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Abstract

Abstract

Due to the prevalence of disabilities that a↵ect the lower limbs in the growing

population, it seems necessary to provide assistance to those that lost their ability

to walk and grant means to those that lack such function. A brain-computer inter-

face (BCI) is a useful technology that includes systems or devices that sense and

respond to neural processes, allowing a disabled user to interact with any device

by interpreting neurophysiological signals. BCI systems have been based on elec-

troencephalography (EEG) which consists of sensing electrical signals from the brain

using noninvasive sensors on the surface of the scalp. BCIs appear to be under two

categories: the discrete classification of human tasks and the continuous trajectory

reconstruction of kinematics or kinetics. This research consists on proving that it is

possible to make a continuous trajectory reconstruction, also called decodification,

from slow cortical potentials, i.e., low frequencies of the EEG signals. In this study,

two types of lower limb mobility protocols are proposed: synchronous movements

consisting in raising and lowering the foot or the knee within fixed time periods, and

asynchronous movements consisting of self-paced continuous flexions and extensions

of the knee in a given set of time.

The first approach presents evidence of the nonlinear characteristics of the

EEG signals during synchronous lower limb mobility protocols. Whereas in the

literature, it has only been reported the characterization of these signals between

di↵erent mental states. To characterize the behavior of the EEG signal, the ran-

domness, complexity, nonstationarity, and nonlinearity of the EEG were studied.

Firstly, randomness is analyzed by the Hurst exponent, which also is used to char-

acterize the nonstationary behavior of the EEG signals. In this thesis, the Hurst

exponent values of the brain signal show a nonrandom persistent time series, when

xxi
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considering small time windows. The correlation dimension is used as a measure

of the complexity of the system related to the number of degrees of freedom, and

it is also used to distinguish between random, periodic, or chaotic behavior. The

correlation dimension has shown that the underlying system of the brain can range

in a relatively low number of dimensions. Finally, the largest Lyapunov exponent

is used to confirm the presence of chaos in the underlying dynamics of the time

series. In this thesis, the largest Lyapunov exponent values seem to be strictly

positive, which is often considered as a definition of deterministic chaos. Implying

that the underlying dynamics is indeed nonlinear. With these insights, we could

define a nonarbitrary selection of a candidate model (e.g., computational model or

neural network) to classify motion tasks and/or to resolve the continuous trajectory

reconstruction of lower limb kinematics. This selection could provide reliable and

a�ned methods for EEG-based BCI systems to manipulate assistive devices useful

in neuromuscular rehabilitation.

The second approach presents additional evidence of decodification using slow

cortical potentials. Di↵erent electrode arrays and time ranges were tested to com-

pare performances of the reconstruction, proving certain electrodes contribute in

greater amount than others to the decodification. The decodification of segmented

signals for di↵erent types of tasks gave a better performance compared to using a

single decoder for the entire signals. Finally, the usage of transformation functions

to the EEG signals in order to later be used by the decoder proved there exists com-

binations of equations that give better results than using the EEG signal directly.

In summary, the approach to characterize the EEG signals gives information

that can be useful for further studies regarding the mathematical modeling of neu-

ral activity during motor tasks. Whereas the second approach shows evidence of

improvement for decodification of the kinematics from neural signals. Both re-

sults could be starting points to further improve the understanding of neuro-motor

tasks and their application of artificial reproduction of movements from EEG signals

through a BCI.



Resumen

Resumen

Debido a la prevalencia de las discapacidades que afectan los extremidades in-

feriores en la creciente población, parace necesario proveer asistencia a aquellas

personas que perdieron la habilidad de caminar u otorgar medios para aquellos que

no cuentan con esa función. Una interfaz cerebro-computadora (BCI, por sus si-

glas en inglés) es una herramienta tecnológica que incluye sistemas o dispositivos

que sensan y responden a procesos neurales, permitiendo a un usuario discapaci-

tado interactuar con cualquier dispositivo mediante la interpretación de sus señales

neurofisiológicas. Los sistemas BCI han estado basados en la electroencefalograf́ıa

(EEG) la cual consiste en sensar las señales electricas del cerebro usando sensores

no invasivos en la superficie del cuero cabelludo. Las BCI parecen estar bajo dos

categorias: la clasificación discreta de tareas humanas y la reconstrucción continua

de trayectorias cinemáticas o cinéticas. Este trabajo consiste en demostrar que es

posible realizar una reconstruccioón continua de trayectoria, también llamada de-

codificación, a partir de potenciales corticales lentos, i.e., bajas frecuencias de las

señales EEG. En este estudio, dos tipos de protocolos de movilidad de los extremi-

dades inferiores son presentados: movimientos śıncronos que consisten en levantar y

bajar el pie o la rodilla dentro de periodos de tiempo fijos, y movimientos aśıncronos

que consisten de flexiones y extensiones continuas de la rodilla a cierto ritmo en un

tiempo determinado.

El primer enfoque presenta evidencia de las caracteŕısticas no lineales de las

señales EEG durante protocolos śıncronos de movilidad de una extremidad infe-

rior. Mientras que en la literatura sólo a sido reportada la caracterización de estas

señales durante di↵erentes estados mentales. Para caracterizar el comportamiento

de la señal EEG, la aleatoriedad, complejidad, no estacionariedad y la no linealidad

xxiii
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de la EEG fueron estudiadas. En primer lugar, la aleatoriedad es analizada por el

exponente de Hurst, el cual también es usado para caracterizar el comportamiento

no estacionario de las señales EEG. En esta tesis, los valores del exponente de Hurst

de la señal cerebral muestran que es una serie en el tiempo persistente no aleatoria,

esto es cuando se consideran ventanas de tiempo pequeñas. La dimensión de cor-

relación es usada como una medida de la complejidad del sistema relacionado con el

número de grados de libertad, y también es usada para distinguir entre un compor-

tamiento aleatorio, periodico o caótico. La dimensión de correlación ha mostrado

que el sistema subyacente del cerebro puede oscilar en un número de dimensiones

relativamente bajo. Finalmente, el exponente de Lyapunov mayor es usado para

confirmar la presencia de caos en la dinámica subyacente de las series de tiempo.

Los valores del exponente de Lyapunov aparentan ser estrictamente positivos, esto

es frecuentemente considerado como una definición del caos determinista. Lo cual

implica que la dinámica subyacente es ciertamente no lineal. Con estos conocimien-

tos, podŕıamos definir una selección no arbitraria de un modelo candidato (e.g.,

modelo computacional o red neuronal) para clasificar tareas motrices y/o para re-

solver la recontrucción continua de trayectoria de la cinemática de una extremidad

inferior. Esta selección podŕıa proveer métodos fiables y afines para los sistemas BCI

basados en EEG para manipular dispositivos de asistencia útiles en la rehabilitación

neuromuscular.

El segundo enfoque presenta evidencia adicional de la decodificación usando

potenciales corticales lentos. Diferentes conjuntos de electrodos y rangos de tiempo

fueron probados para comparar los desempeños de la reconstrucción, demostrando

que ciertos electrodos contribuyen en mayor medida que otros en la decodificación.

La decodificación de las señales segmentadas para los diferentes tipos de tareas otor-

garon un mejor desempeño comparado con usar un solo decodificador a las señales

enteras. Finalmente, el uso de funciones de transformación a las señales EEG para

después ser usadas por el decodificador demostraron que existen combinaciones de

ecuaciones que dan mejores resultados que usar las señales EEG directamente.

En resumen, el enfoque de la caracterización de las señales EEG da infor-

mación que puede ser de utilidad para estudios posteriores sobre el modelamiento

matemático de la actividad neural durante actividades motrices. Mientras que el
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segundo enfoque muestra evidencia de la mejora de la decodicación de la cinemática

a partir de la señales neurales. Ambos resultados pueden ser puntos iniciales para

mejorar el entendimiento de las funciones neuromotoras y su posterior aplicación de

la reproducción artificial de movimientos a partir de las señales EEG a través de

una BCI.





Chapter 1

Introduction

1.1 Motivation

According to the World Health Organization (WHO), over 15% of the popu-

lation of the world has some kind of disability [1]. In 2011, in the European Union,

there were 16,817,587 people with a walking disability, and 9,902,557 had di�culty

of standing or sitting [2]. Just in the U.S. in 2014, around 39 million people had a

disability associated with their ambulatory activities such as having di�culty walk-

ing, climbing stairs, or had the necessity of using a wheelchair, walker, cane, or

crutches [3]. In a similar way, the most constant type of disability present in the

Asia-Pacific region is a physical type, involving upper and lower limb limitations [4].

Lower limb disabilities can be caused by health conditions that belong to broad cat-

egories such as congenital anomalies, chronic conditions, or injuries. Congenital

anomalies a↵ect an estimated 1 in 33 infants and result in approximately 3.2 million

birth defect-related disabilities every year [5]. In the U.S., 1 in 2858 births have

spina bifida, which includes leg weakness, or paralysis. Also, musculoskeletal de-

fects in the lower limbs are estimated to be 701 cases each year [6]. The impairment

in motor or sensory function of the lower extremities, called Paraplegia, is caused

by spinal cord injury (SCI). Every year, around the world, between 250,000 and

500,000 people su↵er a spinal cord injury, that may result from trauma, disease, or

degeneration (cancer). There is no reliable estimate of global prevalence, but esti-

mated annual global incidence is 40 to 80 cases per million population. Up to 90%

of these cases are due to traumatic causes, though the proportion of nontraumatic

spinal cord injury appears to be growing [7]. Annually, 15 million people worldwide

su↵er a stroke. Of these, 5 million die and another 5 million are left permanently

1
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disabled [8]. According to the Encuesta Nacional de Salud y Nutrición (ENSANUT)

2012 in Mexico, around 4.9% of male and 5.8% of female population (around 2.5

and 3 million respectively) had the disability of walking or movement [9]. Briefing

all these global statistics, it can be seen that lower limb disabilities are prevalent,

thus it comes as a challenge to assist this disabled growing population.

The WHO defines congenital anomalies, also known as birth defects, as struc-

tural or functional anomalies, including metabolic disorders, which are present at

the time of birth [5]. The before mentioned congenital anomaly of spina bifida, more

accurately referred to as myelomeningocele, is a defect of primary neurulation that

results from failure of fusion in the caudal region of the neural tube [10]. According

to the Centers for Disease Control and Prevention (CDC), myelomeningocele is the

most serious type of spina bifida. With this condition, a sac of fluid comes through

an opening in the back of the baby. Part of the spinal cord and nerves are in this sac

and are damaged. This type of spina bifida causes moderate to severe disabilities,

loss of feeling in the legs or feet, and inability to move the legs [11]. Regarding

musculoskeletal disabilities, lower limb reduction defects occur when a part of or

the entire leg (lower limb) of a fetus fails to form completely during pregnancy. The

defect is referred to as a limb reduction because a limb is reduced from its normal

size or in some cases the limb is entirely missing. The cause of limb reduction de-

fects is unknown. However, research has shown that certain behaviors or exposures

during pregnancy can increase the risk of having a baby with a limb reduction de-

fect [12]. According to the WHO, symptoms of spinal cord injury depend on the

severity of injury and its location on the spinal cord. Symptoms may include partial

or complete loss of sensory function or motor control of arms, legs, and/or body.

The most severe spinal cord injury a↵ects the systems that regulate bowel or blad-

der control, breathing, heart rate, and blood pressure. Most people with spinal cord

injury experience chronic pain [7]. The WHO also mentions that stroke is caused

by the interruption of the blood supply to the brain, usually because a blood vessel

bursts or is blocked by a clot. This cuts o↵ the supply of oxygen and nutrients,

causing damage to the brain tissue. The most common symptom of a stroke is

sudden weakness or numbness of the face, arm, or leg, most often on one side of the
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body. Other symptoms include: di�culty walking, dizziness, loss of balance or co-

ordination, severe headache with no known cause, fainting or unconsciousness. The

e↵ects of a stroke depend on which part of the brain is injured and how severely it is

a↵ected. A very severe stroke can cause sudden death [13]. Due to the prevalence of

disabilities that a↵ect the lower limbs in the growing population, it seems necessary

to provide assistance to those that lost their ability to walk and grant means to

those that lack said ability.

According to the CDC, people with spina bifida on the upper part of the spine

(near the head) might have paralyzed legs and use wheelchairs. Those with spina

bifida on the lower part of the spine (near the hips) might have more use of their legs

and use crutches, braces, or walkers, or they might be able to walk without these

devices [14]. The goal for treatment of limb reduction defects is to provide a limb

that has proper function and appearance. Treatment may include the usage of pros-

thetics, orthotics, or rehabilitation (physical therapy). Treatments to address SCI

focus on restoring some degree of walking or locomotor activity, using techniques

like treadmill training, overground training, or functional electrical stimulation [15].

In a similar way, gait recovery is a major objective in the rehabilitation program

for stroke patients [16]. Although some of the current methods, procedures, or

techniques used for lower limb disabled people have good results, most consist on

prolonged periods of time in rehabilitation, or have a degree of discomfort to the user.

In order to provide the lower limb disabled people with a mean to restore

the mobility they once had, without the extensive or uncomfortable treatments,

the cyber physical systems (CPS) research community has shown great interest in

the integration of both cyber systems and biomedical systems. The typical CPS

are known as brain-machine interfaces (BMI), also called brain-computer interfaces

(BCI). BMI are useful technologies that include systems or devices that sense and

respond to neural processes, allowing a disabled user to interact with any device by

interpreting neurophysiological signals. The signals acquired by the BMI systems

tend to control an external device, like a computer cursor, an internet browser, an
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exoskeleton, or prosthesis. BMI systems have been based on electroencephalography

(EEG) which consists of sensing electrical signals from the brain using noninvasive

sensors on the surface of the scalp. An EEG signal is a measurement of currents

from many neurons in the cerebral cortex, which generate an electrical field over

the scalp measurable by an array of electrodes. The amplitudes and frequencies of

such signals include information about the state and change of the neural activity,

and reflect the dynamics of electrical activity of the brain. On the scalp, these

amplitudes commonly lie within 10 � 100 µV, and the di↵erent frequency ranges

are distinguished by brain waves, called (from low to high frequencies): delta (�),

theta (✓), alpha (↵), beta (�), and gamma (�) [17]. The electrical discharge that

the sensors record possess relevant information of the brain signal. This signal can

also be acquired with invasive sensors, such as intracortical microelectrodes or elec-

trocorticography (ECoG). However, these types of approaches have certain risk of

brain injury; this is because there is the disadvantage of requiring a surgery to al-

locate the electrodes in the brain. Although data acquired noninvasively via EEG

has low signal-to-noise ratio and spatial resolution [18, 19, 20], it is easier to repair

or replace an EEG interface.

EEG signals tend to help in computer aided diagnosis (CAD) by characterizing

between brain states, ranging from healthy, pathological or induced: predicting

seizures, classifying sleep stages, depth of anesthesia, Alzheimer, memory impair-

ments, coma, emotional states, depression, schizophrenia, cognition, dementia [21].

For example, Acharya et al. [22] reported that linear and nonlinear methods have

been applied to identify the changes in EEG signals in order to detect depression.

However, their focus was primarily on the nonlinear methods of higher order spectra

and recurrence quantification analysis. Ibrahim et al. [23] listed some of the EEG sig-

nal processing and feature extraction methods used for aiding diagnosis of epilepsy.

This includes linear methods on time domain, frequency domain, and some studies

using the time-frequency domain, as well as nonlinear methods including entropy,

largest Lyapunov exponent and others. In particular, they used a combination of

discrete wavelet transform and Shannon entropy as features for a feed-forward neu-

ral network which classified epilepsy states. Aldea et al. [24] focus on using some

of the mentioned nonlinear methods applied to EEG signals to compare between
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healthy subjects, epileptic subjects, and subjects with Parkinson disease. The focus

in [24] was on methods of the nonlinear dynamics like: largest Lyapunov exponent,

correlation dimension and Hurst exponent, after using a wavelet transform on the

EEG signal.

EEG-based BMI systems are applied to treat a wide variety of motor disorders

like amyotrophic lateral sclerosis, stroke, or SCI. There are many studies worldwide

exploring this field. For example, Yu et al. [25] presented a brain controlled lower

extremity exoskeleton rehabilitation robot where left and right hand motor imagery

movements were classified in order to control the speed of the gait. In their work,

power spectral density was used to extract features from the EEG, and the classi-

fiers used were linear discriminant analysis and random forest algorithm. On the

approach taken by Sayed et al. [26], the features of the motor imagery tasks were ob-

tained from the nonlinear methods of a�ne-invariant moments and distance series

transform from the state space trajectory. Such features were then used on dif-

ferent classifiers including the K-nearest neighbor, support vector machines, linear

discriminant analysis, and quadratic discriminant analysis. He et al. [27] focused

on stroke neurorehabilitation, utilizing the X1, which is a powered robotic lower

limb exoskeleton from the NASA. That BMI consisted in applying principal com-

ponent analysis to the EEG signal to reduce the dimensionality and then using a

10th order unscented Kalman filter, all these in order to decode lower limb joint

kinematics during walking. Their work showed preliminary evidence of integrating

an EEG-based BMI with a lower limb robotic exoskeleton.

Recently He et al. 2018 [28] presented a review where studies of BMI were

used to control lower limb robotic systems. In that review, two categories were

mentioned: the discrete classification and the continuous trajectory reconstruction.

Such literature showed that discrete classification has been widely addressed to

classify between walk versus stand tasks commonly using the EEG method. As

examples, the works of Do et al. 2013 [29], Kilicarslan et al. 2013 [30], Kwak et al.

2015 [31], Garćıa-Cossio et al. 2015 [32], López-Larraz et al. 2016 [33], Donati et al.

2016 [34], Lee et al. 2017 [35], and Zhang et al. 2017 [36] can be highlighted. The
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main focus of these studies is in the classification of the brain signals during idling

and walking. With this, it can be seen that the BMI is subject to the activation of

those specific activities. The results provided evidence that ambulation using brain

signals is possible. These studies of discrete classification have outnumbered the

studies of the category of continuous trajectory reconstruction on the review of He et

al. [28]. There, only two studies landed in this category, and only one was performed

on humans, He et al. 2014 [27]. That study showed the feasibility of decoding lower

limb joint kinematics and kinetics during walking using an exoskeleton as a potential

diagnostic, assistive, and therapeutic tool for stroke rehabilitation.

1.2 Problem Description

Many studies using EEG when implementing a BMI (or BCI) tend to use the

discrete classification approach, which starts by recording the mental task of a sub-

ject. The recorded signals pass through a preprocessing, followed by the extraction

of features that have characteristics of the brain signal. Then these features are dis-

criminated using a classification (pattern recognition). Finally, the identified signal

is associated with an action performed by the external device or computer. Several

studies of EEG signals have succeeded in classifying the movement intention in lower

limb motor tasks [37], generally using linear methods for the classification, like linear

discriminant analysis and support vector machines. However, the discrete classifi-

cation methods tend to have di�culty in increasing the number of classes, thus

having a limited number of tasks to be classified [28]. As the intent is detected

by the BMI or BCI, the system should execute realistic movements according to

the mental process of the user, as if no disability was present. For this reason, a

continuous trajectory reconstruction from the EEG signals into the limb kinematics

is desired, instead of a limited number of classes of movements. Many techniques

have been used for the continuous trajectory reconstruction approach [38], including

Wiener filters, Kalman filters, particle filters, and artificial neural networks. In the

literature, the nature of the EEG signals is considered nonlinear, thus the nonlinear

methods probably lead to a better performance than the widely used conventional

linear methods, since they could not forecast brain behavior [39, 40]. There is a

limited number of studies that reconstruct the trajectories from the EEG signals
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into lower limb kinematics [27, 41, 42, 43], and mostly linear methods are applied.

