphoblastic
Leukemic Cells
We validated the antitumor effect of BW B70C in well-

established human T-ALL cell models that depend on

NOTCH1 and PI3K/AKT signaling (Palomero et al., 2007). We

observed that BW B70C treatment killed T-ALL cells (Palomero

et al., 2007) that were resistant to Notch inhibitors (PTEN-

negative, g-secretase inhibitor [GSI]-resistant T-ALL cell lines

RPMI8402, CCRF-CEM, P12-ICHIKAWA, JURKAT, and

MOLT-3), as well as PTEN-positive, GSI-sensitive T-ALL lines

(CUTLL1, ALL-SIL, and DND-41) (Figure 5F). BW B70C

treatment had little or no toxicity against normal T lymphocytes

(peripheral blood mononucleated cells [PBMCs]) derived from

healthy donors (Figure 5F). Moreover, paralleling the results

obtained in Drosophila tumors, we found that one of the

three NOS genes, endothelial NOS (eNOS), was aberrantly

enriched in AKT/NOTCH1-driven T-ALL cells (Figure 5G).

Healthy PBMCs did not show eNOS expression (Figure 5H).

Finally, we found that BW B70C selectively killed T-ALL cells

associated with suppression of the aberrant eNOS in leukemic

cells (Figure 5H).

DISCUSSION

Several Notch and PI3K/Akt inhibitors with potent antineoplastic

activity are available, but their progress toward clinical use is

hindered by side effects associated with the inhibition of

physiological signaling and by drug resistance (Andersson and

Lendahl, 2014; Chia et al., 2015; Fruman and Rommel, 2014).

The characterization of the targets and mechanisms down-

stream of Notch-PI3K/Akt in tumorigenesis that are distinct

from their targets in normal cells is crucial for identifying cancer

vulnerabilities that could be exploited therapeutically. Using an

in vivo drug screen in Drosophila we have identified pharmaco-

logically active compounds that block Notch-PI3K/Akt-driven

tumors in flies and validated the top hit compound in human

T-ALL cells with NOTCH1 and PI3K/AKT mutations. In addition,

BWB70C and compounds inhibiting specific inflammatory path-

ways were found to elicit potent and selective antitumorigenic

responses in Notch-PI3K/Akt tumors by blocking a hitherto

unsuspected NOS/LOX axis. Our screen identified 15 of the 21

well-known anticancer compounds included as internal controls;

some of them have anti-inflammatory properties (Table S3), but

most act mainly by blocking cell proliferation non-specifically

through DNA damage.

Genetic studies further highlighted a strong requirement

for tumor-specific inflammation driven by LOX- and NOS-

dependent Notch-PI3K/Akt cooperation. Human LOX signaling

(Chen et al., 2009; Hussey and Tisdale, 1996) and NO signaling

(Fukumura et al., 2006; Lim et al., 2008) have been linked to spe-

cific cancers as both tumor suppressors and tumor enhancers.

Here we linked these inflammatory pathways to tumor initiation

by Notch-PI3K/Akt cooperation. The oncogenes Ret, Myc, and

Ras can trigger an intrinsic inflammatory response that creates

a protumorigenic microenvironment (Mantovani et al., 2008),

which accelerates cancer development (Grivennikov et al.,

2010). We found that activated PI3K/Akt signaling triggers

inflammation and immunosuppression via aberrantNOS expres-

sion. Overexpressing NOS or diminishing the endogenous

immune response is sufficient to facilitate tumor initiation via

the activated Notch pathway, supporting the notion that inflam-

mation is a key mechanism to unleash the oncogenic potential of
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Notch. LOX/NOS inhibition did not harm normal cells, which

suggests that these pathways represent promising, safe, drug-

gable targets for human cancers.

Validation of the anti-inflammatory drug BWB70C in a panel of

human T-ALL cells dependent on NOTCH1 and PI3K/AKT yet

resistant to Notch inhibitors (Palomero et al., 2007) further

Figure 5. Immunosuppression Releases Notch Oncogenic Potential

(A) PPO gene expression in immune cells attached to eye discs (n = 30/genotype) and whole larvae (n = 5/genotype). PPO3 was undetected in these assays.

Experiments were performed in triplicate.

(B) Relative tumor incidence (as a percentage) in ey > Dl; PPO1–PPO2�/+ (n = 50–100 eyes). Below: representative eyes.

(C) PPO1 and PPO2 expression in control and tub > NOS larvae.

(D and E) Melanized crystal cell counts (D) and images (E, right, magnifications) of larvae with crystal cell-mediated PPO/PO activity (black cells) response to heat

shock. Negative control was PPO1–3�.(F) BW B70C treatment in a panel of T-ALL cell lines and healthy PBMCs. Data represent three independent experiments

and are expressed as mean ± SD. Student’s t test for each T-ALL cell line response was ***p < 0.001. Mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 (one-way

ANOVA followed by Bonferroni’s multiple comparisons test in B and Student’s t test in D).

(G)qRT-PCRanalysisof thethreeNOSgenesinT-ALLcells (relative toGADPH).Graphshowspooleddata fromthree independentexperimentsandrepresentsmean±SD.

(H) Representative western blots of three independent analyses showing eNOS levels in PBMCs and T-ALL cells treated with BW B70C (20 mg/mL, 48 hr) or DMSO

(vehicle).
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highlights the considerable value of unbiased chemical screens

in Drosophilawhen it comes to deciphering targets and potential

therapeutic approaches relevant to human cancers.

EXPERIMENTAL PROCEDURES

Drosophila Husbandry

The list of RNAi transgenesused is in Table S4.Other fly stocks usedwerew1118,

ey-Gal4, UAS-Dl, CyO twist-GFP, CyO tub-Gal80, Pten-RNAi (BL25967), UAS-

NOS (BL56830 and BL56823), GXIVsPLA2f00744, CG10602f04195, PnsEY05553,

AstA-R1MI14175 (y1 w*; Mi{MIC}AstA-R1MI14175), NOSMI09718 (y1 w*; Mi{MIC}

NosMI09718), and PKG/dg2MI02855 (y1 w*; Mi{MIC}dg2MI0285), all from the Bloo-

mington Drosophila Stock Center; PI3K92E-RNAi (GD11228, v38985) from the

Vienna Drosophila RNAi Center; GS(2)1D233C (dAkt1) (Palomero et al., 2007);

GS(2)88A8lola pipsqueak (the eyeful cancer strain) (Ferres-Marco et al., 2006);

PPOD1–2,3 (a gift from B. Lemaitre); GstD1-GFP (a gift from D. Bohmann); and

Hml-dsRed.D (FBtp0069700) (a gift from K. Brueckner). Flies were reared and

maintained in standard fly food at 27�C on a 12-hr light/dark cycle.

Statistical Methods

All statistical analyses were performed in GraphPad Prism 6. qPCR data and

melanized crystal cell counts were analyzed using unpaired Student’s t tests.

For tumor incidence and hemocyte counts, p values were calculated using

one-way ANOVA followed by Bonferroni’s multiple comparison tests.

All research and human cell procedures were conducted in strict compli-

ance with the European Community Council Directives and Spanish legisla-

tion. The protocols were approved by the Universidad Miguel Hernández

(2017/VSC/PEA/00154) at the Institute of Neuroscience.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and four tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.02.049.
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Supplemental Figures 

 

 
Figure S1. Proof-of-Concept, and Formula to Calculate Drug Response, Related to Figure 1 

(A) Graphs show the tumor incidence of each fly models of Notch-PI3K/Akt cooperative oncogenesis. (B) Proof-of-
concept of efficacy versus toxicity of drugs directly targeting individual Notch or PI3K/Akt signaling. The γ-
secretase inhibitor DAPT {N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester} and the PI3K 
inhibitor LY294002 work effectively in flies (Bjedov et al., 2010; Danilov et al., 2013; Micchelli et al., 2003). The 
graphs show the efficacy (tumor incidence) and toxicity (survival to adulthood) of adults emerging from drug fed 
tumor-bearing larvae overexpressing Delta and dAkt1 by ey-Gal4 at increasing doses (n = 100 flies per drug and 
concentration). The mortality rate of untreated animals co-overexpressing Delta and Akt (or Pten-RNAi) by ey-Gal4 is 
79% (i.e. survival rate of 21%). Low-dose of DAPT rescued partially this tumor-associated mortality without 
reducing tumor burden. Doses of DAPT that suppressed tumorigenesis were highly lethal. PI3K inhibitors caused 
100% larval lethality, while non-lethal doses failed to suppress tumorigenesis. Combination of DAPT and LY294002 
led to synergistic toxicity, resulting in high lethality even in the low-dose DAPT groups. (C) Formula to calculate 
response (R). The eye tumor phenotype can be influenced by culturing conditions such as humidity, temperature, and 
variation in the fly food. As such, vehicle-control groups grown in parallel were used to normalize the response. (D) 
Summary of results after first round (R1) of screening. 37% of the compounds (474/1280) showed a 
suppressor/enhancer response equal or higher than 20% and were selected for re-screening.	  
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Figure S2. In Vivo RNAi-Based Validation of Drug Screen Results, Related to Figure 1 

(A) Scheme of the genetic crosses to test UAS-RNAi transgenes of candidate drug targets in vivo in larvae carrying 
UAS-Dl and UAS-Pten-RNAi and ey-Gal4. F1 offspring was scored for the tumor burden and animal mortality. (B) 
Left: Bar graph shows tumor incidence. Right: Relative survival to adulthood after RNAi-mediated depletion of the 
predicted molecular drug target in the ey>Dl>Pten-RNAi>gene-RNAi animals. (C) Representative eye tumor rescued 
phenotype carrying the indicated UAS-RNAi transgenes against the candidate targets. We used the orthologs search 
tools from FlyBase, which includes Compara, eggNOG, Inparanoid, OMA, Panther, Phylome, RoundUp, TreeFam 
ortholog prediction algorithms. 
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Figure S3. NOS Aberrant Expression Induced by Activated Akt Signaling, Related to Figure 2 

(A) Validation of indicated transgenic RNAi fly lines using qRT-PCR. (B) NOSMI09718/+ (GFP reporter of NOS, green) 
in control ey-Gal4 eye discs is restricted to the postmitotic retinal cells and the optic nerve.  Eye tumor discs show 
aberrant NOS in the undifferentiated proliferative eye region where ey-Gal4 is expressed. (C) Graph shows the 
relative levels of NOS mRNA, normalized to Rp49 of the indicated genotypes (n = 30 eye discs per genotype). (D) 
Discs from larvae treated with BW B70C or control. P values were calculated using one-way ANOVA test, using 
Bonferroni multiple comparison tests.  
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Figure S4. Tissue and Tumor-Associated Hemocytes, Related to Figure 4 

(A) Tissue resident hemocytes (macrophage-like cells) are double labeled by GstD1-GFP (green), a sensitive 
oxidative stress reporter and by the pan-hemocyte marker Hml-dsRed.Δ (red). Single channel images are also shown. 
Discs are counterstained with DAPI (blue). (B) Tissue resident hemocytes in control eye disc (ey>). (C) Hyperplastic 
eye disc (ey>Dl). (D) Neoplastic eye disc Notch-PI3K/Akt (ey>Dl>Pten-RNAi) in which the dispersed migratory 
spindle shape of hemocytes can be see. Number of hemocytes associated with imaginal discs is highly variable 
among discs, for quantification see Figure 4C. (E) Hemocytes with polarized migratory phenotype labeled by Hml-
dsRed.Δ (red) originating from the clusters of tissue resident hemocytes (arrowhead) are shown. (F) The confocal 
image and vertical sections of control eye imaginal disc epithelium, and (G) tumor eye disc epithelium  (ey>Dl>Pten-
RNAi). Hemocytes are labeled by ROS sensor (green). Note that hemocytes infiltrate the tumor epithelial disc (see 
vertical section in G) but remain at the surface of the wild type eye disc epithelium (F). In F, basal is up.	  



Villegas et al.                   Supplemental Information 

	 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. BW B70C Half Maximal Inhibitory Concentration (IC50), Related to Figure 5 

The IC50 of the LOX inhibitor BW B70C in human T-ALL cell line RPMI8402, which is NOTCH1-
PI3K/AKT dependent but resistant to Notch inhibitors owing to the mutation in PTEN. The graph shows 
dose response curves measured as a function of time and drug concentration. Cytotoxic effect is measured 
in RPMI8402 T-ALL cells (IC50 are 3.92, 5.89 and 19.93 µg/ml, corresponding to 12.3, 18.6 and 63.2 
µM, respectively) at days 2, 4, and 6. Means ± S.D (n= 3). 
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Supplemental Experimental Procedures 

High-Throughput Screening Approach, Compound Treatment Procedure, and Optimization 

The HTS approach differs in various aspects from previous drug screens in flies. First, the screening used 
a larger number of larvae (n=30 in R1 and n=60 in R2 and R3) and response is measured by scoring 
tumor burden in treated adult animals and simultaneously measuring toxicity and side effects. We used 
the eye-specific ey-Gal4 driver for spatial and temporal control of transgene expression in larva (juvenile 
stages in insects). Targeted expression of Delta (UAS-Dl) and its cooperating partner, Akt1 using our 
GS1D233C-Akt1 (Palomero et al., 2007) or the silencing of Pten (UAS-Pten-RNAi) yielded ~70% of the 
flies developing eye tumors. Both cancer models are quite lethal, with a survival rate of ~21%. In 
addition, ~3-7% of the survival mutant flies display metastasis (Palomero et al., 2007). The incidence of 
metastasis is too low to be statistically significantly scored in the drug screen.  

For the HTS, we generated stocks of flies with GFP-labeled balancer chromosomes: (1) ey>Dl/CyO twist-
GFP, (2) GS1D233C-Akt/TM3 twist-GFP and (3) UAS-Pten-RNAi/TM3 twist-GFP. Offspring of the cross 
of virgin females ey>Dl/CyO twist-GFP with males GS1D233C-dAkt1 or UAS-Pten-RNAi/TM3, twist-
GFP were selected (as GFP— L2 larvae) for drug treatment or vehicle control group.  

For genetic validation via RNAi transgene expression, we generated a stock carrying three transgenes ey-
Gal4 UAS-Dl and UAS-Pten-RNAi along with the Gal4 repressor (tub-Gal80) in the balancer chromosome 
(ey>Dl/CyO tub-Gal80; UAS-Pten-RNAi/TM3 twist-GFP).  

Extensive small-scale 'pilot' screens preceded the HTS to provide the basis and guidance of potential 
problems arising from variability of the phenotype-based assays, impact of environment (temperature, 
humidity, diet), and optimization of compound preparation and suitable solvents for the HTS in 
Drosophila. In these preliminary tests, we also defined empirically an operational dose of 100µg/ml for 
the HTS based on experiments with Notch inhibitors and pilot screens of a set of 100 randomly selected 
drugs from the Sigma Life Science’s Lopac1280 library of pharmacologically active compounds. The 
LOPAC1280 library comprises highly pure and diverse annotated collection of inhibitors, receptor ligands, 
pharma-developed tools, and approved drugs for various diseases including cancer  (see, 
http://www.sigmaaldrich.com/life-science/cell-biology/bioactive-small-molecules/lopac1280-
navigator.html).  

We found that the γ-secretase inhibitor DAPT {N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine 
t-butyl ester} effectively suppressed tumorigenesis at a dose ranging from 0.5-1 to mM (~230 µg/ml; 
concentration of the drug in the food) but was also very toxic for the larvae (n = 100 animals scored per 
drug concentration). The PI3K inhibitors, LY294002 and wormannin, which had been shown to work 
effectively in flies (Bjedov et al., 2010; Danilov et al., 2013), caused 100% lethality and sub-lethal doses 
did not suppress tumorigenesis. 

Based on these observations, an initial operational concentration of 200-250 µg/ml was assayed with the 
random set of 100 drugs. These tests unveiled high toxicity of DMSO vehicle itself and of the majority of 
drugs tested (see below). In contrast, several drugs modified tumorigenesis without showing overall 
toxicity at a ~2.5-fold lower concentration (100 µg/ml), thus, we choose this dose for the HTS. 

Drug Treatment and Internal Controls 

GFP— L2 (48 h after egg laying, AEL) larvae were transferred to drug (or vehicle) containing food vials 
(2 ml of food) and raised at 27º C until adulthood. Response was determined by direct measurement of 
tumor burden and potential side effects, calculated using the formula in Figure S1C. Adult wing defects 
were chosen as a direct measurement of side effects of drugs in non-transformed tissues.  

