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SUMMARY  

Although pain is a warning mechanism necessary for the defense against noxious 

stimuli, occasionally it loses its meaning and becomes pathological (inflammatory or 

neuropathic pain). Unfortunately, nowadays pathological pain is a global problem 

that affects a large number of people around the world and, although there are 

several drugs to treat it, they have undesirable side effects. Luckily, it has been 

discovered the implication of an ion channels family known as TRP (Transient 

Receptor Potential) that play an important role in pain transduction. Specifically, it 

has been shown that TRPV1 and TRPM8 channels are key proteins in pain 

transduction mechanisms, and through their modulation, analgesic effects might be 

achieved. Thus, in this thesis we addressed the modulation of these two ion 

channels looking for new potential modulators that could be develop as analgesics.  

On one hand, in the first part of the thesis (chapter 1), we investigated the activity of 

compound triazine 8aA, as an antagonist of TRPV1 channel. We demonstrated its 

selectivity and specificity, the lack of toxicity in different cell lines and its analgesic 

and anti-pruritic properties in in vivo pain models. We also present evidence that the 

mechanism of action is that of an open-channel blocker, showing that it is possible 

to block TRPV1 with un-competitive modulators, opening new horizons for the next 

generation of analgesics and anti-pruritic therapies based on TRPV1. 

On the other hand, in the second part (chapter 2), we addressed the search and 

characterization of TRPM8 channel antagonists. Using high-throughput screening 

techniques we found a potent blocker of TRPM8 (compound 8-3) and demonstrated 

its selectivity and specificity. The structure-activity relationship analysis suggests the 

minimum elements necessary for the β-lactam scaffold to block the TRMP8 channel 

activity. In addition, based on docking experiments, we postulated two potential 

binding sites for this potent, specific and selective TRPM8 antagonist that might help 

to complete the virtually inexistent literature regarding the mechanisms of action of 

TRPM8 antagonists.   
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RESUMEN  

El dolor es un mecanismo de alerta y defensa necesario frente a estímulos nocivos. 

Sin embargo, es posible que en determinadas circunstancias pierda sus bondades 

y se convierta en una patología a tratar (dolor inflamatorio y dolor neuropático). 

Desafortunadamente, en la actualidad ese dolor patológico es un problema que 

afecta a un gran número de personas en todo el mundo y aunque existen fármacos 

para paliarlo, estos presentan importantes deficiencias. Por suerte, en los últimos 

años se ha descubierto la implicación de una familia de canales iónicos conocidos 

como TRP (de las siglas en ingles Transient Receptor Potential) que juegan un 

importante papel en la traducción del dolor. En concreto, se ha demostrado que los 

canales TRPV1 y TRPM8 son proteínas clave en el mecanismo de transducción del 

dolor y que a través de modulación se podría conseguir efectos analgésicos. Así, 

en esta tesis se aborda la búsqueda de nuevos moduladores de estos canales 

iónicos con potenciales propiedades analgésicas. 

En la primera parte de la tesis (capítulo 1), se ha investigado la actividad antagonista 

del compuesto triazine 8aA sobre el canal TRPV1. Demostramos que el compuesto 

actúa de forma específica y selectiva sobre su diana sin presentar efectos tóxicos 

sobre diferentes tipos celulares. Además, mostramos que el compuesto tiene 

propiedades analgésicas en modelos de dolor in vivo. También presentamos 

evidencias de que el compuesto triazine 8aA es un bloqueador de canal abierto, 

probando que es posible bloquear TRPV1 con antagonistas acompetitivos y 

abriendo las puertas a una nueva generación de analgésicos y antipruriginosos 

basados en la modulación de la actividad de TRPV1. 

Por otro lado, en el capítulo 2, se abordó la búsqueda y caracterización de 

antagonistas del canal iónico TRPM8. Mediante técnicas de cribado de alto 

rendimiento se encontró un potente bloqueador de TRPM8 (compuesto 8-3) y se 

demostró su selectividad frente a otros canales iónicos. El análisis de la relación 

estructura-actividad realizado en los derivados de β-lactama permitió identificar los 

elementos mínimos necesarios en dicho esqueleto químico para bloquear la 

actividad del canal iónico TRPM8. Además, utilizando modelos informáticos, se 
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postularon dos posibles sitios de unión para este potente y selectivo antagonista de 

TRPM8 que contribuyen a aumentar el conocimiento con respecto a los 

mecanismos de modulación de compuesto desarrollados para TRPM8. 
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OVERVIEW 

The world surrounding us is full of different physical and chemical stimuli. All 

organisms, from bacteria to humans, have the ability to receive, transduce and 

transmit these signals to coordinate and modify their behavior. This is called 

somatosensation, and encompasses several modalities of detection that include 

light mechanical stimuli (touch), sense of the relative position of muscles and joints 

(proprioception) and detection of cool and warmth (thermosensation)1. Additionally, 

there is another modality of somatosensation that detect noxious mechanical, 

thermal, or chemical stimuli that produce pain sensation (nociception)2, 3.  

In complex animals, specifically in mammals, the process of detecting sensory 

stimuli relies on primary sensory neurons, specialized cells that innervate the 

whole body and collect sensory data (Figure 1)4, 5. Primary sensory neurons 

responsible for nociception are called nociceptors3, 6, and when activated generate 

an unpleasant sensation called pain. The nociceptive process starts with the 

activation of pain receptors by noxious stimuli. This activation depolarizes the 

peripheral sensory neurons, generating an action potential that is propagated 

through primary sensory neurons to the spinal cord or dorsal horn. There they form 

synapsis with secondary sensory neurons, which bring the signal to the brain eliciting 

a perception of discomfort or pain. Then the signal is processed and the adequate 

decision is made to prevent damage4, 6. This pathway has been essential for living 

organisms not only to interact with the environment, but also to avoid potential 

harmful stimuli that could compromise their lives7.  
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Under normal situations, nociceptive or physiological pain is an essential protective 

system that detects and minimizes contact with damaging or noxious stimuli8. 

However, occasionally pain can become pathological, losing its warning meaning. 

For example, if nociceptive pain is prolonged over time it can become chronic, 

producing tissue damage and sensitizing the affected region (inflammatory pain)9. 

The symptoms of this sensitized state are allodynia, a phenomenon where normally 

innocuous stimuli produce an unpleasant sensation, and hyperalgesia, an increment 

of pain suffered from a stimulus that normally provokes mild pain10, 11. Some 

examples of pain disorders where this sensitization has been described are 

conjunctivitis, psoriasis or rheumatoid arthritis. Another example of pathological pain 

is when it results from nerve damage (neuropathic pain)12. Contrary to inflammatory 

chronic pain, it is not a symptom of a disorder but rather a disease state. Herpes 

zoster, ischemia or neuropathies related to diabetes are some examples of this type 

of pain13-15.  

Figure 1 The nociceptive pathway adapted from Moran, M.M et al. 20115 
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Unfortunately, and despite the fact that pathological pain is a global health problem 

that affects more than 20% of the adult population, little advances have been 

reached, especially for persistent pain syndromes16. Luckily, over the past two 

decades, the cloning and functional characterization of sensory receptors has 

provided a molecular framework for understanding peripheral mechanisms 

underlying stimulus detection and injury-evoked sensation17. These molecular 

entities are the nocicensors, and among them, the Transient Receptor Potential 

(TRP) ion channels have emerged as a family of ion channels that play crucial roles 

in the generation and development of pathological pain perception18, 19. This family 

has nowadays 28 members in mammals distributed in 6 subfamilies named as follow 

TRPC1-7 (Canonical), TRPM1-8 (Melastatin), TRPV1-6 (Vanilloid), TRPA1 

(Ankyrin), TRPP1-3 (Polycistic), and TRPML1-3 (Mucolipin)20. They are widely 

expressed in several tissues, one of the reasons why they play an important role in 

sensory physiology, which in addition to nociception, include olfaction, hearing, 

vision, touch, and osmo- and thermosensation21, 22. Furthermore, several studies 

have highlighted the importance of TRP channels in a wide range of human 

disorders such as respiratory problems, skeletal dysplasia, neurodegenerative 

conditions or pain disorders23, 24. 

The discovery of the TRP channels represented a revolution for the pain research 

field since it revealed a new complex and dynamic regulatory system on the pain 

pathway3, 18. Traditionally, pain treatment has utilized two types of drugs: 

nonsteroidal anti-inflammatory drugs (NSAIDs) that include aspirin and 

paracetamol25, 26, local anesthetics such as lidocaine or benzydamine27, 28, and 

narcotics such as morphine or tramadol29. Although they are effective, undesired 

side effects including gastric and kidney problems in the case of NSAIDs or sedation, 

dizziness or loss of cognitive function to the anesthetic has been reported9. For its 

part, the continued use of narcotics can result in physical dependence and addiction 

producing restlessness, muscle and bone pain, insomnia, diarrhea, vomiting or cold 

flashes when the treatment is stopped29. The discovery of the TRP family led to the 

possibility of developing modulators of their activity that would have an analgesic 

effect. Acting directly on the initiators of the nociceptive process would allow for the 
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control of the generation of the pain signal at its very beginning. Thus, side effects 

associated to drugs acting more upstream on the nervous system would be avoided5, 

9, 16. With this objective, a lot of effort is being made trying to develop modulators for 

TRP nociceptors30.  

In this direction, TRPV1 has emerged as one of the most interesting members of 

TRP channels17. The in vitro studies of channel function as well as the deficiencies 

in nociceptive sensation and inflammatory processes showed by the TRPV1 

knockout mice validated the vanilloid receptor as a therapeutic target31. Moreover, 

TRPV1 antagonists have shown analgesic effects with positive results in clinical pain 

trials32. However, on the negative side, TRPV1 antagonists are reported to diminish 

acute sensitivity to noxious heat and produce hyperthermia (increase in core body 

temperature), which compromise the integrity of the patients. As a result, up to date, 

no TRPV1 blocker has progressed further than phase II. It seems that the 

indiscriminate pharmacological blocking of the receptor with high affinity, and in a 

quasi-irreversible and competitive manner may be responsible for the observed side 

effects33. Thus, in this thesis a new approach was used to design novel antagonists 

with analgesic activity that primarily target pathological over-activated TRPV1 

receptors (Chapter 1). 

Similar relevance on the pain field has been suggested for TRPM8 channel34. 

Genetic ablation of TRPM8 in rodents substantially attenuated the hypersensitivity 

produced by nerve injury. The implication of TRPM8 not only in this class of chronic 

pain syndrome, but also in some types of cancer and tearing regulation has 

motivated the development of different TRPM8 antagonists35. Unfortunately, a small 

number of compounds have entered the clinical trials, and the few of them that have 

done it reported hypothermia (decrease in core body temperature)36. As such, recent 

efforts have focused on discovering novel subtypes of pharmacophores. However, 

in contrast to TRPV1, little or nothing is known about the binding site of TRPM8 

blockers.  

The necessity of new TRPM8 antagonists and the lack of information regarding their 

mechanism of action have motivated the second part of this thesis. An extensive 
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study was done to identify TRPM8 antagonists which were later on characterized 

and computationally modeled to propose a binding sites (Chapter 2).
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INTRODUCTION 

TRPV1 structure and modulation 

TRPV1 is the founding member of a subfamily of thermoTRP channels that enable 

primary afferent nociceptors to detect harmful stimuli. It was cloned in 1997 from rat 

dorsal root ganglion (DRG) neurons and firstly described as the capsaicin receptor17. 

Further studies revealed TRPV1 as a molecular integrator for a broad range of 

physical and chemical stimuli. In addition to capsaicin, other vanilloid compounds 

such as resiniferatoxin (RTX) also activate TRPV1 channels 37. Moreover, voltage, 

noxious temperatures > 42 ºC, and low pH (< 6) are TRPV1 channel activators as 

well 38, 39 (Figure 2). 

TRPV1 is a tetrameric membrane protein with four identical subunits assembled 

around a central aqueous pore 40. Each TRPV1 subunit protein shows a membrane 

domain composed of six transmembrane segments (S1-S6) 41, with an amphipathic 

region between the fifth and sixth segment that forms the channel conductive pore 

and intracellularly located amino and carboxyl-terminus (N-terminus and C-terminus 

respectively)42 (Figure 2). 

The C-terminus domain of TRPV1 is formed by 145 amino acids and contains a 25-

residues sequence highly conserved referred to as TRP domain 43, 44(Figure 2A). 

This region has been widely described as a transduction domain important for 

channel gating45. Specifically, this domain includes a proline-rich region and a 6-mer 

conserved sequence termed TRP box that has been implicated in the allosteric 

coupling of stimuli sensing and pore opening44, 46, 47. The TRP domain has also been 

involved in channel tetramerization, however, this role still remains controversial, as 

other motifs in the C-terminus have also been identified to promote TRPV1 subunit 

association48, 49.  
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The 432-amino acid N-terminus contains potential protein-protein interacting 

domains such as a relatively proline-rich region and six ankyrin repeats domains 

(ARD) essential for channel function and whose structure has been determined with 

high resolution using X-ray crystallography50,51. Interestingly, the recent publication 

of a high-resolution cryo-electromicroscopy structure of an assembled TRPV1 

channel has highlighted the interaction among the third and fourth ARD from one 

subunit and the pre-S1 and the C-terminus linker from an adjacent TRVP1 subunit52. 

The interaction of several proteins implicated in the trafficking to the membrane such 

as Snapin53 , or in the stabilization of the channel in the membrane such as Whirlin54 

has also been reported in the C-terminus region. 

A B

C

Figure 2. TRPV1 is a homotetramer activated by different stimuli. A) Schematic 
representation of the topology of a TRPV1 protein subunit. B) The functional channel is a 
tetramer formed by the ensemble of four such subunits. Residues involve in capsaicin binding 
are marked in orange. Marked in blue are two extracellular residues critical for activation by 
protons. C) Whole-cell I-V relationships of TRPV1 showing the activation of currents by low pH 
(6.0), heat (42°C) and capsaicin (100 nM). Modified from Belmonte, C. and Viana, F. 20081 

C 

A B 
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The important role of TRPV1 as a molecular integrator for physical and chemical 

stimuli has motivated many structure-functional studies to identify the gating 

mechanism behind them46, 55-59. In relation to the vanilloids’ binding site, studies 

using analogues of capsaicin and capsaicin-insensitive animal models demonstrated 

that these compounds bind to a putative vanilloid pocket through residues located in 

the cytoplasmic loop between the second, the third and the fourth transmembrane 

domains60, 61. Recent cryo-electromicroscopy studies identified distinct but 

overlapping binding sites for capsaicin and RTX, and suggested that the S4–S5 

linker and the sixth transmembrane domain may also contribute to define the 

vanilloid binding site62, 63 (Figure 3). 

 

 

 

Regarding proton activation, two specific extracellular glutamate residues seem to 

be involved in pH sensitivity64. The first, E648, located at the loop between S5 and 

the S6, is crucial for direct activation of the channel by strong pH. The second, E600, 

Figure 3. TRPV1 channel topology. The figure shows the key residues for channel gating by 
different stimuli as well as phosphorylation sites crucial for channel function modulation. 
Szolcsanyi, J. and Sandor, Z. 201259. 
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at the end of S5, is responsible for the potentiating effect of protons at milder acidic 

conditions39, 64 (Figure 3). Interestingly, it has been shown that protons activate and 

potentiate TRPV1 by shifting the voltage dependence of the activation curves 

towards more physiological membrane potentials38. However, the structural basis for 

voltage sensing is not fully understood yet. A recent study has identified several 

basic and acid residues in S4 and the S4-S5 linker whose substitution altered the 

voltage gating, however, also significant effects on the capsaicin and temperature 

sensitivities were observed65. 

Similar to voltage sensor, and despite significant efforts, the temperature-sensitive 

gating of TRPV1 is still far from being fully understood, and widely diverging global 

views have been developed55, 57, 66 (Figure 3). On one hand, some authors have 

implicated N- and C-termini domains and the outer pore region as the 

thermosensor67. On the other hand, other authors have suggested that temperature 

sensitivity is an integral property of the TRPV1 protein and no specific regions exist55, 

68. 

An important characteristic of TRPV1 ion channels is its desensitization17. At the ion 

channel level, desensitization is defined as a decrease of channel activity due to a 

continuous stimulation. In vitro, is largely suppressed by buffering of intracellular 

[Ca2+] or by absence of this ion in the extracellular solution17. This phenomenon can 

occur rapidly during single application of an agonist (desensitization) or slowly 

following repeated agonist applications (tachyphylaxis)69. Regarding the 

mechanism, it has been suggested that may be signaling via Ca2+-calmodulin, since 

disruption of the proposed region for interacting with this protein in the C-terminal 

partially inhibits desensitization70-72 (Figure 3).  

 

Role of TRPV1 in nociception and pathological pain 

Cumulative evidence shows that TRPV1 is a key player in the nociceptive sensation 

process17, 39, 73-75. First of all, TRPV1 has been mainly detected in small and medium 

diameter neurons in the primary sensory ganglia (trigeminal and DRG) from the 
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peripheral nervous system grouped in Aδ and C fibers76. Second, analysis of mice 

lacking TRPV1 channels not only revealed a complete loss of capsaicin sensitivity, 

but these animals also exhibited significant impairment in their ability to detect and 

respond to noxious heat31, 73. Moreover, TRPV1-knockout mice showed absence of 

thermal hyperalgesia development after peripheral administration of capsaicin or 

complete Freund’s adjuvant (CFA)31, 73. Third, and as described in greater detail 

below, TRPV1-evoked responses are markedly enhanced by proalgesic or 

proinflammatory agents such as bradykinin or neurotrophins which produce 

hypersensitivity to heat in vivo39, 77-83.  

During any inflammatory process a wide variety of pro-inflammatory mediators are 

released sensitizing TRPV1 channel84. Cytokines79, pruritogens85, 86, ATP87 and 

neuropeptides76, 88 are some examples of these types of mediators. These mediators 

activate their respective receptors expressed on sensory neurons leading to a wide 

variety of intracellular signaling pathways that result in the activation of protein 

kinases such as protein kinase A (PKA) 89, protein kinase C (PKC)77, 90, mitogen-

activated protein kinases (MAPKs)91, 92, and phospholipases such as phospholipase 

C (PLC) 93 . Protein kinases phosphorylate different residues of TRPV1 (Figure 4) 

and as a result TRPV1 channels are sensitized, increasing the probability of channel 

opening at normal membrane potentials or in response to other stimuli94-96. In 

addition, during an inflammatory process, increased expression of TRPV1 proteins 

and a subsequent increase in the number of TRPV1 in the membrane has been 

demonstrated88, 96, contributing to an augmented TRPV1-mediated pain signalling.  
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TRPV1-based pain treatments 

Due to the important role of TRPV1 in the pain pathway, several approaches have 

been taken to utilize it as a therapeutic target. On one hand, TRPV1 agonists have 

been used for many years for pain relief of peripheral origin. On the other hand, 

different TRPV1 antagonists are being investigated as new analgesics 30, 97. 

