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ABSTRACT 

Postural control analysis has been one of the most studied research 

fields in motor control. Specifically, balance tasks have been frequently used to 

assess motor coordination due to the fact that maintaining balance is a frequent 

activity and, at the same time, it is also a complex ability that involves controlling 

many neuromuscular components. In the literature, postural control is commonly 

analyzed though the analysis of the variability of the center of pressure (CoP) 

fluctuations in balance tasks. Variability of the human movement has been 

frequently interpreted as an error of the system that should be reduced as much 

as possible. However, current studies have outlined movement variability as a 

functional characteristic of the system, boosting the individual´s ability to adapt 

to the environment. Under this perspective, several studies have tried to find out 

if there is a relationship between motor variability, performance and the ability to 

adapt. With this purpose, motor variability has been analyzed through many 

measures, among which we can find traditional variables used to assess the 

amount of variability. Recently, new variables have been used to assess the 

variability structure by mathematical nonlinear tools. Despite the large number 

of studies on the reliability of these variables, there is still controversy about 

which variables better characterize postural control. The first study presented in 

this doctoral thesis analyses the reliability of different tools, both traditional and 

nonlinear, usually used to measure postural control in standing balance tasks. 

The results indicated that, in balance tasks, nonlinear variables show greater 

reliability than traditional scattering variables in the CoP analysis. In addition, 

mean velocity of CoP shows higher reliability values than scattering variables, 

showing similar values to nonlinear variables. 

After knowing which variables are better to characterize postural control 

in balance tasks, the next step was to analyze the relationship between variability 

and performance. In the literature we can find controversial results about 

whether variability is related to greater or lower performance and how it is linked 

to the ability to adapt. One of the possible reasons for this controversy can be 

that the structure of variability depends on the different constraints from the 

organism, the environment and the task. In order to test this hypothesis, we 
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outlined a study in which different task constraints were manipulated to observe 

their effect on motor variability and its relationship with performance. This study 

allowed us to verify that the relationship between the structure of CoP variability 

and the performance in a standing balance task is dependent on the task 

difficulty and the availability of biofeedback. Therefore, constraints should be 

taken into account to analyze motor variability and its relationship with 

performance and the ability to adapt. 

Finally, according to current studies, it seems that variability can be 

related to the ability to adapt and the learning process. The third study presented 

in this thesis tried to check this hypothesis developing two experimental 

protocols in balance tasks in which a practice period was applied to promote 

learning. The results of both experiments showed that motor variability structure 

in balance tasks seems to reveal the system´s ability to learn based not only on 

exploration processes but also on error sensitivity. 

Future studies should go in depth into the analysis of the motor variability 

structure as an index for predicting performance, the ability to adapt and 

learning, taking into account the task constraint effects and different motor tasks 

in order to extrapolate the results of this doctoral thesis. 
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RESUMEN 
El análisis del control postural es un campo de trabajo muy estudiado 

dentro del control del movimiento. En concreto, las tareas de equilibrio han sido 

muy utilizadas para la valoración de la coordinación motriz, ya que el 

mantenimiento del equilibrio es una actividad usual y, a su vez, muy compleja 

que implica la coordinación de numerosos componentes neuromusculares. En 

la literatura, frecuentemente se analiza el control postural a través del análisis 

de la variabilidad de las fluctuaciones del centro de presiones en tareas de 

equilibrio. Podemos encontrar autores que indican que la variabilidad del 

movimiento humano es un error que debe ser reducido lo máximo posible, 

mientras que los estudios más actuales indican que la variabilidad presenta un 

rol funcional, favoreciendo la capacidad del individuo para poder adaptarse a las 

condiciones del entorno. Bajo esta última perspectiva, numerosos estudios han 

tratado de analizar si existe relación o no entre la variabilidad del movimiento y 

el rendimiento o capacidad de adaptación. Para conseguir este objetivo, la 

variabilidad ha sido analizada a través de numerosas medidas, entre las que 

podemos encontrar medidas tradicionales utilizadas para analizar la magnitud 

de la variabilidad, y otras medidas más novedosas, utilizadas para analizar la 

estructura de la variabilidad a través de herramientas matemáticas no lineales. 

A pesar de los numerosos estudios sobre la fiabilidad de dichas medidas, aún 

existe controversia sobre cuáles pueden caracterizar mejor el control postural. 

Por ello, el primer estudio presentado en esta tesis doctoral se centró en el 

análisis de la fiabilidad de diferentes herramientas de medida del control 

postural, tanto tradicionales como no lineales, en tareas de equilibrio en 

bipedestación. Los resultados nos indicaron que en tareas de estabilidad, las 

herramientas no lineales muestran una mayor fiabilidad que las medidas 

tradicionales de dispersión. Además, la velocidad media del centro de presiones 

es más fiable que las variables de dispersión, presentando valores similares a 

los de las herramientas no lineales.  

Tras conocer cuáles serían las variables más adecuadas para 

caracterizar las tareas de equilibrio, el siguiente paso fue analizar la relación 

entre la variabilidad y el rendimiento. En la literatura podemos encontrar cierta 
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controversia acerca de si la variabilidad está relacionada con un mayor o menor 

rendimiento, y con la capacidad de adaptación. Uno de los posibles motivos de 

dicha controversia puede ser que la estructura de la variabilidad dependa de 

diferentes constreñimientos procedentes del organismo, del entorno y de la 

tarea. Para poder contrastar esa hipótesis planteamos un estudio en el que se 

manipularon diferentes constreñimientos de la tarea, pudiendo observar su 

efecto sobre la variabilidad y su relación con el rendimiento. Este estudio nos 

permitió confirmar que la relación entre la estructura de la variabilidad y el 

rendimiento en una tarea de equilibrio es dependiente de la dificultad de la tarea 

y de la disponibilidad de biofeedback, por lo que los constreñimientos de la tarea 

deben ser tenidos en cuenta para el análisis de la variabilidad motora y su 

relación con el rendimiento y la capacidad de adaptación.  

Por último, de acuerdo con los actuales trabajos, parece ser que la 

variabilidad puede estar relacionada con la capacidad de adaptación y con el 

aprendizaje. El tercer estudio presentado en este trabajo trató de contrastar 

dicha hipótesis a través del desarrollo de dos protocolos de tareas de equilibrio 

en los que se aplicó un período de práctica para provocar un proceso de 

aprendizaje. Los resultados de ambos experimentos indicaron que la estructura 

de la variabilidad en tareas de equilibrio parece revelar la capacidad de los 

individuos para aprender, basándose, no sólo en los procesos exploratorios, 

sino también en la sensibilidad al error. 

Futuros estudios deberán ir encaminados en profundizar en el análisis 

de la capacidad predictiva de la variabilidad motora, tanto del rendimiento como 

de la capacidad de adaptación, teniendo en cuenta el efecto de más 

constreñimientos de la tarea y en diferentes habilidades motrices para poder 

extrapolar los resultados de esta tesis doctoral. 
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PREFACE 

 The present thesis titled Variability, performance and the ability to 

adapt in balance tasks covers three experimental works performed between 

2012 and 2016 at the Research Sport Center of Miguel Hernandez University, 

Department of Health Psychology. Part of the work developed in this 

doctoral thesis was carried out during a research visit in the laboratory of the 

Centre d'Etudes des Transformations des Activités Physiques et Sportives 

(CETAPS), of the Faculty of Sport Sciences at the University of Rouen, 

France, under the supervision of Dr. Ludovic Seifert from April to June 

2014, and in the Centre for Sports Engineering Research at Sheffield 

Hallam University, UK, under the supervision of Professor Keith Davids 

from January to March 2015. Three original experimental studies are 

included in this manuscript. The first one was published in the international 

peer-reviewed Journal of Motor Behavior, the second one was accepted in 

the international peer-reviewed journal Experimental Brain Research and 

the third study has been presented as a preliminary manuscript that will be 

submitted in the following months. 
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− FPU mobility fellowship. 
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1.1. Postural control 

Postural control involves the body´s position in space for dual purposes: 

1) to build up posture against gravity and ensure balance, and 2) to fix the

orientation and position of the segments that serve as a reference frame for 

perception and action with respect to the external world (Hassan, Mockett, & 

Doherty, 2001; Yamamoto et al., 2015). Constantly we are controlling our 

posture either by maintaining a static corporal position (sitting on a chair) or 

performing a dynamic task (from daily skills such as walking to complex sports 

movements such as making a volleyball shot). In all of these cases, stability and 

the position of the body segments are fundamental in achieving the goal of the 

motor task. Every motor task is nested on postural regulation and balance, and, 

for this reason, postural control has been thoroughly studied in motor control.  

In this thesis, we are going to focus on the first postural control function: 

balance. Balance is related to the inertial forces acting on the body and the 

inertial characteristics of body segments (Winter, 1995). Thus, maintaining 

balance is based on keeping the Center of Gravity (CoG) projection on the base 

of support (Manor et al., 2010; Riley & Turvey, 2002; Yamamoto et al., 2015). In 

order to assess the ability to maintain balance during quiet standing, the 

fluctuations of the CoG have usually been measured through the time course of 

the Center of Pressure (CoP) (Figure 1). The CoP is the point of application of 

the ground reaction force vector, and it seems to be a collective variable that 

reflects the activities of many neuromuscular components acting together to 

keep the CoG within the base of support (Manor et al., 2010; Riley & Turvey, 

2002; Winter, 1995). The fluctuations or excursions of the CoP correspond to 

postural sway (Yamamoto et al., 2015) and several studies in postural control 

have been focused on assessing postural sway in order to evaluate balance 

(Prieto, Myklebust, Hoffmann, Lovett, & Myklebust, 1996; Ruhe, Fejer, & Walker, 

2010; Yamamoto et al., 2015). For example, a quiet stance is characterized by 

small amounts of postural sway and, therefore, a large postural sway is generally 

interpreted as a sign of poor balance (Hassan et al., 2001; Samuel, Solomon, & 

Mohan, 2015). 
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Figure 1. Representation of antero-posterior (AP) and medio-lateral (ML) components of 
the Center of Pressure (CoP) in a balance task. 

In the literature, the CoP has been used to assess motor control 

performance and other specific domains such as the effects of motor disorders 

on postural control (Cattaneo et al., 2015; Minamisawa, Takakura, & Yamaguchi, 

2009), the reduction of balance according to ageing (Kilby, Slobounov, & Newell, 

2014; Zhou et al., 2013), infant development (Dusing, Thacker, & Stergiou, 2013; 

Harbourne, Deffeyes, Kyvelidou, & Stergiou, 2009) or the relationship between 

postural control and some sports skills (Hrysomallis, 2011; López et al., 2013). 

Many of these studies have assessed postural control through the study of the 

variability of postural sway. 

1.2. Motor variability in postural control 

1.2.1. Motor variations and control  

Motor variability is a very relevant topic in motor control because it is an 

inherent characteristic of motor behavior (Edelman, 1992; Stergiou & Decker, 

2011). These normal variations that occur in motor performance across multiple 

repetitions of a task reflect changes in both space and time and they are easily 

observed (Bernstein, 1967; Newell & Slifkin, 1998; Stergiou, Harbourne, & 

Cavanaugh, 2006). 

Movement variation is obvious when the person changes the goal from 

response to response, amending the chosen motor program (Schmidt, Zelaznik, 

Hawkins, Frank, & Quinn Jr, 1979) or adapting the emergent motor pattern 
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according to the result obtained from the previous trial. However, even when the 

subject tries to maintain the same goal and the same pattern in successive trials, 

variability still appears. It is impossible to perform two identical movements as 

much as one tries, even though every repetition is successful. In other words, 

each movement is unique and unrepeatable. But, what is the source of this 

human variation? 

Motor variability appears as a consequence of different sources of 

variation. One common source of variability in nature comes from the chaotic-

mechanical variations of the environment and the interaction between it and the 

elements of the human system (e.g., tissues, muscles, bones, joints…). The 

human body is an open thermodynamic system engaged in constant energy 

transactions and constantly adapting to environmental changes (Davids, Glazier, 

Araujo, & Bartlett, 2003). In addition, even though the environment remains 

constant, the elements of the human system are enrolled in continuous internal 

interactions clearly exhibited in the Central Nervous System (CNS). Neurons 

throughout the brain show a high degree of variability in their spiking activity even 

during seemingly constant task conditions (Mandelblat-Cerf, Paz, & Vaadia, 

2009). Two types of variation in spike trains of neurons have been recently 

outlined: stochastic variations or “noise” variability, and trial-by-trial correlated 

fluctuation or “signal” variability (Lisberger & Medina, 2015). According to 

Lisberger and Medina (2015), if neuronal variability were just stochastic 

variations, the large number of neurons at each level of a mammalian sensory-

motor system should allow the noise to be averaged. However, neuron-behavior 

correlations are introduced in this study as the main cause of motor variability 

because they imply that some of variation in the firing of one neuron is being 

transmitted all the way to the final output. 

Besides these variability sources, we must also take into account the 

large number of possible configurations that the motor system has available in 

order to successfully achieve the same motor goal. Our motor system has a huge 

number of degrees-of-freedom (DOF), which make possible to find a unique 

solution through different ways. This is due to the fact that any level of description 

of the neuromotor system is characterized by more elements than are needed 
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to deal successfully with the task constraints. Bernstein (1967) called this 

characteristic the DOF problem or the problem of eliminating redundant DOF. 

This problem occurs when the “controller” needs to regulate some DOF 

functional for achieving a specific task goal and to eliminate less functional 

system DOF from the coordinative structure used for action (Bernstein, 1967). 

 With the purpose of explaining motor variability and its role in motor 

control, researchers have studied it from two different points of view. The first 

one considers variability to be an error of the system, with the aim of the 

organism to reduce it as much as possible in order to improve performance 

(Newell & Slifkin, 1998; Schmidt, 1975; Williams, Davids, & Williams, 1999). That 

“error” is mainly related to the mechanisms involved in the muscle contractions 

needed to run a motor program, introducing noise and movement inaccuracy 

(Schmidt, 1975; Schmidt et al., 1979). According to this perspective, as we have 

indicated before, “the subject may execute the same program over and over on 

consecutive trials, but noise in the motor system downstream from the motor 

program makes the produced output different on different attempts” (Schmidt et 

al., 1979, p.420).  

However, in the literature, we can also find that motor variability is 

interpreted as a functional characteristic of the system. From this perspective, it 

is suggested that movement systems are based on spontaneous pattern 

formations between the different system parts, which emerge through processes 

of self-organization (J. A. S. Kelso, Bergman, Cairns, Nilsson, & Nystedt, 2000). 

This self-organization is possible due to the system´s ability to freeze or unfreeze 

the DOF during the chain of movement in order to adapt to the environment 

(Newell & Vaillancourt, 2001). Then, motor variability may help to exploit the 

large number of possible configurations offered by the many motor system DOF, 

and it could play an important role for motor learning and the ability to adapt 

(Barbado, Sabido, Vera-Garcia, Gusi, & Moreno, 2012; Davids et al., 2003; 

Lamoth, van Lummel, & Beek, 2009; Mandelblat-Cerf et al., 2009; Moreno & 

Ordoño, 2010; Zhou et al., 2013). In this sense, variability enables continuous 

exploration of possible motor states and neuronal configurations that can lead to 

the desired state by trial and error (Faisal, Selen, & Wolpert, 2008; Fiete, Fee, & 
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Seung, 2007; Rokni, Richardson, Bizzi, & Seung, 2007; Wu, Miyamoto, Castro, 

Ölveczky, & Smith, 2014).  

These two perspectives have been extrapolated to postural control. The 

variability of the postural sway shown in balance tasks can be interpreted as 

mistaken fluctuations of the motor system, which should be reduced, or as 

functional fluctuations, which reflect exploratory behaviors in adaptation or 

learning processes. From our point of view, both interpretations are possible. In 

this sense, different tools for analyzing CoP variability have been used to 

understand the characteristics of CoP changes. In the next section, we are going 

to focus on how the variability of CoP has been measured. 

1.2.2. Analyzing postural control through CoP variations. 

Several variables of the dynamic of CoP have been used to assess 

postural control. Mainly, two different global dimensions about motor variability 

have been assessed: the amount of variability, measured by traditional 

scattering variables, and the structure of the variability, also addressed by its 

complexity and measured using nonlinear tools (Caballero, Barbado, & Moreno, 

2014; Stergiou et al., 2006).  

Traditionally, linear scattering measures have been used to provide a 

description of the amount of CoP variability around a central point, especially the 

standard deviation (SD) (Borg & Laxåback, 2010; Le Clair & Riach, 1996). 

Evaluating variability using these tools arises from the idea that the mean is the 

goal performance and everything away from the mean is error (Stergiou & 

Decker, 2011). Thus, SD has been used to characterize both the distribution of 

the data set and the amount of noise present in the perceptual-motor system 

(Newell & Slifkin, 1998). Other linear measures have been used to describe the 

sway and the dispersion or area during a given time with a balance task such as 

the root mean square (Haran & Keshner, 2008), the resultant distance -RD- 

(Roerdink, Hlavackova, & Vuillerme, 2011), the central tendency measure 

(Ramdani et al., 2011), the CoP sway area (Hageman, Leibowitz, & Blanke, 

1995; Manor et al., 2010), or the mean velocity -MV- (Chiari, Cappello, Lenzi, & 

Della Croce, 2000; Le Clair & Riach, 1996). 



1. INTRODUCTION 
 

8 

Even though these types of scattering variables have been used to 

provide information about motor variability, some authors have suggested that 

these variables do not provide enough information about the nature of variability 

(Caballero et al., 2014; Stergiou & Decker, 2011). The valid usage of traditional 

linear measures to study variability assumes that variations between repetitions 

of a task are random and independent –of past and future repetitions– (Lomax 

& Hahs-Vaughn, 2013). However, several studies have suggested that 

movement fluctuations have deterministic properties (Dingwell & Cusumano, 

2000; Dingwell & Kang, 2007; Harbourne & Stergiou, 2003; Miller, Stergiou, & 

Kurz, 2006), and they may reflect changes in the biological system’s behavior in 

order to adapt to environmental conditions (Clark & Phillips, 1993; Hamill, van 

Emmerik, Heiderscheit, & Li, 1999; Kamm, Thelen, & Jensen, 1990; A. Kelso, 

1995; Thelen, 1995; Thelen, Ulrich, & Wolff, 1991). Several authors have 

suggested that linear tools are not able to assess these changes (Dingwell & 

Cusumano, 2000; Dingwell & Kang, 2007; Harbourne & Stergiou, 2009; Miller et 

al., 2006; Stergiou & Decker, 2011). Thus, complementing traditional variability 

measures, several mathematical tools have been applied to assess how motor 

behavior changes over time, addressing its temporal dynamics or its complexity. 

These measures are called nonlinear tools, and they seem to provide additional 

information about the variability (Borg & Laxåback, 2010; Buzzi, Stergiou, Kurz, 

Hageman, & Heidel, 2003; Duarte & Sternad, 2008; Fino et al., 2015). Figure 2 

illustrates the different global dimensions of motor variability. Linear variables, 

such as the range, quantify the amount of variability whereas nonlinear variables, 

such as Approximate Entropy (ApEn) (see below for more information), are able 

to quantify the structure of variability, providing more information about the 

system´s behavior (Harbourne & Stergiou, 2009). 

Different statistical tools have been developed to provide information 

about the variability structure or, such as we have indicated above, about the 

complexity of the system (Stergiou et al., 2006). Complexity has been defined 

as the number of system components and the coupling interactions among them 

(Newell & Vaillancourt, 2001). When we refer to the complexity of the different 

physiological processes of the human system, some authors define it as the 
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presence of non-random fluctuations on multiple time scales (Costa, Goldberger, 

& Peng, 2002; Lipsitz & Goldberger, 1992; Manor et al., 2010). The analysis of 

complexity has been interesting because system complexity has been related to 

the system state (Goldberger, Amaral, et al., 2002; Lipsitz & Goldberger, 1992; 

Manor & Lipsitz, 2013; Stergiou & Decker, 2011). Specifically, some of these 

analyses have been carried out to assess the complexity of postural control 

(Manor & Lipsitz, 2013; Stergiou & Decker, 2011) through many mathematical 

tools, and it seems that each of these tools measures different properties of 

variability (Shelhamer, 2006). 

Figure 2. Comparison of linear and nonlinear variables of several signals with the 
respective values for range and Approximate Entropy (ApEn). Extracted from Harbourne 
and Stergiou (2009). 

One of the most common properties assessed in variability is local 

dynamic stability (Bruijn, Bregman, Meijer, Beek, & van Dieën, 2012; Buzzi et 

al., 2003; van Schooten et al., 2011). This property is defined as the degree of 

sensitivity of the system to small perturbations (Buzzi et al., 2003) and it is 

usually measured by the Lyapunov Exponent (LyE) (Wolf, Swift, Swinney, & 

Vastano, 1985). When LyE values are negative (periodic systems), the 

trajectories converge, and this convergence represents local stability in a 
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particular direction. When LyE values are positive (the attractor is chaotic), the 

trajectories diverge, and this divergence represents local instability in a particular 

direction (Eckmann & Ruelle, 1985). Traditionally, higher instability has been 

linked to higher variability. However, some authors have indicated that variability 

and stability represent different properties within the motor control process 

(England & Granata, 2007; Stergiou & Decker, 2011). LyE has been used in 

several studies where the complexity of postural control has been analyzed to 

assess sitting postural control in infants (Cignetti, Kyvelidou, Harbourne, & 

Stergiou, 2011), the effect of the amount of attention invested in postural control 

in the CoP trajectories (Donker, Roerdink, Greven, & Beek, 2007) or the dynamic 

structure of CoP fluctuations in patients recovering from stroke (Roerdink et al., 

2006), among others. 

