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ABSTRACT

Postural control analysis has been one of the most studied research
fields in motor control. Specifically, balance tasks have been frequently used to
assess motor coordination due to the fact that maintaining balance is a frequent
activity and, at the same time, it is also a complex ability that involves controlling
many neuromuscular components. In the literature, postural control is commonly
analyzed though the analysis of the variability of the center of pressure (CoP)
fluctuations in balance tasks. Variability of the human movement has been
frequently interpreted as an error of the system that should be reduced as much
as possible. However, current studies have outlined movement variability as a
functional characteristic of the system, boosting the individual’s ability to adapt
to the environment. Under this perspective, several studies have tried to find out
if there is a relationship between motor variability, performance and the ability to
adapt. With this purpose, motor variability has been analyzed through many
measures, among which we can find traditional variables used to assess the
amount of variability. Recently, new variables have been used to assess the
variability structure by mathematical nonlinear tools. Despite the large number
of studies on the reliability of these variables, there is still controversy about
which variables better characterize postural control. The first study presented in
this doctoral thesis analyses the reliability of different tools, both traditional and
nonlinear, usually used to measure postural control in standing balance tasks.
The results indicated that, in balance tasks, nonlinear variables show greater
reliability than traditional scattering variables in the CoP analysis. In addition,
mean velocity of CoP shows higher reliability values than scattering variables,
showing similar values to nonlinear variables.

After knowing which variables are better to characterize postural control
in balance tasks, the next step was to analyze the relationship between variability
and performance. In the literature we can find controversial results about
whether variability is related to greater or lower performance and how it is linked
to the ability to adapt. One of the possible reasons for this controversy can be
that the structure of variability depends on the different constraints from the

organism, the environment and the task. In order to test this hypothesis, we
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outlined a study in which different task constraints were manipulated to observe
their effect on motor variability and its relationship with performance. This study
allowed us to verify that the relationship between the structure of CoP variability
and the performance in a standing balance task is dependent on the task
difficulty and the availability of biofeedback. Therefore, constraints should be
taken into account to analyze motor variability and its relationship with
performance and the ability to adapt.

Finally, according to current studies, it seems that variability can be
related to the ability to adapt and the learning process. The third study presented
in this thesis tried to check this hypothesis developing two experimental
protocols in balance tasks in which a practice period was applied to promote
learning. The results of both experiments showed that motor variability structure
in balance tasks seems to reveal the system’s ability to learn based not only on
exploration processes but also on error sensitivity.

Future studies should go in depth into the analysis of the motor variability
structure as an index for predicting performance, the ability to adapt and
learning, taking into account the task constraint effects and different motor tasks
in order to extrapolate the results of this doctoral thesis.

XX



RESUMEN

El analisis del control postural es un campo de trabajo muy estudiado
dentro del control del movimiento. En concreto, las tareas de equilibrio han sido
muy utilizadas para la valoracion de la coordinacion motriz, ya que el
mantenimiento del equilibrio es una actividad usual y, a su vez, muy compleja
qgue implica la coordinacién de numerosos componentes neuromusculares. En
la literatura, frecuentemente se analiza el control postural a través del andlisis
de la variabilidad de las fluctuaciones del centro de presiones en tareas de
equilibrio. Podemos encontrar autores que indican que la variabilidad del
movimiento humano es un error que debe ser reducido lo maximo posible,
mientras que los estudios méas actuales indican que la variabilidad presenta un
rol funcional, favoreciendo la capacidad del individuo para poder adaptarse a las
condiciones del entorno. Bajo esta Ultima perspectiva, numerosos estudios han
tratado de analizar si existe relacion o no entre la variabilidad del movimiento y
el rendimiento o capacidad de adaptacién. Para conseguir este objetivo, la
variabilidad ha sido analizada a través de numerosas medidas, entre las que
podemos encontrar medidas tradicionales utilizadas para analizar la magnitud
de la variabilidad, y otras medidas més novedosas, utilizadas para analizar la
estructura de la variabilidad a través de herramientas matematicas no lineales.
A pesar de los numerosos estudios sobre la fiabilidad de dichas medidas, aln
existe controversia sobre cuales pueden caracterizar mejor el control postural.
Por ello, el primer estudio presentado en esta tesis doctoral se centrd en el
andlisis de la fiabilidad de diferentes herramientas de medida del control
postural, tanto tradicionales como no lineales, en tareas de equilibrio en
bipedestacién. Los resultados nos indicaron que en tareas de estabilidad, las
herramientas no lineales muestran una mayor fiabilidad que las medidas
tradicionales de dispersion. Ademas, la velocidad media del centro de presiones
es méas fiable que las variables de dispersién, presentando valores similares a
los de las herramientas no lineales.

Tras conocer cudles serian las variables mas adecuadas para
caracterizar las tareas de equilibrio, el siguiente paso fue analizar la relacion

entre la variabilidad y el rendimiento. En la literatura podemos encontrar cierta
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controversia acerca de si la variabilidad est4 relacionada con un mayor o menor
rendimiento, y con la capacidad de adaptacion. Uno de los posibles motivos de
dicha controversia puede ser que la estructura de la variabilidad dependa de
diferentes constrefiimientos procedentes del organismo, del entorno y de la
tarea. Para poder contrastar esa hipétesis planteamos un estudio en el que se
manipularon diferentes constrefiimientos de la tarea, pudiendo observar su
efecto sobre la variabilidad y su relacion con el rendimiento. Este estudio nos
permitié confirmar que la relacion entre la estructura de la variabilidad y el
rendimiento en una tarea de equilibrio es dependiente de la dificultad de la tarea
y de la disponibilidad de biofeedback, por lo que los constrefiimientos de la tarea
deben ser tenidos en cuenta para el andlisis de la variabilidad motora y su
relacion con el rendimiento y la capacidad de adaptacion.

Por ultimo, de acuerdo con los actuales trabajos, parece ser que la
variabilidad puede estar relacionada con la capacidad de adaptacion y con el
aprendizaje. El tercer estudio presentado en este trabajo trat6 de contrastar
dicha hipétesis a través del desarrollo de dos protocolos de tareas de equilibrio
en los que se aplicé un periodo de préactica para provocar un proceso de
aprendizaje. Los resultados de ambos experimentos indicaron que la estructura
de la variabilidad en tareas de equilibrio parece revelar la capacidad de los
individuos para aprender, basandose, no sélo en los procesos exploratorios,
sino también en la sensibilidad al error.

Futuros estudios deberan ir encaminados en profundizar en el analisis
de la capacidad predictiva de la variabilidad motora, tanto del rendimiento como
de la capacidad de adaptacién, teniendo en cuenta el efecto de mas
constrefiimientos de la tarea y en diferentes habilidades motrices para poder

extrapolar los resultados de esta tesis doctoral.
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PREFACE

The present thesis titled Variability, performance and the ability to
adapt in balance tasks covers three experimental works performed between
2012 and 2016 at the Research Sport Center of Miguel Hernandez University,
Department of Health Psychology. Part of the work developed in this
doctoral thesis was carried out during a research visit in the laboratory of the
Centre d'Etudes des Transformations des Activités Physiques et Sportives
(CETAPS), of the Faculty of Sport Sciences at the University of Rouen,
France, under the supervision of Dr. Ludovic Seifert from April to June
2014, and in the Centre for Sports Engineering Research at Sheffield
Hallam University, UK, under the supervision of Professor Keith Davids
from January to March 2015. Three original experimental studies are
included in this manuscript. The first one was published in the international
peer-reviewed Journal of Motor Behavior, the second one was accepted in
the international peer-reviewed journal Experimental Brain Research and
the third study has been presented as a preliminary manuscript that will be

submitted in the following months.
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1.1. Postural control

Postural control involves the body’s position in space for dual purposes:
1) to build up posture against gravity and ensure balance, and 2) to fix the
orientation and position of the segments that serve as a reference frame for
perception and action with respect to the external world (Hassan, Mockett, &
Doherty, 2001; Yamamoto et al., 2015). Constantly we are controlling our
posture either by maintaining a static corporal position (sitting on a chair) or
performing a dynamic task (from daily skills such as walking to complex sports
movements such as making a volleyball shot). In all of these cases, stability and
the position of the body segments are fundamental in achieving the goal of the
motor task. Every motor task is nested on postural regulation and balance, and,
for this reason, postural control has been thoroughly studied in motor control.

In this thesis, we are going to focus on the first postural control function:
balance. Balance is related to the inertial forces acting on the body and the
inertial characteristics of body segments (Winter, 1995). Thus, maintaining
balance is based on keeping the Center of Gravity (CoG) projection on the base
of support (Manor et al., 2010; Riley & Turvey, 2002; Yamamoto et al., 2015). In
order to assess the ability to maintain balance during quiet standing, the
fluctuations of the CoG have usually been measured through the time course of
the Center of Pressure (CoP) (Figure 1). The CoP is the point of application of
the ground reaction force vector, and it seems to be a collective variable that
reflects the activities of many neuromuscular components acting together to
keep the CoG within the base of support (Manor et al., 2010; Riley & Turvey,
2002; Winter, 1995). The fluctuations or excursions of the CoP correspond to
postural sway (Yamamoto et al., 2015) and several studies in postural control
have been focused on assessing postural sway in order to evaluate balance
(Prieto, Myklebust, Hoffmann, Lovett, & Myklebust, 1996; Ruhe, Fejer, & Walker,
2010; Yamamoto et al., 2015). For example, a quiet stance is characterized by
small amounts of postural sway and, therefore, a large postural sway is generally
interpreted as a sign of poor balance (Hassan et al., 2001; Samuel, Solomon, &
Mohan, 2015).
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Figure 1. Representation of antero-posterior (AP) and medio-lateral (ML) components of
the Center of Pressure (CoP) in a balance task.

In the literature, the CoP has been used to assess motor control
performance and other specific domains such as the effects of motor disorders
on postural control (Cattaneo et al., 2015; Minamisawa, Takakura, & Yamaguchi,
2009), the reduction of balance according to ageing (Kilby, Slobounov, & Newell,
2014; Zhou et al., 2013), infant development (Dusing, Thacker, & Stergiou, 2013;
Harbourne, Deffeyes, Kyvelidou, & Stergiou, 2009) or the relationship between
postural control and some sports skills (Hrysomallis, 2011; Lopez et al., 2013).
Many of these studies have assessed postural control through the study of the

variability of postural sway.

1.2. Motor variability in postural control
1.2.1. Motor variations and control

Motor variability is a very relevant topic in motor control because it is an
inherent characteristic of motor behavior (Edelman, 1992; Stergiou & Decker,
2011). These normal variations that occur in motor performance across multiple
repetitions of a task reflect changes in both space and time and they are easily
observed (Bernstein, 1967; Newell & Slifkin, 1998; Stergiou, Harbourne, &
Cavanaugh, 2006).

Movement variation is obvious when the person changes the goal from
response to response, amending the chosen motor program (Schmidt, Zelaznik,
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according to the result obtained from the previous trial. However, even when the
subject tries to maintain the same goal and the same pattern in successive trials,
variability still appears. It is impossible to perform two identical movements as
much as one tries, even though every repetition is successful. In other words,
each movement is unique and unrepeatable. But, what is the source of this
human variation?

Motor variability appears as a consequence of different sources of
variation. One common source of variability in nature comes from the chaotic-
mechanical variations of the environment and the interaction between it and the
elements of the human system (e.g., tissues, muscles, bones, joints...). The
human body is an open thermodynamic system engaged in constant energy
transactions and constantly adapting to environmental changes (Davids, Glazier,
Araujo, & Bartlett, 2003). In addition, even though the environment remains
constant, the elements of the human system are enrolled in continuous internal
interactions clearly exhibited in the Central Nervous System (CNS). Neurons
throughout the brain show a high degree of variability in their spiking activity even
during seemingly constant task conditions (Mandelblat-Cerf, Paz, & Vaadia,
2009). Two types of variation in spike trains of neurons have been recently
outlined: stochastic variations or “noise” variability, and trial-by-trial correlated
fluctuation or “signal” variability (Lisberger & Medina, 2015). According to
Lisberger and Medina (2015), if neuronal variability were just stochastic
variations, the large number of neurons at each level of a mammalian sensory-
motor system should allow the noise to be averaged. However, neuron-behavior
correlations are introduced in this study as the main cause of motor variability
because they imply that some of variation in the firing of one neuron is being
transmitted all the way to the final output.

Besides these variability sources, we must also take into account the
large number of possible configurations that the motor system has available in
order to successfully achieve the same motor goal. Our motor system has a huge
number of degrees-of-freedom (DOF), which make possible to find a unique
solution through different ways. This is due to the fact that any level of description

of the neuromotor system is characterized by more elements than are needed



to deal successfully with the task constraints. Bernstein (1967) called this
characteristic the DOF problem or the problem of eliminating redundant DOF.
This problem occurs when the “controller” needs to regulate some DOF
functional for achieving a specific task goal and to eliminate less functional
system DOF from the coordinative structure used for action (Bernstein, 1967).

With the purpose of explaining motor variability and its role in motor
control, researchers have studied it from two different points of view. The first
one considers variability to be an error of the system, with the aim of the
organism to reduce it as much as possible in order to improve performance
(Newell & Slifkin, 1998; Schmidt, 1975; Williams, Davids, & Williams, 1999). That
“error” is mainly related to the mechanisms involved in the muscle contractions
needed to run a motor program, introducing noise and movement inaccuracy
(Schmidt, 1975; Schmidt et al., 1979). According to this perspective, as we have
indicated before, “the subject may execute the same program over and over on
consecutive trials, but noise in the motor system downstream from the motor
program makes the produced output different on different attempts” (Schmidt et
al., 1979, p.420).

However, in the literature, we can also find that motor variability is
interpreted as a functional characteristic of the system. From this perspective, it
is suggested that movement systems are based on spontaneous pattern
formations between the different system parts, which emerge through processes
of self-organization (J. A. S. Kelso, Bergman, Cairns, Nilsson, & Nystedt, 2000).
This self-organization is possible due to the system’s ability to freeze or unfreeze
the DOF during the chain of movement in order to adapt to the environment
(Newell & Vaillancourt, 2001). Then, motor variability may help to exploit the
large number of possible configurations offered by the many motor system DOF,
and it could play an important role for motor learning and the ability to adapt
(Barbado, Sabido, Vera-Garcia, Gusi, & Moreno, 2012; Davids et al., 2003;
Lamoth, van Lummel, & Beek, 2009; Mandelblat-Cerf et al., 2009; Moreno &
Ordofio, 2010; Zhou et al., 2013). In this sense, variability enables continuous
exploration of possible motor states and neuronal configurations that can lead to

the desired state by trial and error (Faisal, Selen, & Wolpert, 2008; Fiete, Fee, &



Seung, 2007; Rokni, Richardson, Bizzi, & Seung, 2007; Wu, Miyamoto, Castro,
Olveczky, & Smith, 2014).

These two perspectives have been extrapolated to postural control. The
variability of the postural sway shown in balance tasks can be interpreted as
mistaken fluctuations of the motor system, which should be reduced, or as
functional fluctuations, which reflect exploratory behaviors in adaptation or
learning processes. From our point of view, both interpretations are possible. In
this sense, different tools for analyzing CoP variability have been used to
understand the characteristics of CoP changes. In the next section, we are going

to focus on how the variability of CoP has been measured.

1.2.2. Analyzing postural control through CoP variations.

Several variables of the dynamic of CoP have been used to assess
postural control. Mainly, two different global dimensions about motor variability
have been assessed: the amount of variability, measured by traditional
scattering variables, and the structure of the variability, also addressed by its
complexity and measured using nonlinear tools (Caballero, Barbado, & Moreno,
2014, Stergiou et al., 2006).

Traditionally, linear scattering measures have been used to provide a
description of the amount of CoP variability around a central point, especially the
standard deviation (SD) (Borg & Laxaback, 2010; Le Clair & Riach, 1996).
Evaluating variability using these tools arises from the idea that the mean is the
goal performance and everything away from the mean is error (Stergiou &
Decker, 2011). Thus, SD has been used to characterize both the distribution of
the data set and the amount of noise present in the perceptual-motor system
(Newell & Slitkin, 1998). Other linear measures have been used to describe the
sway and the dispersion or area during a given time with a balance task such as
the root mean square (Haran & Keshner, 2008), the resultant distance -RD-
(Roerdink, Hlavackova, & Vuillerme, 2011), the central tendency measure
(Ramdani et al., 2011), the CoP sway area (Hageman, Leibowitz, & Blanke,
1995; Manor et al., 2010), or the mean velocity -MV- (Chiari, Cappello, Lenzi, &
Della Croce, 2000; Le Clair & Riach, 1996).



Even though these types of scattering variables have been used to
provide information about motor variability, some authors have suggested that
these variables do not provide enough information about the nature of variability
(Caballero et al., 2014; Stergiou & Decker, 2011). The valid usage of traditional
linear measures to study variability assumes that variations between repetitions
of a task are random and independent —of past and future repetitions— (Lomax
& Hahs-Vaughn, 2013). However, several studies have suggested that
movement fluctuations have deterministic properties (Dingwell & Cusumano,
2000; Dingwell & Kang, 2007; Harbourne & Stergiou, 2003; Miller, Stergiou, &
Kurz, 2006), and they may reflect changes in the biological system’s behavior in
order to adapt to environmental conditions (Clark & Phillips, 1993; Hamill, van
Emmerik, Heiderscheit, & Li, 1999; Kamm, Thelen, & Jensen, 1990; A. Kelso,
1995; Thelen, 1995; Thelen, Ulrich, & Wolff, 1991). Several authors have
suggested that linear tools are not able to assess these changes (Dingwell &
Cusumano, 2000; Dingwell & Kang, 2007; Harbourne & Stergiou, 2009; Miller et
al., 2006; Stergiou & Decker, 2011). Thus, complementing traditional variability
measures, several mathematical tools have been applied to assess how motor
behavior changes over time, addressing its temporal dynamics or its complexity.
These measures are called nonlinear tools, and they seem to provide additional
information about the variability (Borg & Laxaback, 2010; Buzzi, Stergiou, Kurz,
Hageman, & Heidel, 2003; Duarte & Sternad, 2008; Fino et al., 2015). Figure 2
illustrates the different global dimensions of motor variability. Linear variables,
such as the range, quantify the amount of variability whereas nonlinear variables,
such as Approximate Entropy (ApEn) (see below for more information), are able
to quantify the structure of variability, providing more information about the
system’s behavior (Harbourne & Stergiou, 2009).

Different statistical tools have been developed to provide information
about the variability structure or, such as we have indicated above, about the
complexity of the system (Stergiou et al., 2006). Complexity has been defined
as the number of system components and the coupling interactions among them
(Newell & Vaillancourt, 2001). When we refer to the complexity of the different

physiological processes of the human system, some authors define it as the



presence of non-random fluctuations on multiple time scales (Costa, Goldberger,
& Peng, 2002; Lipsitz & Goldberger, 1992; Manor et al., 2010). The analysis of
complexity has been interesting because system complexity has been related to
the system state (Goldberger, Amaral, et al., 2002; Lipsitz & Goldberger, 1992;
Manor & Lipsitz, 2013; Stergiou & Decker, 2011). Specifically, some of these
analyses have been carried out to assess the complexity of postural control
(Manor & Lipsitz, 2013; Stergiou & Decker, 2011) through many mathematical
tools, and it seems that each of these tools measures different properties of
variability (Shelhamer, 2006).
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Figure 2. Comparison of linear and nonlinear variables of several signals with the
respective values for range and Approximate Entropy (ApEn). Extracted from Harbourne
and Stergiou (2009).

One of the most common properties assessed in variability is local
dynamic stability (Bruijn, Bregman, Meijer, Beek, & van Dieén, 2012; Buzzi et
al., 2003; van Schooten et al., 2011). This property is defined as the degree of
sensitivity of the system to small perturbations (Buzzi et al., 2003) and it is
usually measured by the Lyapunov Exponent (LyE) (Wolf, Swift, Swinney, &
Vastano, 1985). When LyE values are negative (periodic systems), the

trajectories converge, and this convergence represents local stability in a



particular direction. When LyE values are positive (the attractor is chaotic), the
trajectories diverge, and this divergence represents local instability in a particular
direction (Eckmann & Ruelle, 1985). Traditionally, higher instability has been
linked to higher variability. However, some authors have indicated that variability
and stability represent different properties within the motor control process
(England & Granata, 2007; Stergiou & Decker, 2011). LyE has been used in
several studies where the complexity of postural control has been analyzed to
assess sitting postural control in infants (Cignetti, Kyvelidou, Harbourne, &
Stergiou, 2011), the effect of the amount of attention invested in postural control
in the CoP trajectories (Donker, Roerdink, Greven, & Beek, 2007) or the dynamic
structure of CoP fluctuations in patients recovering from stroke (Roerdink et al.,
2006), among others.

Another property of the variability that is frequently analyzed is the degree
of irregularity of the time series (Chen, Wang, Xie, & Yu, 2007; Guerreschi,
Humeau-Heurtier, Mahe, Collette, & Leftheriotis, 2013; Huang, Yen, Tsao, Tsali,
& Huang, 2014; Richman & Moorman, 2000; Wu et al., 2014). Several tools have
been used to assess this characteristic of the system. One of them is Recurrence
Quantification Analysis (RQA) (Zbilut, Thomasson, & Webber, 2002; Zbilut &
Webber, 2006). This tool combines recurrence plots (Eckmann, Kamphorst, &
Ruelle, 1987), that is, the visualization of trajectories in phase space, with the
objective quantification of system properties (for more information see Zbilut and
Webber (2006). Recurrent points that form diagonal line segments are
considered to be deterministic (as distinguished from random points that form no
patterns), but this graphical representation may be difficult to evaluate. Thus,
RQA was developed to provide quantification of important aspects of the plot
(Table 1 and Figure 3) (for more information see Zbilut, Webber, Colosimo, and
Giuliani (2000) and Zbilut and Webber (2006)). We can find postural control
studies where RQA have been used, for example, to explore the influence of
vision in the postural sway structure (Riley, Balasubramaniam, & Turvey, 1999)
or to describe motor patterns in Parkinson’s disease through the determinism of
the CoP (Schmit et al., 2006).
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Table 1. Summary of the most commonly used recurrence variables.
Extracted from Zbilut and Webber (2006).