Figure 4. TRPV1 sensitization mechanism. Under pathological conditions, different pro-
inflammatory mediators produces a wide variety of intracellular signaling pathways that result in 
potentiation of TRPV1 activity. PGs, prostaglandins; CaM, calmodulin; PLC, phospholipase C. 
DAG, diacylglycerol; IP3 inositol triphosphate; AC, adenylate cyclase; NGF, nerve growth factor. 
Adapted from Gold, M.S. and Gebhart, G.F. 201084 
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Agonists 

In addition to capsaicin, other vanilloids have been identified which also activate the 

TRPV1 channel. Resiniferatoxin (RTX), a diterpene related phorbol ester, is a potent 

analogue of capsaicin present in Euphorbia resinifera cactus and noted for having 

greater power-irritating37. Other chemical compounds that activate TRPV1 are 4-

(thiophen-2-yl)butanoic acid98 , camphor99, 2-aminoethoxydiphenyl borate (2-

APB)100 and hydroxyl alpha sanshool101, the active component of Sichuan pepper. 

TRPV1 is also activated by extracts of onion and garlic due to the molecule allicin, 

the main active component of these extracts102. Zingerone piperine and two 

compounds present in black pepper and ginger also activate TRPV1103. 

Despite the wide variety of TRPV1 agonists, nowadays the only one used in the pain 

relief is capsaicin, the canonical activator of TRPV1 channel104. Based on TRPV1-

mediated defunctionalization of nociceptors, several creams and patches containing 

capsaicin have been used in the treatment of post-herpetic neuralgia, neuropathy, 

mastectomy, amputation and skin cancer among others, the best example being the 

8 % capsaicin patch (QutenzaTM)105. The prolonged activation of TRPV1 (> 60 min) 

produced a strong alteration of membrane potential that reduce neuronal excitability, 

inability to produce neurotrophic factors (Substance P) and retraction of epidermal 

and dermal nerve fibre terminals106. However, the initial pungency and irritation and 

modest or lack of efficacy observed in some clinical trials has created concern about 

their use104. For these reasons, pharmaceutical companies have tried to develop 

TRPV1 antagonists that could treat pathological pain avoiding the sides effects 

observed with TRPV1 agonists. 

Antagonists 

Few years after the TRPV1 cloning, several potential antagonists started to emerge 

based on the capsaicin structure30, 107. Those compounds shared a pharmacophore 

scaffold conformed by an A-region (aromatic ring similar to vanilloid) + Linker (ester, 

amida, urea, thiourea) + C-Region (aliphatic group)30 (Figure 5).  
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The first of these new antagonists was the capsazepine. This molecule was a 

competitive antagonist that blocked only the activation of TRPV1 channels by 

chemicals107. However, in addition to its effect on TRPV1 channels, it was also 

shown to inhibit the cold activated TRPM8 channel, voltage-activated calcium 

channels and nicotinic acetylcholine receptors108-110. After capsazepine, many other 

compounds appeared following this strategy30 (Table 1). 

  

SB-705498

Capsazepine

Capsaicin

A-RegionLinkerC-Region

Figure 5. Pharmacophores of the representative TRPV1 ligands. For capsaicin, capsazepine 
and SB-705498, three important pharmacophore regions are marked. Modified from Lee,Y et al. 
201530. 
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Table 1. Status of clinical trials for TRPV1 antagonists 

Name Therapeutic 
Development 

status 
ClinicalTrials.gov 

ID 

SB-705498 

(GSK) 

Atopic 

dermatitis 

Phase II 

(Completed) 
NCT01673529 

AZD-1386 

(AstraZeneca) 
Pain 

Phase II 

(Completed) 
NCT00672646 

AMG-517 

(Amgen) 
Pain 

Phase I 

(Terminated) 
1* 

PHE-377 

(PharmaEste) 

Neuropathic 

pain 

Phase I 

(Completed) 
2* 

GRC-6211 

(Glenmark) 

Neuropathic 

pain 

Phase II 

(Suspended) 
3* 

MK-2295 

(Merk) 

Post-operative 

pain 

Phase II 

(Completed) 
NTC00387140 

XEN-D0501 

(Xention Ltd.) 
Cough 

Phase II 

(Completed) 
NTC02233699 

PAC-14028 

(Amorepacific 

Corporation) 

Pruritus 
Phase II 

(Recruiting) 
NCT02565134 

1* http://www.ncbi.nlm.nih.gov/pubmed/18337008 

2* http://www.mp-healthcare.com/pdf/20090714_Pharmeste.pdf 

3* https://investor.lilly.com/releasedetail.cfm?ReleaseID=271993 
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Unfortunately, these competitive TRPV1 antagonists showed critical side effects 

such as hyperthermia and impaired noxious heat sensation in humans, leading to 

their withdrawal from clinical trials32, 111. It is not clear why some TRPV1 blockers 

elevate body temperature whereas others do not. It seems that indiscriminate 

pharmacological blocking of the receptor with high affinity, quasi-irreversible, 

competitive antagonists may be responsible for the observed side effect. Moreover, 

several studies suggested that compounds which prevented the activation of TRPV1 

by capsaicin, but not by H+ or temperature, had no effect on body temperature33, 112. 

However, the relation between these two conditions is not clear yet. Thus, the need 

for a different class of antagonists emerged: antagonists that would be activity-

dependent primarily targeting over-activated receptors. 

Recent progress on TRPV1 pharmacology includes three approaches aimed at 

developing inhibitors offering an alternative to classical competitive antagonists. The 

first approach aims to target the TRP domain as a region that modulates channel 

gating with compounds that would act as allosteric modulators named as 

TRPducins113. These short peptides mimic the sequence of the N-end region of the 

TRP domain and selectively block the channel by interacting with cytosolic binding 

sites. This line of research has rendered one compound called (TRPducin TRP-p5) 

that targets TRPV1 and displayed in vivo anti-nociceptive effect97, 113.  

The second approach for the development of new analgesics consists of targeting 

the overexpression of TRPV1 during inflammation114. One example is a peptide that 

mimics the SNAP25 protein (DD04107)114 and modulate the TRPV1 recruitment in 

inflammatory conditions by blocking its exocytotic incorporation to the plasma 

membrane. This peptide has shown an important and long-lasting anti-nociceptive 

activity in models of chronic neuropathic and inflammatory pain and is currently in 

Phase II of clinical trials114, 115. 

The third strategy is to develop TRPV1 non-commpetitive antagonists that exert an 

activity-dependent inhibitory effect specifically binding to the agonist-receptor 

complex or to the open state of the channel116. Their interaction with active receptors 
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enables them to preferentially block highly activated receptors while only interacting 

minimally with physiologically working or silent channels. This characteristic makes 

these compounds to attract sizable interest as potent and safe drugs. An example 

showing that this strategy can be successful is memantine116, an open-channel 

blocker of the NMDA receptor that has been approved for the treatment of 

Alzheimer’s disease117.  

Open-channel blockers are compounds that enter the mouth of the channel when is 

open and do not allow the pass of positively charged ions through the pore118. They 

usually interact at the location of the pore where several negatively charged amino 

acid residues control ion permeability, and those are only exposed on the open state. 

To interact with these residues, open-channel blockers normally have positive 

charges and show a strong voltage-dependence inhibiting at negative potentials. 

Furthermore, the time that the binding site is accessible is directly proportional to the 

time the channel remains in its open conformation119. This is a clear advantage for 

TRPV1-mediated inflammatory pain since the drug-binding site would be more 

exposed in over activated channels. 

Following the approach of designing open-channel blockers, previous studies in our 

lab identified two compounds, DD161515 and DD191515 (Figure 6, left)120. These 

peptoids conformed by two aryl moieties and one cationic group, were selective 

TRPV1 antagonists with micromolar efficacy. Moreover, administration of DD161515 

and DD191515 into mice significantly attenuated the irritant activity of capsaicin and 

reversed the thermal hyperalgesia induced by tissue irritation120. Thus, they came 

out as compounds with high therapeutic potential at the same time that supported 

the relevance of TRPV1 in the pain perception. However, their moderated antagonist 

activity together with an unexpected toxicity interrupted their development into useful 

analgesics even though they were active in vivo in animal models of pain. 

Nevertheless, these peptoids established the bases of a new generation of non-

competitive TRPV1 blockers. In parallel, other laboratories were also developing 

non-competitive capsaicin antagonist such as methoctramine121. However, a 

moderate potency (IC50 of 2 μM), together with the lack of receptor selectivity has 

restrained the use of these compounds in vivo. 
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The promising results observed with DD161515 and DD191515 led, few years later, 

to the design of the second-generation compound DD01050 (Figure 6, right)122. The 

relationship observed between the positive charges of the parenteral compounds 

and TRPV1 antagonism, motivated the incorporation of a strong positive charged 

amino acid (arginine) on the DD01050 structure. Similar to DD161515 and 

DD191515, compound DD01050 preferentially blocked TRPV1 over other neuronal 

receptors albeit its potency was 10-foldhigher than the original peptoids. As expected 

by an open-channel blocker, DD01050 exerted its activity in a voltage-dependent 

manner. Interestingly, as its antecessors, DD01050 prevented the irritant activity of 

capsaicin and reduced the thermal hyperalgesia122. However, despite the chemical 

modifications done in DD01050 respect to DD161515 and DD191515, the toxicity 

remained, preventing its further development as analgesic. Moreover, it was found 

that DD01050 not only blocked TRPV1 activity, but also was a potent antagonist for 

cold-evoked responses in mouse and human TRPM8 channel123. 

 

 

 

Despite the fact that the challenges faced with compounds DD161515, DD191515 

and DD01050 have limited their therapeutic potential, the analgesia displayed in 

preclinical models of pain validated this class of TRPV1 antagonist as promising 
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Figure 6. N-alkylglycine trimers DD161515 and DD191515 (left) to a new TRPV1 antagonist, 
DD01050 (right) by addition of an arginine amino acid. Adapted from Garcia-Martinez, C. et al. 
2002 and Garcia-Martinez, C. et al. 2006120,122. 
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molecules for analgesic drug development. Based on this evidence, the flexible 

scaffold present in the peptoids (Figure 7, left) was substituted by a more rigid and 

symmetric moiety (2,4,6-trisubstituted-1,3,5-triazine, Figure 7, right) since more rigid 

structures usually increase the potency and selectivity of the candidates124. 

 

 

Then, this improved scaffold was utilized to synthetize a third generation of open-

channel blockers with 35 new compounds, and their activity was tested using 

voltage-clamp experiments in amphibian oocytes from Xenopus laevis 

heterologously expressing rat TRPV1 (rTRPV1) channels. Among all the 

compounds, 15 presented blockade activity higher than 75%. Modifications around 

the common triazine scaffold, and the biological activity assays of these derivatives, 

allowed us to establish the Structure-Activity Relationship (SAR) of this chemical 

library124. These studies showed that aromatic rings together with a positively 

charged group were required to exert the antagonistic activity. Moreover, an increase 

in the electronegativity of the phenethylamino region increased the potency. Taking 

in to account these results, the study of three derivatives, 8aA, 8bA, and 8cA was 

continued (Figure 8).  
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TriazineN-trialkyl-glycine

Figure 7. General chemical structure from previous antagonists (N-trialkyl-glycine) and the new 
scaffold used on the synthesis (2,4,6-trisubstituted-1,3,5-triazine). 
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The blockade showed by these three triazine-derivatives was dose-dependent and 

reversible. In the bibliography it has been reported that some charged antagonists 

also presented agonist effects125. As the structure of the triazines allows their 

protonation at physiological pH, the possibility of them having a similar behavior was 

explored. Unfortunately, derivatives 8cA and 8bA presented significant agonist effect 

even at the lowest concentration. In contrast, triazine 8aA did not activate the 

channel at any of the tested concentrations124. 

According to the results previously described, the main objective of this project was 

to continue the characterization of the trizaine-derivative 8aA. The aim was to 

develop a novel TRPV1 open-channel blocker with high pharmacological potential 

that could avoid the toxicity displayed by other TRPV1 antagonists.  
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Figure 8. Chemical structure from the triazine derivatives 8aA, 8bA and 8cA from Vidal-
Mosquera, M. et al.124. 
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OBJECTIVES 

 

 

Main objective 

 

The main objective of this study was to characterize a new TRPV1 open channel 

blocker with analgesic properties. With this aim we evaluate the therapeutic potential 

of triazine 8aA, previously identified as a TRPV1 antagonist. 

Specific objectives 

 

- Characterize the pharmacological properties (efficacy, potency, selectivity, 

neuronal excitability) and blockade mechanism of triazine 8aA. 

 

- Study the anti-nociceptive activity of the candidate in different in vivo models 

of acute and chronic pain. 
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RESULTS 

Triazine 8aA preferentially blocked capsaicin-evoked rTRPV1 activity 

As it has been described in the introduction, previous studies in our group revealed 

the triazine-based TRPV1 antagonist compound 8aA (triazine 8aA from now on) as 

a promising TRPV1 open-channel blocker124 (Figure 9). 

 

 

 

 

To further investigate the antagonistic properties of this compound, we firstly 

addressed its potency as blocker of capsaicin-induced TRPV1 activity. In order to 

prevent the desensitization process, we utilized a Ringer’s solution without Ca2+. We 

obtained a dose-response curve from the ionic currents acquired at -60 mV after the 

application of different concentrations (from 0.001 μM to 10 μM) of triazine 8aA in 

presence of 10 μM capsaicin (solid red line in Figure 10). The IC50 obtained was 50 

nM with a 95% confidence interval (95% CI) between 46 nM and 71 nM. The Hill 

coefficient was close to 1, nH=0.61 (95% CI=0.59 – 0.69), suggesting a single binding 

site for triazine 8aA in TRPV1. 
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Figure 9. Chemical structure from the triazine derivatives 8aA. 
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As mention previously, it has been reported that compounds that fully blockade of 

TRPV1 activation by capsaicin, but only partially blockade of TRPV1 activation by 

other stimuli, avoid certain side effects such as hyperthermia in most of the cases33. 

Thus, we explored whether triazine 8aA would be active in presence of external 

solution at pH 6. 

In Ringer’s solution without Ca2+ and the voltage held at -60 mV, we first applied 

buffer at pH 6 as a control to corroborate that low pH activated the channel. We next 

tested triazine 8aA at different increasing concentrations from 0.001 μM to 10 μM in 

presence of acidic solution. Similar to capsaicin modality of activation, we obtained 

a dose-response curve (solid black line in Figure 10). The IC50 was 1.31 μM (95% 

CI = 1.13 – 1.52 μM) and the Hill coefficient was nH = 0.58 (95% CI = 0.53 to 0.63). 

The difference of orders of magnitude between the concentration necessary to block 

Figure 10. Triazine 8aA blockade of capsaicin, acidic pH and heat-evoked rTRPV1 
activity. Red line) Dose-response curve for triazine 8aA blockade activity of 10 μM capsaicin-
activated TRPV1 activity. Black line) Dose-response curve for triazine 8aA on TRPV1 channel 
activated with external solution at pH 6. Green line) Dose-response curve for triazine 8aA on 
TRPV1 channel activated with external solution at 42 ºC. In capsaicin and acidic experiments, 
rTRPV1 channels were expressed in amphibian oocytes and currents were measured using 
voltage clamp in absence of Ca2+ (Vh= - 60 mV). In heat activation, rTRPV1 channels were 
expressed in Sh-Sy5y cells and the changes in the Ca2+-dependent fluorescence was 
measured. Responses were normalized with respect to that in the absence of antagonist. Each 
point represents the mean ± SEM, with n≥4. Dotted line represents the 95% CI. 
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capsaicin activation (50 nM) and to block acidic pH activation (1.31 μM) shows a 

clear modality preference.  

We also evaluated its possible antagonist effect on heat-induced TRPV1 activity. We 

obtained a dose response curve after the application of different concentrations of 

triazine 8aA in presence of the thermal stimulus (42ºC) (solid green line in Figure 

10). None of the concentrations tested blocked more than 50% of the heat evoked 

TRPV1 activity, suggesting an IC50 higher than 10 μM. 

These results supported triazine 8aA as a potent TRPV1 antagonist with preference 

to block capsaicin modality of activation. 

Triazine 8aA blocked TRPV1 activity in a selective manner 

For the development of new drugs, not only high potency is desirable, but also 

specificity and selectivity against the target. To analyze these parameters for triazine 

8aA we assayed its inhibitory activity on TRPM8 and TRPA1 channels, members 

from the same family as TRPV1, and N-methyl-D-aspartate receptor (NMDA), a non-

related channel in absence of Ca2+. The results from these experiments are collected 

in Table 2. 
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Table 2. Effect of triazine 8aA in TRPV1, TRPM8, TRPA1 and NMDA receptors. 

Ion channel  
(Oocytes) 

Triazine 8aA 
IC50 (μM) at -60mV  Ion channel  

(HEK cells) 
Triazine 8aA 

IC50 (μM) at -60mV 

TRPV1  
(vs 10 μM capsaicin) 0.05 ± 0.01  

TRPA1 
(vs 100 μM AITC) > 10.00 

TRPM8 
(vs 300 μM menthol) 7.50 ± 1.50    

NMDA 
(vs 100 μM L-glutamate 

/10 μM glycine) 
9.20 ± 2.10    

Values derived from corresponding dose response curves. TRPV1, TRPM8 and NMDA were 
heterologously expressed in Xenopus oocytes and tested at different increasing concentrations from 
0.001 μM to 10 μM of triazine 8aA. Responses were recorded at -60 mV in Ringer’s solution without 
Ca2+ and normalized respect to that elicited by 10 μM Caps, 300 μM menthol and 100 μM L-
glutamate/10 μM glycine respectively. TRPA1 channel was expressed in HEK cells and recorded at 
-60mV in Standard solution without Ca2+. Responses were normalized respect to that elicited by 100 
μM AITC. Data are shown as the mean ± SEM, n≥4.  