When a nonlinear method is used, its parameters are commonly arbitrarily selected.

The mentioned studies show results of the continuous trajectory reconstruction of

the lower limb kinematics obtained with the protocol of actual walking. However,

although the performances are considered to be relatively high or acceptable, this

could be further improve. Moreover, the walking protocol, i.e., the gait, is considered

a periodic trajectory since most of these studies performed the gait in treadmills.

Thus it comes to interest to reconstruct the continuous kinematics under a set of

di↵erent movements. For this reason, two types of lower limb mobility protocols are

proposed: (i) to perform synchronous movements consisting in raising and lowering

the foot or the knee within fixed time periods, and (ii) to perform asynchronous

movements consisting of a continuous movement of the knee freely in a set of time.

It also comes to interest to analyze the nonlinear features of the EEG signals in

order to propose feature-based methods that improve the solution of continuous

trajectory reconstruction problems.

1.3 Hypothesis

The hypothesis of this research is that the continuous trajectory reconstruction

(from here on called decodification) of the kinematics can be obtained from slow

cortical potentials, i.e., low frequencies of the EEG signals, during protocols of

synchronous lower limb movements.

1.4 Objectives

1.4.1 Main Objective

To decode lower limb kinematic variables from neural signals using EEG signals

acquired during lower limb mobility protocols.

1.4.2 Particular Objectives

1. To obtain a data base of neural and kinematic signals during lower limb mo-

bility protocols.

2. To analyze nonlinear characteristics to understand the neural signal.
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3. To compare di↵erent EEG electrode arrays and time ranges for the decoding

of the signals.

4. Compare di↵erent decoding procedures to select the more reliable one for the

desired decoding during lower limb mobility protocols.

1.5 Thesis Contribution

The following contributions have been achieved by the development of this

thesis:

• This thesis presents evidence of the nonlinear characteristics of the EEG sig-

nals during synchronous lower limb mobility protocols. Whereas in the liter-

ature, it has only been reported the characterization of these signals between

di↵erent mental states. Particularly, the evidence of the nonlinear character-

istics consists of:

1. The Hurst exponent values of the brain signal show a nonrandom persis-

tent time series, when considering small time windows.

2. The correlation dimension has shown that the underlying system of the

brain can range in a relatively low number of dimensions.

3. The largest Lyapunov exponent values seem to be strictly positive, which

suggests that the dynamics of the brain signal is nonlinear, this is based

on the premise that a linear system with a positive LLE implies unstable

trajectories, and also based in the fact that the brain signals are bounded.

• This thesis presents the methodology and additional evidence of decodification

with slow cortical potentials, which consists of:

1. Di↵erent electrode arrays, time ranges, and number of used samples were

tested to compared performances of the reconstruction, proving certain

electrodes contribute in greater amount than others to the decodification.

2. The decodification of segmented signals for the di↵erent types of tasks

gave a better performance compared to using a single decoder for the

entire signals.
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3. The usage of transformation functions to the EEG signals in order to later

be used by the decoder proved there exists combinations of equations that

give better results than using the EEG signal directly.





Chapter 2

Methods

The methods applied in order to fulfill the objectives are described in this chapter,

which cover the nonlinear characterization of the EEG signal, the decoding of the

EEG signals into kinematic values, and a genetic algorithm used to perform an

optimization of the decodification.

2.1 Randomness & nonlinear dynamical analysis

It has been reported that nonlinear features are capable of capturing the com-

plex physiological phenomena of the EEG signal such as chaotic behavior or abrupt

transitions in the time series [44]. To carry out the analysis of the EEG signal, in

this thesis the randomness, complexity, and nonlinearity of the EEG signal during

lower limb motion tasks were studied. Firstly, randomness is analyzed by the Hurst

exponent (H), also H is used to characterize the nonstationary behavior of the EEG

signals [45]. After that, the correlation dimension (CD) is used as a measure of the

complexity of the system related to the number of degrees of freedom, also CD is

used to distinguish between random, periodic, or chaotic behavior [46, 45]. Finally,

the largest Lyapunov exponent (LLE) is used to confirm the presence of chaos in

the underlying dynamics of the time series; furthermore, the positiveness of LLE

is a necessary (but not su�cient) condition of chaos. In fact, according to Scarlat

et al. [47] if a time series exhibits an irregular pattern, nonlinear dependence, low

estimate of CD, and positive estimate of LLE, then the underlying system possesses

chaotic dynamics. The selected methods and a description are given next.

11
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2.1.1 Hurst exponent

Hydrologist Harold Edwin Hurst developed a statistical methodology for dis-

tinguishing random from non-random systems and to identify the persistence of

trends, known as rescaled range analysis or R/S analysis. However, Benoit Mandel-

brot recognized the potential of such methodology to be applied in fractal geometry.

In Hurst’s honor, H is used as a measure to evaluate self-similarity, autocorrelation,

predictability, and the degree of presence or absence of long-range dependence in a

time series [48]. H relates to the rate at which these evaluations decrease as the

lag between pairs of values increases. It is also a measure of the smoothness of a

fractal time-series based on the asymptotic behavior of the rescaled range of the

process [46].

In time series analysis of EEG, H is usually used to characterize the nonsta-

tionary behaviour [49]. For example, Natarajan et al. 2004 [45] obtained H values

that indicated that the randomness or the disorderliness of the EEG decreased after

music/reflexologic stimulation. Kannathal et al. 2005 [50] showed that there is a

negative correlation between the values of CD and H between a control group and

an epileptic group. Also a comparison between a control group and an alcoholic

group showed that, the former group has a value closer to being random. Acharya

et al. 2005 [51] analyzed EEG signals during di↵erent sleep stages with the self-

similarity parameter of H. They showed that the value gradually decreases from

the sleep stage 0 (awake) to stage 1. Then it had a maximum value in sleep stage

2, from which it decreased in the stages 3 and 4. Finally, they observed an increase

on sleep stage 5 (REM, rapid eye movement sleep). These studies, show that the H

value, can determine if the EEG time series have a random or non-random behavior

under di↵erent brain conditions.

The Hurst exponent rather than calculated, it is estimated. To estimate H,

one must first regress, or estimate the dependence of the rescaled range on the time

span of observation. To do this, a time series of full length N is divided into A

segments of shorter length n, so that A · n = N . Each segment is defined as wa for

a = 1, 2, ..., A, where there are Xk,a elements for k = 1, 2, ..., n. The rescaled range

is calculated, for each of the A smaller time series, as follows:
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1. Calculate the mean of the a segment of length n:

ma =
1

n

nX

k=1

Xk,a. (2.1)

2. Calculate the cumulative deviate series Z from the mean-adjusted series as

Zk,a =
kX

i=1

(Xk,a �ma), k = 1, 2, ..., n. (2.2)

3. The range Ra is defined as the di↵erence between the maximum and minimum

values of Xk,a for each a segment:

Ra = max{Xk,a}�min{Xk,a}, where 1  k  n. (2.3)

4. For each segment the standard deviation is calculated by

Sa =

vuut 1

n

nX

k=1

(Xk,a �ma)2. (2.4)

5. For each segment, the range Ra is divided by the corresponding standard

deviation Sa to calculate the rescaled range Ra/Sa [52].

After all the segments have their rescaled range, an average over all the partial time

series is performed. H is estimated by fitting the power law E[Ra/Sa] = Cn
H to

the data. This estimation can be done by plotting log[Ra/Sa] as a function of log n,

and fitting a straight line, where the slope of the line gives the H value. The Hurst

exponent is able to classify time series into types and provide some insight into their

dynamics [48]. Depending of the value taken by H, the time series can be classified

as the following types:

• Random series: If H = 0.5, the behavior of the time series is completely

random, and it indicates the absence of correlation between the increments of

the signal, as seen in the top part of Figure 2.1.

• Anti-persistent time series: When 0 < H < 0.5, indicates of anti-persistent

or anti-correlated behavior and the closer the value is to 0, the stronger is the

tendency for the time series to revert to its long-term means value. In this

type of behavior, an increase will most likely be followed by a decrease or

vice-versa, as visualized in Figure 2.1.
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• Persistent time series: If 0.5 < H < 1, the time series shows a persistent

or correlated process, the larger the H value the stronger the trend, i.e., an

increase in values will most likely be followed by an increase in the short term

and a decrease in values will most likely be followed by another decrease in

the short term, as seen in the bottom part of Figure 2.1.

Figure 2.1: Di↵erent types of time series with their respective log plotting, and the

estimated H values. Top: random series with an estimated H value close to 0.5;

middle: anti-persistent time series (sine wave) with an H value close to 0; bottom:

persistent time series (EEG) with an H value close to 1.

To emphasize the random or nonrandom behavior of the time series, and the

stationarity or nonstationarity, statistics (mean and standard deviation) of the stud-

ied signal are calculated. In order to do so, the mean x̄ is considered as the sum of

the sampled values divided by the number of samples, as given by

x̄ =
1

n

nX

i=1

xi =
x1 + x2 + ...+ xn

n
, (2.5)

where xi are the samples and n is the number of samples. The standard deviation,

i.e., the square root of the sample variance, which is the average of the squared

deviations about the sample mean, is given by the following:

� =

vuut 1

n

nX

i=1

(xi � x̄)2. (2.6)
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In a stationary process, parameters such as the mean and variance (the square of

the standard deviation) do not change over time. Generally, for the EEG signals

during mental and physical activities, the mean and standard deviation change

from one segment to the next, thus considering the signal nonstationary. However,

during normal brain condition, the EEG is considered stationary only withing short

intervals, i.e., quasistationary [17].

2.1.2 Correlation dimension

In mathemathics, a set with space filling properties is usually quantified by

dimension measurements. Such set can be embedded in an abstract mathematical

space or a real space, which also has an associated dimension. According to Ca-

mastra et al. 2003 [53], there are many kinds of dimensions, e.g., the topological

dimension of a point is 0, and a volume has dimension 3. It is important to note

that the topological dimensions are always integers. Fractal dimensions, on the con-

trary, consider noninteger dimensional values. Nontrivial and simple examples of

fractal dimensions are a wiggly line or curve between any two points. These lines

intuitively fill up more space than a smooth line, but still do not fill up enough space

to be considered a surface (dimension 2). However, all three compared lines have

a topological dimension of 1. The former lines are deemed fractal if their fractal

dimension is greater than their topological dimension [54]. To measure this fractal

dimension in nonlinear dynamics time series, the simplest dimension measurement

to perform is the CD, assessed with the Grassberger-Procaccia algorithm [55]. In

nonlinear dynamics, the time evolution of the system cannot be often obtained as a

closed formula but it can be represented as a path in an abstract mathematical space

called phase space. By using a process called phase space embedding, it is possible

to reconstruct the path that shares the same invariant properties as the phase space

trajectory. This process can be done by using just one time series component of the

system. Usually phase space trajectories of deterministic dynamical systems tend to

evolve towards a particular set of coordinates called an attractor and the dimension

of the attractor is less than that of the full phase space [56].

Most applications of the CD on nonlinear analysis to electrophysiological time

series have been to stationary time series such as an extended EEG or steady-state
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response [56]. For example, Natarajan et al. 2004 [45] estimated the correlation

dimension of EEG data sets recorded for various mental states. They found that

the EEG signal becomes less complex when the person is subjected to music of

his/her choice or under reflexological stimulation, compared to a normal resting

state. Kannathal et al. 2005 [50], by the calculation of CD, encountered that such

value is lower during an epileptic activity compared to a nonepilectic one. They

also found that an EEG of an alcoholic subject exhibits more complexity than that

of an epileptic EEG, indicated by the correlation dimension values. Acharya et al.

2005 [51] quantified the cortical function at di↵erent sleep stages, tabulating that

CD decreases from the sleep stage 0 (awake) to the stages 1-4, and then the value

increases during the stage 5 (REM). With these studies, it can be seen that the use

of CD to evaluate transitory responses has been less explored [56].

The correlation dimension is a nonlinear parameter frequently used to measure

the dimensionality of a underlying process in relation to its geometrical reconstruc-

tion in phase space. The calculation of CD is based on the correlation integral, which

is the probability that any two randomly chosen points on the attractor are closer

together than a given distance r. The correlation integral function is calculated as

C(r) =
1

N2

NX

x=1

NX

y=1,x 6=y

⇥(r � |Xx �Xy|), (2.7)

where r is the radial distance around each reference point, C(r) is the correlation

integral, Xx and Xy are points of the trajectory in the phase space, N is the number

of data points in phase space, and ⇥ is the Heaviside function, ⇥(x) = 0 if x  0

and ⇥(x) = 1 if x > 0. The integral (2.7) just considers the total number of pairs

of points which have a distance between them that is less than distance r. As the

number of points tends to infinity (N ! 1), and the distance between them tends

to zero (r ! 0), the correlation integral takes the form of C(r) ⇠ r
CD, where a log-

log graph of the C(r) versus r gives an estimate of CD. Thus, CD is then calculated

using the fundamental definition:

CD = lim
r!0

logC(r)

log(r)
. (2.8)

The correlation dimension, as a quantitative parameter, is a measure of the complex-

ity of the dynamical system related to the number of degrees of freedom. Computing
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CD, by distinguishing its convergence, the system can be understood as random,

periodic, or chaotic [45, 46]. CD does not converge in the case of a random signal.

However, it converges to finite values for periodic or deterministic systems [46].

2.1.3 Largest Lyapunov exponent

In mathematics, the Lyapunov exponent of a dynamical system quantifies the

sensitivity to initial conditions by characterizing the rate of separation of infinitesi-

mally close trajectories. Quantitatively, two trajectories in phase space with initial

conditions separated L(k0) diverge or converge at a rate given by

|L(k)| ⇡ e
�k|L(k0)|, (2.9)

where � is the Lyapunov exponent, L(·) denotes the distance between trajectories

at iteration k, and k0 stands as the initial point. This rate of separation can di↵er

depending of the initial separation vector. For this reason, there is a spectrum

of Lyapunov exponents equal in number to the dimensionality of the phase space.

However, it is common to refer to LLE, because it gives a notion of predictability for

a dynamical system. � is useful for distinguishing among the various types of orbits

and it works for discrete as well as continuous systems. The signs of the exponents,

in general, provide a qualitative picture of the dynamics of the system, where the

movement of the orbits can be of the next types [57]:

• � < 0 : A negative exponent implies a stable periodic orbit or that the orbit

attracts to a stable fixed point. These types of exponents are characteristic

of dissipative or non-conservative systems, which exhibit asymptotic stabil-

ity. In some cases, the more negative the exponent the greater the stability.

For instance, when � ⇠ �1 it is considered as a superstable fixed point or

superstable periodic point.

• � = 0 : In this case, the value of zero stands for a marginally stable orbit, i.e.,

the orbit is a neutral or an eventually fixed point. A value of zero indicates

that the system is in a steady state mode, which means is a conservative

system exhibiting Lyapunov stability.
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• � > 0 : The orbit is unstable and probably chaotic. In this case, there is no

order to the orbit that ensues, i.e., nearby points will diverge to any arbitrary

separation, eventually visiting all neighborhoods in the phase space.

To indicate the long-term behavior of the EEG time series, some studies

have applied the LLE to quantify the predictability of the signal. Natarajan et

al. 2004 [45], stated that a LLE value closer to one indicated a chaotic behavior

of the time series, and that the value fell due to the influence of the music and

reflexological stimulation. Kannathal et al. 2005 [50] with the LLE value, found

that the value drops on alcoholic EEG compared to a control group. Acharya et

al. 2005 [51] showed that the LLE value increased for sleep stage 3 and 5 due to

the more variation involved as compared to the other states. These studies showed

that, in general, the EEG under di↵erent mental or brain conditions present a rate

of divergence. EEG just decreases in rate but never achieves a complete stability.

Generally, Lyapunov exponents can be extracted using two di↵erent ways. The

first method is based on the estimation of local Jacobi matrices from the mathemat-

ical model of the dynamical system and is capable of estimating all the Lyapunov

exponents. The second method is based on the idea of following the time evolution

of nearby points of a time series. This last method provides only an estimation of the

LLE, which as mentioned before gives a notion of predictability for the dynamical

system.

The algorithm proposed by Wolf et al. [58] allows to determine the LLE from a

time series and has the following approach: a point on the attractor is reconstructed

by

{x(k), x(k + ⌧), ..., x(k + (m� 1)⌧)}, for k = 0, 1, 2, ...,M (2.10)

where x is the time series with an m-dimensional phase portrait and a delay coordi-

nate ⌧ , and M is the total number of replacement steps. Then, the nearest neighbor

to the initial point is located at

{x(k0), x(k0 + ⌧), ..., x(k0 + (m� 1)⌧)}. (2.11)

This procedure is repeated until the fiducial trajectory has traversed the entire time

series, then the mean exponential rate of divergence of two initially close orbits is
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estimated through the following:

LLE =
1

kM � k0

MX

l=1

log2
L
0(kl)

L(kl�1)
, (2.12)

where the distance between two reconstructed points is L(k0). At a later time k1,

initial distance evolves to distance L0(k1). A new data point is searched that satisfies

two criteria reasonably well: its separation, L(k1), from the evolved fiducial point is

small, and the angular separation between the evolved and replacement elements is

small (Figure 2.2).

Figure 2.2: A schematic representation of the evolution and replacement procedure

used to estimate Lyapunov exponents from experimental data. The largest Lya-

punov exponent is computed from the growth of length elements. When the length

of the vector between two points becomes large, a new point is chosen near the

reference trajectory, minimizing both the replacement length L and the orientation

change ✓ (Text and image taken from [56]).

The three methods described in this section are mainly used in order to study

the randomness, complexity, and nonlinearity of the EEG signals. Randomness is

analyzed by H [59], which also can characterize the nonstationarity behavior of

EEG signals [45]. The complexity of the system is related to the number of degrees

of freedom, and it can be measured with CD, which is also able to distinguish

between random, periodic, or chaotic behavior [46, 45]. The LLE can confirm the

presence of chaos in the underlying dynamics of a time series. Furthermore, its

positiveness is a necessary but not a su�cient condition of chaos. It has to be taken

in consideration that, according to Scarlat et al. [47], if a time series exhibits an
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irregular pattern, nonlinear dependence, low estimate of CD, and positive estimate

of LLE, then the underlying system possesses chaotic dynamics. The set of indices

these methods provide are expected to give insight of the underlying dynamics of the

EEG signals during lower limb motor tasks. Such insights might give discernment

for the construction or usage of a proper method applied to the decodification of

the lower limb kinematics.