Another property of the variability that is frequently analyzed is the degree 

of irregularity of the time series (Chen, Wang, Xie, & Yu, 2007; Guerreschi, 

Humeau-Heurtier, Mahe, Collette, & Leftheriotis, 2013; Huang, Yen, Tsao, Tsai, 

& Huang, 2014; Richman & Moorman, 2000; Wu et al., 2014). Several tools have 

been used to assess this characteristic of the system. One of them is Recurrence 

Quantification Analysis (RQA) (Zbilut, Thomasson, & Webber, 2002; Zbilut & 

Webber, 2006). This tool combines recurrence plots (Eckmann, Kamphorst, & 

Ruelle, 1987), that is, the visualization of trajectories in phase space, with the 

objective quantification of system properties (for more information see Zbilut and 

Webber (2006). Recurrent points that form diagonal line segments are 

considered to be deterministic (as distinguished from random points that form no 

patterns), but this graphical representation may be difficult to evaluate. Thus, 

RQA was developed to provide quantification of important aspects of the plot 

(Table 1 and Figure 3) (for more information see Zbilut, Webber, Colosimo, and 

Giuliani (2000) and Zbilut and Webber (2006)). We can find postural control 

studies where RQA have been used, for example, to explore the influence of 

vision in the postural sway structure (Riley, Balasubramaniam, & Turvey, 1999) 

or to describe motor patterns in Parkinson´s disease through the determinism of 

the CoP (Schmit et al., 2006).  
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Table 1. Summary of the most commonly used recurrence variables. 
Extracted from Zbilut and Webber (2006). 

Measure Definition 

Recurrence, REC 
Percentage of recurrence points in an RP, 𝑅𝑅𝑅𝑅𝑅𝑅 =
� 1
𝑁𝑁2�∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖,𝑖𝑖=1  

Determinism, DET 

Percentage of recurrence points that form diagonal 
lines, 

𝐷𝐷𝑅𝑅𝐷𝐷 =
�∑ 𝑙𝑙𝑙𝑙(𝑙𝑙)𝑁𝑁

𝑙𝑙−𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 �
∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖,𝑖𝑖=1

 

𝑙𝑙(𝑙𝑙) is the histogram of the lengths 𝑙𝑙 of the diagonal 
lines. 

Laminarity, LAM 

Percentage of recurrences points that form vertical 

lines, 𝐿𝐿𝐿𝐿𝐿𝐿 =
�∑ 𝑣𝑣𝑣𝑣(𝑣𝑣)𝑁𝑁

𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �

�∑ 𝑣𝑣𝑣𝑣(𝑣𝑣)𝑁𝑁
𝑣𝑣=1 �

 

𝑙𝑙(𝑣𝑣) is the histogram of the lengths 𝑣𝑣 of the vertical 
lines. 

Ratio, RATIO Ratio between DET and RR, 𝑅𝑅𝐿𝐿𝐷𝐷𝑅𝑅𝑅𝑅 =
𝑁𝑁2�∑ 𝑙𝑙𝑣𝑣(𝑙𝑙)𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
�

�∑ 𝑙𝑙𝑣𝑣(𝑙𝑙)𝑁𝑁
𝑙𝑙=1 �

2  

Averaged 
diagonal line 
length, LEN 

Average length of diagonal lines, 𝐿𝐿𝑅𝑅𝐿𝐿 =
�∑ 𝑙𝑙𝑣𝑣(𝑙𝑙)𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
�

�∑ 𝑣𝑣(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

�
 

Trapping time, TT Average length of vertical lines, 𝐷𝐷𝐷𝐷 =
�∑ 𝑣𝑣𝑣𝑣(𝑣𝑣)𝑁𝑁

𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �

�∑ 𝑣𝑣(𝑣𝑣)𝑁𝑁
𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �

 

Longest diagonal 
line, Lmax 

Length of the longest diagonal line, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑚𝑚𝑚𝑚𝑚𝑚({𝑙𝑙𝑖𝑖; 𝑖𝑖 = 1 …𝐿𝐿𝑙𝑙}) 

Longest vertical 
line, Vmax 

Length of the longest vertical line, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑣𝑣𝑙𝑙; 𝑙𝑙 =
1 … 𝐿𝐿}) 

Divergence, DIV 
Inverse of 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, 𝐷𝐷𝑅𝑅𝑉𝑉 = 1

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
 

Related to the largest positive Lyapunov Exponent, but 
does not correspond to it. 

Entropy, ENT 
Shannon entropy of the distribution of the diagonal 
lengths 𝑝𝑝(𝑙𝑙), 𝑅𝑅𝐿𝐿𝐷𝐷 = −∑ 𝑝𝑝(𝑙𝑙) ln𝑝𝑝(𝑙𝑙)𝑁𝑁

𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  

Trend, TREND 

Paling of the RP towards its edges,  

𝐷𝐷𝑅𝑅𝑅𝑅𝐿𝐿𝐷𝐷 =
∑ [𝑖𝑖 − (𝐿𝐿 − 2)][𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 〈𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖〉]𝑁𝑁−2
𝑖𝑖=1

∑ �𝑖𝑖 = �𝐿𝐿 − 2
2 ��

2
𝑁𝑁−2
𝑖𝑖=1
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Figure 3. Recurrence plots of (A) a periodic motion with one frequency, (B) the chaotic 
Rössler system and (C) uniformly distributed noise. Extracted from Marwan, Romano, 
Thiel, and Kurths (2007). 

In addition, a relevant collection of tools called entropy measures have 

also been used to assess the degree of irregularity. Typically, high values of 

entropy indicate high irregularity. The first and most used entropy measure 

applied to human variability has been ApEn (Pincus, 1991). This entropy 

measure has been used in a large number of studies in different research fields, 

among which we can find postural control analysis (Kee, Chatzisarantis, Kong, 

Chow, & Chen, 2012). However, this tool is relatively inconsistent and depends 

on data series length and, due to this fact, Richman and Moorman (2000) 

developed Sample Entropy (SE) as an improved entropy measurement. This tool 

shows higher consistency than ApEn and it has been used in several postural 

control studies, for example, detecting changes in postural control during quiet 

standing, measuring postural stability after a cerebral concussion (Cavanaugh, 

Guskiewicz, & Stergiou, 2005) or assessing the effect of training on postural 

control (Menayo, Encarnación, Gea, & Marcos, 2014). However, problems still 

exist in the validity of SE because the definition of vectors is very similar to that 

of ApEn. For this reason, Chen et al. (2007) developed a new statistic tool, Fuzzy 

Entropy (FE). FE shows some advantages such as stronger relative consistency, 

less dependence on data length, freer parameter selection and more robustness 

to noise (Chen, Zhuang, Yu, & Wang, 2009). There are few studies where this 

tool has been used to assess the degree of irregularity in CoP time series. One 

of these few studies is by Sipko and Kuczyński (2013), in which the authors 
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compared postural control between patients with different levels of chronic back 

pain.   

Another entropy measure is Permutation Entropy (PE) (Bandt & Pompe, 

2002). PE assesses the frequency of the appearance of permutation patterns in 

a time series, making use of only the order of the time series values. In contrast 

with the other irregularity variables, PE shows high robustness to noise and data 

length. This tool has not been frequently applied to motor control analysis, and 

we have just found one study where the structure of CoP fluctuations (calculated 

through pressure mat data) has been analyzed by PE (Leverick, Szturm, & Wu, 

2013). These authors assessed the suitability of this tool for characterizing gait 

dynamics, obtaining strong reliability values.    

Nevertheless, although entropy measurement tools have been improved, 

some authors have argued that the degrees of irregularity of the signal, 

measured by entropy parameters, are not clearly related to the complexity of 

system dynamic (Goldberger, Peng, & Lipsitz, 2002; Stergiou et al., 2006). Other 

nonlinear measures have been proposed to assess the complexity of movement 

variability by analyzing the long-range auto-correlation of the signal. Detrended 

Fluctuation Analysis (DFA) (Peng, Havlin, Stanley, & Goldberger, 1995) is a 

scaling analysis method used to quantify long-range correlations in signals. It 

evaluates the presence of long-term correlations within the time series by a 

scaling index called α (Bashan, Bartsch, Kantelhardt, & Havlin, 2008; Peng et 

al., 1995). This procedure indicates that an index α that is equal to 1 is related 

to pink noise and fractal characteristics (Holden, 2005), and it has been used to 

describe the complexity of a process (Goldberger, Amaral, et al., 2002). 

Specifically, DFA has been used to study the human postural control system 

during quiet standing in healthy people (Blázquez, Anguiano, de Saavedra, 

Lallena, & Carpena, 2009) and in people with motor disorders (Minamisawa et 

al., 2009). 

The choice of appropriate tools to analyze motor variability remains 

controversial. It is still unknown which tool may be the most adequate to that end 

(Caballero, Barbado, & Moreno, 2013; Goldberger, Peng, et al., 2002; Stergiou 

& Decker, 2011; Vaillancourt & Newell, 2002). From our point of view, both the 
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amount and the properties of the variability structure can be relevant to 

characterize the dynamics of the CoP because each one provides different 

information about the system state. Therefore, variability has to be considered 

as a multidimensional feature of the motor system (Stergiou & Decker, 2011), 

and several authors suggest the need to use more than one tool for assessing 

motor variability (Goldberger, Peng, et al., 2002; Harbourne & Stergiou, 2009; 

Stergiou & Decker, 2011).  

It is possible to use multidimensional approaches to analyze the CoP 

data and better understand the relationships that emerge among different 

variables. To that end, we adopt statistical tools such as Principal Component 

Analysis (PCA) and Cluster Analyses. In this way, we can address various 

possible ways of defining motor variability while tracking fluctuations in the CoP. 

PCA is a multivariate statistical technique used to understand to what extent the 

based-CoP variables measure different characteristics of the variability. PCA 

allows to reduce the number of nonlinear tools, grouping them in factors that 

facilitate the analysis and the description of the characteristics of the CoP 

variability (Harbourne & Stergiou, 2009). On the other hand, Cluster analysis was 

developed to identify patterns in high-dimensional datasets (Rein, Button, 

Davids, & Summers, 2010), and it could be used to define profiles that group 

different properties of variability dynamics according to the state of the system. 

Another important issue that we have to take into account in working with 

different measures of variability dynamics is the reliability of the tools used. 

Several studies have analyzed the reliability of linear tools (T.L. Doyle, Newton, 

& Burnett, 2005; Kyvelidou, Harbourne, Stuberg, Sun, & Stergiou, 2009; Lafond, 

Corriveau, Hebert, & Prince, 2004; Lee & Granata, 2008; Lin, Seol, Nussbaum, 

& Madigan, 2008; Ruhe et al., 2010; Salavati et al., 2009; Santos, Delisle, 

Lariviere, Plamondon, & Imbeau, 2008; van Dieën, Koppes, & Twisk, 2010). 

However, the conclusions about which variables are better for characterizing the 

amount of variability in postural control seem unclear, and there is no agreement 

about the methodological issues. Furthermore, regarding nonlinear tools, only a 

few studies have assessed their reliability (Amoud et al., 2007; Kyvelidou et al., 

2009; van Dieën et al., 2010).  
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With these problems in mind, we carried out the first study that is 

presented in this thesis, where the main aim was to find the most reliable 

variables to characterize postural control in standing balance tasks. 

1.3. Relationship between postural control performance and CoP 
variability. 

During the learning of any motor skill, the amount of motor variability is 

progressively minimized as long as movement execution is improved (Caballero 

et al., 2014; Stein, Gossen, & Jones, 2005; Stergiou & Decker, 2011). Thus, we 

could think that motor variability worsens motor control or motor performance. 

We have to take into account that, in this case, variability is understood as the 

amount of variations around a central point or mean error. It seems to be that if 

error is gradually eliminated or minimized the accuracy and efficiency of the 

movement pattern will be optimized (Schmidt, 2003; Schmidt & Lee, 1988). In 

postural control, standing balance reflects postural control and it is considered 

the ability to stand with as little sway as possible (Gerbino, Griffin, & Zurakowski, 

2007). Therefore, a high amount of CoP variability could be related to low 

performance. Nevertheless, these studies assessed CoP variability just through 

its amount and, as we have indicated above, the amount of variability provides 

only biased information. In other words, we also need to analyze the structure of 

CoP variability in order to obtain complete information about the system. 

There are some studies that have tried to find the relationship between 

postural control performance (the fluctuations around a central point) and motor 

variability structure (Barbado et al., 2012; Cattaneo et al., 2015; Schmit et al., 

2006). This relationship has been applied to different research fields, especially 

in health studies, where motor variability has been used to detect, for example, 

motor coordination diseases (Cattaneo et al., 2015; Roerdink et al., 2006; Schmit 

et al., 2006) or the effects of aging (Goldberger, Amaral, et al., 2002; Manor & 

Lipsitz, 2013; Vaillancourt & Newell, 2003). Some of these studies have 

indicated that greater system complexity in balance control is connected to better 

performance. This is to say, a loss of complexity is linked to low postural control, 

understanding postural control as the capacity to keep the CoG over the base of 
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support as precisely as possible (Manor et al., 2010; Massion, 1994; Riley & 

Turvey, 2002). Some authors have assessed complexity according to the level 

of cognitive investment, finding that balance tasks with eyes closed implied an 

increase of postural sway and a decrease in complexity (Donker et al., 2007; 

Stins, Michielsen, Roerdink, & Beek, 2009). In others studies, low complexity 

has been related to low postural control due to different motor diseases 

(Cattaneo et al., 2015; Perlmutter, Lin, & Makhsous, 2010). In this sense, 

movement variability has been related to the capacity of the system to adapt to 

environmental changes (Barbado et al., 2012; Davids, Bennett, & Newell, 2006; 

Davids et al., 2003; Renart & Machens, 2014; Riley & Turvey, 2002), which is 

connected to better performance. 

However, in the literature we find controversial results regarding the 

relationship between complexity and performance. Some studies have found 

high values of complexity in CoP fluctuations when participants exhibited low 

performance in balance tasks (Borg & Laxåback, 2010; Duarte & Sternad, 2008; 

Santarcangelo, Carli, Balocchi, Macerata, & Manzoni, 2009; Schmit, Regis, & 

Riley, 2005). Schmit et al. (2005) compared the variability of postural sway in 

ballet dancers and track athletes and they found that participants showed lower 

complexity in an eyes-open condition than in an eyes-closed condition, while 

performance was better with the eyes open. A similar relationship was reported 

by Santarcangelo et al. (2009), where participants showed lower complexity of 

CoP while standing on a stable support than on an unstable support. 

 Another authors have suggested the relationship between complexity 

and performance is nonlinear because it is dependent on the nature of both the 

intrinsic dynamics of the system and the task constraints to be satisfied (Newell 

& Vaillancourt, 2001; Vaillancourt & Newell, 2002, 2003). We consider that this 

can be one possible reason for the controversial results. These authors 

examined the time and frequency structure of force output in adult humans to 

determine whether the changes in complexity with age are dependent on 

external task demands and they found that the structure of the force output in 

the older adults group was less complex in a constant-force level task and more 

complex in a sine wave force task than the younger adults group. Thus, the 
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relationship between performance and complexity seems to be different 

according to aging and the task constraints in a force task. This result could be 

explained because the specific performance constraints encountered can cause 

a reduction in the number of configurations available to the dynamic system 

through a re-structuring of the state space of all possible configurations available 

(Davids et al., 2003).  

According to this last idea, the second paper presented in this thesis tries 

to clarify the relationship between postural control performance and CoP 

variability, paying attention to the constraint influences of tasks and interpreting 

the results according to the aforesaid task constraints and their effects on the 

intrinsic system dynamic. 

1.4. Relationship between CoP variability and the learning process 
in postural control. 

As we have shown, motor variability has been associated with functional 

exploratory behaviors (Davids et al., 2006; Davids et al., 2003; Renart & 

Machens, 2014; Riley & Turvey, 2002). According to Davids et al. (2003), 

“variability has a functional role in helping individuals adapt to ever-changing 

constraints imposed on them by environmental, anatomical and physiological 

changes due to disease, illness, injury and aging” (p. 251). In this sense, recent 

studies have linked motor variability to the ability to adapt (Dusing et al., 2013; 

Manor et al., 2010; Zhou et al., 2013) which are frequently related as both the 

basis and consequence of each other (Moreno & Ordoño, 2015). Some evidence 

of the relationship between motor variability and the ability to adapt have been 

indicated by Wu et al. (2014), suggesting that variability could be regulated and 

indeed amplified in the nervous system to improve learning. Recent work in 

songbirds suggested that the neural circuits involved in motor variability promote 

learning by directing the exploration of motor output space (Andalman & Fee, 

2009; Warren, Tumer, Charlesworth, & Brainard, 2011). In this sense, the 

reduced motor learning ability after inactivating the cortical output nucleus of 

basal ganglia circuits has been related to a reduction in the variability of motor 

performance (Charlesworth, Warren, & Brainard, 2012; Kao, Doupe, & Brainard, 
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2005; Olveczky, Andalman, & Fee, 2005). In postural control, it has been found 

that individuals who showed more complexity of CoP during a standing still 

condition on a stable surface were able to cope with more difficult but similar 

tasks (Manor et al., 2010; Zhou et al., 2013). These studies showed that a low 

baseline complexity in motor variability may indicate control systems that are 

more vulnerable to changes in the environment (stressors), reducing the 

functionality of the motor control system.  

These last findings have led to exploration of the relationship between 

motor variability and learning processes. Thus, in the most recent works about 

motor variability, some authors have taken another step forward suggesting that 

there is a link between motor output variability and motor learning ability across 

different dynamic environments (Wu et al., 2014). In this study, high motor 

variability during the baseline period predicted fast learning in humans in 

different point-to-point reaching tasks and in a force field reaching task (Figure 

4). Participants who showed above-average amounts of variability during a 

baseline period in point-to-point reaching movements exhibited faster learning 

than participants with below-average variability. 

Nevertheless, there are few studies about motor variability and learning 

processes, and nonlinear tools have not been used to assess motor variability in 

them. Taking into account the aforesaid information about nonlinear tools and 

the previous suggestion about their application in identifying exploratory 

behaviors, the aim of the last study in this thesis was to determine if the structure 

of motor variability in postural control showed during the early stages of motor 

learning could be related to the learning process. This idea would make it 

possible to predict differences in learning ability from baseline performance 

characteristics in postural control tasks. 
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Figure 4. Extracted from Wu et al. (2014). Participants displaying above-average 
amounts of shape-1 variability (n = 6) during the baseline period in experiment 1 exhibit 
faster learning than participants with below-average variability (n = 14). 
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Three studies were proposed to develop this thesis. The key antecedent, main 

aim and hypothesis from each of them are introduced below: 

2.1. What CoP and kinematic parameters better characterize postural 
control in standing balance tasks? Study I. 

Key antecedent I. Different variables of the dynamic of CoP have been used to 

assess postural control, and despite some studies have explored the reliability 

of these measures, no single measurement of CoP has clearly emerged as 

significantly more reliable than the others (Ruhe et al., 2010). The reliability of 

traditional measures has been questioned (T.L. Doyle, Newton, and Burnett, 

2005) and some studies have proposed to analyze COP using nonlinear tools to 

better assess the interactions of the component of the neuromuscular system 

(Manor et al., 2010; Mazaheri et al., 2010; Newell & Vaillancourt, 2001). 

Aim I. To test the absolute and relative consistency of both traditional measures 

and nonlinear measures of CoP in a standing balance task under different 

stability conditions. 

Hypothesis I. Nonlinear measures will better characterize postural control 

showing better absolute and relative consistency than traditional scattering 

measures in a balance task protocol in upright stance under stable and unstable 

conditions. 

2.2. Variations in task constraints shape emergent performance 
outcomes and complexity levels in balancing. Study II.   

Key antecedent II. The complexity of motor variability has been measured in 

balance tasks as an index of the capacity of the CNS to re-organize degrees of 

freedom in order to adapt to perturbations (Barbado et al. 2012; Goldberge, Peng 

et al. 2002). Thus, less complexity in CoP dynamics has been frequently 

associated with less capacity to adapt (Manor et al. 2010). However, other 

studies have found greater complexity in fluctuations of CoP associated with 

worse task performance (Duarte and Sternad, 2008). Vaillancourt and Newell 
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(2002, 2003) suggested that increases or decreases in the complexity of CNS 

behaviors can be functional, but they are dependent on the nature of both the 

intrinsic dynamics of the system and the task constraints that need to be 

satisfied. 

Aim II. To investigate the extent to which specific interacting constraints of 

performance might increase or decrease the emergent complexity in a 

movement system, and whether this could affect the relationship between 

movement variability and the capacity to adapt to perturbations during balancing. 

Hypothesis II. The relationship between the complexity of CoP variability and 

performance in a standing balance task will depend on task constraints; the level 

of difficulty and the availability of biofeedback. 

2.3. Can the structure of motor variability predict learning rate? 
Study III.   

Key antecedent III. Recent approaches have indicated that motor variability 

could reflect the motor system’s ability to explore different motor configurations 

looking for an optimal solution that includes adaptive (Barbado et al., 2012; 

Manor et al., 2010; Zhou et al., 2013) and learning processes (Wu et al., 2014). 

Wu et al. (2014) found, in a reward-based learning protocol, that high motor 

variability during the baseline period predicted faster learning of different 

reaching tasks in the future. Nevertheless, when motor variability during a novel 

task is analyzed, it is difficult to estimate the extent to which motor variability is 

a consequence of an avoidable stochastic neuromuscular system function 

(Churchland et al., 2006; Harris and Wolpert, 1998; Osborne et al., 2005; 

Schmidt et al., 1979) or whether it is the result of an active behavior centrally 

regulated to promote learning (Mandelblat-Cerf et al., 2009; Sober et al., 2008). 