We prepared stock solutions (1, 2, 10 mg/ml) using DMSO, EtOH, MeOH, H2O or chloroform according 
to manufacturer instructions. Drug concentration was limited by the toxicity of DMSO in flies. For 
example, doses of DMSO higher than 0.4% provoked toxicity that could confound or mask drug 
response, setting the maximal concentration used for DMSO dissolved drugs. The small compounds were 
mixed with warm (45° C) Iberian fly food (see below) and left to solidify at room temperature. For 
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experiments using EtOH, MeOH or chloroform as vehicle, the food mixed with the drug or vehicle alone 
was prepared 24 h before transferring the larvae to allow evaporation of these solvents. Standard ‘Iberian’ 
fly food was made by mixing 15 l of water, 0.75 kg of wheat flour, 1 kg of brown sugar, 0.5 kg yeast, 
0.17 kg agar, 130 ml of a 5% nipagin solution in ethanol, and 130 ml of propionic acid. 

Drugs were screened blindly, and the first round of screening was done in the laboratories of Dominguez 
in Alicante (Spain) and Mihály in Szeged (Hungary) using both the same Iberian fly food recipe and a 
standardized protocol. The subsequently re-screening R2 and R3 used n = 60 animals per drugs and were 
performed over several months in the laboratory in Alicante (Spain). In this first round of testing, most 
drugs except 14 did not results in animal lethality at the dose of 100µg/ml. These 14 drugs were re-tested 
at lower dose (20µg/ml) but only BW B70C was non-lethal and was selected as a suppressor drug.  

The eye tumor burden was measured under the scope manually and using the formula in Figure S1C, 
compounds were classified as ‘suppressors’ or ‘enhancers’ according to their effect (strong, moderate and 
weak: see Tables S1 and S2). Compounds showing an average effect (suppression or enhancement) 
higher than 20%, 40% and 60% were classified as weak, moderate or strong, respectively. 

Of the 21 well-established anticancer compounds included in LOPAC1280 library (internal control of the 
screen), hydroxyurea (HY) and retinoic acid p-hydroxyanilide were found to fuel Notch-PI3K/Akt-
associated tumorigenesis significantly (Table S3), and the anticancer agent nimustine hydrochloride used 
to treat malignant glioma caused complete larval lethality even at a low concentration (20 µg/ml). These 
findings suggest that Drosophila cancer models can also help provide clues about the potential 
detrimental (tumor enhancement) effects of candidate drugs. However, we do not rule out the possibility 
that the lethality and/or tumor enhancement properties of some compounds may reflect the differences in 
pharmacokinetics and pharmacodynamics between flies and mammals.   

Validation: Secondary In Vivo RNAi –Based Analysis 

A large majority of library compounds identified as suppressors in the HTS have one or more known 
molecular target in humans (Table S4). Other candidate drug targets were defined based on predicted 
drug-protein interaction using STITCH software according to the drug chemical architecture. 
Additionally, signaling components or effectors associated with specific targets were also selected for 
further tests via RNAi analyses. Several, independently generated RNAi transgenes were tested when 
available. 

In such a way, 54 molecular targets of the 48 strong suppressor compounds identified in our HTS were 
identified. By performing a protein homology search, a total of 77 Drosophila homologues of the 54 
human genes were identified and each gene was knockdown using tumor-specific in vivo RNAi transgene 
expression. All candidate genes were assayed in the progeny of the cross of virgin females from the stock 
ey>Dl/CyO, tub-Gal80; UAS-Pten-RNAi/TM3, tub-Gal80 with males of the corresponding UAS-RNAi 
line. PI3K-RNAi served as a blind, positive control (related to Figures S2A-C and Table S4).  

Many of the RNAi of candidate drug targets also increased the survival to adulthood rate. In particular, 25 
RNAi lines increased survival significantly along with suppressed tumorigenesis, including Ras85D, 
Spitz, Arf79, Octß1R, PI3K, EGFR, 5-HT1B, Oct-TyR, Nos, Octß3R, Strn-Mlck, Raf1, Rbcn-3B, and 
Pkc53E. Additionally, some candidate genes when silenced tumor-specifically increased animal survival 
without suppressing tumorigenesis (e.g. AstC-R2), suggesting that the two phenotypes could be 
uncoupled. The larval lethality was linked to over-activation of PI3K/Akt signaling and the systemic 
inflammation, and overexpression of PI3K, Akt, UAS-Pten-RNAi alone or NOS overexpression was all 
sub-lethal.  

COX inhibitors and Non-Steroidal anti-Inflammatory Drugs (NSAIDs), which target COX-1 and COX-2, 
were found to act as enhancers (Table S2) and RNAi-silencing of the Drosophila cyclooxygenase genes, 
Pxt and CG10211 also enhanced tumorigenesis (Related to Table S4), consolidating the effect seen after 
pharmacological inhibition of COX.  

Monoamine Oxidase Inhibitors (MAOis) significantly worsened Notch-Pten-Akt-induced tumorigenesis 
in Drosophila (Table S2) MAOis increase the levels of amides such as octopamine and serotonin, which 
are produced by neurons and immune cells. Consistent with this drug screen results, RNAi silencing of 
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the amide receptors, 5-HT1B, Octß1R, Octß1R and OctTyrR (Table S4) in the tumor cells using ey-Gal4 
(ey>Dl>Akt>receptor-RNAi) significantly decreased tumorigenesis (see Figures S2B and S2C) and Table 
S4.  

Epidermal Growth Factor Receptor (EGFR) Inhibitors were found as enhancers of Notch-Pten-Akt-
driven tumors (Table S2) but strong depletion via RNAi silencing of EGFR gene, and other pathway 
components, effectively suppressed tumorigenesis in our experimental set-up (Figures S2B and S2C).  

 

Immunostaining and Imaging of Larval, Adult Eyes, and Wings 

For assessing tumor suppression/enhancement, batches of late third instar larvae imaginal eye-antennal 
discs of treated or vehicle-control groups were dissected in PBS and collected in ice-chilled PBS. The 
tissue was fixed in 4% PFA at RT for 20 min and then washed three times with PBT (PBS buffer and 
0.3% Triton). The tissue was incubated with DAPI (Invitrogen) for 15 min at RT (0.3 µg/ml), and washed 
again three times with PBT and a final wash with PBS. Discs were staining with anti-GFP, anti-DsRed, 
and counterstaining with DAPI, and mounted in Vectashield (Vector Labs), and images were obtained 
using a Leica TCS SP2 Confocal microscope. 

For adult wing notches analysis, adult wings from female flies were dissected and mounted on slides in 
80% glycerol in phosphate-buffered saline solution. For imaging of adult eyes, flies were fixed and kept 
in 70% ethanol until imaging. Images were captured on an optical microscope ZEISS Axiophot, using a 
MicroPublisher 5.0 camera (QImaging) and the QCapture software (QImaging). All pictures were taken 
using a 5X objective with 1.5X zoom. Each eye image is a composite of 15 to 25 images of the same 
sample focused at different heights of the specimen. The in-focus composites were generated using the 
software AutoMontage Essentials 5.0. 

Quantitative Real-Time PCR  

Primers for real-time (RT)-PCR were obtained from Applied Biosystems. Comparative RT-PCRs were 
performed in triplicates, and relative expression was calculated using the comparative Ct method. Primers 
were designed using the Primer3 online tool (http://bioinfo.ut.ee/primer3-0.4.0/primer3/). Data are 
presented as mean ± standard deviation (S.D.); statistical analyses were performed using two-tailed 
Student’s t-test. 

Primer sequences are:  

Drosophila Rp49  Forward 5'-CATCCGCCCAGCATACAG-3'  
 Reverse 5'-ACCGTTGGGGTTGGTGAG-3' 

Drosophila NOS   Forward 5'-AACGTTCGACAAATGCGCAA-3'  
 Reverse 5'-GTTGCTGTGTCTGTGCCTTC-3' 

Drosophila PPO1 Forward 5'-TGAGCGTAATCAGGCTTTGA-3'  
 Reverse 5'-GTTCTCACCAGGCACCAAAT-3'  

Drosophila PPO2  Forward 5'-CTGGTGCCAAAGGGTCTG-3'  
 Reverse 5'-ACCAATTGCTGGTCAATCCT-3'    

Drosophila PPO3 Forward 5'-CATCCATCAGGGCTACGTTT-3'  
 Reverse 5'-GGATGTCGATGCCCTTAGC-3' 

Drosophila Pten  Forward 5'-TGATCATAACCCTCCAACGA-3' 
 Reverse 5’-TCAATCGGCAAGGTTTTCAG-3' 

Drosophila CG10602 Forward 5'-AGTGCTCTCAACTGGAAGATCG-3' 
   Reverse 5'-GCAGTCAACACCTTGAAGCG-3' 

Human eNOS	 	 Forward 5'-CCCGCTTCCTGTTTCTTAGT-3'  
 Reverse 5'-GGCACAGTCCCTTATGGTAAA-3' 

Human iNOS  Forward 5'-GTCAGAGTCACCATCCTCTTTG -3'  
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 Reverse 5'-GCAGCTCAGCCTGTACTTATC-3' 

Human nNOS   Forward 5'-CCCTCTCGCCAAAGAGTTTATT-3'  
 Reverse 5'-CTTGAGCTGGTAAGTGCTAGTG-3' 

Human β-actin   Forward 5'-CCAACCGCGAGAAGATGA-3'  
 Reverse 5'-CCAGAGGCGTACAGGGATAG-3’ 

Crystal Cell Phenoloxidase Activity Assay 

Crystal cells are characterized by crystalline inclusions that contain the zymogen pro-PO encoded by the 
PPO1-3 genes and can be visualized due to specific blackening upon heating larvae at 60°C for 10 min. 
Third instar wandering stage larvae were heat treated to visualize crystal cells and imaged using Leica 
microscope. Melanised crystal cell counts were done in 5 larvae per condition and genetic background. 
Error bars represent the standard deviation. P values were calculated using one-way ANOVA. 

T-ALL Cells Culture and In Vitro Drug Analysis  

RPMI8402, P12-ICHIKAWA, CCRF-CEM, MOLT-3, JURKAT (PTEN-negative, GSI-resistant) and 
ALL-SIL, DND-41 and CUTLL1 (PTEN-positive, GSI-sensitive) T-ALL cell lines were obtained from 
Dr. Adolfo A. Ferrando (Columbia University, NY, US). Genetic alterations of these cell lines are 
described in (Palomero et al, 2007). The T-ALL cell lines were cultured in RPMI 1640 medium 
supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin, and 10% fetal calf serum (FCS; 
GIBCO) at 37°C and 5% CO2. Peripheral blood samples were taken from healthy volunteers with full 
ethical consent in the Hospital Universitari Sant Joan d'Alacant, University Miguel Hernandez, Spain. 
Briefly, PBMC suspension was prepared from fresh whole blood diluting the blood samples in RPMI 
1640 medium (GIBCO, Life Technologies) containing 20 U/mL heparin and obtained after a 30 minute 
centrifugation at 400 g on Ficoll Hypaque gradient.  

For viability assays (MTT) T-ALL and PBMC cells were plated in 96-well plates at a density of 2.5x103 
and 5x103 cells per well respectively. Cells were exposed to BW B70C for the indicated concentrations 
and duration at 37°C and 5% CO2 and then incubated with Thiazolyl blue tetrazolium bromide (MTT) 
reagent (Sigma-Aldrich) for an additional 3 h. Each well was washed one time with HBSS then DMSO 
was added to dissolve the formazan crystals. Cell media was removed and replaced with MTT-containing 
media (1 mg ml−1 final concentration) and cells were allowed to grow at 37 °C for another 3.5 h. MTT 
media was removed and MTT precipitate dissolved in 4 mM HCl, 0.1% NP40 in isopropanol, solvent by 
shaking for 1 h. Absorbance values were then measured at 570 nm with a EZ Read 400 microplate 
spectrophotometer (Biochrom) using a 96-well-plate reader were used to establish growth and viability of 
cells. The absorbance values were background subtracted and normalized to vehicle. Each drug dose was 
tested in triplicates. Dose-response curves were generated using non-linear regression with the GraphPad 
Prism®6 software package to generate IC50 values. 

Western Blotting  

T-ALL and PBMC cells were cultured and treated with inhibitors or vehicle in 6 well-plates under the 
conditions previously stated. Protein concentration of the samples was determined using BCA Protein 
Assay Kit (Pierce). 25 µg of protein sample were re-suspended in 6X SDS loading buffer (300 mM Tris-
HCl [pH 8.8], 12% SDS, 0.6% bromophenol blue and 30% glycerol) with β-mercaptoethanol (1 µl for 
each 50 µl of 6X SDS buffer), and boiled for 5-10 minutes at 95ºC. Protein samples were separated in 8, 
10 or 16 % SDS-PAGE gels and transferred to a nitrocellulose membrane (Inmovilon-P Transfer 
membranes, Millipore). Membranes were blocked in PBS with 0.1% Tween-20 and 3% BSA for 1 h at 
RT. After that, membranes were incubated with the primary antibodies: anti-eNOS, anti-β-actin HRP 
conjugated (Sigma, 1:50000); all diluted in PBS with 0.1% Tween-20 and 3% BSA. After overnight 
incubation at 4ºC, membranes were incubated during 1 h at RT with secondary antibodies: HRP-
conjugated rabbit anti-IgG (Sigma, 1:10000) or HRP-conjugated mouse anti-IgG (Jackson, 1:5000); all 
diluted in PBS with 0.1% Tween-20 and 3% BSA. Proteins were detected using the chemiluminescent 
substrate ECL (Pierce), the detector LAS-100 (Fujifilm) and the Image Reader LAS-1000 software 
(FujiFilm).  
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Summary

This part of my thesis was done in collaboration with other members of Dr. Maria

Dominguez group. I actively contributed to this article by performing some of the

functional experiments together with Dr. Villegas, my thesis co-director and first author

of this publication. These experiments involved all the RT-qPCRs, the heat shock

assays, assays with Notch inhibitor DAPT, experiments with cell lines and other

experiments that were not finally included in the manuscript but were necessary to the

project to progress.

As exposed in the introduction, the cooperative interaction of Notch and

PI3K/Akt signaling pathways is associated with aggressiveness in human cancer. Here,

we devised an unbiased high-throughput chemical screen in Drosophila to identify

compounds capable of targeting this oncogenic cooperation without side effects.

We found 61 and 29 compounds that strongly suppressed or enhanced Notch-

PI3K/Akt tumorigenesis, respectively. Our screen also identified 15 of the 21 known

anticancer FDA-approved compounds included in the library, thus validating our screen.

These results were genetically validated using tumor-specific RNAi downregulation of

candidate target genes to mimic the action of those compounds with known human

molecular targets. Despite the evolutionary distance between Drosophila and humans,

we confirmed that 64% of the compounds act through conserved targets, making

evident that our Drosophila-based strategy is useful to identify anticancer drugs as well

as their clinically relevant targets.

Some of the suppressor hit compounds are known anti-inflammatory agents

targeting the NO/NOS and LOX signaling pathways. Of particular interest was the drug

BW B70C, a 5-LOX inhibitor, since it blocked tumorigenesis at a very low dose. We

observed that Pten depletion induces aberrant expression of NOS in tumor eye imaginal

discs. As expected, treatment with L-NAME (a selective NOS inhibitor) and genetic

silencing of NOS gene either by RNAi or an endogenous mutation selectively

suppressed tumorigenesis. Furthermore, simultaneous overexpression of NOS and Dl

induced tumorigenesis. Treatment with our drug candidate BW B70C blocked Notch-

NOS-driven tumorigenesis, but not other Notch-driven tumors, suggesting that this drug

dampens a tumor formation process orchestrated by PI3K/Akt-induced inflammatory

NOS.
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We also investigated the contribution of LOX pathway to Notch-PI3K/Akt-

driven tumorigenesis and for that purpose, we searched for Drosophila LOX pathway

homologs to validate our screen results. Genetic inactivation of leukotriene 4 hydrolase

homolog, allatostatin receptors (the structural orthologs of leukotriene receptors in flies)

and phospholipase A2, which is necessary for LOX-mediated production of

proinflammatory lipid metabolites, strongly suppressed tumorigenesis, mirroring the

antineoplastic effect of the identified drugs. These results confirmed that LOX-

generated lipids are required for Notch-PI3K/Akt-driven tumors.

In vertebrates, macrophage infiltration and expression of inflammatory markers

such as NO are hallmarks of cancer. We observed that macrophage-like hemocytes were

dispersed, polarized and infiltrated in the tumor epithelium, whereas in physiological

conditions they remain rounded-shaped and aggregated. These morphological changes

were suppressed under the treatment with BW B70C, suggesting that the inflammatory

response in Notch-PI3K/Akt tumors is shaped by NOS/LOX activity.

Another feature of cancer-related inflammation is immunosuppression. In

Drosophila, melanization is a critical innate immune response to tumor cells and is

mediated by the enzyme phenoloxidase, encoded by the prophenoloxidase genes (PPO).

We examined PPO expression and found that larvae with Notch overactivation alone

showed robust stimulation of PPO1 and PPO2 expression. In contrast, tumor-bearing

larvae and ey>Pten-RNAi larvae did not show this response. Halving PPO gene dosage

together with Dl overexpression resulted in half of the emerging adults bearing tumors.