2.2 Decodification

As mentioned at the end of Section 1.1, He et al. 2018 [28] stated two categories

of decodification: the continuous trajectory reconstruction and the discrete classi-

fication of tasks. However, such review was mainly focus on lower limb powered

robotics systems such as exoskeletons and orthoses enhanced by BMIs. Further-

more, the outputs of the BMIs can be grouped according to their level of control.

As claimed in their review, the highest and medium levels of control belong to the

discrete classisifaction category, and the lowest level of control belongs to the con-

tinuous trajectory reconstruction category. The only reported study under that

category in the review that involved humans was He et al. 2014 [27], which recon-

structed joint angles and electromyography (EMG) envelopes of the lower limbs.

Nevertheless, the reason behind the inclusion of just one study is due to the criteria

taken in the review. If the criteria is reduced, the number of studies that perform

a decodification by a continuous trajectory reconstruction increases. For example,

the review mentions the study of Luu et al. 2017 [60], which adapted the method of

He et al. 2014 [27], to control a virtual avatar on a screen in real time. Similar to

the study of Luu et al. [60], other studies solely focus on the decodification of the

EEG signal, i.e., the analysis of the signals without the need of a powered robotic

system.

Fitzsimmons et al. 2009 [20] were the first to prove that linear decoders could

reconstruct lower limb trajectories based on intracortical recording in nonhuman

primates. Where 80 experimental records (10-15 min) were split in two halves used

for both training and testing. Pressaco et al. 2011 [42] also showed that neural

decoding could be performed with linear decoders to the locomotion in humans

using noninvasive EEG signals. Where 5 min data records were divided in five
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segments, with multiple combinations of four segments for training and one segment

for testing. Pressaco et al. 2012 [61] extended their study, with the decoding of both

legs during locomotion. Using the same procedure as their previous work. Úbeda

et al. 2014 [41] also applied linear decoders to EEG signals, but only focusing on

the knee angle. Furthermore, di↵erent walking speeds were considered. Fold cross-

validation was used depending on the number of runs performed by each subject.

These mentioned studies focused on the task of locomotion. However, Úbeda et al.

2015 [62] proposed single joint movements in order to decrease the noise provoked

by the gait. The works of Fitzsimmons et al. 2009 [20] and Pressaco et al. 2011,

2012 [42, 61] used the Wiener filter as the chosen linear decoder. This filter has been

used in many studies of BMI because of its relative simplicity and e�cacy. In some

studies it takes the given name Wiener filter (see, e.g., [63, 64, 65, 66]). However,

some studies call the used algorithm multiple (or multidimensional) lineal regression

(see, e.g., [19, 62, 67, 68, 69, 70, 71, 72, 73]). The description of these algorithms

and their similarities are explained next.

2.2.1 Linear optimum filter

Consider the block diagram of Figure 2.3 built around a linear discrete-time

filter [74]

y(n) =
L�1X

l=0

wlx(n� l), (2.13)

where the input of the filter consists of a time series x(n) at some discrete time n, and

the filter is itself characterized by the finite impulse response (FIR) w of length L.

The output of the filter is denoted y(n), and it can be corrupted by an additive

measurement noise or estimation errors e(n), leading to a linear regression model

for the observed output or desired response

d(n) = y(n) + e(n) =
L�1X

l=0

wlx(n� l) + e(n). (2.14)
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Figure 2.3: Block diagram representation of the statistical filtering problem (modi-

fied from [74]).

This linear regression model can also be used even if the input-output relation

of the given data pairs [x(n), d(n)] is nonlinear, with w being the linear approxi-

mation to the actual relation between the data pairs. In that case, in e(n) there

would be a component associated to the additive noise perturbations, but also an-

other one representing errors. In the context of (2.14), w can be seen as a quantity

to be estimated by a linear filter, with (2.13) giving the output of the filter. This

output is still considered as an estimate of the reference signal d(n) or the output

y(n). Therefore, the problem of optimal filtering is analogous to the one of linear

estimation [75].

The estimation error e(n) is defined as the di↵erence between the desired

response d(n) and the estimation of the filter y(n), as seen in

e(n) = d(n)� y(n). (2.15)

The requirement is to make the estimation error e(n) as minimum as possible with

a statistical criterion, cost function, or index of performance [74]. Some common

optimization criteria in the literature are: least squares, minimum mean square

error (MMSE), least absolute sum, minimum mean absolute error, and least mean

fourth. Particularly, the MMSE criterion results in a second order dependence

for the cost function on the unknown coe�cients in the impulse response of the

filter. In addition, the cost function has a distinct minimum that uniquely defines
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the optimum statistical design of the filter [74]. The mean square error (MSE) is

defined by

✏ = E
⇥
|e(n)|2

⇤
= E

⇥
|d(n)� y(n)|2

⇤
, (2.16)

where E [·] is the expected value, and if this criterion is selected, the optimal solution

to the linear estimation problem can be presented as

wopt = argmin
w

✏. (2.17)

As (2.16) is in a quadratic form, the optimal solution will be at the point where the

cost function has zero gradient, i.e.,

rw✏ =
@✏

@w
= 0. (2.18)

Using (2.13) to expand (2.16), the gradient can be calculated as

@✏

@w
= E

2

66664
2

�����d(n)�
L�1X

l=0

wlx(n� l)

�����
| {z }

e(n)

x(n� l)

3

77775
= 0. (2.19)

From (2.19), given the signals x(n) and d(n), the latter can be assume to be gen-

erated by the linear regression model (2.14). In order to do this assumption, the

system w would have to be equal to the optimal filter wopt, in which the residual

error e(n) has to be uncorrelated to the input x(n) [75]. Therefore (2.19) implies

that

E{e(n)x(n� l)} = 0, for l = 0, 1, ..., L� 1. (2.20)

This is called the principle of orthogonality, and it implies that the optimal condition

is achieved if and only if the error e(n) is decorrelated from the samples x(n� l), l =

0, 1, ..., L� 1, i.e., the error is orthogonal to all the data used to form the estimate.

Equation (2.20) is also defined as the cross correlation vector Rex(l) between the

error and the input. Note that

Rex(l) =E{e(n)x(n� l)} =

=E{(d(n)� y(n))x(n� l)} =

=E{d(n)x(n� l)}� E{y(n)x(n� l)} =

=Rdx(l)�Ryx(l), (2.21)
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where Rdx(l) is the cross correlation between the desired response and the input,

and Ryx(l) is the cross correlation between the estimation of the filter and the input.

Therefore, an alternative way of stating the orthogonality principle (2.20), based on

(2.21), is that

Rdx(l) = Ryx(l). (2.22)

In order to find the impulse response values, observe that since y(n) is obtained by

filtering x(n) through a linear time-invariant (LTI) system with impulse response

wl, the following relationship applies:

Ryx(l) = Rxx(l)wl, (2.23)

where Rxx(l) is the input autocorrelation matrix. Combining this with the alterna-

tive statement of the orthogonality condition (2.22), we can write

Rxx(l)wl = Rdx(l). (2.24)

Equation (2.24) defines the optimum filter coe�cients, in terms of two correlation

functions. These equations are called the Wiener-Hopf equations. Under the as-

sumption on the positive definiteness of Rxx, the solution of (2.24) is given by

wopt = R
�1
xx
Rdx, (2.25)

which is known as the Wiener filter. The FIR Wiener filter is related to the least

squares estimate, but minimizing the error criterion of the latter does not rely on

cross correlations or autocorrelations. Its solution converges to the Wiener filter

solution.

The statistical theory of regression is concerned with the prediction of a de-

pendent variable y by other measured independent variable x (the regressor). The

case of one independent variable is called simple linear regression. For more than

one independent variable, the process is called multiple linear regression (MLR) [76].

This term is distinct from multivariate linear regression, where multiple correlated

dependent variables are predicted, rather than a single variable [77]. Typically,

an exact a priori information about the relationship between y and x is not sup-

plied [78]. Therefore, a suitable parametrization is estimated, constrained to be
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linear, by fitting y to a linear combination of x:

yi = �1xi1 + · · ·+ �LxiL + "i =
LX

j=1

�jxij + "i, for i 2 1, 2, ..., n, (2.26)

where yi is the response for the i-th observation, �j is the coe�cient of the j-th

predictor, xij is the j-th predictor for the i-th observation, and "i is the i-th error.

The problem is to find a function of the regressors such that the error

"i = yi �
LX

j=1

�jxij, (2.27)

becomes small. If y and x are described within a stochastic framework, the aim is

to minimize the following:

E ["i]
2 = E

"
yi �

LX

j=1

�jxij

#2

, (2.28)

which leads to

Vn(�) =
1

n

nX

i=1

"
yi �

LX

j=1

�jxij

#2

. (2.29)

A suitable � to choose is the minimizing argument of (2.29):

�̂n = argminVn(�). (2.30)

This is the least square estimate (LSE) which is a set of formulations for solving sta-

tistical problems involved in linear regression. Notice that this method of selecting

� makes sense whether or not there is a stochastic framework for the problem. The

parameter �̂n is the value that gives the best performing predictor when applied to

past data. The unique feature of (2.29) is that it is a quadratic function of �. Thus,

it can be minimized analytically, and also all �̂n that satisfy
"
1

n

nX

i=1

xix
T

i

#
�̂n =

1

n

nX

i=1

xiyi. (2.31)

yield the global minimum of Vn(�). The set of linear equations in (2.31) are known

as the normal equations. If the matrix on the left side is invertible, the LSE becomes

�̂n =

"
1

n

nX

i=1

xix
T

i

#�1
1

n

nX

i=1

xiyi. (2.32)

The relation between the Wiener filter and the LSE can be appreciated by comparing

the minimization (2.17) and (2.30), that lead to (2.25) and (2.32).
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For some calculations, (2.29) can be expressed in matrix form

Vn(�) =
1

n
|Y �X�|2 = 1

n
(Y �X�)T (Y �X�), (2.33)

where

X =

2

6666664

x11 x12 · · · x1L

x21 x22 · · · x2L

...
...

. . .
...

xn1 xn2 · · · xnL

3

7777775
, � =

2

6666664

�1

�2

...

�L

3

7777775
, and Y =

2

6666664

y1

y2

...

yn

3

7777775
.

Then, the gradient of error should vanish at minimum:

rVn(�) =
1

n

⇥
�2XT

Y + 2XT
X�

⇤
= 0. (2.34)

Hence, (2.31) takes the form

[XT
X]�̂n = X

T
Y, (2.35)

and the estimate becomes

�̂n = [XT
X]�1

X
T
Y. (2.36)

Usually, the regressors X are extended with a constant, xi0 = 1 for all i = 1, 2, ..., n,

where the coe�cient �0 corresponding to this regressor is called the intercept.

The Wiener filter, used in many studies (see, e.g., [20, 42, 61, 63, 64, 65, 66]),

is a class of linear optimum discrete-time filter, which focuses on optimizing a cost

function. The selected optimization for the filter is the minimization of the mean

square value of the estimation error, i.e., the least mean square (LMS) value. It

has been stated that there is a correspondence between the LMS algorithm and

the linear LSE [74]. One can appreciate the similarities mainly in the minimization

criterion. The least squares approach is often used to fit linear regression models,

like the MLR used in many studies (see, e.g., [19, 62, 67, 68, 69, 70, 71, 72, 73]),

where sometimes they are also called multidimensional linear regression models.

These types of methods have been widely used because of their simple but powerful

solution [79]. Thus, the method of MLR was chosen for the decodification process

in this thesis. Furthermore, the MLR is expected to behave in a simple and e�cient

manner, without displaying a heavy computational burden.
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2.2.2 Genetic Algorithm

In 1975 John Holland presented the genetic algorithm (GA) as an abstrac-

tion of biological evolution and gave a theoretical framework for adaptation. The

genetic algorithm of Holland is a method for moving from one population of chro-

mosomes to a new population by using a kind of natural selection together with the

genetics-inspired operators of crossover, mutation, and inversion. The evolutionary-

computation community has no rigorous definition of genetic algorithm accepted

that di↵erentiates them from other evolutionary computation methods. However,

GAs have at least the following elements in common: populations of chromosomes,

selection according to fitness, crossover to produce new o↵spring, and random mu-

tation of new o↵spring [80].

GAs have been used in some BMI or other types of wearable robots. However,

the implementation of the GA in these studies is to find the optimum model or

optimal set of parameters for an estimation of a biological signal from another

biological signal. For example, Oyong et al. 2010 [81], used a GA which performed

two tasks. The first task was to find the most appropriate mathematical model

(7 proposed models) that fitted the processed EMG data into the actual torque of

the upper limb movement. The second task was to find the optimum parameters

associated with the chosen model. Paek et al. 2013 [82] reconstructed surface EMG

from EEG signals using a linear model (the Wiener filter). However, they used

a GA to find the optimal set of EEG sensors (from 49 sensors) that maximized

the performance of the reconstruction. Hayashi et al. 2015 [83] estimated from

EEG signals if tests subjects moved the elbow joint. The motion of the elbow was

estimated by using an artificial neural network. Nevertheless, the weights for the

hidden and output layers were obtained with a GA. These studies show that the

GA are mostly used to find an optimal solution for the di↵erent methods or models

used for estimation or reconstruction of one signal from another type of signal.

In a GA, a population of candidate solutions (called individuals) to an opti-

mization problem is evolved toward better solutions [80]. This collection of candidate

solutions to a problem is called the search space. Each candidate solution has a set

of properties which can be mutated and altered [84]. This set of properties (also
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called chromosomes) need a genetic representation of the candidate solutions. The

chromosomes in a GA population typically take the form of bit strings or an array

of bits [84]. Arrays of other types and structures can be used in essentially the same

way. The main property that makes these genetic representations convenient is that

their parts are easily aligned due to their fixed size [80, 84]. The GA processes

populations of individuals, successively replacing one such population with another.

The GA most often requires a fitness function that assigns a score (or fitness value)

to each individual in the current population. The fitness value of an individual de-

pends on how well that individual solves the problem at hand [80]. After the genetic

representation and the fitness function are defined, a GA starts by generating an

initial population of solutions and then to improve it through repetitive application

of operators that include selection, crossover, and mutation. Each iteration of this

repetitive process is called a generation. An entire set of generations is called a run.

The genetic operators are explain next, which are included in the pseudo-code

(Algorithm 1).

Algorithm 1 Genetic algorithm pseudo-code.

Initialize population

repeat

Evaluation

Selection

Crossover

Mutation

until Generations completed

Selection: During each iteration, a portion of the existing population is selected

to breed a new population. Individuals are selected based on their fitness value,

where solutions more fit have high probability to be selected to reproduce and gen-

erate the new population [80, 81].

Crossover: Crossover is a method of producing a new individual from a pair of

selected chromosome. This operator exchanges the subsequences before and after

a randomly chosen crossover point in the selected parent chromosomes to create a

new individual that shares their characteristics [80, 81].
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Mutation: This operator is applied to an individual by randomly modifying a

part of its structure, enabling the GA to create a new individual for the next gen-

eration [80, 81].

Expanding in detail the pseudo-code, a GA follows the next list of steps [80]:

1. Begin with a randomly generated population of n chromosomes (candidate

solutions to a problem).

2. Calculate the fitness of each chromosome in the population.

3. Repeat the following steps until n o↵spring have been created:

(a) Select a pair of parent chromosomes from the current population, based

on the fitness value. Selection is done with replacement, meaning that the

same chromosome can be selected more than once to become a parent.

(b) With probability pc (the crossover probability or crossover rate), crossover

the pair at a randomly chosen point (chosen with uniform probability)

to form an o↵spring. If no crossover takes place, form the o↵spring that

is an exact copy of a parent.

(c) Mutate the o↵spring with probability pm (the mutation probability or

mutation rate), and place the resulting chromosome in the new popula-

tion.

4. Replace the current population with the new population.

5. Go to step 2.

Generally, new generations have better overall fitness value than previous genera-

tions. Therefore, at the end of a run, there is often one or more highly fit chromo-

somes in the population. Since randomness plays a large role in each run, more runs

with di↵erent initial populations will generate di↵erent detailed behaviors. Here

the simple procedure for most applications of GAs was described. There are many

parameters to consider when applying this method, such as size of the population

and probabilities of crossover and mutation. Success of the algorithm depends on

these details [80].
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Several studies have implemented the GA to find an optimization of a model or

set of parameters (see, e.g., [81, 82, 83]). The GA applied in this study, attempts to

find an optimal set of functions that improves the performance of the MLR method

applied for the decodification. As mentioned in this section, the GA requires of a

fitness value for the selection operator. Some functions of evaluation are described

in the next section. These evaluation metrics are used to evaluate the decodification

itself. However, only one of these evaluation metrics is used for the fitness value.

2.2.3 Evaluation metrics

Estimating the performance of the prediction model is crucial to the decod-

ification of neural signals. Discrete classification methods have some established

performance metrics [85] and there exist some studies that compare those metrics

for the use in BCIs [86]. Most of these metrics include the number of correct clas-

sifications and the number of mistaken classifications presented in what is called a

confusion matrix. However, when using continuous trajectory reconstruction meth-

ods for the decodification of neural signals, there are di↵erent performance metrics

used in the literature. Spüler et al. 2015 [87] mention the following: correlation

coe�cient (CC), normalized root mean square error (NRMSE), signal-to-noise ratio

(SNR), coe�cient of determination, and global deviation. Some of these metrics are

described next.

Correlation coefficient: The most used metric to evaluate the continuous

trajectory reconstruction decodification is the CC (also called Pearson’s correlation

coe�cient, r-value, or Pearson’s r-value). The CC is a dimensionless measure of the

linear relation between two quantitative variables, in which usually the value lies in

the range of �1 to +1. Negative values of CC correspond to an inverse linear relation

between the variables, and positive values correspond to a direct linear relationship.

When the value approaches zero, it is an indication of the absence of correlation

(but not necessarily the independence of the two variables) [88]. A common form of

the correlation coe�cient is the following:

CC(x, y) =

P
N

i=1(xi � x̄)(yi � ȳ)qP
N

i=1(xi � x̄)2
qP

N

i=1(yi � ȳ)2
, (2.37)
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where x and y are two variables, x̄ is the mean of x, ȳ is the mean of y, and N is

the number of samples.

Normalized root mean square error: Root mean square error (RMSE) is a

metric commonly used in regression analysis that measures the standard deviation

of the residuals (or prediction errors). Usually, the RMSE is considered a measure

of the di↵erences between values predicted or reconstructed by a model and the real

or actually observed values. The RMSE (also called root mean square deviation,

RMSD) is defined by:

RMSE =

sP
N

i=1(y � ŷ)2

N
, (2.38)

where y is the observed variable, ŷ is the predicted or reconstructed values of y,

and N is the number of samples. The RMSE is useful to compare di↵erent methods

applied to the same dataset, but should not be used when comparing across datasets

that have di↵erent scales [89]. Normalizing the RMSE facilitates the comparison

between datasets with di↵erent scales [87] and is usually represented as a percentage.

Since there is no consistent means of normalization in the literature, the common

choice is the range (defined as the maximum value minus the minimum value) of

the observed data:

NRMSE =

qPN
i=1(y�ŷ)2

N

(ymax � ymin)
, (2.39)

where ymax and ymin indicate the maximum and minimum values of the indicated

signal.