The use of nonlinear tools has revealed functional properties of motor variability, 

but its relation with motor learning, when a low amount of variability is required 

to properly perform the task, is still under discussion. 
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Aim III. To test if the structure of motor variability in balancing can be related to 

the learning process.  

Hypothesis III. Motor learning rate will be related not only to the initial 

performance level but also to the initial structure of movement variability 

exhibited by learners. 
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WHAT CoP AND KINEMATIC PARAMETERS BETTER 
CHARACTERIZE POSTURAL CONTROL IN STANDING BALANCE 

TASKS? 

Carla Caballero, David Barbado and Francisco J. Moreno. 

3.1. Abstract. 
The authors’ aim was to determine which variables allow for the characterization 

of motor balance behavior. Traditional measures and nonlinear measures of CoP 

(n = 30) and kinematics (n = 10) were tested in their absolute and relative 

consistency in a 30 s standing balance task protocol under stable and unstable 

conditions. Regarding CoP variables, MV, PE and DFA exhibited high 

consistency between trials and ranked individuals more accurately compared 

with other metrics. In the kinematic signal MV, PE and DFA had good 

intrasession reliability values in unstable conditions. Overall, the intrasession 

reliability values were better in the unstable condition than in the stable condition 

and the measures calculated using derived data had better intrasession reliability 

values. In conclusion, MV, PE, and DFA allow for the good characterization of 

motor balance behavior in a simplified protocol where velocity time series are 

analyzed. 

Key words: Postural control, nonlinear measures, reliability, center of pressure, 

kinematics. 
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3.2. Introduction. 
The dynamic of CoP while standing is a collective variable, responsible 

for posture and balance (Riley and Turvey, 2002; Winter, 1995) that reflects the 

activities of many neuromuscular components acting together to keep the CoG 

within the base of support (Manor et al., 2010; Riley and Turvey, 2002). 

Traditionally, different variables of the dynamic of CoP have been used 

to assess postural control. These traditional measures are used to describe the 

sway or dispersion or area during a given time in a balance task. Some of these 

traditional measures are SD (Borg and Laxaback, 2010; Le Clair and Riach, 

1996), root mean square (Haran and Keshner, 2008), RD (Roerdink et al., 2011), 

central tendency measure (Ramdani et al., 2011), CoP sway area (Hageman et 

al., 1995; Manor et al., 2010), or MV (Chiari et al., 2000; Le Clair and Riach, 

1996). 

Reliability analysis has frequently been used to evaluate the consistency 

of CoP measurements. The reliability of a variable consists of both absolute and 

relative consistency. Absolute consistency allows us to know the extent to which 

a variable maintains its value between trials of the same task. Relative 

consistency allows us to know the extent to which a variable is able to rank 

individuals in the group relative to others (Weir, 2005). 

Some studies have shown high reliability for the MV measure (Lafond et 

al., 2004; Lin et al., 2008), although no single measurement of CoP appeared 

significantly more reliable than the others (Ruhe et al., 2010). T. L. Doyle et al. 

(2005) indicated that the reliability of the traditional measures is questionable. 

However, Ruhe et al. (2010) in a review of CoP measures concluded that 

traditional CoP parameters show acceptable reliability values under specific 

conditions in the study design. In fact, they indicated different recommendations 

for the study design to improve the reliability of the traditional measures. There 

are no standard recommendations regarding foot position or instruction prior to 

the recording, but the most frequent instruction given to the participants was to 

stand as still as possible. A wide range of sampling rate frequencies have been 

reported in the literature, but frequencies higher than 100 Hz are not frequently 

recommended (R. J. Doyle, Hsiao-Wecksler, Ragan, and Rosengren, 2007; 
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Lafond et al., 2004; Santos et al., 2008). Some authors (Ruhe et al., 2010) 

recommend a sampling duration of 90 s, whereas other studies have obtained 

good reliable results in simplified protocols of balance tasks with sample 

durations between 10 and 60 s (Le Clair and Riach, 1996; Schmid, Conforto, 

Camomilla, Cappozzo, and D’Alessio, 2002). 

Additionally, some studies have tried to analyze the interactions of the 

neuromuscular component system by analyzing the complexity of the CoP 

fluctuations through nonlinear tools (Manor et al., 2010; Mazaheri, Salavati, 

Negahban, Sanjari, and Parnianpour, 2010; Newell and Vaillancourt, 2001). 

Many authors have suggested that complexity is related to the capacity of the 

system to generate adaptive responses to stressors (Barbado et al., 2012; 

Goldberger, 1996; Goldberger, Amaral, et al., 2002). In this sense, greater 

system complexity is connected to better performance, and a loss of complexity 

is thought to be linked to a reduced ability to adapt (Goldberger, 1996; Manor et 

al., 2010). However, few studies have assessed the consistency of CoP 

complexity variables. 

Some studies have measured the complexity of CoP through the 

predictability of the signal (Barbado et al., 2012; Borg and Laxaback, 2010; 

Duarte and Sternad, 2008; Stergiou and Decker, 2011). For this purpose, the 

most used nonlinear measure has been ApEn (Pincus, 1991). This tool, when 

applied to CoP, has shown good reliability in assessing postural control. For 

example, Kyvelidou et al. (2009), in an analysis of the development of sitting 

postural control in infants, concluded that ApEn had higher intra- and 

intersession intraclass correlation coefficient (ICC) values than did the traditional 

parameters and another predictability measure, the LyE (Wolf et al., 1985). 

However, LyE showed better values of reliability than did ApEn when the aim 

was to assess cerebral palsy infants under the same conditions (Kyvelidou et al., 

2009). 

Due to the relative inconsistency and the dependence of the results of 

ApEn on the length of the data series Richman and Moorman (2000) suggested 

another statistic, SE, to relieve the bias caused by self-matching. van Dieën et 

al. (2010) analyzed the reliability of SE for a sitting balance task and this tool 
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was sufficiently reliable. However, the similarity of the definition of vectors in this 

method is based on a Heaviside function as in ApEn. This function leads to a 

type of conventional two-state classifier, where an input pattern’s its 

belongingness to a given class is judged by whether it satisfies certain precise 

properties required of membership. However, in the real physical world 

boundaries between classes may be ambiguous, and it is difficult to determine 

whether an input pattern completely belongs to a class (W. Chen, Wang, Xie, 

and Yu, 2007). This Heaviside function still has problems with the validity of the 

entropy definition, particularly when small tolerance ranges are involved (W. 

Chen, Zhuang, Yu, and Wang, 2009). W. Chen et al. (2007) recently developed 

a new related family of statistics, FE. This measure shows some advantages 

because it has demonstrated stronger relative consistency, less dependence on 

data length, freer parameter selection and more robustness to noise (W. Chen 

et al., 2009). 

Bandt and Pompe (2002) presented PE as a parameter of average 

entropy. PE is based on assessing the frequency of the appearance of 

permutation patterns in a time series, using only the order of the time series 

values (Zanin, Zunino, Rosso, and Papo, 2012). This nonlinear tool has been 

shown to be an appropriate complexity measure for chaotic time series, 

particularly in the presence of dynamical and observational noise (Bandt and 

Pompe, 2002). In contrast to all known complexity parameters, a small noise 

does not essentially change the complexity of a chaotic signal. PE can be 

calculated for arbitrary real-world time series. Another advantage of PE over 

ApEn is its independence from the data length because it measures the entropy 

of sequences of ordinal patterns that are derived from m-dimensional delay 

embedding vectors (Frank, Pompe, Schneider, and Hoyer, 2006). Because the 

method is extremely fast and robust, its use seems preferable when there are 

huge data sets and no time for parameter preprocessing and fine-tuning (Bandt 

and Pompe, 2002). Nevertheless, the reliability results of SE, FE, and PE tools 

in assessing postural control in standing balance tasks have not been reported. 

Conversely, some authors have argued that the predictability of the 

signal, measured by entropy parameters, is not clearly related to the complexity 
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of the signal (Goldberger, Peng, et al., 2002). In this sense, other nonlinear 

measures are frequently used to assess the complexity of the CoP by analyzing 

the long-range auto-correlation of the signal, such as stabilogram diffusion 

analysis (Collins and De Luca, 1993) or DFA (Peng et al., 1995). For example, 

DFA has been applied to analyze the changes in CoP fluctuation with aging and 

disease (Goldberger, Peng, et al., 2002). Amoud et al. (2007) assessed the 

reliability of these measures, and DFA appeared to show better reliability values 

than stabilogram diffusion analysis. Van Dieën et al. (2010) analyzed the 

reliability of DFA compared with entropy measures showing similar values in 

sitting balance tasks. Nevertheless, little is known about the reliability of these 

tools assessing postural control in standing. 

Finally, although CoP analysis has been shown to be a useful procedure 

to indicate changes in postural control, postural stability, or risk of falling (Maki, 

Holliday, and Topper, 1991), this type of measure can be limited in its ability to 

discern different postural strategies and movement patterns (Kuo, Speers, 

Peterka, and Horak, 1998). Therefore, it would be necessary to use additional 

measures to improve the knowledge of kinematic patterns. For this reason, some 

authors (Kuo et al., 1998; Madigan, Davidson, and Nussbaum, 2006) have 

suggested using kinematic measures to analyze postural sway. 

The aim of our study was to determine which variables allow for the 

characterization of motor balance behavior when a short time test is available 

during the assessment session. In this way, we assessed the absolute 

consistency and relative consistency of CoP and kinematic parameters that 

characterize postural control during short sessions in a balance task protocol in 

an upright stance under stable and unstable conditions. 

3.3. Methods. 

3.3.1. Participants. 
Thirty healthy volunteers took part in this study (age = 27 ± 6.48 years; 

height = 1.74 ± 0.09 m; mass = 73.94 ± 10.77 Kg), 11 women (age = 25.18 ± 

6.86 years; height = 1.65 ± 0.06 m; mass = 64.93 ± 5.79 Kg) and 19 men (age = 
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28.05 ± 6.19 years; height = 1.79 ± 0.07 m; mass = 79.17 ± 9.47 Kg). They had 

no previous experience in the balance task used in this study. 

Written informed consent was obtained from each participant prior to 

testing. The experimental procedures used in this study were in accordance with 

the Declaration of Helsinki and were approved by the ethics standards of the 

committee on Human Experimentation of Miguel Hernandez University.  

3.3.2. Experimental Procedure and Data Collection. 

To assess postural stability, ground reaction forces were recorded at 20 

Hz by a force platform (Kistler, Switzerland, Model 9287BA). When analyzing the 

CoP dynamic using nonlinear measures signal oversampling could lead to 

artificial collinearities that would affect the dynamics of the CoP and mask the 

real values (Rhea et al., 2011). Therefore, using sampling frequencies close to 

the CoP dynamic is recommended (Caballero, Barbado, and Moreno, 2013). 

Synchronized kinematic data were collected from ten of the participants, 

using a 6-camera 100 Hz VICON MXSystem with the associated workstation 

software (Vicon, Oxford, England). According to the plug-in gait model (Vicon), 

we placed 19 markers (Figure 5): over the incisura jugularis, on the right and left 

shoulder, on the acromioclavicular joint, on the right and left anterior superior 

iliac spines, on the right and left posterior superior iliac spine, on the right and 

left midthigh stick, on the lateral epicondyle of the right and left knee, on the right 

and left midshank stick, on the right and left lateral malleolus of the ankle along 

an imaginary line that passes through the transmalleolar axis, on the right and 

left heel, on the back of the heel such that the line joining it to the forefoot marker 

reflects the long axis of the foot, on the right and left toe, and finally over the 

second metatarsal head. The positions of the markers were marked to enable 

researchers to relocate their exact position in case any markers were lost during 

a measurement. Joint angles of hip, knee and ankle were calculated using the 

Nexus 1.7 software (Vicon MX, Oxford, UK). 
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Figure 5. Placement of 19 markers to assess the kinematic parameters. 

Participants performed two tests separated by 10 min each. Each test 

consisted of two trials in two different sway tasks conditions (Figure 6): (a) 

standing still on a force platform (stable condition) and (b) standing on a foam 

surface (unstable condition). In both conditions participants were asked to stand 

as still as possible (Cavanaugh, Mercer, and Stergiou, 2007; Duarte and 

Sternad, 2008; Ruhe et al., 2010) and their feet placed 30 cm apart, and with 

their hands resting on their hips. The feet position was such that the line between 

their heels coincided with the mediolateral axis of the platform. The task was 

performed barefoot in front of a clear white wall without any visual reference. 

This position was kept during all of the trials. In the unstable condition, 

participants were able to maintain their standing posture without grasping the 

support rail or stepping in any direction. The main aim of this study was to design 

a simplified protocol to test the intrasession reliability of different CoP measures. 

For this reason, in this study, the length of each test trial was 30 s, and the rest 

period between trials was 1 min. 
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Figure 6. Stable (left) and unstable (right) conditions. 

3.3.3. Data analysis and reduction. 

We collected 30 s of data at 20 Hz. Prior to the analysis, we discarded 

the first 5 s of each trial to avoid non-stationarity related to the start of the 

measurement (Van Dieën et al., 2010). In addition using the protocol of Holden 

(2005), we used DFA to assess the stationarity of the signal (Tables 2 and 3). 

DFA values greater than 1 indicate that the signal is a non-stationary process, 

whereas DFA values less than 1 indicate that the signal is a stationary process. 

The length of time series analyzed was 500 data points. No filtering was 

performed on the data because filtering could can affect the nonlinear results 

(Kyvelidou et al., 2009). 

Postural sway was assessed using traditional CoP-based measures in 

AP and ML displacement: the SD (SD_AP/SD_ML) and MV (MV_AP/MV_ML). 

These variables were also calculated for the flexion–extension and abduction–

adduction angular displacement of the hip and ankle, and the flexion/extension 

angular displacement of the knee. Furthermore, the MV magnitude (MVM) and 

bivariate variable error (BVE) were calculated. BVE was measured as the 

average of the absolute distance to the participant’s own midpoint (Hancock, 

Butler, and Fischman, 1995). 
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The variables used to assess the complexity of CoP and movement 

kinematics were SE, FE, PE, and DFA. SE and FE typically return values that 

indicate the degree of irregularity in the signal: higher SE and FE values indicate 

greater irregularity in the time domain of the signal whereas lower SE and FE 

values indicate greater regularity in the signal output. This measure computes 

the repeatability of vectors of length m and m + 1 that repeat within a tolerance 

range of r within the standard deviation of the time-series. Higher values of SE 

and FE thus indicate that vectors of length are less repeatable than are vectors 

of length m + 1, highlighting the lower predictability of future data points, and a 

greater irregularity within the time series. Lower values represent a greater 

repeatability of vectors of length m + 1, and are thus a marker of higher regularity 

in the time series. For SE and FE we used the following parameter values: vector 

length, m = 2; tolerance window, r = .2*SD; and gradient, n = 2 for FE. According 

to different authors, these parameter values show high consistency, and are thus 

the most frequently used (W. Chen et al., 2007; Lake, Richman, Griffin, and 

Moorman, 2002; Pincus, 1991; Yentes et al., 2013). 

PE measures the regularity of the time series based on comparisons of 

neighboring data. It is particularly useful in the presence of dynamical or 

observational noise because its main features are its robustness with respect to 

noise that could corrupt the data, and its easy computation. Permutation entropy 

measures the entropy of sequences of ordinal patterns that are derived from m-

dimensional delay embedding vectors (Frank et al., 2006). We used the following 

parameter values: length, l = 4; and delay, d = 1. A more detailed introduction to 

PE can be found in Bandt and Pompe (2002). 

DFA is a method based on random walk theory, representing a 

modification of classic root mean square analysis with random walk to evaluate 

the presence of long-term correlations within a time series using a parameter 

referred to as the scaling index α (Bashan et al., 2008; Peng et al., 1995). The 

scaling index α corresponds to a statistical dependence between fluctuations at 

one time scale and those over multiple time scales (Decker, Cignetti, and 

Stergiou, 2010). This procedure estimates the fractal scaling properties of a time 

series (Duarte and Sternad, 2008) and it has also been used to describe the 
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complexity of a process (Goldberger, Amaral, et al., 2002). This measure was 

computed according to Peng et al. (1995). In this study, the slope α was obtained 

from the window range 4 ≤ n ≤ N/10 to maximize the long-range auto-correlations 

and reduce the errors incurred by estimating α (Z. Chen, Ivanov, Hu, and 

Stanley, 2002). Different values of α indicate the following: α > 0.5 implies 

persistence (i.e., the trajectory tends to continue in its current direction); α < 0.5 

implies antipersistence (i.e., the trajectory tends to return to where it came from; 

Roerdink et al., 2006). 

Because the purpose of this study was to assess the intrasession 

reliability of the different measures of stationary and non-stationary signals, all 

variables were calculated over the displacement and velocity of CoP data. CoP 

displacement usually shows non-stationary time series. However, the CoP 

velocity time series, as the first derivative of the CoP displacement is much more 

stationary (Costa et al., 2007).  
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3.3.4. Statistical Analysis. 

The normality of the variables was evaluated using the Kolmogorov-

Smirnov test with Lilliefors correction. ICCs were used to analyze the relative 

reliability. Significance was established at p < .05. According to Fleiss’s 

classification of ICC values, as adopted by Collins and De Luca (1993), the 

following general guidelines have been assumed: ICC values above 0.75 

represent excellent reliability, values between 0.40 and 0.75 represent fair to 

good reliability, and values below 0.40 represent poor reliability. The standard 

error of measurement (SEM) was calculated to quantify the precision of 

individual scores on a test (i.e., the absolute reliability; Weir, 2005). To judge 

the relative importance of SEM values better, they were expressed as a 

percentage (%SEM), where an SEM < 10% is an index of high absolute 

reliability. However, in postural studies SEMs < 20% could be considered 

acceptable (Santos et al., 2008). A high SEM indicates a high level of error 

and implies the no reproducibility of the tested values (Lin et al., 2008). 

3.4. Results. 

The mean values obtained from the CoP and kinematic variables, 

under stable and unstable conditions, are presented in Tables 2 and 3. The 

ICCs and SEM values obtained from the CoP variables of the study under 

stable and unstable conditions are presented in Tables 4 and 5, respectively. 

In the stable condition, the relative intrasession reliability of SD and BVE were 

poor. However, MV produced good values of relative intrasession reliability. 

For nonlinear variables, PE produced moderate values, whereas the other 

variables produced poor values or acceptable values only on one axis. With 

respect to absolute intrasession reliability, SEM indicated that MV showed the 

best values of the traditional measures and that PE produced the best results 

of the nonlinear measures. Moreover, PE had better results with respect to 

SEM than did MV. 
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In the unstable condition, all of the traditional variables analyzed 

produced good values of relative intrasession reliability, but MV was again 

the most reliable variable. Furthermore, PE and DFA seemed to show the 

best relative intrasession reliability results among the nonlinear variables. It 

must be noted that in the unstable condition, the variables calculated using 

velocity data had better relative intrasession reliability values than did the 

variables calculated using displacement. Regarding the SEM values, PE 

produced the best values of absolute intrasession reliability, followed by MV. 

The intrasession reliability of kinematic variables is shown in Tables 6 

and 7. In the stable condition there are few variables that exhibit good or 

moderate relative intrasession reliability. Regarding traditional variables, it is 

not clear which variables are better. However, with reference to the nonlinear 

measures, DFA seemed to show the best results because it was the only 

variable that showed moderate relative and absolute intrasession reliability in 

each joint, though only on the right side of the body. 

Conversely, in the unstable condition, the traditional kinematics 

variables showed the same trend that the results of CoP data. The MV 

produced the best relative intrasession reliability values in all conditions. With 

respect to nonlinear measures, entropy variables seemed to show the best 

relative intrasession reliability results, though PE and DFA produced the best 

absolute intrasession reliability values. Similar to the CoP variables, the 

measures calculated using kinematic velocity data showed the best 

intrasession reliability values. 

 

 



MOTOR VARIABILITY, PERFORMANCE AND THE ABILITY TO ADAPT

43 



3. STUDY I 
 

44 

 



MOTOR VARIABILITY, PERFORMANCE AND THE ABILITY TO ADAPT

45 



3. STUDY I 
 

46 

3.5. Discussion. 
Several studies have characterized the postural sway in balance tasks 

by analyzing the CoP dynamic using traditional and nonlinear parameters. 

Nevertheless, the reliability of traditional linear parameters of CoP has been 

frequently disputed (Ruhe et al., 2010) and there are few conclusive results 

about the reliability of nonlinear CoP measurements (Kyvelidou et al., 2009). 

Furthermore, some authors have suggested that the CoP parameters can be 

limited in their ability to discern different postural strategies and movement 

patterns (Kuo et al., 1998) and that it would be convenient to use additional 

kinematic measures. In this study, we have assessed the intrasession 

reliability of CoP and kinematic parameters that characterize the postural 

sway in a simplified protocol of a balance task in stable and unstable 

conditions. Thus, we can determine which variables allow for the 

characterization and classification of motor balance behavior. 

The mean values obtained from the CoP variables in the study under 

both conditions, stable and unstable, were close to others studies, both about 

linear variables (R. J. Doyle et al., 2007; Harringe, Halvorsen, Renstrom, and 

Werner, 2008; Lin et al., 2008; Salavati et al., 2009; Santos et al., 2008) and 

nonlinear variables (Amoud et al., 2007; S. F. Donker et al., 2007; T. L. Doyle 

et al., 2005; Harbourne and Stergiou, 2003; Lin et al., 2008). 