 

The dose-response of triazine 8aA in presence of 10 μM capsaicin reported an IC50 

in the nanomolar range (see Figure 10 and Table 2). Next, we tested the same range 

of concentrations of triazine 8aA in menthol-activated TRPM8 channel. As shown in 

Table 2, the IC50 was 7.50 ± 1.50 μM, two order of magnitude higher than the one 

observed in TRPV1 suggesting that triazine 8aA could be a specific TRPV1 

modulator. Interestingly, when we tested up to 10 μM triazine 8aA on TRPA1 channel 

expressed in human embryonic kidney (HEK293) cell line activated by 100 μM AITC, 

the blockade was almost inexistent (IC50 > 10 μM, Table 2). Although the expression 

system was different and may slightly differ in oocytes, the wide-ranging differences 

observed between the IC50 in TRPV1 and TRPA1 support the possible specificity of 

triazine 8aA. In order to also test the selectivity, we studied the effect the previous 

mentioned range of concentrations of triazine 8aA in the NMDA receptor activated 

by 100 μM L-glutamate/10 μM glycine. Comparable to the results observed with 

TRPM8 and TRPA1, triazine 8aA blocked only marginally the activity of this channel 

and the IC50 was 9.20 ± 2.10 μM (Table 2). Thus, triazine 8aA, showed a preferential 

TRPV1 blockade. 
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Triazine 8aA blocked capsaicin- and acidic pH-evoked hTRPV1 activity 

Compounds that block the channel in one species could be inactive or even act as 

an agonist on its orthologue in other species126-129. This information brings up to 

question whether triazine 8aA, active on rat TRPV1, could block human TRPV1 

(hTRPV1). For this task, hTRPV1 was expressed in HEK293 cell line. We observed 

that the blockade activity showed by triazine 8aA over capsaicin-evoked currents 

was reproduced in hTRPV1 channels, where almost all the current was abolished at 

10 μM (Figure 11A).  

 

 

Triazine 8aA also showed a dose-dependent of hTRPV1. The dose-response curve 

(solid red line in Figure 11B) reported an IC50 for triazine 8aA of 506 nM (95%CI=345-

741 nM). We also were able to detect a recovery on the current once the inhibitor 

was removed from the medium, an indication of a reversible mechanism of blockade 

(Figure 11A). 

Figure 11. Triazine 8aA blockade of capsaicin-evoked hTRPV1 activity. A) Representative 
capsaicin-evoked ionic currents from hTRPV1 in presence of 1 μM capsaicin and 0.1 μM, 1 μM 
and 10 μM triazine 8aA measured by patch-clamp in whole cell configuration held at -60mV. 
Ca2+ was removed from the buffer to prevent the desensitization process. The horizontal bars 
indicate the experimental paradigm used for agonist stimulation and channel blocking. B) Dose-
response curve of the inhibitory activity showed by triazine 8aA at -60mV. Data are given as 
means ± SEM; n≥4 cells. Dotted line represents the 95% CI. 

A B 
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The effect previously observed with triazine 8aA over pH activation in rTRPV1 made 

us question whether the results would be reproducible in hTRPV1. Hence, we tested 

the activity of the antagonist in the presence of a moderate acidic pH. The application 

of a first pulse of buffer at pH 6 produced inward currents that were reproduced when 

we applied a second pulse of acidic pH in absence of triazine 8aA (Figure 12A). On 

the contrary, when we applied 10 μM triazine 8aA, the pH-evoked current was 

blocked with a similar potency than the observed in oocytes (73.1 ± 4.2% in hTRPV1 

vs 78.0 ± 0.5% in rTRPV1) (Figure 12B). Thus, these results confirmed a similar 

antagonistic effect on both TRPV1 channels. 

 

 

Figure 12. Triazine 8aA blockade activity on acidic pH-evoked hTRPV1 activity. Currents 
were obtained by patch clamp in a whole-cell configuration at -60mV in Ca2+ free buffer. The 
horizontal bars indicate the experimental paradigm used for agonist stimulation and channel 
blocking. A) Representative currents activated by two pulses of pH 6. B) Representative 
recording in absence (first pulse) or presence of 10 μM triazine 8aA (second pulse). 

A B 
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Triazine 8aA blocked capsaicin-evoked TRPV1 activity in voltage-
dependent manner 

Triazine 8aA at pH 7.4 is positively charged molecule that could be sensing the pore 

electrostatic field. In order to explorer this possibility, we studied the voltage 

dependence of exerted by the compound. As it shown In Figure 13A, current-to-

voltage relationship revealed that triazine 8aA inhibited capsaicin-evoked TRPV1 

responses potently at negative membrane potential, yet it was nearly inactive at 

depolarized voltages. These results indicate that TRPV1 receptor blockade by 

triazine 8aA is voltage dependent, and suggest that the triazine 8aA binding site 

senses the pore electrostatic field.  

Seeking to further corroborate this observation, we obtained the fraction of 

unblocked response (Iblocker/Icontrol) as a function of the membrane potential (Figure 

13B, dots). The fraction of unblocked response-voltage relationship is related with 

the location of the blocker binding site within the membrane electrostatic field 130,131. 

Experimental data exhibited a dependence on the applied membrane voltage in the 

range of -60 to -15 mV. It is common to use the Woodhull model to describe the 

voltage-dependent blockade of compounds. In this model it is assumed that the 

charged blocking particle enters the channel pore to a certain distance, and sense 

part of the transmembrane electric field. According to the Woodhull model, the IC50 

of a molecule with valence ɀ, binding to a site within the membrane electric field is 

described by the relations stated in Equation 1: 

 
Equation 1. Woodhull model 

where the IC50 (Vm) and IC50 (0 mV) are the unblocked response fraction at 

transmembrane voltage Vm and at 0 mV. In this equation, δ is expressed as “part 

per unit” of the way across the membrane’s potential from extracellular side to the 
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cytoplasmic side. It represents the location of the energy barrier for block (i.e. the 

blocker binding site) expressed as a fraction of the electrostatic field gradient sensed 

by the blocking site. For its part, RT/F is a constant of value 25.3 mV at 20ºC. 

In our study, we utilized an approximation to the Woodhull model previously 

described by Planells-Cases et al 132 (Equation 2). In this model (Iblocker/Icontrol) was 

utilized as an approximation of the IC50 (Vm) and IC50 (0 mV) was substituted by the 

constant K (0 mV). 

 
Equation 2. Fraction of unblocked response of triazine 8aA (modified from Woodhull model) 

The inferred electrical distance of the triazine 8aA binding site from the mouth of the 

channel, δ, was 0.36 (Figure 13B, solid line). Together, these results imply that the 

drug binding site is located within the aqueous pore, and hint that triazine 8aA acts 

as a TRPV1 open channel blocker with moderate affinity. 

 

Figure 13. Voltage dependency of triazine 8aA blockade. A) Representative ionic currents 
evoked by 10 μM capsaicin using a linear ramp from -60 to +60 mV in the absence (red line) or 
presence (black line) of triazine 8aA at 10 μM. B) Fractional blocking of TRPV1 by triazine 8aA 
as a function of the voltage. The solid line depicts the fitting to the Woodhull model, which for 
the triazine 8aA binding site, yielded an electric distance (δ) value of 0.36 within the membrane 
electric field. 

 

A B 
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Triazine 8aA docking suggested interactions in the pore region of TRPV1 
channel 

In collaboration with Jordi Bujons from the Institute of Advanced Chemistry of 

Catalonia (IQAC) in Barcelona we performed molecular docking to locate the regions 

involved in the binding of triazine 8aA. We utilized a simplify model of the 

transmembrane domains S5 and S6 and their extracellular loops of TRPV1 on the 

open state based on the Kv1.2 structure.  

In Figure 14 can be observed that triazine 8aA is localized into the pore region of 

TRPV1 channel. The amino groups of the molecule formed hydrogen bonds with 

G645 from a subunit and the G645 from the opposite one on the S5-S6 loop. 

Moreover, the amino groups of the alkyl chain also established hydrogen bonds with 

M644 and I642 stabilizing the complex triazine 8aA-TRPV1 channel. Although we 

performed the experiments on a structure based on Kv1.2, we expect similar results 

on the recent and almost complete published 3,4 Å-resolution structure of TRPV152 

since no differences has been proposed for this region.  

 

Figure 14. Molecular modelling of triazine 8aA where a binding site is proposed into the 
pore region of TRPV1 receptor. Parts of the S1 and S2 domains of TRPM8 are depicted as 
well as the TRP domain. Boc group of the compound 8-3 makes a hydrogen bond with the 
residue W693 (blue line). The hydrophobic interactions between compound and residues are 
represented as grey doted lines. 
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Triazine 8aA did not affect the cellular viability 

Once triazine 8aA was characterized, the next step was to evaluate its cytotoxicity 

on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) 

assay133. We performed the experiments on two different systems: HEK293 cells, as 

generic model to evaluate general toxicity as it does not express TRPV1 channels; 

and ShSy5y-TRPV1, a neuroblastoma cell line used as a model of neuronal function 

that heterologously expressed rTRPV1. We utilized a range of concentrations from 

1 nM to 100 μM triazine 8aA, which includes the IC50 determined on previous 

experiments. We measured the cell viability by spectrophotometry after 24h of 

incubation with triazine 8aA. 

We observed that triazine 8aA showed complete absence of toxicity from 1 nM to 10 

μM on HEK cells and only at 100 μM can be detected a significant reduction of the 

cell viability (27%) (Figure 15A). Similar to HEK results, triazine 8aA was no toxic up 

to 1 μM in Sh-Sy5y-TRPV1.  

 

Figure 15. Effect of triazine 8aA on MTT-based assay of cytotoxicity in HEK293 cells and 
Sh-Sy5y-TRPV1. A) HEK293 and B) SH-SY5Y-TRPV1 cell were cultured in 96-well plates and 
incubated with and without the indicated concentrations of triazine 8aA for 24 h. Each value is 
expressed as mean ± SEM. n=4. ANOVA with Bonferroni post hoc test (*** p < 0.001). 
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Contrary, when we tested the compound at 10 μM and 100 μM we obtained a 

moderate (20%) and strong (61%) reduction on the cell viability. However, the 

statistical analysis did not detect significantly differences at 10 μM with control 

conditions (DMSO 0.1%) (Figure 15B). Thus, from these experiments we concluded 

that triazine 8aA presented a moderate cytotoxicity. 

Triazine 8aA inhibited neuronal TRPV1 channel activity 

We demonstrated the antagonistic activity of triazine 8aA in heterologous systems, 

however, a question that emerges is whether the compound will block TRPV1 

channel in its neuronal environment, i.e., sensory neurons. Thus, we investigated 

the efficacy of triazine 8aA modulating TRPV1 function in primary cultures of rat DRG 

sensory neurons. The neuronal cultures were tested in absence (vehicle) or in 

presence of 10 μM triazine 8aA, and TRPV1 channel activity was measured by 

Microelectrodes Arrays (MEA) chambers.  

As shown in Figure 16A, in absence of triazine 8aA, DRG neurons responded to 

capsaicin instillation producing action potentials with a mean spike frequency of 

2.06 Hz. Interestingly, when we applied capsaicin in presence of triazine 8aA, the 

mean spike frequency was attenuated (1.03 Hz). A quantitative assessment of the 

inhibitory activity is displayed in Figure 16B, demonstrating the significant reduction 

on the neuronal TRPV1 activity (50%) and corroborating the results observed in 

heterologous systems. 
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Triazine 8aA did not affect normal sensory transduction 

Triazine 8aA has demonstrated to block preferentially TRPV1 when it was compared 

with other channels. However, its potent inhibitory effect may create concerns of 

whether it is also acting on channels present in neurons responsible for action 

potential generation and propagation (e.g. voltage-gated Na+ and K+ channels). 

Thus, we decided to test it on neurons isolated from neonatal rat DRG cultured on 

MEA chambers.  

As illustrated in Figure 17A, top and bottom, the first 40 mM KCl application (P1) 

evoked action potentials on the neurons due to membrane depolarization that we 

could also measure when we applied the second KCl pulse (P2). Due to 

desensitizing processes, we observed a significant reduction on the spikes 

frequency when we compared P1 and P2 under control conditions (0.67 ± 0.19 and 

0.35 ± 0.11 respectively, Figure 17B). Similarly, in presence of 10 μM triazine 8aA 

the mean spike frequency obtained at the P1 (0.79 ±0.17) was higher than the one 

in P2 (0.52 ± 0.12) (Figure 17B). Then we analyzed the ratio established between 

Figure 16. Effect of triazine 8aA in neurons activated by capsaicin. A) Representative 
recordings of evoked action potentials in rat DRG neurons. We applied a pulse of 30 seconds 
of 1 μM capsaicin to evoke action potentials in absence (top, black) or in presence of 10 μM 
triazine 8aA. B) Mean spikes frequency measured from the pulse of capsaicin in absence and 
presence of 10 μM triazine 8aA. Data are given as means ± SEM; n ≥ 15 cells. Statistical 
analysis was made by t-test, ns no significance **P < 0.01. 
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P2 and P1 in the presence and absence of triazine 8aA (Figure 17C). Depolarizing 

effects produced by the compound would be represented as a decrease on the ratio 

P2/P1 compare to control conditions, meanwhile a hyperpolarization would produce 

an increase on the ratio. A statistical t-test revealed no significant differences 

between neurons treated with vehicle or in presence of the antagonist (Figure 17C) 

indicating that triazine 8aA did not modify the neuronal excitability by itself. 

 

 

Figure 17. Effect of triazine 8aA in neuronal action potentials. A) Representative 
recordings of evoked action potentials in rat DRG neurons. We applied a first 20-second pulse 
(P1) of 40 mM KCl (K) to evoke action potentials. After a recovery period of 3 minutes, we 
applied a second KCl pulse (P2) in absence (vehicle, V) or presence of 10 μM triazine 8aA 
(8aA). B) Mean spikes frequency measured from the first pulse (P1) and second pulse (P2) of 
40 mM KCl in absence and presence of 10 μM triazine 8aA. C) Ratio established between P2 
and P1 in absence (black bar) and presence of 10 μM triazine 8aA (red bar). Data are given 
as means ± SEM; n ≥ 15 electrodes. Statistical analysis was made by t-test, ns no significance 
**P < 0.01. 
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Triazine 8aA attenuated capsaicin effect in nociceptive fibers 

The promising outcome showed by triazine 8aA when we characterized it by 

electrophysiological techniques, encouraged us to consider testing it in a more 

complex biological environment. With this aim, we used nociceptive rat knee joint 

nerve fibers to evaluate its inhibitory effect on TRPV1 function134, 135. These 

experiments where performed in collaboration with Ana Gomis from the Institute of 

Neuroscience in San Juan. 

We measured electrical responses from multiunit filaments that discharged in 

reaction to two different stimuli: chemical, produced by the intra-arterial injection of 

capsaicin; and physical, produced by noxious rotation of the knee joint. On the 

performed protocol, we applied four doses of 100 μl of 10 μM capsaicin, with 15-

minute intervals between injections to reduce the well-known effect of 

desensitization (Figure 18A-D). In absence of triazine 8aA, capsaicin induced fiber 

response which, after the third and fourth application presented a small reduction on 

the firing frequency due to the desensitization process (Figure 18A-D and 19A, black 

bars). Importantly, when we administered 100 μl of 10 μM triazine 8aA, followed by 

washing with saline to avoid cumulative effect, the capsaicin-evoked impulse 

discharge was strongly reduced (up to 83%) (Figure 19A, red bars).  
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Figure 18. Triazine 8aA blockade of capsaicin-evoked neural activity in knee joint 
nociceptor fibers. A–D) Instantaneous frequency on the nerve impulse discharge evoked by 
intraarterial injections of 100 μl of 10 μM capsaicin (arrows) before (A) and 15 min (B), 30 min 
(C), and 45 min (D) after administration of 100 μl of 10 μM triazine 8aA. E, F) Impulse discharge 
elicited by a 10-s knee joint rotation (starting at the arrow) applied before injection of capsaicin 
and triazine 8aA (E) and 15 min after the last injection of capsaicin (F). Insets: sample records 
of multiunit impulse activity evoked by capsaicin (A) and by mechanical stimulation (E). 
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When we quantitatively evaluated the capsaicin-activated responses in absence and 

presence of the 10 μM triazine 8aA, we observed a significant blockade activity. For 

instance, in the second administration of capsaicin, triazine 8aA blocked more than 

75% of the capsaicin response. We observed a similar blockade effect after the third 

(80%), and the fourth (83%) application of capsaicin (Figure 19A, red bars). 

However, this blocked response was not completely due to the compound activity. 

In absence of compound, desensitization produced by the second, third and fourth 

capsaicin administration blocked 27%, 48% and 51% of the response respectively 

(Figure 19A, black bars).  

In contrast, the impulse discharge evoked by mechanical stimulation was practically 

unaffected by administration of triazine 8aA (Figure 18E, F and 19B). Collectively, 

these findings proved the anti-nociceptive activity of triazine 8aA modulating the 

activity of TRPV1 channels without affecting mechanical sensation. 

  

Figure 19. Triazine 8aA blocked capsaicin-evoked neural activity in knee joint nociceptor 
fibers without alteration on mechanical sensitivity. A) Quantitative assessment of 10 μM 
triazine 8aA blocked response to capsaicin and B) mechanically evoked responses on 
nociceptive fibers. Data are given as means ± SEM; n=4 animals. Two-way ANOVA with 
Bonferroni post hoc test; * P ≤ 0.05, ** P ≤ 0.01. 
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Triazine 8aA exhibited analgesic effect in an acute pain model  

Collectively, the results obtained from the in vitro experiments and nerve fibers, 

suggested a possible analgesic activity of trizine 8aA in vivo. In order to investigate 

attenuation of pain-related behavior by triazine 8aA, we evaluated its analgesic effect 

in different pain models. 

Under blind conditions, we utilized an acute pain model where intraplantar injection 

of 10 μL of 2% solution of capsaicin into the rat hindpaw evoked pain in the animals. 

This pain was demonstrated by licking and shaking of the paw (flinches) in the animal 

and it disappears 5 minutes post injection. Figure 20 summarizes the obtained 

results as number of flinches/5 min. The control group, treated with vehicle, showed 

a high number of flinches (107 ± 16 flinches/5min) as a response of the pain 

experienced. In contrast, intravenous administration of 10 mg/Kg triazine 8aA 30 min 

prior capsaicin injection reduced the total number of flinches (66 ± 4 flinches/5min). 

These results indicate that triazine 8aA has analgesic activity in acute pain models. 