Furthermore, aberrant NOS expression was sufficient to dampen PPO expression and

the immune response triggered by the PO-activating cascade under heat stress,

visualized as a reduction of melanized crystal cells. Altogether, these observations

indicate that activated PI3K/Akt drives aberrant NOS, which in turn promotes

immunosuppression. This could explain how activated PI3K/Akt unleashes the

oncogenic potential of Notch.

We also validated the antitumor effect of BW B70C in well-established human

T-ALL (T-cell Acute Lymphoblastic Leukemia) cell lines with aberrant NOTCH1 and

PI3K/AKT signaling. We observed that BW B70C treatment killed T-ALL cells that

were resistant to Notch inhibitors and had little or no toxicity against healthy T

lymphocytes. Moreover, as obtained in Drosophila tumors, we found that endothelial
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NOS (eNOS) was aberrantly enriched in these T-ALL cells. Finally, we found that BW

B70C selectively killed T-ALL cells associated by suppressing aberrant eNOS.
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Section 2. PI3K/Akt/Pten-induced mitochondrial dysfunction

cooperates with Notch in tumorigenesis
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A phospho-proteomic approach reveals a role for ATPsynβ in tumorigenesis

In order to get further insight on oncogenic Notch-PI3K/Akt molecular network and to

identify downstream activated targets that may be involved in tumor

initiation/progression, we employed quantitative phospho-proteomic analysis. To this

end, we collected eye imaginal discs from wild type and Notch-PI3K/Akt third instar

larvae and performed 2D-gel electrophoresis combined with phospho-protein staining

(Fig. 10A). Specific spots showing significant differential phosphorylation were

identified based on their reproducibility among three replicate gels and further selected

for mass spectrometry hit identification. Representative overlapped 2D gels from wild

type and Notch-PI3K/Akt tumor samples are shown in Figure 10B.

Most notably, we found that the top hit in our assay corresponded to the protein

ATP synthase β subunit (ATPsynβ, CG11154), which appeared highly phosphorylated

in Notch-PI3K/Akt tumor samples. ATPsynβ is a subunit of the mitochondrial F1-

ATPase complex V responsible for ATP production and is highly conserved from flies

to humans (Hm ATP5B). Moreover, co-immunoprecipitation analysis confirmed that

pAKT physically interacts with ATPsynβ in Drosophila Kc cells (Fig. 10C). Notice that

a band appears in the negative control of the second Co-IP (below). A possible

explanation could be that the molecular weight of ATPsyn is 52KDa, same as the

heavy chain of the polyclonal antibody, which might be masking the region where the

band of interest is expected. These results coincide with previous studies in human cell

lines showing that Akt present in mitochondria can phosphorylate the β‐subunit of ATP

synthase and other proteins (Bijur & Jope, 2003).
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Figure 10. Notch-PI3K/Akt combination triggers downstream phosphorylation of ATP synthase β subunit.

(A) Brief scheme of the phospho-proteomic assay strategy. (B) Overlapped 2D-gels. Proteins highly phosphorylated

in the wild type (green dots) or in the Notch-PI3K/Akt condition (red dots). (C) Co-immunoprecipitation assay of Kc

cells: Western blot analysis of protein extracts from Kc167 cells containing input, IP of ATP5B, or IgG using

antibody to pAKT (on top). Western blot analysis of protein extracts from Kc167 cells containing input, IP of pAKT,

or IgG using antibody to ATP5B (below).
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ROS generated by mitochondrial dysfunction is a key driver of Notch-PI3K/Akt-

induced tumorigenesis

ATP synthesis requires conformational changes in the nucleotide-binding sites of the

three β-subunits that are coupled to the catalytic activity of F1-ATP synthase. Evidence

from human skeletal muscle suggest that phosphorylation of ATPsynβ contributes to

mitochondrial dysfunction by promoting its association with 14-3-3 proteins in the

cytosol (Højlund et al., 2003).

Therefore, we reasoned that knocking down ATPsynβ expression by using RNA

interference (ATPsynβ-RNAi) would mimic the loss of function generated by its

phosphorylation. We found that ATPsynβ-RNAi, when co-expressed together with

Notch overexpression (ey>Dl>ATPsynβ-RNAi), also generated tumors (Fig. 11A). We

then analyzed the phenotypes generated by knocking down other members of the F1-

Complex V alongside Notch and observed a similar tumorigenic effect. Interestingly,

down-regulation of several components of the Complex I, together with activated Notch

resulted in a similar outcome (Fig. 11B).

Figure 11.Mitochondrial dysfunction cooperates with Notch to promote tumorigenesis.

(A) Tumor incidence (as a percentage) in control flies and after genetic inhibition of ATPsyn. Bars shown represent
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the mean of total (n > 100) flies scored. Crosses were repeated twice. (B) Knock-down of other members of the

complex I and V together with Notch up-regulation and representative phenotypes.

ATP synthase deficiency results in proton misbalance, which provokes an

increase in the mitochondrial membrane potential leading to the slowdown of the

electron transport chain (ETC). Therefore, more electrons are diverted from their

normal pathway resulting in an elevated production of reactive oxygen species (ROS),

such as peroxide and superoxide (Martínez-Reyes & Cuezva, 2014), both largely

associated with cancer disease (see introduction).

To examine if generation of ROS might be implicated in Notch-PI3K/Akt tumor

induction, we monitored the expression of GstD1, a prototypical ROS response gene

that encodes for a detoxification enzyme (Sawicki et al., 2003).

*
*
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Figure 12. Notch-PI3K/Akt tumorigenic combination triggers ROS production.

(A) ROS levels and tissue resident hemocytes are visualized by GstD1-GFP (green), a sensitive oxidative stress

reporter, and by the pan-hemocyte marker Hml-dsRed.Δ (red), respectively (merge in yellow). (B) Direct

measurement of ROS by CellROX reagent in eye imaginal discs. (C) Measurement of basal ROS levels by FACS

sorting in #5 and #17 cells taken from T-ALL patients compared to healthy PBMCs. (D) ROS levels in T-ALL cells

after treatment with BW B70C.

We used a GstD1-GFP reporter line (Sykiotis & Bohmann, 2008) to evaluate

oxidative stress in vivo and we found that tumor eye discs exhibit higher amounts of

ROS (Fig. 12A). This observation was confirmed by direct measure of oxidative stress

with CellROX reagent (Fig. 12B). Interestingly, Drosophila multipotent haematopoietic

progenitors display increased levels of ROS under in vivo physiological conditions

(Owusu-Ansah & Banerjee, 2009). Here we show that ROS signal co-localizes totally

with hemocytes in the wild type eye imaginal disc, whereas in the tumor is disseminated

along the whole tissue (Fig. 12A).

In addition, we evaluated the levels of ROS in human T-ALL cells from patients

(#5 and #17) compared to healthy T and B lymphocytes (PBMC). For that purpose, we

used fluorescence-activated cell sorting (FACS) combined with CellROX. We found

that the levels of ROS were significantly higher in T-ALL cells compared to PBMC

healthy counterpart, validating our previous results in the Notch-PI3K/Akt tumors of

Drosophila (Fig. 12C). Markedly, BW B70C treatment increased ROS levels suggesting

a cell death inducing mechanism (Fig. 12D).

*

* *
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Hyperactivation of the ROS-scavenging system prevents tumor formation

We reasoned that if ROS production is involved in Notch-PI3K/Akt tumor induction,

then removing ROS excess would reduce the tumor burden. Consequently, we amplified

the intracellular levels of ROS scavengers in the Notch-PI3K/Akt context by means of

the up-regulation of the detoxification enzymes Superoxide dismutase 1 (Sod1),

Catalase (Cat) and Glutathione peroxidase (GTPx). We found that over-expression of

Catalase and GTPx significantly reduced oncogenesis while over-expression of Sod1

suppressed almost completely the tumorigenic phenotype (Fig. 13A). Moreover, knock-

down of Sod1 together with Notch hyperactivation also generated eye tumors,

indicating that elevated levels of ROS act together with increased Notch signaling to

trigger tumorigenesis. Yet, ey>Dl>Sod1-RNAi yielded lower levels of tumorigenesis

than Notch-PI3K/Akt, suggesting that compensatory mechanisms are involved (Fig.

13B).
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Figure 13. Hyperactivation of the ROS scavenging system reduces tumorigenesis.

(A) Tumor incidence (as a percentage) in control flies and after overexpression of different components of the ROS

scavenging system in the context of Notch-PI3K/Akt. The construct P{UAS-PHGPx.M} was used to overexpress

GTPx (Missirlis et al., 2003). Below are shown representative phenotypes (Control: ey>Dl>Pten-RNAi). (B) Tumor

incidence after down-regulation of Sod1 together with overexpression of Dl. Bars shown represent the mean of total

(n > 100) flies scored. Crosses were repeated twice. (C) On top, visualization of Notch-PI3K/Akt-induced

overproliferation in wild type, tumors and after Sod1 overexpression. Left: Average total number of PH3-positive

cells in eye imaginal discs. Right: normalized per area.

Next, we analyzed the proliferation rate by measuring the number of PH3-

positive cells within the imaginal disc. Our results indicate that Sod1 might be

controlling the overproliferation induced by Notch-PI3K/Akt (Fig. 13C, left).
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Normalization of PH3-positive cells per area revealed no statistical differences between

wild type and the tumorigenic context, indicating that proliferating cells increase their

biomass before going through the division, as expected for cancer cells (Fig. 13C, right).

All together, these data indicate that changes in mitochondrial metabolism with the

subsequent increase in ROS levels are at the center of Notch-PI3K/Akt-driven

tumorigenesis.

Notch-PI3K/AKT combination triggers activation of JNK stress signaling cascade

ROS are known to act as second messengers that activate diverse redox-sensitive

signaling transduction cascades. Jnk (Bsk in Drosophila) is a well-known stress

response gene mainly activated in response to oxidative stress and proinflammatory

cytokines. It has been widely described that increased ROS levels activate Jnk signaling

pathway in other cancer models (Dhanasekaran & Reddy, 2008; Chambers et al, 2011).

Therefore, we checked activation of Jnk in order to analyze if it is involved in Notch-

PI3K/Akt-induced tumorigenesis. Thus, to monitor Jnk activation (phospho-Jnk) we

used a fly line with an RFP fluorescent construct that reports the expression of a

phospho-Jnk downstream gene (Jnk::TRE40-RFP). We observed that Jnk is activated in

the tumor condition and partially co-localizes with ROS signal (Fig. 14A).

In addition, ROS and oxidative stress are known to trigger and modulate

apoptosis, a well-characterized biological process by which cells undergo a

programmed death. ROS-induced apoptosis requires the participation of other cell death

signaling pathways, such as Jnk. Thus, we measured apoptosis levels by

immunostaining of cleaved caspase 3, an essential mediator of the apoptotic process.

The wild type does not show any Jnk signal, neither apoptosis, whereas in the tumor,

apoptosis widely co-localizes with Jnk activation (Fig. 14A). Interestingly, tumors

display intratumor heterogeneity, since some Jnk-positive cells do not co-localize with

ROS or caspase, which may reflect different patterns of temporal expression.
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Despite the researcher’s efforts, the contribution of Jnk in both tumor promotion

and suppression reflects our little understanding of the role of Jnk in the tumor

microenvironment. There is great evidence that Jnk, besides controlling cell-

autonomous functions, can drive the expression of cytokines that can act in a paracrine

manner to sustain the proliferation of cancer cells (Sakurai et al., 2006). Moreover,

studies in mice have demonstrated that the contribution of Jnk is specific for cell type

and isoform. Therefore, the paradoxical role of Jnk in cancer might be unraveled by

elucidating the impact of Jnk signaling in inflammation that operates downstream of

each oncogenic mutation.

In the present study, we hypothesized that if Jnk signaling is involved in Notch-

PI3K/Akt-driven tumorigenesis, then its down-regulation may rescue the wild type

phenotype. Thus, we used different RNAi lines to knock-down Jnk signaling in the

context of the tumor. In support of this hypothesis, we found that one line (B31323)

reduced the tumorigenic index; however, two other lines assessed did not showed any

clear difference (V34138) or even increased percentages of tumors (B32977) (Fig. 14B).

A feasible explanation is that the different Jnk-RNAi lines could be regulating Jnk in a

different way. To answer this question, we measured the expression levels of Puckered

(Puc), a very well-known Jnk target gene, (Wu et al., 2009) by RT-qPCR for each Jnk-

RNAi line. We found that two of the Jnk-RNAi lines effectively down-regulated Jnk

levels, however and unexpectedly, the line B31323 produced the opposite effect (Fig.

14C). Interestingly, this RNAi was responsible for the partially rescued tumor

phenotype, suggesting that high levels of Jnk may have a tumor suppressor role.

To improve our understanding of Jnk role in our cancer model, we blocked

completely Jnk activity using a dominant negative Jnk construct, UAS-Jnk.DN. Results

showed that the complete Jnk loss of function not only does not have anti-tumor activity

in the Notch-PI3K/Akt context, but also it was oncogenic when expressed together with

Notch, indicating that lack of Jnk signaling converts Notch into an oncogenic signal

(Fig. 14D). Consequently, Jnk-RNAi lines that efficiently down-regulate Jnk also

showed different degrees of hyperplasia, hypoplasia and tumorigenesis when co-

expressed with ey>Dl, whereas the line that augments Jnk levels did not have any effect

(Fig. 14E).

To corroborate the idea that Jnk is behaving as a tumor suppressor signal, we

performed Jnk gain of function experiments by using UAS-Jnk transgenic flies. The
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resulting phenotypes were variable, since the levels of tumorigenesis clearly decreased

but almost all individuals showed hypoplasic phenotype (small eyes instead of the

overgrowth that characterizes Notch hyperactivation) (Fig. 14D).

Finally, inhibition of apoptosis by overexpression of the protein P35, known to

block the action of a wide range of caspases, revealed a reduction in tumorigenesis

levels (Fig. 14F). All together, these results suggest that Jnk signal might be restricting

the tumor burden by inducing apoptosis, which further suggests a tumor suppressor role

in this context, as described in other cancer models (Whitmarsh & Davis, 2007;

Shramek et al., 2011; Ahn et al., 2011; Tournier, 2013).
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Figure 14. ROS-induced Jnk signaling triggers apoptosis as an anti-tumor response.

(A) GstD1-GFP, Jnk:TRE40-RFP reporter lines and immunostaining of cleaved caspase 3 show signal from ROS,

Jnk and apoptosis respectively. (B) Tumor incidence (as a percentage) in control flies and after Jnk knock-down

using different RNA of interference. (C) Efficiency of the different Jnk-RNAi lines by RT-qPCR. Data were

analyzed by a two-tailed unpaired t-test and values represent the mean ± SD of three independent replicates.p<0.05

(D) Tumor incidence after total Jnk loss/gain of function. (E) Tumor incidence of Jnk knock-down combined with

ey>Dl. (F) Tumor levels after inhibition of caspases by overexpression of P35 in Notch-PI3K/Akt context. Bars

shown represent the mean of total (n > 100) flies scored. Crosses were repeated twice.



87

Mitochondria induces apoptosis through cytochrome c oxidase hyperactivation in

Notch-PI3K/Akt tumors

Many studies have shown that mitochondrial activities play a pathogenic role in cancer

development and progression, in particular by its regulation of apoptosis. Mitochondria

participate in apoptosis through different mechanisms, being the most important the

release of cytocrome c to promote caspase activation (Wang & Youle, 2009) (Fig. 15A).

Here we use the recombinant line P{UAS-mito-HA-GFP.AP} that targets the

mitochondrial protein COX8A (8A is a subunit of the cytochrome c oxidase, the

terminal enzyme of the mitochondrial respiratory chain) to visualize this organelle.

Figure 15. Mitochondria with higher cytochrome c oxidase activity induce apoptosis in Notch-PI3K/Akt

tumors.

(A) Cytochrome c (Cyt.c) is oxidized by mitochondrial cytochrome c oxidase (COX) and then binds to Apaf-1

forming the apoptosome which activates pro-caspase-9, thus leading to apoptosis (adapted from Brown & Borutait,

2008). (B) UAS-mito-GFP reporter line and immunostaining of cleaved caspase 3 show signal from mitochondria

and apoptosis, respectively.
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Interestingly, we can appreciate a more intense signal in a particular region of

the tumor where expression of COX8A gene is higher and co-localizes with cleaved

caspase staining (Fig. 15B). Mechanisms that disable apoptosis occur in several cancer

types and is generally correlated with worse outcome (Kim et al., 2006), thus, we

hypothesize that some regions of the tissue might be fighting against the tumor through

mitochondrial-induced apoptosis.