In stable and unstable conditions, MV showed good results in relative 

intrasession reliability and is the traditional measure that best ranks 

individuals in balance tasks. Therefore, this variable seems to be the largest 

contributor in terms of consistency of the position or rank of individuals in the 

group relative to others to categorize participants (Weir, 2005). In addition, 

MV had higher consistency between trials (lower results in SEM) compared 

to SD and BVE. Consequently, MV seems to be a more consistent variable 

to detect changes in performance than SD and BVE (Raymakers, Samson, 

and Verhaar, 2005). SD and BVE showed poorer intrasession reliability 

scores in stable situations and good scores under unstable situations, but 

their results were lower than MV. Our outcomes are similar to those obtained 
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by Lafond et al. (2004) and Lin et al. (2008), but in those studies, the protocols 

included more trials and a longer sample duration. We found that MV is 

reliable despite the short time series used. In the present study, MV has 

showed good intrasession reliability in a protocol that used sample durations 

of only 30 s (Le Clair and Riach, 1996; Schmid et al., 2002). Furthermore, this 

variable produced very good values of intrasession reliability despite the 

experimental conditions. These results agree with those obtained by Salavati 

et al. (2009). In their study, they assessed the postural stability during quiet 

standing in a group with musculoskeletal disorders consisting of low back 

pain, anterior cruciate ligament injury and functional ankle instability, and the 

mean total velocity in all conditions of postural difficulty showed high to very 

high reliability. Though Ruhe et al. (2010) noted that data from a firm stable 

surface tends to be more reliable, in our study the scattering measures did 

not produce good intrasession reliability values under stable conditions but in 

unstable conditions, its intrasession reliability was acceptable. According to 

Lee and Granata (2008) these findings may be due to the sway variance 

increasing with the task difficulty. This high variance may reduce the time 

duration needed to achieve a stationary time series. In the stable condition, 

different locations of the CoG in the surface of support allow a person to 

maintain stability (Caballero et al., 2013); different stability locations can help 

achieve good performance. However, more difficult conditions limit the region 

of stability (Lee and Granata, 2008). Thus, measures of the dispersion of the 

data relative to a midpoint, such as SD or BVE, are used as an indicator of 

postural control, but they may be affected by the non-stationarity of this data 

(Caballero et al., 2013). Therefore, scattering variables appear to be 

unreliable indexes of balance performance in stable conditions. However, in 

unstable situations, the increased difficulty implies that continuous 

adjustments are required to prevent the CoG from moving out of the surface 

of support. The amount of the CoP fluctuations could reflect the ability of the 

individual to maintain the stability, and the scattering measures in unstable 

condition could be a better index of the postural control. 
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Regarding nonlinear measures, SE and FE showed a moderate ability 

to rank individuals and good consistency in the stable condition, but FE 

showed slightly better results than did SE. In the unstable condition, the 

intrasession reliability values were better than those in the stable condition, 

and FE again showed better results than did SE. W. Chen et al. (2007) 

proposed FE as a more reliable measure of regularity compared with the 

previous measures because of its stronger relative consistency and 

robustness to noise. Nevertheless, both measures of CoP regularity have 

shown better results in this study in the unstable condition compared with in 

the stable condition, similar to the traditional measures. CoP is a non-

stationary signal (Newell, Slobounov, Slobounova, and Molenaar, 1997; 

Schumann, Redfern, Furman, El-Jaroudi, and Chaparro, 1995) because of 

constant adjustments of CoP that are required to maintain the CoG within the 

stability boundary on the surface of support. More difficult conditions, such as 

the unstable condition of the experiment, required tighter neuromuscular 

control. This can result in less day-to-day variability and provide results with 

greater repeatability and lower SEM or absolute reliability values (Lee and 

Granata, 2008). In the stable condition, as indicated previously, the lower 

motion of the CoP allows different places of the CoG within the surface of 

support to maintain stability. Non-stationarity caused in the stable condition 

produces lower reliability values because stationarity is a basic requirement 

of entropy measures derived from ApEn (Costa, Goldberger, and Peng, 

2005). 

The results in this study indicate that PE was the nonlinear measure 

that had superior results in its ability to rank individuals in the balance task 

and better consistency than the other regularity measures. This result could 

be due to its robustness with respect to some noise, which may have 

corrupted the PE results (Bandt and Pompe, 2002). PE has also shown 

stronger consistency in both stable and unstable conditions, so it is less 

affected by the non-stationarity of the time series. 
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DFA is another nonlinear measure frequently used to assess the 

complexity of the CoP by analyzing the long-range auto-correlation of the 

signal. Van Dieën et al. (2010) assessed the reliability of several nonlinear 

tools and DFA and found that the entropy measures showed similar values in 

the sitting balance task. Amoud et al. (2007) analyzed the reliability of DFA 

assessing the postural stability in elderly people and control subjects and the 

effect of the recording duration. In the present study, DFA of the CoP 

produced good intrasession reliability values in both stable and unstable 

conditions. These results agree with those obtained by Amoud et al. (2007), 

but the DFA intrasession reliability was not as good as that of PE under 

unstable condition. In our study, PE was better able to rank individuals and 

exhibited better consistency than did DFA, but DFA had better intrasession 

reliability than did the other entropy measures, similar to the study of van 

Dieën et al. (2010). Because PE and DFA measure different characteristics 

of the time series, it could be best to use both nonlinear variables to obtain 

complementary information about the complexity of the postural sway. 

It should be noted that in the unstable condition, the results obtained 

using the velocity data of the CoP were more reliable than those obtained 

using CoP displacement. This finding could be related to the stationarity of 

the signal. Non-stationarities may lead to a spurious increase in the apparent 

degree of irregularity of a time series for the shortest scales (Costa et al., 

2007). To avoid this increase, Costa et al. applied some methods to detrend 

the data. However, they suggested that the derivative time series are much 

more persistent than the original time series and that there is no need to 

detrend the velocity time series. Therefore, when SE and FE are used, it is 

recommended that one use a velocity time series or apply methods to detrend 

the data before assessing the complexity of CoP. 

The kinematic variables show similar results to those obtained using 

CoP variables, particularly on traditional measures. SD, BVE and MV 

produced poorer intrasession reliability, both in their ability to rank and in their 

consistency, in the stable condition. Good intrasession reliability results can 
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be found in the unstable condition, and MV again showed better intrasession 

reliability values. 

Under the stable condition, no kinematic nonlinear variable has clearly 

shown good results in its ability to rank individuals. However, referring to the 

consistency values, PE showed excellent results for both angular 

displacement and angular velocity data. FE produced good SEM values using 

the derived data, and SE produced the same trend as FE, but with poorer 

SEM values. As indicated above, the differences between angular 

displacement and angular velocity data could occur because the derived 

signal (i.e., the angular velocity data) is much more persistent (Costa et al., 

2007), and this stationarity affects entropy measures, except PE, according 

to the results found for the CoP signal. 

In the unstable condition, PE showed a good or moderate ability to 

rank individuals in the angular velocity data. In addition, this measure 

produced the best SEM values for both the angular displacement and angular 

velocity data, but the angular velocity data were slightly better than angular 

displacement data. However, SE and FE both showed inconsistent results. 

These entropy measures produced good or moderate values ranking 

individuals, presenting better values for angular displacement than for angular 

velocity data. However, regarding the consistency values, these measures 

showed better results in the derived signal. Therefore, there is no situation in 

which these measures have shown good ICC values and SEM values 

simultaneously. DFA showed good ICC values in the derived data that were 

better than those obtained for the angular displacement data. The values of 

SEM indicate the good consistency of DFA, with no clear differences between 

derived and nonderived data. Generally, the kinematic variables produced 

lower values of intrasession reliability than did the CoP variables. The 

kinematic analysis overlooks the control forces involved in motor control, and 

these signals represent the integral of those forces, acting as a mechanical 

low-pass filter (Moorhouse and Granata, 2005). This filtering behavior can 

limit the performance of nonlinear analyses, as noted by the poorer reliability 
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limit the performance of nonlinear analyses, as noted by the poorer reliability 

of nonlinear stability. For this reason, kinematic signals take longer to achieve 

stationarity (Lee and Granata, 2008). This finding does not mean that the 

measured data are not an adequate representation of the stabilizing control 

of this dynamic system. It would be necessary to use additional measures 

that are more consistent to subtle changes in movement throughout the body. 

The information that the kinematic variables provide is very important to 

determine any changes in movement throughout the body (Kuo et al., 1998; 

Madigan et al., 2006), but more recording time is required to achieve good 

reliability values. In this sense, CoP would be a better index than kinematics 

in a simplified balance task protocol. 

3.6. Conclusions. 

In the CoP signal, MV was the best measure for ranking individuals in 

a motor balance task among the traditional measures. Furthermore, MV 

showed higher consistency between trials in a simplified balance task. 

PE was the best measure for ranking individuals and produced higher 

consistency values than did the other nonlinear tools. DFA showed good 

values for ICC and SEM. The use of both PE and DFA should be 

recommended in a simplified protocol because these tools measure different 

characteristics of the time series and they can provide complementary 

information about the complexity of the postural sway.  

The stationarity of the signal affects the intrasession reliability of the 

measures. This must considered when designing a simplified protocol with a 

short time series. The type of signal affects the required length of the time 

series. Kinematic signals need more recording time to achieve good 

intrasession reliability values than do CoP signals. In addition, when using 

entropy measures such as SE or FE, it is recommended to use velocity time 

series or apply methods to detrend the time series. Finally, unstable balance 
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tasks require less recording time to achieve stationarity than do stable 

balance tasks. 

The measures of CoP seemed to have more ability to rank individuals 

in balance tasks and showed higher consistency between trials in a simplified 

protocol than did kinematics, although both CoP and kinematics should be 

used as complementary signals to better characterize balance behavior. 

In summary, to achieve a good analysis of postural control, it is very 

important to consider that the reliability of the different variables appears to 

be dependent on the conditions measured and the signals analyzed. 
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VARIATIONS IN TASK CONSTRAINTS SHAPE EMERGENT 
PERFORMANCE OUTCOMES AND COMPLEXITY LEVELS IN 

BALANCING 
Carla Caballero, David Barbado, Keith Davids, and Francisco J. Moreno 

4.1. Abstract. 

This study investigated the extent to which specific interacting 

constraints of performance might increase or decrease the emergent 

complexity in a movement system, and whether this could affect the 

relationship between observed movement variability and the CNS's capacity 

to adapt to perturbations during balancing. Fifty-two healthy volunteers 

performed eight trials where different performance constraints were 

manipulated: task difficulty (three levels) and visual biofeedback conditions 

(with and without the CoP displacement and a target displayed). Balance 

performance was assessed using CoP-based measures: MVM and BVE. To 

assess the complexity of CoP, FE and DFA were computed. ANOVAs showed 

that MVM and BVE increased when task difficulty increased. During 

biofeedback conditions, individuals showed higher MVM but lower BVE at the 

easiest level of task difficulty. Overall, higher FE and lower DFA values were 

observed when biofeedback was available. On the other hand, FE reduced 

and DFA increased as difficulty level increased, in the presence of 

biofeedback. However, when biofeedback was not available, the opposite 

trend in FE and DFA values was observed. Regardless of changes to task 

constraints and the variable investigated, balance performance was positively 

related to complexity in every condition. Data revealed how specificity of task 

constraints can result in an increase or decrease in complexity emerging in a 

neurobiological system during balance performance. 

Keywords: postural control, nonlinear analyses, task constraints, 

biofeedback, center of pressure, movement variability. 
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4.2. Introduction. 

In humans, conceptualized as complex adaptive systems (Riley, 

Shockley, and Van Orden, 2012), movement variability is omnipresent due to 

the distinct constraints that shape each individual's goal-directed behaviors 

(Davids et al., 2003). Movement variability has been studied as the natural 

variations that occur in motor performance across multiple repetitions of a 

task, reflecting changes in both space and time (Newell and Slifkin, 1998; 

Stergiou et al., 2006). 

In dynamical system theory, these variations have a functional role to 

drive adaptive behaviors in movement systems, allowing the CNS to exploit 

the high dimensionality offered by the abundance of motor system DOF 

(Davids et al., 2003). Adaptive behavior refers to a form of learning 

characterized by gradual improvement in performance in response to altered 

conditions (Krakauer and Mazzoni, 2011). The relationship between 

variability and adaptive behavior will change depending on task constraints 

faced by each individual. Several studies have related movement variability 

to the capacity of the CNS to adapt behaviors to environmental changes 

(Davids et al., 2006; Davids et al., 2003; Renart and Machens, 2014; Riley 

and Turvey, 2002). 

 In order to observe motor behavior changes during adaptation, several 

studies have examined changes in the neuromuscular system analyzing 

postural control dynamics and their relationship with physiological complexity 

(Manor et al., 2010; Manor and Lipsitz, 2013). This is because during postural 

control, the CNS regulates the activities of many neuromuscular components 

acting together in a complementary manner (Manor et al., 2010; Riley and 

Turvey, 2002).  

Previous analyses of the relationship between postural control and 

variability in movement coordination have examined two different global 

dimensions: the amount of observed variability and the structural dynamics of 

variability, addressed by analyzing its complexity (Stergiou et al., 2006). 
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Complexity has been defined as the number of system components and 

coupling interactions among them (Newell and Vaillancourt, 2001). Some 

researchers have indicated that complexity in different physiological 

processes can be observed through nonrandom fluctuations on multiple time 

scales in physiological dynamics (Costa et al., 2002; Lipsitz and Goldberger, 

1992; Manor et al., 2010). This second dimension provides additional 

information about properties of the dynamics of observed variability on 

multiples scales, which reveals important information on strategies used by 

the CNS during task performance (Caballero et al., 2014). 

The complexity of CoP has been a prominent measure used for 

assessing the relationship between the complexity shown in a biological 

signal, and a neurobiological system's capacity to adapt to perturbations in 

motor tasks like postural control and balance (Decker et al., 2010; 

Goldberger, Peng, et al., 2002; Menayo, Encarnación, Gea and Marcos, 

2014). This methodological prominence has emerged because it has been 

considered a collective variable, responsible for capturing postural 

organization and balance in individuals (Riley and Turvey, 2002).  

Data on balance performance have suggested that complexity in a 

biological signal may be related to the CNS's capacity to re-organize DOF to 

adapt to perturbations (Barbado et al., 2012; Goldberger, Peng, et al., 2002). 

Adaptive movement responses have also been considered to exemplify 

functional exploratory behaviors, which reveal useful sources of information 

to perform and learn new skills (Stergiou et al., 2006). In this regard, less 

complexity in CoP dynamics has been associated with less capacity to adapt 

(Barbado et al., 2012; Manor et al., 2010). Moreover, in some cases, the loss 

of complexity in CoP dynamics has been related to disorders in the CNS 

(Cattaneo et al., 2015; Schmit et al., 2006). 

However, the direction of this relationship remains somewhat unclear. 

Other studies of performance in balance tasks have reported data which do 

not support the aforementioned relationship, reporting greater complexity in 

fluctuations of CoP associated with worse task performance (Duarte and 
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Sternad, 2008; Vaillancourt and Newell, 2002). For example, in Duarte and 

Sternad's (2008) study comparing young and elderly people, they found a 

higher degree of complexity in older people over an extended time (30 min) 

during performance in a standing balance task. This finding indicates that high 

levels of complexity could reflect a decreased adaptive capacity of CNS over 

longer time scales. Vaillancourt and Newell (2002, 2003) suggested that 

increases or decreases in the complexity of CNS behaviors can be functional, 

but may be dependent on the nature of both the intrinsic dynamics of the 

system and the task constraints that need to be satisfied. Due to specific 

performance constraints encountered, there may be a reduction in the 

number of configurations available to a dynamical system through a re-

structuring of the state space of all possible configurations available (Davids 

et al., 2003; Newell and Vaillancourt, 2001). Here, we sought to understand 

the extent to which specific interacting constraints of performance might lead 

to an increase or decrease of emergent complexity in a movement system, 

during task performance.  

 Another important question concerns whether the 'controversy' 

surrounding the relationship between observed movement variability and the 

capacity to adapt to unexpected perturbations may actually be due to the 

specific experimental procedures of analysis selected to address complexity 

(Goldberger, Peng, et al., 2002; Stergiou et al., 2006). For instance, it has 

been suggested that entropy measures which analyze the regularity of a 

signal do not measure the complexity of system dynamics (Goldberger, Peng, 

et al., 2002). These studies did not consider whether signal regularity was 

clearly related to the complexity of system dynamics. Instead, it may be more 

appropriate to use fractal measures or long-range auto-correlation analysis, 

such as DFA, to investigate complexity in complex adaptive systems. 

Regardless, several studies have shown the utility of entropy measures in 

interpreting the randomness in experimental data from physiological systems 

in relation to postural control (Barbado et al., 2012; S. F. Donker et al., 2007; 

Menayo et al., 2014), heart rate (Lake et al., 2002; Wilkins et al., 2009), 
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neuromotor control of movements early in life (B. A. Smith, Teulier, Sansom, 

Stergiou, and Ulrich, 2011), mental fatigue (Liu, Zhang, and Zheng, 2010), 

intracranial pressure (Hornero, Aboy, Abásolo, McNames, and Goldstein, 

2005) or local muscle fatigue (Xie, Guo, and Zheng, 2010). 

Up to now, the literature seems to support the view that motor 

variability is related to adaptive capacity, but the direction of the relationship 

seems to be unclear, possibly for different reasons, including: 1) the role that 

specific task constraints may play in shaping emergent behaviors; and 2), the 

difficulty in choosing the most appropriate tool to measure and address 

complexity in motor behavior. Addressing possible reasons for this 

methodological controversy behind the relationship between movement 

variability and adaptive capacity, we sought to understand whether 

manipulation of task constraints would result in a modification of participant 

performance strategies, due to the emergence of novel exploratory behaviors 

captured by the re-organization of motor system DOF to adapt to challenging 

performance situations. In this regard, we analyzed emergent movement 

adaptations under varying task constraints. We also used different nonlinear 

tools to measure the complexity of observed system variability. We 

hypothesized that increases or decreases in the complexity of a behavior 

depends on the nature of the task constraints to be satisfied. In particular, we 

expected that increasing difficulty and availability of biofeedback would lead 

to a reduction in the number of configurations available in the motor system, 

causing a loss of complexity and performance decrements.  

4.3. Methods. 

4.3.1. Participants. 

Fifty-two healthy volunteers (13 women) took part in this study (age = 

25.5 ± 6.01 years, height = 1.70 ± 0.25 m, mass = 70.66 ± 10.33 kg).They 

had no previous experience in the balance task used in this study. 
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Written informed consent was obtained from each participant prior to 

testing. The experimental procedures used in this study were in accordance 

with the Declaration of Helsinki and were approved by a University Office for 

Research Ethics. 

4.3.2. Experimental Procedure and Data Collection. 

To assess CoP fluctuation, ground reaction forces were recorded at 

1000 Hz on a Kistler 9287BA force platform.  

 The task required the participants to stand on a wooden platform (0.50 

m x 0.50 m) and perform eight trials of 70 s each, with 1 min rest periods 

between trials. Standing stability and availability of visual biofeedback were 

manipulated. The decision to manipulate these two different task constraints 

was taken because both are heavily used in the literature to analyze and train 

postural control. In particular, the use of biofeedback was chosen to control 

“error sensitivity”. According to Herzfeld and Shadmehr (2014, pp. 149) “when 

we make a movement and experience an error, on the next attempt our brain 

updates motor commands to compensate for some fraction of the error”, and 

this error sensitivity term varies substantially from individual to individual and 

from task to task. Thus, error sensitivity remains constant for all participants. 

Two of the eight trials were performed on a solid floor (stable condition or SC). 

The other six were performed on an unstable platform (unstable condition or 

UC). All trials were performed under four different levels of difficulty, defined 

by the stability of the base of support. To achieve this aim, a wooden platform 

(0.02 m thick) was affixed to the flat surface of three polyester resin 

hemispheres with the same height (0.1 m) and different diameters: UC1 = 

0.50 m of diameter; UC2 = 0.40 m of diameter and UC3 = 0.30 m of diameter 

(Figure 7). Each condition was experienced under two different visual 

biofeedback conditions: A) without visual biofeedback, where the 

representation of CoP displacement was not displayed. Here, the instruction 

to participants was to stay “as still as possible” (Duarte and Sternad, 2008); 

and B) with visual biofeedback, where CoP displacement, beside a static 



MOTOR VARIABILITY, PERFORMANCE AND THE ABILITY TO ADAPT

61 

center target (0.003 m of diameter on the base of support and 0.05 m 

projected on the wall in front of the participant; scale displays: 16.6 to 1), was 

displayed in real-time. Participants were instructed to keep their CoP on the 

target (Figure 7). 

4.3.3. Data Analysis and Reduction. 

An application under Labview 2009 (Mathworks, Natick MA, USA), 

developed in our laboratory, was used to perform the data analysis. CoP time 

series were previously down sampled from 1000 Hz to 20 Hz due to: 1) there 

being little of physiological significance above 10 Hz in the CoP signal (Borg 

and Laxåback, 2010), and suggestions to use sampling frequencies close to 

CoP dynamics (Caballero et al., 2013); 2) signal oversampling possibly 

leading to artificial co-linearities, affecting the variability data (Rhea et al., 

2011). The first and last 5 s of each trial were discarded to avoid non-

stationarity related to trial initiation (van Dieën et al., 2010). Time series length 

was 1200 data points. It has to be taking in account that one time series were 

shorter than 1200 data points (590 data points) due to the fact that two 

participants were unbalanced before 70 s. We computed the time series data 

before these failures. That result were included in the analysis because it did 

not show outlier values in any of the assessed variables. Two filtering 

processes were used to analyze different postural control behaviors that are 

related to two different components of CoP displacement:  rambling and 

trembling (Zatsiorsky and Duarte, 1999). The first is defined as the motion of 

a moving reference point with respect to which the body´s equilibrium is 

instantly maintained and characterized by large amplitudes at low 

frequencies. This component could be related to central control (Tahayori, 

Riley, Mahmoudian, Koceja, and Hong, 2012). Thus, we used a low-pass filter 

(4th order, zero-phase-lag, Butterworth, 5 Hz cut-off frequency) (Lin et al., 

2008) to assess it. The trembling component is defined as the oscillation of 

CoP around a reference point trajectory, being characterized by short 

amplitudes at high frequencies (Zatsiorsky and Duarte, 1999). This 
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component could be related to peripheral control (Tahayori et al., 2012). 