Signal-to-noise ratio: The SNR is a unitless measure that compares the level

of a desired signal to the level of background noise. This comparison is defined as the

ratio of the power of a signal (meaningful information) to the power of background

noise (unwanted signal):

SNR =
Psignal

Pnoise

, (2.40)

where P is average power. If the variance of the signal and noise are known, and

both have a mean of zero, the SNR can be calculated by:

SNR =
�
2
signal

�
2
noise

. (2.41)
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However, if the variance or mean values are unknown, the power of a random variable

equals its mean-squared value. Thus, the signal power equals E [S2] [90], where S

can be the signal or the noise. SNR is widely used in science and engineering and

has been previously used to measure BCI and BMI decoding performance (see,

e.g., [20, 42, 61, 90, 91, 92, 93, 94, 95]). The SNR gives a measure of the accuracy of

estimated position in terms of the error variance. High SNR values are desired since

they are produced when the estimated output error variance is small [91]. Usually,

a ratio higher than 1:1 is favorable since it indicates more signal than noise.

In scientific practice is good to state multiple performance metrics. However

there is a need to decide on a specific metric when it comes to automatic parameter

optimization. Di↵erent metrics tend to capture di↵erent properties of the prediction

performance or accuracy. Therefore it is unclear which method is overall best suited

for evaluation purposes [87].

In this chapter, the methods that provide a set of indices are described. Such

indices are expected to give insight of the underlying dynamics of the EEG signals

during lower limb motor tasks. These insights might give discernment for the con-

struction or usage of a proper method applied to the decodification of the lower limb

kinematics. Regarding the decodification method, in this work the linear optimum

filter is described, which has a correspondence with the MLR. It is expected that

the indices provide the insights of another type of decodification method or improve

the existing methods. On a similar approach, a genetic algorithm is also described

in this chapter. Such algorithm is implemented in order to search for an optimiza-

tion of the already described decodification method. The next chapter involves the

description of the experimental setups, where EEG signals are registered alongside

kinematic variables.



Chapter 3

Experimental Setups

This chapter describes the specifications for the experiments, which include the

recording of the EEG signals for synchronous and asynchronous lower limb mobility

protocols. Both protocols involve a data acquisition section describing the equip-

ment used, and the activities performed by the test subjects. After such sections,

preprocessing methods are described for each protocol.

When performing experiments for continuous trajectory reconstruction of the

lower limbs, most of the literature use the task of walking, generally over a tread-

mill. This can be seen in the works of Fitzsimmons et al. [20] (performed by trained

monkeys), Pressaco et al. [42, 61], He et al. [27], Luu et al. [60, 95], and Úbeda

et al. [41]. These works show that using slow cortical potentials of the EEG, i.e.,

cortical information in low frequency bands, it is possible to obtain kinematic infor-

mation of the gait cycle during locomotion. However, there are some time varying

mechanical artifacts associated with head movements during locomotion [96].

To avoid the influence of artifacts, or to reduce them significantly, another

type of experiments di↵erent than locomotion had to be taken into consideration.

Úbeda et al. 2015 [62] presented an experiment where only an individual joint

movement is decoded in order to reduce the influence of motion artifacts (described

in Section 3.2). Based on this experimental registry, a similar registry was carried

out, with tasks di↵erent than locomotion (described in Section 3.1). Furthermore,

in order to compare and improve the decodification performances, a collaboration

with three groups was established. The collaboration is under the project “Design of

Brain Computer Interfaces for the Control of Lower Limb Assistive Technologies”

from the network “Biosystems and biomechatronics,” formed by the academical

33
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groups of “Biosystems” (UDG-CA-789) and “Technology and Mechantronics Inno-

vation” (UANL-CA-272), and the investigation group of “Brain Machine Interface

Lab.” The main goal of such project is to generate directives for the innovation of

therapies and rehabilitation for neuromuscular pathologies, creating an impact in

the medical community mainly regarding innovative tools improving the treatment

to patients. The proposed tools involve the design of medical experiments, electro-

physiological signal processing, modeling and control of dynamical systems (robotic

systems, biomedic systems, and graph theory), and intelligent systems (with appli-

cation in parametric adjustment of mathematical models).

Regarding the experimental architecture presented by Úbeda et al. 2015 [62],

the subjects attempted to perform constant movements, i.e., the subjects were cued

to carry out the instructed task at their own pace for a certain period of time.

During the performance of the task, no further cues were used. Hence, in this work

such experimental architecture is called asynchronous protocols [97]. Bradberry et

al. [67] and Lv et al. [93] used this type of architecture on upper limb kinematic

decodification. Where they let the subjects self-chose the movements. Kim et al. [72]

and Zhang et al. [19] performed experiments that consisted of subjects following a

certain predefined trajectory for the upper limbs, which in a sense made the subjects

follow the pace of the trials. Nevertheless, this types of experiments behave in a

similar way in concept to those of the gait cycle, i.e., when a pace is established.

However, Kim et al. [98] performed experiments similar to Bradberry et al. [67],

but following a timeline of instructions, or cues. In this manner, the subjects followed

the established pace of the experiment, rather than their own pace. For this reason,

in this work, experiments are proposed in order for the subjects to perform tasks

in a controlled manner under provided instructions. This experiments are called

synchronous protocols [97] and are described next.

3.1 Synchronous protocols

As it was stated at the beginning of this chapter, some studies found in the

literature carry out experiment registers where the test subjects perform an in-

structed task at their own pace after a single cue. Such cue marks the beginning of
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the registry. However during the acquisition of the data, there is no knowledge of

the current activity performed by the requested limb. For this reason, synchronous

protocols were proposed in order to have the knowledge of the current activity of

the lower limb. The database of this protocol was acquired at the Mechatronics

Laboratory in the Center of Innovation, Research, and Development in Engineer-

ing and Technology of the Universidad Autónoma de Nuevo León (Mexico), under

the collaboration project “Design of Brain Computer Interfaces for the Control of

Lower Limb Assistive Technologies.” The equipment used for the acquisition of the

neural signal was the MOBITA-W-32EEG system of the Laboratory of Biomedical

Signal Processing from The Center of Research and Advanced Studies (Cinvestav)

at Monterrey.

For this database, eight subjects (4 male and 4 female) with no motor patholo-

gies were asked, and gave oral consent, to perform the trials. Subjects were asked to

execute two lower limb tasks, both performed while remaining seated. The first task

(Task 1) consisted in raising the foot by performing an isotonic extension of the knee

(Figure 3.1a). The second task (Task 2) consisted in raising the knee by realizing

an isotonic flexion on the hip joint (Figure 3.1b). The trial began with the resting

time, were the subject was sitting comfortably on a chair maintaining the thigh in

an horizontal position and the shank around 90� with respect to the thigh. After 30

seconds, the subject was cued to raise the right limb by the isotonic movement to its

maximum position, holding the limb up by performing an isometric exercise until

3 seconds had passed since the cue. Next, the subject was cued to lower the limb

maintaining this position for another 3 seconds. After 10 repetitions, the subject

rested for another 30 seconds. A demonstration of a trial is shown in Figure 3.2.

Each subject performed 10 trials for both tasks. To have the trials controlled, the

subjects were shown a video with the cues to raise or lower the limb. This video

consisted of di↵erent simple illustrations that indicate the activities, such as the

resting time, that helps the subject to focus on a single white dot in order to avoid

getting distracted. Followed by 10 repetitions of green-upward and red-downward

arrows, to indicate the raising and lowering of the limb. The video counted with a

start and finish frame. A diagram of this procedure is shown in Figure 3.3.
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(a) Task 1. (b) Task 2.

Figure 3.1: Tasks performed by the subjects: a) raising the foot by performing an

isotonic extension of the knee, and b) raising the knee by realizing an isotonic flexion

on the hip joint.

Figure 3.2: One subject using the EEG system and performing Task 1, following

indications displayed on the screen. From left to right: first resting period (indicated

by a white dot on the screen), raising of the right lower limb (indicated by a green

upward arrow), lowering of the right lower limb (indicated by a red downward arrow),

and second resting period (indicated by a white dot).

Figure 3.3: Frames of the indications presented in the video to rest (white dot, 30 s),

raise or lower the limb (green and red arrow respectively, 10 repetitions, each lasted

3 s); from start to finish the entire trial lasted 120 s.

3.1.1 Data Acquisition

For the acquisition of the neural signals, the MOBITA-W-32EEG system was

used. The Mobitar was adapted to a 10/20 electrode cap with 19 channels avail-

able, which are: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5,
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T6, Cz, Fz, and Pz. Figure 3.4 shows the distribution of the electrodes, which also

covered the relevant surface of the scalp, particularly the regions where motor ac-

tivity occurs. After placing the cap on the subjects, the impedance of the electrodes

was checked using the Model 1089NP ChecktrodeTM. After applying conductive

gel, the desired impedance range was kept at a value less than 5K⌦ which means a

good preparation, according to the specifications of the product, or between 5K⌦

to 10K⌦ meaning it was a su�cient preparation. In these experiments, the EEG

signals were registered with a sampling frequency of 1000 Hz. During the EEG

recording, markers indicating the raising and lowering of the limb were added on

the software in order to specify the beginning and ending of each task.

Figure 3.4: Electrode distribution of the International 10/20 System. 19 active

electrodes were connected to the MOBITA-W-32EEG system. Electrodes A1 and

A2 were used as references during the impedance checking.

For the acquisition of the kinematic variables, the subjects were placed in a

controlled environment and wore dark clothes with three white spherical markers

(Figure 3.5). The markers were located on the right hip, knee, and ankle in order

to give their locations by the processing of the video taken by a NI 1752 Smart

Camera running at 60 frames per second (fps). After the videos were processed, the

locations of the markers served in order to obtain the joint angles of the hip and

knee by trigonometric functions.
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Figure 3.5: Test subject wearing three spherical markers allocated on the right hip,

knee, and ankle, for video processing.

3.1.2 Signal Preprocessing

The original data acquired was preprocessed in two di↵erent data sets for this

study. For the first data set, ten peripheral EEG channels were removed (namely

Fp1, Fp2, F7, F8, T3, T4, T5, T6, O1, and O2), as they are more susceptible

to artifacts, thus F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 were selected. For

the second data set, all EEG channels were taken into consideration, including

those not involved with motor regions or those that may have di↵erent types of

artifacts. For both data sets, a preprocessing of the EEG signal was carried out using

the computational method of fast independent component analysis (FastICA). This

method was implemented solely to remove blink artifacts embedded in the data.

This method is described next.

Fast independent component analysis (FastICA): The independent com-

ponent analysis (ICA) is a technique to separate linearly mixed components [99], as

a random vector s = (s1, ..., sn)T , by using a linear static transformation W (known

as the unmixing matrix) to an observed data x = (x1, ...xm)T , i.e.,

s = Wx. (3.1)
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However, one must assume that the components are non-Gaussian signals and that

they are statistically independent from each other [100]. For this reason, there are

some applicable techniques that make the problem of ICA estimation simpler and

better conditioned [101]. First, it is necessary for the observable variable x to be

zero mean. When this does not apply, the process of centering takes place. This

process is the subtraction of the mean vector m = E{x} to the variable x making

it a zero-mean variable. This also implies that s becomes zero-mean. After the

observed vector x is centered, it is useful to whiten the variables. This indicates the

observed vector x is transformed linearly to obtain a new white vector x̃, i.e., its

components are uncorrelated and their variances are equal to 1. This implies the

covariance matrix of x̃ equals the identity matrix, i.e.,

E{x̃x̃T} = I. (3.2)

A common and popular method for whitening is by performing an eigenvalue de-

composition on the covariance matrix of the centered data x, E{xxT} = QDQ
T ,

where Q is the matrix of eigenvectors of E{xxT} and D is the diagonal matrix of

eigenvalues [101]. The whitened data is defined thus by

x̃ = QD
�1/2

Q
T
x. (3.3)

Maximizing the non-Gaussianity of wT
x gives us one of the independent compo-

nents, if vector w was one of the rows of W [99]. For ICA, the classical measure

of non-Gaussianity is kurtosis or the fourth-order cumulant. A second very impor-

tant measure of non-Gaussianity is given by negentropy. Negentropy is based on the

information-theoretic quantity of (di↵erential) entropy. Although these are objective

functions for ICA estimation, in practice, one also needs an algorithm for maximiz-

ing the contrast function. FastICA is a very e�cient method of maximization suited

for this task. To measure non-Gaussianity, FastICA relies on a nonquadratic non-

linearity function f(u), its first derivative g(u), and its second derivative g0(u) [101].

Examples of the functions are:

f(u) = log cosh(u), g(u) = tanh(u), and g
0(u) = 1� tanh2(u), (3.4)

for general purposes, or more robust functions like

f(u) = �e
�u2

2 , g(u) = ue
�u2

2 , and g
0(u) = (1� u

2)e
�u2

2 . (3.5)
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The basic form of the FastICA algorithm is as follows:

1. Choose an initial (e.g., random) weight vector w.

2. Let w+ = E{xg(wT
x)}� E{g0(wT

x)}w

3. Let w = w
+
/kw+k

4. If not converged, go back to 2.

This one-unit algorithm estimates just one of the independent components, or one

projection pursuit direction. To estimate several independent components, it is

needed to run the one-unit FastICA algorithm using several units with weight vec-

tors w1, ...,wn. To prevent di↵erent vectors from converging to the same maxima,

the outputs wT

1 x, ...,w
T

n
x need to be decorrelated after every iteration. The Gram-

Schmidt-like decorrelation is a simple way to achieve decorrelation, which is a defla-

tion scheme [101]. This is based on the estimation of the independent components

one by one. When p independent components, or p vectors w1, ...,wp, have been

estimated, the one-unit fixed-point algorithm is run for wp+1, and after every iter-

ation step the projections w
T

p+1wjwj, j = 1, ..., p are subtracted from wp+1 of the

previously estimated p vectors, and then renormalize wp+1:

1. Let wp+1 = wp+1 �
P

p

j=1 w
T

p+1wjwj;

2. Let wp+1 = wp+1/

q
wT

p+1wp+1.

The preprocessing performed by the ICA (or FastICA) is usually used in the litera-

ture to separate brain activity from artifacts of several types, e.g., eye movements,

blinks, anatomical or physiological processes [102, 103, 104, 105]. In this work, the

FastICA was used to remove the blinking artifacts of the EEG signal.

Other steps were considered for preprocessing after the FastICA was applied.

First the signals were filtered with two elliptic filters, a 5th order low-pass filter

with a cuto↵ frequency of 2 Hz, followed by a 3rd order high-pass filter with a cuto↵

frequency of 0.1 Hz. Afterwards, the EEG data of each electrode was standardized

with the following equation:

EV[t] =
V [t]� V̄

SDV

, (3.6)
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where the signal is V [t], the standardized value is EV[t], for each time sample [t], the

mean of the signal is V̄ , and the standard deviation of the signal is SDV . Regarding

the kinematic variables, after the videos were processed to obtain the joint angles,

they were upsampled to match the sampling frequency of the EEG signal.

3.2 Asynchronous protocols

As mentioned at the beginning of this chapter, there are studies found in the

literature that carry out experiments where the test subjects perform an instructed

task at their own pace after a single cue. During the acquisition of the data, the task

performed by the test subjects is asynchronous, i.e., without cues. In this study, a

database provided by the Brain Machine Interface System Lab was used with their

permission. This database was taken into consideration because it has data from

people that are healthy and people who have a spinal cord injury (SCI). Furthermore,

since the experiments involve flexion/extension of the knee, the database can be

compared to the protocol described in Section 3.1.

The database is part of the BioMot project-Smart Wearable Robots with Bioin-

spired Sensory-Motor Skills, whose main goal is to analyze dynamic sensorimotor

interactions in realistic human locomotion and design an artificial cognitive system

for embodiment into bioinspired wearable assistive devices [106] (grant agreement

number IFP7-ICT-2013-10-611695). The complete database consisted on experi-

mental trials performed by five individuals with incomplete SCI from the inpatients

services at the National Hospital for Spinal Cord Injury in Toledo, Spain, and four

healthy users. All participants signed the corresponding informed consent.

Subjects were asked to performed five types of simple movements divided in

two sequences. However, in this work only one of the movements of sequence 1

was taken into consideration. The movement consisted on a continuous isotonic

flexion/extension of a knee joint as shown in Figure 3.6. Subjects performed six runs

consisting of 30 seconds of continuous movements. However, since the movements

of the subjects were self-paced without cues for the flexions and extensions, these

were considered asynchronous protocols.
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Figure 3.6: Type of movement performed by the subjects with a self imposed pace,

i.e., an asynchronous movement.

3.2.1 Data Acquisition

EEG signals were recorded using two g.USBamp amplifiers (g.tec medical engi-

neering GmbH, Schiedlberg, Austria), interconnected through a g.INTERsync mod-

ule for correct synchronization. A total of 32 g.LADYbird active electrodes, com-

posed of a sintered Ag/AgCl crown with a 2-pin safety connector, were placed on

the scalp of the subjects using the g.GAMMAcap. Such active electrodes increase or

improve the signal-to-noise ratio. The application of conductive gel was necessary to

obtain more suitable signals from the active electrodes. Additionally, an antistatic

wrist strap was used to remove external noises during the experiments. The config-

uration of the electrodes according to the international 10/10 system [107], follows

the next distribution: Fz, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz,

C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, P1, Pz, P2, P4, PO7, PO3,

POz, PO4, and PO8. In addition to the 32 mentioned electrodes, the ground elec-

trode was placed in AFz and the reference was place on the right earlobe. Figure 3.7

shows the distribution of the electrodes, which covered the relevant surface of the

scalp, particularly the regions where motor activity occurs. EEG signals were reg-

istered with a sampling frequency of 1200 Hz. The g.USBamp amplifiers internally

filter the signals with two filters: one low-pass filter with a cuto↵ frequency of 100

Hz, and a notch filter at 50 Hz to remove the power line interference.
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Figure 3.7: Electrode distribution of the international 10/10 system. Highlighted are

32 g.LADYbird active electrodes, which were connected to two g.USBamp amplifiers

(g.tec medical engineering Gmbh, Schiedlberg, Austria) interconnected through a

g.INTERsync module.

To obtain the kinematics of the lower limbs, seven inertial measurement units

(IMUs) were used in the experiments. The IMUs were from the motion capture

system Tech MCS (Technaid, Arganda del Rey, Spain), which integrate three types

of sensors: accelerometers, a gyroscope, and a magnetometer. The data registered

by the IMUs had a sampling frequency of 30 Hz. The placement of the IMUs can be

seen in Figure 3.8. One IMU was placed on the back and six were placed on both

legs over the thighs, shanks, and feet. Using the information of the seven IMUs,

the angular velocity of the hip, knee, and ankle joints can be obtained. However,

as previously stated, only the movement of the knee joint from this database was

considered in this study.
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Figure 3.8: Tag numbers of the seven IMUs connected to the TechHub with the

following placement: one in the lumbar area, and the remaining six placed on both

thighs, shanks, and feet. This distribution allowed to obtain the angular velocities of

the hip, knee, and ankle joints of each leg. (Image taken with permission from [106]).