Measure

Definition

Recurrence, REC

Percentage of recurrence points in an RP, REC =

() Zh=1 Ry

Determinism, DET

Percentage of recurrence points that form diagonal
lines,

(B, PO)

Xij=1Rij
P(1) is the histogram of the lengths [ of the diagonal
lines.

DET

Laminarity, LAM

Percentage of recurrences points that form vertical
(20, vP))

(2, vP())
P(v) is the histogram of the lengths v of the vertical
lines.

lines, LAM =

NZ (Z?J:lmin lP(l))

Ratio, RATIO Ratio between DET and RR, RATIO = 5
(BiL, tP)
A.veraged' ; | (5, )
diagonal line Average length of diagonal lines, LEN = W
length, LEN =hmin
. e (Zher i PP@))
Trapping time, TT Average length of vertical lines, TT = W
V=Upin £\

Longest diagonal
line, Lmax

Length of the longest diagonal line, L4 =
max({l;i=1..N})

Longest vertical
line, Vimax

Length of the longest vertical line, V,,,,, = max({v;;1 =
1..L})

Divergence, DIV

1

Inverse of Ly,qy, DIV =

max

Related to the largest positive Lyapunov Exponent, but

does not correspond to it.

Entropy, ENT

Shannon entropy of the distribution of the diagonal
lengths p(l), ENT = =YV p(D)Inp()

I=lmin

Trend, TREND

Paling of the RP towards its edges,
M2 = (N = 2)][REC; — (REC)]

TREND == T
G Ul )
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Figure 3. Recurrence plots of (A) a periodic motion with one frequency, (B) the chaotic
Réssler system and (C) uniformly distributed noise. Extracted from Marwan, Romano,
Thiel, and Kurths (2007).

In addition, a relevant collection of tools called entropy measures have
also been used to assess the degree of irregularity. Typically, high values of
entropy indicate high irregularity. The first and most used entropy measure
applied to human variability has been ApEn (Pincus, 1991). This entropy
measure has been used in a large number of studies in different research fields,
among which we can find postural control analysis (Kee, Chatzisarantis, Kong,
Chow, & Chen, 2012). However, this tool is relatively inconsistent and depends
on data series length and, due to this fact, Richman and Moorman (2000)
developed Sample Entropy (SE) as an improved entropy measurement. This tool
shows higher consistency than ApEn and it has been used in several postural
control studies, for example, detecting changes in postural control during quiet
standing, measuring postural stability after a cerebral concussion (Cavanaugh,
Guskiewicz, & Stergiou, 2005) or assessing the effect of training on postural
control (Menayo, Encarnacion, Gea, & Marcos, 2014). However, problems still
exist in the validity of SE because the definition of vectors is very similar to that
of ApEn. For this reason, Chen et al. (2007) developed a new statistic tool, Fuzzy
Entropy (FE). FE shows some advantages such as stronger relative consistency,
less dependence on data length, freer parameter selection and more robustness
to noise (Chen, Zhuang, Yu, & Wang, 2009). There are few studies where this
tool has been used to assess the degree of irregularity in CoP time series. One
of these few studies is by Sipko and Kuczynski (2013), in which the authors
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compared postural control between patients with different levels of chronic back
pain.

Another entropy measure is Permutation Entropy (PE) (Bandt & Pompe,
2002). PE assesses the frequency of the appearance of permutation patterns in
a time series, making use of only the order of the time series values. In contrast
with the other irregularity variables, PE shows high robustness to noise and data
length. This tool has not been frequently applied to motor control analysis, and
we have just found one study where the structure of CoP fluctuations (calculated
through pressure mat data) has been analyzed by PE (Leverick, Szturm, & Wu,
2013). These authors assessed the suitability of this tool for characterizing gait
dynamics, obtaining strong reliability values.

Nevertheless, although entropy measurement tools have been improved,
some authors have argued that the degrees of irregularity of the signal,
measured by entropy parameters, are not clearly related to the complexity of
system dynamic (Goldberger, Peng, & Lipsitz, 2002; Stergiou et al., 2006). Other
nonlinear measures have been proposed to assess the complexity of movement
variability by analyzing the long-range auto-correlation of the signal. Detrended
Fluctuation Analysis (DFA) (Peng, Havlin, Stanley, & Goldberger, 1995) is a
scaling analysis method used to quantify long-range correlations in signals. It
evaluates the presence of long-term correlations within the time series by a
scaling index called a (Bashan, Bartsch, Kantelhardt, & Havlin, 2008; Peng et
al., 1995). This procedure indicates that an index a that is equal to 1 is related
to pink noise and fractal characteristics (Holden, 2005), and it has been used to
describe the complexity of a process (Goldberger, Amaral, et al., 2002).
Specifically, DFA has been used to study the human postural control system
during quiet standing in healthy people (Blazquez, Anguiano, de Saavedra,
Lallena, & Carpena, 2009) and in people with motor disorders (Minamisawa et
al., 2009).

The choice of appropriate tools to analyze motor variability remains
controversial. It is still unknown which tool may be the most adequate to that end
(Caballero, Barbado, & Moreno, 2013; Goldberger, Peng, et al., 2002; Stergiou
& Decker, 2011; Vaillancourt & Newell, 2002). From our point of view, both the
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amount and the properties of the variability structure can be relevant to
characterize the dynamics of the CoP because each one provides different
information about the system state. Therefore, variability has to be considered
as a multidimensional feature of the motor system (Stergiou & Decker, 2011),
and several authors suggest the need to use more than one tool for assessing
motor variability (Goldberger, Peng, et al., 2002; Harbourne & Stergiou, 2009;
Stergiou & Decker, 2011).

It is possible to use multidimensional approaches to analyze the CoP
data and better understand the relationships that emerge among different
variables. To that end, we adopt statistical tools such as Principal Component
Analysis (PCA) and Cluster Analyses. In this way, we can address various
possible ways of defining motor variability while tracking fluctuations in the CoP.
PCA is a multivariate statistical technique used to understand to what extent the
based-CoP variables measure different characteristics of the variability. PCA
allows to reduce the number of nonlinear tools, grouping them in factors that
facilitate the analysis and the description of the characteristics of the CoP
variability (Harbourne & Stergiou, 2009). On the other hand, Cluster analysis was
developed to identify patterns in high-dimensional datasets (Rein, Button,
Davids, & Summers, 2010), and it could be used to define profiles that group
different properties of variability dynamics according to the state of the system.

Another important issue that we have to take into account in working with
different measures of variability dynamics is the reliability of the tools used.
Several studies have analyzed the reliability of linear tools (T.L. Doyle, Newton,
& Burnett, 2005; Kyvelidou, Harbourne, Stuberg, Sun, & Stergiou, 2009; Lafond,
Corriveau, Hebert, & Prince, 2004; Lee & Granata, 2008; Lin, Seol, Nussbaum,
& Madigan, 2008; Ruhe et al., 2010; Salavati et al., 2009; Santos, Delisle,
Lariviere, Plamondon, & Imbeau, 2008; van Dieén, Koppes, & Twisk, 2010).
However, the conclusions about which variables are better for characterizing the
amount of variability in postural control seem unclear, and there is no agreement
about the methodological issues. Furthermore, regarding nonlinear tools, only a
few studies have assessed their reliability (Amoud et al., 2007; Kyvelidou et al.,
2009; van Dieén et al., 2010).
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With these problems in mind, we carried out the first study that is
presented in this thesis, where the main aim was to find the most reliable

variables to characterize postural control in standing balance tasks.

1.3. Relationship between postural control performance and CoP

variability.

During the learning of any motor skill, the amount of motor variability is
progressively minimized as long as movement execution is improved (Caballero
et al., 2014; Stein, Gossen, & Jones, 2005; Stergiou & Decker, 2011). Thus, we
could think that motor variability worsens motor control or motor performance.
We have to take into account that, in this case, variability is understood as the
amount of variations around a central point or mean error. It seems to be that if
error is gradually eliminated or minimized the accuracy and efficiency of the
movement pattern will be optimized (Schmidt, 2003; Schmidt & Lee, 1988). In
postural control, standing balance reflects postural control and it is considered
the ability to stand with as little sway as possible (Gerbino, Griffin, & Zurakowski,
2007). Therefore, a high amount of CoP variability could be related to low
performance. Nevertheless, these studies assessed CoP variability just through
its amount and, as we have indicated above, the amount of variability provides
only biased information. In other words, we also need to analyze the structure of
CoP variability in order to obtain complete information about the system.

There are some studies that have tried to find the relationship between
postural control performance (the fluctuations around a central point) and motor
variability structure (Barbado et al., 2012; Cattaneo et al., 2015; Schmit et al.,
2006). This relationship has been applied to different research fields, especially
in health studies, where motor variability has been used to detect, for example,
motor coordination diseases (Cattaneo et al., 2015; Roerdink et al., 2006; Schmit
et al., 2006) or the effects of aging (Goldberger, Amaral, et al., 2002; Manor &
Lipsitz, 2013; Vaillancourt & Newell, 2003). Some of these studies have
indicated that greater system complexity in balance control is connected to better
performance. This is to say, a loss of complexity is linked to low postural control,

understanding postural control as the capacity to keep the CoG over the base of

15



support as precisely as possible (Manor et al., 2010; Massion, 1994; Riley &
Turvey, 2002). Some authors have assessed complexity according to the level
of cognitive investment, finding that balance tasks with eyes closed implied an
increase of postural sway and a decrease in complexity (Donker et al., 2007;
Stins, Michielsen, Roerdink, & Beek, 2009). In others studies, low complexity
has been related to low postural control due to different motor diseases
(Cattaneo et al.,, 2015; Perlmutter, Lin, & Makhsous, 2010). In this sense,
movement variability has been related to the capacity of the system to adapt to
environmental changes (Barbado et al., 2012; Davids, Bennett, & Newell, 2006;
Davids et al., 2003; Renart & Machens, 2014; Riley & Turvey, 2002), which is
connected to better performance.

However, in the literature we find controversial results regarding the
relationship between complexity and performance. Some studies have found
high values of complexity in CoP fluctuations when participants exhibited low
performance in balance tasks (Borg & Laxaback, 2010; Duarte & Sternad, 2008;
Santarcangelo, Carli, Balocchi, Macerata, & Manzoni, 2009; Schmit, Regis, &
Riley, 2005). Schmit et al. (2005) compared the variability of postural sway in
ballet dancers and track athletes and they found that participants showed lower
complexity in an eyes-open condition than in an eyes-closed condition, while
performance was better with the eyes open. A similar relationship was reported
by Santarcangelo et al. (2009), where participants showed lower complexity of
CoP while standing on a stable support than on an unstable support.

Another authors have suggested the relationship between complexity
and performance is nonlinear because it is dependent on the nature of both the
intrinsic dynamics of the system and the task constraints to be satisfied (Newell
& Vaillancourt, 2001; Vaillancourt & Newell, 2002, 2003). We consider that this
can be one possible reason for the controversial results. These authors
examined the time and frequency structure of force output in adult humans to
determine whether the changes in complexity with age are dependent on
external task demands and they found that the structure of the force output in
the older adults group was less complex in a constant-force level task and more

complex in a sine wave force task than the younger adults group. Thus, the
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relationship between performance and complexity seems to be different
according to aging and the task constraints in a force task. This result could be
explained because the specific performance constraints encountered can cause
a reduction in the number of configurations available to the dynamic system
through a re-structuring of the state space of all possible configurations available
(Davids et al., 2003).

According to this last idea, the second paper presented in this thesis tries
to clarify the relationship between postural control performance and CoP
variability, paying attention to the constraint influences of tasks and interpreting
the results according to the aforesaid task constraints and their effects on the

intrinsic system dynamic.

1.4. Relationship between CoP variability and the learning process

in postural control.

As we have shown, motor variability has been associated with functional
exploratory behaviors (Davids et al., 2006; Davids et al.,, 2003; Renart &
Machens, 2014; Riley & Turvey, 2002). According to Davids et al. (2003),
“variability has a functional role in helping individuals adapt to ever-changing
constraints imposed on them by environmental, anatomical and physiological
changes due to disease, iliness, injury and aging” (p. 251). In this sense, recent
studies have linked motor variability to the ability to adapt (Dusing et al., 2013;
Manor et al., 2010; Zhou et al., 2013) which are frequently related as both the
basis and consequence of each other (Moreno & Ordofio, 2015). Some evidence
of the relationship between motor variability and the ability to adapt have been
indicated by Wu et al. (2014), suggesting that variability could be regulated and
indeed amplified in the nervous system to improve learning. Recent work in
songbirds suggested that the neural circuits involved in motor variability promote
learning by directing the exploration of motor output space (Andalman & Fee,
2009; Warren, Tumer, Charlesworth, & Brainard, 2011). In this sense, the
reduced motor learning ability after inactivating the cortical output nucleus of
basal ganglia circuits has been related to a reduction in the variability of motor

performance (Charlesworth, Warren, & Brainard, 2012; Kao, Doupe, & Brainard,
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2005; Olveczky, Andalman, & Fee, 2005). In postural control, it has been found
that individuals who showed more complexity of CoP during a standing still
condition on a stable surface were able to cope with more difficult but similar
tasks (Manor et al., 2010; Zhou et al., 2013). These studies showed that a low
baseline complexity in motor variability may indicate control systems that are
more vulnerable to changes in the environment (stressors), reducing the
functionality of the motor control system.

These last findings have led to exploration of the relationship between
motor variability and learning processes. Thus, in the most recent works about
motor variability, some authors have taken another step forward suggesting that
there is a link between motor output variability and motor learning ability across
different dynamic environments (Wu et al.,, 2014). In this study, high motor
variability during the baseline period predicted fast learning in humans in
different point-to-point reaching tasks and in a force field reaching task (Figure
4). Participants who showed above-average amounts of variability during a
baseline period in point-to-point reaching movements exhibited faster learning
than participants with below-average variability.

Nevertheless, there are few studies about motor variability and learning
processes, and nonlinear tools have not been used to assess motor variability in
them. Taking into account the aforesaid information about nonlinear tools and
the previous suggestion about their application in identifying exploratory
behaviors, the aim of the last study in this thesis was to determine if the structure
of motor variability in postural control showed during the early stages of motor
learning could be related to the learning process. This idea would make it
possible to predict differences in learning ability from baseline performance

characteristics in postural control tasks.

18



1o o) Ideallevel . J .. .. .. . _
©
>
@
2o05¢
£
z Variability grouping:
= — Above mean

ol X M. A .. .. . Below mean.
Baseline performance
-100 0 100 200 300 400

Trial number
Figure 4. Extracted from Wu et al. (2014). Participants displaying above-average

amounts of shape-1 variability (n = 6) during the baseline period in experiment 1 exhibit
faster learning than participants with below-average variability (n = 14).
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Three studies were proposed to develop this thesis. The key antecedent, main

aim and hypothesis from each of them are introduced below:

2.1. What CoP and kinematic parameters better characterize postural
control in standing balance tasks? Study I.

Key antecedent I. Different variables of the dynamic of CoP have been used to
assess postural control, and despite some studies have explored the reliability
of these measures, no single measurement of CoP has clearly emerged as
significantly more reliable than the others (Ruhe et al., 2010). The reliability of
traditional measures has been questioned (T.L. Doyle, Newton, and Burnett,
2005) and some studies have proposed to analyze COP using nonlinear tools to
better assess the interactions of the component of the neuromuscular system
(Manor et al., 2010; Mazaheri et al., 2010; Newell & Vaillancourt, 2001).

Aim I. To test the absolute and relative consistency of both traditional measures
and nonlinear measures of CoP in a standing balance task under different

stability conditions.

Hypothesis I. Nonlinear measures will better characterize postural control
showing better absolute and relative consistency than traditional scattering
measures in a balance task protocol in upright stance under stable and unstable

conditions.

2.2. Variations in task constraints shape emergent performance

outcomes and complexity levels in balancing. Study II.

Key antecedent Il. The complexity of motor variability has been measured in
balance tasks as an index of the capacity of the CNS to re-organize degrees of
freedom in order to adapt to perturbations (Barbado et al. 2012; Goldberge, Peng
et al. 2002). Thus, less complexity in CoP dynamics has been frequently
associated with less capacity to adapt (Manor et al. 2010). However, other
studies have found greater complexity in fluctuations of CoP associated with

worse task performance (Duarte and Sternad, 2008). Vaillancourt and Newell
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(2002, 2003) suggested that increases or decreases in the complexity of CNS
behaviors can be functional, but they are dependent on the nature of both the
intrinsic dynamics of the system and the task constraints that need to be

satisfied.

Aim Il. To investigate the extent to which specific interacting constraints of
performance might increase or decrease the emergent complexity in a
movement system, and whether this could affect the relationship between

movement variability and the capacity to adapt to perturbations during balancing.

Hypothesis II. The relationship between the complexity of CoP variability and
performance in a standing balance task will depend on task constraints; the level

of difficulty and the availability of biofeedback.

2.3. Can the structure of motor variability predict learning rate?
Study .

Key antecedent Ill. Recent approaches have indicated that motor variability
could reflect the motor system’s ability to explore different motor configurations
looking for an optimal solution that includes adaptive (Barbado et al., 2012;
Manor et al., 2010; Zhou et al., 2013) and learning processes (Wu et al., 2014).
Wu et al. (2014) found, in a reward-based learning protocol, that high motor
variability during the baseline period predicted faster learning of different
reaching tasks in the future. Nevertheless, when motor variability during a novel
task is analyzed, it is difficult to estimate the extent to which motor variability is
a consequence of an avoidable stochastic neuromuscular system function
(Churchland et al., 2006; Harris and Wolpert, 1998; Osborne et al., 2005;
Schmidt et al., 1979) or whether it is the result of an active behavior centrally
regulated to promote learning (Mandelblat-Cerf et al., 2009; Sober et al., 2008).
The use of nonlinear tools has revealed functional properties of motor variability,
but its relation with motor learning, when a low amount of variability is required

to properly perform the task, is still under discussion.
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Aim 1ll. To test if the structure of motor variability in balancing can be related to

the learning process.

Hypothesis Ill. Motor learning rate will be related not only to the initial

performance level but also to the initial structure of movement variability
exhibited by learners.
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WHAT CoP AND KINEMATIC PARAMETERS BETTER
CHARACTERIZE POSTURAL CONTROL IN STANDING BALANCE
TASKS?

Carla Caballero, David Barbado and Francisco J. Moreno.

3.1. Abstract.

The authors’ aim was to determine which variables allow for the characterization
of motor balance behavior. Traditional measures and nonlinear measures of CoP
(n = 30) and kinematics (n = 10) were tested in their absolute and relative
consistency in a 30 s standing balance task protocol under stable and unstable
conditions. Regarding CoP variables, MV, PE and DFA exhibited high
consistency between trials and ranked individuals more accurately compared
with other metrics. In the kinematic signal MV, PE and DFA had good
intrasession reliability values in unstable conditions. Overall, the intrasession
reliability values were better in the unstable condition than in the stable condition
and the measures calculated using derived data had better intrasession reliability
values. In conclusion, MV, PE, and DFA allow for the good characterization of
motor balance behavior in a simplified protocol where velocity time series are

analyzed.

Key words: Postural control, nonlinear measures, reliability, center of pressure,

kinematics.
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3.2. Introduction.

The dynamic of CoP while standing is a collective variable, responsible
for posture and balance (Riley and Turvey, 2002; Winter, 1995) that reflects the
activities of many neuromuscular components acting together to keep the CoG
within the base of support (Manor et al., 2010; Riley and Turvey, 2002).

Traditionally, different variables of the dynamic of CoP have been used
to assess postural control. These traditional measures are used to describe the
sway or dispersion or area during a given time in a balance task. Some of these
traditional measures are SD (Borg and Laxaback, 2010; Le Clair and Riach,
1996), root mean square (Haran and Keshner, 2008), RD (Roerdink et al., 2011),
central tendency measure (Ramdani et al., 2011), CoP sway area (Hageman et
al., 1995; Manor et al., 2010), or MV (Chiari et al., 2000; Le Clair and Riach,
1996).

Reliability analysis has frequently been used to evaluate the consistency
of CoP measurements. The reliability of a variable consists of both absolute and
relative consistency. Absolute consistency allows us to know the extent to which
a variable maintains its value between trials of the same task. Relative
consistency allows us to know the extent to which a variable is able to rank
individuals in the group relative to others (Weir, 2005).

Some studies have shown high reliability for the MV measure (Lafond et
al., 2004; Lin et al., 2008), although no single measurement of CoP appeared
significantly more reliable than the others (Ruhe et al., 2010). T. L. Doyle et al.
(2005) indicated that the reliability of the traditional measures is questionable.
However, Ruhe et al. (2010) in a review of CoP measures concluded that
traditional CoP parameters show acceptable reliability values under specific
conditions in the study design. In fact, they indicated different recommendations
for the study design to improve the reliability of the traditional measures. There
are no standard recommendations regarding foot position or instruction prior to
the recording, but the most frequent instruction given to the participants was to
stand as still as possible. A wide range of sampling rate frequencies have been
reported in the literature, but frequencies higher than 100 Hz are not frequently

recommended (R. J. Doyle, Hsiao-Wecksler, Ragan, and Rosengren, 2007;
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Lafond et al.,, 2004; Santos et al., 2008). Some authors (Ruhe et al., 2010)
recommend a sampling duration of 90 s, whereas other studies have obtained
good reliable results in simplified protocols of balance tasks with sample
durations between 10 and 60 s (Le Clair and Riach, 1996; Schmid, Conforto,
Camomilla, Cappozzo, and D’Alessio, 2002).