Hence, we used a high-pass filter (4th order, zero-phase-lag, Butterworth, 10 

Hz cut-off frequency), similar to that used by Manor et al. (2010). 

 
Figure 7. Schematic illustration of the protocol distribution and the different surfaces 
used: a) stable platform; b) UC1: unstable platform with 50 cm of diameter; c) UC2: 
unstable platform with 40 cm of diameter; d) UC3: unstable platform with 30 cm of 
diameter. 

 Postural sway was assessed using traditional bivariate CoP-based 

measures combining the AP and ML displacement trajectories: BVE and 

MVM. These variables were used to assess task performance and were 

calculated over the signal, filtered using a low-pass filter. We used just the 

filtered signal using a low-pass filter because static balance is characterized 

by small amounts of postural sway which is analyzed at low frequencies.  
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BVE was measured as the average value of the absolute distance to 

each participant’s own midpoint (Equation 1) (Hancock et al., 1995; Prieto et 

al., 1996) 

𝐵𝐵𝑉𝑉𝑅𝑅 =  
1
𝐿𝐿
��((𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2 + (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2)
𝑁𝑁

𝑖𝑖=1

 

(1) 

where N is the number of data points in the CoP displacement time series 

and i is each successive data point. 

 MVM was measured as the average velocity of CoP (Equation 2) 

(Prieto et al. 1996) 

𝐿𝐿𝑉𝑉𝐿𝐿 =  
1
𝐷𝐷
� ���(𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖)�

2 + �(𝑌𝑌𝑖𝑖+1 −  𝑌𝑌𝑖𝑖)�
2�

𝑁𝑁−1

𝑖𝑖=1

 (2) 

where T is the trial duration (60 s). 

 The variables used to assess the complexity of CoP were FE and 

DFA. These variables were calculated after both were filtered and processed 

(low-pass and high-pass filters). The variables were calculated over the RD 

CoP time series (Figure 8), instead of the AP and ML time series, due to the 

fact that the orientation of the base-of support is only approximately aligned 

with the axes of the force platform, especially in unstable situations (Prieto et 

al., 1996). Thus, measures based on the AP time series probably reflect some 

ML movements of the participant, and vice versa, while the RD vector is not 

sensitive to theorientation of the base of support with respect to the force 

platform (Prieto et al., 1996; Roerdink et al., 2011). RD is the vector distance 

from the center of the posturogram to each pair of points in the AP and ML 

time series (Equation 3). 
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𝑅𝑅𝐷𝐷 𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖=1 = ��((𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2 + (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2)
𝑁𝑁

𝑖𝑖=1

 

(3) 

 

 
 
Figure 8. An example of the CoP resultant magnitude time series over 60 s for a 
participant. SC = stable condition; UC1: unstable platform with 50 cm of diameter; 
UC2: unstable platform with 40 cm of diameter; UC3: unstable platform with 30 cm of 
diameter; α = auto-correlation values obtained by DFA. 
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FE typically returns values that indicate the degree of irregularity in 

the signal. This measure computes the repeatability of vectors of length m 

and m + 1 that repeat within a tolerance range of r of the standard deviation 

of the time-series. Higher values of FE thus represent lower repeatability of 

vectors of length m to that of m + 1, marking a greater irregularity in the time 

domain of the signal. Lower values represent a greater repeatability of vectors 

of length m + 1, and are, thus, a marker of lower irregularity in signal output. 

To calculate this measure we used the following parameter values: vector 

length, m = 2; tolerance window, r = 0.2*SD; and gradient, n=2. In previous 

research these parameter values have shown high levels of consistency, 

which underlies their frequent use (W. Chen et al., 2007). FE was calculated 

according to the procedures of  W. Chen et al. (2007). We also conducted 

analyses of other related complexity measures, such as SE1. However, we 

chose FE because it displays some advantages, such as a stronger relative 

consistency, less dependency on data length, free parameter selection and 

more robustness to noise (W. Chen et al., 2009; Xie et al., 2010). 

 DFA represents a modification of classic root mean square analysis 

with random walk to evaluate the presence of long-term correlations within a 

time series using a parameter referred to as the scaling index α (Bashan et 

al., 2008; Peng et al. 1995). The scaling index α corresponds to a statistical 

dependence between fluctuations at one time scale and those over multiple 

time scales (Decker et al., 2010). This procedure estimates the fractal scaling 

properties of a time series (Duarte and Sternad, 2008) and has also been 

used to describe the complexity of a process (Goldberger, Amaral, et al., 

2002). This measure was computed according to the procedures of Peng et 

al. (1995). In this study, the slope α was obtained from the window range 4 ≤ 

n ≤ N/10 to maximize the long-range correlations and reduce errors incurred 

1 Sample Entropy was also calculated as another entropy measure to assess the degree of irregularity of 
CoP values. To calculate this measure we used the following parameter values: vector length, m = 2; 
tolerance window, r = 0.2*SD (Pincus, 1991). The results were very similar to the FE results, both in the 
effect of the different constraints and the correlation between performance and complexity. 
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by estimating α (Z. Chen et al., 2002). Different values of α indicate the 

following: α > 0.5 implies persistence in position (the trajectory tends to 

remain in its current direction); α < 0.5 implies anti-persistence in position (the 

trajectory tends to return from where it came) (Roerdink et al., 2006).  

4.3.4. Statistical Analysis. 

 Normality of the variables was evaluated using the Kolmogorov-

Smirnov test with the Lilliefors correction. Mixed repeated measures ANOVA 

with two intra-individual factors, task difficulty level and biofeedback 

availability, was used to assess effects of both factors on performance 

outcome measures and complexity variables. Outcomes of the ANOVAs were 

considered to be statistical significant when there was a <5% chance of 

making a type I error (p < 0.05). Bonferroni adjustment for multiple 

comparisons was performed to ascertain differences between task 

performance under different constraints according to each intra-individual 

factor. Partial eta squared (ƞ𝒑𝒑𝟐𝟐) was calculated as a measure of effect size and 

to provide a proportion of the overall variance that is attributable to the factor. 

Values of effect size ≥0.64 were considered strong, around 0.25 were 

considered moderate and ≤ 0.04 were considered small (Ferguson, 2009). 

Finally, Pearson product moment correlation coefficients were calculated to 

assess relationships between performance variables (BVE and VMM) and 

complexity measures (FE and DFA). 

4.4. Results. 

 Mean values obtained under each balance condition and pairwise 

comparisons between difficulty conditions and biofeedback conditions are 

displayed in Table 8.  

MVM showed higher values in biofeedback condition (F1,51 = 74.88; 

p<.001; ƞ𝒑𝒑𝟐𝟐 = .595). In contrast, despite BVE not revealing overall differences 

between biofeedback availability conditions (F1,51 = 2.64; p = .111; ƞ𝒑𝒑𝟐𝟐 = .049), 
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at lower levels of difficulty, lower values of BVE were observed in the 

biofeedback condition (Figure 9). BVE differences observed between 

biofeedback conditions did decrease as task difficulty level increased, and 

even disappeared at the most difficult performance levels. Additionally, both 

performance variables displayed higher values when task difficulty increased, 

being significantly different between conditions (BVE: F1.83,93.36 = 374.31; p < 

.001; ƞ𝒑𝒑𝟐𝟐 = .880; MVM: F1.89,96.6 = 491.24; p <. 001; ƞ𝒑𝒑𝟐𝟐 = .906) (Figure 9). 

With regard to complexity variables, in the low-pass filtered signal, 

higher FE (F1,51 =  77.66; p <. 001; ƞ𝒑𝒑𝟐𝟐 = .604) and lower DFA values (F1,51 = 

65.39; p <. 001; ƞ𝒑𝒑𝟐𝟐 = .562) were observed when biofeedback was available. 

However, differences in these dependent measures decreased as task 

difficult level were increased (Figure 10). Regarding the high-pass filtered 

signal, the presence of biofeedback did not display effects on any complexity 

variable (FE: F1,51 =  3.949; p = .052; ƞ𝒑𝒑𝟐𝟐 = .072; DFA: F1,51 = 1.744; p = .192; 

ƞ𝒑𝒑𝟐𝟐 = .033). 

Complexity values at different task difficulty levels varied according to 

the filter used, the biofeedback condition and the variable recorded (Figure 

10). When variables were calculated over the low-pass filtered signal, in the 

presence of biofeedback, FE values were significantly different between SC 

and UC3 and between UC3 and UC1, decreasing as difficulty increased. 

However, without biofeedback, FE increased with task difficulty, displaying 

significant differences in the value between SC and every UC condition. 

Regarding DFA in the conditions with biofeedback, significant differences 

were observed between UC1 and UC3 and between UC2 and UC3, reaching 

the highest values at the most difficult task level. Without biofeedback, DFA 

values decreased from SC to UC2 and UC3, and from UC1 to UC2, attaining 

the highest values at the least difficult task level.  

On the other hand, when complexity variables were calculated with 

the high-pass filtered signal, FE decreased and DFA increased as task 

difficulty increased regardless of the availability of biofeedback. So, in most 
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of the conditions, dependent variables showed significant differences 

between levels of task difficulty, but differences between biofeedback 

conditions were only found with low-pass filtered signals.  

 

Units of CoP measures are as follows: mm (BVE); mm/s (MVM). FB = with 
biofeedback; SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2 
= Unstable condition difficulty level 2; UC3 = Unstable condition difficulty level 3. 
 

Table 8. Average values (mean ± SD) in each balance condition of every 
variable calculated in the study. 

 SC UC1 UC2 UC3 

BVE 3.67 ± 1.29 10.76 ± 3.09 12.58 ± 3.48 16.6 ± 6.01 
BVE_FB 2.54 ± .829 9.69 ± 1.83 12.02 ± 3.48 17.31 ± 3.77 

MVM 6.23 ± 2.01 24.92 ± 7.38 31.71 ± 9.52 41.25 ± 12.79 
MVM_FB 8.66 ± 2.98 30.09 ± 7.29 37.02 ± 9.26 48.39 ± 11.11 

Low-pass filter 

FE .356 ± .126 .456 ± .120 .496 ± .144 .503 ± .166 
FE_FB .555 ± .125 .580 ± .105 .564 ± .111 .530 ± .137 
DFA 1.13 ± .116 1.07 ± .133 1.01 ± .131 1.04 ± .143 

DFA_FB .956 ± .115 .931 ± .107 .945 ± .102 .997 ± .120 

High-pass filter 

FE 2.05±.104 1.95±.151 1.91±.176 1.76±.290 
FE_FB 2.03±.094 1.94±.151 1.88±.165 1.73±.244 
DFA .565±.102 .666±.126 .695±.127 .744±.119 

DFA_FB .565±.100 .661±.124 .721±.124 .769±.117 
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Figure 9. Pairwise Comparisons between difficulty levels and biofeedback conditions 
in performance variables. a = significant differences between biofeedback conditions; 
0 = significant differences according to SC; 1 = significant differences according to 
UC1; 2 = significant differences according to UC2; 3 = significant differences 
according to UC3. 

Figure 10. Pairwise Comparisons between difficulty levels and biofeedback 
conditions in complexity variables. a = significant differences between biofeedback 
conditions; 0 = significant differences according to SC; 1 = significant differences 
according to UC1; 2 = significant differences according to UC2; 3 = significant 
differences according to UC3. 
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Performance variables (BVE and MVM) were positively correlated, but 

showed an inverse correlation with complexity variables. Furthermore, the 

degree of dependence between them varied according to the filter used and 

biofeedback availability. When the low-pass filtered signal was used (Table 

9), and in conditions without biofeedback, BVE was negatively correlated with 

FE and positively correlated with DFA. Nevertheless, in conditions with 

biofeedback, this correlation was only found at the highest task difficulty level. 

MVM showed positively correlation with FE and negatively correlation with 

DFA despite the availability of biofeedback. Additionally, FE and DFA 

variables displayed an inverse relationship in every condition. 

When the high-pass filter was used (Table 10) BVE was negatively 

correlated with FE, only in the most difficult task condition regardless of the 

availability of biofeedback.  A positive correlation between BVE and DFA was 

found when biofeedback was available, only at the lowest and highest task 

difficulty levels, but no correlation between them was found in conditions 

without biofeedback. With regard to MVM, this variable was negatively 

correlated with FE in all of the unstable conditions (with or without 

biofeedback). MVM was positively correlated with DFA only in the stable 

condition when the biofeedback was available. In the condition without 

biofeedback, this correlation was observed in UC1 and UC2. 
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SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2 = Unstable 
condition difficulty level 2; UC3 = Unstable condition difficulty level 3. 
∗∗ Correlation is significant at the 0.05 level (2-tailed). 
∗ Correlation is significant at the 0.01 level (2-tailed). 

Table 9. Pearson product moment correlation coefficient calculated 
between performance variables and complexity variables, using a low-pass 
filter, in each balance condition. 

With biofeedback Without biofeedback 

SC 

MVM FE DFA MVM FE DFA 

BVE .834** -.366** .166 .392** -.500** .378** 
MVM .129* -.161 .436** -.337* 
FE -.631** -.754** 

UC1 

MVM FE DFA MVM FE DFA 

BVE .613** -.143 -.092 .333* -.361* .319* 
MVM  .598** -.421** .662** -.570** 
FE -.577** -.830** 

UC2 

MVM FE DFA MVM FE DFA 

BVE .615** -.263 .084 .336* -.430** .344* 
MVM  .522** -.315* .605** -.384** 
FE -.521** -.623** 

UC3 

MVM FE DFA MVM FE DFA 

BVE .425** -.485** .471** .571** -.432** .466** 
MVM .477** -.319* .416** -.211 
FE -.800** -.736** 
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SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2 = Unstable 
condition difficulty level 2; UC3 = Unstable condition difficulty level 3.  
∗∗ Correlation is significant at the 0.05 level (2-tailed). 
∗ Correlation is significant at the 0.01 level (2-tailed). 
 

 

Table 10. Pearson product moment correlation coefficients calculated 
between performance variables and complexity variables, using a high-
pass filter, in each balance condition. 

With biofeedback Without biofeedback 

SC 
 MVM FE DFA  MVM FE DFA 

BVE .834** -.176 .208*  .392** .060 -.034 
MVM  -.264 .328*   -.017 -.009 
FE   -.513**    -.291* 

UC1 

 MVM FE DFA  MVM FE DFA 

BVE .613** .042 -.039  .333* -.111 .183 
MVM  -.305* .204   -.552** .326* 
FE   -.639**    -.681** 

UC2 
 MVM FE DFA  MVM FE DFA 

BVE .615** -.138 .027  .336* .075 -.006 
MVM  -.474** .101   -.389** .288* 
FE   -.476**    -.747** 

UC3 

 MVM FE DFA  MVM FE DFA 

BVE .425** -.369** .396**  .571** -.382** .071 
MVM  -.438** .164   -.528** -.015 
FE   -.594*    -.281* 



MOTOR VARIABILITY, PERFORMANCE AND THE ABILITY TO ADAPT 

73 

4.5. Discussion. 

 Recently it has been argued that an increase or decrease in the 

complexity of a behavioral or physiological system depends on interactions 

between system intrinsic dynamics and performance task constraints 

(Vaillancourt and Newell, 2002, 2003). In this experiment we investigated the 

complexity of movement system variability during performance of different 

balance tasks, observing that participants modified their postural control 

dynamics according to task difficulty and availability of biofeedback. In 

addition, regardless of these changes to task constraints, performance was 

positively related to complexity. 

 Performance decreased when balance task difficulty was increased 

as reported in previous research (Barbado et al., 2012; Borg and Laxåback, 

2010). Values in performance measures, both in BVE and MVM, increased 

as task difficulty level increased (Figure 9). However, availability of 

biofeedback had different effects on BVE and MVM values. With biofeedback, 

BVE values decreased significantly, but only at lower task difficulty levels. 

However, as difficulty level was increased, biofeedback availability did not 

influence the amount of variability observed in CoP measures. In stable or 

less challenging unstable task conditions, different locations of the CoP on 

the surface of support allowed a participant to maintain stability (Caballero et 

al., 2014). However, increasing task difficulty limited the region of stability, 

signifying that in the difficult balancing conditions, there were a limited number 

of CoP locations where system stability could be maintained (Lee and 

Granata, 2008). Under more stable balancing conditions visual biofeedback 

was used to maintain CoP location on the target.  Under more challenging 

postural control conditions, visual biofeedback information might have been 

redundant, because participants did not have many CoP locations where they 

could maintain system stability. They only had possible outcome solution: the 

same as displayed by the available biofeedback signal. From a dynamical 

systems viewpoint, differences between biofeedback conditions could be 
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interpreted as the existence of different types of attractors in a performance 

landscape. It seems that participants used a behavior similar to a fixed-point 

attractor when biofeedback was available, characterized by a fixed point in 

state space where no movement is observed (van Emmerik and van Wegen, 

2000).  Nevertheless, participants explored the oscillatory CoP dynamics 

(Vaillancourt and Newell, 2003) without biofeedback in the least challenging 

conditions. Availability of biofeedback seemed to change postural control 

strategies by decreasing the number of configurations available to a 

dynamical movement system (Davids et al., 2003). In this regard, available 

information seemed to constrain the system to one area of the attractor 

landscape in this task. 

 On the other hand, MVM values displayed an increase in biofeedback 

conditions compared to when biofeedback was not available. Although there 

are a greater number CoP locations where stability can be maintained, this 

increase in MVM could be due to the fact that under the less challenging task 

constraints, visual biofeedback drives the system to one specific location. 

Without biofeedback, participants focused on avoiding falling. In the 

conditions with biofeedback they tried to adjust their CoP to the target, 

performing a greater number of adjustments. The increased values of MVM 

in biofeedback situations can also be related to an increased error sensitivity 

of the individuals regulated by the CNS (Herzfeld and Shadmehr, 2014). In 

this sense, MVM could be an index of the amount of corrections needed to 

adjust the CoP location, increasing neuromuscular effort and resulting from 

participant exploratory behaviors. Higher CoP velocity would be an index of 

exploratory behaviors in discovering stable performance solutions under 

relatively novel task constraints (Davids, Kingsbury, George, O'Connell, and 

Stock, 1999). 

 According to previous studies, CoP analysis has revealed two different 

postural control mechanisms: rambling and trembling (Mochizuki, Duarte, 

Amadio, Zatsiorsky, and Latash, 2006; Tahayori et al., 2012). These two 

processes may reflect changes in the body reference configuration and 
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changes in the properties of the mechanical and neural structures 

implementing the supraspinal control signals (Danna-Dos-Santos, Degani, 

Zatsiorsky, and Latash, 2008). Observed variability of low-pass filtered CoP, 

related to volitional control (rambling component), showed a higher degree of 

irregularity and less long-range auto-correlation when biofeedback was 

available. The changes in these variables, influenced by biofeedback, might 

indicate that the existence or not of this task constraint drives the system to 

different kinds of behaviors. The system would transit to a state space, 

displaying lower values of complexity without biofeedback (similar to 

oscillatory dynamic), and a behavior related to a fixed-point attractor in 

conditions with feedback, revealing more complexity in CoP behaviors (van 

Emmerik and van Wegen, 2000). Taking into account the effect of difficulty 

level, when biofeedback was available, the degree of irregularity of low-pass 

filtered CoP decreased as task difficulty increased, whereas the long-range 

auto-correlation values increased. However, under task constraints when 

biofeedback was not available, the trend for FE and DFA values was inverted. 

Moreover, as task difficulty levels increased, clearly the difference between 

biofeedback conditions was reduced. This finding reflects again the 

redundancy of biofeedback in these more challenging conditions, where CoP 

locations compatible with maintaining system stability are reduced. Unlike the 

findings of Manor et al. (2010) which support the role of complexity of 

fluctuations related to peripheral adjustments in postural control when 

standing, our results seem to indicate that complexity is more related to 

volitional changes in CoP dynamics, reflecting a search strategy in 

participants to cope with task constraints which do not necessarily require an 

involvement of a greater number of DOF. According to Danna-Dos-Santos et 

al. (2008), this search strategy could be reflected by the rambling component. 

These findings are supported by Newell and Vaillancourt (2001) who 

suggested that the increase or the decrease of complexity can be 

independent of the number of component mechanical DOF being harnessed 
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as a system, but the direction of the changes in complexity is driven by task 

constraints. 

These contrasting results could have emerged for different reasons. 

First, it is possible that the balance task constraints used in both studies were 

different. Thus, the type of control requirements for keeping balance could 

have differed. Another reason could be due the populations studied. Manor 

et al., (2010) studied CoP complexity in people with risk factors for falls for 

whom peripheral control could be a key factor in avoiding falls, whilst the 

participants of our study were healthy people with little risk of falling. 

Nevertheless, it is difficult to compare the results of the two studies because 

Manor et al. (2010) did not analyze low-pass CoP signals. In future studies, it 

would be interesting to assess both kind of components of CoP displacement 

and changes in CoP complexity in relation to distinct task constraints and with 

different populations. 