Figure 3.9 shows both equipments placed on the users. The lumbar IMU and

TechHub are shown on the left, the g.USBamp amplifiers in the middle, and the

IMUs of the right leg are shown on the right. Both the g.USBamp amplifiers and the

TechHub have input/output trigger connections used to synchronize the recordings

between the equipments.

3.2.2 Signal Preprocessing

The same filtering process described in Section 3.1.2 was used. Where two

elliptic filters were used: a 5th order elliptic low-pass filter with a cuto↵ frequency

of 2 Hz, followed by a 3rd order elliptic high-pass filter with a cuto↵ frequency of

0.1 Hz. Then, the EEG data of each electrode was also standardized with (3.6). As

for the kinematic variables, the IMUs data were upsampled to match the sampling

frequency of the EEG signal.
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Figure 3.9: Environment of the experiment showing both equipments and two users.

From left to right: the TechHub, the lumbar IMU, the EEG cap, the g.USBamp

amplifiers, the inertial sensor A over the thigh, and the inertial sensor B over the

shank.

The described experimental setups di↵er in that the first set is meant to be

designed for the user to perform simple movements of lower limb. However, with the

pre-established pace, the users were under a controlled process, i.e., synchronous.

Additionally, the subjects alternated between isotonic and isometric exercises. The

latter set of experiments were comprised of self-paced movements, i.e., asynchronous.

The users established a certain constant velocity in a free isotonic movement. The

EEG signals that were analyzed in this work came from the brain signals registered

during the experimental setups described in this chapter. The next chapter involves

the results obtained from using these data and using the methods described in

Chapter 2.





Chapter 4

Results

This chapter shows the results of the procedures and simulations done for this re-

search, which includes: the nonlinear dynamical analysis of the EEG neural signals

for the synchronous protocols, the decodification of the EEG neural signals of the

asynchronous protocols comparing di↵erent cortical regions and time intervals, the

decodification of the synchronous protocols by segmentation of the data regarding

the activity performed, the decodification of the synchronous protocols comparing

di↵erent cortical regions, time delays, and gaps for such delays, and the optimiza-

tion of the decodification with the implementation of a genetic algorithm. The

first section displays the results for the Hurst exponent, correlation dimension, and

the largest Lyapunov exponent of the synchronous protocols. The decodification

results are divided in four sections, starting with the parametric adjustments for

the decodification of the asynchronous protocols. Then the synchronous protocols

are used for the decodification by segmentation. Afterwards this segmentation is

further used to find a parametric adjustment for the synchronous protocols. Finally,

the decodification by segmentation was used by the genetic algorithm, which uses

transformations to the EEG signals.

4.1 Randomness & nonlinear dynamical analysis

It was stated in Section 3.1.2 that two data sets were considered for the syn-

chronous protocols described in Section 3.1. The first data set, which consisted of

nine electrodes, was considered for the nonlinear dynamical analyses mentioned in

Section 2.1. Only the FastICA preprocessing was applied to this data set before

these analyses, i.e., frequency filtering and standarization of the data were not yet

47
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applied. As it was stated, markers indicating the raising and lowering of the limb

were added on the software in order to specify the beginning and ending of each task

during the EEG recording. Each trial included 10 repetitions, where the raise-lower

periods lasted 60 s divided in 20 windows of 3 s (3000 samples) each, as it can be

seen in green-red windows at the bottom of Figure 4.1. Also, both resting times

were divided in 10 windows, 3 s each, which can be seen in the blue windows at the

bottom part of Figure 4.1. Each of these time windows are the inputs to the meth-

ods selected here to analyze the nonlinear dynamics of the neural activity associated

to lower limb movements described in the experimental setup of Section 3.1.

Figure 4.1: Top: frames of the indications presented in the video to rest (white dot,

30 s), raise or lower the limb (green and red arrows respectively, 10 repetitions each,

lasting 3 s). The entire trial lasted, from start to finish, 120 s. Bottom: illustration

of the EEG signal segmentation of a full trial into forty time windows 3 s each (3000

samples), where blue is the resting time (20 windows, 10 at the beginning and 10

at the end), green the raising time (10 windows), and red the lowering time (10

windows) of the limb. Each time window served as inputs to the nonlinear analyses.

All the procedures presented in this work were numerically implemented in

Matlabr (R2015a). As it was stated in the experimental setup (Section 3.1), NS = 8

subjects were enrolled in the experiment. Each subject performed two lower limb

tasks (Task 1 and Task 2) consisting of NT = 10 trials each. The interest is to

analyze the EEG signal of the selected nine electrodes for each trial, according to

the window segmentation described at the bottom of Figure 4.1. The indices H, CD,

and LLE are computed from the EEG signal for each electrode (E), window (W ),

subject (S), and trial (T ). To show the reproducibility of the results, each index is

presented as averages between the subjects and trials for each window and electrode.



Chapter 4. Results 49

This is expressed as:

µW,E,I =
1

NSNT

NSX

S=1

NTX

T=1

I(EEGT,S,W,E), (4.1)

where E 2 {F3, F z, F4, C3, Cz, C4, P3, P z, P4}, W 2 {1, ..., 40}, and I 2 {H, CD,

LLE}. The corresponding standard deviation is also computed by

�W,E,I =

vuut 1

NSNT

NSX

S=1

NTX

T=1

|I(EEGT,S,W,E)� µW,E,I |2. (4.2)

4.1.1 Hurst exponent

The number of time spans of observations were limited to 50, since subseries of

smaller length lead to a high variance of the R/S estimates. In the following graphs

the mean and standard deviation of H (µH and �H , respectively) corresponding to

the nine electrodes and the 40 windows are shown. Figure 4.2 presents the results of

Task 1, whereas Figure 4.3 presents results of Task 2. The results show that the time

series are nonrandom and persistent because the means (µ) of the nine electrodes

in Figure 4.2 and Figure 4.3 are near to 1. Moreover, the mean and standard

deviation of the EEG signal are computed in order to quantify the nonrandomness.

As mentioned in Section 2.1.1, a stationary signal preserves constant values of mean

and standard deviation. On the other hand, nonconstant values are related to

nonstationary. As can be seen in Figures 4.4 and 4.5, the resting periods (windows

1-10 and 31-40) have small variations, meanwhile the raising and lowering periods

(windows 11-30) have larger variations, therefore they behave nonstationarily. This

behavior is more evident on electrodes Cz and Pz, which are located over the motor

cortex.
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Figure 4.2: Mean and standard deviations of H calculated between eight subjects

and ten trials, for nine electrodes during Task 1.

Figure 4.3: Mean and standard deviations of H calculated between eight subjects

and ten trials, for nine electrodes during Task 2.
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Figure 4.4: Mean and standard deviations of the EEG signal calculated between

eight subjects and ten trials, for nine electrodes during Task 1.

Figure 4.5: Mean and standard deviations of the EEG signal calculated between

eight subjects and ten trials, for nine electrodes during Task 2.
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4.1.2 Correlation dimension

For each window, an embedding dimension was calculated using the false near-

est neighbor algorithm, which in the case an embedding dimension was not found,

the value was limited to 10, as the saturation mentioned in [50, 51]. As for the

optimal delay, the average mutual information algorithm was used with 20 bins, in

order to be proportional to the simple cubic root of the number of samples. For

these reasons, each window had its own parameters for the calculation of the CD.

Afterwards, their mean and standard deviation (µCD and �CD) were calculated and

can be seen in Figures 4.6 and 4.7 for Task 1 and Task 2, respectively.

4.1.3 Largest Lyapunov exponent

Similar to the previous indices, each time window of samples had its own LLE

calculated. According to the CD results, the dimension of the underlying system

lies between 4 and 6, therefore a dimension of 5 was chosen to calculate the LLE

with a delay coordinate of one sample. Then, the means and standard deviations

(µLLE and �LLE) between subjects and trials were calculated, for nine electrodes and

40 time windows. These can be seen in Figures 4.8 and 4.9 for Task 1 and Task 2,

respectively.
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Figure 4.6: Mean and standard deviations of CD calculated between eight subjects

and ten trials, for nine electrodes during Task 1.

Figure 4.7: Mean and standard deviations of CD calculated between eight subjects

and ten trials, for nine electrodes during Task 2.



Chapter 4. Results 54

Figure 4.8: Mean and standard deviations of LLE calculated between eight subjects

and ten trials, for nine electrodes during Task 1.

Figure 4.9: Mean and standard deviations of LLE calculated between eight subjects

and ten trials, for nine electrodes during Task 2.



Chapter 4. Results 55

4.2 Parametric adjustment for asynchronous

protocols

A parameter tuning was performed in order to obtain a better decoding of

the joint angles of the asynchronous protocols. This parameter tuning consisted

of three parts. One part was to analyze di↵erent cortical regions of the brain by

selecting di↵erent electrode arrays from the acquired EEG signal. Another part

consisted of analyzing how far in the past the number of samples should be taken in

consideration. The final part for the tuning consisted of considering the mentioned

evaluation metrics in Section 2.2.3 to see the di↵erent behaviors and performances

of the chosen parameters.

In this work, the linear optimum filter described in Section 2.2.1 was adapted

into the following MLR

x[t] = a+
NX

n=1

LX

k=1

bnkSn[t�G ⇤ k], (4.3)

where x[t] is the decoded variable at time t, Sn is the voltage measured at electrode

n, N are the number of channels, L are the number of lags, G is the gap between

lags, and a and b are the weights of the linear regression. The process (4.3), for a

single time sample, can also be viewed in the following matrix form:

x =
h
S1 S2 · · · SNL

i

2

6666664

b1

b2

...

bNL

3

7777775
+ a (4.4)

where NL is the number of electrodes times the number of lags.

To analyze the di↵erent regions of the brain during the asynchronous protocols

described in Section 3.2, di↵erent electrode arrays from the EEG were evaluated,

thus varying N . This led to selecting 42 arrays, that can be seen in Figure 4.10,

where colors define the combinations of regions on the scalp and each color possess

six sets of electrodes. Also di↵erent time windows prior to the decoded variable

were analyzed. This was done by changing the gap G, since the lags were fixed to
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L = 10. By changing gaps, the time window was limited to reach up to 5 seconds

into the past, by increments of 0.5 s.

Figure 4.10: 42 electrode array combinations used in the experimental setup from

Section 3.2, represented in a binary table using 21 electrodes, namely FC5, FC3,

FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz,

CP2, CP4, and CP6. Colors define the combinations of regions on the scalp: red

for FC, yellow for C, orange for CP, blue for FC-C, purple for FC-CP, and green for

FC-C-CP.

To obtain the regressors values of (4.4) for the di↵erent combinations of elec-

trodes arrays and time delays, the following matrices had to be created:

S =

2

6666664

1 S1,1 S1,2 · · · S1,NL

1 S2,1 S2,2 · · · S2,NL

...
...

...
. . .

...

1 STS,1 STS,2 · · · STS,NL

3

7777775
, and x =

2

6666664

x1

x2

...

xTS

3

7777775
, (4.5)

where the first column of S is the constant value to obtain the intercept regressor,

i.e., value a for (4.3) and (4.4), and TS are the di↵erent values of training samples,

which depend on the quantity of samples available after varying the G values. To

obtain the regressors, such matrices can be used as in (2.36) as follows:

� = [ST
S]�1

S
T
x, (4.6)
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where � is the weight vector [a, b1, ..., bNL].

Out of the nine subjects stated in Section 3.2, four healthy (A05, A06, B11,

and B12) and five with SCI (C06, C07, C08, C09, and C10), only eight of the

data sets were chosen to perform the decodification, since subject C10 reported

to had felt tired during the sessions [106]. Each test subject performed six runs,

where the first five runs were concatenated to create the corresponding training

models of S and x. The run number six was used as the testing model. The

training models counted with 180, 000 samples (1200 Hz for 30 s for 5 trials) by

electrode. However, as was previously mentioned, the matrices (4.5) varied in size,

from using one electrode (N = 1) with a delay of 0.5 s (600 samples) (NL = 10 and

TS = 179, 400) to using 21 electrodes (N = 21) with a delay of 5 s (6000 samples)

(NL = 210 and TS = 174, 000). The performances of the 42 electrode arrays, and 10

delays can be seen in Figure 4.11 for the CC values. Figure 4.12 has the performance

of the NRMSE values, and Figure 4.13 for the SNR values.
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Figure 4.11: Correlation coe�cient (CC) values for eight subjects, arranged in 42

arrays by 10 delays in the past, ranged from 0.5 s to 5 s. Colors represent the

di↵erent cortical regions seen in Figure 4.10.
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Figure 4.12: Normalized root mean square error (NRMSE) values for eight subjects,

arranged in 42 arrays by 10 delays in the past, ranged from 0.5 s to 5 s. Colors

represent the di↵erent cortical regions seen in Figure 4.10.
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Figure 4.13: Signal-to-noise ratio (SNR) values for eight subjects, arranged in 42

arrays by 10 delays in the past, ranged from 0.5 s to 5 s. Colors represent the

di↵erent cortical regions seen in Figure 4.10.

The three parts of the parametric tuning chosen for the decodification per-

formance led to 420 sets, with the 42 electrode arrays and 10 delays, using three

metrics for the eight selected subjects. In order to establish which set is the most

appropriate, the metrics were arranged by subject from best to worst. When con-

sidering the best 10% of all the sets, the mode among the subjects in the CC and

NRMSE values were the sets of 138, 264, and 348, which repeated for 4 subjects.

As for the mode of the SNR values, they were 376 and 420, for 7 subjects. When

considering the top ten best of all the sets, the mode of CC and NRMSE values
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Set Array # Delay(s)

138 12 2

180 12 2.5

264 12 3.5

294 42 3.5

348 12 4.5

376 40 4.5

420 42 5

Table 4.1: Combinations of sets with their respective electrode array and time delay.

were the sets of 180 and 348. However, they only repeated in 3 subjects. The mode

of the SNR was the set of 294, repeating 4 subjects. The corresponding electrode

arrays and time delays of these mentioned sets are shown in Table 4.1.

Looking at these modes, the selected array considered to have better perfor-

mance in CC and NRMSE is array number 12, i.e., all electrodes of the cortical

region C. Regarding the modes of the SNR, the most appropriate array is number

42, i.e., all electrodes of the cortical regions FC, C, and CP. With respect to the

time delays, it varied according to the subjects, ranging from 2 s to 4.5 s in the past.

In this case, the time delay of 3.5 s in the past was considered as it represented the

middle area of the time delay range.

Based on these selections, array number 12 has N = 7 electrodes, and the time

delay of 3.5 s (4200 samples) in the past with a sampling frequency of 1200 Hz lets

TS = 175, 800 samples for training. Thus having the following matrices:

S =

2

6666664

1 S1,1 S1,2 · · · S1,70

1 S2,1 S2,2 · · · S2,70

...
...

...
. . .

...

1 S175800,1 S175800,2 · · · S175800,70

3

7777775
, and x =

2

6666664

x1

x2

...

x175800

3

7777775
,

applied to (4.6). This grants the vector � with the weights a 2 R and b 2 R1⇥70.

These weights are applied to (4.4) in order to obtain the variable x for the testing

run, for the t samples. Figure 4.14 shows these decodifications of the asynchronous

protocols, where the actual joint velocity of the knee is compared to its respective
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decoded variable.

Figure 4.14: Plots of the actual joint velocity of the knee (dotted line) compared to

their decodification (solid line) of eight subjects. These MLR decodifications were

performed with array 12 (7 electrodes) and a time delay of 3.5 s.



Chapter 4. Results 63

4.3 Decodification by segments

As mentioned in Chapter 3, the literature has usually shown a continuous

trajectory reconstruction of cycled tasks, like walking or free repetitive movement

of the limbs, similar to the protocol described in Section 3.2. However, the protocol

described in Section 3.1, displayed in Figures 3.2 and 3.3, has a single task divided

into di↵erent activities. In this particular case the activities were rest, raise, and

lower the limb. With this notion, it was proposed to perform decodifications for

each activity separately, by segmentation of the data, as shown in Figure 4.1.

As stated, the subjects performed two type of tasks: raising the foot (Task 1)

and the knee (Task 2) while remaining seated. In this work di↵erent decoders were

created, described next. Decoder 1 (D1) used a single MLR equation to decode all

the trial involving the three activities of resting, raising, and lowering. Decoder 2

(D2) used a pair of transitioning MLR equations, one for the resting periods, and

another for the movement period. Decoder 3 (D3) used three MLR equations, one

for the resting periods, and two separate decoders for raising and lowering of the

movement periods. This can be visualized in Figure 4.15.

Figure 4.15: Illustrative sections for which a MLR equation was created: (a) Decoder

1 (D1) where yellow corresponds to a single MLR equation for all activities, (b)

Decoder 2 (D2) where blue corresponds to resting periods, and cyan to the movement

period, (c) Decoder 3 (D3) where blue corresponds to resting periods, green for the

raising, and red for the lowering period.
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Three trials of each test subject were used for training to obtain the decoder,

and one trial was used for testing. Similar to the process described previously in

Section 4.2, equation (4.3) was implemented, or equivalently its matrix form (4.4).

However, since in this occasion there were two joint angles to decode, i.e., the hip

and the knee angles, the training portion of the decoder was performed with the

MLR equation. After the training was finished, the testing portion of this study was

realized using the multivariate linear regression. As mentioned in Section 2.2.1, a

multivariate linear regression is used when there are multiple correlated dependent

variables predicted, rather than a single variable. Therefore, for the testing portion,

(4.4) expands to:

h
x1 x2

i
=

h
S1 S2 · · · SNL

i

2

6666664

b1,1 b1,2

b2,1 b2,2

...
...

bNL,1 bNL,2

3

7777775
+
h
a1 a2

i
(4.7)

where x are the decoded variables, S is the voltage measured at electrodes N and

L number of lags, and a and b are the weights of the linear regression. In the case

of the synchronous protocols, it was stated in Section 3.1.2 that two data sets were

considered for this study. The first data set, which consisted of nine electrodes, was

considered for the first decodification by segments. Also, as the results shown in the

Section 4.2, the chosen delay for the decodification was established to be 3.5 s into

the past.

To obtain the regressors values of (4.7) for the two joint angles, the following

matrices had to be created:

S =

2

6666664

1 S1,1 S1,2 · · · S1,NL

1 S2,1 S2,2 · · · S2,NL

...
...

...
. . .

...

1 STS,1 STS,2 · · · STS,NL

3

7777775
, and x =

2

6666664

x1,1 x1,2

x2,1 x2,2

...
...

xTS,1 xTS,2

3

7777775
, (4.8)

where the first column of S is the constant value for the intercept regressor, i.e.,

value a for (4.3) and (4.4), and TS are the di↵erent values of training samples, which

depend on the quantity of samples available after varying the G values. Another

value that a↵ected TS, for the synchronous protocols, was a sub-sampling performed
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during the creation of the training model (and the testing model). Due to the

high number of samples, a sub-sampling of the available data allowed to obtain

a smaller matrix. Sampling by increments of 10, assisted the dimensions of the

training matrices S and x, reducing TS from 349, 500 to 34, 950. After the training

models were created, to obtain the regressors, such matrices can be used as in (2.36)

in the following manner:

�Knee = [ST
S]�1

S
T
x1, and �Hip = [ST

S]�1
S
T
x2, (4.9)

where x1 and x2 are the columns of x, and � is composed of the weight vectors

a 2 R2⇥1 and b 2 R2⇥NL.