 

 

 

 

Figure 20. Triazine 8aA exhibits analgesic activity in vivo in capsaicin induced model of 
pain. Total number of flinches in the first 5 minutes after capsaicin injection was counted and 
plotted for each condition (n=6; unpaired t test, ** p < 0.01). All data are given as mean ± SEM. 
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After capsaicin administration, the region affected by the vanilloid, increases its 

sensitivity to thermal stimuli136. This process is called thermal hyperalgesia. Thus, 

we questioned whether triazine 8aA could reduce the pain produced by heat in 

animals sensitized by capsaicin administration. In this model, we applied a radiant 

noxious heat stimulus to the hind paw of the animal and measured the time 

necessary for eliciting a withdrawal response (thermal latency). Under basal 

conditions, prior to capsaicin and treatment injection, all the groups showed similar 

thermal latencies with values between 12 ± 1 s (Figure 21, Basal). Then, we 

administered intravenously 10 mg/kg triazine 8aA or vehicle in absence of capsaicin 

sensitization. After 30 min, we observed that the thermal latency was similar to the 

basal conditions, with values between 12 ± 1 s (Figure 21, 0 min). This result 

suggested no anesthetic or pungent effect of triazine 8aA by itself. 

 

 

 

 

Figure 21. Triazine 8aA exhibits analgesic in vivo activity in thermal noxious stimuli. 
Latency for paw withdrawal from controlled radian heat stimulus. Treatment was administered 
intravenously 30 minutes prior time 0 min (Basal). Capsaicin was injected on the left hindpaw 
of the animals in absence (vehicle, white) or presence of 10 mg/Kg triazine 8aA (red) 
inmediately after time 0 min. Right hindpaw was used to evaluated the activity in a non 
sensitized context (black). Data are given as means + SEM; n=6. ** p < 0.01; *** p < 0.001. 
Two-way ANOVA with Bonferroni post hoc test. 
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Then, we sensitized the hind paw of the animals with an injection of capsaicin and 

measured the effect of triazine 8aA 15 min, 30 min and 60 min after capsaicin 

administration. As we expected, after 15 min, capsaicin sensitization produced, in 

the animal treated with vehicle, a decrease on the thermal latency response (4 ± 1 

s; Figure 21, 15 min, white). This reduction was significantly prevented in the animals 

treated with triazine 8aA (9 ± 1 s; Figure 21, 15 min, red). After 30 min, the thermal 

latency in the animals treated with vehicle was significantly lower (7 ± 1 s; Figure 21, 

30 min, white) than the group treated with triazine 8aA (10 ± 1 s; Figure 21, 30 min, 

red). Sixty minutes post capsaicin injection, the sensitization effect disappeared and 

the responses were again similar in all the groups (Figure 21, 60 min). These results 

showed a clear analgesic effect of triazine 8aA suggesting a possible therapeutic 

activity in a more complex inflammatory pain context. 

Triazine 8aA reduced chronic pruritus in rat model with bile duct 
ligation 

The analgesia exhibited by triazine 8aA in different acute pain models, prompted us 

to explore its possible effect in a chronic and more complex model. In recent years, 

chronic Bile Duct Ligation (BDL) model has been established as a new animal model 

for pruritus associated with hepatic diseases137. In pruritus, TRPV1 channel activity 

is potentiated presumably by inflammatory release of proteases from cutaneous 

mast cells found in close proximity to nerve terminals. This process sensitizes the 

nociceptors by augmenting the expression and activity of neuronal TRPV1 channels. 

As a result, animals exhibited augmented scratching accompanied by thermal 

hyperalgesia137. 

In order to investigate whether triazine 8aA may reduce the itch sensation, we 

utilized the BDL model in Wistar rats. These experiments were conducted in 

collaboration with the group of Rosa Planells at the Príncipe Felipe Institute in 

Valencia. Three weeks after the ligation surgery, we recorded the cumulative 

spontaneous scratching bouts during 1 hour in sham-operated group (control) and 

BDL animals. As Figure 22A shows, in the absence of triazine 8aA (vehicle), BDL 
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rats exhibited a significant increase in the number of scratches (96 ± 8 scratches/h) 

compared to sham animals (46 ± 5 scratches/h). Then, we administered 

intravenously either 10mg/kg triazine 8aA to BDL animals. One hour post 

administration, BDL group treated with the antagonist showed a decrease in the total 

scratches (8aA1h = 32 ± 4 scratches/h) (figure 22A, 8aA1h). This value was 

comparable to the one observed in the control group (Sham, Veh) suggesting a 

potent anti-itching effect. The effect of triazine 8aA was reversible, and 120 hours 

post treatment the reduction on scratching bouts disappeared showing no significant 

differences with the BDL group with vehicle (Figure 22A). 

 

 

As we mentioned before, chronic BDL rats display thermal hyperalgesia due to, 

among others factors, TRPV1 potentiation. Thus, we investigated whether triazine 

8aA could produce analgesia against thermal sensitivity produced by the BDL model 

in Wistar rats. To answer this question, we applied noxious heat stimulus to the hind 

paw and measured the thermal latency. We observed that, in the absence of triazine 

8aA (Veh), BDL animals removed the hind paw faster than the control group (9 ± 1 

Figure 22. Triazine effect in BDL rats. A and B, effect on spontaneous scratching bouts/hour 
(A) and on paw withdrawal latency from a heat source (B) of the triazine 8aA at 1 hour (8aA1h) 
and at 120 hours (8aA120h) and vehicle (Veh). n ≥ 4. Each data point represents mean ± S.E.M.  
ANOVA with Bonferroni post hoc test (*** p < 0.001). 
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s vs 16 ± 1 s respectively, Figure 22B). Then, we administered intravenously 

10mg/kg triazine 8aA or vehicle to each group. One hour post administration, BDL 

animals treated with vehicle still showed thermal sensitization. On the contrary, the 

BDL group treated with triazine 8aA exhibited a potent increase in the thermal 

latency. This value was comparable to the one observed in the control group pre-

treatment (18 ± 1 s vs 16 ± 1 s respectively, Figure 22B). The action of triazine 8aA 

was reversible and 120 hours post treatment, the analgesic effect disappeared 

showing no significant differences with the BDL group treated with vehicle (Figure 

22B). These results demonstrated the in vivo application of triazine 8aA as anti-

pruritus agent and to treat thermal hyperalgesia,  
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DISCUSSION 

The essential role of TRPV1 on pain transduction turned this channel into a crucial 

pharmaceutical target5, 138. A great effort is being focused on identifying high-affinity, 

competitive vanilloid antagonists that exhibit oral bioavailability18, 30. Many important 

companies produced compounds that in preclinical studies blocked the activity 

evoked by the vanilloid receptor in the presence of noxious stimulus32, 112, 139. 

However, although, they were able to reduce pain in different models, they also 

showed some side reactions like increase in noxious heat perception threshold or 

hyperthermia in human volunteers30, 111, 140. This is partially due to an equal inhibition 

of physiological and pathological working receptors. This deficiency might be 

defeated by non-competitive antagonists such as open-channel blockers. In this 

case, the binding site is accessible only in the open state conformation, acting 

preferentially on over-activated receptors141.  

Our group has previously reported arginine-rich peptides and peptoid molecules as 

non-competitive TRPV1 channel blockers with moderate blockade potency120, 122. 

Excitingly, the peptoids showed analgesic and anti-inflammatory activity in 

preclinical models of pain, thus validating this class of antagonists as potential leads 

for analgesic and anti-inflammatory drug development120, 122. However, their high 

IC50, in the micromolar, range is a serious challenge that limits their therapeutic 

potential. 

Based on previous studies in our lab with a small library of 2,4,6-trisubstitued-1,3,5-

triazines, compound 8aA was identified as a potent TRPV1 channel antagonist. 

Here, we have further characterized triazine 8aA and found that this compound 

blocked capsaicin-induced TRPV1 activity with high potency in absence of Ca2+, 

being one of the most potent open-channel blocker describe to date 122. Additionally, 

triazine 8aA also abrogated heat and pH-activated responses although the potency 

showed was 100-fold lower than in the capsaicin activation. Albeit this low activity 

against pH modality of activation could seem problematic, it has been described that 

it could contribute to prevent hyperthermia33, 112, 142. These results were obtained 
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without affecting channels from the same family, as shown by the low activity in 

TRPM8 and TRPA1; or against members from a different one such as NMDA 

receptor. Moreover, recent studies from other groups showed absence of activity of 

triazine 8aA against nicotinic receptors α4β2 and α3β4 (IC50 > 5 μM) supporting the 

possible selectivity of the compound143.  

Several evidences for species selectivity in the activity of some compounds in 

TRPV1 orthologues have been previously described126, 144. For example, phorbol-

12-phenylacetate-13-acetate-20-homovanillate (PPAHV) shows agonist effect in 

rTRPV1, but is virtually inactive at human TRPV1126. In order to confirm the effect of 

triazine 8aA observed in rTRPV1, we also tested it in its human orthologue. Although 

the IC50 was slightly higher in hTRPV1 than in rTRPV1 (506 nM and 50 nM, 

respectively), triazine 8aA showed potent activity at the nanomolar range on both 

channels. It is possible that the observed 10-fold lower potency blocking hTRPV1 

than rTRPV1 way arise, at least in part, from the different expression systems used 

(HEK cells and oocytes respectively). Considering that difference, this result is of 

great relevance because the absence of results’ translation from rTRPV1 to hTRPV1 

could lead to failure good preclinical candidates when they enter clinical trials. 

Regarding the mechanism of action, the experimental data together with the 

molecular docking in TRPV1, suggested that triazine 8aA could be an open-channel 

blocker. Voltage dependency of the inhibitory activity is an essential characteristic of 

open-channel blockers that sense the membrane electric field and exert their activity 

within a defined range of voltages122. In the case of triazine 8aA, this voltage 

dependency was shown by clearly stronger efficacy at negative membrane 

potentials than at positive ones. Indeed, the Woodhull model yields an electric 

distance δ ≈ 0.36 for the binding site of triazine 8aA within the membrane electric 

field. This parameter indicates that the compound is penetrating a third of the electric 

field from the extracellular side to the cytoplasmic side. In addition, molecular 

docking of triazine 8aA on TRPV1 channel also supported the open-channel blocker 

mechanism for the compound. The binding model of triazine 8aA shows that the 

dimethylaminopropyl moiety of substituent R2, fit into the channel pore, establishing 

polar interactions with the amino acids G645 from opposite subunits. Moreover, the 
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alkyl chain of triazine 8aA interact with M644 and I642 from the pore region 

stabilizing the complex formed between triazine 8aA and TRPV1 preventing the ion 

flux inside the cell. 

All the previously discussed results support triazine 8aA as a promising TRPV1 

antagonist. However, from a pharmacological point of view, the toxicity represents a 

threat to the safety profile of any compound123. For example, clotrimazole that blocks 

TRPM8 activity and activates TRPV1 channel145, produce toxicity in eukaryotic 

cells123, 146. We performed preliminary studies on the toxicity of triazine 8aA that did 

not show significant effect in cell viability in two different cellular models, even at 1 

μM, a concentration 100-fold higher the IC50 in absence of Ca2+. Contrary, at 10 μM 

and more potently at 100 μM we observed a reduction in the Sh-Sy5y-TRPV1 cells 

viability suggesting a moderate cytotoxicity.  

The previous pharmacological characterization performed with triazine 8aA was 

done in oocytes and HEK-TRPV1 cells in absence of Ca2+. Thus, we decided to 

evaluate the activity of triazine 8aA in a native neuronal system (DRG neurons) with 

standard external solution. Unexpectedly, the potency of the compound in this 

system was notably lower compare to the one observed in the heterologous 

systems. In fact, when we tested 50 nM triazine 8aA, we could not observed any 

antagonist activity against capsaicin activation. It is possible that the decrease in the 

potency could be in part attributable to differences in the expression system 

(heterologous vs native). However, we hypothesized that in some way, triazine 8aA 

and Ca2+ should be competing reducing the activity of the compound when calcium 

is present. Thus, we decided to increase the concentration of triazine 8aA up to 

10 μM. At this concentration, triazine 8aA reduced 50% of the neuronal activity 

evoked by capsaicin suggesting a moderate TRPV1 antagonist effect. Furthermore, 

the application of the compound on DRG neurons did not affect spontaneously firing 

of action potentials by itself. This discarded possible alterations on the membrane 

potential and indicate that triazine 8aA does not modify the neuronal excitability. 

Moving forward in the development of triazine 8aA, we tested whether it exhibited 

analgesic activity in vivo in preclinical models of pain. Akin other TRPV1 
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antagonists113, 122, triazine 8aA displayed in vivo activity by attenuating the capsaicin-

evoked responses in polymodal endings of nociceptor nerve fibers, mediating pain 

at the knee joint, without altering mechanically triggered neuronal firing113, 134. This 

analgesic effect was corroborated with the acute capsaicin pain model147. Our 

experiments show that intravenous pre-administration of triazine 8aA reduce the 

number of flinches provoked by capsaicin and prevent significantly the burning pain 

sensation. Moreover, the administration of capsaicin into the dorsal surface of the 

hind paw generates hyperalgesia in response to thermal stimuli148, 149. The 

application of triazine 8aA also produced an increase in the thermal latency, 

indicating a reduction in the thermal hyperalgesia. These results demonstrated that 

triazine 8aA has an analgesic effect comparable to the competitive TRPV1 

antagonists150, 151. 

Interestingly, TRPV1 has also been involved in the pruritus associated with the 

neuroinflammation produced during the end-stage of hepatic diseases or during 

cholestasis of pregnancy137, 152. These conditions often present chronic itch due, 

directly or indirectly, to a pathological activation of unmyelinated C-fibers that 

innervate the skin153, 154. To evaluate the potential anti-itching activity of triazine 8aA, 

we utilized the BDL chronic model of pruritus. In this model, based on bile duct 

ligation in Wistar rats, chronic itch is mediated by the increase and potentiation of 

TRPV1 activity on the nerve terminals, presumably by inflammatory release of 

proteases mediated by PAR2155-157. As a result, the animals exhibit augmented 

scratching accompanied by peripheral sensitization of primary afferents as revealed 

by thermal hyperalgesia137. When we administered triazine 8aA to the BDL animals 

a potent anti-itching effect was exhibit after 1 hour. Similar to the acute pain model, 

the administration of triazine 8aA also mitigated the thermal hyperalgesia produced 

in the BDL animals, restoring the basal level of heat sensation. 

All the evidence shown in this study indicates that triazine 8aA is a potent and 

selective TRPV1 antagonist with in vivo activity in preclinical models of acute pain 

and chronic pruritus. Up to date, most of the TRPV1 antagonists that showed 

analgesic activity in pre-clinical models of pain where competitive blockers that in 

posterior clinical trials produced side effects158, 159. For example, AMG-517 was a 
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potent TRPV1 competitive antagonist that blocked potently all TRPV1 modalities of 

activation in both, closed and open state111. However, the administration of the 

compound in patients reported an increase in the body temperature that interrupted 

the clinical trials in phase I. More recent compounds such as JTS-653160, that elicited 

hyperthermia in animal models, were disclosed in 2011 from phase II for unknown 

reasons161. In the case of pruritus, anti-itching drugs traditionally formed part of the 

antihistamines family that, in several situations, has proved to be insufficient to 

relieve the itching sensation162. Corticosteroids, are also used in the treatment of 

pruritus, however, their numerous side effects, some of them sever, advice against 

their application163-165. Moreover, using classical TRPV1 antagonists will render the 

same side effect observed for pain treatment. 

What distinguishes triazine 8aA is its mechanism of action. Oppositely to the 

classical TRPV1 competitive antagonists, results shown in this thesis support an 

open-channel blockade mechanism. Our data indicates that triazine 8aA interacts 

with a site located within the pore and thus, it mainly interacts with the open channel 

state. In this way, it would preferentially block pathologically sensitized TRPV1 

channels, potentially avoiding undesired side effects. The in vivo analgesic and anti-

pruritus activity that we showed here is an encouraging demonstration that it is 

possible to block TRPV1 with other type of modulators, opening new horizons for the 

next generation of analgesics and anti-pruritic therapies based on TRPV1. 
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INTRODUCTION 

TRPM8 structure and modulation 

The discovery of TRPV1 as heat-activated ion channel triggered the discovery of 

many more nocisensors3, 34. At that time, it was well known that neurons in DRG and 

TG exhibited cold- and menthol-activated currents, and it was postulated that both 

cold and menthol presumably activate the same receptors166, 167. The search for 

these cold-sensing receptors on sensory neurons led to the identification of 

TRPM834, 168. TRPM8 is activated by cold temperatures (< 26ºC in heterologous 

systems34, 168 and < 30ºC in sensory neurons166, 169, 170), the agonists menthol and 

icilin, and voltage168,171, 172 (Figure 23). Surprisingly, TRPM8 previously designated 

as Trp-p8, had already been described to be overexpressed in prostate tumors173. 

However, TRPM8 is predominantly expressed in peripheral nervous system 

neurons, mostly in C and Aδ fibers in DRGs174-176. Other than sensory neurons and 

prostate tissue, TRPM8 is expressed in bladder, lung and urogenital tract177, 178. 

In the absence of a crystal structure, TRPM8 has been predicted to be a tetrameric 

membrane protein with four identical subunits assembled around a central aqueous 

pore179-181. Similar to TRPV1, each TRPM8 subunit shows a membrane domain 

composed of six transmembrane segments (S1-S6)168, 179, with an amphipathic 

region between the fifth and sixth segment that forms the channel conductive pore. 

It presents intracellular amino and carboxyl-termini (N-terminus and C-terminus 

respectively)182, 183 (Figure 23). 
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As characteristic in the TRP ion channel family, the C-terminus of TRPM8 presents 

a TRP domain adjacent to the S6 transmembrane segment that structures the 

channel inner gate. Recent studies suggest that S6-TRP box linker region is 

important for the allosteric coupling of stimuli sensing to channel activation182. 

Moreover, the C-terminus present several regions involve in the PIP2 binding184, 185. 

The N-terminus domain, the largest intracellular part of the protein with 693 amino 

acids, seems to be involved in the stabilization of the tetramer186. Moreover, recent 

studies revealed that punctual mutation of this region yield channels with augmented 

responses to stimuli183. Additionally, mutations within the positions 40-60 produced 

Figure 23. TRPM8 is a homotetramer activated by different stimuli. A) The functional 
channel is a tetramer formed by the ensemble of four such subunits. B). Schematic 
representation of the topology of a TRPM8 protein subunit. C) Whole-cell I-V relationships of 
TRPM8 showing the activation of currents by cold temperature and menthol. Adapted from 
Taberner, FJ. et al. 2014182. 
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nonfunctional channels that are retained in the endoplasmic reticulum suggesting 

that this region could be necessary for the proper trafficking of TRPM8 to the plasma 

membrane186. Nevertheless, the role of the large N-terminus domain is still poorly 

understood. 