Regarding the high-pass filtered CoP signal, the availability of 

biofeedback did not affect system complexity, but task difficulty did, showing 

a decrease of irregularity and an increase in long-range auto-correlation as 

task difficulty increased. Taking into account that this filter procedure could 

reflect peripheral postural control (trembling component), this lack of effect of 

the biofeedback condition could be due to the fact that the fluctuations of the 

trembling component represent an involuntary adjustment of CoP (Danna-

Dos-Santos et al., 2008; Tahayori et al., 2012). On the other hand, the fact 

that the most difficult conditions revealed less irregularity and greater long-

range auto-correlation of the CoP signal could indicate that, in these 

situations, individuals reduced the number of involuntary adjustments due to 

the difficulty in correcting CoP displacement because of the increase in 

inertia.  

Regarding correlational analysis, a direct relationship between BVE 

and complexity was found in both low-pass and (to lesser extent) high-pass 

filtered CoP signals. These results seem to indicate that participants who 

showed lower balance performance exhibit a lower number of postural 
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adjustments. Conversely, MVM was directly related to complexity in the low-

pass filtered CoP signal and, inversely, to complexity in the high-pass filtered 

CoP signal. This finding could mean that individuals who displayed low CoP 

velocities showed a higher number of peripheral postural adjustments and a 

low number of volitional corrections. Additionally, when participants showed 

higher CoP velocities, it could mean that the peripheral system could not 

control stability and more volitional postural corrections were needed to 

maintain balance. 

The fact that the relationships between balance performance 

variables and complexity were stronger in the low-pass filtered CoP, revealed 

the prevalence of volitional adjustments in postural control to maintain 

balance. Peripheral adjustments played a less relevant role in the postural 

control strategy during the balance tasks analyzed in this study. 

Our results indicated that a specific relationship that emerges between 

system complexity and performance is dependent on task constraints (Newell 

and Vaillancourt, 2001; Vaillancourt and Newell, 2002, 2003; Vaillancourt, 

Sosnoff, and Newell, 2004). It seems that each performance variable varied 

according to different task constraints encountered by participants, revealing 

different trends. These findings signified that when researchers wish to 

assess the relationship between an individual's capacity to adapt and system 

complexity when learning or under different performance constraints, 

contradictory results may be observed due to the influence of distinct task 

constraints designed into experiments. Furthermore, this is a very important 

point to take into account when the system complexity is related to system 

constraints of ageing, illness or damage. 

To conclude, in this study we provided some support for the idea that 

specific task constraints can lead to an increase or decrease in complexity 

emerging in a neurobiological system during performance. Informational 

constraints, such as availability of biofeedback and level of task difficulty, 

shaped emergent strategies of movement coordination, due to participants 

searching for different attractors to functionally regulate their behaviors. 
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CAN THE STRUCTURE OF MOTOR VARIABILITY PREDICT LEARNING 
RATE? 

David Barbado, Carla Caballero, Janice M. Moreside, Francisco J. Vera-

Garcia and Francisco J. Moreno 

5.1 Abstract. 
Recent studies show that motor variability is actively regulated as an 

exploration tool to promote learning in reward-based tasks. However, its role 

in learning processes during error-based tasks, when a reduction of the motor 

variability is required to achieve good performance, is still unclear. In this 

study, we hypothesized that error-based learning not only depends on 

exploration but also on the individuals’ ability to measure and predict the 

motor error. Previous studies identified a less auto-correlated motor variability 

as a higher ability to perform motion adjustments (Amoud et al., 2007; Wang 

and Yang, 2012). Two experiments investigated the relationship between 

motor learning and variability, analyzing the long-range auto-correlation of the 

CoP fluctuations through the α score of a DFA in balance tasks. In experiment 

1, we assessed the relationship between variability and learning rate using a 

standing balance task. Based on the results of this experiment, and to 

maximize learning, we performed a second experiment with a more difficult 

sitting balance task and increased practice. The learning rate of the two 

groups with similar balance performances but different α scores was 

compared. Individuals with a lower α score showed a higher learning rate. 

Because the α scores reveal how the motor output changes over time, instead 

of the magnitude of those changes, the higher learning rate is mainly linked 

to the higher error sensitivity rather than the exploration strategies. The 

results of this study highlight the relevance of the structure of output motor 

variability as a predictor of learning rate in error-based tasks. 
Keywords: variability, learning rate, balance. 
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5.2. Introduction. 

Motor variability is described as the “noise” caused by stochastic 

neuromuscular function that must be minimized to increase task performance 

(Churchland, Afshar, and Shenoy, 2006; Harris and Wolpert, 1998; Osborne, 

Lisberger, and Bialek, 2005; Schmidt et al., 1979; Shmuelof, Krakauer, and 

Mazzoni, 2012). While learning any motor skill, the magnitude of motor 

variability progressively decreases as movement execution improves 

(Caballero et al., 2014; Stein et al., 2005). However, others approaches 

indicate that variability plays a functional role, allowing individuals to generate 

more adaptive responses to stressors (Goldberger, 1996; Goldberger, Peng, 

et al., 2002). Motor variability reflects the motor system’s ability to explore 

different motor configurations, looking for an optimal solution facilitating 

adaptive (Barbado et al., 2012; Manor et al., 2010; Zhou et al., 2013) and/or 

learning processes (Tumer and Brainard, 2007; Wu et al., 2014). However, 

although some studies have found that high motor variability predicted faster 

reward-based learning of different reaching tasks (Pekny, Izawa, and 

Shadmehr, 2015; Wu et al., 2014), there is limited evidence about motor 

variability playing a similar role during error-based learning (Wu et al., 2014).  

Functional perspectives of motor variability are not in opposition to the 

traditional view. Variability seems to be a multidimensional feature of the 

motor system (Stergiou and Decker, 2011). Previous findings include the 

need for high-variability when exploration is required to learn a novel task, but 

low-variability improves accuracy, exploiting a viable solution (Woolley and 

Doupe, 2008; Wu et al., 2014). Nevertheless, when motor variability during a 

novel task is analyzed, it is difficult to estimate the extent to which motor 

variability is a consequence of stochastic neuromuscular noise, which must 

be reduced to improve motor performance, or whether it is being actively 

regulated to promote learning. Novices usually show higher motor variability 

but exhibit a higher learning-rate than experts. Therefore, how can we 

measure motor variability to reveal the system functional properties during 
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learning when a low magnitude of variability is required to perform the task 

properly? 

Some mathematical tools allow for the discrimination between both 

concepts of variability. Scattering variables have been used to describe the 

magnitude of the variability (Stergiou and Decker, 2011), suggesting that the 

mean is the ultimate performance goal and diversion from the mean is the 

error. Nonlinear mathematical tools have been used to analyze the temporal 

organization of variability. For example, the analysis of long-range auto-

correlation (Amoud et al., 2007; Peng et al., 1995) and the regularity (Barbado 

et al., 2012; Rhea et al., 2011) of the time series were used to assess the 

extent to which further motor behavior is dependent on previous fluctuations. 

Less dependence on previous behavior (lower long-range auto-correlation or 

regularity) was interpreted as a higher flexibility to perform motion 

adjustments (Amoud et al., 2007; Wang and Yang, 2012). Studies on balance 

tasks in older (Manor et al., 2010; Zhou et al., 2013) and young individuals 

(Barbado et al., 2012) revealed that individuals who showed lower long-range 

auto-correlation and less regularity of CoP fluctuations while standing on a 

stable surface demonstrated better performance with more difficult balance 

tasks. Therefore, an important question is how the structure of motor 

variability, demonstrated during the early stages, relates to learning rate 

during an error-based task and what it means. 

To answer these questions, two experimental setups were carried out 

to analyze the relationship between motor variability and learning rate in 

balance tasks where the performance criterion was the reduction in the 

amount of variability. In experiment 1, the learning rate in a standing balance 

task was assessed within-session. Based on the results of experiment 1 and 

its limitations, a second experiment was performed using a less common and 

more difficult sitting balance task with longer trial times and an increased 

practice period. In both experiments, the learning rate was compared 

between the two groups and showed similar balance performance (magnitude 
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of variability) but a different long-range auto-correlation of the postural sway 

fluctuations (structure of variability). 

5.3. Experiment 1: Standing protocol. 

5.3.1 Method. 

5.3.1.1. Participants. 

Thirty volunteers took part in experiment 1 (age = 24.2 ± 4.6 years; 

height = 1.72 ± 0.09 m; mass = 69.0 ± 10.7 kg), 11 women (age = 23.4 ± 3.4 

years; height = 1.64 ± 0.06 m; mass = 59.5 ± 5.0 kg) and 19 men (age = 24.6 

± 5.2 years; height = 1.77 ± 0.07 m; mass = 74.5 ± 9.2 kg).   

All of the participants were healthy and without current knee or ankle 

injury or past pathology in these regions. All of the subjects participants 

reported having no neurological or musculoskeletal problems. No participant 

had previous experience in the balance task used in this study. Written 

informed consent was obtained from each participant prior to testing. The 

experimental procedures used in this study were in accordance with the 

Declaration of Helsinki and were approved by the University Office for 

Research Ethics. 

5.3.1.2. Experimental Procedure and Data Collection. 

The participants were asked to “stand as still as possible” (Cavanaugh 

et al., 2007; Duarte and Sternad, 2008) on a BOSU® balance trainer 

(BOSU®, Ashland, OH, USA) (diameter: 65 cm; height: 23 cm) with their feet 

placed 30 cm apart and their hands resting on their hips (Figure 11). The 

BOSU pressure was constant between the participants (0.3 bar) and was 

checked before and after each participant’s testing. To assess postural 

stability, this study used a force plate (Kistler, Switzerland, Mode 9287BA). 

The feet were positioned such that the line between their heels coincided with 

the medial-lateral axis of the platform. Trials were performed barefoot in front 
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of a clear white wall with no visual reference. Although a safety rail was placed 

in front of the participant providing a secure bar to grasp if participants 

perceived they were unable to control their balance, all participants were able 

to maintain the standing posture, without grasping a support rail or stepping 

in any direction during the trials. The ground reaction forces were recorded at 

1000 sample/s and were calibrated at the beginning of each participant’s 

collection. The participants performed a 30 s pre-test trial. After that, to 

analyze the effect of practice, the participants had 10 practice trials on a single 

day. Each practice trial lasted 15 s, with a 45 s rest period between trials. 

Then, they performed a 30 s post-test under the same conditions as the pre-

test. Each data collection began when participants were relatively stable. 

5.3.1.3. Data Analysis and Reduction. 

A custom software program in Labview 2009 (National Instruments, 

Texas, USA) was used for data analysis. There is little physiological 

significance to the CoP signal frequencies above 10 Hz (Borg and Laxåback, 

2010), and thus, the CoP time series were subsampled at 20 Hz. This also 

removed the artificial co-linearities that could affect the variability analysis 

(Barahona and Poon, 1996; Rhea et al., 2011). The first and the last 5 s of 

each trial were discarded to avoid non-stationarity related to the beginning 

and end of the trial (van Dieen et al., 2010). Finally, a low-pass filter (4th-order, 

zero-phase-lag, Butterworth, 5 Hz cut-off frequency) was performed, 

according to Lin et al. (2008).  
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Figure 11. Participant performing a standing stability task on a BOSU surface. 

Because the orientation of the participant was only approximately 

aligned with the axes of the force platform, the resultant distance (RD) was 

used as a global measure to quantify the performance during the balance 

trials (Prieto et al., 1996). RD was calculated as the average of the vector 

distance magnitude (mm) of the CoP from the participant’s own mean CoP 

position. The absolute learning rate (ALR) and relative learning rate (RLR) 

were calculated as follows: the ALR was the RD differences between the pre-

test (RDPRE) and post-test (RDPOST), while the RLR was calculated relative to 

the initial performance of each individual [100*(RDPRE - RDPOST) / RDPRE]. 

To assess the structure of the variability we used DFA. DFA is a method 

based on the random walk theory, representing a modification of a classic 

root mean square analysis of the random walk, which evaluates the presence 

of long-term correlations within the time series by a parameter referred to as 

the scaling index α (Peng et al., 1994; Peng et al., 1995; Roerdink et al., 

2006). Different values of α indicate the following: α > 0.5 implies persistence 

(i.e., the trajectory tends to continue in its current direction); α < 0.5 implies 

anti-persistence (i.e., the trajectory tends to return to where it came from); 
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and α = 0.5 implies uncorrelated signal (Roerdink et al., 2006). Therefore, α 

identifies the extent to which further data are dependent on the previous 

(Jordan and Newell, 2008). Typically, CoP displacement exhibits α values 

ranging from 0.5 to 1.5. α CoP data have been used to assess human 

adaptability to postural or motion adjustments (Amoud et al., 2007; Wang and 

Yang, 2012).  

To maximize the long-range correlations and to reduce the estimation 

error of α, long-term correlation was characterized by the slope α obtained 

from the range of 4 ≤ n ≤ N/10, where N is the data length (Z. Chen et al., 

2002). The participants were only approximately aligned with the axes of the 

force platform, and the α of each participant was calculated as the average α 

obtained from both axes. 

5.3.1.4. Statistical Analysis. 

Normality of the variables was evaluated through the Kolmogorov-

Smirnov test with Lilliefors correction. First, a Pearson’s correlation was 

performed between RDPRE, α PRE, ALR and RLR to assess the initial 

performance and variability influence on learning rate (Table 10). Second, to 

avoid the initial performance bias on learning rate, participants were grouped 

using a linear regression method (Figure 12). Specifically, participants were 

classified into three groups, according to their RDPRE. Then, we performed a 

linear regression between RDPRE and αPRE in each performance group. Finally, 

participants were grouped according their residual scores. The higher 

residual scores in each group were included in the “High auto-correlated 

variability” (HAV) group. The lower residual scores in each group were 

included in the “Low auto-correlated variability” (LAV) group (Figure 12). One-

way ANOVA for independent measures was performed to assess the ALR 

and RLR differences between groups, with the initial structure of variability as 

an inter-subject factor (HAV and LAV groups) (Tables 2). A mixed-way 

ANOVA was performed with RD as a within-subject factor (PRE and POST) 

and with the initial structure of variability as an inter-subject factor (HAV and 
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LAV groups) (Figure 13). The partial eta squared (ƞp2) was calculated as a 

measure of effect size. The values of an effect size ≥ 0.64 were considered 

strong, between 0.64 and 0.25 were considered moderate, and ≤ 0.25 were 

considered small (Ferguson, 2009). 

Finally, to check the results obtained with the linear regression 

method, we performed a Principal Component Analysis (PCA) (Table 13 and 

Figure 14) on the initial structure of the variability (αPRE), the initial 

performance (RDPRE) and the relative learning rate (RLR). This method 

reduces the dimensionality of interrelated measures (Jolliffe, 2002) and 

facilitates the interpretation of the results as it extracts features that are 

directly related to the original data set (Rocchi, Chiari, and Cappello, 2004). 

5.3.2. Results. 

Participants improved their performance, reducing their RD 

significantly after practice trials (RDPRE = 14.5 ± 5.0 mm; RDPOS = 12.6 ± 3.1 

mm; F1,29 = 4.57; p = 0.041; ƞp
2 = 0.136). As shown in table 11, the learning 

rate significantly correlated with the initial performance, while no significant 

correlations were found between the learning rate and the initial structure of 

variability. These results indicate that the learning rate is highly determined 

by the initial performance, while the initial structure of variability does not 

seem to influence it. That is, less skillful individuals have a higher room for 

improvement than more skillful ones.  However, although no significant 

relationship was found between RDPRE and αPRE, it was close to being 

significant (r = 0.319; p = 0.086), suggesting that initial performance could 

bias the relationship between the variability and learning rate. That is, less 

skillful individuals who tend to show higher αPRE values could show higher 

learning rates. 
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Table 11. Pearson’s bivariate correlations among individuals’ initial balance 
performance (RDPRE), initial structure of variability (αPRE) and learning rate 
in absolute (ARL) and relative (RLR) values. 

αPRE ALR RLR 

RDPRE 0.319 (0.086) 0.799 (<0.001) 0.596 (<0.001) 
αPRE 0.053 (0.782) -0.058 (0.760) 

Pearson correlation coefficient (level of significance) 
αPRE = long-range auto-correlation index shown in the pretest; RDPRE = resultant 
distance shown in the pretest.  

To assess the relationship between the initial structure of the variability 

(αPRE) and the learning rate (ALR, RLR), avoiding the bias of the initial 

performance (RDPRE), participants were grouped using a linear regression 

method (Figure 12). The higher residual scores (black dots in Figure 12) in 

each performance level were included in the HAV group, while the lower 

residual scores (white dots) were included in the LAV group.  

Table 12 shows the values of the two groups after the distribution of 

the participants. The groups were quite similar in the initial performance 

(RDPRE: F1,29 = 0.01; p = 0.938: ƞp2= 0.001) but different in the structure of the 

variability (αPRE: F1,29 = 24.61; p < 0.001; ƞp2= 0.468). After analyzing the 

effects of practice on the performance variables, no significant differences 

were found between the groups in the learning rate, but the LAV group 

showed higher RLR values compared to the HAV group, although the 

differences were only close to being significant (RLR: F1,29 = 3.74; p= 0.063; 

ƞp2= 0.118). 

Based on these results, we performed a PCA to examine the 

underlying relationships between the initial performance, the initial structure 

of the variability and the learning rate. The first principal component factor 

(PC1) accounted for 55.14% of the total variance and showed that a higher 

RLR was mainly related to a higher RDPRE (worse performance) and to a 

lesser extent to a higher αPRE, supporting the notion that the learning rate is 

highly determined by the initial performance (Table 13). In addition, less 
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skillful individuals showed a high auto-correlated CoP variability. PC2, 

accounting for 34.94% of the total variance, showed that a higher RLR was 

related to a low αPRE and was unrelated to RDPRE (Table 13). Figure 14 shows 

the relationship between these variables, indicating that individuals with low 

PC2 values showed a higher learning rate (R2 = 0.229; p = 0.007), lower auto-

correlated CoP variability (R2 = 0.817; p < 0.001) and equivalent initial 

performances (R2 = 0.002; p = 0.793) compared to individuals with high PC2

values. Nevertheless, as pairwise comparisons show (Figure 13), while the 

LAV group reduced the RD significantly between pre-test and post-test 

measures, the HAV group did not show significant changes in RD. Thus, only 

the LAV group showed an improved performance (Figure 13). 

Table 12. Mean ± SD differences of the initial structure of variability (αPRE), 
the initial performance (RDPRE) and the absolute and relative learning rate 
(ALR and RLR) between individuals with high or low initial long-range auto-
correlation grouped according to the residuals of the linear regression 
grouping method. 

LAV group 
(n=15) 

HAV group 
(n=15) F1,29 P ƞ𝒑𝒑𝟐𝟐

αPRE 0.96 ± 0.09 1.14 ± 0.09 24.614 <0.001 0.468 
RDPRE (mm) 14.41 ± 4.60 14.57 ± 5.55 0.006 0.938 0.001 
ALR (mm) 3.19 ± 4.29 0.61 ± 5.30 2.183 0.151 0.072 
RLR (%) 17.26 ± 26.57 -3.01 ± 30.72 3.735 0.063 0.118 

One-way ANOVA for independent measures. 
αPRE = long-range auto-correlation index shown in the pretest. 
RDPRE = resultant distance shown in the pretest. 
LAV group = Low auto-correlated variability group. 
HAV group = High auto-correlated variability group. 
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Figure 13. Pre- and post-test differences in the resultant distance (RD) between the “High 
auto-correlated variability” (HAV) and the “Low auto-correlated variability” (LAV) groups. 
Participants were grouped in the HAV or LAV groups according to the residual scores of 
the linear regression method between the initial performance (RDPRE) and initial structure 
of variability (α PRE). *Significant pre- and post-test differences of the LAV group. 
 

 

Table 13. Principal component factors (PC) obtained from the Principal 
Component Analysis during the standing protocol. 

Components PC1 PC2 PC3 

RDPRE 0.924 0.049 -0.378 
RLR 0.810 -0.479 0.338 
αPRE 0.379 0.904 0.200 

αPRE = long-range auto-correlation index shown in the pretest. 
RDPRE = resultant distance shown in the pretest. 
LAV group = Low auto-correlated variability group. 
HAV group = High auto-correlated variability group. 
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Figure 14. Relationship between PC2 scores and a) the initial performance (RDPRE); b) 
the initial long-range auto-correlation of the CoP variability (α PRE) and c) the relative 
learning rate (RLR) during the protocol of experiment 1. 
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5.3.3. Discussion. 

Previous studies found a relationship between an individual’s motor 

variability during a baseline period and learning rate in reward-based tasks, but 

limited evidence is available for error-based learning (Wu et al., 2014).  

In this study, we found little evidence about motor variability predicting 

the rate of learning. However, our results suggest that this relationship is 

influenced by an individual’s initial performance level. The correlational results 

and PC1 (Tables 11 and 13) revealed that individuals with higher auto-correlated 

CoP variability tended to show poorer performance. Previous studies have linked 

higher auto-correlated motor fluctuations to lower flexibility to carry out postural 

adjustment and therefore poorer performance (Amoud et al., 2007; Wang and 

Yang, 2012; Zhou et al., 2013). In our study, the participants with higher αPRE, 

showed a lower performance level and, consequently, had greater room for 

improvement, biasing the hypothetical relationship between learning and 

variability structure. Lower auto-correlated motor fluctuations indicate better 

balance performance and could be considered a sign of a later stage of learning 

in which individuals show more of an exploitation rather than an exploration 

behavior. 