Notch-PI3K/Akt tumors rely on enhanced glucose uptake

The PI3K/Akt pathway not only has an important role in mitochondrial function, but

also is involved in metabolic reprogramming of cancer cells as many other oncogenes

and tumor-suppressor genes (Iurlaro et al., 2014). Particularly, the activation of Akt

signaling leads to an increase in glucose metabolism by increasing the expression and

translocation of glucose transporters (GLUT) to the plasma membrane and by

phosphorylating key glycolytic enzymes. It also increases translation of HIF1α (hypoxia

inducible factor 1 alpha) through activation of mTOR even under normal oxygen levels.

Here we use a glucose fluorescent analog to monitor the glucose uptake ex vivo.

Glucose consumption was significantly higher in Notch-PI3K/Akt tumors compared to

wild type (Fig. 16A), ey>Dl or ey>Pten-RNAi eye imaginal discs (Suppl. Fig. 2), which

is in line with the fact that the predominant glycolytic phenotype observed in cancer

cells is likely to be the result of complex cooperative interactions between several

pathways. Surprisingly, the expression of glucose transporter 1 (GLUT1) is not affected

(Fig. 16B) which might indicate that the protein is modified at post-translational level.

This appears to protect against neoplasia. Indeed tumor-specific down-regulation of

Glut1 by RNAi strongly reduced tumor incidence, as happens in other models (Fig. 16C)

(Eichenlaub et al., 2018). Moreover, treating tumor-bearing animals with 2-

deoxyglucose, a glucose analog that inhibits glycolysis, also reduced tumor incidence

(Fig. 16D).
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These data highlight the need of high rates of glucose uptake to sustain growth in

Notch-PI3K/Akt tumors.

Figure 16. Glucose uptake is enhanced in Notch-PI3K/Akt tumors.

(A) Monitoring of glucose consumption ex vivo in ey> and ey>Dl>Pten-RNAi eye imaginal discs by using 2-NBDG.

(B) mRNA levels of GLUT1in eye imaginal discs by RT-qPCR. Data were analyzed by a two-tailed unpaired t-test

and values represent the mean ± SD of three independent replicates.p<0.05. (C) Tumor incidence (as a percentage) in

control flies and after Glut1 knock-down RNA of interference. (D) Tumor incidence (as a percentage) of

ey>Dl>Pten-RNAi flies in ad libitum food (control) and after treatment with 2-Deoxy-D-glucose, a glycolysis

inhibitor. Bars shown represent the mean of total (n > 100) flies scored. Crosses were repeated twice.
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Hipoxia inducible factor 1 is stabilized in Notch-PI3K/Akt tumors

HIF1α, sima in flies, is a transcription factor that forms a complex together with HIF1

(tango in flies) and initiates the expression of genes that enhance survival during

hypoxia (low oxygen environment), such as glycolytic enzymes and the glucose

transporters (Semenza, 2012). Furthermore, it has been described that moderate levels

of ROS can mediate the stabilization of the HIF1α (Kaelin & Ratcliffe, 2008).

Previous studies in Drosophila have shown that stimulation of the transcriptional

response induced by Akt-mTOR involves upregulation of sima protein but not sima

mRNA (Dekanty et al., 2005). Sima protein has a very short half-life and its stability is

highly regulated by posttranscriptional modifications. Direct observation of protein

stabilization by using a GFP reporter revealed the presence of sima in tumors but not in

wild type eye imaginal discs (Fig. 17A). However, as expected, we found that sima is

slightly down-regulated at transcriptional level in Notch-PI3K/Akt tumors (Fig. 17B).

Moreover, knockdown of sima with RNA interference led to a decrease in tumor

incidence, whereas its overexpression resulted in lethality and no-head phenotype, as

previously described (Centanin et al., 2005) (Fig. 17C).

We also measured the expression levels of some of the known target genes of

sima (Bertolin et al., 2016). One of these genes is fatiga, which encodes for the HIF

prolyl hydroxylase (hydroxylates sima and leads to its degradation under normoxia).

We observed that fatiga is down-regulated in the tumor as expected, since activation of

sima is mediated by lowering the expression of fatiga (Samenza, 2010; Li et al., 2013).

We also measured other reported genes that are regulated by sima in the fly, such as

spermine oxidase (smox) and sequoia that appear down-regulated and up-regulated,

respectively (Fig. 17D).

On the other hand, the enhanced expression of glycolytic enzymes is also

mediated by sima. Lactate dehydrogenase (Ldh), the enzyme that converts pyruvate to

lactate (Li et al., 2013), is transcriptionally up-regulated in the tumor, as happens in

most cancer models (Fig. 17E), although the tumorigenic process is Ldh-independent

(Fig. 17F). We also observed that the glycolytic enzymes Pgi and Pfk were upregulated,

but strikingly the other glycolytic enzymes remained unchanged (Fig. 17G).
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Figure 17. Sima stabilization is implicated in Notch-PI3K/Akt tumorigenesis.

(A) A mimic construct for sima (simaMI05111-GFSTF.2, B60222) shows sima protein stabilization. (B) mRNA levels of

sima in eye imaginal discs by RT-qPCR. Data were analyzed by a two-tailed unpaired t-test and values represent the

mean ± SD of three independent replicates.p<0.05. (C) Tumor incidence (as a percentage) in control flies and after

sima knock-down or overexpression in Notch-PI3K/Akt context and representative phenotypes. Bars shown represent

the mean of total (n > 100) flies scored. Crosses were repeated twice. Notice that UAS-sima is lethal, thus pharates

were dissected to show the no-head phenotype. (D) Expression levels of sima targets in eye imaginal discs by RT-

qPCR. (E) Expression levels of Ldh in eye imaginal discs by RT-qPCR. (F) Tumor incidence (as a percentage) in

control flies and after Ldh knock-down and overexpression. (G) Heatmap illustrating the expression levels of

glycolytic and PPP enzymes in eye imaginal discs by RT-qPCR. Data were analyzed by a two-tailed unpaired t-test

and values represent the mean ± SD of three independent replicates. p<0.05. HK-A: hexokinase A; Pfk:

phosphofructokinase; Ald: aldolase; Tpi: topoisomerase; Gapdh: Glyceraldehyde-3-Phosphate Dehydrogenase; Eno:

enolase; PyK: pyruvate kinase; ImpL3: latate dehydrogenase; sima: similar; pgi:phosphoglucoisomerase; pgd: 6-

phosphogluconate dehydrogenase; zw: Zwischenferment (Glucose-6-phosphate dehydrogenase).
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Glycolysis is tightly connected to the pentose phosphate pathway (PPP).

Proliferating cells have a high need for PPP activity to provide ribose-5-phosphate

needed for generating nucleotides and NADPH. Thus, the regulatory network of PPP

flux is part of the important metabolic adaptations in human cancer (Cho et al., 2018).

Here we found that the key enzymes of this pathway remain unchanged, although pgi is

upregulated.

Taken together, these data suggest that Notch-PI3K/Akt tumors rely on sima

activation expectably through NOS and ROS signals. Interestingly, despite an increase

in Ldh and increased glucose uptake, these tumors do not show a clear increase in

glycolytic and PPP flux commonly associated with cancer cells.
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Section 3. Notch-PI3K/Akt/Pten tumors reprogram whole-

body metabolism via the Tryptophan-Kynurenine pathway
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Loss of Pten drives whole-body metabolic shift towards upregulation of Glycolysis

and Pentose Phosphate Pathway

As explained in section 2, Notch-PI3K/Akt eye disc tumors have increased needs for

glucose than normal growing imaginal disc cells. Excess of glucose can enter the

glycolytic pathway to provide biosynthetic precursors and energy to sustain the rapid

and high proliferation rate of aggressive cancer cells (Boros et al., 2002). On the other

hand, the pentose phosphate pathway (PPP) represents an alternative route for anaerobic

glucose degradation commonly upregulated in cancer cells. PPP contributes to cancer

cell proliferation by supplying cells with ribose-5-phosphate and the reductant NADPH,

important for detoxification of ROS (Jiang et al., 2014).

To clarify the mechanism by which Pten impacts host metabolism and cancer

outcome we evaluated the effect of Notch-PI3K/Akt tumors in the whole-body

carbohydrate metabolism of tumor-bearing larvae. To that end, we quantified changes in

the expression levels of key metabolic enzymes of glycolysis and the PPP by qRT-PCR.

We compared non-tumor and tumor-bearing hosts at third instar wandering larvae, the

period where tumors are generated. At this stage, we also dissected the fat body, since it

functions as energy storage, immune response and nutritional sensor, being the

equivalent to the vertebrate adipose tissue and liver. The fat body can also interplay

with other tissues to coordinate metabolism during development by monitoring and

responding to the physiological needs of the growing body (Zhang & Xi, 2014).

Notwithstanding, its role in tumor growth is understudied.

Remarkably, whereas eye tumors display almost normal expression for most

genes involved in the glycolytic and PPP pathways related to wild type eye imaginal

discs (Fig. 17G), in stark contrast, these pathways are upregulated in larvae with tumors

(Fig. 18A). We also measured the relative abundance of different metabolite

intermediates of these pathways by GC-MS (Gas Chromatography coupled to Mass

Spectrometry) and found that none of these metabolites are accumulated in the tumor-

bearing larvae (Fig. 18B). Similarly, the dissected fat bodies from tumor-bearing larvae

showed a dramatic upregulation of the glycolytic and the PPP pathways (Fig. 18C) and

no accumulation of intermediate metabolites (Fig. 18D). These data suggest that both

glycolysis and PPP pathways are highly active and their intermediate metabolites are

https://www.omicsonline.org/drug-metabolism-toxicology.php
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highly consumed, further revealing that the presence of the tumor in the eye imaginal

disc is accelerating the host energy/glucose metabolism.

Our findings indicate that Notch-PI3K/Akt-driven tumors trigger non-

autonomously and remotely disturbances in the host metabolism, particularly in a distal

tissue as the fat body. Notably, the metabolic changes observed in the fat body are likely

to account for the majority of the observed changes in whole larvae, thereby diluting the

strong effect when the whole animal is dissected. The systemic enhancement of the PPP

may reflect a state of high oxidative stress and an attempt of the fat body to counteract it

by increasing the intracellular redox power through NADPH overproduction.

Interestingly, treatment of Notch-PI3K/Akt tumor-bearing larvae with NADPH tetra

sodium salt improved the survival of those animals (Villegas et al., 2018). To identify

the source of such oxidative stress in the fat body we next used a high throughput

metabolomics approach.
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Figure 18. Glycolytic and PPP pathways are dramatically increased in the fat body of Notch-PI3K/Akt tumor-

bearing larvae.

(A) Heatmap illustrating the expression levels of glycolytic enzymes in whole larvae by RT-qPCR. Data were

analyzed by a two-tailed unpaired t-test and values represent the mean ± SD of three independent replicates. p<0.05.

(B) Relative abundance of key glycolytic and PPP metabolites in wild type and tumor-bearing larvae. (C) Heatmap

illustrating the expression levels of glycolytic and PPP enzymes in fat body of third instar larvae by RT-qPCR (D)
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Relative abundance of key glycolytic and PPP metabolites in the fat body of wild type and tumor-bearing larvae. HK-

A: hexokinase A; Pfk: phosphofructokinase; Ald: aldolase; Tpi: topoisomerase; Gapdh: Glyceraldehyde-3-Phosphate

Dehydrogenase; Eno: enolase; PyK: pyruvate kinase; ImpL3: latate dehydrogenase; sima: similar;

pgi:phosphoglucoisomerase; pgd: 6-phosphogluconate dehydrogenase; zw: Zwischenferment (Glucose-6-phosphate

dehydrogenase).

Large-scale metabolomics reveals metabolic changes linked to the tryptophan

catabolism in tumor-bearing larvae

To better characterize the systemic metabolic changes in tumor-bearing larvae, we

performed a large-scale metabolomics assay using UHPLC-MS (Ultra High Precision

Liquid Chromatography coupled to Mass Spectrometry, hereafter LC-MS). A

representation of all the compounds that were detected comparing wild type larvae

versus Notch-PI3K/Akt tumor-bearing larvae is in Figure 19A. Of all compounds, 58 of

them present statistical differences between tumor and wild type samples (log10(p)>1),

although the identity of some of them was not established. Of those identified, some are

enriched in the tumor condition and others show a deficiency (Table 6; Suppl. Table 1).

We observed the most dramatic change in the 3-hydroxykynurenic acid, which is

~56 times higher in larvae with tumors (Fig. 19A), thus we focused our efforts on

elucidating its role in this tumorigenic context. This metabolite is formed as a

breakdown molecule of tryptophan (Trp) metabolism.

Tryptophan is an essential amino acid which is converted into several bioactive

molecules, such as serotonin (~1-2%), a monoamine neurotransmitter and hormone that

controls mood and immune reactions. A small percentage of tryptophan (~5%) is

degraded by gut microbiota through the indole pathway. The remaining ~95% enters in

the kynurenine pathway (KP), which is responsible for the detoxification of excess

tryptophan, the control of plasma tryptophan availability and the production of

kynurenine metabolites. The last ones have an important role in neuronal and

immunomodulatory function (Bender, 1983; Badawy, 2002; Badawy et al., 2016).
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Figure 19. Tryptophan-kynurenine metabolism is altered in tumor-bearing larvae.

(A) Volcano plot of LC-MS quantification of metabolites identified between Notch-PI3K/Akt/Pten tumor-bearing

larvae versus wild type larvae. Y-axis indicates −log10 (p value) while the horizontal axis indicates base 2

logarithmic value of mean metabolite abundance ratio (Tumor/Wild type). The horizontal dashed line represents the

Benjamini-Hochberg FDR threshold of significance assigned for subsequent analysis of metabolites. Compounds that

show significant changes are indicated in red. (B) Kynurenine metabolism in Homo sapiens and Drosophila

melanogaster (picture from Navrotskaya et al., 2018).
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Table 6. List of compounds identified by LC-MS with statistically significant effect.

In orange: metabolites more abundant in the tumor-bearing larvae (Fold Change > 1). In blue: metabolites less

abundant in the tumor-bearing larvae (Fold Change < 1).

In humans, the kynurenine pathway (KP) exists mainly in the liver, where Trp is

degraded by the enzyme tryptophan dioxygenase (TDO, vermilion in flies) to form

kynurenine (K) and later its many breakdown products, which include: redox factors as

nicotinamide adenine dinucleotide/phosphate (NAD+, NADP+), niacin (also known as

nicotinamide, nicotinic acid or vitamin B3), the NMDA receptor agonist quinolinic acid

(QA) and antagonist kynurenic acid (KA); and immunosuppressive metabolites such as

3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA). Kynurenine is
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oxidized to 3-HK by the enzyme kynurenine monooxygenase (KMO, encoded by

cinnabar in flies). Both K and 3-HK can also be transaminated to form KA and

xanthurenic acid (XanA) by kynurenine aminotransferases (KYAT), respectively (Fig.

19B) (Badawy, 2017).

Tissue-specific targeted metabolomics points at the fat body as the origin of major

metabolic changes observed in tumor-bearing larvae

To confirm and expand the data of LC-MS, we performed targeted GC-MS (Gas

Chromatography coupled to Mass Spectrometry) of tumor-bearing host (Fig. 20A), the

fat body (Fig. 20B) and the circulating hemolymph (Fig. 20C) compared with non-

tumor hosts and hosts with single Delta overexpression or Pten knockdown. I carried

out this technique in the lab of Dr. Tennessen in Indiana University (USA).
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Figure 20. KP metabolites production is increased in tumor-bearing hosts.

Volcano plot representing GC-MS quantification of metabolites identified between (A) whole

larvae (B) fat bodies and (C) hemolymph of Notch-PI3K/Akt/Pten tumor bearing-larvae

versus wild type larvae. Y-axis indicates −log10 (p value) while the horizontal axis indicates

base 2 logarithmic value of mean metabolite abundance ratio (Tumor/Wild type). The

horizontal dashed line represents the Benjamini-Hochberg FDR threshold of significance

assigned for subsequent analysis of metabolites. Compounds that show significant changes

are indicated in red.
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Targeted GC-MS corroborated the positive correlation of the tryptophan-

kynurenine pathway in hosts with ey>Dl>Pten-RNAi tumors. These analyses also

showed similar changes in larvae with single ey>Pten-RNAi expression, albeit less

severe (Suppl. Fig 3). This data indicates that these metabolic alterations are brought

about by the Pten deficiency rather than being a consequence of tumorigenesis, since

ey>Pten-RNAi does not lead to overgrowth in fed hosts (Palomero et al., 2007; Villegas

et al., 2018). Interestingly, besides the increase in 3-HK observed by LC-MS,

xanthurenic acid (XanA), a breakdown product of 3-HK was also enriched in tumor-

bearing larvae (Fig. 20A). Notably, the KP pathway is highly active in the fat body of

tumor-bearing larvae and is presumably the main source of 3-HK changes observed in

the host (Fig. 20B). Hemolymph analyses also revealed high levels of circulating K, 3-

HK, and XanA metabolites in larvae with ey>Dl>Pten-RNAi tumors (Fig. 20C). Finally,

a second targeted analysis of UHPLC-MS data confirmed the changes in the different

KP metabolites identified by targeted GC-MS, specially 3-HK which was ~209 times

higher (Suppl. Table 1).