As mentioned previously, it has been found that the thermal threshold of TRPM8 

channel expressed in heterologous system is lower than in native neurons (21ºC-

26ºC and 27ºC-31ºC, respectively)34, 166, 168-170 This discrepancy suggests an 

endogenous modulation of TRPM8 activity in vivo, and numerous studies have 

described different modes of modulation of its activity (Figure 24)187-190. For example, 

it has been demonstrated that rising intracellular Ca2+-levels modulate the activity of 

TRPM8 via the activation of Ca2+ dependent phospholipase C (PLC)189. TRPM8 

channels contain several PIP2 binding sites (Figure 24)188, 191, 192, and this molecule 

is required for channel activation. In fact, depleting intracellular PIP2 results in 

channel desensitization by shifting the voltage dependence of TRPM8 towards more 

positive potentials185, 188. The phospholipase PLC hydrolyzes PIP2 to form 

diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3), thus mimicking PIP2 

depletion and desensitizing TRPM8193. 

Another way in which intracellular Ca2+ levels modulate TRPM8 is by calcium-

dependent phosphokinase C (PKC)194-196. An increase in intracellular Ca2+ levels 

produces the dephosphorylation and desensitization of TRPM8 through the 

activation of PKC195, 196. Furthermore, increases in cyclic adenosine monophosphate 

(c-AMP) through activation of G-protein coupled receptors leads to the activation of 

PKA that desensitizes the response of TRPM8 to menthol and icilin (Figure 24)197. 

Moreover, it has been described that the alpha subunit of the G-protein binds directly 

to TRPM8, preventing its activation198. 
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However, not only mechanisms that reduce TRPM8 activity have been described. 

For instance, the activation of calcium-insensitive phospholipase A2 (iPLA2) results 

into TRPM8 activation199-201. Furthermore, an increase in intracellular pH enhances 

icilin and cold activation, whilst lowering the pH decreases channel activation172. 

Additionally, glycosylation of the channel in specific residues (Figure 24) results in a 

significant potentiation of menthol- and cold-mediated responses in heterologous 

systems and sensory neurons202, 203. This potentiation is based on a shift in the 

voltage dependent activation of TRPM8 towards more negative potentials202.  

 

Physiological and pathophysiological roles of TRMP8 

As mentioned previously, TRPM8 was originally identified in a screening for up 

regulated genes in prostate cancer tissue, and it was proposed to be an ion channel 

Figure 24. Structure of TRPM8. Schematic representation of human TRPM8 channel subunit 
topology, showing relevant residues for channel gating and modulation. Individual residues 
involved in particular aspects of TRPM8 function are highlighted in a color code. Modified from 
Malkia, A. et al. 2007188. 
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with oncogene or tumor promoter potential173. Recent studies showed that menthol-

evoked activation of TRPM8 channel inhibits the proliferation and motility of prostate 

cancer cells204. Surprisingly, other studies that used two TRPM8 blockers (AMTB 

and JNJ41876666) demonstrated that TRPM8-antagonists were able to reduce 

proliferation in prostate tumor cells tested, but not in non-tumor cells205, 206. Thus, the 

above research indicated that TRPM8 played critical role in mediating biological 

behavior of prostate tumors. 

In addition to its role in prostate cancer, TRPM8 channels located in the ocular cold 

fibers appear to be critical in tearing production207,208. Genetic ablation of this 

channel in mice renders cold thermoreceptors’ endings of the cornea silent and 

irresponsive to cooling207. In pathologies such as dry eye, where basal tearing is 

reduced partially due to a decrease of the reflex input from cold receptors209, the 

application of TRPM8 agonists would increase tear volume210. On the contrary, in 

pathological processes where tearing is augmented, such as corneal irritation, 

allergies or bacterial conjunctivitis211, the application of TRPM8 antagonists could be 

a valuable therapeutic tool212. 

Due to its sensitivity to cold, TRPM8 is also expected to play an important role in 

cold sensation and thermoregulation178. Supporting this, TRPM8 knockout mice 

showed a reduction on cold sensation174. In addition, the pro-algesic glial cell-line 

derived neurotrophic factor family receptor 3 (GFRα3) is preferentially localized to a 

subset of putative nociceptive TRPM8-expressing neurons213. Injecting artemin, the 

specific natural ligand of GFRα3, increases cold-sensitivity in wild type but not 

TRPM8-knockout mice213. Interestingly, artemin expression is increased in inflamed 

skin, supporting the notion that TRPM8 is involved in cold hypersensitivity associated 

to inflammatory conditions213, 214. This modulation of TRPM8 demonstrates that this 

channel do not only regulate physiological cold sensation, but also has an important 

role in pathological processes. 

Moreover, TRPM8 has been implicated in cold-hypersensitivity in the context of 

chronic pain caused by nerve injury (neuropathic pain)4, 215. For example, some 

platinum-based chemotherapeutic agents utilized in the treatment of some types of 
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cancer, such as Oxaliplatin, cause cold hypersensitivity, which severely restricts its 

dosage and duration of treatment216-218. Cold hypersensitivity has also been reported 

in mice models of chronic constriction injury (CCI) of the sciatic nerve219. In this 

particular case, TRPM8-knockout mice do not develop cold hypersensitivity in 

contrast to wild type mice219. Similar results in CCI-induced cold hypersensitivity 

were obtained for mice in which TRPM8-expressing neurons were conditionally 

ablated220.  

TRPM8 antagonists 

The involvement of TRPM8 in diverse physiological and pathophysiological 

processes reveals this channel as a promising therapeutic target. In particular, as 

inferred from the previous section, the development of TRPM8 antagonists is of great 

interest36, 178, 221-229. In this regard, some compounds have been identified. For 

example, capsazepine, a potent TRPV1 antagonist and a non-specific TRPM8 

blocker, significantly attenuates CCI induced cold allodynia230. Similarly, (S)-1-

phenylethyl (2-aminoethyl)(4-(benzyloxy)-3-methoxybenzyl)carbamate (PBMC), a 

novel TRPM8 antagonist also significantly attenuates CCI induced cold allodynia36. 

However, as in the case of TRPV1, critical side effects have been reported36, 222, 226. 

The TRPM8 antagonist PBMC produced a reduction in core body temperature of 

more than two degrees when it was tested in mice36. Moreover, many of the current 

TRPM8 antagonists also act on other ion channels. Capsazepine, although a 

TRPM8 antagonist with demonstrated efficacy on cold allodynia treatment, also has 

non-specific activity on voltage-gated calcium channels, nicotinic acetylcholine 

receptors, and TRPV1107, 108, 110. Similarly, while 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-

dimethylethyl)phenyl]-1-piperazinecarboxamide (BCTC) inhibits TRPM8-mediated 

Ca2+ influx, this compound also functions as a TRPA1 agonist169. Likewise, the anti-

fungal medication clotrimazole has strong TRPM8 antagonistic activity, but also 

robustly activates TRPV1 and TRPA1, actions consistent with the commonly 

reported side effects of irritation and burning123, 145. SKF96365, a non-specific 

blocker of several types of calcium channels, receptor-operated channels, and 

inwardly rectifying potassium channels also inhibits TRPM8 in vitro231, 232. The poor 
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selectivity and side effects of the TRPM8 antagonists described until now hinders 

not only their therapeutic utility, but also their use in the investigation of the role of 

TRPM8 as a therapeutic target. 

Moreover, a key challenge in the development of new TRPM8 antagonists is the 

deficiency in information that exists related to their mechanism of action. Up to date, 

only few papers have emerged and two main binding regions for antagonists have 

been suggested233, 234. Competitive TRPM8 antagonists such as SKF96365, have 

been found to bind the Y745 located between S2 and S3 domains of one subunit, 

preventing conformational changes necessary for channel activation (Figure 25A)233. 

An alternative region formed by S1, S2, S3, S4 and the residues 990 to 1010 in the 

TRP domain has also been described to modulate TRPM8 activity (Figure 25B)234. 

Probably, compounds interacting in this region would exert a negative allosteric 

modulation of the channel. Further investigations in this field might contribute 

considerably to the rational design of antagonists to avoid the typical side effects  

 

 

 

Figure 25. Molecular modeling of TRPM8 antagonists. A) A competitive TRPM8 antagonist 
(SKF96365) interacts with Y745 and N799 at S2 and S3 domains  
B) Tryptamine-based TRPM8 antagonist binds a region between S1, S2, S3, S4 and the 
residues 990 to 1010, a different location proposed for the menthol binding site. Adapted from 
Malkia, A. et al. 2009 and Bertamino, A. et al. 2016233, 234. 

A B 



β-lactam 8-3 modulates TRPM8 activity 

64 

Despite the discouraging results obtained up to date in the search of TRPM8 

antagonists, the value of this ion channel as a therapeutic target is unquestionable. 

Therefore, the need of more selective antagonists based on different strategies of 

modulation of TRPM8 is the main focus of the second part of this project. With the 

objective of finding new TRPM8 antagonists we conducted a high-throughput 

screening assay of a set of chemical libraries followed by the study of the structure-

activity relationship of the most promising candidates. Then, we applied the obtained 

knowledge to chemically improve the design of the TRPM8 antagonist candidates. 

In addition, aiming at filling the lack of information regarding the mechanisms of 

action of TRPM8 antagonists, an exploration by in vitro experiments and 

computational approaches was done to identify the interactions established between 

the best antagonist and the receptor.  
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OBJECTIVES 

 

 

Main objective 

 

The main objective of this study was to develop and characterize new antagonists 

for TRPM8 channel and to study their mechanism of action. With this aim, several 

experiments, from in silico to in vitro, were performed to identify and evaluate the 

candidates. 

 

Specific objectives 

 

- To identify new inhibitors for TRPM8 by high-throughput screening 

techniques. 

 

- To establish the minimal requirements of β-lactam scaffold to block TRPM8 

channel through structure-activity relationships. 

 

- To evaluate the pharmacological properties of the best candidate by 

electrophysiological techniques (patch clamp and microelectrodes arrays) 

and colorimetric assays (MTT). 

 

- To study the mechanism of action of the best candidate by computational 

approaches. 
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RESULTS 

β–lactam ring was revealed as a central scaffold for TRPM8 antagonists 

In order to identify new molecules with an acceptable potency against TRPM8 

channel we implemented a high-throughput screening using a fluorescent Ca2+ 

indicator that allowed the measurement of the compounds’ effect on TRPM8 activity. 

This indicator (Fluo4-NW) emitted fluorescence upon binding Ca2+ when the channel 

was open, in our case, when TRPM8 channel was activated by 300 μM menthol 

(Figure 26A). Contrary, in presence of an antagonist, the channel remained close 

and the fluorescence did not show increments even in presence of an agonist 

stimulus (Figure 26B). 

 

We evaluated the antagonistic effect of 33 chemical libraries (326 compounds) with 

different chemical scaffolds against 300 μM menthol-evoked activity in TRPM8 

channel. We tested two different concentrations (50 and 5 μM), calculated the 

blocking percentage (see Material and Methods for more details) and selected as 

the best candidates those that showed more than 50% blockade at 5 μM. Table 3 

summarizes the number of compounds that showed the highest antagonistic 

potential for TRPM8 in each library. 
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Figure 26. Representative fluorescence assay of the TRPM8 channels activity in stable 
cell line. TPR-mediated Ca+2 influx observed upon addition of agonist (Ag, green) in the seventh 
cycle, while the addition of the antagonist (An, red) at the third cycle blocked the response.  
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Table 3. Chemical libraries and the number of found TRPM8 antagonists 

Chemical library Sub-libraries Compounds 
Antagonists at  

50 μM 
Antagonists at 

5 μM 

PG 2 21 0 0 

RH 20 102 11 0 

 RH-18 16 6 0 

RGM 11 203 20 7 

 RGM-8 8 5 3 

Arrows indicate the best sub-library of each group 

 

As it is shown in Table 3, the most promising library was RGM, with seven potential 

candidates with a blockade higher than 50% at 5 μM. Interestingly, inside this 

chemical library we identified RGM-8 as the best sub-library with three of those 

seven candidates (8-3, 8-4 and 8-6). 

 

 

To further understand the effect of the structure of the RGM-8 family in the 

antagonistic activity, in collaboration with the group of Rosario Gonzalez Muñiz from 

Institute of Medicinal Chemistry in Madrid we expanded the library with more 

compounds and we performed a SAR analysis. Compounds in the RGM-8 library 

Figure 27. β–lactam ring as a central scaffold for TRPM8 antagonists. Rn represent each 
substituent used in the design of compounds. ( )n represents the length of the alkyl chain. 
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belong to the family of β-lactams (Figure 27). The β-lactam ring is formed by a cyclic 

amide, with the nitrogen atom attached to the β-carbon relative to the carbonyl.  

The results of the SAR evaluation are displayed in Table 4. Compounds 8-1, 8-2 and 

8-3 are similar, sharing a phenyl group in R1, hydrogens in positions R4 and R6 and 

the protective group tert-butoxycarbonyl (Boc) as substituent R5. Their differences 

are small modifications on the ester moieties R2 and R3. According to this 

evaluation, the presence of benzyl esters in R2 and R3 (8-3) confers the molecule a 

high antagonist effect against TRPM8 (95.4% blockade at 5 μM). This activity 

decreases considerably in presence of a methyl group on R2 (8-2), or drastically 

when the same modification was done on both positions R2 and R3 (8-1). The 

importance of the two hydrophobic benzyl esters is reinforced with the results from 

derivative 8-6. Compared to 8-2, it incorporates conservative substitutions on R3, 

with a terc-butyl (tBu) group, and a benzyl-zyloxycarbonyl (Z) on R5. The activity of 

8-6 was slightly higher compared to 8-2, 56.9% and 27.0% of blockade respectively, 

but far from the potent 8-3.  

Comparison of compounds 8-3 and 8-29, with the same substituents but different 

length of the N-alkyl chain (2 and 3 carbons, respectively) indicates that a small 

increment on the chain length reduces the blockade activity up to 50%. As expected, 

derivative 8-20, which maintains the 3 carbon chain but replaces the benzyl ester on 

R3 by a methyl group, while keeping conservative modification of R2 (tBu instead of 

Bn) and R5 (Z instead of Boc), reported a decrease in the antagonist activity 

compared to 8-29. Derivative 8-9, which incorporates a small modification on R4 (a 

Me group), slightly increases the blockade activity. The antagonist activity of 

analogue 8-10 (R5 = H), resulting from the removal of the Z group of 8-9, was almost 

inexistent. Thus, the results showed by 8-29, 8-20, 8-9 an 8-10 support that main 

requirements for TRPM8 blockade are a short N-alkyl chain and, additionally, 

emphasize the relevance of hydrophobic groups at positions R2, R3, and R5. 
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Remarked in grey color the compounds selected for the characterization 

To further understand the structure-activity relationship in this series, we tested 

compounds 8-65, 8-5 and 8-23, Ala analogues of 8-2, 8-6 and 8-20, respectively. 

Substituting the phenyl group by hydrogen on R1 on these three derivatives causes 

a dramatically decrease in activity, suggesting that an aromatic ring on this position 

is essential for the antagonist effect. Regarding the R6 substituent, the replacement 

of the hydrogen in 8-3 by a methyl group gives derivative 8-14. This substitution 

Table 4. Activity of RGM8 compounds in TRM8 channel. 

Com R1 R2 R3 R4 R5 R6 n % Block TRPM8 
5 μM 

% Block TRPV1 
5 μM 

8-1 Ph Me Me H Boc H 2 15.9±15.2 3.9±2.1 

8-2 Ph Me Bn H Boc H 2 27.0±12.7 18.0±2.2 

8-3 Ph Bn Bn H Boc H 2 95.4±9.9 28.7±7.3 

8-6 Ph Me tBu H Z H 2 56.9±10.8 26.5±21.2 

8-29 Ph Bn Bn H Boc H 3 50.4±17.8 21.7±12.2 

8-20 Ph tBu Me H Z H 3 24.9±17.8 28.4±2.0 

8-9 Ph tBu Me Me Z H 3 53.4±17.0 1.3±7.2 

8-10 Ph tBu Me Me H H 3 13.0±7.0 4.5±10.7 

8-65 H Me Bn H Boc H 2 42.7±12.6 -- 

8-5 H Me tBu H Z H 2 18.2±13.9 16.7±10.5 

8-23 H tBu Me H Z H 3 4.4±23.8 17.3±4.7 

8-14 Ph Bn Bn H Boc Me 2 91.1±17.0 15.0±8.1 

8-41 Ph NHCH2(4-Py) NHCH2(4-Py) H Boc H 2 39.3±14.7 15.9±22.3 

8-42 Ph NH(3-Py) NH(3-Py) H Boc H 2 64.6±13.2 43.6±10.4 

8-43 Ph NH(4-Py) NH(4-Py) H Boc H(S) 2 52.3±7.6 43.0±14.3 

8-44 Ph NH(4-Py) NH(4-Py) H Boc H(R) 2 43.5±9.8 38.5±12.4 

8-18 Ph Bn Ph H Z Me 1 97.2±1.9 -- 
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showed little influence on the activity, since both compounds displayed similar 

potency. These results support the premise that high TRPM8-blocking activity 

requires hydrophobic moieties on R1, R2, R3 and R5 and a short N-alkyl chain. To 

corroborate the relevance of the hydrophobic groups, we designed and evaluated 

pyridine derivatives 8-41, 8-42, 8-43 and 8-44, compounds obtained from the 

precursor 8-3 that present hydrophilic groups. Thus, the substitution of the benzyl 

ester of R2 and R3 of 8-3 by a 4-aminopyridine gave to compound 8-41 that revealed 

a strong reduction in the activity compared to 8-3 (39% and 96% of TRPM8 blockade 

respectively, at 5 μM). Interestingly, the total substitution of the benzyl group by 

either a 3-aminopyridine in 8-42 or a 4-aminopyridine in 8-43 and its stereoisomer 

8-44 recovered slightly the blockade activity (64%, 52% and 43% at 5 μM 

respectively) compared to 8-3. We also explore the contribution of the N-alkyl chain. 

When the β–lactam 8-18 with the shorter alkyl chain was evaluated at 5 μM its 

TRPM8 antagonist potency was comparable to that observed for 8-3. These results 

seem to suggest that all these compounds interact with the receptor in a large 

binding pocket, able to accommodate different structures, and that probably the main 

forces maintaining the interaction are hydrophobic. 