Additionally, some studies have tried to analyze the interactions of the
neuromuscular component system by analyzing the complexity of the CoP
fluctuations through nonlinear tools (Manor et al., 2010; Mazaheri, Salavati,
Negahban, Sanjari, and Parnianpour, 2010; Newell and Vaillancourt, 2001).
Many authors have suggested that complexity is related to the capacity of the
system to generate adaptive responses to stressors (Barbado et al., 2012;
Goldberger, 1996; Goldberger, Amaral, et al., 2002). In this sense, greater
system complexity is connected to better performance, and a loss of complexity
is thought to be linked to a reduced ability to adapt (Goldberger, 1996; Manor et
al., 2010). However, few studies have assessed the consistency of CoP
complexity variables.

Some studies have measured the complexity of CoP through the
predictability of the signal (Barbado et al., 2012; Borg and Laxaback, 2010;
Duarte and Sternad, 2008; Stergiou and Decker, 2011). For this purpose, the
most used nonlinear measure has been ApEn (Pincus, 1991). This tool, when
applied to CoP, has shown good reliability in assessing postural control. For
example, Kyvelidou et al. (2009), in an analysis of the development of sitting
postural control in infants, concluded that ApEn had higher intra- and
intersession intraclass correlation coefficient (ICC) values than did the traditional
parameters and another predictability measure, the LyE (Wolf et al., 1985).
However, LyYE showed better values of reliability than did ApEn when the aim
was to assess cerebral palsy infants under the same conditions (Kyvelidou et al.,
2009).

Due to the relative inconsistency and the dependence of the results of
ApEn on the length of the data series Richman and Moorman (2000) suggested
another statistic, SE, to relieve the bias caused by self-matching. van Dieén et

al. (2010) analyzed the reliability of SE for a sitting balance task and this tool
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was sufficiently reliable. However, the similarity of the definition of vectors in this
method is based on a Heaviside function as in ApEn. This function leads to a
type of conventional two-state classifier, where an input pattern’s its
belongingness to a given class is judged by whether it satisfies certain precise
properties required of membership. However, in the real physical world
boundaries between classes may be ambiguous, and it is difficult to determine
whether an input pattern completely belongs to a class (W. Chen, Wang, Xie,
and Yu, 2007). This Heaviside function still has problems with the validity of the
entropy definition, particularly when small tolerance ranges are involved (W.
Chen, Zhuang, Yu, and Wang, 2009). W. Chen et al. (2007) recently developed
a new related family of statistics, FE. This measure shows some advantages
because it has demonstrated stronger relative consistency, less dependence on
data length, freer parameter selection and more robustness to noise (W. Chen
et al., 2009).

Bandt and Pompe (2002) presented PE as a parameter of average
entropy. PE is based on assessing the frequency of the appearance of
permutation patterns in a time series, using only the order of the time series
values (Zanin, Zunino, Rosso, and Papo, 2012). This nonlinear tool has been
shown to be an appropriate complexity measure for chaotic time series,
particularly in the presence of dynamical and observational noise (Bandt and
Pompe, 2002). In contrast to all known complexity parameters, a small noise
does not essentially change the complexity of a chaotic sighal. PE can be
calculated for arbitrary real-world time series. Another advantage of PE over
ApEn is its independence from the data length because it measures the entropy
of sequences of ordinal patterns that are derived from m-dimensional delay
embedding vectors (Frank, Pompe, Schneider, and Hoyer, 2006). Because the
method is extremely fast and robust, its use seems preferable when there are
huge data sets and no time for parameter preprocessing and fine-tuning (Bandt
and Pompe, 2002). Nevertheless, the reliability results of SE, FE, and PE tools
in assessing postural control in standing balance tasks have not been reported.

Conversely, some authors have argued that the predictability of the

signal, measured by entropy parameters, is not clearly related to the complexity
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of the signal (Goldberger, Peng, et al.,, 2002). In this sense, other nonlinear
measures are frequently used to assess the complexity of the CoP by analyzing
the long-range auto-correlation of the signal, such as stabilogram diffusion
analysis (Collins and De Luca, 1993) or DFA (Peng et al., 1995). For example,
DFA has been applied to analyze the changes in CoP fluctuation with aging and
disease (Goldberger, Peng, et al., 2002). Amoud et al. (2007) assessed the
reliability of these measures, and DFA appeared to show better reliability values
than stabilogram diffusion analysis. Van Dieén et al. (2010) analyzed the
reliability of DFA compared with entropy measures showing similar values in
sitting balance tasks. Nevertheless, little is known about the reliability of these
tools assessing postural control in standing.

Finally, although CoP analysis has been shown to be a useful procedure
to indicate changes in postural control, postural stability, or risk of falling (Maki,
Holliday, and Topper, 1991), this type of measure can be limited in its ability to
discern different postural strategies and movement patterns (Kuo, Speers,
Peterka, and Horak, 1998). Therefore, it would be necessary to use additional
measures to improve the knowledge of kinematic patterns. For this reason, some
authors (Kuo et al., 1998; Madigan, Davidson, and Nussbaum, 2006) have
suggested using kinematic measures to analyze postural sway.

The aim of our study was to determine which variables allow for the
characterization of motor balance behavior when a short time test is available
during the assessment session. In this way, we assessed the absolute
consistency and relative consistency of CoP and kinematic parameters that
characterize postural control during short sessions in a balance task protocol in

an upright stance under stable and unstable conditions.

3.3. Methods.

3.3.1. Participants.

Thirty healthy volunteers took part in this study (age = 27 + 6.48 years;
height = 1.74 £ 0.09 m; mass = 73.94 + 10.77 Kg), 11 women (age = 25.18 +
6.86 years; height = 1.65 + 0.06 m; mass = 64.93 + 5.79 Kg) and 19 men (age =
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28.05 £ 6.19 years; height = 1.79 + 0.07 m; mass = 79.17 £ 9.47 Kg). They had
no previous experience in the balance task used in this study.

Written informed consent was obtained from each participant prior to
testing. The experimental procedures used in this study were in accordance with
the Declaration of Helsinki and were approved by the ethics standards of the

committee on Human Experimentation of Miguel Hernandez University.

3.3.2. Experimental Procedure and Data Collection.

To assess postural stability, ground reaction forces were recorded at 20
Hz by a force platform (Kistler, Switzerland, Model 9287BA). When analyzing the
CoP dynamic using nonlinear measures signal oversampling could lead to
artificial collinearities that would affect the dynamics of the CoP and mask the
real values (Rhea et al., 2011). Therefore, using sampling frequencies close to
the CoP dynamic is recommended (Caballero, Barbado, and Moreno, 2013).

Synchronized kinematic data were collected from ten of the participants,
using a 6-camera 100 Hz VICON MXSystem with the associated workstation
software (Vicon, Oxford, England). According to the plug-in gait model (Vicon),
we placed 19 markers (Figure 5): over the incisura jugularis, on the right and left
shoulder, on the acromioclavicular joint, on the right and left anterior superior
iliac spines, on the right and left posterior superior iliac spine, on the right and
left midthigh stick, on the lateral epicondyle of the right and left knee, on the right
and left midshank stick, on the right and left lateral malleolus of the ankle along
an imaginary line that passes through the transmalleolar axis, on the right and
left heel, on the back of the heel such that the line joining it to the forefoot marker
reflects the long axis of the foot, on the right and left toe, and finally over the
second metatarsal head. The positions of the markers were marked to enable
researchers to relocate their exact position in case any markers were lost during
a measurement. Joint angles of hip, knee and ankle were calculated using the
Nexus 1.7 software (Vicon MX, Oxford, UK).
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Figure 5. Placement of 19 markers to assess the kinematic parameters.

Participants performed two tests separated by 10 min each. Each test
consisted of two trials in two different sway tasks conditions (Figure 6): (a)
standing still on a force platform (stable condition) and (b) standing on a foam
surface (unstable condition). In both conditions participants were asked to stand
as still as possible (Cavanaugh, Mercer, and Stergiou, 2007; Duarte and
Sternad, 2008; Ruhe et al., 2010) and their feet placed 30 cm apart, and with
their hands resting on their hips. The feet position was such that the line between
their heels coincided with the mediolateral axis of the platform. The task was
performed barefoot in front of a clear white wall without any visual reference.
This position was kept during all of the trials. In the unstable condition,
participants were able to maintain their standing posture without grasping the
support rail or stepping in any direction. The main aim of this study was to design
a simplified protocol to test the intrasession reliability of different CoP measures.
For this reason, in this study, the length of each test trial was 30 s, and the rest
period between trials was 1 min.
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3. STUDY |

Figure 6. Stable (left) and unstable (right) conditions.

3.3.3. Data analysis and reduction.

We collected 30 s of data at 20 Hz. Prior to the analysis, we discarded
the first 5 s of each trial to avoid non-stationarity related to the start of the
measurement (Van Dieén et al., 2010). In addition using the protocol of Holden
(2005), we used DFA to assess the stationarity of the signal (Tables 2 and 3).
DFA values greater than 1 indicate that the signal is a non-stationary process,
whereas DFA values less than 1 indicate that the signal is a stationary process.
The length of time series analyzed was 500 data points. No filtering was
performed on the data because filtering could can affect the nonlinear results
(Kyvelidou et al., 2009).

Postural sway was assessed using traditional CoP-based measures in
AP and ML displacement: the SD (SD_AP/SD_ML) and MV (MV_AP/MV_ML).
These variables were also calculated for the flexion—extension and abduction—
adduction angular displacement of the hip and ankle, and the flexion/extension
angular displacement of the knee. Furthermore, the MV magnitude (MVM) and
bivariate variable error (BVE) were calculated. BVE was measured as the
average of the absolute distance to the participant’'s own midpoint (Hancock,
Butler, and Fischman, 1995).

36



The variables used to assess the complexity of CoP and movement
kinematics were SE, FE, PE, and DFA. SE and FE typically return values that
indicate the degree of irregularity in the signal: higher SE and FE values indicate
greater irregularity in the time domain of the signal whereas lower SE and FE
values indicate greater regularity in the signal output. This measure computes
the repeatability of vectors of length m and m + 1 that repeat within a tolerance
range of r within the standard deviation of the time-series. Higher values of SE
and FE thus indicate that vectors of length are less repeatable than are vectors
of length m + 1, highlighting the lower predictability of future data points, and a
greater irregularity within the time series. Lower values represent a greater
repeatability of vectors of length m + 1, and are thus a marker of higher regularity
in the time series. For SE and FE we used the following parameter values: vector
length, m = 2; tolerance window, r = .2*SD; and gradient, n = 2 for FE. According
to different authors, these parameter values show high consistency, and are thus
the most frequently used (W. Chen et al., 2007; Lake, Richman, Griffin, and
Moorman, 2002; Pincus, 1991; Yentes et al., 2013).

PE measures the regularity of the time series based on comparisons of
neighboring data. It is particularly useful in the presence of dynamical or
observational noise because its main features are its robustness with respect to
noise that could corrupt the data, and its easy computation. Permutation entropy
measures the entropy of sequences of ordinal patterns that are derived from m-
dimensional delay embedding vectors (Frank et al., 2006). We used the following
parameter values: length, | = 4; and delay, d = 1. A more detailed introduction to
PE can be found in Bandt and Pompe (2002).

DFA is a method based on random walk theory, representing a
modification of classic root mean square analysis with random walk to evaluate
the presence of long-term correlations within a time series using a parameter
referred to as the scaling index a (Bashan et al., 2008; Peng et al., 1995). The
scaling index a corresponds to a statistical dependence between fluctuations at
one time scale and those over multiple time scales (Decker, Cignetti, and
Stergiou, 2010). This procedure estimates the fractal scaling properties of a time

series (Duarte and Sternad, 2008) and it has also been used to describe the
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complexity of a process (Goldberger, Amaral, et al., 2002). This measure was
computed according to Peng et al. (1995). In this study, the slope a was obtained
from the window range 4 < n < N/10 to maximize the long-range auto-correlations
and reduce the errors incurred by estimating a (Z. Chen, lvanov, Hu, and
Stanley, 2002). Different values of a indicate the following: a > 0.5 implies
persistence (i.e., the trajectory tends to continue in its current direction); a < 0.5
implies antipersistence (i.e., the trajectory tends to return to where it came from;
Roerdink et al., 2006).

Because the purpose of this study was to assess the intrasession
reliability of the different measures of stationary and non-stationary signals, all
variables were calculated over the displacement and velocity of CoP data. CoP
displacement usually shows non-stationary time series. However, the CoP
velocity time series, as the first derivative of the CoP displacement is much more

stationary (Costa et al., 2007).
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3.3.4. Statistical Analysis.

The normality of the variables was evaluated using the Kolmogorov-
Smirnov test with Lilliefors correction. ICCs were used to analyze the relative
reliability. Significance was established at p < .05. According to Fleiss’s
classification of ICC values, as adopted by Collins and De Luca (1993), the
following general guidelines have been assumed: ICC values above 0.75
represent excellent reliability, values between 0.40 and 0.75 represent fair to
good reliability, and values below 0.40 represent poor reliability. The standard
error of measurement (SEM) was calculated to quantify the precision of
individual scores on a test (i.e., the absolute reliability; Weir, 2005). To judge
the relative importance of SEM values better, they were expressed as a
percentage (%SEM), where an SEM < 10% is an index of high absolute
reliability. However, in postural studies SEMs < 20% could be considered
acceptable (Santos et al., 2008). A high SEM indicates a high level of error

and implies the no reproducibility of the tested values (Lin et al., 2008).

3.4. Results.

The mean values obtained from the CoP and kinematic variables,
under stable and unstable conditions, are presented in Tables 2 and 3. The
ICCs and SEM values obtained from the CoP variables of the study under
stable and unstable conditions are presented in Tables 4 and 5, respectively.
In the stable condition, the relative intrasession reliability of SD and BVE were
poor. However, MV produced good values of relative intrasession reliability.
For nonlinear variables, PE produced moderate values, whereas the other
variables produced poor values or acceptable values only on one axis. With
respect to absolute intrasession reliability, SEM indicated that MV showed the
best values of the traditional measures and that PE produced the best results
of the nonlinear measures. Moreover, PE had better results with respect to
SEM than did MV.
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In the unstable condition, all of the traditional variables analyzed
produced good values of relative intrasession reliability, but MV was again
the most reliable variable. Furthermore, PE and DFA seemed to show the
best relative intrasession reliability results among the nonlinear variables. It
must be noted that in the unstable condition, the variables calculated using
velocity data had better relative intrasession reliability values than did the
variables calculated using displacement. Regarding the SEM values, PE
produced the best values of absolute intrasession reliability, followed by MV.

The intrasession reliability of kinematic variables is shown in Tables 6
and 7. In the stable condition there are few variables that exhibit good or
moderate relative intrasession reliability. Regarding traditional variables, it is
not clear which variables are better. However, with reference to the nonlinear
measures, DFA seemed to show the best results because it was the only
variable that showed moderate relative and absolute intrasession reliability in
each joint, though only on the right side of the body.

Conversely, in the unstable condition, the traditional kinematics
variables showed the same trend that the results of CoP data. The MV
produced the best relative intrasession reliability values in all conditions. With
respect to nonlinear measures, entropy variables seemed to show the best
relative intrasession reliability results, though PE and DFA produced the best
absolute intrasession reliability values. Similar to the CoP variables, the
measures calculated using kinematic velocity data showed the best

intrasession reliability values.

42



"(solley papjod ul pelyBilubly senjep) 6o'sd
apniubey = B ‘SIXe eialel-0IpawW = A ‘SIXE 0U3)S0d-0ISJUE = dy

“(soney papjog ul payybiydiy sanjep) g sd
apnuubely = By ‘sixe eiajel-oipaw = A ‘SIXe ouslsod-olsiue = 4y

1601 gr/° "Wyda - - Py 4q eyl gzo°  fnydqg - - Wy 4
08°GlL z6s” Wydad Zee /22 Mwda 6e1E lge”  Wydqg 6602 688  My4a
Gl/L 186" 9¥vidd €6  lo9 vvdad 85'Z¢ LG dv¥y4Q €6zl gry  9¥vida
1871 £28° fn3g - - b3y 090 09t fwad - - brgg
112 Glg W3y 89'¢ 0.8 w3g 0L'e 851’ W34 WA w3d
¥S'Z 602 4v3d 06 £09° dv3g Zl'y 454 9¥3d 26°S 166 dv3d
L¥'8 605" Pz 4 - - P34 Lol 0z0 =E - - B4
0F'6 £6/° RF | v1'2Z  8¥9 W3y 809 68¢ =P ST AN A% 4 g4
95/ 689 dvyy IVIL 669 av3g 0Z'6 z5e dv34 g9ezTe 2T dv34
Z20l 288" bn3g — — fu3g 6LZL 650 fw3g — — fugzg
¥Z'zl /86 w3g LL'EZ  08S m3g 69/ ¥4 w3g ZATANN 1 w3g
¥9'6 €16 4v3g oGl 2Ze9 dv3g 166 Gee 4v3g 0z6z LLT dv3g
4 622 NAIN creL 89 ang ZL'gl 20/ INAW 208  ISO° 3Ing
S8l IV AN 950z 19§ wag GlL1z 296 WAN €08 pEE was
8,91 €92 VAW 8e'ZZ 96§ vasg G6¥L gLl VAW 00€s 2.0 vgs
(%)w3as 221 (%) w3as 201 (%) w3s 201 (%) w3as 201
Ayoojap Juawaae|dsiq Koojap juawase|dsig

"$3|qeleA JOD UORIPUOD S|qejsun Joj VIS PUe sOO| °G 2|qel

"S9|gBIBA JOD UOHIPUOD 3IGBIS J0) (%) INTS PUE SO 't 2I9B L

43



(soley paplog u paiybiybiy senjea) go'sd
‘uogonppe = gy ‘uoixel = X314

8692 09g’ avapjuy” vd4a SL'ZL 60F-  99¥apjuy vdd 6268  €LE- avapjuy vd4qQ 6201 196" avapjuy v4a
ceLe L€g XTHepjuy vda sa'gl 9Ll FHepuy vda 0c02 8og Mepuy vdd 9z'el t20°  *IVepjuyvda
66'SZ €vE- xAHgauy” vda 66°€lL £80° 3Haauy” v4ad L09F  8ce- AHasuy v4d 206 229 x3Haauy vda
8e°'se T d avdiH v4a 2L 20oL- aavdiy v4a 2592 229 aavdig v4q 6t'6 .9 avdiy v4a
1102 528 xddig v4a LS LL 8eg” FEdig v4q L6l £09° FHdiH v4qa oL €02 FHdiH v 4a
€0 gLl IWapuy ™~ 3d 80°L zZ6v avapuy 3d 8t'0 =Te ] avapjuy 3d 6v°L A 4N aVapuy Id
£9°0 SLL XTdapquy 3d Lo'e ZiY XTdapjuy 3d 6%'0 vEL XHdapjuy ad 8z'c  680Z- Az juy 3d
L0 06" *Tdaauy ad Zge  060- XTgauy ad 860 LGE XTdasuy ad vee LB XTdaauy ad
£6°0 58¢€" aavdiH™3d S8°0 =}V aavdiH™3d 980 L6L- aavdiH™3d GE'L [K=r avdiH™3d
zT0 5124 XIdiHT3d 891 £62° XIEdiH 3d z5°0 zoL XTHdiHTad A" €zg’ XTddiH 3d
€0l LLO avapjuy =4 €0z £EY avepjuy 34 66’8  Lze- aavequy 34 1012 LLG advapquy 34
ve'8  B.L- FHepuy 34 vy VioA [ Hapuy 34 €eL  €9g- e puy 34 LG 6E 81 Hapjuy 34
g8ZL  99Z- x3Idaguy 34 129 voL xTdasuy 34 SO'LL 821 xIdgauy 34 a5 vt Lig Adgsuy 34
9Ll 2i0- vy 34 38002 202 aavdigT34 129l Zee- aavdiyT34 6752 Gzg’ aavdiyT34
gLz Lot A HdIH 34 £2°89 £0g° *34diH T34 86'LZ gzZ0 EHdiHT IS 65'EY $9G” EHEdIHT 34
¥8el £80° avapuy 3 £z'8l oet’ aavapjuy 39 6601 /9L aavapjuy 39 8z'ze 666" avapuy 3s
95'LL €60 Fdapuy™ 38 Lot 1or4 xTdspuy 385 L8 222- xAdapuy 38 SO'LY 80’ AHdapuy 3§
Z0vL  v8eT- TlHdaauy 38 8659 viL XTdgauy 38 zeelL  L00- XTdasuy 38 9% 9o £5¢ XTdaauy 38
2581 oL avdiH as Y26l L92° avdiH 3s 6821  29oT- avdiH IS £8'vT 125 avdiH™3s
88'€T V0 FddiH 38 8€°G. 8T FdiH 38 g'€e 9z0° TddiH 38 €405 €05 xddiH3s
16'8C 00G° apiuy” INAIN 08'LE Q0L” apiuy” 3Ag Zr'9lL el spluy” INAIN FA T4 Liv spuy” 3AG
565 650° aauy INAIN 0z L1 0.2 sauy gAad 962 oGl @auy AW 91°S¢ L1E sauy gAd
LS 220- diHTINAIN £€°.2 ¥G9° diH"3Ag 9868 tlLZ- diHTIWAN zZ5'ee zZet diH™3Ag
99't¢ 86t aVapuy T AN LS LE 622 aVapuy as 6691 962 aVapuy - AN LEPE LLG aNapuy - as
8L'St 95t FHapuy” AN 99z sze FHapuy as 691 2L XTdapuy” AN 88'ze 1Ze XTdapjuy as
g'5¢ L9t XAdasuy AN 9'2e 8cg” AlHdaauy—as A T4 LPE Fdsauy” AN LE°EY gze Adasuy as
9/v9 8zl aavdiH™ AN 1622 488" aavdiH—as 9z’ €L feldo} aavdiH~ AN 1221 rirt aavdiHas
80'9S  6BLO- AEdiH AN 859 L0€ FEdiHTags $905 8T XTHdiH AN 255 BSE ¥EdiH as
(%)n3s 201 (%)nw3s 201 (%)n3s 201 (%)n3s 201
AJoolan juawoaoeidsiqg FSTRTTETY juawaose|dsia

spis e Apog

spis Jybry Apog

"SS|GelEA OELWBUDY UONIPUCD B[qelS 10) (%) WIS PUE SOD| 9 B|qel

44



“(sojey papjoq ur peybiybiy senep) so'sd
‘uononppe = aay uoixay = X314

9€°G1L 885" tvVapuy vdd Zr Ll 69 daavapuy” vda SELL +Z8" aavapuy”vd4a STl sz aavapuy” v4a
zlLL 968"  XIHapuy” vdd 66C1 69 AHapluy vda £5°ElL G518 XFapjuy v4a St'8 v/ FHapjuy vdd
€22 268" XFHaauy v4a €921 oz XAHsauM” v4d £¥°0Z 0z8’ Aasuy v4d 8g'€lL 144 XA Haauy v4d
S5°LZ 664" JovdiH v4a L6 L0 aavdigTw4a Yzl 16G° aavdiH w44 2€°9 zl8° sovdiH v4a
2z 0L 206" 34y w4Q G2 9L 08z x3idiH v4a gl 986" XIdiH v4Q 9.9l zZLg Tdiy v4a
6.0 £69° aavapjuy” 3d S5°1L 628" INVapuy Jd S50 08/ aovaquy 3d 8v'e ZEV Ag Uy 3d
9L 99/" X3dapuy 3d Zr'e (378 X3Hapjuy 3d 69°L Z99° X3 uy 3d 80°G 102" X3Hapjuy 3d
86°L 850 XTdsauy 3d 96'€ 205 XTdaauy 3d L'l 9rs” XTHaauy 3d zZr'e 80" XIdaauy 3d
+09°0 +£g” vdiH 3d €1’z 06¢” aavdiH ad S8°0 985" aavdiH 3ad 6z°2 414 vdiH 3d
€71 99" X3dig3ad +5'€ 252 X34diH ad PP PEY” XF4diH 3ad 6% ZeP XI4diH 3ad
£0'F 067" aavapuy 34 2991 968" aavapuy 34 89'¢ r0." avapuy 34 95°GlL £eg” aavapuy 34
96 L £L4” x3Hapuy 34 ¥6'G2 589" AHauy 34 S0 669" XJdapjuy 34 29'€T oL+ A Hapuy 34
ZL L 919" XIdaauy 34 12+ 474 XIgauy 34 £F L 20T O EF SE'5E 122 XIdaauy 34