Tryptophan-Kynurenine pathway is transcriptionally up-regulated in the fat body

of tumor-bearing hosts

To verify that genes encoding the enzymes that produce kynurenine metabolites were

altered in tumor-bearing hosts, we measured mRNA levels of the tryptophan-

kynurenine pathway key enzymes in the tumor tissue (Fig. 21A), whole larvae (Fig.

21B) and fat bodies (Fig. 21C) by qRT-PCR. Expression levels of the main KP enzymes

are increased in the fat body of Notch-PI3K/Akt larvae, as expected (Fig. 21C). These

data corroborate that tryptophan-kynurenine pathway is elevated significantly in the fat

body, albeit there is mild but significant up-regulation of KMO/cn in the eye tumors

compared wild type controls (Fig. 21A). Consequently, we observe systemic tryptophan

depletion ought to the huge increment in the activity of the KP in the fat body (Fig.

21D).
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Figure 21. KP is shifted towards a higher production of 3-HK in fat body of Notch-PI3K/Akt tumor-bearing

larvae.

mRNA levels of vermilion (v) and cinnabar (cn) in (A) eye imaginal discs, (B) fat body and (C) whole larva by RT-

qPCR. Data were analyzed by a two-tailed unpaired t-test and values represent the mean ± SD of three independent

replicates.p<0.05. (D) LC-MS quantification of tryptophan levels in Notch-PI3K/Akt/Pten tumor-bearing larvae

versus wild type larvae.

Interestingly, levels of XanA are higher in the whole animal and hemolymph of

Notch-PI3K/Akt tumor-bearing larvae (Fig. 20A, 20C). We measured the expression

levels of KYAT/CG6950, the enzyme that produces XanA, and observed that is

increased in the whole larva (Fig. 21B), but not in the fat body (Fig. 21C). All together,

these data suggest that this metabolite is secreted to the hemolymph, as happens in

humans, where is secreted to the plasma and urine (Keda et al., 1986; Oxenkrug, 2015).

Carbohydrate metabolism could also be influenced by XanA, since it binds and

inactivates insulin, having a diabetogenic effect in humans. In fact, high plasma levels

of XanA are associated with insulin resistance, increased glycemia and higher

probability of having diabetes (Reginaldo et al., 2015; Pasco and Leopold, 2012). Here

we measured the expression levels of FOXO targets, 4E-BP and insulin receptor (InR).

Whereas 4E-BP expression levels are higher in the whole larva (Fig. 22A),

InR and 4EBP were markedly down-regulated in the fat body from tumor-bearing larvae

(Fig. 22B), which allows the fat body cells to use glucose more effectively, reducing

glycemia (Fig. 22C). We therefore hypothesize that whereas the fat body might be

insulin sensitive, the whole animal might be insulin resistant.

*
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Figure 22. Fat body cells from tumor-bearing larvae are insulin sensitive.

(A) mRNA levels of FOXO targets, 4E-BP and insulin receptor (InR) in whole larvae and (B) fat body by RT-

qPCR. Data were analyzed by a two-tailed unpaired t-test and values represent the mean ± SD of three independent

replicates.p<0.05. (C) LC-MS quantification of glucose levels in Notch-PI3K/Akt/Pten tumor-bearing larvae versus

wild type larvae.

*
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Overexpression of Kynurenine 3-monooxygenase (KMO/cinnabar) is the main

contributor to Pten tumorigenesis

Disturbances in the function of KP could have clinical and therapeutic implications. The

cancer-promoting role of KP was first reported in 2005 by Prendergast group. They

showed that IDO promotes tumor formation through inhibition of T-cell immunity

(Muller et al., 2005). Furthermore, in some types of cancers, TDO is constitutively

expressed and is capable of suppressing antitumor immune responses (Platten et al.,

2012). On the other hand, KMO overexpression is also a poor prognosis of cancer

malignancy (Chiu et al., 2019). However, despite the immunosuppressive role of the

kynurenine metabolites has been widely investigated in cancer and the

microenvironment, little is known about their systemic effects in cancer outcome.

In order to expand the pathophysiological roles of tryptophan-kynurenine

pathway in tumorigenesis, we performed functional studies depleting each of the

tryptophan catabolic genes TDO/vermilion, KMO/cinnabar and kynurenine metabolite

transporters by both endogenously reducing the expression using mutations and by

tumor-specifically knockdown via transgenic RNAi expression.

Drosophila TDO/vermilion is preferentially expressed in the fat body in normal

growing larvae. Because we observed a fat body-specific upregulation of

TDO/vermilion and KMO/cinnabar in ey>Dl>Pten-RNAi tumor-bearing hosts (Fig.

21B), consistent with the metabolomics data, we hypothesized that these genes may

contribute to tumorigenesis by fat-body production of kynurenine and 3-HK,

respectively. Tumor-specific knockdown of TDO/vermilion and KMO/cinnabar

induced a decrease in tumor incidence, indicating a local role of KP in the tumor tissue,

as happens in some cancers. The systemic effect of halving gene dosage of TDO/v or

KMO/cn using endogenous mutations resulted in a drastic reduction of tumor incidence,

suggesting that the presence of the tumor can rewire the host tryptophan-kynurenine

metabolism (Fig. 23A). In line with these findings, diet supplementation with 3-HK in

tumor-bearing larvae lacking KMO/cn rescued tumorigenesis, indicating that the

production of this metabolite is causative of the tumor phenotype (Fig. 23B).

On the other hand, besides TDO, the rate-limiting factor of tryptophan

conversion into kynurenine is the ATP-binding cassette (ABC) transporter (Sullivan et
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al., 1980; Mackenzie et al., 1999). The white, brown and scarlet genes encode ABC

proteins that act as tryptophan transporters (Ewart et al., 1994), but can also export 3-

HK from cytoplasm into the pigment granules of eye cells (Mackenzie et al., 2000).

Tumor-specific downregulation of white and scarlet genes by transgenic RNAi to limit

Trp/K cellular uptake resulted in a reduction of tumor incidence, indicating that either

tryptophan and/or kynurenine metabolites are necessary for the Notch-PI3K/Akt cancer

cells to grow (Fig. 23C).

In humans, IDO2 is regulated by the Aryl hydrocarbon receptor (AhR), a ligand-

activated transcription factor that functions as xenobiotic sensor and also plays an

important role in the control of immune response and tolerance (Stevens et al., 2009).

Kynurenine and some of its breakdown metabolites are endogenous ligands of the AhR.

Binding of kynurenine or kynurenic acid to the AhR dampens the immune response to

prevent excessive inflammation and autoimmunity (Juliard et al., 2014). Studies on

human lung cancer cells have shown that kynurenine activates IDO via AhR, which is

associated with a poor prognosis, since IDO-mediated immunosuppression enables the

immune escape of tumor cells (Litzenburger et al., 2014).

Here we downregulate the Drosophila homolog of AhR, spineless (ss), tumor-

specifically, which results in a significant reduction in tumor incidence. Halving gene

dosage by introducing an endogenous mutation also has anti-tumor effect, albeit less

strong (Fig. 23D). This data suggests that high levels of kynurenine metabolites found

in tumor-bearing hosts trigger an immunosuppressive effect through binding to AhR

and the subsequent activation of TDO/IDO/vermilion, generating a loop that reinforces

tumor cell immune escape. Thus, fat body- and tumor-derived kynurenine metabolites

contribute in a multifactorial manner to Notch-PI3K/Akt-driven tumorigenesis.
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Figure 23. Fat body 3-HK overproduction is causative of the Notch-PI3K/Akt tumor phenotype.

(A) Tumor incidence (as a percentage) in control flies and after halving gene dosage of vermilion and cinnabar and

after tumor-specific knock-down with RNA of interference. (B) Tumor incidence in tumor-bearing larvae lacking

KMO/cn after diet supplementation with different concentrations of 3-HK. (C) Tumor incidence after tumor-specific

knock-down of the tryptophan transporters white (w) and scarlet (st) and (D) after halving gene dosage or tumor-

specific knock-down of the Aryl hydrocarbon receptor, spineless (ss). Bars shown represent the mean of total (n >

100) flies scored. Crosses were repeated twice.
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Systemic pharmacologic inhibition of KMO/cn exerts an antineoplastic effect

Constitutive IDO expression has been reported in most human tumors and systemic

pharmacological inhibition of IDO has been shown to reverse immune resistance

mechanisms in several animal models (Uyttenhove et al., 2003). In fact, IDO inhibitors

(Prendergast et al. 2017) have entered clinical trials with the aim to dampen tumour

immune escape (Sheridan et al. 2015). In addition, overactivation of liver-specific TDO

in cancer (Cheong et al., 2018) suggests that this enzyme also contributes to drive

immune escape. Consistently, systemic TDO inhibition restored tumor rejection in a

preclinical model (Opitz et al. 2011; Stroobant et al., 2012).

Hence, we administrated a TDO/IDO/vermilion and KMO/cinnabar drug

inhibitors to tumor-bearing hosts. TDO/v inhibitor was not effective at any of the tested

doses (Fig. 24A) and it was lethal at doses >100M due to vehicle toxicity (data not

shown). In stark contrast, KMO/cn inhibitor exerted a potent antineoplastic effect (Fig.

24B). These data provide proof-of-concept evidence that KMO inhibitors block

tumorigenesis by dampening the formation of the toxic 3-HK metabolite not only in

tumor cells, but also in the whole organism.

Figure 24. Drug inhibition of KMO/cn has antineoplastic effects.

(A) Tumor incidence (as a percentage) in tumor-bearing flies after treatment with drug inhibitors of TDO/vermilion

and (B) KMO/cinnabar at different doses. The control is the absence of drug treatment. Bars shown represent the

mean of total (n > 100) flies scored. Crosses were repeated twice.
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Notch-PI3K/Akt-driven tumors trigger higher brain serotonin synthesis despite

systemic tryptophan depletion

Tryptophan can be also converted into serotonin (5-hydroxytryptamine, 5-HT). Notably,

we previously showed that serotonin exerts a positive effect on ey>Dl>Pten-RNAi

tumors via its receptor 5HT1B (Villegas et al., 2018). Moreover, previous works have

demonstrated that Trp degradation along the KP leads to decreased availability of Trp

for cerebral serotonin synthesis (Badawy and Evans, 1983). To provide new insights

about the role of serotonin in Notch-PI3K/Akt driven tumorigenesis, we quantified the

amount of brain serotonin synthesis, which revealed an increase of this neurotransmitter

in tumor-bearing larvae (Fig. 25A, 25B), albeit the reduction in the pool of Trp (Fig.

21D). Furthermore, systemic levels of the serotonin precursor 5-HTP were significantly

higher in these animals (Fig. 25C), although we could not detect any peak

corresponding to serotonin neither by LC-MS nor by GC-MS. In addition, halving the

amount of serotonin production by inhibiting tryptophan hydroxylase (Trh), the enzyme

that converts Trp to 5-hydroxytryptophan (5-HTP) using a pBacTRH null mutation

(Neckameyer et al., 2007), resulted in a reduced tumor incidence (Fig. 25D).These

results provide evidence that Notch-PI3K/Akt tumors rely on serotonin through an

unknown mechanism.
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Figure 25. Serotonin synthesis is increased in the brain of tumor-bearing larvae.

(A) Serotonin neurotransmitter is visualized by anti-serotonin (green) in the brain. (B) Quantitative measurement of

serotonin signal. (C) LC-MS quantification of 5-HTP levels in Notch-PI3K/Akt/Pten tumor-bearing larvae versus

wild type larvae. (D) Tumor incidence (as a percentage) in tumor-bearing flies after inhibition of tryptophan

hydroxylase (Trh). Bars shown represent the mean of total (n > 100) flies scored. Crosses were repeated twice.

*
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Tryptophan degradation by gut microbiota is hampered in Notch-PI3K/Akt hosts

Tryptophan from the diet is also converted into various metabolites by the gut

microbiota through the indole pathway. Here we detected by LC-MS reduced levels of

indoleacrylic acid (IA) and indoleacetic acid (IAA) in tumor-bearing larvae (Fig. 26A).

Figure 26. Amount of microbial-derived tryptophan metabolites is reduced in

tumor-bearing hosts.

(A) LC-MS quantification of indoleacrylic acid (IA) and indoleacetic acid (IAA) levels

in Notch-PI3K/Akt/Pten tumor-bearing larvae versus wild type larvae. (B) Tumor

incidence (as a percentage) in tumor-bearing flies after treatment diet supplementation

with indoleacrylic acid at different doses. Bars shown represent the mean of total (n >

100) flies scored. Crosses were repeated twice.

* *
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Trp degradation is shifted towards kynurenine pathway and serotonin synthesis.

It is reasonable to think that the amount of tryprophan available for the microbiota to

produce indole metabolites, which are known to have antiinflamatory and antioxidant

properties, is reduced. Diet supplementation with IA did not have any effect on

tumorigenesis at 100M (Fig. 26B). Increasing doses were deleterious to the animal

due vehicle toxicity (data not shown).

Tryptopham diet supplementation prevents lethality and tumorigenesis associated

to protein restriction in Pten-deficient hosts

Modulation of the amino acid composition of the diet can influence cancer growth

(Maddocks et al., 2013). Here we have observed a systemic Trp depletion due to the fat

body overproduction of KP metabolites and the increase in brain serotonin synthesis. It

is well described that excess of tryptophan is one of the key regulatory mechanisms of

the kynurenine pathway through reverse binding sequence (Badawy, 2017). As

expected, adding a Trp supplement to the standard food was sufficient to drastically

reduce the tumor phenotype (Fig. 27A). This result supports the notion that KP is

involved in the tumorigenic process, since its inhibition by excess of Trp prevents tumor

formation.

Moreover, as exposed in the introduction, tumors with Pten deficiency are

resistant to protein restriction, but this dietary intervention also induces hypersensitivity

and lethality in the host through an unknown non-autonomous mechanism (Kalaany et

al., 2009; Nowak et al., 2013).

To ascertain whether reducing dietary amino acids in the host has a negative

impact on larvae bearing Notch-PI3K/Akt tumors, we reared ey>Dl>Pten-RNAi hosts

in a diet with 85% reduction of yeast. While non tumor-bearing hosts (ey>) and

hyperplastic-bearing hosts (ey>Dl) survived this starvation condition (Suppl. Fig. 6),

both ey>Pten-RNAi and tumor-bearing larvae (ey>Dl>Pten-RNAi) did not (Fig. 27B,

Suppl. Fig 6). These data are in line with previous works pointing that Pten deficient

tumors are diet-resistant, albeit the hosts are hypersensitive to semi-starvation of amino

acids.
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However, supplementation of the low-protein food with tryptophan not only

rescued the host lethality associated to Pten inactivation (Fig. 27B), but also

dramatically reduced the tumor phenotype, rendering wild type-like eyes (Fig. 27C).

These data further reveal that this amino-acid is essential to overcome caloric restriction

resistance.

Figure 27. Tryptophan supplementation rescues viability associated to Pten loss under protein restriction

conditions.

(A) Relative viability to adulthood in standard food (control) or in low yeast diet. (B) Tumor incidence as a

percentaje and (C) relative viability to adulthood of ey>Pten-RNAi and ey>Dl>Pten-RNAi flies reared in standard

food, low yeast food and low yeast food supplemented with 0,09mg/ml of tryptophan. Bars shown represent the mean

of total (n > 100) flies scored. Crosses were repeated twice.
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1. Discussion

The developmental outcome of a signaling pathway depends on how signals are

integrated with other pathways within and between cells. Given the pleiotropic roles of

Notch and Akt signaling pathways in multiple cellular processes during development,

the interactions between both pathways and other signals is very complex. Disruption of

these interactions by dysfunctional signaling is at the center of tumorigenesis. Tumor

initiation involves a complex genetic, molecular and cellular network, which explains

the poor efficiency of current treatments. Thus, for the discovery of better therapeutic

options is necessary to address the complexity of Notch-PI3K/Akt context-dependent

oncogenic interactions.

In the present thesis, we used Drosophila to model this oncogenic cooperation

and induce eye tumors, since the sole activation of either the Notch or PI3K/Akt

pathway is not sufficient to promote tumorigenesis (Ferres-Marco et al., 2006;

Palomero et al., 2007). We employed a multidisciplinary approach to identify the

underlying mechanisms of Notch-PI3K/Akt-driven tumorigenesis with the aim to find

downstream targets that could be exploited therapeutically.