 

 

In conclusion, the study of the structure-activity relationship on this series contributed 

to the establishment of the minimal requirements for a potent TRPM8 blocker. Based 

Figure 28. Representation of the most potent derivatives of the RGM8 chemical library 
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on the β-lactam scaffold (Figure 27), the preferred structural elements are two: 1) 

the presence of hydrophobic groups (benzyl ester or tBu) on the substituents R1, 

R2, R3 and R5; and, 2) a short N-alkyl chain (≤ 2 carbons). The best compounds in 

this library (8-3, 8-14 and 8-18) meet the criteria (Figure 28).  

Compounds 8-3, 8-14, and 8-18 were potent TRPM8 antagonists 

After the initial screening and the SAR analysis to identify potential candidates, we 

investigated the antagonist efficacy of the compounds 8-3, 8-14, and 8-18 on TRPM8 

activity by patch clamp in whole cell configuration. 

As depicted in Figure 29, the blockade activity showed by the compounds was dose-

dependent with totally absence of current at 1 μM in all of them. We fit the dose-

response curve to obtain the IC50 and the Hill coefficient  

Against TRPM8 activity evoked by 300 μM menthol at -60 mV, derivative 8-3 blocked 

potently the receptor with an IC50 of 46.0 nM (95% CI = 38.9 - 55.3) and nH=1.3 (95% 

CI =1.6 - 0.9) (Figure 29A). In derivative 8-14, the hydrogen of R6 substituent present 

in derivative 8-3 was replaced by a methyl group seeking an increase on the potency. 

However, the dose-response of the compound 8-14 reported an IC50 of 82.9 nM 

(95% CI = 53.8 - 127.5) with nH= 1.1 (95% CI = 1.4 - 0.6) what supposed a slightly 

decrease in the potency compare to derivative 8-3 (Figure 29B). Similarly, derivative 

8-18, a compound with a shorter N-alkyl chain than derivative 8-3, reported an 

IC50 104.9 nM (95% CI = 68.5 - 160.6) with nH= 1.1 (95% CI = 1.4 - 0.6) (Figure 29C) 

that confirmed that these derivatives (8-3, 8-14 and 8-18) were potent TRPM8 

antagonists with activity on the nanomolar range situated then within the most potent 

blockers of TRPM8 channel described to date. 

We decided to further explore compound 8-3 because it was the most potent among 

the β–lactam group.  
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Figure 29. Selected compounds blocked TRPM8 at nanomolar range. Left: Representative 
whole-cell patch clamp recordings from TRPM8-expressing HEK-CR1 cells and compound 8-
3 (A), 8-14 (B) or 8-18 (C). Voltage was held at -60 mV. Pre-application of compounds (20 s) 
were followed by co-application with 300 μM menthol (Control) for 20s. Current traces of 
different colors denote the different concentrations of compounds tested. Right: Dose response 
of compound 8-3 (A, red), 8-14 (B, blue) or 8-18 (C, green) TRPM8 blocked activity. Solid line 
depicts the fitting to a Hill equation. Data are given as mean ± sem, with n>4 cells per data 
point. 

A 

B 

C 
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Compound 8-3 showed promising pharmacological properties 

In the development of new drugs, it is key to ensure that potential candidates do not 

show high cellular toxicity. Thus, we evaluated the cell viability of HEK-CR1 in 

presence of the compounds 8-3 with the MTT assay using a range of concentrations 

(0.1; 1 and 10 μM). As seen in Figure 30, any of the four selected compounds 

showed a significant effect on the cell viability, even at the highest concentration (10 

μM). The lack of toxicity for these concentrations, several orders of magnitude higher 

than the IC50, suggested a non-toxic profile interesting on the development of the 

compounds. 

 

In order to probe the specificity and selectivity of compound 8-3, we measured its 

activity on different heterologous systems: hTRPV1 and hTRPA1, two ion channels 

from the same family as TRPM8; and Kv1.1 (potassium ion channel) and NaV1.6 

(sodium ion channel), two ion channels from different families. The results are 

represented in Figure 31. The application of 1 μM 8-3 to channels from the TRP 

family produced a minimal blockade of capsaicin-evoked activity in TRPV1 and 

Figure 30. Effect of compound 8-3 on MTT-based assay of cytotoxicity in HEK-CR1 cells. 
Cell survival after 24 hours incubation at three concentrations of 8-3. Each value is expressed 
as mean ± SEM. n ≥ 15, ANOVA with Bonferroni post hoc test *** p < 0.001. 
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AITC-evoked activity in TRPA1. Moreover, the experiments on Kv1.1-expressing 

cells revealed a slightly higher blockade respect to TRP channels V1 and A1, 

although it was non-significant. When we evaluated the effect on NaV1.6, compound 

8-3 did not report blockade activity. Together, these data indicate that compound 8-

3 was a specific and selective TRPM8 antagonist. 

 

To further prove the selectivity of compound 8-3 we measured electrical activity of 

DRG neurons on MEA chambers in response to depolarizing stimuli (Figure 32) to 

study the effect on neuronal excitability. Figure 32A shows a representative 

recording with MEA on DRG neurons. We applied a first depolarizing pulse (P1) of 

20 seconds of 40 mM KCl (K in the Figure 32A) followed by recovery period and a 

second pulse (P2) equivalent to the first one, in the absence (vehicle, V, upper part 

of Figure 32A) or presence of the 10 μM 8-3 (lower part of Figure 32A).  

Figure 32B show the ratio established between the P2 and P1 for compounds 8-3. 

The presence of 10 μM 8-3 (0.6 ± 0.1) did not show any difference when compared 

to the vehicle (0.5 ± 0.1) (Figure 32B). These results indicate that this compound do 

Figure 31. Compound 8-3 blocked selectively TRPM8 channel activity. Blocked activity of 
10 μM 8-3 after 300 μM menthol (TRPM8), 1 μM capsaicin (TRPV1), 100 μM AITC (TRPA1) and 
voltage (Kv1.1 and NaV1.6). Responses were normalized with respect to that obtained in the 
absence of compound. Each point represents the mean ± SEM, n≥4. 
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not have a significant effect on nociceptors’ excitability, data supported by the 

specific and selective inhibitory activity reported on the previous experiments. 

 

  

Figure 32. Compound 8-3 did not affect neuronal action potentials. A) Representative 
recordings of evoked action potentials in rat DRG neurons with 40 mM KCl (K) in the 
absence (V) and presence of compound. B) Ratio established between P2 and P1 in the 
absence and presence of 10 μM 8-3. Data are given as means ± SEM; n ≥ 15 elecrodes. 
Statistical analysis was made by t-test, ns depicts no significance. 

A 
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Compounds 8-3 was a polymodal antagonist 

Similar to other members of the TRP family, TRPM8 is a polymodal channel gated 

by chemical and physical stimuli. We already knew that 8-3 was able to block 

menthol-mediated TRPM8 activity; thus, we investigated whether it could inhibit 

voltage and cold TRPM8 activation in HEK-CR1 cells using patch clamp in whole 

cell configuration.  

As illustrated in Figure 33, the application of 1 μM 8-3 notably reduced voltage 

evoked TRPM8 response at depolarizing potentials (90 ± 2% of TRPM8 blockade), 

both in pulse (Figure 33A) and ramp protocol (Figure 33B). 

 

 

 

We next addressed the question of whether 8-3 might affect the thermal modality of 

TRPM8 activation by reducing its activation when mild cold is applied (Figure 34). 

We measured the ionic currents evoked when we applied buffer at 16 ºC. We applied 

a second pulse of cold buffer to ensure that the current was similar and no 

desensitization occurred. Under control conditions, both pulses produced a similar 

Figure 33. Compound 8-3 abolished the voltage-evoked response on TRPM8.  
A) Family of voltage-gated ionic currents evoked from TRPM8 channels in the absence (top) 
and presence of 1 μM 8-3 (bottom). Currents were activated with 200-ms pulses from -60 to 
+120 mV (Vh=-60 mV). B) Representative I-V relationship of TRPM8 channel activity in the 
absence (black curve) and presence 1 μM 8-3. Currents were obtained with 350-ms ramp from 
-60 mV to +120 mV.  
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current increase (Figure 34A). In contrast, the application of 1 μM 8-3 (Figure 34B) 

at the second pulse together with the thermal stimulus revealed a significant 

decrease on the current intensity (75 ± 12%). The fact that compound 8-3 is a 

polymodal antagonist suggests that this compound could be interfering with channel 

gating. 

 

 

 

Figure 34. Derivative 8-3 abolished the cold thermal activity response on TRPM8. Left: 
Representative families of TRPM8 ionic currents at +80mV in absence (A) or presence of 1μM 
8-3 (B) activated by cold temperature (16ºC) obtained with a 300-ms ramp from -80 to +80 mV 
in intervals of 2 s during 3 minutes. Holding potential -60 mV. Right: I-V relationships of TRPM8 
channel in basal conditions (a, black line), activated by cold in the absence (b, green line) and 
presence of 1 μM 8-3 (c, blue line). n≥4. 
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Compound 8-3 was more potent when applied from the outside 

In order to elucidate the mechanism of action of 8-3 we questioned whether the 

binding site of the selected compounds would be located on the extracellular or into 

the cytosolic region. With this aim we introduced the compound inside the cell 

through the patch pipette to study the activity in the intracellular region (Figure 35). 

To guarantee the complete distribution of the compound inside the cell, we started 

the recordings 3 minutes after entering whole cell. In this condition we observed that 

compound 8-3 blocked 65 ± 6% of the TRPM8 activity evoked by menthol (Figure 

35; red bar). Contrary, the extracellular application of 1 μM 8-3 (Figure 35; blue bar) 

revealed a strong decrease on the activity, blocking more than 95% of the activity 

evoked by menthol on TRPM8. 

 

 

Figure 35. Compound 8-3 showed different blockade when it is applied inside or outside 
the cell. A) Representative whole-cell currents from TRPM8 channel activated with 300 μM in 
absence (control, black line) and presence of 1 μM 8-3 applied inside the pipette (top, red line) 
or applied externally (bottom, outside). B)  TRPM8 blocked activity in absence (black), internal 
application of 1 μM 8-3 (red) and external application of 1 μM 8-3 (blue). Voltage held at -60mV. 
Data are given as mean ± SEM, n≥4. ANOVA with Bonferroni post hoc test ** p < 0.05. 

A B 
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Compound 8-3 blocked potently TRPM8 activity after pre-incubation 

In all previous experiments, the compound was always pre-incubated prior to 

menthol application. Then, we investigated whether it might require a period of 

incubation to develop its activity or, contrary to this, it could have a direct effect when 

it is co-applied with menthol. In Figure 36A, we can see representative recordings 

under co-application (top, red) and pre-application (bottom, blue) of compound 8-3. 

As it has been shown before, the pre-application of 1 μM 8-3 produced an almost 

total blockade of menthol-evoked TRPM8 activity (Figure 36B; blue bar). By contrast, 

when we co-applied 300 μM menthol and 1 μM 8-3 for 20 seconds, the blockade 

was 24 ± 4 % (Figure 36B; red bar), a significant reduction of the inhibitory effect.  

 

 

Figure 36. Compound 8-3 requires from a pre-application to exert its blockade activity 
on TRPM8. A, top) Representative whole-cell voltage clamp recordings from TRPM8-
expressing HEK-CR1 cells activated by 300 μM menthol in absence (black) or co-applied with 
compound 8-3 at 1μM for 20 s (red). A, bottom) Pre-application of compound 8-3 at 1μM (20 
s) followed by co-application with 300 μM menthol (Control) for 20s. Voltage was held at -60 
mV. B) TRPM8 blocked activity in absence (black), co-application (red) or pre-application (blue) 
of compound 8-3 at 1 μM. Data are given as mean ± SEM, with n ≥ 5 cells per data point. 
ANOVA with Bonferroni post hoc test *** p<0,001. 

A B 
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Docking studies on TRPM8 channel and compound 8-3 

In order to locate the regions involved in the binding of the compound 8-3, we first 

built a homology model of TRPM8. Since the high-resolution structure of TRPM8 has 

not been solved yet, the channel was modeled by Gregorio Fernández Ballester 

(UMH, IBMC) based on the recently published 3,4 Å-resolution structure of TRPV1. 

Figure 37A shows a side view of the TRPM8 structural model in the closed state 

where the four subunits are differently colored. The intracellular domains 

corresponding to the cytoplasmic N- and C-termini fragments were removed for 

simplicity. In Figure 37B we show a detailed view of a single subunit, indicating the 

location of the six transmembrane segments, as well as the TRP domain. In Figure 

37C we show top (extracellular) and bottom (cytoplasmic) views of the TRPM8 

model.  

 

 

Figure 37. Homology model for TRPM8 channel. A) Side view of the structural model of 
TRPM8 based on the TRPV1 structure. The four different subunits are depicted in yellow, red, 
green and blue. B) Detail of a subunit where the different transmembrane segments are 
indicated as well as the TRP domain in parallel to the membrane plane. C) Top and bottom view 
in the modelled closed state of TRPM8. 

A B 

C 
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Similarly, we modeled the structures of the compound 8-3 according to their 

chemical scaffold. Then, we ran a series of docking simulations to investigate 

possible binding sites for the newly-synthesized small molecules in the TRPM8 

tetramer and to test the influence of this binding on the conformation. We performed 

the docking simulations with the software Autodock235 implemented in YASARA236, 

237 (http://www.yasara.org/index.html). After 500 trials of simulations, the docking 

predicted four major solutions named A, B, C and D (Figure 38). We continue 

studying solution A and D. Solution B, located in the extracellular region of the 

channels was discarded due to the hydrophobic properties of compound 8-3 and its 

low binding energy (6.7 Kcal/mol). Similarly we also discarded solution C based on 

the electrophysiological recordings that showed a lower TRPM8 blockade activity 

when compound 8-3 was applied internally compare to the external application.  

 

Figure 38. Docking predicted four possible binding sites for compound 8-3 in the TRPM8 
channel. A) Site A, compound 8-3 is localized close to the S1, S2 and TRP domain. B) Site B, 
compound 8-3 binds extracellular loops of TRPM8 channel. C) Site C, compound 8-3 interact 
intracellular region close to the pore. D) Site D, compound 8-3 binds in a hydrophobic cavity 
located among S3, S4, S5 from a subunit and S6 from an adjacent one.  

A B 

C D 
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On solution A, from now site 1, compound 8-3 is localized in a hydrophobic pocket 

formed by the transmembrane segments S1, S2 and the TRP domain (Figure 39). 

Inside this region, compound 8-3 is stabilized by noncovalent interactions. Thus, 

simulations using Protein-Ligand Interaction Profiler (PLIP) software238 identified 

hydrophobic contacts with S1 (W693, F700, I701, L704), S2 (A747, L750, L751, 

Y754, T803), and TRP domain (L1009) (Figure 39 as a grey dots).We also identified 

a hydrogen bond between compound 8-3 and S1 (W693) (Figure 39 as blue line). 

Results of all the interactions, site 1 showed a binding energy of 8.16 Kcal/mol. 

 

 

 

 

 

  

Figure 39. Molecular modelling of site 1 where a binding site is proposed to compound 
8-3 into the TRPM8 receptor. Parts of the S1 and S2 domains of TRPM8 are depicted as well 
as the TRP domain. Boc group of the compound 8-3 makes a hydrogen bond with the residue 
W693 (blue line). The hydrophobic interactions between compound and residues are 
represented as grey doted lines. 
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On site 2, previously named solution D, compound 8-3 is localized in a wide region 

with accessibility for compounds with hydrophobic groups. Similar to site 1, site 2 is 

a hydrophobic pocket formed by the transmembrane segments S3, S4, and S5 from 

a subunit and interestingly, also by the S6 from the contiguous subunit (Figure 40). 

The docked compound is stabilized by hydrophobic interactions with S3 (F794, 

W798) S4 (F839) and S5 (L864, I865, F868, F869) from a subunit and S6 (L965) 

from the contiguous subunit. (Figure 40 as a grey dots). Contrary to site 1, we could 

not find any hydrogen bond in site 2, although compound 8-3 binds to the F869 

through π-stacking between the aromatic rings (Figure 40, green line). All these 

interactions yield a binding energy of 8.09 Kcal/mol.  

 

 

 

 

  

Figure 40. Molecular modelling of the alternative solution 2 for compound 8-3 and TRPM8 
interaction. Parts of the S3, S4 and S5 domains from subunit 1 of TRPM8 and S6 from subunit 
4 are depicted. The phenyl ester of 8-3 makes a π-staking with the aromatic ring of the residue 
F869 (green line). The hydrophobic interactions between compound and residues are 
represented as grey dots. 
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DISCUSSION 

TRPM8 channels have been implicated in the aethiology of painful cold 

hypersensitivity produced under inflammatory and neuropathic conditions, as well as 

platinum-based chemotherapy drugs142, 222, 223, 239. Knockout mice studies and the 

use of TRPM8 antagonists demonstrated to be valuable to attenuate the symptoms 

observed after peripheral nerve injuries36, 219. Moreover, the implication of TRPM8 

on prostate cancer, melanoma proliferation and tear regulation positioned this 

channel as an emergent and essential pharmaceutical target35. For these reasons 

several companies and academic groups have produced TRPM8 modulators. 

Unfortunately, many of them have been proved to provoke hypothermia when they 

were administered in in vivo models acting on other somatosensory ion channels, 

such as TRPV1 and TRPA1. PBMC, BCTC or the anti-fungal clotrimazole are some 

examples of potent TRPM8 antagonists that robustly affect TRPV1 or TRPA136, 145. 

This overlap is, in some way, due to the lack of information related to the mechanism 

of action of the antagonists that difficult the design of specific molecules to inhibit 

TRPM8 activity. Thus, new compounds that block TRPM8 channel function are 

needed both as therapeutic molecules as well as pharmacological tools for further 

study the modulation of the channel activity. 

To identify new candidates with high TRPM8 inhibitory activity we performed a high 

throughput screening where more than 350 compounds were evaluated. The most 

interesting compounds belonged to RGM-8 family, a chemical library based on β-

lactams. The study of the structure-activity relationship on this series contributed to 

the establishment of the minimal requirements for a potent TRPM8 blocker (Table 

3). Based on the β-lactam scaffold, the preferred structural elements are 

hydrophobic groups (benzyl ester or tBu) in R1, R2, R3 and R5 and a short N-alkyl 

chain (≤ 2 carbons). The best compounds in this library (8-13, 8-14 and 8-18) met 

the criteria. Interestingly, β-lactams have been traditionally employed as antibiotics 

(penicillin)240. Thus, these discoveries suppose an advance on that field, but also 

lead the progress of new drugs based on β-lactams with novel properties.  
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The activity of compounds 8-3, 8-14, and 8-18 was substained by patch clamp 

showing that the potency against menthol activation of all of them was on the 

nanomolar range. Notably, the IC50 of compound 8-3 (46 nM) underlined it as one of 

the most potent antagonists of TRPM8 channel described to date35. Furthermore, 

concentrations 1,000-fold higher than the IC50 of compound 8-3 maintained similar 

percentages of viability compared to the control conditions for HEK-CR1 cells. 