¥z 048" davdiy 34 £zzZ 192" aavdig 34 z6'L (28 aavdiH 34 £6°22 282 aavdiH 34
re'9 S09° Fddiy 34 8102 284" XIddiH 34 7L'8 [44ad XIHdiH" 34 962 r8. #F4diH 34

59 [ da¥apuy” IS 8 LL L8 IVepuy 3 £9'g 2Le - A¥ajuy 3§ L9l 0ze AN¥apuy IS
LS'LL LO9" Tdapjuy ™ 3S 98'€g £0L° XTdapuy 38 1L 0L i Tdepjuy” IS 902 cLV Aldagpuy ™ 3s
€411 00 *Tdaouy 3 15'ST ses” XTdgauy 38 208 860 *Tdaouy 3s S 9g £64° XFdaouy 3
8L L 4% avdiH 3S 60LL ozg’ avdiH"3s 6v (274 avdiH 3s LE°€2 29" avdiH"3s
20 L1 €Ly X4diH 38 1581 rr8 *3diH™ 38 SLoLL #80°- XA4diHT3s 9¥'€e 124 i3S
L Ll ¥96° apjuy” INAIN 1811 004" apluy”aAng €611 226 apuy” INAIN Z8'6E szv apuy” 3Ag
+6'GL SlL 29uM INAW ol 0F oSt 29uy 3IAd Z6'rl G68° 29Uy WAIN 092y Lise @auy 3Ad
6L°ZL or6” dIH WA ¥5°02 682" diH 3Ag 9zZ°91 S06° diH INAIN 8zZ'ZL 606" diH 3Ag
gLl Zi6° IO¥apuy” AN B67'ET 9rL” avapuy as Z8°El zg6” AUy AN L0 LY 9" Jovapluy” as
LL°GL +E£6° Adapjuy” AN 9122 9l AdapjuyT as 18721 126 XA apuy™ AN £8°0F 6LE° Adapjuy” As
6221 926" A Haauy T AN 9595 £0g 3aauy” as £00°91 588" Eaauy” AN £8°€5 219 A Haauy as
6L £66° aavdiH™AIN 1992 G/9° JaavdigTas 128l 816 aavdiH™ AN 8922 LEY” aovdiH—as
6. LY 098" X3dIHT AN 64'L¥ zZ08’ FHdiHTas z8°ee 268" FHdIHT AN zZ8'eg 0€6° EdiHTas

(wn3s 221 (2)n3s 201 (ee)n3as 201 ()w3s 201
Ajs019A juswese|dsiqg AJD019A juswede|dsiqg

opis o Apogd

apis b1y Apog

"S$9|QEIBA DHELWUSUD| UOIIPUOD S|qelsun 1oy WIS pue sOD| "L @igel

45



3.5. Discussion.

Several studies have characterized the postural sway in balance tasks
by analyzing the CoP dynamic using traditional and nonlinear parameters.
Nevertheless, the reliability of traditional linear parameters of CoP has been
frequently disputed (Ruhe et al., 2010) and there are few conclusive results
about the reliability of nonlinear CoP measurements (Kyvelidou et al., 2009).
Furthermore, some authors have suggested that the CoP parameters can be
limited in their ability to discern different postural strategies and movement
patterns (Kuo et al., 1998) and that it would be convenient to use additional
kinematic measures. In this study, we have assessed the intrasession
reliability of CoP and kinematic parameters that characterize the postural
sway in a simplified protocol of a balance task in stable and unstable
conditions. Thus, we can determine which variables allow for the
characterization and classification of motor balance behavior.

The mean values obtained from the CoP variables in the study under
both conditions, stable and unstable, were close to others studies, both about
linear variables (R. J. Doyle et al., 2007; Harringe, Halvorsen, Renstrom, and
Werner, 2008; Lin et al., 2008; Salavati et al., 2009; Santos et al., 2008) and
nonlinear variables (Amoud et al., 2007; S. F. Donker et al., 2007; T. L. Doyle
et al., 2005; Harbourne and Stergiou, 2003; Lin et al., 2008).

In stable and unstable conditions, MV showed good results in relative
intrasession reliability and is the traditional measure that best ranks
individuals in balance tasks. Therefore, this variable seems to be the largest
contributor in terms of consistency of the position or rank of individuals in the
group relative to others to categorize participants (Weir, 2005). In addition,
MV had higher consistency between trials (lower results in SEM) compared
to SD and BVE. Consequently, MV seems to be a more consistent variable
to detect changes in performance than SD and BVE (Raymakers, Samson,
and Verhaar, 2005). SD and BVE showed poorer intrasession reliability
scores in stable situations and good scores under unstable situations, but
their results were lower than MV. Our outcomes are similar to those obtained
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by Lafond et al. (2004) and Lin et al. (2008), but in those studies, the protocols
included more trials and a longer sample duration. We found that MV is
reliable despite the short time series used. In the present study, MV has
showed good intrasession reliability in a protocol that used sample durations
of only 30 s (Le Clair and Riach, 1996; Schmid et al., 2002). Furthermore, this
variable produced very good values of intrasession reliability despite the
experimental conditions. These results agree with those obtained by Salavati
et al. (2009). In their study, they assessed the postural stability during quiet
standing in a group with musculoskeletal disorders consisting of low back
pain, anterior cruciate ligament injury and functional ankle instability, and the
mean total velocity in all conditions of postural difficulty showed high to very
high reliability. Though Ruhe et al. (2010) noted that data from a firm stable
surface tends to be more reliable, in our study the scattering measures did
not produce good intrasession reliability values under stable conditions but in
unstable conditions, its intrasession reliability was acceptable. According to
Lee and Granata (2008) these findings may be due to the sway variance
increasing with the task difficulty. This high variance may reduce the time
duration needed to achieve a stationary time series. In the stable condition,
different locations of the CoG in the surface of support allow a person to
maintain stability (Caballero et al., 2013); different stability locations can help
achieve good performance. However, more difficult conditions limit the region
of stability (Lee and Granata, 2008). Thus, measures of the dispersion of the
data relative to a midpoint, such as SD or BVE, are used as an indicator of
postural control, but they may be affected by the non-stationarity of this data
(Caballero et al.,, 2013). Therefore, scattering variables appear to be
unreliable indexes of balance performance in stable conditions. However, in
unstable situations, the increased difficulty implies that continuous
adjustments are required to prevent the CoG from moving out of the surface
of support. The amount of the CoP fluctuations could reflect the ability of the
individual to maintain the stability, and the scattering measures in unstable

condition could be a better index of the postural control.
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Regarding nonlinear measures, SE and FE showed a moderate ability
to rank individuals and good consistency in the stable condition, but FE
showed slightly better results than did SE. In the unstable condition, the
intrasession reliability values were better than those in the stable condition,
and FE again showed better results than did SE. W. Chen et al. (2007)
proposed FE as a more reliable measure of regularity compared with the
previous measures because of its stronger relative consistency and
robustness to noise. Nevertheless, both measures of CoP regularity have
shown better results in this study in the unstable condition compared with in
the stable condition, similar to the traditional measures. CoP is a non-
stationary signal (Newell, Slobounov, Slobounova, and Molenaar, 1997,
Schumann, Redfern, Furman, El-Jaroudi, and Chaparro, 1995) because of
constant adjustments of CoP that are required to maintain the CoG within the
stability boundary on the surface of support. More difficult conditions, such as
the unstable condition of the experiment, required tighter neuromuscular
control. This can result in less day-to-day variability and provide results with
greater repeatability and lower SEM or absolute reliability values (Lee and
Granata, 2008). In the stable condition, as indicated previously, the lower
motion of the CoP allows different places of the CoG within the surface of
support to maintain stability. Non-stationarity caused in the stable condition
produces lower reliability values because stationarity is a basic requirement
of entropy measures derived from ApEn (Costa, Goldberger, and Peng,
2005).

The results in this study indicate that PE was the nonlinear measure
that had superior results in its ability to rank individuals in the balance task
and better consistency than the other regularity measures. This result could
be due to its robustness with respect to some noise, which may have
corrupted the PE results (Bandt and Pompe, 2002). PE has also shown
stronger consistency in both stable and unstable conditions, so it is less

affected by the non-stationarity of the time series.
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DFA is another nonlinear measure frequently used to assess the
complexity of the CoP by analyzing the long-range auto-correlation of the
signal. Van Dieén et al. (2010) assessed the reliability of several nonlinear
tools and DFA and found that the entropy measures showed similar values in
the sitting balance task. Amoud et al. (2007) analyzed the reliability of DFA
assessing the postural stability in elderly people and control subjects and the
effect of the recording duration. In the present study, DFA of the CoP
produced good intrasession reliability values in both stable and unstable
conditions. These results agree with those obtained by Amoud et al. (2007),
but the DFA intrasession reliability was not as good as that of PE under
unstable condition. In our study, PE was better able to rank individuals and
exhibited better consistency than did DFA, but DFA had better intrasession
reliability than did the other entropy measures, similar to the study of van
Dieén et al. (2010). Because PE and DFA measure different characteristics
of the time series, it could be best to use both nonlinear variables to obtain
complementary information about the complexity of the postural sway.

It should be noted that in the unstable condition, the results obtained
using the velocity data of the CoP were more reliable than those obtained
using CoP displacement. This finding could be related to the stationarity of
the signal. Non-stationarities may lead to a spurious increase in the apparent
degree of irregularity of a time series for the shortest scales (Costa et al.,
2007). To avoid this increase, Costa et al. applied some methods to detrend
the data. However, they suggested that the derivative time series are much
more persistent than the original time series and that there is no need to
detrend the velocity time series. Therefore, when SE and FE are used, it is
recommended that one use a velocity time series or apply methods to detrend
the data before assessing the complexity of CoP.

The kinematic variables show similar results to those obtained using
CoP variables, particularly on traditional measures. SD, BVE and MV
produced poorer intrasession reliability, both in their ability to rank and in their

consistency, in the stable condition. Good intrasession reliability results can
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be found in the unstable condition, and MV again showed better intrasession
reliability values.

Under the stable condition, no kinematic nonlinear variable has clearly
shown good results in its ability to rank individuals. However, referring to the
consistency values, PE showed excellent results for both angular
displacement and angular velocity data. FE produced good SEM values using
the derived data, and SE produced the same trend as FE, but with poorer
SEM values. As indicated above, the differences between angular
displacement and angular velocity data could occur because the derived
signal (i.e., the angular velocity data) is much more persistent (Costa et al.,
2007), and this stationarity affects entropy measures, except PE, according
to the results found for the CoP signal.

In the unstable condition, PE showed a good or moderate ability to
rank individuals in the angular velocity data. In addition, this measure
produced the best SEM values for both the angular displacement and angular
velocity data, but the angular velocity data were slightly better than angular
displacement data. However, SE and FE both showed inconsistent results.
These entropy measures produced good or moderate values ranking
individuals, presenting better values for angular displacement than for angular
velocity data. However, regarding the consistency values, these measures
showed better results in the derived signal. Therefore, there is no situation in
which these measures have shown good ICC values and SEM values
simultaneously. DFA showed good ICC values in the derived data that were
better than those obtained for the angular displacement data. The values of
SEM indicate the good consistency of DFA, with no clear differences between
derived and nonderived data. Generally, the kinematic variables produced
lower values of intrasession reliability than did the CoP variables. The
kinematic analysis overlooks the control forces involved in motor control, and
these signals represent the integral of those forces, acting as a mechanical
low-pass filter (Moorhouse and Granata, 2005). This filtering behavior can

limit the performance of nonlinear analyses, as noted by the poorer reliability
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limit the performance of nonlinear analyses, as noted by the poorer reliability
of nonlinear stability. For this reason, kinematic signals take longer to achieve
stationarity (Lee and Granata, 2008). This finding does not mean that the
measured data are not an adequate representation of the stabilizing control
of this dynamic system. It would be necessary to use additional measures
that are more consistent to subtle changes in movement throughout the body.
The information that the kinematic variables provide is very important to
determine any changes in movement throughout the body (Kuo et al., 1998;
Madigan et al., 2006), but more recording time is required to achieve good
reliability values. In this sense, CoP would be a better index than kinematics

in a simplified balance task protocol.

3.6. Conclusions.

In the CoP signal, MV was the best measure for ranking individuals in
a motor balance task among the traditional measures. Furthermore, MV
showed higher consistency between trials in a simplified balance task.

PE was the best measure for ranking individuals and produced higher
consistency values than did the other nonlinear tools. DFA showed good
values for ICC and SEM. The use of both PE and DFA should be
recommended in a simplified protocol because these tools measure different
characteristics of the time series and they can provide complementary
information about the complexity of the postural sway.

The stationarity of the signal affects the intrasession reliability of the
measures. This must considered when designing a simplified protocol with a
short time series. The type of signal affects the required length of the time
series. Kinematic signals need more recording time to achieve good
intrasession reliability values than do CoP signals. In addition, when using
entropy measures such as SE or FE, it is recommended to use velocity time

series or apply methods to detrend the time series. Finally, unstable balance
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tasks require less recording time to achieve stationarity than do stable
balance tasks.

The measures of CoP seemed to have more ability to rank individuals
in balance tasks and showed higher consistency between trials in a simplified
protocol than did kinematics, although both CoP and kinematics should be
used as complementary signals to better characterize balance behavior.

In summary, to achieve a good analysis of postural control, it is very
important to consider that the reliability of the different variables appears to

be dependent on the conditions measured and the signals analyzed.
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VARIATIONS IN TASK CONSTRAINTS SHAPE EMERGENT
PERFORMANCE OUTCOMES AND COMPLEXITY LEVELS IN
BALANCING

Carla Caballero, David Barbado, Keith Davids, and Francisco J. Moreno

4.1. Abstract.

This study investigated the extent to which specific interacting
constraints of performance might increase or decrease the emergent
complexity in a movement system, and whether this could affect the
relationship between observed movement variability and the CNS's capacity
to adapt to perturbations during balancing. Fifty-two healthy volunteers
performed eight trials where different performance constraints were
manipulated: task difficulty (three levels) and visual biofeedback conditions
(with and without the CoP displacement and a target displayed). Balance
performance was assessed using CoP-based measures: MVM and BVE. To
assess the complexity of CoP, FE and DFA were computed. ANOVAs showed
that MVM and BVE increased when task difficulty increased. During
biofeedback conditions, individuals showed higher MVM but lower BVE at the
easiest level of task difficulty. Overall, higher FE and lower DFA values were
observed when biofeedback was available. On the other hand, FE reduced
and DFA increased as difficulty level increased, in the presence of
biofeedback. However, when biofeedback was not available, the opposite
trend in FE and DFA values was observed. Regardless of changes to task
constraints and the variable investigated, balance performance was positively
related to complexity in every condition. Data revealed how specificity of task
constraints can result in an increase or decrease in complexity emerging in a

neurobiological system during balance performance.

Keywords: postural control, nonlinear analyses, task constraints,

biofeedback, center of pressure, movement variability.
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4.2. Introduction.

In humans, conceptualized as complex adaptive systems (Riley,
Shockley, and Van Orden, 2012), movement variability is omnipresent due to
the distinct constraints that shape each individual's goal-directed behaviors
(Davids et al., 2003). Movement variability has been studied as the natural
variations that occur in motor performance across multiple repetitions of a
task, reflecting changes in both space and time (Newell and Slifkin, 1998;
Stergiou et al., 2006).

In dynamical system theory, these variations have a functional role to
drive adaptive behaviors in movement systems, allowing the CNS to exploit
the high dimensionality offered by the abundance of motor system DOF
(Davids et al., 2003). Adaptive behavior refers to a form of learning
characterized by gradual improvement in performance in response to altered
conditions (Krakauer and Mazzoni, 2011). The relationship between
variability and adaptive behavior will change depending on task constraints
faced by each individual. Several studies have related movement variability
to the capacity of the CNS to adapt behaviors to environmental changes
(Davids et al., 2006; Davids et al., 2003; Renart and Machens, 2014; Riley
and Turvey, 2002).

In order to observe motor behavior changes during adaptation, several
studies have examined changes in the neuromuscular system analyzing
postural control dynamics and their relationship with physiological complexity
(Manor et al., 2010; Manor and Lipsitz, 2013). This is because during postural
control, the CNS regulates the activities of many neuromuscular components
acting together in a complementary manner (Manor et al., 2010; Riley and
Turvey, 2002).

Previous analyses of the relationship between postural control and
variability in movement coordination have examined two different global
dimensions: the amount of observed variability and the structural dynamics of
variability, addressed by analyzing its complexity (Stergiou et al., 2006).
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Complexity has been defined as the number of system components and
coupling interactions among them (Newell and Vaillancourt, 2001). Some
researchers have indicated that complexity in different physiological
processes can be observed through nonrandom fluctuations on multiple time
scales in physiological dynamics (Costa et al., 2002; Lipsitz and Goldberger,
1992; Manor et al.,, 2010). This second dimension provides additional
information about properties of the dynamics of observed variability on
multiples scales, which reveals important information on strategies used by
the CNS during task performance (Caballero et al., 2014).

The complexity of CoP has been a prominent measure used for
assessing the relationship between the complexity shown in a biological
signal, and a neurobiological system's capacity to adapt to perturbations in
motor tasks like postural control and balance (Decker et al., 2010;
Goldberger, Peng, et al., 2002; Menayo, Encarnaciéon, Gea and Marcos,
2014). This methodological prominence has emerged because it has been
considered a collective variable, responsible for capturing postural
organization and balance in individuals (Riley and Turvey, 2002).

Data on balance performance have suggested that complexity in a
biological signal may be related to the CNS's capacity to re-organize DOF to
adapt to perturbations (Barbado et al., 2012; Goldberger, Peng, et al., 2002).
Adaptive movement responses have also been considered to exemplify
functional exploratory behaviors, which reveal useful sources of information
to perform and learn new skills (Stergiou et al., 2006). In this regard, less
complexity in CoP dynamics has been associated with less capacity to adapt
(Barbado et al., 2012; Manor et al., 2010). Moreover, in some cases, the loss
of complexity in CoP dynamics has been related to disorders in the CNS
(Cattaneo et al., 2015; Schmit et al., 2006).

However, the direction of this relationship remains somewhat unclear.
Other studies of performance in balance tasks have reported data which do
not support the aforementioned relationship, reporting greater complexity in

fluctuations of CoP associated with worse task performance (Duarte and
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Sternad, 2008; Vaillancourt and Newell, 2002). For example, in Duarte and
Sternad's (2008) study comparing young and elderly people, they found a
higher degree of complexity in older people over an extended time (30 min)
during performance in a standing balance task. This finding indicates that high
levels of complexity could reflect a decreased adaptive capacity of CNS over
longer time scales. Vaillancourt and Newell (2002, 2003) suggested that
increases or decreases in the complexity of CNS behaviors can be functional,
but may be dependent on the nature of both the intrinsic dynamics of the
system and the task constraints that need to be satisfied. Due to specific
performance constraints encountered, there may be a reduction in the
number of configurations available to a dynamical system through a re-
structuring of the state space of all possible configurations available (Davids
et al., 2003; Newell and Vaillancourt, 2001). Here, we sought to understand
the extent to which specific interacting constraints of performance might lead
to an increase or decrease of emergent complexity in a movement system,
during task performance.