An unbiased drug screen in Drosophila reveals a conserved Nitric oxide-dependent

inflammation in Notch-PI3K/Akt tumors

Notch and PI3K/Akt drug inhibitors exert a potent antineoplastic activity, but their use

in clinics provokes side effects and drug resistance (Andersson & Lendahl, 2014;

Fruman & Rommel, 2014; Chia et al., 2015). Using an unbiased, phenotypic-based

chemical screen we identified drug candidates that suppress Notch-PI3K/Akt-driven

tumors without harming normal cells in flies, along with causal mechanisms

underpinning this oncogenic cooperation.

We found that compounds inhibiting the production of LOX-derived lipid

metabolites (such as the drug BW B70C) or the nitric oxide pathway elicit potent and

selective antitumorigenic responses in Notch-PI3K/Akt tumors. LOX enzymes convert
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linoleic and arachidonic acids into potent lipid mediators of inflammation (Dennis &

Norris, 2015) and contribute to certain cancers (Chen et al, 2009a; 2014; Wang &

DuBois, 2010; Steinhilber et al., 2010; Greene et al., 2011). NO, which is generated

from L-arginine by NO synthase (NOS), is also a key signaling molecule in

inflammation, the immune response, and cancer (Fukumura et al., 2006).

In vertebrates, hallmarks of inflammation in cancer include the expression of

inflammatory markers and macrophage infiltration (Mantovani et al., 2008; Colotta et

al., 2009). In Drosophila, inflammation is linked to adult gut tumorigenesis (Petkau et

al., 2017), although a role of NOS and LOX in tumorigenesis was not described. Our

results highlight an unanticipated connection between inflammation and tumorigenesis

promoted by Notch-PI3K/Akt cooperation. We genetically validated the contribution of

the NOS and LOX inflammatory pathways in Notch-PI3K/Akt-driven tumorigenesis.

Our data indicate that activated PI3K/Akt signaling promotes inflammation and

immunosuppression via aberrant NOS expression and unleashes the oncogenic potential

of Notch.

In humans, NO is synthesized by three NOS isozymes. Endothelial NOS (eNOS)

is a well-known direct target of AKT (Dimmeler et al., 1999; Fulton et al, 1999), which

suggests a conserved control of eNOS and Nos in flies (dNOS) by Akt through protein

phosphorylation. We demonstrate that human T-ALL cells have elevated eNOS,

whereas normal PBMCs did not show expression of this enzyme. Finally, we validated

the top hit compound of our screen in human T-ALL cells with NOTCH1 and

PI3K/AKT mutations resistant to Notch inhibitors (Palomero et al., 2007). Curiously,

treatment with BW B70C decreased aberrant eNOS expression and resulted toxic for

human T-ALL cells, but spared normal lymphocytes, which represents a promising and

safe therapeutic option. These results highlight the considerable value of drug screens in

Drosophila to decipher potential druggable targets relevant to human cancers.
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Mitochondrial dysfunction and elevated ROS levels are at the center of Notch-

PI3K/Akt-induced tumorigenesis

Tumor initiation and progression is the result of a misbalance between cell proliferation

and survival and the PI3K-Akt signaling pathway regulates both processes, thus playing

an important role in tumor growth and treatment response. By employing a phospho-

proteomic analysis on Notch-PI3K/Akt-induced tumors, we have identified the beta

subunit from the ATP synthase as a specific downstream target that results

phosphorylated and inactivated by Akt upon this oncogenic cooperation. The

impairment of the electron transport chain owing to the ATP synthase deficiency leads

to the disruption of normal mitochondrial function and increases the production of

reactive oxygen species (ROS), a metabolic hallmark of cancer cells. Moreover,

knocking down several members of the complex I and V alongside activated Notch

yielded a neoplastic phenotype. These results provide evidence that PI3K-Akt

hyperactivation fuels Notch tumorigenic potential by triggering a tumorigenic cascade

of events through mitochondrial dysfunction.

Under physiological conditions these highly reactive molecules play an

important role in cellular signaling (Roy et al., 2017) and are counterbalanced by a

natural antioxidant system, maintaining ROS homeostasis (Kantner et al., 2013). In

addition, increased generation of ROS and an altered redox status have long been

observed in cancer cells. Indeed, a moderate increase in ROS can promote cell

proliferation and cause oxidative damage to macromolecules, whereas excessive

amounts of ROS can result cytotoxic by promoting apoptosis (Trachootham et al.,

2009).

Given the possibility that high ROS levels could induce tumor growth through

stimulation of cell proliferation, it is not surprising that when the activity of the

antioxidant enzyme Sod1 is enhanced in the context of Notch-PI3K/Akt flies,

proliferation rate and tumor incidence decrease. In line with these results, upregulation

of other ROS-scavenging enzymes also prevents tumorigenesis. By contrast, knock-

down of Sod1 together with Notch hyperactivation generates eye tumors, indicating that

high levels of ROS are causative of the tumor phenotype. Our results provide evidence
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that Pten down-regulation can cooperate with activated Notch signal to modulate

cellular proliferation through ROS generation.

At the onset of tumor progression, the metabolic activity of cancer cells is

increased, resulting in higher ROS levels and the subsequent activation of signaling

pathways that support cancer cell proliferation, metabolic adaptation and survival

(Chandel & Tuveson, 2014). Accordingly, tumor cells increase their antioxidant

capacity to prevent ROS-mediated activation of pathways that induce cell death, like c-

Jun N-terminal kinase (JNK), further allowing for cancer progression (Chandel &

Tuveson, 2014; Saito et al., 2015). Strikingly, we observed that transcriptional levels of

antioxidant enzymes remain intact in Notch-PI3K/Akt tumors (Suppl. Fig. 1).

Consequently, the very high levels of accumulated ROS observed towards the end of

the tumorigenic process in some regions of the tumor co-localize with an intense

apoptotic signal.

Therefore, it is important to note that the role of ROS in cancer cell biology is, at

least, controversial. Oxidative stress may inhibit or promote apoptosis. This sort of

differential behavior depends on the cell redox status, which displays different spatial

and temporal patterns; thus, in cells with high ROS levels, such as tumor cells, the

increase in ROS may be inducing apoptosis, whereas in cells that display normal ROS

levels, such increase may be promoting overproliferation and the switch to tumor

phenotype.

The dual role of oxidative stress in cancer provides two opposite therapeutic

approaches. Targeting redox metabolism by using drugs with prooxidant properties can

increase ROS levels and induce cancer cell death (Saito et al., 2015). The opposite

strategy is the use of antioxidant agents to reduce ROS levels and their harming effects.

However, both strategies can present inconveniences, since the first one might promote

oncogenic mutations in normal cells, and the second one can inhibit ROS-mediated

apoptosis and prevent oxidative damage in already established tumors, thus promoting

tumor-cell survival (Trachootham et al., 2009). Here we show that human T-ALL cells

display higher ROS levels than healthy PBMCs and BW B70C treatment triggers ROS

production. We provide proof-of-concept evidence that BW B70C could account for

apoptotic cell death in human T-ALL cells by increasing oxidative stress, thereby

coinciding with the results obtained in vivo in flies.
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Activation of Jnk by oxidative stress exerts an antitumor response through

induction of apoptosis in Notch-PI3K/Akt tumors

Understanding the mechanisms of how ROS levels can modulate different tumorigenic

events has profound implications for both normal development and disease. The

increase in ROS levels can contribute to cancer promotion in different manners. For

example, it has been previously proposed that increased ROS levels can activate the Jnk

signal transduction pathway, a classical cell stress mediator, in several cancer models

(Dhanasekaran & Reddy, 2008; Chambers & LoGrasso, 2011) and it is also able to

stabilize hypoxia-inducible factor (HIF), one of the most important mechanisms

involved in the induction of the glycolytic pathway (Hielscher & Gerecht, 2015).

A large amount of effort has been spent to unravel the molecular complexity of

the Jnk signaling pathway, owing to its seemingly contradictory role in promoting cell

survival and proliferation on one hand and cell death on the other. At present, there is

substantial evidence supporting that Jnk serves as an important proapoptotic mechanism

in oxidatively stressed cells (Dhanasekaran & Reddy, 2008). Here we corroborate that

notion, since those cells with elevated ROS levels highly co-localize in both, activation

of Jnk signal and apoptosis in Notch-PI3K/Akt fly tumors.

However, different cancer models have produced conflicting findings, thus Jnk

has been proposed to act as an oncogene or as a tumor suppressor depending on the

context (Tournier, 2013). To better understand the role of Jnk in tumor initiation in our

cancer model, we performed gain and loss of function genetic experiments. We

observed that blocking Jnk signal does not affect tumorigenesis levels. In contrast, Jnk

overexpression resulted in a significant decrease of tumor incidence and a prevalent

hypoplasic phenotype, indicating that Jnk signaling may be either controlling cell

proliferation or inducing apoptosis in the whole imaginal disc.

Additionally, we found that Jnk inhibition combined with activated Notch

synergizes in vivo to promote tumorigenesis, although tumor incidence was not as high

as in presence of Pten-inactivating mutations. In light of the above results, we presumed

that Pten inhibition may be enhancing tumorigenesis through ROS generation and that
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the subsequent Jnk activation observed may not be involved in the process of

tumorigenesis, but rather is a response to face the oxidative stress produced by a

malignant lesion.

All these results suggest that Jnk might act as a tumor suppressor signal by

inducing apoptosis in tumor cells with high oxidative stress, as described in other cancer

models (Whitmarsh & Davis, 2007; Shramek et al., 2011; Ahn et al., 2011; Tournier,

2013), including a Pten gene deletion mouse model (Hübner et al., 2012).

Besides Jnk signaling pathway, ROS-induced apoptosis requires the

participation of other cell death signaling pathways. Here we also show that oxidatively

stressed tumor cells release the cytocrome c protein to respond against the tumor

through mitochondrial-induced apoptosis, suggesting a tumor suppressor function for

the mitochondria (Vyas et al., 2016). If Jnk/mitochondrial-induced apoptosis is a

protective mechanism to limit tumor progression, it is reasonable to think that blocking

this process should enhance, or at least maintain, tumor incidence. However, in contrast

to expectations, overexpression of the protein P35, which blocks the action of caspases,

revealed a reduction in tumorigenesis levels. There is great evidence in several model

organisms that apoptotic cells are able to stimulate neighboring surviving cells to

undergo proliferation, a phenomenon named apoptosis-induced proliferation (AiP) with

important implications for normal development and tumorigenesis. Jnk activity is both

necessary and sufficient to induce AiP by expression of potent mitogens and is well

studied in Drosophila (Ryoo et al., 2004; Perez-Garijo et al., 2009; Smith-Bolton et al.,

2009; Bergantinos et al., 2010; Shlevkov & Morata G, 2012; Fan et al, 2014). In a

mouse model of liver cancer, hepatocytes with accumulation of ROS result in cell death.

Dying hepatocytes increase JNK activity that initiates the process of AiP, promoting

proliferation of surviving hepatocytes and cancer (Maeda et al. 2005; Sakurai et al.

2008; Fan et al, 2014).

Therefore, we could hypothesize that Jnk, despite its protective role, may also

have a cancer-promoting activity through AiP. Such an interesting possibility, however,

awaits experimental corroboration and additional analysis. At present, many intriguing

questions about the functions of ROS and Jnk activation remain to be further explored.
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Future research work should focus on how tumor cells affect the surrounding cells

under an in vivo microenvironment.

Our results point ROS as a key driver of Notch-PI3K/Akt-induced tumorigenesis,

a fact that has obvious potential implications for therapeutic approaches. Accumulation

of toxic levels of ROS in specific regions of the tumor leads to an apoptotic protective

response through Jnk activation and release of cytochrome c, but highlights the

possibility of compensatory cell proliferation mechanisms in the surrounding cells.

Tumors display high cell heterogeneity, since every cell within a tumor is the result of

the failure of numerous molecular events and biological mechanisms; therefore, each

cancer cell can behave different respect to their neighbors. The genetic complexity and

the subsequent intratumor heterogeneity are difficult to reproduce in experimental

models, which hamper the design of effective therapies. We propose that the

administration of BW B70C in Notch-PI3K/Akt flies enhances ROS production and

reduces tumorigenesis levels by inducing cell death of the whole tissue. However, in our

experiments, genetic crosses are set in food with drug, which means that such approach

might be only effective at the onset of tumor formation by preventing accumulation of

oncogenic ROS. The pro-oxidant capacity of this compound could result self-defeating

in already stablished tumors with cells displaying different ROS levels within the tumor,

by means of helping to sustain AiP and/or generating more oxidative damage.
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Notch-PI3K/Akt tumors rely on enhanced glucose uptake and activation of hipoxia

inducible factor 1

Metabolic reprogramming is a hallmark of cancer cells controlled by oncogenic

signaling and complex transcriptional networks. It is widely assumed that cancer cells

display higher rates of glucose consumption and glycolysis, a process called Warburg

effect (Warburg, 1956). Contrary to first observations, today is accepted that this

metabolic shift provides anabolic precursors necessary to tumor growth, but is not

enough to supply the huge energy demand of cancer cells (Dang, 2012). Aberrant

activation of the PI3K/Akt pathway, a feature commonly found in cancer cells, affects

glucose metabolism by increasing expression and translocation of glucose transporters

(GLUT) to the plasma membrane in order to increase glucose consumption and

phosphorylating key glycolytic enzymes (Buzzai et al., 2005; Hoxhaj & Manning,

2020). Here we corroborate that glucose uptake is higher in tumor eye imaginal discs

compared to wild type tissue. Consequently, inhibition of glucose transport by knocking

down of GLUT1 reduces tumor incidence, indicating that Notch-PI3K/Akt tumors need

high amounts of glucose to sustain their growth. Moreover, administration of 2-

deoxyglucose, a glucose analog that enters the cell and but can not be metabolized,

reduced tumor incidence. Similarly, 2-chloro-2-deoxyglucose, another glycolittic

inhibitor used in Villegas et al., 2018, yielded same results.

Furthermore, Akt also promotes a robust anabolic program through activation of

hypoxia-inducible factor–1 (HIF-1) via mTOR, even under normal oxygen levels (Yuan

& Cantley, 2008; Dibble & Manning; 2013). The enhanced transcription of several key

glycolytic enzymes and transporters, accompanied by augmented protein synthesis, is

regulated by the evolutionary conserved transcription factors HIF-1 and MYC, the

master inducers of glycolysis in cancer cells (Yeung et al., 2008; Zwaans & Lombard,

2014).

HIF-1 is a heterodimer formed by one labile oxygen-sensitive subunit, the HIF-

1α and one stable constitutively expressed subunit, the HIF-1 (Wang & Semenza, 1995;

Ivan et al., 2001; Kaelin & Ratcliffe, 2008; Semenza, 2012) encoded by the gene

homologues similar (sima) and tango (tgo), respectively, in Drosophila (Bruick &

https://www.nature.com/articles/1208622
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McKnight, 2001; Centanin et al., 2005). The expression of HIF-1α/sima is controlled at

multiple levels, such as transcription, nuclear transport, protein stability, and

transactivation. Under normoxia, HIF-1α/sima is hydroxylated by the prolyl-4-

hydroxylase/PHD (fatiga in flies), which acts as an oxygen sensor. The von Hippel-

Lindau (VHL) E3 ubiquitin ligase recognizes and binds to the hydroxylated HIF-

1α/sima subunit to target it for proteasomal degradation (Kaelin & Ratcliffe, 2008). In

hypoxia, HIF-1α/sima is not degraded, because it cannot be hydroxylated by fatiga due

to the lack of oxygen. Consequently, HIF-1α/sima binds to HIF-1/tgo forming the

HIF1 heterodimer, which translocates to the nucleus and controls the expression of

hypoxia-inducible genes involved in the hypoxic response, metabolism, cell

proliferation, cell survival and angiogenesis (Manalo et al., 2005; Kaelin & Ratcliffe,

2008). We observed that fatiga is down-regulated in the tumor, which is in line with

previous studies showing that activation of HIF-1α is mainly mediated by reduced

expression of PHD/fga (Semenza, 2010).

Besides the lack of oxygen, other factor that plays a critical role in HIF-1α/sima

stabilization is the availability of Fe(II), necessary for the hydroxylation step. Moreover,

metabolites such as fumarate or succinate can lead to the inactivation of PDH/fatiga and

the subsequent stabilization of HIF-1α/sima (Kaelin & Ratcliffe, 2008). In addition,

HIF-1α/sima can be induced under aerobiosis by cytokines, growth factors, energy-

metabolism intermediates such as pyruvate, lactate and oxaloacetate, reactive oxygen

species and nitric oxide.

Inactivation of PHD enzymes may be promoted by ROS due to oxidation of the

central Fe(II) to Fe(III), especially if the antioxidant capacity of the cell is low. In

Drosophila, NO promotes the stabilization of Sima by inhibitng protein hydroxylation

of HIF-1α/sima (Hagen et al., 2003; Callier & Nijhout, 2014).