Among the set of ion channels evaluated to determine the selectivity of the 

compounds, members from the potassium family as well as other TRPs channels 

were tested. Importantly, and unlike other TRPM8 antagonists, we did not observe 

any cross reactivity with other ion channels for any of the selected compounds145. A 

demonstration of the specificity and selectivity of compound 8-3 was the absence of 

effect on voltage-gated Na+ and K+ channels on DRG neurons of newborn rats. 

Regarding the modality of blockade, we found that compound 8-3 was able to reduce 

the activation of TRPM8 channel by menthol, voltage and cold in a strong manner. 

Akin to other TRPM8 blockers such as BCTC233, the polymodal activity showed by 

compound 8-3 suggests that this molecule could be acting as a negative allosteric 

modulator affecting the channel gating instead of individual sensors. To explore this 

option, we ran molecular modeling analysis to identify possible binding sites for 

compound 8-3 in the TRPM8 structure. Interestingly, although pre-incubation and 

co-application experiments with compound 8-3 suggested a competitive mechanism 

of action, none of the four predicted solutions showed a competitive binding site. 

Similar results have been described with the antagonist BCTC233. Competition 

experiments with this TRPM8 blocker suggested that this molecule should be 

competing with menthol for the binding site188. However, BCTC blocked cold- and 

voltage-evoked TRPM8 activity when it was tested in the Y745H mutant, a mutant 

that prevents binding of menthol, indicating a different binding site for allosteric 

modulation that the authors could not identify233.  

Out of the four solutions found by the molecular modeling analysis, two of them (B 

and C) were localized at the extracellular and intracellular regions respectively which 

are widely expose to an aqueous environment. Contrary, solution A and D are 

situated in the transmembrane region characterized by its high hydrophobic 
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environment. Taking into account that compound 8-3 is composed mainly by 

hydrophobic moieties, it is tentative to discard options B and C. Moreover, the low 

energy obtained with the docking and the decrease observed in the activity of more 

hydrophilic compounds supports this decision. 

The most energetically favorable solution was site 1 localized in a hydrophobic 

pocket formed by the transmembrane segments S1, S2 and the TRP domain. There, 

compound 8-3 could establish a wide network of hydrophobic interactions. In 

addition, compound 8-3 also formed a hydrogen bond with TRPM8 channel. All these 

interactions reported a binding energy of 8.16 Kcal/mol, and potentially stabilized the 

molecule-channel complex in the close state preventing channel activation.  

Interestingly, the molecular modeling analysis also showed another option, with a 

similar energy (8.09 Kcal/mol), the site 2. In this solution, the compound 8-3 

established hydrophobic interactions with residues localized in a cavity formed by 

the transmembrane segments S3-S4-S5 from one of the subunits and the segment 

S6 from the contiguous subunit. Moreover, it formed a π-stacking between its 

aromatic ring of and the one present in the S5. This interaction, similar to a weak 

hydrogen bond, could be responsible of the selectivity to the compound 8-3.  

The relevance of these interactions was observed when we performed the docking 

experiment of compound 8-1 on sites 1 and 2 (Figure 41). This compound, which 

barely blocked TRPM8 activity, differs from compound 8-3 on the positions R2 and 

R3, where it has two methyl moieties instead of two aromatic rings (Table 4). As we 

expected, the absence of these two benzyl ester groups reduced considerably the 

hydrophobic interactions between compound 8-1 and TRPM8 channel in site 1 (10 

hydrophobic interactions with compound 8-3 and 8 with compound 8-1). In site 2, 

results were similar, a decrease from 8 to 5 interactions with compound 8-3 and 8-1 

respectively. If we take into account that hydrophobic bonds usually increase the 

affinity of the compounds241, a lower number of them could explain the decrease on 

the TRPM8 blockade observed with compound 8-1. Thus, although compound 8-1 

presented two hydrogen bonds on site 1 (S1(W693) and S2(Y754)), they could not 

compensate the decrease on hydrophobic interactions and reported a final binding 
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energy of 6.71 Kcal/mol. A similar result was obtained on site 2. Compound 8-1 was 

able to form a hydrogen bond with S3 (D802) and another one with S4 (Y836) and 

also presented a π-stacking with S4 (F839). However, the significant decrease on 

hydrophobic interactions could not be compensated by the described interactions 

and the complex compound-TRPM8 reported a binding energy of 6.03 Kcal/mol.  

 

 

Figure 41. Molecular modelling of interaction sites 1 and 2 in TRPM8 for compounds 8-3 
(left) 8-1 (right). Parts of the S3, S4 and S5 domains from subunit 1 of TRPM8 and S6 from 
subunit 4 are depicted. Pi-stacking are denoted as green lines and hydrophobic interactions 
between compound and residues are represented as grey doted lines. Hydrogen bonds are 
represented by a solid blue line. 
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Hence, these computational results explain the potency observed with compound 8-

3 in patch clamp experiments and demonstrate the relevance of the aromatic rings 

for the TRPM8 blockade activity.  

We also performed computational studies with compound 8-3 on the TRPV1 

structure to explorer the selectivity of the molecule (Figure 42). In concordance with 

micro-fluorography and patch clamp experiments, the complex compound-TRPV1 

channel on site 1 presented a binding energy significantly lower than the one 

observed with compound 8-3 and TRPM8 channel (4.83 Kcal/mol vs 8.16 Kcal/mol 

respectively). That is, in part, due to the diminution on hydrophobic interactions 

formed between the compound and TRPV1 channel (10 and 5 hydrophobic 

interactions in TRPM8 and TRPV1 channel respectively). Interestingly, compound 

8-3 presented a hydrogen bond with S1 (W693) of TRPM8 channel that disappeared 

when it was docked in the TRPV1 structure. It has been reported that hydrogen 

bonds confer selectivity to the compounds 241. Therefore, the lack of this hydrogen 

bond together with the reduction on the hydrophobic interactions could explain the 

absence of blockade activity observed with compound 8-3 in TRPV1 channel. 

 

 

Figure 42. Molecular modelling of interaction sites 1 in TRPM8 and TRPV1 channels for 
compounds 8-3. Left: Compound 8-3 in the TRPM8 structure on site 1. Right: Compound 8-3 
in the TRPV1 structure on site 1. Pi-stacking are denoted as green lines and hydrophobic 
interactions between compound and residues are represented as grey doted lines. Hydrogen 
bonds are represented by a solid blue line. 
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For site 2 in TRPV1 the results obtained were similar. The wide network of 

hydrophobic interactions observed with compound 8-3 on the TRPM8 structure was 

significantly diminished when this compound was docked in the TRPV1 channel 

(Figure 43). Moreover, the π-stacking formed between compound 8-3 and TRPM8 

channel was not established on the compound-TRPV1 complex. As a result, the 

binding energy decreased dramatically on the TRPV1 structure (from 8.09 Kcal/mol 

for TRPM8 to 4.83 Kcal/mol), explaining the absence of activity of the compound 8-

3 on the vanilloid receptor. Furthermore, these results corroborated and emphasized 

the relevance of hydrophobic and π-stacking interactions in the affinity and 

selectivity of compounds respectively. 

 

 

The results from the docking experiments suggest a possible negative allosteric 

mechanism of action of compound 8-3. On site 1, the physical proximity of this 

hypothetical binding site to the TRP box (980-992) region, together with the 

interactions with the S1-S2-TRP domain, suggest a stabilization of the closed state 

by avoiding the transition to the open state. First of all, it has been reported that 

structural changes in the S2 can severely affect the activity of the channel242. 

Figure 43. Molecular modelling of interaction sites 2 in TRPM8 and TRPV1 channels for 
compounds 8-3. Left: Compound 8-3 in the TRPM8 structure on site 2. Right: Compound 8-3 
in the TRPV1 structure on site 2.Pi-stacking are denoted as green lines and hydrophobic 
interactions between compound and residues are represented as grey doted lines. Hydrogen 
bonds are represented by a solid blue line. 
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Therefore, the interactions with the S1-S2 region could prevent channel opening. 

Regarding the importance of the TRP domain, recent papers remarked the central 

role of this region in the gating mechanism of TRPM8 channel182, 234. Activating 

stimuli seems to disrupt the interactions in the 980-992 region of the TRP domain 

favoring channel opening182. Moreover, other TRP channel such as TRPV1 or 

TRPV4 showed a similar mechanism of gating suggesting a conserved function for 

this region46, 47, 243. Thus, the interaction of compound 8-3 with the TRP domain could 

prevent channel opening. Furthermore, the SAR results revealed that substitutions 

on the R1, R2 and R3 (8-41, 8-42, 8-43 and 8-44) that abolish the hydrophobic 

interactions, suppress the activity of the compound. These results support the 

hypothesis of the stabilization of the closed state on TRPM8 as a likely mechanism 

of action. 

 

In the predicted binding site 2, as it has been mentioned, the compound 8-3 was 

localized in a hydrophobic pocket formed by the transmembrane segments S3-S4-

S5 from one of the subunits and the segment S6 from the contiguous subunit of 

TRPM8 channel. Several evidences suggest that in the closed state, the S4-S5 linker 

is interacting with the S6 from an adjacent subunit55, 182. Upon addition of an 

activating stimulus, this interaction disappears producing the gating of the channel55 
244. Based on these facts, we proposed that compound 8-3 blockade activity on site 

2 is exerted via the π-stacking and hydrophobic interactions which maintained the 

S6 locked, avoiding the gating of the channel. Interestingly, this region has also been 

proposed as an allosteric regulatory site in TRPV1 channels (positively and 

negatively)56, 63. For example, it seems that upon binding a region between S3 and 

S4, capsaicin induces structural rearrangements to stabilize the open state. 

Remarkably, it has been reported that small modifications of the A-region of 

capsaicin turns these TRPV1 agonist into a competitive antagonist such as 

capsazepine245, 246. This effect occurs because changes in the A-region of capsaicin 

compromise its interaction with the S4 segment and allow the C-region and the S4-

S5 linker to establish new interactions that hold the channel in the close state. That 

remarks the relevance of determined interactions on this site as we observed with 
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the β-lactam derivatives where modifying only one position can dramatically reduce 

the activity of the compound (8-1 and 8-2 vs 8-3, Table 4). Moreover, based on the 

TRPV1 evidences should be expectable that future modifications could deliver 

activators of TRPM8 channels. 

 

As shown before, these two binding sites are located deep in the plasmatic 

membrane in a region relatively close to the cytoplasm. In contrast, 

electrophysiological experiments reported that extracellular application of compound 

8-3 blocked more potently TRPM8 activity than the intracellular application, 

suggesting a binding site located more externally. One possibility to explain this 

controversy could be related to the faster diffusion through the membrane when 

compound 8-3 is applied externally. Although site 1 and site 2 are located far from 

the external region, the access of the compound 8-3 to these binding sites would be 

facilitated by the absence of structural impediments when it is applied externally. In 

this sense, binding site 2 would be the most suitable candidate. In Figure 44 it is 

shown that site 2 is localized in a deep hydrophobic cavity of the TRPM8 channel, 

being less accessible from the intracellular side than site 1. The top view of the 

channel suggests that site 2 is easily accessible from the extracellular part, where 

almost nothing disrupts the entrance of the compound 8-3 to the cavity. Similarly, 

site 1 is also easily accessible extracellularly. 
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On the contrary, the bottom view shows how the S2-S3 linker might obstruct the 

pass of the molecule from the inner part of the cell to the site 2. This does not seem 

to be the case with site 1, or at least not as dramatically as for site 2, since it is 

located more external than site 2. In agreement with this, recent studies have 

demonstrated that large structures could impede the binding of some compounds. 

For example, the N terminus of calcium-sensing receptor prevents the modulator 

Figure 44. Representation of Van der Waals radii and hydrophobicity of TRPM8 channel 
and compound 8-3 on sites 1 and 2. Side view of TRPM8 channel and compound 8-3 in site 
1 (green spheres) and site 2 (blue spheres). Hydrophobic regions are depicted in red color. Top 
view of TRPM8-compound 8-3 complex. Bottom view of TRPM8 channel and compound 8-3. 
Site 1 and site 2 are depicted with green and blue spheres respectively. In order to facilitate the 
identification of site1 and site 2 for compound 8-3 when is not visible, they have been circled in 
green and blue colors respectively. 
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cinacalcet from directly activating the receptor247. Hence, it is possible that longer 

internal application of compound 8-3 (>3 minutes) would allow a better distribution, 

resulting in large TRPM8 blockade activity. 

Another hypothesis to explain the differences observed when compound 8-3 is 

applied internally and externally is the possible interference of the intracellular 

organelles with the activity of the compound. Since compound 8-3 present a 

hydrophobic component, it may be retain on the membrane of different organelles 

(e.g. endoplasmic reticulum, Golgi apparatus and mitochondria). This effect will 

reduce the active concentration of compound 8-3 explaining its loss of blockade 

activity. Probably, experiments where is possible the direct application of compound 

on the cytosolic surface of the membrane (inside-out), will help to corroborate this 

hypothesis. 

Regarding the two binding sites, since the similar binding energy predicted by the 

docking models suggests an almost identical affinity, we cannot differentiate 

between them based on in and therefore, both should be considered as valid 

solutions. Nevertheless, if the hypothesis of the structural impediments is correct, 

binding site 2 would be the most suitable candidate since compound 8-3 could 

access easily to the cavity where exert its blockade activity. However, further 

investigations would be required to confirm the binding site for compound 8-3. It is 

possible that mutagenesis work of the TRPM8 channel in site 1 and site 2 will help 

in the identification and the development of novel TRPM8 modulators.  
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CONCLUDING REMARKS 

Current analgesics are effective pain suppressors, but they are plagued by serious 

side effects, in part because their targets are also implicated in many physiological 

functions. Alternatively, acting directly on the noxious stimuli transducers at the 

peripheral terminals of nociceptors would allow for the control of the generation of 

the pain signal at its very beginning. Thus, side effects associated to traditional 

analgesics would be avoided. In this direction, a lot of effort is being made trying to 

develop modulators for TRP nocicensors. Furthermore, knockout mice lacking 

TRPV1 and TRPM8 have shown absence of responses against different pain stimuli. 

The expectation is that TRPV1 blockers should be effective for inflammatory pain 

syndromes whereas TRPM8 antagonists should be efficacious in treating conditions 

of cold hypersensitivity brought on by nerve injury or treatment with 

chemotherapeutic agents. For these reason, many pharmaceutical companies have 

develop antagonist for these channels. Unfortunately, some TRPV1 antagonists 

produced adverse effects such as hyperthermia meanwhile TRPM8 blockers 

produced hypothermia. It seems that indiscriminate pharmacological blocking of the 

receptors with high affinity and competitive antagonists may be responsible for the 

observed side effects. Hence, high affinity antagonists that bind to the receptor in an 

activity-independent manner should show limited therapeutic indices, since these 

compounds would interact with both resting and active channels. Moreover, in the 

case of TRPM8 almost nothing is known about the antagonist mechanism of the 

current molecules. Our attempt in the first part of this work was to design and study 

new open channels blockers of TRPV1 channels with analgesic activity that primarily 

target over-activated TRPV1 receptors. In the second part, we identify and 

characterized a new class of negative allosteric modulators of TRPM8 channel. 

These approaches might avoid the side effects observed with the competitive 

antagonists. Thus, triazine 8aA, the TRPV1 blocker and compound 8-3, the TRPM8 

blocker represent a novel class of antagonist that could be used as a pillar to evolve 

a new generation of antagonists of these TRP channels with higher therapeutic index 

that, in due turn, could be developed into potent analgesic drugs.
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CONCLUSIONS 

 

CHAPTER 1 

 

- Triazine 8aA, is selective TRPV1 antagonist that preferably blocked capsaicin 

activity over pH either on rat or human orthologue.  

 

- Triazine 8aA is an open channel blocker of TRPV1 that binds in the pore 

region. 

 

- Triazine 8aA blocks TRPV1 in the peripheral nerves and reduced the firings 

evoked by capsaicin in the knee joint of the rat showing effect in vivo models 

of pain. 

 

- Triazine 8aA has anti-nociceptive effect in vivo attenuating the nociception 

evoked by the intraplantar injection of capsaicin in rats. 

 

- Triazine 8aA reduce considerably the scratching in the rat model of pruritus. 
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CHAPTER 2 

 

- The high throughput screening identify the β-Lactam scaffold as a good 

candidate to develop TRPM8 antagonists. 

 

- The Structure-Activity Relationship allowed to establish the minimal 

requirements on the β-lactam ring to design TRPM8 antagonists. 

 

- Compounds 8-3, 8-14 and 8-18 are potent, selective and non-toxic TRPM8 

antagonists that exert their activity in the nanomolar range. 

 

- Molecular docking suggest two different places for 8-3 to modulate TRPM8: 

 

o A hydrophobic pocket formed by the transmembrane segments S1, S2 

and the TRP domain 

 

o A hydrophobic pocket formed by the transmembrane segments S3, 

S4, and S5 from a subunit and interestingly, also by the S6 from an 

adjacent subunit.  

 

- The bindings sites proposed in the molecular docking suggest that compound 

8-3 could be a negative allosteric modulator of TRPM8 
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CONCLUSIONES 

 

CAPITULO 1 

 

- La triazina 8aA es un antagonista selectivo de TRPV1 que bloquea 

preferentemente la activación del canal por capsaicina tanto en rata como en 

el ortólogo humano. 

 

- La triazina 8aA es un bloqueador de canal abierto que se une a TRPV1 en la 

región del poro. 

 

- La triazina 8aA bloquea la actividad de TRPV1 en fibras nerviosas del 

sistema periférico y presenta actividad analgésica in vivo al reducir la 

generación de potenciales de acción evocados por capsaicina en la rodilla de 

la rata. 

 

- La triazina 8aA tiene efecto analgésico in vivo reduciendo la nocicepción 

evocada por la inyección intraplantar de capsaicina en ratas. 

 

- La Triazine 8aA reduce considerablemente el picor en el modelo de prurito 

desarrollado en ratas. 
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CAPITULO 2 

 

- Mediante cribados de alto rendimiento identificamos una familia de  

β-lactamas como un esqueleto químico interesante para desarrollar 

antagonistas de TRPM8. 