The selected metrics to evaluate the performance of the decodifications were

the metrics mentioned in Section 2.2.3. The performance of the three decoders, i.e.,

D1, D2, and D3, for eight subjects can be seen in Tables 4.2 to 4.4. It can be seen

that in general, the performance turns better when more decoders are applied. It can

also be appreciated in the average between subjects. Figures 4.16 to 4.23 show the

decodifications of Task 1 for the hip and knee joint angles of the eight subjects, and

Figures 4.24 to 4.31 display the decodifications for Task 2. It is worth to mention

that a di↵erent test trial of the same subject was used for further validation of each

created decoder. Such additional test trials had the same improved performance

when more decoders were used.
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CC Task 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.2360 0.9038 0.9017 0.4003 0.8002 0.9365

2 0.5895 0.5954 0.6021 0.3493 0.7534 0.9405

3 0.2857 0.7221 0.8518 0.2883 0.7418 0.8447

4 0.3513 0.0736 0.0499 0.4777 0.8212 0.8987

5 0.1795 0.4448 0.4072 0.2252 0.6442 0.9101

6 0.3888 0.7776 0.8927 0.4089 0.7747 0.9076

7 0.2397 0.4574 0.4625 0.1951 0.7298 0.8503

8 0.0154 0.2635 0.5325 -0.0343 0.4933 0.8169

µ 0.2857 0.5298 0.5876 0.2888 0.7198 0.8882

� 0.1674 0.2762 0.2933 0.1619 0.1059 0.0454

Task 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.2614 0.7249 0.8625 0.2483 0.7743 0.8229

2 0.5416 0.8841 0.9109 0.2664 0.4980 0.5162

3 0.4182 0.8341 0.8895 0.4164 0.8351 0.8830

4 0.4746 0.7977 0.9095 0.2830 0.4568 0.5809

5 0.3996 0.7563 0.8955 0.3879 0.7405 0.8571

6 0.4541 0.8060 0.9155 0.4134 0.7990 0.8999

7 0.2657 0.7073 0.8889 0.2689 0.7242 0.8855

8 0.5032 0.8560 0.9315 0.4872 0.8267 0.8976

µ 0.4148 0.7958 0.9005 0.3465 0.7068 0.7929

� 0.1035 0.0626 0.0210 0.0902 0.1471 0.1538

Table 4.2: Correlation coe�cient (CC) values of the decodifications of the hip and

knee angles for eight subjects and their mean and standard deviations for Tasks 1

and 2. D1, D2, and D3 stand for the decoder used.
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NRMSE Task 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.3002 0.1511 0.1571 0.3513 0.2313 0.1354

2 0.1400 0.1428 0.1446 0.3501 0.2422 0.1267

3 0.3352 0.2434 0.1910 0.3488 0.2441 0.2027

4 0.1444 0.1701 0.1751 0.3445 0.2250 0.1727

5 0.1251 0.1166 0.1220 0.3679 0.2882 0.1569

6 0.3346 0.2349 0.1736 0.3422 0.2404 0.1644

7 0.7408 0.7306 0.7416 0.3729 0.2731 0.2288

8 0.5766 0.5792 0.5740 0.4179 0.3485 0.2279

µ 0.3371 0.2961 0.2849 0.3619 0.2616 0.1769

� 0.2212 0.2293 0.2354 0.0251 0.0410 0.0392

Task 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.3719 0.2761 0.2136 0.3795 0.2847 0.2740

2 0.2688 0.1488 0.1354 0.2658 0.2479 0.2594

3 0.3244 0.1980 0.1647 0.2755 0.1681 0.1517

4 0.3176 0.2278 0.1587 0.2871 0.2897 0.2740

5 0.3212 0.2374 0.1609 0.2509 0.1861 0.1431

6 0.2681 0.1814 0.1276 0.2984 0.2241 0.1921

7 0.3493 0.2561 0.1694 0.3378 0.2434 0.1691

8 0.3078 0.1841 0.1298 0.2646 0.1713 0.1332

µ 0.3161 0.2137 0.1575 0.2949 0.2269 0.1996

� 0.0357 0.0428 0.0280 0.0434 0.0481 0.0604

Table 4.3: Normalized root mean square error (NRMSE) values of the decodifica-

tions of the hip and knee angles for eight subjects and their mean and standard

deviations for Tasks 1 and 2. D1, D2, and D3 stand for the decoder used.
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SNR Task 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.0980 4.8191 5.1885 0.3147 2.2031 7.8723

2 0.8171 1.0110 1.1626 0.3465 1.6110 7.9651

3 0.1486 1.3825 3.4224 0.1475 1.3757 3.2322

4 0.1388 0.3000 0.3437 0.2810 2.2336 4.2457

5 0.1165 0.5124 0.5786 0.1518 0.9493 4.8824

6 0.1488 1.6534 3.9935 0.2458 1.8538 5.4486

7 0.1332 0.6836 1.0774 0.0841 1.2675 3.4362

8 0.2792 0.6691 1.2934 0.1133 0.5976 2.2429

µ 0.2350 1.3789 2.1325 0.2106 1.5114 4.9157

� 0.2415 1.4613 1.8063 0.0989 0.5802 2.1024

Task 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.2655 1.6725 3.7560 0.2244 1.8709 2.8454

2 0.6229 3.5816 5.6095 0.3753 0.6800 1.0456

3 0.1933 1.9889 4.0166 0.2400 2.5279 4.3702

4 0.5853 2.5493 5.7744 0.6088 1.0664 1.4345

5 0.3463 1.9669 4.9028 0.2899 1.6731 3.4213

6 0.3511 2.1779 5.4153 0.2439 1.8248 3.8605

7 0.1408 1.1869 4.4749 0.1432 1.2915 4.3675

8 0.2436 2.5197 6.5461 0.2125 1.7586 3.8268

µ 0.3436 2.2055 5.0620 0.2922 1.5867 3.1465

� 0.1758 0.7108 0.9489 0.1441 0.5657 1.2802

Table 4.4: Signal-to-noise ratio (SNR) values of the decodifications of the hip and

knee angles for eight subjects and their mean and standard deviations for Tasks 1

and 2. D1, D2, and D3 stand for the decoder used.
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(a) Hip angles decoded using three decoders for Subject 1 during Task 1.

(b) Knee angles decoded using three decoders for Subject 1 during Task 1.

Figure 4.16: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 2 during Task 1.

(b) Knee angles decoded using three decoders for Subject 2 during Task 1.

Figure 4.17: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 3 during Task 1.

(b) Knee angles decoded using three decoders for Subject 3 during Task 1.

Figure 4.18: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 4 during Task 1.

(b) Knee angles decoded using three decoders for Subject 4 during Task 1.

Figure 4.19: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 5 during Task 1.

(b) Knee angles decoded using three decoders for Subject 5 during Task 1.

Figure 4.20: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 6 during Task 1.

(b) Knee angles decoded using three decoders for Subject 6 during Task 1.

Figure 4.21: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 7 during Task 1.

(b) Knee angles decoded using three decoders for Subject 7 during Task 1.

Figure 4.22: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 8 during Task 1.

(b) Knee angles decoded using three decoders for Subject 8 during Task 1.

Figure 4.23: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 1 during Task 2.

(b) Knee angles decoded using three decoders for Subject 1 during Task 2.

Figure 4.24: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 2 during Task 2.

(b) Knee angles decoded using three decoders for Subject 2 during Task 2.

Figure 4.25: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 3 during Task 2.

(b) Knee angles decoded using three decoders for Subject 3 during Task 2.

Figure 4.26: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 4 during Task 2.

(b) Knee angles decoded using three decoders for Subject 4 during Task 2.

Figure 4.27: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 5 during Task 2.

(b) Knee angles decoded using three decoders for Subject 5 during Task 2.

Figure 4.28: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 6 during Task 2.

(b) Knee angles decoded using three decoders for Subject 6 during Task 2.

Figure 4.29: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 7 during Task 2.

(b) Knee angles decoded using three decoders for Subject 7 during Task 2.

Figure 4.30: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 8 during Task 2.

(b) Knee angles decoded using three decoders for Subject 8 during Task 2.

Figure 4.31: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a

time delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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4.4 Parametric adjustment for synchronous

protocols

It can be appreciated that performing the decodification of kinematic variables

using di↵erent decoders for specific segments of a task displays a better performance

than using a single decoder. However, the parameters of these decodifications were

fixed, with only nine electrodes available from the first synchronous protocol data

set, and based on the results of the decodifications obtained from the asynchronous

protocols, the time delay of 3.5 s. Under a more detail inspection of several studies

found in the literature [42, 61, 41, 62], it can be noted that these studies have a ten-

dency to approach the decodification with a certain sets of parameters for decoders

specifically focusing on an entire task. These parameters rely on the number of

sources and the number of delays of the independent variable, i.e., the brain signal.

Most of these studies use 10 lags or gaps, which is the number also applied in this

work for Section 4.2 and 4.3. These gaps are selected to cover di↵erent lengths of

the delays, varying from 80 ms to 3 s. However, there is no basis on why delimit the

length of the delay. Furthermore, the studies happen to have di↵erent number of

sources of the independent variable (from 19 to 60 electrodes) based on the di↵erent

equipment available on the market. Therefore, to assess the contributions of the

di↵erent available electrodes and a di↵erent number of gaps, a search for a set of

parameters to further improve the decodification by segments was carried out. Like

in Section 4.2, this search involved di↵erent combinations of electrodes and di↵er-

ent range of the delays. However, now the search involved a third parameter: the

di↵erent number of gaps in such delays.

Similar to the process described previously in Section 4.3, the linear optimum

filter described in Section 2.2.1 was adapted into the following MLR

x[t] = a+
NX

n=1

GX

k=0

bnkSn[t� Lk], (4.10)

where x[t] is the decoded joint angle at time t, Sn is the voltage measured at electrode

n, N is the number of electrodes, k is the counter of gaps, G is the number of gaps, L

is the length between each gap, and a and b are the weights of the linear regression.

However, in this occasion there were also two joint angles to decode, therefore for
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the testing portion, (4.4) similarly expands to:

h
x1 x2

i
=

h
S1 S2 · · · SNG

i

2

6666664

b1,1 b1,2

b2,1 b2,2

...
...

bNG,1 bNG,2

3

7777775
+
h
a1 a2

i
(4.11)

where x are the decoded variables, S is the voltage measured at electrodes N and G

number of gaps, and a and b are the weights of the linear regression. It was stated

in Section 3.1.2 that two data sets were considered for the synchornous protocols.

The second data set, which consisted of 19 electrodes, was considered for the second

parametric adjustment using decodification by segments.

To analyze the di↵erent regions of the brain during the synchronous protocols

described in Section 3.1, di↵erent electrode arrays from the EEG were evaluated,

thus varying N . This led to arrange 100 arrays to analyze the contribution of

the di↵erent cortical regions to the decodification by segments. The arrays 1 to 19

were the 19 available electrodes individually. Arrays 20-100 combined the electrodes

from the pre-frontal (Fp), frontal (F), central (C), parietal (P), occipital (O), and

temporal (T) areas and their corresponding numerals of the international 10-20

system. These arrays are displayed in a binary manner in Figure 4.32.

Also di↵erent time windows prior to the decoded variable were analyzed. This

was done by changing both the gap G and the lengths L of these gaps. By changing

both parameters, delays ranging from 0.5 s to 5 s were considered, varying the

number of gaps from 1 to 10 in increments of 1, and the size of the gaps. For

example, if only 2 gaps were desired for a delay of 500 ms, the L value was 250

samples for each gap.

To obtain the regressors values of (4.11) for the two joint angles, the following

matrices had to be created:

S =

2

6666664

1 S1,1 S1,2 · · · S1,NG

1 S2,1 S2,2 · · · S2,NG

...
...

...
. . .

...

1 STS,1 STS,2 · · · STS,NG

3

7777775
, and x =

2

6666664

x1,1 x1,2

x2,1 x2,2

...
...

xTS,1 xTS,2

3

7777775
, (4.12)

where the first column of S is the constant value for the intercept regressor, i.e., value
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a for (4.10) and (4.11), and TS are the di↵erent values of training samples, which

depend on the quantity of samples available after varying the G values. Another

value that a↵ected TS, for the synchronous protocols, was a sub-sampling which

was mentioned in Section 4.3. After the training models were created, to obtain the

regressors, such matrices can be used as in (4.9).

Figure 4.32: 100 array combinations represented in a binary table, using 19 elec-

trodes, namely Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6,

Cz, Fz, and Pz.
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The search between 100 di↵erent arrays to find the electrodes that contribute

better to the decodification was carried out first. These decodifications used a delay

of 3.5 s with 10 gaps, based on a segmented decodifications of Section 4.3. The

selected metrics to evaluate the performance of the decodifications were the same

metrics used in previous sections, specifically mentioned in Section 2.2.3. To further

validate the results obtained, di↵erent numbers of trials available in the second data

set were used for a M -fold cross-validation, where M ranged from 4 minimum trials

to a maximum of 10 for the di↵erent subjects. The number of available trials for each

subject di↵er, based on the quality of the acquired kinematic or EEG signals; that

is, trials that had the entire kinematic signals or did not had artifacts that when

removed, diminished the quality of the EEG signals. The cross-validation values

were then averaged for each array and metric. For Task 1, the knee performance

was of interest, while Task 2 was focused to the hip. The performances of the arrays

by metric were arranged from best to worst, where the electrodes of the best 10% of

arrays were taken in consideration. The frequency of appearance of the electrodes

in such arrays were normalized for the three metrics. These normalizations can

be seen in Figure 4.33. It can be noted that the electrodes that displayed more

occurrence were Fz, C3, Cz, C4, P3, Pz, and P4 between subjects. When considering

subjects individually, each had their own array with the best performance, but it is

important to mention that the electrode Cz is always present regardless of subject.

This appears to be logical, based on the fact that Cz is the electrode located nearest

to the leg area of the primary motor cortex of the brain.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.33: Normalized occurrence of each electrode of the best 10% of arrays

considering the correlation coe�cient (a & e), normalized root mean square error (b

& f), and signal-to-noise ratio (c & g). The normalized occurrence of the electrodes

combining the three metrics is depict in d & h. The first row of the image corresponds

to Task 1 and the second row to Task 2.

The search for delays that gave a better performance consisted on varying the

number of gaps, and their lengths, used for the linear regression. 100 combinations

of delays and lengths of gaps were used. The delays covered from 0.5 s to 5 s in

increments of 0.5 s. As previously mentioned, a maximum of 10 gaps in increments

of 1 were used for each delay. The electrodes used for these decodings were the

set of electrodes that had more occurrence from the 100 arrays search, that is,

electrodes Fz, C3, Cz, C4, P3, Pz, and P4 (as seen in Figures 4.33d and 4.33h).

The performances of delays and gaps by metric were also arranged similarly to the

consideration of arrays. Figure 4.34 displays normalized bar graphs of occurrence

of the best 10% of combinations of delays and gaps.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.34: Normalized occurrence between subjects of each combination of gaps

and delay of the best 10% considering the correlation coe�cient (a & e), normalized

root mean square error (b & f), and signal-to-noise ratio (c & g). The normalized

occurrence of the delay and gaps combinations mixing the three metrics is depicted

in d & h. The first row of the image corresponds to Task 1 and the second row to

Task 2.

Based on these results displayed in Figure 4.34d, it can be seen that there was

a tie for Task 1, with delays of 2 s, 2.5 s, and 3 s with 9 gaps, and 2.5 s with 8 gaps.

Figure 4.34h displays the most frequent combinations between subjects for Task 2,

where there is also a tie between a delay of 2.5 s with 8 and 9 gaps.

Furthermore, Table 4.5 displays the comparison between segmented decodifi-

cations of Section 4.3 and the currently adjusted decodifications. The results on

Table 4.5 for the parametric adjustment were obtained using the exact same trials

for training and testing as the previous section. It can be seen that CC and SNR

values increase with the new configuration, while the NRMSE values decrease, thus

showing improvement for the decodification.
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Subject

Task 1

CC NRMSE SNR

Old New Old New Old New

1 0.8965 0.9011 0.2494 0.2450 4.6705 4.8817

2 0.5955 0.6032 0.2033 0.2012 0.9766 1.0220

3 0.8542 0.8738 0.1614 0.1510 3.2055 3.7007

4 0.6008 0.6236 0.2678 0.2623 0.8965 0.9587

5 0.8345 0.8553 0.1654 0.1528 2.6459 3.1068

6 0.9097 0.9138 0.1843 0.1829 4.7519 4.9166

7 0.8812 0.8983 0.1779 0.1664 3.9568 4.6008

8 0.8841 0.9077 0.2147 0.2046 3.8589 4.5835

µ 0.8071 0.8221 0.2030 0.1958 3.1203 3.4714

� 0.1226 0.1219 0.0364 0.0384 1.4179 1.5447

Subject

Task 2

CC NRMSE SNR

Old New Old New Old New

1 0.8985 0.9045 0.1767 0.1729 4.6282 5.0488

2 0.9250 0.9405 0.1240 0.1121 6.4868 8.2643

3 0.8612 0.8824 0.1712 0.1577 3.3132 3.8328

4 0.9043 0.9148 0.1536 0.1462 4.8926 5.4236

5 0.8928 0.9031 0.1574 0.1494 4.6068 5.3189

6 0.9239 0.9290 0.1302 0.1269 6.0656 6.5168

7 0.8862 0.9008 0.1761 0.1652 4.0975 4.7262

8 0.9072 0.9236 0.1511 0.1386 5.1846 6.2241

µ 0.8999 0.9123 0.1550 0.1461 4.9094 5.6694

� 0.0194 0.0173 0.0186 0.0187 0.9538 1.2545

Table 4.5: Comparing the configurations of previously used parameters (Old) and

the parametric adjustment (New) for the segmented decodifications. Task 1 values

at the top and Task 2 values at the bottom of the table. CC and SNR values increase

with the new configuration, while the NRMSE values decrease.
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4.5 Optimization by genetic algorithm

As mentioned in Section 2.2.2, the implementation of the GA in the BMI lit-

erature are mostly used to find an optimal solution for the di↵erent methods or

models used for estimation or reconstruction of one signal from another type of

signal. In this work, the linear optimum filter by segmentation remained as the

chosen decodification method of the EEG signal into the lower limb kinematics. As

previously stated, multiple linear regression models are often used as approximating

functions, i.e., the relationship between y and x1, x2, ..., xk, is unknown, but over cer-

tain ranges of the independent variables, the linear regression model is an adequate

approximation even for models complex in structure. However, the linear regres-

sion model in some occasions is inappropriate because the true regression function is

nonlinear. Since the EEG was consider nonlinear and quasistationary in Section 2.1,

and the results shown in Section 4.1 seem to strengthen this consideration, a suit-

able transformation was applied. Nonlinear models that can be transformed into a

straight line are called intrinsically linear [88]. Examples of nonlinear models that

are intrinsically linear are considered in functions:

y = �0e
�1x, and y = �0 + �1

✓
1

x

◆
. (4.13)

These functions are intrinsically linear since they can be transformed to a straight

line by a logarithmic transformation and the reciprocal z = 1/x respectively, lin-

earizing the models into

ln y = ln �0 + �1x, and y = �0 + �1z. (4.14)

There are other types of transformations for the nonlinearities of a model, for ex-

ample

y = �0 + �1x+ �2x
2 + �3x

3
, and y = �0 + �1x1 + �2x2 + �12x1x2. (4.15)

Where the cubic polynomial can be changed by x1 = x, x2 = x
2, x3 = x

3, and the

interaction e↵ects changed by x3 = x1x2, and �3 = �12, to form the same linear

regression model

y = �0 + �1x1 + �2x2 + �3x3. (4.16)
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Applying similar transformations, the GA searched for an optimal function

that transformed the EEG signal used in the multiple linear regression model. Based

on the results obtained in Section 4.4, it can be seen that out of the 19 electrodes,

only 7 were required. For this reason, the first data set of the synchronous protocols

was used in the GA search. The other 2 electrodes not included in the results of

Section 4.4 were included in the GA search to assess if a transformation function

applied to these electrodes contributed to the decodification.