As exposed above, Notch-PI3K/Akt tumors display high levels of ROS and Nos.

Therefore, we examined the role of HIF-1α/sima in this particular tumorigenic context.

As expected, we observed sima protein is stabilized in tumors compared to wild type.

Hemocytes also express elevated levels of sima protein in both wild type and tumors

(data not shown), explained by its physiological role in hematopoietic development, as

already published (Mukherjee et al., 2011). Moreover, knockdown of sima with RNA
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interference led to a reduction in tumor incidence although not completely stalled, as

happens in other tumors (Sutphin et al., 2004).

Lactate dehydrogenase (Ldh) upregulation and the subsequent increase in Ldh

enzymatic activity is a hallmark of aerobic glycolysis. Sima is one of the key inducers

of Ldh expression in tumors (Dang & Semenza, 1999). Therefore, as expected,

expression levels of Ldh are increased in tumor eye discs. Moreover, sima induces the

expression of some glycolytic enzymes in several tumors (Semenza, 2012). Here we

observed that Pgi and Pfk were upregulated, but strikingly the other glycolytic enzymes

remained unchanged. Furthermore, contrary to expectations, inhibition or

overexpression of Ldh did not affect tumor incidence, indicating that the tumorigenic

process is Ldh-independent.

These results reflect the complexity of the metabolic landscape of tumors under

in vivo conditions. While cancer cells mostly rely on glucose and glutamine for survival

and growth in vitro, tumors display a high cell and temporal heterogeneity accompanied

by different metabolic phenotypes even in a single tumor mass (Gatenby et al., 2007;

Migneco et al., 2010; Ertel et al., 2012; Lee & Yoon, 2015). Therefore, it is overly

reductive to assume that ‘the Warburg effect’ is a general feature of all cancer cells (Fu

et al., 2017).
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Pten loss drives a whole-body metabolic shift towards Glycolysis and the Pentose

Phosphate Pathway

In cancer, interactions not only occur within cancer-containing tissues and the

microenvironment, but also within normal cells in distant tissues, with or without

metastases. Consequently, having a cancer affects other tissues/organs of the host in

manners that are not fully understood and, whereas metabolic reprogramming of cancer

cells and their microenvironment has been widely studied over the last decades, our

knowledge about how malignant cells communicate with distant tissues and the

subsequent impact in the host metabolism is still very limited.

Here we evaluated the carbohydrate metabolism of Notch-PI3K/Akt tumors

since it is commonly altered in cancer cells. We have demonstrated that Notch-

PI3K/Akt-driven tumors rely on glucose catabolism. However, we provide evidence

that cancer also causes alterations in whole-body metabolism. Particularly, the loss of

Pten in eye disc tumors reprograms the host metabolism towards upregulation of

glycolysis and the pentose phosphate pathway.

It has been previously published that the “greedy” behavior of cancer cells

results in the deprivation of vital metabolites for the surrounding cells, such as the

immune cells, which must compete for nutrients also by reprogramming their

metabolism to robust aerobic glycolysis and glutaminolysis (Wang et al., 2014). In

Drosophila, the link between metabolism and immunity is integrated in the fat body,

since this organ not only responds to dietary signals, but also is involved in the immune

response. We observed that the fat body is the main source of the metabolic changes

that occur in the whole animal. This tissue exhibits dramatically high levels of

glycolytic and PPP enzymes in tumor-bearing larvae and also a high consumption of

intermediates of both pathways. Indeed, systemic glucose levels are low in tumor-

bearing larvae, indicating that is being highly consumed. Our results reveal that the

presence of the tumor in the eye imaginal disc tumors is remotely accelerating the host

energy/glucose metabolism, particularly in the fat body. This may reflect an attempt of

the immune cells from the fat body to boost immune defense, since it has a high

energetic cost (Lazzaro & Galac, 2006).
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Pten-deficient tumors reprogram whole-body metabolism and inflammation via

the tryptophan-kynurenine pathway

The mechanisms by which cancer cells negative influence the host metabolism are

largely unknown. We performed large-scale and tissue-specific metabolomics to better

characterize the systemic metabolic changes that occur in tumor-bearing larvae, further

revealing major alterations in the tryptophan-kynurenine pathway brought about by the

Pten deficiency.

This pathway is the main route for tryptophan catabolism and the starting point

for the synthesis of NAD(H) in mammals and, in Drosophila, is implicated in eye color

pigmentation and brain plasticity (Tearle, 1991; Savvateeva et al., 2000). The KP has

received greater attention in recent years due to its important role in inflammation,

immunomodulation and central nervous system disorders. In agreement with this, the

fruit fly has provided a useful model for studies linking the KP with the modulation of

neurodegeneration, memory and courtship (Campesan et al., 2011; Campesan et al.,

2012).

Several kynurenine metabolites are neuroactive; 3-hydroxykynurenine (3-HK),

and quinolinic acid (QA) are neurotoxic via generation of free radicals and oxidative

stress (Okuda et al., 1996; Okuda et al., 1998). Besides this, QA induces exocitotoxicity

by activation of N-methyl-D-aspartate (NMDA) receptors (Stone,& Perkins, 1981;

Schwarcz et al., 1983) and induces the production of proinflammatory mediators which

potentiates the inflammatory response (Guillemin et al., 2003). Conversely, kynurenic

acid (KA) is neuroprotective through its antioxidant properties, antagonism of both the

α7 nicotinic acetylcholine receptor and the NMDA receptor (Foster et al., 1984; Goda et

al., 1999; Lugo-Huitrón et al., 2011) and suppression of several inflammatory pathways

(Wirthgen et al., 2017). Levels of these metabolites are regulated at two critical points:

(i) the initial, rate-limiting conversion of Trp into N-formylkynurenine by either TDO or

IDO enzymes and (ii) the synthesis of 3-HK from kynurenine by KMO (Amaral et al.,

2013). Drosophila has a single TDO encoded by the vermilion gene (Searles & Voelker,

1986; Walker et al. 1986) and a KMO homologue encoded by the gene cinnabar

(Warren et al., 1996).
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Our metabolomics analysis in tumor-bearing larvae revealed a dramatic increase

in the levels of 3-HK, especially in the fat body. This might explain the hyperactivation

of the PPP in this organ as an attempt to counteract the high oxidative stress state of the

animal by generating NADPH, which has an antioxidant function (Wood et al., 2003).

Accordingly, treatment with NADPH tetrasodium salt strongly reduces tumor incidence

(Villegas et al., 2018). Although 3-HK is a natural breakdown product of tryptophan,

this metabolite is oxidized easily under physiological conditions, producing reactive

oxygen species (Okuda et al., 1996, Okuda et al., 1998; Wei et al., 2000) and when

accumulated in cells it leads to apoptosis (Wei et al., 2000). Insects maintain

physiological conditions by preventing the accumulation of this reactive compound by

converting 3-HK into xanthurenic acid (Han et al., 2007). Therefore, as expected, we

found that circulating levels of xanthurenic acid were also increased, acting as a

protective response to dampen the toxic levels of 3-HK.

In humans, xanthurenic acid has a diabetogenic effect and high plasma levels are

associated with insulin resistance (Reginaldo et al., 2015), which is characterized by an

increase in insulin production and secretion associated with an increased glycemia

(Pasco & Leopold, 2012). Contrary to expectations, the expression of

InR and 4EBP was markedly down-regulated in the fat body from tumor-bearing larvae.

This indicates that fat body cells have an increased capacity to activate the signaling

cascade downstream of InR and have therefore become insulin sensitive. This condition

allows the fat body cells to use glucose more effectively, reducing glucose levels.

Consistent with these results, the amount of systemic glucose is lower in tumor-bearing

larvae. However, expression levels of 4E-BP are higher in the whole larva, suggesting

that the fat body might be insulin sensitive, whereas insulin signaling is reduced at

systemic levels. It remains to be established directly whether this systemic insulin

resistance is a consequence of the elevated XanA levels.

As expected, the expression levels of TDO/v and KMO/cn, the KP key enzymes,

are increased in the fat body of Notch-PI3K/Akt larvae, albeit there is a mild but

significant up-regulation of KMO/cn in the eye tumors. In mammals, the

overproduction of TDO and/or IDO enzymes has long been postulated to lead to

diminished availability of tryptophan (Badawy, 2017). Consequently, the huge

https://www.sciencedirect.com/science/article/pii/S0022191006001491?casa_token=9oTbn1WSf-wAAAAA:vjJTdbzhfuU_Ayl39vUB_KPrMiVk_ekbYI3xM5sybmsXS38Zb7jFiI-sDbX_pfLO4cYBqQ
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increment in the activity of the pathway in the fat body correlates with the elevated

levels of kynurenine metabolites and the systemic tryptophan depletion observed.

It is important to notice that kynurenine can be metabolized along two distinct

routes competing for it as a substrate, one produces kynurenic acid and the other NAD+.

Interestingly, kynurenic acid remained unchanged, which indicates that the pathway is

shifted towards the production of 3-HK, QA and finally NAD+.

Our large-scale analysis in tumor-bearing larvae also confirms the presence of

tumor-derived inflammatory factors identified by Villegas et al. in the host. We

observed lower levels of arginine, indicating that this aminoacid is being used to

produce nitric oxide. In addition, our study also revealed low levels of arachidonic acid,

and the subsequent increase in the leukotriene LTB4 (Suppl. Fig. 4), together with high

levels of histamine and acetylhistamine (Jutel et al., 2009), further indicating a systemic

inflammation (Suppl. Table 1). Under inflammatory conditions, activated immune cells

need a lot of energy and hence large amounts of NAD+ (Moffett & Namboodiri, 2003).

Thus, it is reasonable to expect an increased metabolism down the QA branch of the KP.

Accordingly, we found unaltered levels of NAD+, meaning that is not accumulated and

therefore is being consumed. The major precursor for NAD+ is the compound niacin,

also known as nicotinic acid/nicotinamide or vitamin B3 (Murray, 2003; Bogan &

Brenner, 2008) which can be either obtained by the diet or synthesized de novo through

the kynurenine pathway (Fukuwatari & Shibata, 2013; Bogan & Brenner, 2008). The

systemic depletion of niacin found in tumor-bearing larvae suggests that this metabolite

is being used for the generation of NAD+, but also might reflect a dietary deficiency of

this essential vitamin (Suppl. Table 1).

The significant upregulation of tryptophan metabolites is of particular

importance in the context of cancer and inflammation, since the different tryptophan

catabolic pathways have become one of the most critical checkpoints in immunity

(Grohmann & Bronte, 2010; Murray, 2016; Grohmann et al. 2017). In humans and mice,

both gene and protein expression of TDO and IDO are well-documented in cancer and

these enzymes are known to shape the immunosuppressive environment (Badawy et al.,

2016) and tumor tolerance (Muller et al., 2005; Munn & Mellor, 2007). TDO is

constitutively expressed in some type of cancers, being able to suppress antitumor
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immune responses (Platten et al., 2012). In turn, there is emerging evidence that

excessive KMO activity stimulates tumor growth (Jin et al., 2015) and KMO

overexpression is a marker of poor prognosis (Chiu et al., 2019). Similarly, TDO/v and

KMO/cn are up-regulated in Notch-PI3K/Akt/Pten tumors and tumor-specific

knockdown of these KP enzymes was clearly antineoplastic. However, halving gene

dosage of TDO/v or KMO/cn using endogenous mutations that affect the whole animal

resulted in a more drastic reduction of tumor incidence. In line with these findings, diet

supplementation with 3-HK or in tumor-bearing larvae lacking KMO/cn rescued the

tumor phenotype. Notably, XanA supplementation was lethal to ey>Dl>Pten-RNAi

hosts due to vehicle toxicity (Suppl. Fig. 5).

Furthermore, tumor-specific downregulation of the tryptophan transporters white

and scarlet reduced tumor incidence, unveiling the need for tryptophan and fat body-

derived kynurenine metabolites in Notch-PI3K/Akt cancer cells to grow. Notably, some

kynurenine metabolites activate IDO via AhR, which dampens the immune response to

prevent excessive inflammation and autoimmunity. Nevertheless, the downside is that

IDO activation leads to an immunosuppressive state and the immune escape of tumor

cells in the context of human cancer (Litzenburger et al., 2014). Here we downregulated

AhR/spineless using both tumor-specific RNAi and endogenous mutations, resulting in

a reduced tumor incidence. These results support the notion that the KP has a dual role

in Pten-driven tumorigenesis, since the hyperactivation of the pathway promotes tumor

growth not only by up-regulating the TDO/v and KMO/cn in the tumor tissue, but also

by rewiring the host tryptophan-kynurenine metabolism, towards aberrant production of

inflammatory/immunosuppressive metabolites, such as 3-HK.

Recent studies have highlighted the therapeutic potential of inhibiting the critical

KP regulatory enzymes. Constitutive IDO expression has been reported in most human

tumors and systemic pharmacological inhibition of IDO has been shown to reverse

immune resistance mechanisms in several animal models (Uyttenhove et al., 2003). In

fact, IDO inhibitors (Prendergast et al., 2017) have entered clinical trials with the aim to

dampen tumour immune escape (Sheridan et al., 2015). In addition, overactivation of

liver-specific TDO in cancer (Cheong & Sun, 2018) suggests that this enzyme also

contributes to drive immune escape. Consistently, systemic TDO inhibition restored

tumor rejection in a preclinical model (Opitz et al., 2011; Pilotte et al., 2012). KMO is
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also considered to be an important pharmaceutical target for the development of drugs

for neurodegenerative diseases (Pellicciari et al. 2003; Samadi et al., 2005; Moroni et

al., 2005). Much evidence indicates that the efficacy of KMO inhibition arises from

normalizing the imbalance between neurotoxic/pro-inflammatory 3-HK/QA and

neuroprotective/anti-inflammatory KA, thereby enhancing anti-tumor immune function

(Adams et al., 2012).

Hence, we administered a TDO/IDO/vermilion and KMO/cinnabar drug

inhibitors to tumor-bearing hosts. Whereas TDO/v inhibitor did not have an effect at the

tested doses, treatment with the KMO inhibitor is robustly protective in this cancer

model. These data provide proof-of-concept evidence that KMO inhibitors block

tumorigenesis by dampening the tryptophan-kynurenine metabolism not only in tumor

cells, but also in the whole organism. Consequently, our work strongly supports

targeting the critical steps of the kynurenine pathway as a potential treatment strategy

for Pten-deficient cancers.

Finally, we demonstrated that NOS enzyme overexpression is able to trigger

TDO/IDO/vermilion gene activation in the fat body (Suppl. Fig 7). This result might

represet indirect evidence that excessive nitric oxide produced by the tumor (Villegas et

al., 2018) could potentially induce the activation of the KP in a distal organ, the fat

body. Such interesting and striking results demonstrate for the first time that cancer

cells are not only able to reprogram their own metabolism or the microenvironment, but

also can produce signals that impact in distal organs and shift the host metabolism for

profit-making purposes.
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Notch-PI3K/Akt-driven tumors impact in brain serotonin synthesis and

tryptophan degradation by gut microbiota

The KP contributes for the great majority of tryptophan degradation. Nevertheless, this

essential amino acid can be also converted into serotonin (also known as 5-

hydroxytryptamine, 5-HT) or degraded by gut microbiota through the indole pathway.

Serotonin is an important neurotransmitter that modulates numerous neuropsychological

processes including mood, reward, anger, anxiety and cognition (Canli & Lesch, 2007).

In Drosophila and other insects, modulates circadian rhythm (Yuan et al., 2005),

feeding (Novak & Rowley 1994; Novak et al., 1995), locomotion (Kamyshev et

al., 1983), reproduction (Barreteau et al., 1991) and heart rate (Dasari & Cooper, 2006).

Tryptophan hydroxylase (Trh) is the enzyme that functions as the first and rate-limiting

step in the synthesis of serotonin, since it converts Trp to 5-hydroxytryptophan (5-HTP),

the immediate precursor of serotonin. We previously reported that tumor-specific

silencing of the serotonin receptor 5HT1B reduces Notch-PI3K/Akt tumors (Villegas et

al., 2018). In line with these results, halving the amount of serotonin production by

inhibiting the Trh enzyme using a pBacTRH null mutation (Neckameyer et al., 2007)

yielded reduced tumor incidence, further highlighting that these tumors rely on

serotonin through an unknown mechanism.

Earlier works have demonstrated that Trp breakdown along the KP leads to

decreased availability of Trp for cerebral serotonin synthesis (Badawy & Evans, 1983).