However, it would be reasonable to assume that individuals who display 

a higher ability to perform postural adjustments would also show a higher 

learning rate. When participants were grouped using the linear regression 

method and the initial performance bias was avoided, the individuals with low 

long-range auto-correlated CoP variability (low αPRE) tended to display greater 

performance improvement than those with high long-range auto-correlation. PC2 

confirmed these findings, supporting the hypothesis that individuals with a higher 

ability to perform postural adjustment have greater improvement potential.  

In terms of limitations, it could be argued that the between-group 

differences in the learning rate, based on the initial structure of the variability, 

showed a small size-effect and were only significant when the learning rate was 

assessed in a relative sense. These results were influenced by the small learning 

rate observed after practice. Even so, some individuals showed a poorer 

performance after practice (Figure 13), suggesting that the task was too easy or 
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that the practice was not extensive enough to promote learning. If this were the 

case, there would have been no need for the motor exploration, thus decreasing 

the importance of the motor variability as a functional feature of learning (Woolley 

and Doupe, 2008; Wu et al., 2014). Another limitation could be related to the low 

reliability that scattering variables such as RD exhibit during the data series 

involving short easy tasks (Lee and Granata, 2008; van Dieën et al., 2010). If a 

balance task is too easy, participants might attempt to maintain balance with their 

center of mass at different locations relative to their support surface (Caballero, 

Barbado, and Moreno, 2015). In such cases, it is difficult to achieve stationarity 

of the time series, decreasing the reliability of the scattering variables such as 

RD (Caballero et al., 2015; Lee and Granata, 2008) and DFA (Caballero et al., 

2015). 

Taking the results and the aforementioned concerns into account, we 

tested the hypothesis in a second experiment using a less common and more 

difficult balance task with longer trial times and with an increased practice period. 

5.4. Experiment 2: Sitting protocol. 

5.4.1. Method. 

5.4.1.1. Participants. 

Twenty-two volunteers took part in experiment 2 (age = 24.6 ± 4.6 years; 

mass = 73.6 ± 7.5 kg, height = 1.74 ± 0.07 m; trunk moment of inertia = 5.22 ± 

0.76 kg•m2), and all were males. The inclusion criteria were the same as the 

previous experiment. All subjects were healthy, without current pain in the hip or 

back or past pathology in these regions. All of the subjects reported having no 

neurological or musculoskeletal problems. No participant had previous 

experience in the balance task used in this study. Written informed consent was 

obtained from each participant prior to testing. The experimental procedures 

were in accordance with the Declaration of Helsinki and were approved by the 

University Office for Research Ethics. 
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5.4.1.2. Experimental Procedure and Data Collection. 

Participants sat upon a seat assembly consisting of a wooden platform 

(50 cm x 50 cm) affixed to the flat surface of a polyester resin hemisphere 

(diameter of hemisphere: 35 cm; height of the seat relative to the bottom of the 

hemisphere: 12 cm) (Figure 15). The seat was equipped with wooden leg and 

foot supports to prevent lower body movement relative to the platform. Foot 

support height was individually adjusted to create a 90º knee angle and light 

plantar foot support, while elastic straps secured each participant’s lower leg to 

the leg support. A safety rail was placed in front of the participant, thus providing 

a secure bar to grasp if participants perceived they were unable to control their 

balance, and to hold onto during rest periods (Figure 15). In addition, a wooden 

stabilizing device was inserted under the seat platform during the rest periods, 

thus stabilizing the platform from any rocking motion. In this way, fatigue was 

avoided and participants were unable to gain further balance practice during the 

rest periods.  

To analyze the effect of practice, participants attended 3 testing sessions 

spaced 1 week apart. Five 70-s trials were collected per session (15 trials in 

total) with 2 min of rest between trials. The 70-s of data collection began when 

they were relatively stable with their hands on their lateral chest at rib level. They 

were instructed to maintain their balance, keeping the unstable platform “as still 

as possible” (Cavanaugh et al, 2008) (Figure 15).   

The seat assembly was placed atop a force plate (Kistler, Switzerland, 

Model 9286AA), which was sampled at 1000 Hz and calibrated prior to each test. 

The CoP data were subsampled at 20 Hz following the same principle explained 

in experiment 1. 

5.4.1.3. Data analysis and reduction. 

While the data analysis closely followed the procedure used in the 

previous experiment, there were a few differences. To avoid non-stationarity 

related to the beginning of the trial, the first 10 s of each trial were discarded (van 

Dieën et al., 2010). The length of the time series analyzed was 1200 data points. 
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Similar to the first experiment, because the orientation of the participant 

was only approximately aligned with the axes of the force platform, the resultant 

distance (RD) was used as a global measure to quantify the performance during 

the balance trials (Prieto et al., 1996), and the α scores of each participant were 

calculated as the average α obtained from both axes. 

In this experiment, the RD and α of each participant were averaged over 

the three last trials of each session. The ALR was now calculated as the RD 

differences between the third and second sessions relative to the first (ALR1-2 

and ALR1-3). The RLR was similarly calculated relative to the initial performance 

of each individual (RLR1-2 and RLR1-3). 

Figure 15. Participant performing the sitting stability task on the unstable seat. 

5.4.1.4. Statistical Analysis. 

The statistical analysis performed in experiment 2 was similar to 

experiment 1. The normality of the variables was evaluated through the 

Kolmogorov-Smirnov test with Lilliefors correction. First, a Pearson’s correlation 

was performed between the performance (RD1) and long-range auto-correlation 
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(α1) in the first session, and the learning rate (ARL1-2, ARL1-3, RLR1-2 and RLR1-

3) to assess the initial performance and variability influence on the learning rate

(Table 4). Second, to avoid the initial performance bias on the learning rate, 

participants were grouped using a linear regression method (Figure 16). 

Specifically, the participants were classified into three groups according to their 

RD1. Then, we performed a linear regression between RD1 and α1 in each 

performance group. Similar to the first experiment, the participants were grouped 

according to their residual scores. Higher residual scores in each group were 

included in the HAV group. The lower residual scores in each group were 

included in the LAV group (Figure 16). One-way ANOVA for independent 

measures was performed to assess the learning rate (ARL1-2, ARL1-3, RLR1-2 and 

RLR1-3) differences between the groups with the initial structure of the variability 

as an inter-subject factor (HAV and LAV groups) (Table 15). A mixed-way 

ANOVA was performed with RD as a within-subject factor (session 1, session 2 

and session 3) and with the initial structure of the variability as an inter-subject 

factor (HAV and LAV groups) (Figure 17). The partial eta squared (ƞp2) was 

calculated as a measure of effect size. Values of an effect size ≥0.64 were 

considered strong, between 0.64 and 0.25 were considered moderate, and ≤ 

0.25 were considered small (Ferguson, 2009). 

Finally, we performed PCA (Table 16 and Figure 18) to check the results 

obtained with the linear regression method and to extract the underlying 

relationships between the initial structure of the variability (α1), the initial 

performance (RD1) and the relative learning rate (RLR1-3).  

5.4.2. Results. 

All of the participants improved their performance and significantly 

reduced their RD between session 1 and session 3 (RD1 = 4.9 ± 1.2 

mm; RD2 = 4.3 ± 1.0 mm; RD3 = 3.3 ± 0.8 mm; F1,21 = 32.69; p < 0.001; ƞp
2 = 

0.598); nevertheless, as the size effect indicated, the learning rate in experiment 

2 was higher than the learning rate in experiment 1. As Table 14 shows, the 

learning rate significantly correlated with initial performance, while no significant 
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correlations were found between the learning rate and the initial structure of the 

variability. Again, these results indicate that the learning rate is highly determined 

by initial performance, while the initial structure of the variability does not seem 

to influence it. However, a significant relationship was found between RD1 and α 

1, supporting that the initial performance biased the relationship between the 

variability and the learning rate. That is, less skillful individuals who show higher 

α1 values have a higher learning rate. 

Table 14. Pearson’s bivariate correlations between the individual’s initial 
balance performance (RD1), initial structure of the variability (α1) and learning 
rate in absolute (ALR1-2, ALR1-3) and relative (RLR1-2, RLR1-3) values. 

RD1 α1 ALR1-2 RLR1-2 ALR1-3 RLR1-3 

RD1 0.537 
(0.010) 

0.536 
(0.010) 

0.407 
(0.060) 

0.723 
(<0.001) 

0.485 
(0.022) 

α1 0.537 
(0.010) 

0.350 
(0.111) 

0.332 
(0.131) 

0.283 
(0.202) 

0.161 
(0.474) 

Pearson correlation coefficient (level of significance) 
α1 = long-range auto-correlation index shown in the first session; RD1 = Resultant 
distance shown in the first session; ALR1-2 = absolute learning rate between sessions 
1 and 2; ALR1-3 = absolute learning rate between sessions 1 and 3; RLR1-2 = relative 
learning rate between sessions 1 and 2; RLR1-3 = relative learning rate between 
sessions 1 and 3. 

As in experiment 1, to assess the relationship between the initial structure 

of the variability (α1) and the learning rate (ALR1-2, ALR1-3, RLR1-2, RLR1-3) and 

avoid the bias of the initial performance (RD1), participants were grouped using 

a linear regression method (Figure 16). Again, higher residual scores (black dots 

in Figure 16) in each performance level were included in the HAV group, while 

lower residual scores (white dots) were included in the LAV group. 

Table 15 shows the values of the two groups after the distribution of the 

participants. The groups were quite similar in initial performance (RD1: F1,21 = 

0.038; p = 0.847: ƞp2= 0.002) but different in the structure of the variability (α1: 

F1,21 = 24.61; p < 0.001; ƞp2= 0.468). After analyzing the effects of practice on the 

performance variables, significant differences between the groups were found in 
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ALR1-3 and RLR1-3. The LAV group showed a higher learning rate than the HAV 

group. 

The mixed measure ANOVA showed a performance improvement after 

practice in both groups (F1,21 = 32.69; p < 0.001; ƞp
2 = 0.598). However, the LAV 

group showed higher improvements between sessions 3 and 1 than the HAV 

group (Interaction F1,20 = 4.39; p = 0.049; ƞp2 = 0.180). The pairwise comparisons 

showed significant differences in RD between the groups in session 3 (Figure 

17). 

Table 15. Mean ± SD differences of the initial structure of the variability (α1), 
the initial performance (RD1) and the absolute and relative learning rate (ALR1-

2, ALR1-3, RLR1-2, RLR1-3) between individuals with high or low initial long-range 
auto-correlation grouped according to the residuals of the linear regression 
grouping method. 

HAV group 
(n=11) 

LAV group 
(n=11) F1,21 P ƞ𝒑𝒑𝟐𝟐

α1 1.11 ± 0.11 1.22 ± 0.11 6.437 0.020 0.243 
RD1 4.84 ± 1.18 4.95 ± 1.26 0.038 0.847 0.002 
ALR1-2 0.86 ± 0.73 0.40 ± 0.88 1.834 0.191 0.084 
ALR1-3 1.98 ± 0.83 1.15 ± 1.02 4.389 0.049 0.180 
RLR1-2 16.85 ± 15.18 5.59 ± 19.54 2.277 0.147 0.102 
RLR1-3 39.69 ± 10.32 20.46 ± 17.81 9.599 0.006 0.324 

One-way ANOVA for independent measures. 
α1 = long-range auto-correlation index shown in the first session; RD1 = resultant 
distance shown in the first session; ALR1-2 = absolute learning rate between sessions 
1 and 2; ALR1-3 = absolute learning rate between sessions 1 and 3; RLR1-2 = relative 
learning rate between sessions 1 and 2; RLR1-3 = relative learning rate between 
sessions 1 and 3; LAV group = Low auto-correlated variability group; HAV group = 
High auto-correlated variability group. 
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Figure 17. Resultant distance values (RD) from the “High auto-correlated variability” 
(HAV) and “Low auto-correlated variability” (LAV) groups across sessions. 
* Significant differences between the groups in session 3. 

Finally, the PCA performed among the initial performance, the initial 

structure of the variability and the learning rates between sessions 1 and 3 

supported the aforementioned results. PC1 accounted for 60.28% of the total 

variance, showing that a higher RLR1-3 was related to a higher RD1 and α1, and 

thus, less skillful individuals had greater room for improvement than more skillful 

ones but showed higher auto-correlation of the CoP variability. PC2 accounted 

for 27.99% of the total variance and showed that a higher RLR1-3 was related 

with low α1 and was unrelated to RD1. As shown in Figure 17, individuals with 

low PC2 values showed a higher learning rate (R2 = 0.446; p < 0.001), lower auto-

correlated CoP variability (R2 = 0.373; p = 0.003) and no difference in their initial 

performance (R2 = 0 .001; p = 0.920) compared to individuals with high PC2 

values. 
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Figure 18. Relationship between PC2 scores and the three variables analyzed: a) the 
initial long-range auto-correlation of the CoP variability (α1), b) the initial performance 
(RD1), and c) the relative learning rate (RLR1-3) during the protocol of experiment 2. 
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Table 16.  Principal component factors (PC) obtained from Principal 
Component Analysis during the sitting protocol. 

Components PC1 PC2 PC3 

RD1 0.897 -0.023 -0.442 
RLR1-3 0.732 -0.611 0.302 
α1 0.684 0.683 0.255 

α1 = long-range auto-correlation index shown in the first session. 
RD1 = resultant distance shown in the first session. 
RLR1-3 = relative learning rate between sessions 1 and 3. 

5.4.3. Discussion. 

Our second experiment, using a sitting balance task, confirmed the 

preliminary results found in experiment 1. On the one hand, individuals with less 

auto-correlated CoP variability showed a better performance but a lower learning 

rate. On the other hand, when the bias caused by initial performance was 

controlled, individuals with less auto-correlated CoP variability showed a higher 

learning rate not only in the relative sense but in the absolute values as well. In 

spite of the fact that the statistical procedures used in both experiments are 

correlational and they do not permit the establishment of causal links, a less 

auto-correlated CoP variability during the balance tasks seems to mean a higher 

ability to perform postural adjustments (Amoud et al., 2007; Wang and Yang, 

2012), which allows for the individuals to achieve a better performance and faster 

learning. The lower learning rate found in experiment 1 means that the 

exploitation strategies predominated over the exploration ones (Herzfeld and 

Shadmehr, 2014; Wu et al., 2014). Nevertheless, even in such easy and 

common tasks in which the exploitation of the current knowledge prevails, 

individuals who showed higher motor exploration (lower α1) showed a higher 

learning rate, suggesting that they are forgoing, in some way, their performance 

in view of an increased learning rate. A higher effect-size found in experiment 2 

means that during unusual and more difficult tasks, such as the sitting balance, 

exploration strategies prevail, increasing the functional role of the variability as a 

learning facilitator. Overall, these results agreed with previous findings on both 

reward-based and error-based pointing tasks (Wu et al., 2014); however, to the 
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best of our knowledge, this is the first study to assess the relationship between 

the structure of motor variability and learning rate, avoiding the influence of the 

initial performance level.  

One of the main aims of this study was to test whether the analysis of the 

motor variability structure reveals motor system properties to promote learning 

when a low magnitude of the variability is required to have a good performance 

and what it does mean during an error-based task. During reward-based 

learning, the motor variability magnitude is successfully interpreted as the 

exploration needed to find the most beneficial solutions, which will subsequently 

be exploited (Pekny et al., 2015; Wu et al., 2014). Even more, it has been 

observed that individuals increase their motor variability when they do not 

achieve success during an attempted motor task, which has been interpreted as 

a search for rewarding outcomes (Galea, Ruge, Buijink, Bestmann, and 

Rothwell, 2013; Pekny et al., 2015). A similar interpretation about the functional 

role of variability is shown in error-based learning (Wu et al., 2014). However, 

during the learning process of an error-based task, which is thought to depend 

mainly on the cerebellum (M. A. Smith and Shadmehr, 2005), learning not only 

depends on the exploration capacity but also on the ability to measure and 

predict the motor error. That is, the capacity to detect differences between the 

desired behavior and the actual motor outcome (M. A. Smith and Shadmehr, 

2005). It would be expected that when individuals are more sensitive to their own 

motor error, more motion adjustment is needed to reduce it. The analysis of the 

structure of the variability through DFA reveals how the motor output changes 

over time instead of the magnitude of those changes. Therefore, the relationship 

between the α scores and the learning rate found in our study would be more 

related to the individual’s error sensitivity rather than exploration processes. 

Previous studies that assessed the long-range auto-correlation of step-by-step 

variability during gait (Jordan, Challis, and Newell, 2007) or postural sway during 

balance tasks (Amoud et al., 2007; Wang and Yang, 2012) identified less auto-

correlated motor variability as an individual’s greater ability to perform motion 

adjustments. In our experiments, individuals with a less auto-correlated CoP 

variability mostly showed better performance, indicating that the α scores are an 
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index related to skill level. That is, high skillful individuals are more sensitive to 

their own motion, allowing them to reduce the magnitude of their body 

fluctuation. Additionally, when they were compared with their counterpart who 

had similar performance but higher auto-correlated variability, they showed a 

higher learning rate. Therefore, the analysis of the structure of motor variability 

without the influence of performance level seems to reveal the ability to perform 

motion adjustment, conditioned by the individual sensitivity to one’s own motor 

errors (Herzfeld and Shadmehr, 2014b; M. A. Smith and Shadmehr, 2005). 

Finally, it should be noted that motor variability can be a motor system 

feature that is actively and centrally regulated to promote learning (Churchland 

et al., 2006; Mandelblat-Cerf et al., 2009; Sober, Wohlgemuth, and Brainard, 

2008). Previous studies show that motor variability depends largely on individual 

factors, such as effort, motivation or attention (Borg and Laxåback, 2010; Diniz 

et al., 2011; Roerdink, Hlavackova, and Vuillerme, 2011; Stins et al., 2009; van 

Orden, Holden, and Turvey, 2003). In this sense, Correll (2008) assessed the 

influence of the effort on the time response latencies during a “shooting decision 

making task” and found that higher effort was associated with a lower auto-

correlated time response variability. Under this perspective, and taking into 

account the results of our study, low long-range auto-correlation values mean 

that the participants have a high implication to perform motion adjustment to 

reduce the motor output error.  

Despite these implications, our results point out that the analysis of the 

structure of the variability can be useful to predict the individual learning rate, but 

the underlying process that influences it is still uncertain. Future studies should 

address to what extent individual constraints affect the structure of the variability 

and whether it can be modulated during the practice period to promote faster 

learning.  

In conclusion, our findings show that analysis of the long-range auto-

correlation reveals a relevant role for motor variability during motor error-based 

learning even when a reduction of the magnitude of the output variability is 

required to achieve a good performance and individuals show a similar 

performance level. 
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6.1. Discussion and conclusions. 

Postural control analysis has been one of the most studied research 

fields in motor control. Balance is a fundamental motor ability for everyday life 

and it is also a complex ability that involves controlling many neuromuscular 

components. CoP seems to be a collective variable that reflects the activities of 

many neuromuscular components acting together to maintain balance (Manor et 

al., 2010; Riley and Turvey, 2002; Winter, 1995). Traditionally, CoP fluctuations 

have been studied through their variability, using variables to measure the 

dispersion and amount of CoP changes. Despite the reliability of these variables 

having been previously analyzed, there is no clear agreement about what is the 

best variable to use in assessing postural control (Ruhe et al., 2010). Even the 

reliability of this kind of variables has been questionable (T.L. Doyle et al., 2005). 

However, our results support that some of these variables are reliable for 

assessing balance. The MV of CoP provides very high reliability and accuracy 

values, better than scattering values. 

Recently, the use of nonlinear variables has allowed researchers to 

assess the structure and dynamics of the CoP to understand the interaction of 

the neuromuscular components. There are only a few studies that analyzed the 

reliability of this kind of variables. The findings achieved in the first study of this 

thesis show that nonlinear variables, such a FE, PE and DFA, have good 

reliability values and high accuracy to rank individuals, even greater than 

traditional variables, as it has been suggested previously (T.L. Doyle et al., 

2005). 

Another aim of this doctoral thesis was to test if, such as previous studies 

have indicated (Barbado et al. 2012; Goldberger, Peng, et al., 2002), complexity 

of the CoP variability in balance tasks reveals the system´s ability to adapt. We 

have found in the literature controversial results regarding this hypothesis. Some 

studies support that greater system complexity in balance control is connected 

to better ability to adapt (Manor et al. 2010). In contrast, other studies indicate 

the opposite: participants with higher values of complexity in CoP fluctuations 

exhibited lower performance and, therefore, they had less ability to adapt (Duarte 

and Sternad, 2008). Vaillancourt and Newell (2002; 2003) indicated that the 
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reason for this controversy could be that the increase or decrease of complexity 

depends on the nature of both the intrinsic dynamics of the system and the task 

constraints that need to be satisfied. Thus, we tested the effect of different 

constraints on the relationship between complexity and performance in standing 

balance tasks. The results of the second study supported that the relationship 

between complexity and performance was positive, as previous studies have 

indicated. Individuals who showed higher complexity values showed better 

performance in balance tasks (Barbado et al. 2012; Manor et al. 2010). However, 

the changes in CoP structure and, therefore, in CoP complexity, were affected 

by constraints such as the level of difficulty and the availability of biofeedback, 

thus agreeing the Vaillancourt and Newell´s hypothesis (2002; 2003). 