As stated in Section 2.2.2, there is a need for a genetic representation of the

candidate solutions. For this work, the chromosomes were vectors of dimension

[1⇥9], where each of the 9 arrays take the values 0�5, which represent the di↵erent

transformations functions from Table 4.6. Those functions were selected for being

considered simple nonlinear functions, thus not giving more load to the computa-

tional process of the GA. Each of the arrays a↵ects individually the 9 electrodes

used on the first data set of the synchronous protocols.

Value Transformation Function f(Sn)

0 Sn

1 e
Sn

2 S
2
n

3 S
3
n

4 sin(Sn)

5 cos(Sn)

Table 4.6: Values of the genetic representation and their respective transformation

function. Sn represents the n-th electrode of the EEG signals.

The fitness function selected for this work was the NRMSE, described in Sec-

tion 2.2.3. This was the chosen function because the NRMSE value displays the

di↵erence between the actual values and the predicted or decoded ones in a per-

centage manner. The tournament selection was applied in this work, where each

individual competed with another random individual, and the one with the best

fitness value was selected for the crossover. Selection was done with replacement,

i.e., the same chromosome could have been selected more than once to become a
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parent. In this work, the crossover between the randomly chosen pair of parents was

always executed, since the crossover probability pc was fixed at 100%. Regarding

the mutation probability pm, the chosen value was 40%. It was considered rather

high, since the literature tends to use really small values (e.g., 0.001) [80]. These

high values of pc and pm were chosen in order to have a high probability of an entire

new population of individuals. Such populations consisted of 25 individuals, which

participated in several runs with di↵erent number of generations. The parameters

used on the GA are summarized in Table 4.7. Also it is worth mentioning that the

segmented decodification was performed using the nine electrodes of the controlled

mobility protocols with a time delay of 2.5 s based on the results of Section 4.4.

However, to have a similar or comparable basis to the literature, 10 gaps were still

used for these decodifications.

Parameter Information

Individuals 25

Fitness Function NRMSE

Selection Tournament

Crossover probability 100%

Mutation probability 40%

Generations Various (from 10 to 100)

Runs Various (from 5 to 8)

Table 4.7: Parameters chosen for the genetic algorithm.

Table 4.8 shows the fitness values comparison between the segmented decodi-

fication without any transformation and the best segmented decodification obtained

after running the GA for the eight subjects for Task 1, focusing on the knee joint

angle. Alongside the fitness values are the respective di↵erent chromosomes for

each individual test subject, additionally the other metrics are displayed. Similarly,

Table 4.9 shows the values for Task 2, focusing on the hip angle.

Table 4.10 shows the test subject with the best fitness value among the eight

subjects for Task 1 for the knee joint angle. This table shows the best fitting chromo-

some with their respective transformation function applied to the set of electrodes.



Chapter 4. Results 95

In a similar way, Table 4.11 shows the values for Task 2 for the hip joint angle.

Figures 4.36 to 4.42 display the comparison between the actual knee joint an-

gles, the segmented decodification without transformations, and the best segmented

decodification obtained with the GA, for the eight subjects. Figures 4.44 to 4.50

display in a similar way the comparison for the hip joint angles.

CC SNR NRMSE
Chromosome

No f(S) f(S) No f(S) f(S) No f(S) f(S)

0.9318 0.9374 6.9661 7.6388 0.1382 0.1324 0 0 3 5 4 0 4 0 4

0.9444 0.9545 8.3188 10.0639 0.1223 0.1115 0 4 3 3 3 0 1 2 2

0.8461 0.8624 3.3091 3.5944 0.2031 0.1891 2 2 5 1 2 0 1 1 1

0.9145 0.9163 4.8973 5.3078 0.1592 0.1566 5 4 3 3 2 4 4 0 3

0.9060 0.9060 4.7015 4.7015 0.1597 0.1597 0 0 0 0 0 0 0 0 0

0.9052 0.9099 5.2767 5.4252 0.1645 0.1600 4 5 4 4 0 0 4 1 3

0.8742 0.8742 4.0348 4.0348 0.2139 0.2139 0 0 0 0 0 0 0 0 0

0.8318 0.8772 2.4405 3.2893 0.2178 0.1903 2 2 4 1 3 0 3 1 0

Table 4.8: Comparison of the segmented decodification with and without transfor-

mation function. The last column displays the chromosome of the best performance

obtained by the GA using the NRMSE fitness value for the knee joint angle decodi-

fication during Task 1. Additionally, the metrics of CC and SNR are also displayed.
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CC SNR NRMSE
Chromosome

No f(S) f(S) No f(S) f(S) No f(S) f(S)

0.8479 0.9220 3.3389 6.4570 0.2234 0.1702 4 5 5 5 2 0 1 4 2

0.9142 0.9370 5.8515 7.7908 0.1332 0.1115 3 3 5 5 3 0 1 3 1

0.8723 0.8897 3.4835 3.9421 0.1755 0.1627 3 4 5 4 0 4 1 3 4

0.9093 0.9243 5.7645 6.8052 0.1588 0.1402 4 5 1 3 1 1 4 2 0

0.9077 0.9184 5.1985 5.8307 0.1462 0.1375 0 5 4 4 0 0 1 0 4

0.9206 0.9295 5.6284 6.1692 0.1232 0.1170 2 4 4 4 4 0 3 3 4

0.8897 0.9019 4.4156 4.9341 0.1671 0.1573 5 1 4 4 0 0 0 2 0

0.9279 0.9329 6.1902 6.5195 0.1334 0.1286 3 4 5 4 4 0 5 0 0

Table 4.9: Comparison of the segmented decodification with and without transfor-

mation function. The last column displays the chromosome of the best performance

obtained by the GA using the NRMSE fitness value for the hip joint angle decodifi-

cation during Task 2. Additionally, the metrics of CC and SNR are also displayed.

Electrode F3 F4 Fz C3 C4 Cz P3 P4 Pz

Chromosome 0 4 3 3 3 0 1 2 2

Transformation

function f(Sn)
S1 sin(S2) S

3
3 S

3
4 S

3
5 S6 e

S7 S
2
8 S

2
9

Table 4.10: Chromosome and its respective transformation functions of the subject

with the best performance of the fitness value from Table 4.8.

Electrode F3 F4 Fz C3 C4 Cz P3 P4 Pz

Chromosome 3 3 5 5 3 0 1 3 1

Transformation

function f(Sn)
S
3
1 S

3
2 cos(S3) cos(S4) S

3
5 S6 e

S7 S
3
8 e

S9

Table 4.11: Chromosome and its respective transformation functions of the subject

with the best performance of the fitness value from Table 4.9.
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Figure 4.35: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 1 during Task 1.

Figure 4.36: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 2 during Task 1.



Chapter 4. Results 98

Figure 4.37: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 3 during Task 1.

Figure 4.38: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 4 during Task 1.
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Figure 4.39: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 5 during Task 1.

Figure 4.40: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 6 during Task 1.
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Figure 4.41: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 7 during Task 1.

Figure 4.42: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 8 during Task 1.
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Figure 4.43: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 1 during Task 2.

Figure 4.44: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 2 during Task 2.
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Figure 4.45: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 3 during Task 2.

Figure 4.46: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 4 during Task 2.
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Figure 4.47: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 5 during Task 2.

Figure 4.48: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 6 during Task 2.
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Figure 4.49: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 7 during Task 2.

Figure 4.50: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line)

and with transformation functions (red solid line) for Subject 8 during Task 2.
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Conclusions and Future Work

5.1 Conclusions

The main contribution of this thesis consists on proving that it is possible to

make a continuous trajectory reconstruction, also called decodification, from slow

cortical potentials, i.e., low frequencies of the EEG signals. The approach of decodi-

fication had previously been applied in the literature to periodic trajectories like the

gait cycle. This work focused on comparing di↵erent sets of movements, attempting

to decode the kinematics of the lower limbs during synchronous mobility protocols.

The following contributions have been led by the development of this thesis:

• One focus of this thesis was to analyze the nonlinear characteristics of the

EEG signals during synchronous lower limb mobility protocols. Whereas in

the literature, it has only been reported the characterization of these signals

between di↵erent mental states. In order to obtain insight of the underlying

dynamics of the EEG signals three indices were chosen.

According to the obtained Hurst exponent (H) values, the EEG signal shows a

nonrandom persistent behavior, when considering the selected time windows.

Usually for diagnostic purposes, prolonged amounts of time are considered.

However, this thesis has proven that since actions or movements are rather

fast (short time windows), H reveals that the brain signals behave in a per-

sistent manner during these short intervals. With the results here presented,

it can be appreciated that on average when the subjects raise the limb, the

randomness decreases since H moves away from the 0.5 value. Furthermore,

on the resting periods, the average leans toward 0.5 values, showing that when

105
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the subjects rest the signal leans to randomness, as depicted in Figures 4.2

and 4.3. These results are consistent with the statistics reported in Figures 4.4

and 4.5, where it is clear that mean and standard deviation during the resting

periods have small variations, in comparison to the large changes of raising

and lower periods indicating a nonstationary behavior. This is more evident in

the electrodes Cz and Pz, which sense the neural activity of the motor cortex

above the lower limb region.

Since the correlation dimension (CD) values are related to the minimum num-

ber of variables or equations needed to model the behavior of a system in

phase space, Figures 4.6 and 4.7 show that the complexity of the dynamics

of the underlying system is contained in a space of dimension between 4 and

6, suggesting the order of the dynamical model constructed from observable

time series. However, these results reflect that such dimensions might relate to

model the behavior of a single electrode. The entire underlying system of the

brain most likely possess a bigger dimensionality, considering all the cortical

regions a↵ect each other when using EEG recordings.

Based on the CD, the largest Lyapunov exponent (LLE) values were computed

from reconstructed time series of dimension 5 for each electrode. The strictly

positive LLE values obtained from the EEG time series suggest that the dy-

namics of the underlying system is nonlinear, this is based on the premise

that a linear system with a positive LLE implies unstable trajectories, and

with the evidence that the EEG signals are bounded and stable as it is shown

in Figure 4.4 and Figure 4.5. Also as mentioned before, the cortical regions

might have nonlinear interactions among each other, which could show how

the underlying system of the brain tends for a higher dimensionality.

• Mainly this thesis gives additional evidence regarding the decodification of the

kinematics of lower limbs in humans from low frequency EEG components.

The results for the decodifications were performed with three approaches.

An exhaustive search for the best suited parameters of decodification was held

for asynchronous protocols. This was done by using the electrodes that cover

the cortical regions FC, C, and CP, with di↵erent time delays ranging from
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0.5 s to 5 s in the past. According to their performance, the best array to obtain

good results of decodification, with the evaluation metrics of CC and NRMSE,

is array number 12; which is the set of electrodes that cover specifically the

cortical region C. From an electrophysiological point of view, this seems rather

logical since this region is related to the motor control of the brain. Also it

is considered that the most exterior C electrodes might have had the relevant

information of the lower limb movement derivated from the main electrode

Cz, since this electrode is allocated over the lower limb region of the motor

cortex. However, the array number 42 which includes all the electrodes of

regions FC, C, and CP, gives the best SNR. This is also appears to be quite a

logical outcome, since the amount of desired decodification stays higher above

the noise obtained. Nevertheless, more electrodes does not necessarily mean

better performance, since this array did not gave good results for the CC and

NRMSE values.

On the other hand, in the literature and some other works on decodification,

the time range of delays reaches from 0.5 s to 1.5 s. However, the brain signal

potentials related to the voluntary movements, such as the preparation poten-

tials or premotor potential (Bereitschaftspotential, BP in German), happen

approximately 2 seconds before the beginning of the movement. And in a

work of Úbeda et al. [62], it is mentioned that the performance improves

between 2 s and 2.5 s. This helps the assumption that longer time delays

contribute to the motion planning in the brain, meanwhile immediate delays

could be related to the execution of the movement. This is why in Table 4.1,

the time delays have a wider range, compare to literature, from 2 s to 4.5 s.

In the case of decoding kinematics by segments, creating di↵erent MLR models

according to the action performed seems to give better results than using a

single one. However, as can be seen in Tables 4.2 to 4.4, the decoders gave

better performance for the joint angle the subject focused on moving. That is,

in Task 1 the subject focused on extending the knee and the multiple decoders

improved better for that joint angle specifically; meanwhile the decodification

of the other joint angle gave mixed results between subjects. Similarly during

Task 2, the decoders improved for the hip decodification, giving mixed results
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for the knee joint angle decodification between subjects. This could mean that

only the joint angle of the limb movement in which the subject is focusing is

embedded in the EEG signal, and the decodification of the other joint angle

is not entirely embedded in the EEG signal. Also the current results of CC,

NRMSE and SNR, although good, might not reveal the desired movement

accurately. This could be appreciated in the transitioning of the MLRs for

each action. If there is an abrupt transition, it might lead to a bad outcome of

the output signal. Also, in this work, the specific periods of each action were

known for the testing of the decoder since it is a complete and strictly o✏ine

study.

Another exhaustive search for the best suited parameters was held but applied

to the decodification by segments of the synchronous protocols. Following

a similar procedure of combining electrodes and time delays; however, this

second search involved the di↵erent number of gaps in such delays. It can

be appreciated in Figure 4.33 that the electrodes that mainly contribute to

the decodification are located at the center of the scalp, that is, areas F, C,

and P of the international 10-20 system. It is important to mention that the

electrode Cz is always present for the best decodifications. This appears to

be logical, based on the fact that Cz is the electrode located nearest to the

leg area of the primary motor cortex of the brain. As for Figure 4.34, it can

be seen that the information of movement in the electrical activity is located

around 2.5 s before the movement, and the number of data samples required

to obtain a better decodification is 8 or 9.

To optimize the decodification by segments, a transformation of the EEG sig-

nals was performed using five simple nonlinear functions. However, only using

nine electrodes, the possible combinations for these transformations were an

enormous quantity. For this reason, a genetic algorithm (GA) was used. The

GA worked in order to find the most appropriate combination of transfor-

mation functions for each test subject. As shown in Tables 4.8 and 4.9, the

evaluation metrics do show improvement for most subjects. The exceptions

been subjects 5 and 7 for Task 1, which remained constant on not using any

transformation for the decodification. Nevertheless, although the evaluation
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metrics show improvement with the transformation functions, there are some

unexpected noisy behaviors of the decoded joint angle. This can be appreci-

ated on some of the Figures 4.36 to 4.50, mostly during the resting periods.

With these results it can be seen that for most subjects, applying transforma-

tions to the signal of each electrode has improvements. However, in this thesis

only simple transformations functions were considered.

The contributions of this thesis have provided an enhancement in the under-

standing of the dynamical behavior of the EEG signals, as well as opening new

possibilities to apply more appropriate decodification methods.

Usually the nonlinear dynamical analysis of the EEG signals is used to charac-

terize between mental states, rather than being applied to understand the behavior

of the brain signals during common movements of an individual. With the under-

standing of the dimensionality and persistent behavior of the EEG signals during

lower limb movement in short intervals, more appropriate preprocessing of the sig-

nal could be performed. For example, the dimensionality could be reduced for the

decoders to be more simpler. Along these lines, using simpler decoders could also

mean the usage of smaller sampling frequencies. This could be applied in order to

avoid over-fitness of the decoder. Applying simple decoders to BCIs or BMIs, allows

for the computational load to be smaller, thus allowing the interface to be more user

accessible.

This thesis continues to demonstrate the feasibility of applying linear decoders

in order to reconstruct the trajectories of lower limbs by noninvasively acquired

brain signals. The fact that the decoder remains linear allows for the BCIs or BMIs

to use multiple decoders for di↵erent tasks without overloading the computational

capacity. Also the usage of several simultaneous decoders co-working, grants the

user to reduce the training. Thus allowing a disabled individual to incorporate to

the casual daily living in a more faster time.
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5.2 Future Work

The three selected indices in this thesis provided insight of the underlying

system of the brain. The H values suggest that the system is nonrandom and

persistent on average for short time intervals. The CD values allowed to determine

that the dimension of the dynamical system lies between 4 or 6. Furthermore, the

positive LLE values suggest that the underlying dynamics is indeed nonlinear. These

values apply for individual electrodes, making the assumption that if the cortical

regions interact between each other the brain tends to be a nonlinear system of

higher dimension. With these insights, we could define a nonarbitrary selection of a

candidate model to classify motion tasks and/or to resolve the continuous trajectory

reconstruction of lower limb kinematics. This selection could provide more reliable

and a�ned methods for EEG-based BCI systems to manipulate assistive devices

useful in neuromuscular rehabilitation.

The exhaustive searches for better parameters of the decodification led to

find that the cortical region C, specially electrode Cz, is indispensable for lower

limb kinematic decodification. However, the number of electrodes varies from the

international 10/10 system to the 10/20 system. Perhaps, using more electrodes

on this region provides a better performance, which could be possible to achieve

using the 10/5 system. Other neighbor regions also contribute to the decodification,

specifically cortical regions F and P, where the latter appear to have more relevance.

With these considerations, only a limited numbers of electrodes could be needed in

future works, focusing to cover the F, C, and P regions. The other parameters could

be helpful in future studies, where the delay and number of data samples considered

could also help to establish better experimental setups, e.g., longer periods between

tasks, or di↵erent lengths of task execution.

Using di↵erent MLR models for the di↵erent actions proved to give better

results in CC, NRMSE, and SNR values. However, the transitioning between MLR

models should be taken into consideration. Also, since this work was strictly o✏ine,

the di↵erent action periods were known. On the other hand, the decoders seemed

to give a good performance for the appointed joint angle of the task performed.

This could mean that the slow cortical potentials only have embedded an specific
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limb movement. Further study involving di↵erent tasks simultaneously should be

taken in consideration for the future. Along this lines, a better transitioning between

models should be considered. Furthermore, the classification of each action could be

obtained during the testing period in order to perform the appropriate decodification

without prior knowledge of the action. All of these considerations should be taken

into account in order to focus the study into future BCI applications, be them

prosthetic, using exoskeletons, or virtual reality rehabilitation.