Serotonin is implicated in the pathophysiology of depression, a common comorbidity in

nearly 20% of cancer patients (Mitchell et al., 2011; Ng et al., 2011; Linden et al.,

2012). The development of depression in cancer patients is not only due to emotional

distress, since immune activation and the subsequent enchancement of Trp breakdown

and has been proposed to play an important role (Kurz et al., 2011; Barreto et al., 2018;

Sforzini et al., 2019). In addition, it has been demonstrated that depressive- like

behavior related to immune activation is associated with an upregulation of IDO

(O'Connor et al., 2009; Norden et al., 2015; Doolin et al., 2018) as well as KMO

enzymes in several animal models (Savitz et al., 2015; Meier et al., 2016; Parrot et al.,

2016). However, contrary to our expectations, brain serotonin synthesis was increased

in tumor-bearing larvae, albeit the diminished Trp availability. Furthermore, systemic

levels of the serotonin precursor 5-HTP were significantly higher in these animals.
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All together, these interesting results support the notion that Notch-PI3K/Akt-

driven tumors can impact brain serotonin production either direct or indirectly and

benefit from it. It remains to be studied the specific mechanism by which serotonin is

implicated in the tumorigenic process, how the tumor bypasses the Trp depletion

associated to an enhanced breakdown towards KP to synthesize more serotonin in the

brain and the behavioral outcome of these animals, such as a depression-like phenotype.

In addition, tryptophan from degradation of dietary proteins is also converted

into various indole metabolites by the gut microbiota. Growing evidence suggests that

these catabolites play an important role in host-microbial cross-talk, and may contribute

to intestinal and systemic homeostasis. In addition, indoles produced by commensal

bacteria have been found to improve the health of a range of different animal models

including C. elegans, Drosophila melanogaster and mice via ligand activation of the

aryl hydrocarbon receptor (AhR), which is found in intestinal immune cells (Whitehead

et al., 2008; Zelante et al., 2013; Cheng et al., 2015; Hubbard et al., 2015; Sonowal et

al., 2017). Several studies have underlined that indole-induced AhR activation may

contribute to mucosal homeostasis by increasing expression of genes involved in

maintenance of intestinal epithelial barrier function (Bansal et al., 2010; Shimada et al.,

2013). Microbial tryptophan metabolites affect the immune system in the gut, but also

the host physiology, since they can be absorbed in the gut and enter the bloodstream

(Wikoff et al., 2009). A recent study found that indoleacrylic acid (IA) had anti-

inflammatory and antioxidative effects in human PBMCs. Similarly, indoleacetic acid

(IAA) attenuated pro-inflammatory responses in murine macrophage and hepatocyte

cultures in an AhR-dependent way (Krishnan et al., 2018), suggesting that microbial

indole catabolites could influence inflammatory responses in the liver as well. This

raises the intriguing possibility that gut microbiota-derived tryptophan catabolites may

reduce frailty and improve health also in humans. The concept of frailty is of particular

importance in patients with cancer and is defined as “a state of extreme vulnerability to

stressors that leads to adverse health outcomes” (Ethun et al., 2017).

Our metabolomics analysis revealed reduced levels of IA and IAA in tumor-

bearing larvae, probably as a consequence of high Trp degradation by other pathways or

by gut dysbiosis. Here we supplemented the diet with IA at different doses. However,

since the vehicle is DMSO, which has a high toxicity at these doses, it remains
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unresolved if IA supplementation could potentially benefit tumor hosts at the tested

doses. Thus, although targeting the gut microbial metabolism is an area that still

remains to be explored, it holds the promise for developing alternative strategies to

prevent and treat cancer. Furthermore, our findings confirm for the first time that tumors

lacking Pten not only have metabolic alterations in a cell autonomous manner, but also

communicate with distal tissues to induce a multi-organ metabolic reprogramming.
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Dietary tryptophan supplementation is sufficient to prevent tumor and overcome

lethality associated with Pten loss under caloric restriction

Certain dietary modulations impact host metabolism and cancer outcomes. Previous

studies have shown that modulating the amino acid composition of the diet can

influence cancer growth (Maddocks et al., 2013) and the immune response through

complex mechanisms. It is described that tumor cells compete with host cells for

essential nutrients such as glucose, lipids and amino acids (Gupta et al., 2017). However,

how the tumor communicates its nutritional requirements to the host and how the host

influences tumor growth by bidirectional crosstalk remains an open question. Here we

have observed that Trp catabolism is shifted towards overproduction of kynurenine

metabolites and serotonin synthesis, which contributes to tumorigenesis and

consequently results in a systemic Trp depletion. Therefore, we added a Trp supplement

to the standard food, which was sufficient to drastically reduce the tumor phenotype.

This result can be explained because the excess of Trp inhibits the kynurenine pathway

through reverse binding sequence (Badawy, 2017) and also because more Trp might be

available for the gut microbiota to produce healthy metabolites.

On the other hand, dietary restriction delays the incidence of certain cancers,

whereas hypercaloric diets can increase tumorigenesis via the activation of the

PI3K/AKT pathway (Baumann et al., 1939; Tannenbaum & Silverstone, 1953;

Hirabayasi et al., 2013). The high prevalence of metabolic alterations in cancer cells and

the ability of diet starvation to modulate host immunity (Kritchevsky, 2001; Lien &

Vander Heiden, 2019) has prompted clinical investigations on caloric restriction as an

intervention to reduce cancer incidence in part by modulation/inhibition of the IGF-

1/PI3K/AKT signalling (Lu et al., 2019).

Particularly, amino acid reduction enhances the proliferative potential of tumor

cells with overactive PI3K/Akt pathway, which in turn has a detrimental effect in the

whole animal through an unknown non-autonomous mechanism (Nowak et al., 2013).

Here we corroborate this idea by rearing larvae with Notch-PI3K/Akt/Pten tumors in a

low-protein diet. In addition, to rescue the host lethality associated to Pten inactivation,

we supplemented the low-protein food with tryptophan, further revealing that this



141

amino-acid is essential to overcome caloric restriction resistance. Moreover, this

intervention also dramatically reduced the tumor phenotype, inducing wild type-like

eyes. It has been previously described that partial starvation produces higher amounts of

vermilion enzyme (Beadle et al., 1938). We hypothesize that dietary restriction of Pten

loss-bearing hosts with already high levels of KP might induce a toxic level of

kynurenine metabolites, which may explain the death of the whole organism. This

hypothesis awaits more experimental evidence and is part of our future perspectives for

continuing research.

These results have particular relevance, since malnutrition is a common

accompaniment of cancer patients, and therefore it is important to determine which

dietary interventions can constitute an improvement to the patient’s quality of life.
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2. Conclusions

Section 1. PI3K/Akt cooperates with oncogenic Notch by inducing Nitric Oxide-

dependent inflammation

1. A drug screen selectively targeting Notch-PI3K/Akt cooperative oncogenesis

identified 90 compounds that strongly suppressed (61) or enhanced (29)

tumorigenesis.

2. Tumor-specific RNAi downregulation of candidate target genes mimicked the

action of the corresponding compounds, thus validating the drug screen results.

3. The drug screen revealed numerous anti-inflammatory agents targeting the

NO/NOS and LOX signaling pathways.

4. PI3K/Akt fuels Notch-driven tumorigenesis through NOS. The top hit

compound of the screen, the drug BW B70C, dampens a tumor formation

process orchestrated by inflammatory NOS.

5. LOX pathway inhibition blocks Notch-PI3K/Akt-driven tumorigenesis.

6. Protumorigenic immune inflammation underlies Notch- PI3K/Akt cooperation.

7. Genetic depletion of prophenoloxidase in immune cells fuels Notch-mediated

tumorigenesis.

8. The antitumor effect of BW B70C was validated in human T Cell Acute

Lymphoblastic Leukemia cells that depend on NOTCH1 and PI3K/AKT

signaling via suppression of the aberrant eNOS.

Section 2. PI3K/Akt/Pten-induced mitochondrial dysfunction cooperates with

Notch in tumorigenesis

1. Notch-PI3K/Akt combination triggers downstream phosphorylation of ATP

synthase β subunit.

2. ATP synthase deficiency results in mitochondrial dysfunction and generation of

ROS, which cooperates with Notch to promote tumorigenesis. The amount of

ROS is increased in human T-ALL cells from patients and BW B70C treatment

induces toxic levels of ROS.
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3. Tumor-specific hyperactivation of the ROS-scavenging system avoids tumor

formation.

4. Notch-PI3K/AKT-induced JNK signaling triggers apoptosis as an anti-tumor

response.

5. Mitochondria induce apoptosis through cytochrome c oxidase hyperactivation in

Notch-PI3K/Akt tumors.

6. Notch-PI3K/Akt tumors rely on enhanced glucose uptake.

7. Hipoxia inducible factor 1 (HIF1) is stabilized in Notch-PI3K/Akt tumors,

but there are not major changes in glycolysis or PPP.

Section 3. Notch-PI3K/Akt/Pten tumors reprogram whole-body metabolism via the

Tryptophan-Kynurenine pathway

1. Dietary restriction is detrimental to host bearing Pten-deficient tumors and

tryptophan diet supplementation rescues tumorigenesis and lethality.

2. Loss of Pten drives whole-body metabolic shift towards upregulation of

Glycolysis and Pentose Phosphate Pathway. The fat body is the origin of major

metabolic changes observed in tumor-bearing larvae.

3. The tryptophan-kynurenine pathway is increased towards production of

proinflammatory and toxic 3-HK in tumor-bearing larvae.

4. Overexpression of Kynurenine 3-monooxygenase (KMO/cinnabar) is the main

contributor to Pten tumorigenesis. Genetic inhibition of the kynurenine pathway

suppresses tumorigenesis. Pharmacologic inhibition of KMO/cinnabar exerts an

antineoplastic effect.

5. Tumor-specific inhibition of Trp/K cellular uptake reduces tumor incidence,

indicating that tryptophan and/or fat body-derived kynurenine metabolites are

necessary for the Notch-PI3K/Akt cancer cells to grow.

6. High levels of kynurenine metabolites found in tumor-bearing hosts trigger an

immunosuppressive effect through binding to AhR and the subsequent activation

of TDO/IDO/vermilion, generating a loop that reinforces tumor cell immune

escape.

7. Notch-PI3K/Akt-driven tumors trigger higher brain serotonin synthesis.

8. Notch-PI3K/Akt-driven tumors impact in tryptophan degradation by gut

microbiota.
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Conclusiones

Sección 1. PI3K/Akt coopera con Notch Oncogénico induciendo una inflamación

dependiente de Óxido Nítrico.

1. Una prueba de detección de fármacos dirigida selectivamente a la oncogénesis

cooperativa de Notch-PI3K/Akt identificó 90 compuestos que suprimieron

fuertemente (61) o mejoraron (29) la tumorigénesis.

2. La regulación negativa específica de los genes diana candidatos en el tumor

usando ARNi imitó la acción de los compuestos correspondientes, validando así

los resultados del cribado de fármacos.

3. El cribado de fármacos reveló numerosos agentes antiinflamatorios dirigidos a

las vías de señalización NO/NOS y LOX.

4. PI3K/Akt estimula e incrementa la tumorigénesis impulsada por Notch a través

de NOS. El fármaco con más éxito del cribado, BW B70C, amortigua el proceso

formación del tumor orquestado por NOS inflamatorio.

5. La inhibición de la vía de LOX bloquea la tumorigénesis impulsada por Notch-

PI3K/Akt.

6. La inflamación inmunitaria protumorigénica subyace a la cooperación Notch-

PI3K/Akt.

7. El bloqueo genético de la profenoloxidasa en las células inmunitarias estimula la

tumorigénesis mediada por Notch.

8. El efecto antitumoral de BW B70C se validó en células humanas procedentes de

leucemia linfoblástica aguda (T-ALL), que dependen de NOTCH1 y PI3K/AKT,

mediante la supresión de la expresión aberrante de eNOS.

Sección 2. La disfunción mitocondrial inducida por PI3K /Akt/Pten coopera con

Notch en tumorigénesis

1. La combinación Notch-PI3K/Akt desencadena la fosforilación de la subunidad β

de la ATP sintasa.
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2. La deficiencia de la ATP sintasa da como resultado una disfunción mitocondrial

y la generación de ROS, que coopera con Notch para promover la tumorigénesis.

La cantidad de

1. ROS es elevada en células T-ALL humanas de pacientes y el tratamiento con

BW B70C induce niveles tóxicos de ROS.

2. La hiperactivación específica del sistema de eliminación de ROS en el disco de

ojo evita la formación del tumor.

3. La señalización de JNK inducida por Notch-PI3K / AKT desencadena la

apoptosis como respuesta antitumoral.

4. Las mitocondrias inducen la apoptosis a través de la hiperactivación de la

enzima citocromo c oxidasa en tumores Notch-PI3K/Akt.

5. Los tumores Notch-PI3K/Akt dependen de una mayor captación de glucosa.

6. El factor inducible por hipoxia 1 (HIF1) se estabiliza en tumores Notch-

PI3K/Akt, pero no hay cambios importantes en la glucólisis o la vía de PPP.

Sección 3. Los tumores Notch-PI3K/Akt/Pten reprograman el metabolismo de todo

el cuerpo a través de la vía triptófano-quinurenina

1. La restricción dietética es perjudicial para el hospedador portador de tumores

deficientes en Pten y la suplementación con triptófano rescata la tumorigénesis y

la letalidad.

2. La pérdida de Pten impulsa el cambio metabólico de todo el cuerpo hacia el

aumento de las vías de glucólisis y pentosas fosfato. El cuerpo graso es el origen

de la mayoría de los cambios metabólicos importantes observados en larvas

portadoras de tumores.

3. La vía triptófano-quinurenina aumenta hacia la producción de 3-HK

proinflamatorio, el cual es tóxico en larvas portadoras de tumores.

4. La sobreexpresión de quinurenina 3-monooxigenasa (KMO/cinnabar) es la

principal contribuyente a la tumorigénesis de Pten. La inhibición genética de la

vía quinurenina suprime la tumorigénesis. La inhibición farmacológica de

KMO/cinnabar ejerce un efecto antineoplásico.

5. La inhibición tumoral específica de la captación celular de Trp/K reduce la

incidencia de tumores, indicando que el triptófano y/o los metabolitos de
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quinurenina derivados del cuerpo graso son necesarios para que crezcan las

células cancerosas Notch-PI3K/Akt.

6. Los altos niveles de metabolitos de quinurenina encontrados en hospedadores

con tumores desencadenan un efecto inmunosupresor mediante la unión a AhR y

la activación posterior de TDO/IDO/vermilion, generando un bucle que refuerza

el escape de las células tumorales de la respuesta inmunitaria.

7. Los tumores impulsados ​ ​ por Notch-PI3K/Akt desencadenan una mayor

síntesis de serotonina cerebral.

8. Los tumores impulsados ​ ​ por Notch-PI3K/Akt impactan en la degradación

del triptófano por parte de la microbiota intestinal.
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3. Supplementary figures

Supplementary Figure 1. Antioxidant capacity is unaltered in Notch-PI3K/Akt tumors.

(A) mRNA levels of Sod1 and cat in eye imaginal discs and (B) in whole larvae by RT-qPCR. Data were analyzed

by a two-tailed unpaired t-test and values represent the mean ± SD of three independent repeates.p<0.05
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Supplementary Figure 2. Glucose uptake in Notch or PI3K/Akt is not altered.

2NBDG assays to monitor glucose consumption in vivo in ey>Dl and ey>Pten-RNAi.
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Supplementary Figure 3. KP metabolites production is increased in tumor-bearing hosts.



154

Volcano plot representing GC-MS quantification of metabolites identified between whole larvae, fat bodies and

hemolymph of (A) ey>Dl versus wild type larvae and (B) ey>Pten-RNAi vs wild type larvae. Y-axis indicates

−log10 (p value) while the horizontal axis indicates base 2 logarithmic value of mean metabolite abundance ratio

(Notch+ or Pten-/Wild type). The horizontal dashed line represents the Benjamini-Hochberg FDR threshold of

significance assigned for subsequent analysis of metabolites. Compounds that show significant changes are indicated

in red.
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Supplementary table 1. Second analysis of of compounds identified by LC-MS with statistical significance (p <

0.05).

In orange: metabolites more abundant in the tumor-bearing larvae (Fold Change > 1). In blue: metabolites less

abundant in the tumor-bearing larvae (Fold Change < 1).
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Supplementary Figure 4. Tumor-derived inflammatory factors in the host.

LC-MS quantification of (A) arginine, (B) arachidonic acid and LTB4 levels in Notch-PI3K/Akt/Pten tumor-bearing

larvae versus wild type larvae.
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Supplementary Figure 5. Diet supplementation with xanthurenic acid at different doses in tumor-bearing hosts.

Supplementary figure 6. Pten-deficient tumor hosts are hypersensitive to dietary restriction.

(A) Relative viability to adulthood in standard food (control) or in low yeast diet.
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Supplementary figure 7. Nos induces the expression of TDO/vermilion.

mRNA levels of vermilion and cinnabar in whole larvae by RT-qPCR. Data were analyzed by a two-tailed unpaired

t-test and values represent the mean ± SD of three independent repeates.p<0.05
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