Another important question concerns whether the ‘controversy'
surrounding the relationship between observed movement variability and the
capacity to adapt to unexpected perturbations may actually be due to the
specific experimental procedures of analysis selected to address complexity
(Goldberger, Peng, et al., 2002; Stergiou et al., 2006). For instance, it has
been suggested that entropy measures which analyze the regularity of a
signal do not measure the complexity of system dynamics (Goldberger, Peng,
et al., 2002). These studies did not consider whether signal regularity was
clearly related to the complexity of system dynamics. Instead, it may be more
appropriate to use fractal measures or long-range auto-correlation analysis,
such as DFA, to investigate complexity in complex adaptive systems.
Regardless, several studies have shown the utility of entropy measures in
interpreting the randomness in experimental data from physiological systems
in relation to postural control (Barbado et al., 2012; S. F. Donker et al., 2007;
Menayo et al., 2014), heart rate (Lake et al., 2002; Wilkins et al., 2009),
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neuromotor control of movements early in life (B. A. Smith, Teulier, Sansom,
Stergiou, and Ulrich, 2011), mental fatigue (Liu, Zhang, and Zheng, 2010),
intracranial pressure (Hornero, Aboy, Abasolo, McNames, and Goldstein,
2005) or local muscle fatigue (Xie, Guo, and Zheng, 2010).

Up to now, the literature seems to support the view that motor
variability is related to adaptive capacity, but the direction of the relationship
seems to be unclear, possibly for different reasons, including: 1) the role that
specific task constraints may play in shaping emergent behaviors; and 2), the
difficulty in choosing the most appropriate tool to measure and address
complexity in motor behavior. Addressing possible reasons for this
methodological controversy behind the relationship between movement
variability and adaptive capacity, we sought to understand whether
manipulation of task constraints would result in a modification of participant
performance strategies, due to the emergence of novel exploratory behaviors
captured by the re-organization of motor system DOF to adapt to challenging
performance situations. In this regard, we analyzed emergent movement
adaptations under varying task constraints. We also used different nonlinear
tools to measure the complexity of observed system variability. We
hypothesized that increases or decreases in the complexity of a behavior
depends on the nature of the task constraints to be satisfied. In particular, we
expected that increasing difficulty and availability of biofeedback would lead
to a reduction in the number of configurations available in the motor system,

causing a loss of complexity and performance decrements.

4.3. Methods.
4.3.1. Participants.

Fifty-two healthy volunteers (13 women) took part in this study (age =
25.5 £ 6.01 years, height = 1.70 £ 0.25 m, mass = 70.66 + 10.33 kg).They

had no previous experience in the balance task used in this study.
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Written informed consent was obtained from each participant prior to
testing. The experimental procedures used in this study were in accordance
with the Declaration of Helsinki and were approved by a University Office for

Research Ethics.

4.3.2. Experimental Procedure and Data Collection.

To assess CoP fluctuation, ground reaction forces were recorded at
1000 Hz on a Kistler 9287BA force platform.

The task required the participants to stand on a wooden platform (0.50
m x 0.50 m) and perform eight trials of 70 s each, with 1 min rest periods
between trials. Standing stability and availability of visual biofeedback were
manipulated. The decision to manipulate these two different task constraints
was taken because both are heavily used in the literature to analyze and train
postural control. In particular, the use of biofeedback was chosen to control
“error sensitivity”. According to Herzfeld and Shadmehr (2014, pp. 149) “when
we make a movement and experience an error, on the next attempt our brain
updates motor commands to compensate for some fraction of the error”, and
this error sensitivity term varies substantially from individual to individual and
from task to task. Thus, error sensitivity remains constant for all participants.
Two of the eight trials were performed on a solid floor (stable condition or SC).
The other six were performed on an unstable platform (unstable condition or
UC). All trials were performed under four different levels of difficulty, defined
by the stability of the base of support. To achieve this aim, a wooden platform
(0.02 m thick) was affixed to the flat surface of three polyester resin
hemispheres with the same height (0.1 m) and different diameters: UC1 =
0.50 m of diameter; UC2 = 0.40 m of diameter and UC3 = 0.30 m of diameter
(Figure 7). Each condition was experienced under two different visual
biofeedback conditions: A) without visual biofeedback, where the
representation of CoP displacement was not displayed. Here, the instruction
to participants was to stay “as still as possible” (Duarte and Sternad, 2008);

and B) with visual biofeedback, where CoP displacement, beside a static
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center target (0.003 m of diameter on the base of support and 0.05 m
projected on the wall in front of the participant; scale displays: 16.6 to 1), was
displayed in real-time. Participants were instructed to keep their CoP on the

target (Figure 7).

4.3.3. Data Analysis and Reduction.

An application under Labview 2009 (Mathworks, Natick MA, USA),
developed in our laboratory, was used to perform the data analysis. CoP time
series were previously down sampled from 1000 Hz to 20 Hz due to: 1) there
being little of physiological significance above 10 Hz in the CoP signal (Borg
and Laxaback, 2010), and suggestions to use sampling frequencies close to
CoP dynamics (Caballero et al., 2013); 2) signal oversampling possibly
leading to artificial co-linearities, affecting the variability data (Rhea et al.,
2011). The first and last 5 s of each trial were discarded to avoid non-
stationarity related to trial initiation (van Dieén et al., 2010). Time series length
was 1200 data points. It has to be taking in account that one time series were
shorter than 1200 data points (590 data points) due to the fact that two
participants were unbalanced before 70 s. We computed the time series data
before these failures. That result were included in the analysis because it did
not show outlier values in any of the assessed variables. Two filtering
processes were used to analyze different postural control behaviors that are
related to two different components of CoP displacement: rambling and
trembling (Zatsiorsky and Duarte, 1999). The first is defined as the motion of
a moving reference point with respect to which the body’s equilibrium is
instantly maintained and characterized by large amplitudes at low
frequencies. This component could be related to central control (Tahayori,
Riley, Mahmoudian, Koceja, and Hong, 2012). Thus, we used a low-pass filter
(4th order, zero-phase-lag, Butterworth, 5 Hz cut-off frequency) (Lin et al.,
2008) to assess it. The trembling component is defined as the oscillation of
CoP around a reference point trajectory, being characterized by short

amplitudes at high frequencies (Zatsiorsky and Duarte, 1999). This
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4. STUDY I

component could be related to peripheral control (Tahayori et al., 2012).
Hence, we used a high-pass filter (4th order, zero-phase-lag, Butterworth, 10

Hz cut-off frequency), similar to that used by Manor et al. (2010).

ca-—

Figure 7. Schematic illustration of the protocol distribution and the different surfaces
used: a) stable platform; b) UC1: unstable platform with 50 cm of diameter; ¢) UC2:
unstable platform with 40 cm of diameter; d) UC3: unstable platform with 30 cm of
diameter.

Postural sway was assessed using traditional bivariate CoP-based
measures combining the AP and ML displacement trajectories: BVE and
MVM. These variables were used to assess task performance and were
calculated over the signal, filtered using a low-pass filter. We used just the
filtered signal using a low-pass filter because static balance is characterized

by small amounts of postural sway which is analyzed at low frequencies.
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BVE was measured as the average value of the absolute distance to
each participant’s own midpoint (Equation 1) (Hancock et al., 1995; Prieto et
al., 1996)

N
1 - -
BVE = NZ\/((}Q -X)2+(Y;-Y)?)

(1)

where N is the number of data points in the CoP displacement time series

and i is each successive data point.

MVM was measured as the average velocity of CoP (Equation 2)
(Prieto et al. 1996)

N-1
MVM = %Z \/(((Xi+1 - Xi))z + (Vi — Yi))z)
i=1

2
where T is the trial duration (60 s).

The variables used to assess the complexity of CoP were FE and
DFA. These variables were calculated after both were filtered and processed
(low-pass and high-pass filters). The variables were calculated over the RD
CoP time series (Figure 8), instead of the AP and ML time series, due to the
fact that the orientation of the base-of support is only approximately aligned
with the axes of the force platform, especially in unstable situations (Prieto et
al., 1996). Thus, measures based on the AP time series probably reflect some
ML movements of the participant, and vice versa, while the RD vector is not
sensitive to theorientation of the base of support with respect to the force
platform (Prieto et al., 1996; Roerdink et al., 2011). RD is the vector distance
from the center of the posturogram to each pair of points in the AP and ML

time series (Equation 3).

63



3)

1

i

RD time series;—; = Z\/((Xi -X)2+ (Y, -1)?)

FE =.008
FE =.015

Without Biofeedback

=123

a

o w o

W o W o Ww o W

o w9 W o W o 0w o
¥ 8 3 8 & 8 2 Q W @ ¥ g w g v o oL gUueWwe v o

o
¥ S 8 a4 & = & F o84 & - F ¥ EFOB aNFF

50

(wo) Juswaoe|dsip (wo) uswaoedsip (wo) yuawaoedsip wo) Juswaoe|(dsip
apnyubep oo apnjiubep 4od spnjubep 4o apnyubep dog
[Le] w =
o -~ o
S ) S
= |1l n 1]
8 i ey i
fe]
o
@
2
s}
o
£
=
o~ =] M~
- [f¢} D
AL o ©
1] 1} n
=] o (=]
wﬁw%mxmwmmowwmmwmmsommmmmwwsommgmgmmmsn
(wo) yuswaoe|dsip (wo) Juswaoe|ds|p (wo) yuawaoe(dsip (wo) yuswaoe|dsip
apnyiubBejy JoD apnyubep oo aspnjubep 4o apnyuben 4oo
— N 3]
®) O @)
n = | =)
_ |

—ucC

Time series

Time series
auto-correlation values obtained by DFA.

participant. SC = stable condition; UC1: unstable platform with 50 cm of diameter;

UC2: unstable platform with 40 cm of diameter; UC3: unstable platform with 30 cm of

Figure 8. An example of the CoP resultant magnitude time series over 60 s for a
diameter; a

64



FE typically returns values that indicate the degree of irregularity in
the signal. This measure computes the repeatability of vectors of length m
and m + 1 that repeat within a tolerance range of r of the standard deviation
of the time-series. Higher values of FE thus represent lower repeatability of
vectors of length m to that of m + 1, marking a greater irregularity in the time
domain of the signal. Lower values represent a greater repeatability of vectors
of length m + 1, and are, thus, a marker of lower irregularity in signal output.
To calculate this measure we used the following parameter values: vector
length, m = 2; tolerance window, r = 0.2*SD; and gradient, n=2. In previous
research these parameter values have shown high levels of consistency,
which underlies their frequent use (W. Chen et al., 2007). FE was calculated
according to the procedures of W. Chen et al. (2007). We also conducted
analyses of other related complexity measures, such as SE'. However, we
chose FE because it displays some advantages, such as a stronger relative
consistency, less dependency on data length, free parameter selection and
more robustness to noise (W. Chen et al., 2009; Xie et al., 2010).

DFA represents a modification of classic root mean square analysis
with random walk to evaluate the presence of long-term correlations within a
time series using a parameter referred to as the scaling index a (Bashan et
al., 2008; Peng et al. 1995). The scaling index a corresponds to a statistical
dependence between fluctuations at one time scale and those over multiple
time scales (Decker et al., 2010). This procedure estimates the fractal scaling
properties of a time series (Duarte and Sternad, 2008) and has also been
used to describe the complexity of a process (Goldberger, Amaral, et al.,
2002). This measure was computed according to the procedures of Peng et
al. (1995). In this study, the slope a was obtained from the window range 4 <

n < N/10 to maximize the long-range correlations and reduce errors incurred

1 Sample Entropy was also calculated as another entropy measure to assess the degree of irregularity of

CoP values. To calculate this measure we used the following parameter values: vector length, m = 2;
tolerance window, r = 0.2*SD (Pincus, 1991). The results were very similar to the FE results, both in the
effect of the different constraints and the correlation between performance and complexity.
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by estimating a (Z. Chen et al., 2002). Different values of a indicate the
following: a > 0.5 implies persistence in position (the trajectory tends to
remain in its current direction); a < 0.5 implies anti-persistence in position (the

trajectory tends to return from where it came) (Roerdink et al., 2006).

4.3.4. Statistical Analysis.

Normality of the variables was evaluated using the Kolmogorov-
Smirnov test with the Lilliefors correction. Mixed repeated measures ANOVA
with two intra-individual factors, task difficulty level and biofeedback
availability, was used to assess effects of both factors on performance
outcome measures and complexity variables. Outcomes of the ANOVAs were
considered to be statistical significant when there was a <5% chance of
making a type | error (p < 0.05). Bonferroni adjustment for multiple
comparisons was performed to ascertain differences between task
performance under different constraints according to each intra-individual
factor. Partial eta squared (rlf,) was calculated as a measure of effect size and
to provide a proportion of the overall variance that is attributable to the factor.
Values of effect size 20.64 were considered strong, around 0.25 were
considered moderate and < 0.04 were considered small (Ferguson, 2009).
Finally, Pearson product moment correlation coefficients were calculated to
assess relationships between performance variables (BVE and VMM) and

complexity measures (FE and DFA).

4.4. Results.

Mean values obtained under each balance condition and pairwise
comparisons between difficulty conditions and biofeedback conditions are

displayed in Table 8.

MVM showed higher values in biofeedback condition (Fi1s1 = 74.88;

p<.001; n; = .595). In contrast, despite BVE not revealing overall differences

between biofeedback availability conditions (F1s1= 2.64; p = .111; nj;, = .049),
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at lower levels of difficulty, lower values of BVE were observed in the
biofeedback condition (Figure 9). BVE differences observed between
biofeedback conditions did decrease as task difficulty level increased, and
even disappeared at the most difficult performance levels. Additionally, both
performance variables displayed higher values when task difficulty increased,
being significantly different between conditions (BVE: Fi1g3 9336 = 374.31; p <
.001; 11,2, =.880; MVM: F1g996.6 = 491.24; p <. 001; rhz, =.906) (Figure 9).

With regard to complexity variables, in the low-pass filtered signal,
higher FE (F151= 77.66; p <. 001, 11,2, = .604) and lower DFA values (F151 =
65.39; p <. 001; n; = .562) were observed when biofeedback was available.
However, differences in these dependent measures decreased as task
difficult level were increased (Figure 10). Regarding the high-pass filtered
signal, the presence of biofeedback did not display effects on any complexity
variable (FE: Fis1= 3.949; p =.052; ny, = .072; DFA: Fi51= 1.744; p = .192;
rhz, =.033).

Complexity values at different task difficulty levels varied according to
the filter used, the biofeedback condition and the variable recorded (Figure
10). When variables were calculated over the low-pass filtered signal, in the
presence of biofeedback, FE values were significantly different between SC
and UC3 and between UC3 and UC1, decreasing as difficulty increased.
However, without biofeedback, FE increased with task difficulty, displaying
significant differences in the value between SC and every UC condition.
Regarding DFA in the conditions with biofeedback, significant differences
were observed between UC1 and UC3 and between UC2 and UC3, reaching
the highest values at the most difficult task level. Without biofeedback, DFA
values decreased from SC to UC2 and UC3, and from UC1 to UC2, attaining

the highest values at the least difficult task level.

On the other hand, when complexity variables were calculated with
the high-pass filtered signal, FE decreased and DFA increased as task

difficulty increased regardless of the availability of biofeedback. So, in most
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of the conditions, dependent variables showed significant differences

between levels of task difficulty, but differences between biofeedback

conditions were only found with low-pass filtered signals.

Table 8. Average values (mean = SD) in each balance condition of every
variable calculated in the study.

SC UC1 uc2 uCs
BVE 3.67+129 10.76+3.09 1258+ 3.48 16.6 + 6.01
BVE_FB 254+.829 9.69+1.83 12.02+3.48 17.31+3.77
MVM 6.23+2.01 2492+7.38 31.71+952 41.25+12.79
MVM_FB 8.66+298 30.09+7.29 37.02+9.26 4839+11.11
Low-pass filter
FE 356 +.126  .456 +.120 496 + .144 .503 +.166
FE_FB 565+.125 580 +.105 564 + 111 530 +.137
DFA 1.13 £ SEIGH E1807] & 138 1.01+.131 1.04 +.143
DFA_FB 956 +.115 .931 +.107 945 +.102 997 +.120
High-pass filter
FE 2.05+.104 1.95+.151 1.91+.176 1.76.290
FE_FB 2.03+.094 1.94+.151 1.88+.165 1.73+.244
DFA .565+.102 .666%.126 .695+.127 .744+.119
DFA_FB .565+.100 .661+.124 721+.124 .769+.117

Units of CoP measures are as follows: mm (BVE); mm/s (MVM). FB = with
biofeedback; SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2
= Unstable condition difficulty level 2; UC3 = Unstable condition difficulty level 3.
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Figure 9. Pairwise Comparisons between difficulty levels and biofeedback conditions
in performance variables. a = significant differences between biofeedback conditions;
0 = significant differences according to SC; 1 = significant differences according to
UC1; 2 = significant differences according to UC2; 3 = significant differences
according to UC3.
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Figure 10. Pairwise Comparisons between difficulty levels and biofeedback
conditions in complexity variables. a = significant differences between biofeedback
conditions; 0 = significant differences according to SC; 1 = significant differences
according to UC1; 2 = significant differences according to UC2; 3 = significant
differences according to UC3.
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Performance variables (BVE and MVM) were positively correlated, but
showed an inverse correlation with complexity variables. Furthermore, the
degree of dependence between them varied according to the filter used and
biofeedback availability. When the low-pass filtered signal was used (Table
9), and in conditions without biofeedback, BVE was negatively correlated with
FE and positively correlated with DFA. Nevertheless, in conditions with
biofeedback, this correlation was only found at the highest task difficulty level.
MVM showed positively correlation with FE and negatively correlation with
DFA despite the availability of biofeedback. Additionally, FE and DFA

variables displayed an inverse relationship in every condition.

When the high-pass filter was used (Table 10) BVE was negatively
correlated with FE, only in the most difficult task condition regardless of the
availability of biofeedback. A positive correlation between BVE and DFA was
found when biofeedback was available, only at the lowest and highest task
difficulty levels, but no correlation between them was found in conditions
without biofeedback. With regard to MVM, this variable was negatively
correlated with FE in all of the unstable conditions (with or without
biofeedback). MVM was positively correlated with DFA only in the stable
condition when the biofeedback was available. In the condition without
biofeedback, this correlation was observed in UC1 and UC2.
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Table 9. Pearson product moment correlation coefficient calculated
between performance variables and complexity variables, using a low-pass
filter, in each balance condition.

With biofeedback

Without biofeedback

SC
MVM FE DFA MVM FE DFA
BVE  .834**  -366** .166 .392** -.500**  .378**
MVM 129* -.161 A36**  -.337*
FE -.631** - 754
uCl1
MVM FE DFA MVM FE DFA
BVE .613* -.143 -.092 .333* -.361* .319*
MVM 15985+ - 421** .662**  -.570**
FE - 57 1** -.830**
uc2
MVM FE DFA MVM FE DFA
BVE .615** -.263 .084 .336*  -.430**  .344*
MVM .522** -.315* .605**  -.384**
FE -.521** -.623**
ucs3
MVM FE DFA MVM FE DFA
BVE  .425**  -.485* AT S71%* -.432%*  .466**
MVM AT -.319* A416** -211
FE -.800** -.736**

SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2 = Unstable
condition difficulty level 2; UC3 = Unstable condition difficulty level 3.
** Correlation is significant at the 0.05 level (2-tailed).

* Correlation is significant at the 0.01 level (2-tailed).
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Table 10. Pearson product moment correlation coefficients calculated
between performance variables and complexity variables, using a high-
pass filter, in each balance condition.

With biofeedback

Without biofeedback

sc
MVM  FE DFA MVM  FE  DFA
BVE .834*  -176 208* 392 060  -.034
MVM -.264 .328* -017  -.009
FE -513* -.291*
uc1
MVM FE DFA MVM  FE  DFA
BVE .613% 042 -.039 333*  -111 183
MVM -.305* 204 -552 326+
FE -.639** -.681*
uc2
MVM  FE DFA MVM  FE  DFA
BVE 615  -138 027 336*  .075  -.006
MVM - AT4 101 -389* 288"
FE - 476% - TAT*
uC3
MVM FE DFA MVM  FE  DFA
BVE .425%  -369* 396 571 -382% 071
MVM 438 164 -528*  -.015
FE -.594* -.281*

SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2 = Unstable
condition difficulty level 2; UC3 = Unstable condition difficulty level 3.

** Correlation is significant at the 0.05 level (2-tailed).
* Correlation is significant at the 0.01 level (2-tailed).
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4.5. Discussion.

Recently it has been argued that an increase or decrease in the
complexity of a behavioral or physiological system depends on interactions
between system intrinsic dynamics and performance task constraints
(Vaillancourt and Newell, 2002, 2003). In this experiment we investigated the
complexity of movement system variability during performance of different
balance tasks, observing that participants modified their postural control
dynamics according to task difficulty and availability of biofeedback. In
addition, regardless of these changes to task constraints, performance was
positively related to complexity.

Performance decreased when balance task difficulty was increased
as reported in previous research (Barbado et al., 2012; Borg and Laxaback,
2010). Values in performance measures, both in BVE and MVM, increased
as task difficulty level increased (Figure 9). However, availability of
biofeedback had different effects on BVE and MVM values. With biofeedback,
BVE values decreased significantly, but only at lower task difficulty levels.
However, as difficulty level was increased, biofeedback availability did not
influence the amount of variability observed in CoP measures. In stable or
less challenging unstable task conditions, different locations of the CoP on
the surface of support allowed a participant to maintain stability (Caballero et
al., 2014). However, increasing task difficulty limited the region of stability,
signifying that in the difficult balancing conditions, there were a limited number
of CoP locations where system stability could be maintained (Lee and
Granata, 2008). Under more stable balancing conditions visual biofeedback
was used to maintain CoP location on the target. Under more challenging
postural control conditions, visual biofeedback information might have been
redundant, because participants did not have many CoP locations where they
could maintain system stability. They only had possible outcome solution: the
same as displayed by the available biofeedback signal. From a dynamical

systems viewpoint, differences between biofeedback conditions could be
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interpreted as the existence of different types of attractors in a performance
landscape. It seems that participants used a behavior similar to a fixed-point
attractor when biofeedback was available, characterized by a fixed point in
state space where no movement is observed (van Emmerik and van Wegen,
2000). Nevertheless, participants explored the oscillatory CoP dynamics
(Vaillancourt and Newell, 2003) without biofeedback in the least challenging
conditions. Availability of biofeedback seemed to change postural control
strategies by decreasing the number of configurations available to a
dynamical movement system (Davids et al., 2003). In this regard, available
information seemed to constrain the system to one area of the attractor
landscape in this task.