The transformations performed to the electrodes individually, found by the

GA, proved to give a better performance for the decodification. However, only simple

nonlinear functions were applied. In the future, more complex nonlinear functions

could be applied for better manipulation of the EEG signals. Also, interaction

e↵ects between electrodes should be considered. This comes from the idea that

somatosensory cortex could give a certain degree of information that could be used

to give another type of signal in contrast to the somatomotor cortex.
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Status: Published.

5.3.4 Scientific conferences
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I Introduction

According to the Centers for Disease Control and Prevention (CDC) in 2015,

there were about 18.2 million adults in the United States unable (or had di�culty) to

walk a quarter mile [108]. And the American FactFinder reported in 2016 that 21.1

million adults had an ambulatory di�culty [2]. The European Union reported in

2015 that there were around 11.8 million people with di�culty walking and around

7.2 million with di�culty sitting or standing [3]. Therefore, it comes to interest to

restore the mobility of this growing population, by means of improving the techno-

logical options such as a neural machine interface (NMI). A NMI uses bioelectrical

signals in order to activate or manipulate an external device. The case of using brain

signals to operate a computer is called a brain-computer interface (BCI) [109]. Elec-

troencephalography (EEG), a non-invasive technique to record the neural activity

of the brain, has been used to interpret the motion intent of the user of a BCI [110].

Many BCI studies have been done in the past decade, for example, in 2013 Do et al.

[29], integrated a BCI system with a robotic gait orthosis (RoGO). He et al. [27],

were able to decode kinematics and kinetics of the lower-limb joints during walking

using an exoskeleton. In a similar way, Úbeda et al. [41], successfully decoded angles

of the knee using brain signals during treadmill walking. These limited number of

studies have implemented decoding schemes; nevertheless, they just decode a single

type of task. The mentioned studies show results of the decoding of the lower limb

kinematics obtained with actual walking, and using conventional EEG equipment.

In this paper, several linear regression models were used to decode the hip and

knee angles from low frequency EEG signals (0.1-2 Hz) [42, 62]. These models were

created under di↵erent conditions, which are: treating the process data as a whole

or dividing it into segments.

For the experimental tests, subjects were asked to raise the foot or knee

while remaining seated, meanwhile the associated cortical information was recorded

through EEG. The decoded hip and knee angles were then compared to the actual

ones in order to evaluate the performance of the models. This paper is organized as

follows: the experimental setup, data acquisition, signal processing, and decoding

methods are in section 2. The results are shown in Section 3. Section 4 is devoted
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to the discussion. Finally, in Section 5 some concluding remarks are presented.

II Materials and Methods

II.a Experimental Setup

Nine subjects (4 male and 5 female) with no motor pathologies were asked,

and gave consent, to perform the trials. The experimental procedures involving

human subjects described in this paper were approved by the Institutional Review

Board. Subjects were asked to realize two lower-limb tasks. The first task consisted

in raising the foot, and the second task in raising the knee, both performed while

remaining seated. The trial began with the resting period, were the subject was

sitting comfortably on a chair maintaining the thigh in an horizontal position and

the shank around 90� with respect to the thigh. After 30 seconds have passed, the

subject raised the right foot (Trial type 1) or knee (Trial type 2) to its maximum

position, holding the limb up for 3 seconds. After said period, the subject lowered

the limb maintaining this position for another 3 seconds. After 10 repetitions, the

subject rested for another 30 seconds. To have the trials controlled, the subjects

were shown a video with indicators to perform the di↵erent activities. This video

consisted of di↵erent simple illustrations that indicate the activities, such as the

resting period, that helps the subject to focus on a single white dot in order to

not get distracted. Followed by 10 repetitions of green-upward and red-downward

arrows, to indicate the raising and lowering of the limb. And it also has start and

finish frames.

II.b Data Acquisition

For the acquisition of the neural signals, the MOBITA-W-32EEG system was

used. The Mobita R� was adapted to the Electro-Cap to give out 19 EEG channels.

After placing the cap on the subjects, the impedance of the electrodes was checked

using the Model 1089NP ChecktrodeTM. The desired impedance range was: less

than 5K⌦ which means a good preparation, according to the specifications of the

product, or between 5K⌦ to 10K⌦ meaning it was an OK preparation. During the

EEG recording, markers indicating the raising and lowering of the limb were added

on the software in order to specify the beginning and ending of the activity. For
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the acquisition of the kinematic variables, the subjects were placed in a controlled

environment and wore dark clothes and three white spherical markers (Figure A.1).

The markers were allocated on the right hip, knee and ankle, in order to give their

locations by the processing of the video taken by a NI 1752 Smart Camera running

at 60 frames per second (fps).

Figure A.1: Test subject wearing three spherical markers allocated on the right hip,

knee and ankle, for video processing.

II.c Signal Preprocessing

To prepare any EEG signal for further processing, it was decided to use the

computational method of fast independent component analysis (FastICA). This

method was implemented in order to separate the artifacts (blinks) embedded in

the data. Although 19 electrode locations were recorded, only 9 located in the

frontal, central and parietal cortex (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4) were

selected. Afterwards, these 9 channels were filtered using two elliptic filters, one 5th

order low-pass below 2 Hz, and a 3rd order high-pass above 0.1 Hz. Finally, the

EEG data of each electrode was standardized with the following equation (EV [t])

by subtracting, for each time sample (t), the mean (V̄ ) of the signal, and dividing

the result by the standard deviation (SDV ) as seen in Equation A.1.

EV [t] =
V [t]� V̄

SDV

. (A.1)
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As for the kinematic variables, the hip and knee angles were calculated using the

center of each marker (as shown in Figure A.1) and upsampled to match the 1000

Hz of the EEG signal.

II.d Decoding Method

To decode individual joint angles from low frequency EEG components a mul-

tiple linear regression (MLR) was applied, which has the following formula:

x[t] = a+
NX

n=1

LX

k=0

bnkSn[t�Gk] (A.2)

where x[t] is the joint angle at time t and Sn is the voltage measured at electrode

n. N are the number of channels, L are the number of lags, G is the gap between

lags, and a and b are the weights of the linear regression. L was limited to 10 and

N corresponds to 9 of the electrodes introduced in the decoder. The gap used was

of 250, which multiplied with the maximum lag reached 2500 samples (2.5s) in the

past of the current sample.

III Results

As stated, the subjects performed two type of trials: raising the foot and

the knee while remaining seated, separately. In this approach di↵erent decoders

were created: Decoder 1 (D1) used a single MLR to decode all the trial involving

the three activities of resting, raising, and lowering. Decoder 2 (D2) used a pair

of transitioning MLRs, one for the resting periods, and another for the movement

period. Decoder 3 (D3) used three MLRs, one for the resting periods, and two

separate decoders for raising and lowering of the movement periods. This can be

visualized in Figure A.2.
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Figure A.2: Illustrative sections for which a MLR was created. The same angles are

displayed in order to illustrate the sections: (a) Decoder 1 (D1) where yellow corre-

sponds to a single MLR for all activities, (b) Decoder 2 (D2) where blue corresponds

to resting periods, and cyan to the movement period, (c) Decoder 3 (D3) where blue

corresponds to resting periods, green for the raising and red for the lowering period.

Three trials of each test subject were used for training to obtain the decoder,

and one trial was used for testing. The selected metrics to evaluate the performance

of the decodifications were the Pearson correlation coe�cient (CC), Normalized Root

Mean Square Error (NRMSE), and the Signal-Noise Ratio (SNR). These metrics

along with their mean and standard deviations, for each subject and trial type

are shown in Tables A.1-A.3. In Figure A.3 it can be seen the best decodification

regarding the three metrics.
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CC Trial type 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.2132 0.9106 0.9351 0.2541 0.7228 0.9318

2 0.5935 0.6134 0.6251 0.2758 0.7022 0.9444

3 0.1750 0.6557 0.8489 0.1749 0.6780 0.8461

4 0.3453 0.0433 0.0626 0.3087 0.7292 0.9145

5 -0.0043 0.0263 0.0993 -0.1068 0.3486 0.7177

6 0.2065 0.4734 0.4466 0.1560 0.5991 0.9060

7 0.3114 0.7338 0.8911 0.3305 0.7302 0.9052

8 0.1565 0.3925 0.5385 0.1385 0.7026 0.8742

9 -0.0076 0.2508 0.5160 -0.0200 0.5079 0.8318

µ 0.2211 0.4555 0.5514 0.1680 0.6356 0.8746

� 0.1844 0.3062 0.3186 0.1488 0.1304 0.0697

Trial type 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.0386 0.5449 0.8479 0.0492 0.6250 0.8326

2 0.5039 0.8399 0.9142 0.2660 0.5135 0.6232

3 0.2734 0.7408 0.8723 0.2696 0.7441 0.8753

4 0.4125 0.7581 0.9093 0.2549 0.4435 0.5906

5 0.1508 0.4636 0.7624 0.0875 0.5108 0.6969

6 0.3260 0.7183 0.9077 0.3168 0.7006 0.8649

7 0.4323 0.7826 0.9206 0.3919 0.7779 0.9046

8 0.1569 0.6549 0.8897 0.1549 0.6759 0.8883

9 0.3936 0.7756 0.9279 0.3771 0.7502 0.9027

µ 0.2987 0.6976 0.8835 0.2409 0.6379 0.7977

� 0.1553 0.1222 0.0520 0.1206 0.1217 0.1255

Table A.1: Pearson correlation coe�cient (CC) values of the decodifications of the

hip and knee angles for nine subjects and their mean and standard deviations for

trial types 1 and 2. D1-D3 stand for the decoder used.
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NRMSE Trial type 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.3016 0.1467 0.1332 0.3693 0.2621 0.1382

2 0.1386 0.1390 0.1397 0.3589 0.2611 0.1223

3 0.3443 0.2662 0.1948 0.3592 0.2679 0.2031

4 0.1432 0.1701 0.1697 0.3731 0.2686 0.1592

5 0.3136 0.3293 0.3525 0.4030 0.3886 0.2739

6 0.1239 0.1145 0.1186 0.3722 0.3014 0.1597

7 0.3450 0.2515 0.1753 0.3521 0.2565 0.1645

8 0.7377 0.7305 0.7292 0.3751 0.2812 0.2139

9 0.5601 0.5686 0.5856 0.4008 0.3425 0.2178

µ 0.3342 0.3018 0.2887 0.3737 0.2922 0.1836

� 0.2045 0.2129 0.2229 0.0177 0.0452 0.0474

Trial type 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.4016 0.3422 0.2234 0.4000 0.3284 0.2720

2 0.2776 0.1740 0.1332 0.2676 0.2491 0.2426

3 0.3425 0.2391 0.1755 0.2913 0.2035 0.1555

4 0.3251 0.2417 0.1588 0.2798 0.2820 0.2720

5 0.3283 0.3311 0.2441 0.3166 0.2864 0.2417

6 0.3295 0.2444 0.1462 0.2574 0.1941 0.1361

7 0.2711 0.1919 0.1232 0.3012 0.2310 0.1895

8 0.3567 0.2726 0.1671 0.3459 0.2582 0.1652

9 0.3266 0.2248 0.1334 0.2796 0.2015 0.1302

µ 0.3288 0.2513 0.1672 0.3044 0.2482 0.2005

� 0.0391 0.0565 0.0417 0.0447 0.0455 0.0572

Table A.2: Normalized root mean square error (NRMSE) values of the decodifi-

cations of the hip and knee angles for nine subjects and their mean and standard

deviations for trial types 1 and 2. D1-D3 stand for the decoder used.
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SNR Trial type 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.0660 4.8023 7.5955 0.1446 1.1483 6.9661

2 0.8047 1.0010 1.2076 0.2627 1.2316 8.3188

3 0.0845 1.0615 3.4154 0.0867 1.0538 3.3091

4 0.1198 0.2819 0.3125 0.1600 1.2398 4.8973

5 0.0547 0.1986 0.4409 0.1132 0.6402 1.7562

6 0.1006 0.5210 0.6138 0.1040 0.7984 4.7015

7 0.0725 1.2278 3.8479 0.1262 1.3141 5.2767

8 0.0408 0.5050 1.2274 0.0313 1.0217 4.0348

9 0.1146 0.5723 1.2355 0.0507 0.5771 2.4405

µ 0.1620 1.1301 2.2107 0.1199 1.0028 4.6334

� 0.2425 1.4220 2.3806 0.0677 0.2702 2.0830

SNR Trial type 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.1797 0.9921 3.3389 0.1503 1.0912 2.9009

2 0.5916 2.8349 5.8515 0.3970 0.7395 1.2041

3 0.1016 1.1737 3.4835 0.1289 1.5161 4.1045

4 0.4208 2.0321 5.7645 0.5063 0.9903 1.4626

5 0.3849 1.0746 2.3876 0.2019 0.9461 1.6554

6 0.2323 1.4419 5.1985 0.1970 1.2177 3.2991

7 0.3197 2.0092 5.6284 0.2182 1.7077 3.8768

8 0.0638 0.8850 4.4156 0.0646 0.9454 4.3786

9 0.1159 1.2583 6.1902 0.0999 0.9138 3.8707

µ 0.2678 1.5224 4.6954 0.2182 1.1186 2.9725

� 0.1754 0.6428 1.3487 0.1440 0.3117 1.2317

Table A.3: Signal-Noise Ratio (SNR) values of the decodifications of the hip and

knee angles for nine subjects and their mean and standard deviations for trial types

1 and 2. D1-D3 stand for the decoder used.
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Figure A.3: Decodification of the knee angles using three decoders. From top to

bottom: Decoder 1 (D1), Decoder 2 (D2), and Decoder 3 (D3). As illustrated in

Figure A.2.

IV Discussion

In the case of decoding kinematics, creating di↵erent MLR models according

to the action performed seems to give better results than using a single one. As can

be seen in the increasing mean values of CC and SNR, and the decreasing mean

values of NRMSE. In some occasions a single MLR gave a higher CC value than the

decodification done by two or three; however, the NRMSE and SNR values proved

that this was misleading. Nevertheless, the current results of CC, NRMSE and SNR,

although good, might not reveal the desired movement accurately. This could be

appreciated in the transitioning of the MLRs for each action. If there is an abrupt

transition, it might lead to a bad outcome of the output signal. Also, in this work,

the specific periods of each action were known for the testing of the decoder since

it is a complete and strictly o✏ine study.

V Concluding remarks

Using di↵erent MLR models for the di↵erent actions proved to give better

results in CC, NRMSE and SNR values. However, the transitioning between MLR



Appendix A. Article 125

models should be taken into consideration. Also, since this work was strictly o✏ine,

the di↵erent action periods were known. For future work, a better transitioning

between models should be considered. Furthermore, the classification of each action

could be obtained during the testing in order to perform the appropriate decodifi-

cation without prior knowledge of the action. All of these considerations should be

taken into account in order to focus the study into future BCI applications, be them

prosthetic, using exoskeletons or virtual reality rehabilitation.
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[10] A. Úbeda, A. Costa, E. Iáñez, E. Piñuela-Mart́ın, E. Márquez-Sánchez, A. J.

del Ama, A. Gil-Agudo, and J. M. Azoŕın, “Single joint movement decoding
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Iáñez, and José M. Azoŕın. Decoding knee angles from EEG signals for

di↵erent walking speeds. In 2014 IEEE International Conference on Sys-

tems, Man, and Cybernetics (SMC), pages 1475–1478, October 2014. DOI:

10.1109/SMC.2014.6974123.

[42] Alessandro Presacco, Ronald Goodman, Larry Forrester, and Jose Luis

Contreras-Vidal. Neural decoding of treadmill walking from noninvasive elec-

troencephalographic signals. Journal of Neurophysiology, 106:1875–1887, July

2011. doi:10.1152/jn.00104.2011.

[43] Thierry Castermans, Thierry Dutoit, and Matthieu Duvinage. Method to De-

termine an Artificial Limb Movement from an Electroencephalographic Signal.

Patent, February 2013. US 2013046715A1.

[44] U. Rajendra Acharya, S. Vinitha Sree, G. Swapna, Roshan Joy Martis, and

Jasjit S. Suri. Automated EEG analysis of epilepsy: A review. Knowledge-

Based Systems, 45:147–165, 2013.

[45] Kannathal Natarajan, Rajendra Acharya U, Fadhilah Alias, Thelma Tiboleng,

and Sadasivan K Puthusserypady. Nonlinear analysis of EEG signals at dif-

ferent mental states. BioMedical Engineering OnLine, 3(7), 2004.

[46] Kusuma Mohanchandra, Snehanshu Saha, and K. Srikanta Murthy. Evidence

of chaos in EEG signals: An application to BCI. In Ahmad Taher Azar and

Sundarapandian Vaidyanathan, editors, Advances in Chaos Theory and Intel-



Bibliography 133

ligent Control, volume 337, pages 609–625. Springer International Publishing,

2016.

[47] E.I. Scarlat, Cristina Stan, and C.P. Cristescu. Chaotic features in roma-

nian transition economy as reflected onto the currency exchange rate. Chaos,

Solitons & Fractals, 33(2):396 – 404, 2007.

[48] Subir Mansukhani. Predictability of time series. Analytics. Maryland: IN-

FORMS, pages 29–31, July/August 2012.

[49] Gopika Gopan K, Neelam Sinha, and Dinesh Babu J. EEG signal classification

in non-linear framework with filtered training data. In 2015 23rd European

Signal Processing Conference (EUSIPCO), pages 624–628, Aug 2015.

[50] N. Kannathal, U. Rajendra Acharya, C.M. Lim, and P.K. Sadasivana. Char-

acterization of EEG-A comparative study. Computer Methods and Programs

in Biomedicine, 80(1):17–23, 2005.

[51] U. Rajendra Acharya, Oliver Faust, N. Kannathal, TjiLeng Chua, and Swamy

Laxminarayan. Non-linear analysis of EEG signals at various sleep stages.

Computer Methods and Programs in Biomedicine, 80(1):37–45, 2005.

[52] Harold Edwin Hurst. Long-term storage capacity of reservoirs. Transactions

of American Society of Civil Engineers, 116:770–799, 1951.

[53] Francesco Camastra. Data dimensionality estimation methods: a survey. Pat-

tern Recognition, 36(12):2945 – 2954, 2003.

[54] Benoit Mandelbrot. How long is the coast of britain? statistical self-similarity

and fractional dimension. Science, 156(3775):636–638, 1967.

[55] Peter Grassberger and Itamar Procaccia. Measuring the strangeness of strange

attractors. Physica D: Nonlinear Phenomena, 9(1-2):189–208, 1983.

[56] Mei Ying Boon, Bruce I. Henry, Catherine M. Suttle, and Stephen J. Dain.

The correlation dimension: A useful objective measure of the transient visual

evoked potential? Journal of Vision, 8(1):6, 2008.



Bibliography 134

[57] Glenn Elert. The Chaos Hypertextbook. https://hypertextbook.com/

chaos/lyapunov-1/, 1998-2016. [Online; accessed July-24-2018].

[58] Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determin-

ing lyapunov exponents from a time series. Physica D: Nonlinear Phenomena,

16(3):285–317, 1985.

[59] Fernanda Strozzi, Eugénio Gutierrez, Carlo Noè, Tommaso Rossi, Massimil-
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