Finally, we wanted to take another step forward regarding the usefulness 

of motor variability as an intrinsic feature of the system. Thus, we tested if motor 

variability was also related to learning rate (Wu et al., 2014). The study of Wu et 

al. (2014) showed that high motor variability during the baseline period predicted 

faster learning in humans in different point-to-point reaching tasks and in a force 

field reaching task. However, we consider that the use of nonlinear variables to 

assess the structure of the variability would provide more information about the 

extent to which motor variability is a consequence of an avoidable stochastic 

neuromuscular system function (Churchland et al., 2006; Harris and Wolpert, 

1998; Osborne et al., 2005; Schmidt et al., 1979) or whether it is the result of an 

active behavior centrally regulated to promote learning (Mandelblat-Cerf et al., 

2009; Sober et al., 2008). In the third study presented in this thesis two protocols 

were developed to analyze postural control in standing and sitting balance tasks. 

The results indicated that individuals who show higher variability in the structure 

of CoP initially demonstrate a faster learning process in different balance tasks. 

This study verified that motor variability in balance tasks is related to the ability 

to adapt, to perform movement adjustments and to improve learning. Taking into 

account the general hypothesis considered in this doctoral thesis, we can 

establish the following conclusions: 
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I. Nonlinear variables show greater consistency (intraclass correlation 

coefficient) and accuracy (standard error of measurement) than traditional 

scattering variables in the CoP analysis. 

I.I. FE and PE are the nonlinear variables with highest consistency and 

accuracy values in the CoP analysis. 

I.II. DFA shows good consistency and accuracy values in the CoP analysis, 

and provide complementary information about the structure of CoP variability. 

I.III. MV of CoP shows greater consistency and accuracy values than 

scattering variables, with similar values to nonlinear variables. This variable 

could provide information about the amount of adjustments performed during 

the task, related to the error sensitivity showed by the individuals. 

I.IV. Non-stationary data series can affect the reliability of nonlinear variables. 

The increase of recording time and detrending processes such as the first 

derivative have been shown to improve the reliability of the entropy variables. 

II. The relationship between the complexity of CoP variability and the

performance in a standing balance task is dependent on the level of difficulty and 

the availability of biofeedback. 

II.I. The presence of biofeedback reduces the complexity of CoP variability.

II.II. When biofeedback is available, the complexity of CoP decreases as the 

difficulty increases. When biofeedback is not available, the complexity of CoP 

increase as difficulty increase. This is due to the fact that the most difficult 

levels in balance tasks reduce the number of possible solutions available to 

keep balance, being biofeedback redundant. 

III. Motor variability structure in balance tasks seems to reveal the system´s

ability to perform movement adjustments and is related to learning rate despite 

the individual´s initial performance level. 

III.I. Individuals who show less DFA values initially in the CoP structure (more 

complex CoP displacements) during balance tasks show a higher relative 

learning rate.  
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III.II. The relationship between the CoP structure, ability to adapt and learning 

rate in balance tasks appears even in tasks where it is necessary to reduce 

the amount of variability to get a good performance. 

6.2. Study limitations and future research 

In this doctoral thesis, we have checked the hypothesis, taking into 

account the most relevant aspects related to the research topic. Nevertheless, 

we have found some difficulties and limitations that encourage new experiments, 

taking into account different considerations, so the limitations detected can serve 

as a starting point for future studies. In our research group, other studies are 

currently being performed about the research topic of this thesis, trying to go into 

detail about the knowledge on motor variability and its relationship with the ability 

to adapt and learning processes. 

 The starting point of this thesis was to know what CoP and kinematic 

parameters better characterize postural control in standing balance tasks. The 

results obtained helped us to select the most reliable and accurate variables to 

assess the variability of postural control in balance task. However, the number 

of mathematical tools used in the literature is wide and in continuous 

development. In our work the most used variables to characterize postural 

control in the literature have been assessed but the analysis of the reliability of 

additional tools, both traditional and nonlinear variables, is necessary. Future 

works will be focused on increasing the number of analyzed variables. In 

addition, the balance tasks analyzed in this doctoral thesis are classic lab-based 

tasks, thus, despite having found good reliability results in the variables used, it 

would be also interesting to apply these variables to another balance task 

postural regulation in contexts with nested tasks, for example, movements we 

perform in everyday life or in sports. In this way, we could see if these variables 

are also appropriate to assess motor variability in tasks in which there are several 

interactions between the different body segments to perform successfully 

complex movements in which balance is also a main element. 
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Following the aim of finding the best way to characterize postural control, 

we found that the mathematical tools used to characterize postural control 

decreased their consistency and accuracy when they were applied to kinematic 

data due to their non-stationary features. Kinematic signals were not used in the 

second and third study of this thesis, dismissing information about postural 

strategies and movement pattern (Kuo et al., 1998; Madigan et al., 2006). Future 

studies should try to increase the signal stationarity, either increasing the 

recording time to reach a larger number of data or using some detrended process 

of the signal, in order to use kinematic data. 

 As we have seen in the second experiment of this doctoral thesis, the 

type of the filter applied to the signal significantly modifies the signal’s structure 

and, for instance, the complexity of CoP variability. According to some studies, 

different filters reveal different postural control behaviors that are related to two 

components of CoP displacement: rambling and trembling (Zatsiorsky and 

Duarte, 1999). These components are related to two types of motor control, 

central nervous system (volitional control) and peripheral control (involuntary 

control), respectively (Tahayori et al., 2012). In the second study, we have seen 

how in standing balance tasks the volitional control prevails over involuntary 

control in order to maintain balance. Future studies have to go in depth regarding 

to what extend voluntary and involuntary control are related to the analyzed 

adjustments known as rambling and trembling and what their role in postural 

control and movement coordination is. 

We have found that some constraints have influence over the complexity 

of CoP variability, such as the effect of difficulty levels according to the availability 

of biofeedback. Future studies must be developed to analyze the effects of other 

constraints that the literature has related to motor control, such as aging or 

performance level. In the same way, the effects of cognitive processes, such as 

attention or motivation, on the variability characteristics and the achievement of 

better performance in the learning process have to be also addressed. 

In the third experiment, it was pointed out that the amount of practice is 

a fundamental factor in causing a clear learning effect. Therefore, we consider it 

necessary to perform experimental designs with enough practice time and tasks 
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that are difficult enough to cause adaptation processes and, thus, maximize the 

learning effect. This way, the relationship between variability and learning 

processes will be easier to contrast. 

 The Motor Control and Learning Group at the Research Sport Center of 

the Miguel Hernandez University is currently working on experimental protocols 

to assess motor variability and its relationship with the ability to adapt and the 

learning process. We are developing a research project, supported by the 

Spanish Government, in which one of the main aims is to assess the motor 

variability structure as an index for predicting the ability to adapt and learning. 

Therefore, the discussed limitations are being taken account, increasing the 

sample size and practice time. A larger sample size will allow us to group the 

participants according to their initial variability and performance considering that 

these variables can affect in the relationship between initial variability and the 

ability to adapt. The amount of practice has also been increased to maximize the 

learning process, and new protocols will be developed in which different motor 

abilities will be analyzed in order to extrapolate our conclusions. Some of the 

suggested motor abilities in the current research project will be discrete basic 

tasks (e.g., throwing a ball toward a target) and more specific sport tasks to 

check if the relationship between variability and the ability to adapt also appears 

in other kinds of motor tasks and if it can be extrapolate sport situations.
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6.1. Discusión y conclusiones. 

El análisis del control postural ha sido uno de los ámbitos de mayor 

interés dentro del área del control motor ya que el equilibrio es un aspecto motriz 

fundamental en el día a día, además de ser una tarea motriz compleja que 

conlleva el control de numerosos componentes neuromusculares. El centro de 

presiones (CoP) es considerado una variable colectiva que refleja la actividad 

de numerosos componentes neuromusculares actuando de forma conjunta para 

conseguir mantener el equilibrio (Manor et al., 2010; Riley and Turvey, 2002; 

Winter, 1995). Tradicionalmente, éste se ha estudiado a través de la variabilidad 

de sus fluctuaciones, utilizando variables que miden la dispersión y la magnitud 

de los cambios del CoP. A pesar de que diversos estudios han analizado la 

fiabilidad de este tipo de variables no existe un acuerdo claro sobre cuál es la 

mejor variable para evaluar el control postural (Ruhe, Fejer, and Walker, 2010). 

Incluso la fiabilidad de estas variables ha llegado a ser cuestionada por algunos 

autores (T.L. Doyle, Newton, and Burnett, 2005). Sin embargo, nuestros 

resultados indicaron que algunas de estas variables son fiables para analizar el 

control postural. La velocidad media del CoP proporciona unos valores de 

consistencia y precisión en la medida muy altos, siendo mayores que los de las 

variables de dispersión.  

Recientemente, el uso de variables no lineales ha permitido analizar la 

dinámica de la estructura del CoP para conocer la interacción de los 

componentes neuromusculares involucrados en el control postural, pero los 

estudios de fiabilidad de este tipo de herramientas son escasos. Los hallazgos 

obtenidos en el primer estudio presentado en este trabajo muestran que las 

variable no lineales, tales como entropía borrosa (FE), entropía de permutación 

(PE) y el análisis de fluctuaciones tras la eliminación de tendencia (DFA), 

presentan una buena consistencia y precisión de la medida, incluso superior a 

las variables tradicionales, tal y como ya se ha sido sugerido previamente (T.L. 

Doyle et al., 2005). 

Otro de los objetivos de esta tesis doctoral fue comprobar si, tal y como 

indican estudios previos (Barbado et al. 2012; Goldberger, Peng et al. 2002), la 

complejidad de la variabilidad del CoP en tareas de equilibrio permite revelar la 
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capacidad de adaptación del sistema. Este objetivo fue planteado debido a los 

resultados controvertidos respecto a esta hipótesis. En la literatura podemos 

encontrar estudios donde indican que una mayor complejidad del CoP está 

asociada a una mayor capacidad de adaptación (Manor et al., 2010), mientras 

que otros autores indican lo contrario, que una mayor complejidad del CoP está 

relacionada con un menor rendimiento en la tarea y por lo tanto, menor 

adaptación a la misma (Duarte and Sternad, 2008). Vaillancourt y Newell (2002, 

2003) indicaron que esta controversia es debida a que el incremento o la 

disminución de la complejidad es dependiente de la naturaleza intrínseca del 

individuo y de los condicionantes de la tarea. Por ello, comprobamos el efecto 

de diferentes constreñimientos sobre la relación entre la complejidad y el 

rendimiento en tareas de equilibrio en bipedestación. Los resultados del 

segundo experimento confirmaron que la relación entre complejidad y 

rendimiento siempre fue positiva, tal y como indican estudios previos, los cuales 

encontraron que individuos que presentan una mayor complejidad muestran 

mejor rendimiento en tareas de equilibrio (Barbado et al., 2012; Manor et al., 

2010). Sin embargo, las modificaciones en la estructura del CoP y, por lo tanto, 

de su complejidad, se vieron afectadas por constreñimientos tales como la 

dificultad de la tarea y la disponibilidad de biofeedback, con lo que se 

confirmarían las afirmaciones de Vaillancourt y Newell (2002, 2003). 

Por último, hemos querido dar un paso más allá en cuanto a la 

funcionalidad de la variabilidad motora como característica intrínseca del 

sistema. De este modo, comprobamos si la variabilidad posee relación, no sólo 

con la capacidad de adaptación, sino con el proceso de aprendizaje, tal y como 

indican estudios muy recientes (Wu et al., 2014). El estudio de Wu et al. (2014) 

mostró que los individuos con una alta cantidad de variabilidad motriz 

presentaban un proceso de aprendizaje más rápido. Sin embargo, nosotros 

consideramos que con el análisis de la estructura de la variabilidad a través de 

las herramientas no lineales se podría obtener más información sobre si la 

variabilidad mostrada es la consecuencia de procesos aleatorios del sistema 

(Churchland et al., 2006; Harris and Wolpert, 1998; Osborne et al., 2005; 

Schmidt et al., 1979) o el resultado de comportamientos exploratorios que 
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facilitan el aprendizaje (Mandelblat-Cerf et al., 2009; Sober et al., 2008). En este 

sentido, en el último estudio de esta tesis doctoral se desarrollaron dos 

experimentos, donde se analiza el control postural en bipedestación y 

sedestación. Los resultados mostraron cómo individuos que presentaban un alto 

nivel de variabilidad inicial tuvieron un aprendizaje más rápido en diferentes 

tareas de equilibrio. Este estudio confirmó que la variabilidad motora en tareas 

de equilibrio está relacionada con la capacidad del sistema para realizar ajustes 

en su movimiento y mejorar así el proceso de aprendizaje. 

Teniendo en cuenta las hipótesis generales de esta tesis doctoral, se 

pueden extraer las siguientes conclusiones: 

I. Las variables no lineales muestran una mayor consistencia (coeficiente de 

correlación intraclase) y precisión (error estándar de la media) que las 

tradicionales herramientas lineales de dispersión en el análisis del CoP. 

I.I. La entropía borrosa (FE) y la entropía de permutación (PE) son las 

variables con mayores valores de consistencia y precisión en el análisis del 

CoP. 

I.II. El análisis de fluctuaciones tras la eliminación de tendencia (DFA) 

presenta buenos valores de consistencia y precisión en el análisis del CoP, 

y aporta información complementaria sobre la estructura de la variabilidad 

del CoP. 

I.III. La velocidad media del CoP muestra valores de consistencia y precisión 

superiores a las variables de dispersión, encontrando similitudes a los 

mostrados por las variables no lineales. Esta variable podría aportar 

información sobre la cantidad de correcciones realizadas durante la tarea, 

relacionadas con la sensibilidad al error mostrada por los individuos. 

I.IV. Series de datos no estacionarios pueden alterar la fiabilidad de las 

variables no lineales. El incremento del tiempo de registro o los 

procedimientos de destendimiento de la señal, como el cálculo de la primera 

derivada, han mostrado mejorar los valores de fiabilidad en las medidas de 

entropía. 
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II. La relación entre la complejidad de la variabilidad del CoP y el rendimiento 

en una tarea de equilibrio en bipedestación es dependiente de la dificultad 

de la tarea y la disponibilidad de biofeedback. 

II.I. La presencia del biofeedback disminuye la complejidad de la variabilidad 

del CoP. 

II.II. En presencia de biofeedback el nivel de complejidad del CoP disminuye 

conforme aumenta la dificultad. Sin embargo, cuando el biofeedback no está 

disponible, el nivel de complejidad del CoP aumenta conforme aumenta la 

dificultad. Esto se debe a que los niveles más elevados de dificultad en la 

situación de equilibrio reducen las posibles soluciones para conseguir 

mantener el equilibrio, siendo redundante el uso de biofeedback.  

III. La estructura de la variabilidad motora en tareas de equilibrio parece revelar 

la capacidad del sistema para realizar ajustes en su movimiento y está 

relacionado con la capacidad de aprendizaje, independientemente del nivel 

del rendimiento inicial del aprendiz. 

III.I. Los individuos que presentan menores niveles iniciales de DFA en la 

estructura del desplazamiento CoP (desplazamientos del CoP más 

complejos) en tareas de equilibrio muestran una mayor ratio de aprendizaje 

relativo. 

III.II. La relación entre la estructura del desplazamiento del CoP, la 

capacidad de adaptación y aprendizaje en tareas de equilibrio aparece 

incluso en tareas donde para conseguir un buen rendimiento se requiere de 

una reducción de la magnitud de la variabilidad. 

6.2. Limitaciones y prospectivas de investigación. 

En esta Tesis Doctoral nos hemos encontrado con ciertas dificultades y 

limitaciones que nos dan pie a continuar con nuevos experimentos. De este 

modo, las limitaciones encontradas pueden servirnos como punto de partida 

para futuros estudios, los cuales actualmente están siendo llevados a cabo. 

Dichos trabajos están relacionados con la temática de esta tesis, 
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permitiéndonos profundizar en mayor medida en los conocimientos sobre la 

variabilidad motora y su relación con la capacidad de adaptación y los procesos 

de aprendizaje. 

El punto de partida que se planteó en este trabajo fue conocer cuáles 

son las variables que mejor caracterizan el control postural. Los resultados 

obtenidos nos ayudaron a seleccionar las variables más consistentes y precisas 

para analizar la variabilidad del control postural en tareas de equilibrio. Sin 

embargo, el abanico de herramientas matemáticas que podemos encontrar en 

la literatura es muy amplio y se encuentra en continuo desarrollo. En nuestro 

trabajo, se han analizado algunas de las herramientas más utilizadas para la 

caracterización del control postural pero existe la necesidad de realizar análisis 

de fiabilidad de un mayor número de herramientas, tanto tradicionales como no 

lineales. Futuros trabajos irán encaminados a incrementar el número de 

herramientas a analizar. Además, la tarea de equilibrio analizada en nuestro 

estudio es una tarea básica de laboratorio, por lo que, a pesar de haber 

encontrado buenos resultados de fiabilidad y consistencia en las herramientas 

medidas, también sería interesante que éstas sean aplicadas a tareas más 

cercanas a los movimientos que se dan tanto en el día a día como en la práctica 

deportiva. De este modo, podríamos ver si estas herramientas también son 

adecuadas para analizar la variabilidad motora en tareas donde aparecen 

numerosas interacciones de diferentes partes de nuestro cuerpo para poder 

realizar con eficacia movimientos complejos donde el equilibrio también es parte 

fundamental. 

Continuando con el objetivo de encontrar la mejor manera de 

caracterizar el control postural, encontramos que las herramientas matemáticas 

utilizadas para caracterizar el control postural disminuyen su consistencia y 

precisión cuando son aplicadas sobre datos cinemáticos debido a sus 

características no estacionarias. De este modo, en el segundo y tercer estudio 

de este trabajo no se utilizaron señales cinemáticas, perdiendo información 

acerca de las estrategias posturales y patrones de movimiento (Kuo et al., 1998; 

Madigan et al., 2006). Futuros estudios deberían intentar incrementar la 

estacionariedad de la señal, ya sea aumentando el tiempo de registro para 
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conseguir un mayor número de datos o utilizando algún procedimiento de 

destendimiento de la señal, lo que permitiría el uso de datos cinemáticos. 

Tal y como hemos visto en el segundo estudio de esta tesis doctoral, el 

tipo de filtrado de la señal modifica considerablemente la estructura de la misma 

y, como consecuencia, los valores de complejidad de la variabilidad del CoP. 

Según algunos estudios, la utilización de diferentes filtros puede revelar 

diferentes comportamientos en el control postural, los cuales están relacionados 

con dos componentes del desplazamiento del CoP: rambling y trembling 

(Zatsiorsky and Duarte, 1999). Estos componentes están asociados a diferentes 

tipos de control motor, sistema nervioso central (control voluntario) y control 

periférico (control involuntario), respectivamente (Tahayori, Riley, Mahmoudian, 

Koceja, and Hong, 2012). En el segundo estudio, hemos visto cómo en tareas 

de equilibrio en bipedestación el control voluntario predomina en el 

mantenimiento del equilibrio. Futuros estudios deberán profundizar en qué 

medida el control voluntario e involuntario están relacionados con los ajustes 

conocidos como rambling y trembling y cuál es su rol en el control postural y la 

coordinación motriz. 

En el segundo estudio presentado en este trabajo también encontramos 

que algunos constreñimientos influyen en la complejidad de la variabilidad el 

CoP, como es el caso del efecto de los niveles de dificultad en función de la 

presencia o no de biofeedback. Consideramos necesario abordar un análisis en 

profundidad del efecto de otro tipo de constreñimientos con respecto al control 

del movimiento, como pueden ser la edad o el nivel de rendimiento. Del mismo 

modo, el efecto de algunos procesos cognitivos, como pueden ser la atención o 

la motivación, sobre las características de la variabilidad y el proceso de 

aprendizaje tienen también que ser analizados en futuros estudios.  

En el tercer estudio, se remarcó que la cantidad de práctica es un factor 

fundamental para provocar un claro efecto de aprendizaje. Por ello, 

consideramos necesario realizar diseños experimentales en los que haya un 

tiempo suficiente de práctica y en los que la tarea conlleve una dificultad 

suficiente como para provocar un proceso de adaptación y, así, maximizar el 
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efecto del aprendizaje. De este modo, se facilitará contrastar la relación entre la 

variabilidad y la capacidad de aprendizaje. 

Actualmente, el grupo de investigación del Laboratorio de Aprendizaje y 

Control Motor del Centro de Investigación del Deporte de la Universidad Miguel 

Hernández está trabajando en diseños experimentales para valorar la 

variabilidad motora y su relación con la capacidad de adaptación y aprendizaje. 

Se está desarrollando un proyecto de investigación, financiado por Plan Estatal 

de Investigación Científica y Técnica y de Innovación, en el que uno de los 

principales objetivos es evaluar si la estructura de la variabilidad motora puede 

predecir la capacidad de adaptación y la evolución del rendimiento. Para ello, 

se están teniendo en cuenta las limitaciones comentadas, incrementando el 

tamaño de la muestra y el tiempo de práctica. Un mayor tamaño de muestra 

permitirá agrupar a los participantes en función de su nivel inicial de variabilidad 

y de destreza, puesto que estas variables pueden afectar en la relación entre la 

variabilidad inicial del individuo y su capacidad de aprendizaje. La cantidad de 

práctica también ha sido incrementada para maximizar el proceso del 

aprendizaje y se desarrollarán nuevos protocolos donde se aborden diferentes 

habilidades para poder extrapolar las conclusiones obtenidas, con el fin de 

potenciar la fuerza estadística de los resultados obtenidos hasta ahora. Algunas 

de las habilidades planteadas en el actual proyecto serán habilidades básicas 

de carácter discreto (p.e., lanzamiento de una pelota a una diana), y habilidades 

más específicas dentro del deporte para poder comprobar si la relación entre 

variabilidad y capacidad de adaptación y aprendizaje encontrada en este trabajo 

también aparece en otro tipo de habilidades y puede ser extrapolable a 

situaciones deportivas. 
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