On the other hand, MVM values displayed an increase in biofeedback
conditions compared to when biofeedback was not available. Although there
are a greater number CoP locations where stability can be maintained, this
increase in MVM could be due to the fact that under the less challenging task
constraints, visual biofeedback drives the system to one specific location.
Without biofeedback, participants focused on avoiding falling. In the
conditions with biofeedback they tried to adjust their CoP to the target,
performing a greater number of adjustments. The increased values of MVM
in biofeedback situations can also be related to an increased error sensitivity
of the individuals regulated by the CNS (Herzfeld and Shadmehr, 2014). In
this sense, MVM could be an index of the amount of corrections needed to
adjust the CoP location, increasing neuromuscular effort and resulting from
participant exploratory behaviors. Higher CoP velocity would be an index of
exploratory behaviors in discovering stable performance solutions under
relatively novel task constraints (Davids, Kingsbury, George, O'Connell, and
Stock, 1999).

According to previous studies, CoP analysis has revealed two different
postural control mechanisms: rambling and trembling (Mochizuki, Duarte,
Amadio, Zatsiorsky, and Latash, 2006; Tahayori et al., 2012). These two

processes may reflect changes in the body reference configuration and
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changes in the properties of the mechanical and neural structures
implementing the supraspinal control signals (Danna-Dos-Santos, Degani,
Zatsiorsky, and Latash, 2008). Observed variability of low-pass filtered CoP,
related to volitional control (rambling component), showed a higher degree of
irregularity and less long-range auto-correlation when biofeedback was
available. The changes in these variables, influenced by biofeedback, might
indicate that the existence or not of this task constraint drives the system to
different kinds of behaviors. The system would transit to a state space,
displaying lower values of complexity without biofeedback (similar to
oscillatory dynamic), and a behavior related to a fixed-point attractor in
conditions with feedback, revealing more complexity in CoP behaviors (van
Emmerik and van Wegen, 2000). Taking into account the effect of difficulty
level, when biofeedback was available, the degree of irregularity of low-pass
filtered CoP decreased as task difficulty increased, whereas the long-range
auto-correlation values increased. However, under task constraints when
biofeedback was not available, the trend for FE and DFA values was inverted.
Moreover, as task difficulty levels increased, clearly the difference between
biofeedback conditions was reduced. This finding reflects again the
redundancy of biofeedback in these more challenging conditions, where CoP
locations compatible with maintaining system stability are reduced. Unlike the
findings of Manor et al. (2010) which support the role of complexity of
fluctuations related to peripheral adjustments in postural control when
standing, our results seem to indicate that complexity is more related to
volitional changes in CoP dynamics, reflecting a search strategy in
participants to cope with task constraints which do not necessarily require an
involvement of a greater number of DOF. According to Danna-Dos-Santos et
al. (2008), this search strategy could be reflected by the rambling component.
These findings are supported by Newell and Vaillancourt (2001) who
suggested that the increase or the decrease of complexity can be

independent of the number of component mechanical DOF being harnessed
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as a system, but the direction of the changes in complexity is driven by task
constraints.

These contrasting results could have emerged for different reasons.
First, it is possible that the balance task constraints used in both studies were
different. Thus, the type of control requirements for keeping balance could
have differed. Another reason could be due the populations studied. Manor
et al., (2010) studied CoP complexity in people with risk factors for falls for
whom peripheral control could be a key factor in avoiding falls, whilst the
participants of our study were healthy people with little risk of falling.
Nevertheless, it is difficult to compare the results of the two studies because
Manor et al. (2010) did not analyze low-pass CoP signals. In future studies, it
would be interesting to assess both kind of components of CoP displacement
and changes in CoP complexity in relation to distinct task constraints and with
different populations.

Regarding the high-pass filtered CoP signal, the availability of
biofeedback did not affect system complexity, but task difficulty did, showing
a decrease of irregularity and an increase in long-range auto-correlation as
task difficulty increased. Taking into account that this filter procedure could
reflect peripheral postural control (trembling component), this lack of effect of
the biofeedback condition could be due to the fact that the fluctuations of the
trembling component represent an involuntary adjustment of CoP (Danna-
Dos-Santos et al., 2008; Tahayori et al., 2012). On the other hand, the fact
that the most difficult conditions revealed less irregularity and greater long-
range auto-correlation of the CoP signal could indicate that, in these
situations, individuals reduced the number of involuntary adjustments due to
the difficulty in correcting CoP displacement because of the increase in
inertia.

Regarding correlational analysis, a direct relationship between BVE
and complexity was found in both low-pass and (to lesser extent) high-pass
filtered CoP signals. These results seem to indicate that participants who

showed lower balance performance exhibit a lower number of postural
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adjustments. Conversely, MVM was directly related to complexity in the low-
pass filtered CoP signal and, inversely, to complexity in the high-pass filtered
CoP signal. This finding could mean that individuals who displayed low CoP
velocities showed a higher number of peripheral postural adjustments and a
low humber of volitional corrections. Additionally, when participants showed
higher CoP velocities, it could mean that the peripheral system could not
control stability and more volitional postural corrections were needed to
maintain balance.

The fact that the relationships between balance performance
variables and complexity were stronger in the low-pass filtered CoP, revealed
the prevalence of volitional adjustments in postural control to maintain
balance. Peripheral adjustments played a less relevant role in the postural
control strategy during the balance tasks analyzed in this study.

Our results indicated that a specific relationship that emerges between
system complexity and performance is dependent on task constraints (Newell
and Vaillancourt, 2001; Vaillancourt and Newell, 2002, 2003; Vaillancourt,
Sosnoff, and Newell, 2004). It seems that each performance variable varied
according to different task constraints encountered by participants, revealing
different trends. These findings signified that when researchers wish to
assess the relationship between an individual's capacity to adapt and system
complexity when learning or under different performance constraints,
contradictory results may be observed due to the influence of distinct task
constraints designed into experiments. Furthermore, this is a very important
point to take into account when the system complexity is related to system
constraints of ageing, illness or damage.

To conclude, in this study we provided some support for the idea that
specific task constraints can lead to an increase or decrease in complexity
emerging in a neurobiological system during performance. Informational
constraints, such as availability of biofeedback and level of task difficulty,
shaped emergent strategies of movement coordination, due to participants

searching for different attractors to functionally regulate their behaviors.
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CAN THE STRUCTURE OF MOTOR VARIABILITY PREDICT LEARNING
RATE?

David Barbado, Carla Caballero, Janice M. Moreside, Francisco J. Vera-

Garcia and Francisco J. Moreno

5.1 Abstract.

Recent studies show that motor variability is actively regulated as an
exploration tool to promote learning in reward-based tasks. However, its role
in learning processes during error-based tasks, when a reduction of the motor
variability is required to achieve good performance, is still unclear. In this
study, we hypothesized that error-based learning not only depends on
exploration but also on the individuals’ ability to measure and predict the
motor error. Previous studies identified a less auto-correlated motor variability
as a higher ability to perform motion adjustments (Amoud et al., 2007; Wang
and Yang, 2012). Two experiments investigated the relationship between
motor learning and variability, analyzing the long-range auto-correlation of the
CoP fluctuations through the a score of a DFA in balance tasks. In experiment
1, we assessed the relationship between variability and learning rate using a
standing balance task. Based on the results of this experiment, and to
maximize learning, we performed a second experiment with a more difficult
sitting balance task and increased practice. The learning rate of the two
groups with similar balance performances but different a scores was
compared. Individuals with a lower a score showed a higher learning rate.
Because the a scores reveal how the motor output changes over time, instead
of the magnitude of those changes, the higher learning rate is mainly linked
to the higher error sensitivity rather than the exploration strategies. The
results of this study highlight the relevance of the structure of output motor
variability as a predictor of learning rate in error-based tasks.

Keywords: variability, learning rate, balance.
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5.2. Introduction.

Motor variability is described as the “noise” caused by stochastic
neuromuscular function that must be minimized to increase task performance
(Churchland, Afshar, and Shenoy, 2006; Harris and Wolpert, 1998; Osborne,
Lisberger, and Bialek, 2005; Schmidt et al., 1979; Shmuelof, Krakauer, and
Mazzoni, 2012). While learning any motor skill, the magnitude of motor
variability progressively decreases as movement execution improves
(Caballero et al., 2014; Stein et al., 2005). However, others approaches
indicate that variability plays a functional role, allowing individuals to generate
more adaptive responses to stressors (Goldberger, 1996; Goldberger, Peng,
et al., 2002). Motor variability reflects the motor system’s ability to explore
different motor configurations, looking for an optimal solution facilitating
adaptive (Barbado et al., 2012; Manor et al., 2010; Zhou et al., 2013) and/or
learning processes (Tumer and Brainard, 2007; Wu et al., 2014). However,
although some studies have found that high motor variability predicted faster
reward-based learning of different reaching tasks (Pekny, lzawa, and
Shadmehr, 2015; Wu et al., 2014), there is limited evidence about motor
variability playing a similar role during error-based learning (Wu et al., 2014).

Functional perspectives of motor variability are not in opposition to the
traditional view. Variability seems to be a multidimensional feature of the
motor system (Stergiou and Decker, 2011). Previous findings include the
need for high-variability when exploration is required to learn a novel task, but
low-variability improves accuracy, exploiting a viable solution (Woolley and
Doupe, 2008; Wu et al., 2014). Nevertheless, when motor variability during a
novel task is analyzed, it is difficult to estimate the extent to which motor
variability is a consequence of stochastic neuromuscular noise, which must
be reduced to improve motor performance, or whether it is being actively
regulated to promote learning. Novices usually show higher motor variability
but exhibit a higher learning-rate than experts. Therefore, how can we

measure motor variability to reveal the system functional properties during
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learning when a low magnitude of variability is required to perform the task
properly?

Some mathematical tools allow for the discrimination between both
concepts of variability. Scattering variables have been used to describe the
magnitude of the variability (Stergiou and Decker, 2011), suggesting that the
mean is the ultimate performance goal and diversion from the mean is the
error. Nonlinear mathematical tools have been used to analyze the temporal
organization of variability. For example, the analysis of long-range auto-
correlation (Amoud et al., 2007; Peng et al., 1995) and the regularity (Barbado
et al., 2012; Rhea et al., 2011) of the time series were used to assess the
extent to which further motor behavior is dependent on previous fluctuations.
Less dependence on previous behavior (lower long-range auto-correlation or
regularity) was interpreted as a higher flexibility to perform motion
adjustments (Amoud et al., 2007; Wang and Yang, 2012). Studies on balance
tasks in older (Manor et al., 2010; Zhou et al., 2013) and young individuals
(Barbado et al., 2012) revealed that individuals who showed lower long-range
auto-correlation and less regularity of CoP fluctuations while standing on a
stable surface demonstrated better performance with more difficult balance
tasks. Therefore, an important question is how the structure of motor
variability, demonstrated during the early stages, relates to learning rate
during an error-based task and what it means.

To answer these questions, two experimental setups were carried out
to analyze the relationship between motor variability and learning rate in
balance tasks where the performance criterion was the reduction in the
amount of variability. In experiment 1, the learning rate in a standing balance
task was assessed within-session. Based on the results of experiment 1 and
its limitations, a second experiment was performed using a less common and
more difficult sitting balance task with longer trial times and an increased
practice period. In both experiments, the learning rate was compared

between the two groups and showed similar balance performance (magnitude
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of variability) but a different long-range auto-correlation of the postural sway

fluctuations (structure of variability).

5.3. Experiment 1: Standing protocol.

5.3.1 Method.
5.3.1.1. Patrticipants.

Thirty volunteers took part in experiment 1 (age = 24.2 + 4.6 years;
height = 1.72 + 0.09 m; mass = 69.0 £ 10.7 kg), 11 women (age = 23.4 + 3.4
years; height = 1.64 £ 0.06 m; mass = 59.5 + 5.0 kg) and 19 men (age = 24.6
+ 5.2 years; height = 1.77 £ 0.07 m; mass = 74.5 £ 9.2 kg).

All of the participants were healthy and without current knee or ankle
injury or past pathology in these regions. All of the subjects participants
reported having no neurological or musculoskeletal problems. No participant
had previous experience in the balance task used in this study. Written
informed consent was obtained from each participant prior to testing. The
experimental procedures used in this study were in accordance with the
Declaration of Helsinki and were approved by the University Office for

Research Ethics.

5.3.1.2. Experimental Procedure and Data Collection.

The participants were asked to “stand as still as possible” (Cavanaugh
et al., 2007; Duarte and Sternad, 2008) on a BOSU® balance trainer
(BOSU®, Ashland, OH, USA) (diameter: 65 cm; height: 23 cm) with their feet
placed 30 cm apart and their hands resting on their hips (Figure 11). The
BOSU pressure was constant between the participants (0.3 bar) and was
checked before and after each participant's testing. To assess postural
stability, this study used a force plate (Kistler, Switzerland, Mode 9287BA).
The feet were positioned such that the line between their heels coincided with

the medial-lateral axis of the platform. Trials were performed barefoot in front
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of a clear white wall with no visual reference. Although a safety rail was placed
in front of the participant providing a secure bar to grasp if participants
perceived they were unable to control their balance, all participants were able
to maintain the standing posture, without grasping a support rail or stepping
in any direction during the trials. The ground reaction forces were recorded at
1000 sample/s and were calibrated at the beginning of each participant’s
collection. The participants performed a 30 s pre-test trial. After that, to
analyze the effect of practice, the participants had 10 practice trials on a single
day. Each practice trial lasted 15 s, with a 45 s rest period between trials.
Then, they performed a 30 s post-test under the same conditions as the pre-

test. Each data collection began when participants were relatively stable.

5.3.1.3. Data Analysis and Reduction.

A custom software program in Labview 2009 (National Instruments,
Texas, USA) was used for data analysis. There is little physiological
significance to the CoP signal frequencies above 10 Hz (Borg and Laxaback,
2010), and thus, the CoP time series were subsampled at 20 Hz. This also
removed the artificial co-linearities that could affect the variability analysis
(Barahona and Poon, 1996; Rhea et al., 2011). The first and the last 5 s of
each trial were discarded to avoid non-stationarity related to the beginning
and end of the trial (van Dieen et al., 2010). Finally, a low-pass filter (4"-order,
zero-phase-lag, Butterworth, 5 Hz cut-off frequency) was performed,

according to Lin et al. (2008).
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5. STUDY 1lI

Figure 11. Participant performing a standing stability task on a BOSU surface.

Because the orientation of the participant was only approximately
aligned with the axes of the force platform, the resultant distance (RD) was
used as a global measure to quantify the performance during the balance
trials (Prieto et al., 1996). RD was calculated as the average of the vector
distance magnitude (mm) of the CoP from the participant's own mean CoP
position. The absolute learning rate (ALR) and relative learning rate (RLR)
were calculated as follows: the ALR was the RD differences between the pre-
test (RDpre) and post-test (RDpost), While the RLR was calculated relative to
the initial performance of each individual [LO0*(RDpre - RDpost) / RDpge].

To assess the structure of the variability we used DFA. DFA is a method
based on the random walk theory, representing a modification of a classic
root mean square analysis of the random walk, which evaluates the presence
of long-term correlations within the time series by a parameter referred to as
the scaling index a (Peng et al., 1994; Peng et al., 1995; Roerdink et al.,
2006). Different values of a indicate the following: a > 0.5 implies persistence
(i.e., the trajectory tends to continue in its current direction); a < 0.5 implies

anti-persistence (i.e., the trajectory tends to return to where it came from);
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and a = 0.5 implies uncorrelated signal (Roerdink et al., 2006). Therefore, a
identifies the extent to which further data are dependent on the previous
(Jordan and Newell, 2008). Typically, CoP displacement exhibits a values
ranging from 0.5 to 1.5. a CoP data have been used to assess human
adaptability to postural or motion adjustments (Amoud et al., 2007; Wang and
Yang, 2012).

To maximize the long-range correlations and to reduce the estimation
error of a, long-term correlation was characterized by the slope a obtained
from the range of 4 < n < N/10, where N is the data length (Z. Chen et al.,
2002). The participants were only approximately aligned with the axes of the
force platform, and the a of each participant was calculated as the average a

obtained from both axes.

5.3.1.4. Statistical Analysis.

Normality of the variables was evaluated through the Kolmogorov-
Smirnov test with Lilliefors correction. First, a Pearson’s correlation was
performed between RDpre, a pre, ALR and RLR to assess the initial
performance and variability influence on learning rate (Table 10). Second, to
avoid the initial performance bias on learning rate, participants were grouped
using a linear regression method (Figure 12). Specifically, participants were
classified into three groups, according to their RDpre. Then, we performed a
linear regression between RDpre and apre in each performance group. Finally,
participants were grouped according their residual scores. The higher
residual scores in each group were included in the “High auto-correlated
variability” (HAV) group. The lower residual scores in each group were
included in the “Low auto-correlated variability” (LAV) group (Figure 12). One-
way ANOVA for independent measures was performed to assess the ALR
and RLR differences between groups, with the initial structure of variability as
an inter-subject factor (HAV and LAV groups) (Tables 2). A mixed-way
ANOVA was performed with RD as a within-subject factor (PRE and POST)

and with the initial structure of variability as an inter-subject factor (HAV and
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LAV groups) (Figure 13). The partial eta squared (rlf,) was calculated as a

measure of effect size. The values of an effect size = 0.64 were considered
strong, between 0.64 and 0.25 were considered moderate, and < 0.25 were
considered small (Ferguson, 2009).

Finally, to check the results obtained with the linear regression
method, we performed a Principal Component Analysis (PCA) (Table 13 and
Figure 14) on the initial structure of the variability (aere), the initial
performance (RDpre) and the relative learning rate (RLR). This method
reduces the dimensionality of interrelated measures (Jolliffe, 2002) and
facilitates the interpretation of the results as it extracts features that are

directly related to the original data set (Rocchi, Chiari, and Cappello, 2004).

5.3.2. Results.

Participants improved their performance, reducing their RD
significantly after practice trials (RDpre = 14.5 £ 5.0 mm; RDpos = 12.6 = 3.1
mm; Fi29 = 4.57; p = 0.041; n,? = 0.136). As shown in table 11, the learning
rate significantly correlated with the initial performance, while no significant
correlations were found between the learning rate and the initial structure of
variability. These results indicate that the learning rate is highly determined
by the initial performance, while the initial structure of variability does not
seem to influence it. That is, less skillful individuals have a higher room for
improvement than more skillful ones. However, although no significant
relationship was found between RDpre and arre, it was close to being
significant (r = 0.319; p = 0.086), suggesting that initial performance could
bias the relationship between the variability and learning rate. That is, less
skillful individuals who tend to show higher apre values could show higher

learning rates.
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Table 11. Pearson’s bivariate correlations among individuals’ initial balance
performance (RDere), initial structure of variability (aere) and learning rate
in absolute (ARL) and relative (RLR) values.

ApRrE ALR RLR
RDpre 0.319 (0.086) 0.799 (<0.001) 0.596 (<0.001)
ore 0.053 (0.782) -0.058 (0.760)

Pearson correlation coefficient (level of significance)
arre = long-range auto-correlation index shown in the pretest; RDpre = resultant
distance shown in the pretest.

To assess the relationship between the initial structure of the variability
(arre) and the learning rate (ALR, RLR), avoiding the bias of the initial
performance (RDere), participants were grouped using a linear regression
method (Figure 12). The higher residual scores (black dots in Figure 12) in
each performance level were included in the HAV group, while the lower
residual scores (white dots) were included in the LAV group.

Table 12 shows the values of the two groups after the distribution of
the participants. The groups were quite similar in the initial performance
(RDere: F1,20 = 0.01; p = 0.938: np= 0.001) but different in the structure of the
variability (apre: F120 = 24.61; p < 0.001; ng= 0.468). After analyzing the
effects of practice on the performance variables, no significant differences
were found between the groups in the learning rate, but the LAV group
showed higher RLR values compared to the HAV group, although the
differences were only close to being significant (RLR: F129= 3.74; p= 0.063;
n5= 0.118).

Based on these results, we performed a PCA to examine the
underlying relationships between the initial performance, the initial structure
of the variability and the learning rate. The first principal component factor
(PC,) accounted for 55.14% of the total variance and showed that a higher
RLR was mainly related to a higher RDpre (Worse performance) and to a
lesser extent to a higher apre, supporting the notion that the learning rate is

highly determined by the initial performance (Table 13). In addition, less
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skillful individuals showed a high auto-correlated CoP variability. PCy,
accounting for 34.94% of the total variance, showed that a higher RLR was
related to a low apre and was unrelated to RDpre (Table 13). Figure 14 shows
the relationship between these variables, indicating that individuals with low
PC. values showed a higher learning rate (R? = 0.229; p = 0.007), lower auto-
correlated CoP variability (R> = 0.817; p < 0.001) and equivalent initial
performances (R? = 0.002; p = 0.793) compared to individuals with high PC,
values. Nevertheless, as pairwise comparisons show (Figure 13), while the
LAV group reduced the RD significantly between pre-test and post-test
measures, the HAV group did not show significant changes in RD. Thus, only

the LAV group showed an improved performance (Figure 13).

Table 12. Mean + SD differences of the initial structure of variability (apre),
the initial performance (RDpre) and the absolute and relative learning rate
(ALR and RLR) between individuals with high or low initial long-range auto-
correlation grouped according to the residuals of the linear regression
grouping method.