 

- La relación estructura-actividad de los compuestos derivados de la  

β-lactamas permitieron establecer los requisitos mínimos para diseñar 

antagonistas de TRPM8 basados en este esqueleto químico. 

 

- Los compuestos 8-3, 8-14 y 8-18 son potentes y selectivos antagonistas de 

TRPM8 no tóxicos que ejercen su actividad a concentraciones en el rango 

nanomolar.  

 

- Los estudios computacionales de unión del compuesto 8-3 a TRPM8 

sugirieron dos posibles sitios de unión: 

o Uno localizado en un bolsillo hidrofóbico situado en la región 

transmembrana y formado por los segmentos S1, S2 y el TRP domain.  
 

o Otro localizado en un bolsillo hidrofóbico situado en la región 

transmembrana y formado por los segmentos S3, S4 y S5 de una 

subunidad y el S6 de la subunidad adyacente.  

 

- Los sitios de unión propuestos en los estudios computacionales sugieren que 

el compuesto 8-3 podría ser un modulador alostérico negativo de TRPM8. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATERIAL AND 
METHODS



 

 

  



 

 107 

MATERIAL AND METHODS 

Oocyte preparation and microinjection 

Adult female Xenopus laevis (purchased from Harlan Interfauna Ibérica S.L., 

Barcelona, Spain) were immersed in cold 0.17% MS-222 for 20 min and a piece of 

ovary was drawn out aseptically. Animal handling was carried out in accordance with 

the guidelines for the care and use of experimental animals adopted by the E.U. and 

the animal protocol was approved by the ethic committee of Universidad Miguel 

Hernandez de Elche. Stage V and VI oocytes were isolated and their surrounding 

layers removed manually. Cells were kept at 15–16°C in a modified Barth's solution 

[88 mM NaCl, 1 mM KCl, 2.40 mM NaHCO3, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 

0.82 mM MgSO4, 10 mM HEPES (pH 7.4), 100 U ml−1 penicillin, and 0.1 mg ml−1 

streptomycin] until used. Oocytes were microinjected with 5 ng of wild-type rat 

TRPV1 cRNA kindly gifted from David Julius 

 

Recombinant rat TRPV1 channels expression in Xenopus oocytes and 
channel blocking 

Whole-cell currents from rat TRPV1-injected oocytes were recorded in standard 

Ringer’s solution (in mM: 10 HEPES pH 7.4, 115 NaCl, 2.8 KCl, 2.8 BaCl2) with a 2-

microelectrode voltage-clamp amplifier at 20°C. TRPV1 channels were activated by 

application of 10 μM capsaicin in absence or presence of individual compounds at a 

holding potential (Vh) of -60 mV. The application of capsaicin produced the gating of 

rTRPV1 and the influx of ions inside the oocyte. We considered that current as the 

maximum capsaicin-evoked current (Imax) and normalized against this value. To 

determine the blockade activity of the candidates, we applied them at 10 μM 

combined with 1 μM capsaicin (Icom).  
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Then, we plotted the relationship establish on the Equation 3: 

 

 

 

Equation 3. Percentage of blocked response normalized to the maximum current (Imax) 

 

Dose-response curve for individual compounds were fitted to the Hill equation:  

 

 

Equation 4. Normalized dose-response curve fitted with Hill equation 

 

Where, the IC50 is the half maximal inhibitory concentration and nH is the Hill 

coefficient describes the cooperativity of ligand binding. 

 

Receptor selectivity of triazine 8aA was evaluated on heterologously expressed N-

methyl-D-aspartate (NMDA) receptors (rat NR1:NR2A) and human TRPM8 ion 

channels. All these ion channels were heterologously expressed in Xenopus 

oocytes, and the extent of channel blockade by triazine 8aA was investigated 3 to 5 

days after injection of cRNAs. Holding potential was kept at -80 mV. NMDA receptors 

(NR1:NR2A, 1:3 w/w) and TRPM8 were assayed in standard Ringer’s solution. 

Recombinant NMDA receptor responses were activated with 100 μM-glutamate plus 

20 μM glycine and TRPM8 with 300 μM menthol in the absence and presence of the 

compound at the indicated concentrations. Responses were normalized with respect 

to that evoked in the absence of triazine 8aA and fitted to Hill equation (Equation 2).  
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Cell culture 

SH-SY5Y cells stably expressing rat TRPV1 channel (SH-SY5Y TRPV1) were grown 

in Earle’s minimum essential medium (MEM) containing 10% (v/v) of Fetal Calf 

Serum (FCS), 1% nonessential amino acids, 2 mM l-glutamine, 100 μg/ml 

streptomycin, 100 U/ml penicillin (P/S), and 0.4 μg/ml puromycin in a humidity 

controlled incubator with 5% CO2 and at 37°C.  

Human embryonic kidney HEK293-TRPM8 (stably expressing human TRPM8 

receptor57); HEK293-TRPV1 (stably expressing human TRPV1 receptor248), HBK1 

(stably expressing human KV1.1), HEK-NaV1.6 (stably expressing rat NaV1.1) and 

Chinese hamster ovary (CHO)-TRPA1 (stably expressing the mouse TRPA1 

receptor249) cells were cultured in DMEM supplemented with 10% (v/v) FCS, 100 

μg/ml streptomycin, and 100 U/ml penicillin, and maintained in a humidity controlled 

incubator (5% CO2). 

 

Temperature response assay 

Media was removed from the attached rTRPV1 Sh-Sy5Y expressing cells and a  

1-μM Fluo-4 AM dye solution in PBS was applied for 30 min at 37°C. Cells were then 

detached from the tissue culture dish using EDTA, centrifuged, resuspended in PBS, 

counted and plated at 100,000 cells/well in a 96-well conical bottom PCR plate 

(Model no. EK-19280, Greiner, Monroe, NC, USA). Temperature responses were 

assayed one column at a time as follows: 30ºC for 2 min followed by a temperature 

increase to 50ºC, in 2ºC increments for 5 min 250. Antagonist was added to cells 

following the dye loading and cell plating steps. Temperature control over the cellular 

environment was accomplished with an ABI 7700 instrument (Applied Biosystems, 

Foster City, CA, USA). Data were analyzed with Equation 3 and 4.  
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Cell viability assay (MTT) 

Cell viability was assessed by the detection of mitochondrial activity in living cells 

using a modified colorimetric analysis of Blue Tetrazolium Bromide Thiazolyl (MTT). 

Briefly, HEK293 cells (2 × 104 cells/well) were subcultured in 96-well plates, grown 

until 80–90% confluence, and incubated with increasing concentrations of testing 

compounds for 24 h. Following treatment, 10 μL of MTT solution (5 mg/mL in 

phosphate buffered saline) was added to each well and further incubated for 4 h at 

37 °C. Next, 100 μL of DMSO was added to each well to dissolve any deposited 

formazan resulting from cleavage and reduction of MTT by active mitochondrial 

dehydrogenases. The optical density of each well was measured at 540 nm with a 

microplate reader (Polastar BMG LABTECH, Offenberg, Germany). 

 

Electrophysiology (Patch clamp) 

Electrophysiological recording was carried out 1–3 d after cells seeded. Membrane 

currents and voltages were recorded by patch clamp using the whole-cell 

configuration. For whole-cell recordings of HEK-hTRPV1 and HEK-TRPM8 cells, 

pipette solution contained (in mM) 140 CsCl, 5 EGTA, and 10 HEPES, adjusted to 

pH 7.2 with CsOH, and bath solution contained (in mM) 140 NaCl, 5 KCl, 2 MgCl2,5 

EGTA ,10 d-glucose, and 10 HEPES, adjusted to pH 7.4 with NaOH. In acidic pH 

solution, HEPES was replaced by MES and pH was set at 6. In calcium-free bath 

solution, CaCl2 was replaced with 5mM EGTA. Patch pipettes were prepared from 

thin-walled borosilicate glass capillaries (World Precision Instruments, Sarasota, FL, 

USA), pulled with a horizontal puller (P-97, Sutter Instruments, Novato, CA, USA) to 

have a tip resistance of 2–4 MΩ when filled with internal solutions. Data were 

sampled at 10 kHz (EPC10 amplifier with PatchMaster 2.53 software; HEKA 

Electronics, Lambrecht, Germany) and low-pass filtered at 3 kHz for analysis 

(PatchMaster 2.53 and GraphPad Prism 5, Graphpad Software, USA). The series 

resistance was <10 MΩ and to minimize voltage errors was compensated to 60–

80%. All measurements were performed at 24–25°C. 
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Primary culture of sensory neurons  

Neonatal Wistar rats were purchased from in house bred stock (originally from 

Harlan Laboratories). DRG from neonatal Wistar rats (3-5 days old) were digested 

with 0.25% (w/v) collagenase (type IA) in DMEM-glutamax (Invitrogen) with 1% 

penicillin-streptomycin (5000 U/mL, Invitrogen) for 1 h (37 ºC, 5% CO2). After 

digestion, DRG were mechanically dissociated using a glass Pasteur pipette. Single 

cell suspension was passed through a 100 μm cell strainer, and washed with DMEM 

glutamax plus 10% fetal bovine serum (FBS)(Invitrogen) and 1% P/S. Cells were 

seeded at the required density for each experiment on microelectrode array 

chambers previously coated with poly-L-lysine (8.33 μg/ml) and laminin (5 μg/ml). 

After 2 h, medium was replaced with DMEM glutamax, 10% FBS and 1% P/S, 

supplemented with mouse 2.5s Nerve Growth Factor (NGF) 50 ng/mL (Promega), 

and 1.25 μg/mL cytosine arabinoside when required (37 ºC, 5% CO2).All 

experiments were made 48 h after cell seeding.  

 

Microelectrode array (MEA) 

Extracellular recordings were made using multiple electrode planar arrays of 60-

electrode thin MEA chips, with 30 μm diameter electrodes and, 200 μm inter-

electrode spacing with an integrated reference electrode (Multichannel Systems 

GmbH). The electrical activity of primary sensory neuron was recorded by the 

MEA1060 System (Multi Channel Systems GmbH, 

http://www.multichannelsystems.com), and MC_Rack software version 4.3.0 at a 

sampling rate of 25 kHz. TRPV1-mediated neuronal firing activity was evoked by 

15s-applications of 100 mM KCl, using continuous perfusion system (2 mL/min flux). 

10 μM Triazine 8aA in external solution was perfused in the presence or absence of 

KCl. Data were analyzed using MC_RACK spike sorter and Neuroexplorer Software 

(Nex Technologies). An evoked spike was defined when the amplitude of the 

neuronal electrical activity overcame a threshold set at -25 μV. The recorded signals 

were then processed to extract mean spike frequency. 
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Animals 

All procedures were approved by the Institutional Animal and Ethical Committee of 

the University Miguel Hernández de Elche, in accordance with the guidelines of the 

Economic European Community, the National Institutes of Health, and the 

Committee for Research and Ethical Issues of the International Association for the 

Study of Pain. Animals were kept in a controlled environment (21-23 ºC, 12h 

light/dark cycle), and had food and water available ad libitum.  

 

Rat knee joint nociceptor fiber preparation and in vivo recording 

Adult male Wistar rats (Harlan, Holland) weighing 250–300 g were anesthetized, and 

a catheter was inserted into the right saphenous artery for local intraarterial injection 

of substances into the joint area135, 251. The saphenous nerve was dissected, and 

fine filaments were subdissected from the peripheral end. Nerve fibers innervating 

the knee joint were identified by the location of their receptive field, which was 

determined by the firing response to probing the structures in and around the knee 

joint with a handheld glass. The mechanical stimuli consisted of normal and noxious 

outward and inward rotation of the knee joint lasting 10 s. Successful experiments 

included complete recordings in 20 multiunit filaments containing 2–5 identifiable 

units. 

 

Capsaicin-induced flinch model 

Male Wistar rats (Janvier, France) weighing 250 to 300 g were allowed at least 3 

days of acclimation in Laboratory Animal before start of the experiment. 

Experimental procedures were approved by the Ethics Committee and met 

European Union guidelines for care and management of experimental animals. 
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Animals (six per group) were pretreated with vehicle (10% ethanol, 10% Tween 80, 

and 80% saline) or triazine 8aA (i.v. 10 mg/kg), 30 min before intraplantar injection 

of 10 μL of capsaicin (at 0.06% in 10% ethanol, 10% Tween 80, and 80% saline). 

Immediately after the injection of capsaicin, the latency and duration times of licking 

and shaking the paw in response to the injection was recorded. Data were 

statistically analyzed using the unpaired t test or one-way ANOVA test. Data are 

presented as mean ± S.E.M with a minimum of six animals/group. n≥6 

 

BDL inflammatory model 

Male Wistar rats were operated as described in order to obtain BDL (bile duct 

ligation) rats. Briefly, a midline incision was made in rats under general anesthesia 

with diazepam (3 mg/kg) and ketamine (100 mg/kg) administered intraperitoneally. 

The common bile duct was localized, doubly ligate, and cut between these two 

ligatures. In sham animals, a midline incision was performed, but without BDL. 

Behavioral studies started 48 h after surgery and only when no signs of pain or 

distress were apparent. The animals were treated with triazine 8aA (10 mg/kg) 3 

weeks after surgery. 

Rats were acclimatized in a measuring cage for 30 min, followed by videotaping of 

scratching behavior for 30 min or 1 h. Spontaneous scratching was quantified by 

counting the number of scratches of any region of the body performed by forepaws 

or hindpaws. For Hargreaves’ Plantar Test a standard apparatus (Ugo Basile, Italy) 

was used that automatically measured the thermal latency to a thermal radiant 

stimulus252. To avoid tissue injury in refractory animals, stimulation was automatically 

terminated after 32 s. Thermal latency was determined before and after triazine 8aA 

or vehicle treatment in BDL and sham control rats. Data were statistically analyzed 

using the unpaired t test or one-way ANOVA test. Data are presented as mean ± 

S.E.M with a minimum of six animals/group. n≥6 
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High-throughput screening with calcium microfluorography 

For fluorescence assays, cells expressing TRP channels (rTRPV1-SH-SY5Y, 

hTRPV1-HEK and hTRPM8-HEK) were seeded in 96-well plates (Corning 

Incorporated, Corning, NY) at a cell density of 40,000 cells 2 days before treatment. 

The day of treatment the medium was replaced with 100 μL of the dye loading 

solution Fluo-4 NW supplemented with probenecid 2.5 mM. Then the compounds 

dissolved in DMSO were added at the desired concentrations and the plate(s) were 

incubated at 37˚C in a humidified atmosphere of 5% CO2 for 60 minutes. 

The fluorescence was measured using instrument settings appropriate for excitation 

at 485 nm and emission at 535 nm (POLARstar Omega BMG LABtech). A baseline 

recording of 4 cycles was recorded prior to stimulation with the agonist (10 μM 

capsaicin for TRPV1 and 100 μM menthol for TRPM8). The corresponding 

antagonist (10 μM Ruthenium Red forTRPV1 and 100 μM AMTB for TRPM8) was 

added for the blockade. The changes in fluorescence intensity were recorded during 

15 cycles more. DMSO, at the higher concentration used in the experiment, was 

added to the control wells.  

The blocking percentage was calculated with the Equation 3 

 

 

 

Where Fo is the fluorescence after the addition of menthol in the presence of the 

compound, Fi is the fluorescence before the addition of menthol in the presence of 

the compound, FCo is the fluorescence after the addition of menthol in the absence 

of the compound, FCi is the fluorescence before the addition of menthol in the 

absence of the compound.  

Equation 5. Percentage of TRPM8 blocked response normalized to the maximal 
fluorescence. 
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The statistical Z-factor to determine the quality of the high-throughput screening 

experiment was calculated using the following equation: 

 

 

Where: Meanmax is the mean of the maximum fluorescence in the presence of 

agonist, SDmax is the standard deviation of the maximum fluorescence in the 

presence of agonists, Meanmin is the mean of the maximum fluorescence in the 

presence of agonist and antagonist and SDmin is the standard deviation of the 

maximum fluorescence in the presence of agonist and antagonist. 

To guarantee that our results were validated, we only used assays with a Z-factor 

higher than 0.5. 

 

Molecular modeling 

TRPV1 Molecular Model Building – The automatic multiple sequence alignment of 

the TRPV1and Kv1.2 transmembrane regions was performed with CLUSTALW at 

the European Bioinformatics Institute site (http://www.ebi.ac.uk) using Gonnet 

matrices. Manual alignment of the transmembrane region was accomplished by the 

alignment editor BioEdit v7.0.9 using PAM250matrices. After visual inspection, the 

transmembrane alignments were adjusted manually. The visualization and editing of 

the molecules were done with Yasara (http://www.yasara.org). The homology 

modeling was performed with the standard homology modeling protocol 

implemented in Yasara (version 13.9.8). After side chain construction, optimization, 

and fine-tuning, all new modeled parts were subjected to a combination of steepest 

Equation 6. Z-factor used to determine the quality of the HTS experiments. 
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descent and simulated annealing minimization, keeping the backbone atoms fixed 

to avoid molecule damage. Finally, a full-unrestrained simulated annealing 

minimization was run for the entire model, obtaining a satisfactory -1.597 quality Z-

score for dihedrals, and -2.992 for the overall model.  

 

TRPM8 Molecular Model Building—The molecular model forTRPM8 was modeled 

using the structures of the TRPV1 ion channel in the closed state (Protein Data Bank 

code 3J5P) determined by electron microscopy at 3.4-Å resolution. Sequence 

alignment between rat TRPV1 and TRPM8 was performed with ClustalO from the 

European Bioinformatic Institute (EBI, http://www.ebi.ac.uk). After side chain 

construction, optimization, and fine-tuning, all new modeled parts were subjected to 

a combination of steepest descent and simulated annealing minimization, keeping 

the backbone atoms fixed to avoid molecule damage. The homology modeling was 

performed with the standard homology modeling protocol implemented in Yasara 

(version 13.9.8). 

The protein-ligand docking and the analysis of interactions was accomplished with 

Autodock implemented in the general purpose molecular modelling software Yasara, 

and optimized with AMBER 99 force field. Docking trials were optimized and 

clustered to remove redundancy and sorted by binding energy.  

The non-covalent interactions in protein-ligand complexes from the options obtained 

with the docking were studied with the web service Protein-Ligand Interaction Profiler 

(PLIP, https://projects.biotec.tu-dresden.de/plip-web/plip/index). After analyzing the 

complex, the results were represented Pymol (http://www.pymol.org). 
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