LAV group HAV group

2

(n=15) (n=15) Faze B p
Qere 0.96+0.09 114009 24614 <0.001 0.468
RDpre (MM)  14.41+460 1457+555 0006 0.938 0.001
ALR (mm) 319+429 061530 2183 0.151 0.072
RLR (%) 17.26+26.57 -3.01+30.72 3.735 0.063 0.118

One-way ANOVA for independent measures.

arre = long-range auto-correlation index shown in the pretest.
RDere = resultant distance shown in the pretest.

LAV group = Low auto-correlated variability group.

HAV group = High auto-correlated variability group.
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Figure 13. Pre- and post-test differences in the resultant distance (RD) between the “High
auto-correlated variability” (HAV) and the “Low auto-correlated variability” (LAV) groups.
Participants were grouped in the HAV or LAV groups according to the residual scores of
the linear regression method between the initial performance (RDpre) and initial structure
of variability (a ere). *Significant pre- and post-test differences of the LAV group.

Table 13. Principal component factors (PC) obtained from the Principal
Component Analysis during the standing protocol.

Components PC, PC. PCs;

RDpre 0.924 0.049 -0.378
RLR 0.810 -0.479 0.338
apPRE 0.379 0.904 0.200

arre = long-range auto-correlation index shown in the pretest.
RDrre = resultant distance shown in the pretest.

LAV group = Low auto-correlated variability group.

HAV group = High auto-correlated variability group.
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5.3.3. Discussion.

Previous studies found a relationship between an individual's motor
variability during a baseline period and learning rate in reward-based tasks, but
limited evidence is available for error-based learning (Wu et al., 2014).

In this study, we found little evidence about motor variability predicting
the rate of learning. However, our results suggest that this relationship is
influenced by an individual’s initial performance level. The correlational results
and PC; (Tables 11 and 13) revealed that individuals with higher auto-correlated
CoP variability tended to show poorer performance. Previous studies have linked
higher auto-correlated motor fluctuations to lower flexibility to carry out postural
adjustment and therefore poorer performance (Amoud et al., 2007; Wang and
Yang, 2012; Zhou et al., 2013). In our study, the participants with higher apge,
showed a lower performance level and, consequently, had greater room for
improvement, biasing the hypothetical relationship between learning and
variability structure. Lower auto-correlated motor fluctuations indicate better
balance performance and could be considered a sign of a later stage of learning
in which individuals show more of an exploitation rather than an exploration
behavior.

However, it would be reasonable to assume that individuals who display
a higher ability to perform postural adjustments would also show a higher
learning rate. When participants were grouped using the linear regression
method and the initial performance bias was avoided, the individuals with low
long-range auto-correlated CoP variability (low aere) tended to display greater
performance improvement than those with high long-range auto-correlation. PC-
confirmed these findings, supporting the hypothesis that individuals with a higher
ability to perform postural adjustment have greater improvement potential.

In terms of limitations, it could be argued that the between-group
differences in the learning rate, based on the initial structure of the variability,
showed a small size-effect and were only significant when the learning rate was
assessed in arelative sense. These results were influenced by the small learning
rate observed after practice. Even so, some individuals showed a poorer

performance after practice (Figure 13), suggesting that the task was too easy or
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that the practice was not extensive enough to promote learning. If this were the
case, there would have been no need for the motor exploration, thus decreasing
the importance of the motor variability as a functional feature of learning (Woolley
and Doupe, 2008; Wu et al., 2014). Another limitation could be related to the low
reliability that scattering variables such as RD exhibit during the data series
involving short easy tasks (Lee and Granata, 2008; van Dieén et al., 2010). If a
balance task is too easy, participants might attempt to maintain balance with their
center of mass at different locations relative to their support surface (Caballero,
Barbado, and Moreno, 2015). In such cases, it is difficult to achieve stationarity
of the time series, decreasing the reliability of the scattering variables such as
RD (Caballero et al., 2015; Lee and Granata, 2008) and DFA (Caballero et al.,
2015).

Taking the results and the aforementioned concerns into account, we
tested the hypothesis in a second experiment using a less common and more

difficult balance task with longer trial times and with an increased practice period.

5.4. Experiment 2: Sitting protocol.
5.4.1. Method.
5.4.1.1. Participants.

Twenty-two volunteers took part in experiment 2 (age = 24.6 + 4.6 years;
mass = 73.6 £ 7.5 kg, height = 1.74 £ 0.07 m; trunk moment of inertia = 5.22 +
0.76 kgem?), and all were males. The inclusion criteria were the same as the
previous experiment. All subjects were healthy, without current pain in the hip or
back or past pathology in these regions. All of the subjects reported having no
neurological or musculoskeletal problems. No participant had previous
experience in the balance task used in this study. Written informed consent was
obtained from each participant prior to testing. The experimental procedures
were in accordance with the Declaration of Helsinki and were approved by the

University Office for Research Ethics.
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5.4.1.2. Experimental Procedure and Data Collection.

Participants sat upon a seat assembly consisting of a wooden platform
(50 cm x 50 cm) affixed to the flat surface of a polyester resin hemisphere
(diameter of hemisphere: 35 cm; height of the seat relative to the bottom of the
hemisphere: 12 cm) (Figure 15). The seat was equipped with wooden leg and
foot supports to prevent lower body movement relative to the platform. Foot
support height was individually adjusted to create a 90° knee angle and light
plantar foot support, while elastic straps secured each participant’s lower leg to
the leg support. A safety rail was placed in front of the participant, thus providing
a secure bar to grasp if participants perceived they were unable to control their
balance, and to hold onto during rest periods (Figure 15). In addition, a wooden
stabilizing device was inserted under the seat platform during the rest periods,
thus stabilizing the platform from any rocking motion. In this way, fatigue was
avoided and participants were unable to gain further balance practice during the
rest periods.

To analyze the effect of practice, participants attended 3 testing sessions
spaced 1 week apart. Five 70-s trials were collected per session (15 trials in
total) with 2 min of rest between trials. The 70-s of data collection began when
they were relatively stable with their hands on their lateral chest at rib level. They
were instructed to maintain their balance, keeping the unstable platform “as still
as possible” (Cavanaugh et al, 2008) (Figure 15).

The seat assembly was placed atop a force plate (Kistler, Switzerland,
Model 9286AA), which was sampled at 1000 Hz and calibrated prior to each test.
The CoP data were subsampled at 20 Hz following the same principle explained

in experiment 1.

5.4.1.3. Data analysis and reduction.

While the data analysis closely followed the procedure used in the
previous experiment, there were a few differences. To avoid non-stationarity
related to the beginning of the trial, the first 10 s of each trial were discarded (van

Dieén et al., 2010). The length of the time series analyzed was 1200 data points.
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Similar to the first experiment, because the orientation of the participant
was only approximately aligned with the axes of the force platform, the resultant
distance (RD) was used as a global measure to quantify the performance during
the balance trials (Prieto et al., 1996), and the a scores of each participant were
calculated as the average a obtained from both axes.

In this experiment, the RD and a of each participant were averaged over
the three last trials of each session. The ALR was now calculated as the RD
differences between the third and second sessions relative to the first (ALR1.2
and ALR13). The RLR was similarly calculated relative to the initial performance
of each individual (RLR1-2 and RLR13).

Figure 15. Participant performing the sitting stability task on the unstable seat.

5.4.1.4. Statistical Analysis.

The statistical analysis performed in experiment 2 was similar to
experiment 1. The normality of the variables was evaluated through the
Kolmogorov-Smirnov test with Lilliefors correction. First, a Pearson’s correlation
was performed between the performance (RD.) and long-range auto-correlation
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(a1) in the first session, and the learning rate (ARL1.2, ARL1.3, RLR1.> and RLR:.
3) to assess the initial performance and variability influence on the learning rate
(Table 4). Second, to avoid the initial performance bias on the learning rate,
participants were grouped using a linear regression method (Figure 16).
Specifically, the participants were classified into three groups according to their
RDi. Then, we performed a linear regression between RD; and a: in each
performance group. Similar to the first experiment, the participants were grouped
according to their residual scores. Higher residual scores in each group were
included in the HAV group. The lower residual scores in each group were
included in the LAV group (Figure 16). One-way ANOVA for independent
measures was performed to assess the learning rate (ARL1-2, ARL1-3, RLR12 and
RLR1.3) differences between the groups with the initial structure of the variability
as an inter-subject factor (HAV and LAV groups) (Table 15). A mixed-way
ANOVA was performed with RD as a within-subject factor (session 1, session 2
and session 3) and with the initial structure of the variability as an inter-subject

factor (HAV and LAV groups) (Figure 17). The partial eta squared (11]2)) was

calculated as a measure of effect size. Values of an effect size 20.64 were
considered strong, between 0.64 and 0.25 were considered moderate, and <
0.25 were considered small (Ferguson, 2009).

Finally, we performed PCA (Table 16 and Figure 18) to check the results
obtained with the linear regression method and to extract the underlying
relationships between the initial structure of the variability (ai), the initial

performance (RD1) and the relative learning rate (RLR1.3).

5.4.2. Results.

All of the participants improved their performance and significantly
reduced their RD between session 1 and session 3 (RD1=49 + 1.2
mm; RD2 =4.3 + 1.0 mm; RD3 = 3.3 + 0.8 mm; F121 = 32.69; p < 0.001; ny? =
0.598); nevertheless, as the size effect indicated, the learning rate in experiment
2 was higher than the learning rate in experiment 1. As Table 14 shows, the

learning rate significantly correlated with initial performance, while no significant
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correlations were found between the learning rate and the initial structure of the
variability. Again, these results indicate that the learning rate is highly determined
by initial performance, while the initial structure of the variability does not seem
to influence it. However, a significant relationship was found between RD; and a
1, supporting that the initial performance biased the relationship between the
variability and the learning rate. That is, less skillful individuals who show higher

a1 values have a higher learning rate.

Table 14. Pearson’s bivariate correlations between the individual's initial
balance performance (RD.), initial structure of the variability (a:) and learning
rate in absolute (ALR1-2, ALR1.3) and relative (RLR1-2, RLR1.3) values.

RD; a ALR.,  RLRy, ALR1, RLR 1.3

RD, 0.537 0.536 0.407 0.723 0.485
(0.010)  (0.010)  (0.060)  (<0.001)  (0.022)

a 0.537 0.350 0.332 0.283 0.161
(0.010) (0.111)  (0.131)  (0.202)  (0.474)

Pearson correlation coefficient (level of significance)

a1 = long-range auto-correlation index shown in the first session; RD1 = Resultant
distance shown in the first session; ALR1-2 = absolute learning rate between sessions
1 and 2; ALR13 = absolute learning rate between sessions 1 and 3; RLR1-2 = relative
learning rate between sessions 1 and 2; RLRi3 = relative learning rate between
sessions 1 and 3.

As in experiment 1, to assess the relationship between the initial structure
of the variability (a1) and the learning rate (ALR1», ALR1.3, RLR1.2, RLR13) and
avoid the bias of the initial performance (RD.), participants were grouped using
a linear regression method (Figure 16). Again, higher residual scores (black dots
in Figure 16) in each performance level were included in the HAV group, while
lower residual scores (white dots) were included in the LAV group.

Table 15 shows the values of the two groups after the distribution of the
participants. The groups were quite similar in initial performance (RD1: Fi21 =
0.038; p = 0.847: ny= 0.002) but different in the structure of the variability (a1

Fi21=24.61; p <0.001; ng= 0.468). After analyzing the effects of practice on the

performance variables, significant differences between the groups were found in
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ALR1.3 and RLR13. The LAV group showed a higher learning rate than the HAV
group.

The mixed measure ANOVA showed a performance improvement after
practice in both groups (F121 = 32.69; p < 0.001; ny?= 0.598). However, the LAV
group showed higher improvements between sessions 3 and 1 than the HAV

group (Interaction F120 = 4.39; p = 0.049; ng = 0.180). The pairwise comparisons

showed significant differences in RD between the groups in session 3 (Figure
17).

Table 15. Mean + SD differences of the initial structure of the variability (a1),
the initial performance (RD;) and the absolute and relative learning rate (ALR:-
2, ALR13, RLR1-2, RLR1.3) between individuals with high or low initial long-range
auto-correlation grouped according to the residuals of the linear regression
grouping method.

HAV group LAV group e P 2

(n=11) (n=11) L2t v
a; 1.11+£0.11 1.22+0.11 6.437 0.020 0.243
RD, 484 +1.18 495+ 1.26 0.038 0.847 0.002
ALR., 0.86 +0.73 0.40 £ 0.88 1.834 0.191 0.084
ALR;3 1.98 £ 0.83 1.15+1.02 4.389 0.049 0.180
RLR1» 16.85+ 15.18 5.59 +19.54 2.277 0.147 0.102
RLRi3 39.69 +10.32 20.46+17.81 9.599 0.006 0.324

One-way ANOVA for independent measures.

a1 = long-range auto-correlation index shown in the first session; RDi1 = resultant
distance shown in the first session; ALR1-2 = absolute learning rate between sessions
1 and 2; ALR13 = absolute learning rate between sessions 1 and 3; RLR1-2> = relative
learning rate between sessions 1 and 2; RLRi3 = relative learning rate between
sessions 1 and 3; LAV group = Low auto-correlated variability group; HAV group =
High auto-correlated variability group.
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Figure 17. Resultant distance values (RD) from the “High auto-correlated variability”
(HAV) and “Low auto-correlated variability” (LAV) groups across sessions.
* Significant differences between the groups in session 3.

Finally, the PCA performed among the initial performance, the initial
structure of the variability and the learning rates between sessions 1 and 3
supported the aforementioned results. PC;, accounted for 60.28% of the total
variance, showing that a higher RLR1.3 was related to a higher RD; and a1, and
thus, less skillful individuals had greater room for improvement than more skillful
ones but showed higher auto-correlation of the CoP variability. PC, accounted
for 27.99% of the total variance and showed that a higher RLR13 was related
with low a; and was unrelated to RD1. As shown in Figure 17, individuals with
low PC; values showed a higher learning rate (R?>= 0.446; p < 0.001), lower auto-
correlated CoP variability (R?= 0.373; p = 0.003) and no difference in their initial
performance (R?= 0 .001; p = 0.920) compared to individuals with high PC;

values.
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Figure 18. Relationship between PC: scores and the three variables analyzed: a) the
initial long-range auto-correlation of the CoP variability (a1), b) the initial performance
(RD1), and c) the relative learning rate (RLR1-3) during the protocol of experiment 2.
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Table 16. Principal component factors (PC) obtained from Principal
Component Analysis during the sitting protocol.

Components PC, PC, PC;

RD; 0.897 -0.023 -0.442
RLR13 0.732 -0.611 0.302
a; 0.684 0.683 0.255

a1 = long-range auto-correlation index shown in the first session.
RD1 = resultant distance shown in the first session.
RLR1.3 = relative learning rate between sessions 1 and 3.

5.4.3. Discussion.

Our second experiment, using a sitting balance task, confirmed the
preliminary results found in experiment 1. On the one hand, individuals with less
auto-correlated CoP variability showed a better performance but a lower learning
rate. On the other hand, when the bias caused by initial performance was
controlled, individuals with less auto-correlated CoP variability showed a higher
learning rate not only in the relative sense but in the absolute values as well. In
spite of the fact that the statistical procedures used in both experiments are
correlational and they do not permit the establishment of causal links, a less
auto-correlated CoP variability during the balance tasks seems to mean a higher
ability to perform postural adjustments (Amoud et al., 2007; Wang and Yang,
2012), which allows for the individuals to achieve a better performance and faster
learning. The lower learning rate found in experiment 1 means that the
exploitation strategies predominated over the exploration ones (Herzfeld and
Shadmehr, 2014; Wu et al.,, 2014). Nevertheless, even in such easy and
common tasks in which the exploitation of the current knowledge prevails,
individuals who showed higher motor exploration (lower a;) showed a higher
learning rate, suggesting that they are forgoing, in some way, their performance
in view of an increased learning rate. A higher effect-size found in experiment 2
means that during unusual and more difficult tasks, such as the sitting balance,
exploration strategies prevail, increasing the functional role of the variability as a
learning facilitator. Overall, these results agreed with previous findings on both

reward-based and error-based pointing tasks (Wu et al., 2014); however, to the
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best of our knowledge, this is the first study to assess the relationship between
the structure of motor variability and learning rate, avoiding the influence of the

initial performance level.

One of the main aims of this study was to test whether the analysis of the
motor variability structure reveals motor system properties to promote learning
when a low magnitude of the variability is required to have a good performance
and what it does mean during an error-based task. During reward-based
learning, the motor variability magnitude is successfully interpreted as the
exploration needed to find the most beneficial solutions, which will subsequently
be exploited (Pekny et al.,, 2015; Wu et al., 2014). Even more, it has been
observed that individuals increase their motor variability when they do not
achieve success during an attempted motor task, which has been interpreted as
a search for rewarding outcomes (Galea, Ruge, Buijink, Bestmann, and
Rothwell, 2013; Pekny et al., 2015). A similar interpretation about the functional
role of variability is shown in error-based learning (Wu et al., 2014). However,
during the learning process of an error-based task, which is thought to depend
mainly on the cerebellum (M. A. Smith and Shadmehr, 2005), learning not only
depends on the exploration capacity but also on the ability to measure and
predict the motor error. That is, the capacity to detect differences between the
desired behavior and the actual motor outcome (M. A. Smith and Shadmehr,
2005). It would be expected that when individuals are more sensitive to their own
motor error, more motion adjustment is needed to reduce it. The analysis of the
structure of the variability through DFA reveals how the motor output changes
over time instead of the magnitude of those changes. Therefore, the relationship
between the a scores and the learning rate found in our study would be more
related to the individual's error sensitivity rather than exploration processes.
Previous studies that assessed the long-range auto-correlation of step-by-step
variability during gait (Jordan, Challis, and Newell, 2007) or postural sway during
balance tasks (Amoud et al., 2007; Wang and Yang, 2012) identified less auto-
correlated motor variability as an individual's greater ability to perform motion
adjustments. In our experiments, individuals with a less auto-correlated CoP

variability mostly showed better performance, indicating that the a scores are an

105



index related to skill level. That is, high skillful individuals are more sensitive to
their own motion, allowing them to reduce the magnitude of their body
fluctuation. Additionally, when they were compared with their counterpart who
had similar performance but higher auto-correlated variability, they showed a
higher learning rate. Therefore, the analysis of the structure of motor variability
without the influence of performance level seems to reveal the ability to perform
motion adjustment, conditioned by the individual sensitivity to one’s own motor
errors (Herzfeld and Shadmehr, 2014b; M. A. Smith and Shadmehr, 2005).

Finally, it should be noted that motor variability can be a motor system
feature that is actively and centrally regulated to promote learning (Churchland
et al., 2006; Mandelblat-Cerf et al., 2009; Sober, Wohlgemuth, and Brainard,
2008). Previous studies show that motor variability depends largely on individual
factors, such as effort, motivation or attention (Borg and Laxaback, 2010; Diniz
et al., 2011; Roerdink, Hlavackova, and Vuillerme, 2011; Stins et al., 2009; van
Orden, Holden, and Turvey, 2003). In this sense, Correll (2008) assessed the
influence of the effort on the time response latencies during a “shooting decision
making task” and found that higher effort was associated with a lower auto-
correlated time response variability. Under this perspective, and taking into
account the results of our study, low long-range auto-correlation values mean
that the participants have a high implication to perform motion adjustment to
reduce the motor output error.

Despite these implications, our results point out that the analysis of the
structure of the variability can be useful to predict the individual learning rate, but
the underlying process that influences it is still uncertain. Future studies should
address to what extent individual constraints affect the structure of the variability
and whether it can be modulated during the practice period to promote faster
learning.

In conclusion, our findings show that analysis of the long-range auto-
correlation reveals a relevant role for motor variability during motor error-based
learning even when a reduction of the magnitude of the output variability is
required to achieve a good performance and individuals show a similar

performance level.
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6.1. Discussion and conclusions.

Postural control analysis has been one of the most studied research
fields in motor control. Balance is a fundamental motor ability for everyday life
and it is also a complex ability that involves controlling many neuromuscular
components. CoP seems to be a collective variable that reflects the activities of
many neuromuscular components acting together to maintain balance (Manor et
al., 2010; Riley and Turvey, 2002; Winter, 1995). Traditionally, CoP fluctuations
have been studied through their variability, using variables to measure the
dispersion and amount of CoP changes. Despite the reliability of these variables
having been previously analyzed, there is no clear agreement about what is the
best variable to use in assessing postural control (Ruhe et al., 2010). Even the
reliability of this kind of variables has been questionable (T.L. Doyle et al., 2005).
However, our results support that some of these variables are reliable for
assessing balance. The MV of CoP provides very high reliability and accuracy
values, better than scattering values.

Recently, the use of nonlinear variables has allowed researchers to
assess the structure and dynamics of the CoP to understand the interaction of
the neuromuscular components. There are only a few studies that analyzed the
reliability of this kind of variables. The findings achieved in the first study of this
thesis show that nonlinear variables, such a FE, PE and DFA, have good
reliability values and high accuracy to rank individuals, even greater than
traditional variables, as it has been suggested previously (T.L. Doyle et al.,
2005).

Another aim of this doctoral thesis was to test if, such as previous studies
have indicated (Barbado et al. 2012; Goldberger, Peng, et al., 2002), complexity
of the CoP variability in balance tasks reveals the system’s ability to adapt. We
have found in the literature controversial results regarding this hypothesis. Some
studies support that greater system complexity in balance control is connected
to better ability to adapt (Manor et al. 2010). In contrast, other studies indicate
the opposite: participants with higher values of complexity in CoP fluctuations
exhibited lower performance and, therefore, they had less ability to adapt (Duarte
and Sternad, 2008). Vaillancourt and Newell (2002; 2003) indicated that the
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reason for this controversy could be that the increase or decrease of complexity
depends on the nature of both the intrinsic dynamics of the system and the task
constraints that need to be satisfied. Thus, we tested the effect of different
constraints on the relationship between complexity and performance in standing
balance tasks. The results of the second study supported that the relationship
between complexity and performance was positive, as previous studies have
indicated. Individuals who showed higher complexity values showed better
performance in balance tasks (Barbado et al. 2012; Manor et al. 2010). However,
the changes in CoP structure and, therefore, in CoP complexity, were affected
by constraints such as the level of difficulty and the availability of biofeedback,
thus agreeing the Vaillancourt and Newell’s hypothesis (2002; 2003).

Finally, we wanted to take another step forward regarding the usefulness
of motor variability as an intrinsic feature of the system. Thus, we tested if motor
variability was also related to learning rate (Wu et al., 2014). The study of Wu et
al. (2014) showed that high motor variability during the baseline period predicted
faster learning in humans in different point-to-point reaching tasks and in a force
field reaching task. However, we consider that the use of nonlinear variables to
assess the structure of the variability would provide more information about the
extent to which motor variability is a consequence of an avoidable stochastic
neuromuscular system function (Churchland et al., 2006; Harris and Wolpert,
1998; Osborne et al., 2005; Schmidt et al., 1979) or whether it is the result of an
active behavior centrally regulated to promote learning (Mandelblat-Cerf et al.,
2009; Sober et al., 2008). In the third study presented in this thesis two protocols
were developed to analyze postural control in standing and sitting balance tasks.
The results indicated that individuals who show higher variability in the structure
of CoP initially demonstrate a faster learning process in different balance tasks.
This study verified that motor variability in balance tasks is related to the ability
to adapt, to perform movement adjustments and to improve learning. Taking into
account the general hypothesis considered in this doctoral thesis, we can

establish the following conclusions:
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I. Nonlinear variables show greater consistency (intraclass correlation
coefficient) and accuracy (standard error of measurement) than traditional
scattering variables in the CoP analysis.
I.I. FE and PE are the nonlinear variables with highest consistency and
accuracy values in the CoP analysis.
I.Il. DFA shows good consistency and accuracy values in the CoP analysis,
and provide complementary information about the structure of CoP variability.
I.IIl. MV of CoP shows greater consistency and accuracy values than
scattering variables, with similar values to nonlinear variables. This variable
could provide information about the amount of adjustments performed during
the task, related to the error sensitivity showed by the individuals.
I.IV. Non-stationary data series can affect the reliability of nonlinear variables.
The increase of recording time and detrending processes such as the first

derivative have been shown to improve the reliability of the entropy variables.

Il. The relationship between the complexity of CoP variability and the
performance in a standing balance task is dependent on the level of difficulty and
the availability of biofeedback.
Il.I. The presence of biofeedback reduces the complexity of CoP variability.
Il.Il. When biofeedback is available, the complexity of CoP decreases as the
difficulty increases. When biofeedback is not available, the complexity of CoP
increase as difficulty increase. This is due to the fact that the most difficult
levels in balance tasks reduce the number of possible solutions available to

keep balance, being biofeedback redundant.

Ill. Motor variability structure in balance tasks seems to reveal the system’s
ability to perform movement adjustments and is related to learning rate despite
the individual’s initial performance level.
lI.1. Individuals who show less DFA values initially in the CoP structure (more
complex CoP displacements) during balance tasks show a higher relative

learning rate.
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lI.1I. The relationship between the CoP structure, ability to adapt and learning
rate in balance tasks appears even in tasks where it is necessary to reduce

the amount of variability to get a good performance.

6.2. Study limitations and future research

In this doctoral thesis, we have checked the hypothesis, taking into
account the most relevant aspects related to the research topic. Nevertheless,
we have found some difficulties and limitations that encourage new experiments,
taking into account different considerations, so the limitations detected can serve
as a starting point for future studies. In our research group, other studies are
currently being performed about the research topic of this thesis, trying to go into
detail about the knowledge on motor variability and its relationship with the ability
to adapt and learning processes.

The starting point of this thesis was to know what CoP and kinematic
parameters better characterize postural control in standing balance tasks. The
results obtained helped us to select the most reliable and accurate variables to
assess the variability of postural control in balance task. However, the number
of mathematical tools used in the literature is wide and in continuous
development. In our work the most used variables to characterize postural
control in the literature have been assessed but the analysis of the reliability of
additional tools, both traditional and nonlinear variables, is necessary. Future
works will be focused on increasing the number of analyzed variables. In
addition, the balance tasks analyzed in this doctoral thesis are classic lab-based
tasks, thus, despite having found good reliability results in the variables used, it
would be also interesting to apply these variables to another balance task
postural regulation in contexts with nested tasks, for example, movements we
perform in everyday life or in sports. In this way, we could see if these variables
are also appropriate to assess motor variability in tasks in which there are several
interactions between the different body segments to perform successfully

complex movements in which balance is also a main element.
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Following the aim of finding the best way to characterize postural control,
we found that the mathematical tools used to characterize postural control
decreased their consistency and accuracy when they were applied to kinematic
data due to their non-stationary features. Kinematic signals were not used in the
second and third study of this thesis, dismissing information about postural
strategies and movement pattern (Kuo et al., 1998; Madigan et al., 2006). Future
studies should try to increase the signal stationarity, either increasing the
recording time to reach a larger number of data or using some detrended process
of the signal, in order to use kinematic data.

As we have seen in the second experiment of this doctoral thesis, the
type of the filter applied to the signal significantly modifies the signal’s structure
and, for instance, the complexity of CoP variability. According to some studies,
different filters reveal different postural control behaviors that are related to two
components of CoP displacement: rambling and trembling (Zatsiorsky and
Duarte, 1999). These components are related to two types of motor control,
central nervous system (volitional control) and peripheral control (involuntary
control), respectively (Tahayori et al., 2012). In the second study, we have seen
how in standing balance tasks the volitional control prevails over involuntary
control in order to maintain balance. Future studies have to go in depth regarding
to what extend voluntary and involuntary control are related to the analyzed
adjustments known as rambling and trembling and what their role in postural
control and movement coordination is.

We have found that some constraints have influence over the complexity
of CoP variability, such as the effect of difficulty levels according to the availability
of biofeedback. Future studies must be developed to analyze the effects of other
constraints that the literature has related to motor control, such as aging or
performance level. In the same way, the effects of cognitive processes, such as
attention or motivation, on the variability characteristics and the achievement of
better performance in the learning process have to be also addressed.

In the third experiment, it was pointed out that the amount of practice is
a fundamental factor in causing a clear learning effect. Therefore, we consider it

necessary to perform experimental designs with enough practice time and tasks
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that are difficult enough to cause adaptation processes and, thus, maximize the
learning effect. This way, the relationship between variability and learning
processes will be easier to contrast.

The Motor Control and Learning Group at the Research Sport Center of
the Miguel Hernandez University is currently working on experimental protocols
to assess motor variability and its relationship with the ability to adapt and the
learning process. We are developing a research project, supported by the
Spanish Government, in which one of the main aims is to assess the motor
variability structure as an index for predicting the ability to adapt and learning.
Therefore, the discussed limitations are being taken account, increasing the
sample size and practice time. A larger sample size will allow us to group the
participants according to their initial variability and performance considering that
these variables can affect in the relationship between initial variability and the
ability to adapt. The amount of practice has also been increased to maximize the
learning process, and new protocols will be developed in which different motor
abilities will be analyzed in order to extrapolate our conclusions. Some of the
suggested motor abilities in the current research project will be discrete basic
tasks (e.g., throwing a ball toward a target) and more specific sport tasks to
check if the relationship between variability and the ability to adapt also appears

in other kinds of motor tasks and if it can be extrapolate sport situations.
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6.1. Discusion y conclusiones.

El andlisis del control postural ha sido uno de los d@mbitos de mayor
interés dentro del &rea del control motor ya que el equilibrio es un aspecto motriz
fundamental en el dia a dia, ademas de ser una tarea motriz compleja que
conlleva el control de numerosos componentes neuromusculares. El centro de
presiones (CoP) es considerado una variable colectiva que refleja la actividad
de numerosos componentes neuromusculares actuando de forma conjunta para
conseguir mantener el equilibrio (Manor et al., 2010; Riley and Turvey, 2002;
Winter, 1995). Tradicionalmente, éste se ha estudiado a través de la variabilidad
de sus fluctuaciones, utilizando variables que miden la dispersion y la magnitud
de los cambios del CoP. A pesar de que diversos estudios han analizado la
fiabilidad de este tipo de variables no existe un acuerdo claro sobre cual es la
mejor variable para evaluar el control postural (Ruhe, Fejer, and Walker, 2010).
Incluso la fiabilidad de estas variables ha llegado a ser cuestionada por algunos
autores (T.L. Doyle, Newton, and Burnett, 2005). Sin embargo, nuestros
resultados indicaron que algunas de estas variables son fiables para analizar el
control postural. La velocidad media del CoP proporciona unos valores de
consistencia y precision en la medida muy altos, siendo mayores que los de las
variables de dispersion.

Recientemente, el uso de variables no lineales ha permitido analizar la
dinamica de la estructura del CoP para conocer la interacciéon de los
componentes neuromusculares involucrados en el control postural, pero los
estudios de fiabilidad de este tipo de herramientas son escasos. Los hallazgos
obtenidos en el primer estudio presentado en este trabajo muestran que las
variable no lineales, tales como entropia borrosa (FE), entropia de permutacion
(PE) y el andlisis de fluctuaciones tras la eliminacion de tendencia (DFA),
presentan una buena consistencia y precision de la medida, incluso superior a
las variables tradicionales, tal y como ya se ha sido sugerido previamente (T.L.
Doyle et al., 2005).

Otro de los objetivos de esta tesis doctoral fue comprobar si, tal y como
indican estudios previos (Barbado et al. 2012; Goldberger, Peng et al. 2002), la

complejidad de la variabilidad del CoP en tareas de equilibrio permite revelar la
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capacidad de adaptacion del sistema. Este objetivo fue planteado debido a los
resultados controvertidos respecto a esta hipotesis. En la literatura podemos
encontrar estudios donde indican que una mayor complejidad del CoP esta
asociada a una mayor capacidad de adaptacion (Manor et al., 2010), mientras
gue otros autores indican lo contrario, que una mayor complejidad del CoP esta
relacionada con un menor rendimiento en la tarea y por lo tanto, menor
adaptacion a la misma (Duarte and Sternad, 2008). Vaillancourt y Newell (2002,
2003) indicaron que esta controversia es debida a que el incremento o la
disminucion de la complejidad es dependiente de la naturaleza intrinseca del
individuo y de los condicionantes de la tarea. Por ello, comprobamos el efecto
de diferentes constrefiimientos sobre la relacién entre la complejidad y el
rendimiento en tareas de equilibrio en bipedestacion. Los resultados del
segundo experimento confirmaron que la relacibn entre complejidad y
rendimiento siempre fue positiva, tal y como indican estudios previos, los cuales
encontraron que individuos que presentan una mayor complejidad muestran
mejor rendimiento en tareas de equilibrio (Barbado et al., 2012; Manor et al.,
2010). Sin embargo, las modificaciones en la estructura del CoP y, por lo tanto,
de su complejidad, se vieron afectadas por constrefiimientos tales como la
dificultad de la tarea y la disponibilidad de biofeedback, con lo que se
confirmarian las afirmaciones de Vaillancourt y Newell (2002, 2003).

Por ultimo, hemos querido dar un paso mas allda en cuanto a la
funcionalidad de la variabilidad motora como caracteristica intrinseca del
sistema. De este modo, comprobamos si la variabilidad posee relacion, no sélo
con la capacidad de adaptacién, sino con el proceso de aprendizaje, tal y como
indican estudios muy recientes (Wu et al., 2014). El estudio de Wu et al. (2014)
mostré6 que los individuos con una alta cantidad de variabilidad motriz
presentaban un proceso de aprendizaje mas rapido. Sin embargo, nosotros
consideramos que con el andlisis de la estructura de la variabilidad a través de
las herramientas no lineales se podria obtener mas informacién sobre si la
variabilidad mostrada es la consecuencia de procesos aleatorios del sistema
(Churchland et al., 2006; Harris and Wolpert, 1998; Osborne et al., 2005;

Schmidt et al., 1979) o el resultado de comportamientos exploratorios que
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facilitan el aprendizaje (Mandelblat-Cerf et al., 2009; Sober et al., 2008). En este
sentido, en el Ultimo estudio de esta tesis doctoral se desarrollaron dos
experimentos, donde se analiza el control postural en bipedestacion y
sedestacion. Los resultados mostraron cémo individuos que presentaban un alto
nivel de variabilidad inicial tuvieron un aprendizaje mas rapido en diferentes
tareas de equilibrio. Este estudio confirmé que la variabilidad motora en tareas
de equilibrio esté relacionada con la capacidad del sistema para realizar ajustes
en su movimiento y mejorar asi el proceso de aprendizaje.

Teniendo en cuenta las hipétesis generales de esta tesis doctoral, se

pueden extraer las siguientes conclusiones:

I. Las variables no lineales muestran una mayor consistencia (coeficiente de
correlacion intraclase) y precision (error estandar de la media) que las

tradicionales herramientas lineales de dispersion en el andlisis del CoP.

I.I. La entropia borrosa (FE) y la entropia de permutacion (PE) son las
variables con mayores valores de consistencia y precision en el analisis del
CoP.

I.Il. El andlisis de fluctuaciones tras la eliminacion de tendencia (DFA)
presenta buenos valores de consistencia y precision en el andlisis del CoP,
y aporta informacion complementaria sobre la estructura de la variabilidad
del CoP.

I.IIl. La velocidad media del CoP muestra valores de consistencia y precision
superiores a las variables de dispersién, encontrando similitudes a los
mostrados por las variables no lineales. Esta variable podria aportar
informacion sobre la cantidad de correcciones realizadas durante la tarea,
relacionadas con la sensibilidad al error mostrada por los individuos.

I.IV. Series de datos no estacionarios pueden alterar la fiabilidad de las
variables no lineales. El incremento del tiempo de registro o los
procedimientos de destendimiento de la sefial, como el célculo de la primera
derivada, han mostrado mejorar los valores de fiabilidad en las medidas de
entropia.
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Il. La relacion entre la complejidad de la variabilidad del CoP y el rendimiento
en una tarea de equilibrio en bipedestacién es dependiente de la dificultad

de la tarea y la disponibilidad de biofeedback.

Il.I. La presencia del biofeedback disminuye la complejidad de la variabilidad
del CoP.

IL.Il. En presencia de biofeedback el nivel de complejidad del CoP disminuye
conforme aumenta la dificultad. Sin embargo, cuando el biofeedback no esta
disponible, el nivel de complejidad del CoP aumenta conforme aumenta la
dificultad. Esto se debe a que los niveles mas elevados de dificultad en la
situacion de equilibrio reducen las posibles soluciones para conseguir

mantener el equilibrio, siendo redundante el uso de biofeedback.

lll. La estructura de la variabilidad motora en tareas de equilibrio parece revelar
la capacidad del sistema para realizar ajustes en su movimiento y esta
relacionado con la capacidad de aprendizaje, independientemente del nivel

del rendimiento inicial del aprendiz.

lll.I. Los individuos que presentan menores niveles iniciales de DFA en la
estructura del desplazamiento CoP (desplazamientos del CoP mas
complejos) en tareas de equilibrio muestran una mayor ratio de aprendizaje
relativo.

lIlLIl. La relacién entre la estructura del desplazamiento del CoP, la
capacidad de adaptacion y aprendizaje en tareas de equilibrio aparece
incluso en tareas donde para conseguir un buen rendimiento se requiere de

una reduccién de la magnitud de la variabilidad.

6.2. Limitaciones y prospectivas de investigacion.

En esta Tesis Doctoral nos hemos encontrado con ciertas dificultades y
limitaciones que nos dan pie a continuar con nuevos experimentos. De este
modo, las limitaciones encontradas pueden servirnos como punto de partida
para futuros estudios, los cuales actualmente estan siendo llevados a cabo.

Dichos trabajos estdn relacionados con la tematica de esta tesis,
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permitiéndonos profundizar en mayor medida en los conocimientos sobre la
variabilidad motora y su relacién con la capacidad de adaptacion y los procesos
de aprendizaje.

El punto de partida que se planted en este trabajo fue conocer cuéles
son las variables que mejor caracterizan el control postural. Los resultados
obtenidos nos ayudaron a seleccionar las variables mas consistentes y precisas
para analizar la variabilidad del control postural en tareas de equilibrio. Sin
embargo, el abanico de herramientas matematicas que podemos encontrar en
la literatura es muy amplio y se encuentra en continuo desarrollo. En nuestro
trabajo, se han analizado algunas de las herramientas mas utilizadas para la
caracterizacion del control postural pero existe la necesidad de realizar analisis
de fiabilidad de un mayor nimero de herramientas, tanto tradicionales como no
lineales. Futuros trabajos irdn encaminados a incrementar el namero de
herramientas a analizar. Ademas, la tarea de equilibrio analizada en nuestro
estudio es una tarea basica de laboratorio, por lo que, a pesar de haber
encontrado buenos resultados de fiabilidad y consistencia en las herramientas
medidas, también seria interesante que éstas sean aplicadas a tareas mas
cercanas a los movimientos que se dan tanto en el dia a dia como en la practica
deportiva. De este modo, podriamos ver si estas herramientas también son
adecuadas para analizar la variabilidad motora en tareas donde aparecen
numerosas interacciones de diferentes partes de nuestro cuerpo para poder
realizar con eficacia movimientos complejos donde el equilibrio también es parte
fundamental.

Continuando con el objetivo de encontrar la mejor manera de
caracterizar el control postural, encontramos que las herramientas mateméticas
utilizadas para caracterizar el control postural disminuyen su consistencia y
precision cuando son aplicadas sobre datos cinematicos debido a sus
caracteristicas no estacionarias. De este modo, en el segundo y tercer estudio
de este trabajo no se utilizaron sefiales cineméticas, perdiendo informacion
acerca de las estrategias posturales y patrones de movimiento (Kuo et al., 1998;
Madigan et al., 2006). Futuros estudios deberian intentar incrementar la

estacionariedad de la sefial, ya sea aumentando el tiempo de registro para
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conseguir un mayor numero de datos o utilizando algun procedimiento de
destendimiento de la sefial, lo que permitiria el uso de datos cineméticos.

Tal y como hemos visto en el segundo estudio de esta tesis doctoral, el
tipo de filtrado de la sefial modifica considerablemente la estructura de la misma
Yy, COMO consecuencia, los valores de complejidad de la variabilidad del CoP.
Segun algunos estudios, la utilizacion de diferentes filtros puede revelar
diferentes comportamientos en el control postural, los cuales estan relacionados
con dos componentes del desplazamiento del CoP: rambling y trembling
(Zatsiorsky and Duarte, 1999). Estos componentes estan asociados a diferentes
tipos de control motor, sistema nervioso central (control voluntario) y control
periférico (control involuntario), respectivamente (Tahayori, Riley, Mahmoudian,
Koceja, and Hong, 2012). En el segundo estudio, hemos visto cémo en tareas
de equilibrio en bipedestacién el control voluntario predomina en el
mantenimiento del equilibrio. Futuros estudios deberan profundizar en qué
medida el control voluntario e involuntario estan relacionados con los ajustes
conocidos como rambling y trembling y cual es su rol en el control postural y la
coordinacion motriz.

En el segundo estudio presentado en este trabajo también encontramos
gue algunos constrefiimientos influyen en la complejidad de la variabilidad el
CoP, como es el caso del efecto de los niveles de dificultad en funcién de la
presencia o no de biofeedback. Consideramos necesario abordar un analisis en
profundidad del efecto de otro tipo de constrefiimientos con respecto al control
del movimiento, como pueden ser la edad o el nivel de rendimiento. Del mismo
modo, el efecto de algunos procesos cognitivos, como pueden ser la atencion o
la motivacion, sobre las caracteristicas de la variabilidad y el proceso de
aprendizaje tienen también que ser analizados en futuros estudios.

En el tercer estudio, se remarcé que la cantidad de practica es un factor
fundamental para provocar un claro efecto de aprendizaje. Por ello,
consideramos necesario realizar disefios experimentales en los que haya un
tiempo suficiente de practica y en los que la tarea conlleve una dificultad

suficiente como para provocar un proceso de adaptacién y, asi, maximizar el
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efecto del aprendizaje. De este modo, se facilitara contrastar la relacion entre la
variabilidad y la capacidad de aprendizaje.

Actualmente, el grupo de investigacion del Laboratorio de Aprendizaje y
Control Motor del Centro de Investigacion del Deporte de la Universidad Miguel
Herndndez estid trabajando en disefios experimentales para valorar la
variabilidad motora y su relacion con la capacidad de adaptacion y aprendizaje.
Se esta desarrollando un proyecto de investigacion, financiado por Plan Estatal
de Investigacion Cientifica y Técnica y de Innovacién, en el que uno de los
principales objetivos es evaluar si la estructura de la variabilidad motora puede
predecir la capacidad de adaptacion y la evolucion del rendimiento. Para ello,
se estan teniendo en cuenta las limitaciones comentadas, incrementando el
tamafo de la muestra y el tiempo de practica. Un mayor tamafio de muestra
permitird agrupar a los participantes en funcion de su nivel inicial de variabilidad
y de destreza, puesto que estas variables pueden afectar en la relacion entre la
variabilidad inicial del individuo y su capacidad de aprendizaje. La cantidad de
practica también ha sido incrementada para maximizar el proceso del
aprendizaje y se desarrollaran nuevos protocolos donde se aborden diferentes
habilidades para poder extrapolar las conclusiones obtenidas, con el fin de
potenciar la fuerza estadistica de los resultados obtenidos hasta ahora. Algunas
de las habilidades planteadas en el actual proyecto seran habilidades basicas
de cardcter discreto (p.e., lanzamiento de una pelota a una diana), y habilidades
mas especificas dentro del deporte para poder comprobar si la relacion entre
variabilidad y capacidad de adaptacion y aprendizaje encontrada en este trabajo
también aparece en otro tipo de habilidades y puede ser extrapolable a

situaciones deportivas.
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