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DIRECTORES: Carlos Rodŕıguez Fernández-Pousa
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Introduction

Radar (radio detection and ranging) and lidar (light detection and ranging) techniques

represent one of the most successful approaches for remote sensing. This type of sys-

tems have found widespread use for different applications, from large-scale sensing (e.g.

measuring the position of the moon with millimeter precision) to medium-scale (e.g. ob-

stacle detection for autonomous vehicles) or even very small scales such as targeting sin-

gle molecules. Using electromagnetic waves, either in radio-frequency (RF), microwave

(MW), or optical bands, they are able to measure the target’s velocity, distance, or

absolute position.

Though speed measurements may be performed using continuous waves, distance and

position require pulsed sources. Therefore, a variety of techniques have been developed

to generate adequate waveforms, for which the general goal is to increase both the pulse’s

bandwidth and duration as much as possible —improving the resolution and range of

the system, respectively. The product of these two parameters is referred to as time-

bandwidth product (TBP) or, equivalently, compression ratio, and is a commonly used

figure of merit. Pulse compression methods increase the TBP of a probe pulse by means

of frequency/phase modulation or coding. In the case of linear frequency modulation of

a pulse, the TBP is increased through its bandwidth, in a process that is usually known

as chirping and which leads to the well-known chirped pulse radar. As for the coding

techniques, the goal is to modulate a sequence of otherwise transform-limited pulses by

use of suitable amplitude or phase codes with good correlation properties, in a similar

scheme to that used in spread-spectrum transmission. Here, and in contrast to pulse

chirping, the TBP increases through the duration of the coded pulse sequence, which

now constitutes the basic probe waveform in pulse compression radar/lidar schemes.

After matched-filter detection, implemented either in an analog or digital manner, high-

TBP pulses or pulse sequences reflected from a target are virtually compressed to a

short pulse carrying the energy of the initial probe waveforms. The gain provided by

correlation detection can be utilized to increase range for the same noise level or to

increase signal-to-noise ratio for the same range, providing range measurements with a

resolution determined by the probe bandwidth.

In this regard, photonic systems are usually advantageous with respect to their RF/MW



counterparts due to the significantly larger available bandwidth (∼THz) [1]. Moreover,

the immunity to electromagnetic interference of optical signals, the decreasing cost of

optical components, and the versatility provided by fiber or integrated systems make

photonic solutions an appealing alternative to conventional, purely electrical, systems.

Within this context, a major technical challenge is the development of compact and

versatile high-TBP optical waveform generators amenable to integration in optical pulse

compression systems.

One of the most recent and promising approaches to high-TBP optical arbitrary wave-

form generation [2] is enabled by optical frequency combs (OFC) generated by continuous

wave (CW) injection-seeded frequency shifting loops (FSL). Briefly, OFC are periodic

optical waves whose spectrum is composed of a high number of equispaced and ideally

equalized spectral lines. The use of OFC with a high number of spectral lines is par-

ticularly suitable for optical pulse compression systems, since the TBP of a periodic

waveform equals the number of lines present in its spectrum. In OFC based on FSL,

a CW carrier is injected in a fiber loop, where the input wavelength is recursively fre-

quency shifted in one or several sidebands whose spacing is determined by a customized

driving tone. An optical amplifier located within the fiber’s loop compensates for losses

and permits the multiple recirculation of the frequency shifted carrier, resulting in a

comb made up of equally-spaced spectral lines. FSL can be implemented by use of an

electro-optic modulator (EOM) as a shifting element, leading to a tunable line spacing

from hundreds of MHz to tens of GHz. On the other hand, the use of acousto-optic

modulators (AOM), although restricted to frequency spacings of some hundreds of MHz,

are able to provide a significantly larger number of lines (>100) while avoiding at the

same time the use of costly high-frequency electronics [3, 4]. Even smaller line spacing

(∼kHz) may be achieved by employing two modulators with opposite frequency shifting

[5]. This reduction of the line spacing, which amounts to an increase in the period of the

pulse train, represents an advantage in terms of ease of integration with other techniques,

such as modulation or sampling, as these also need less stringent electronic requirements.

In addition to the general characteristics of versatility and ease of implementation of

FSL, one of the specific advantages of acousto-optic FSL (AO-FSL) in comparison to

their electro-optic counterparts is that the shifting element provides a single-frequency

up or down-conversion. In other words, each time the CW carrier recirculates within

the loop it is shifted by the same amount, so that the n-th frequency in the comb is

orginated by the recirculation of the injected carrier n times within the loop. AO-FSL

thus generate optical waveforms which show, by construction, a purely single-sided or

unilateral optical spectrum. This observation constitutes a simplification in digital pulse

compression systems based on coherent receivers and subsequent numerical correlation

detection, since the quadrature channel can be easily determined from the in-phase

channel by Hilbert transform [2]. A final general advantage of AO-FSL, which will be



object of particular attention in the present study, is its ability to generate different

temporal waveforms with essentially the same TBP. This feature allows, for instance,

the generation of waveforms with low peak-to-average power necessary for high-power

optical amplification. Finally, we mention that a natural extension of the AO-FSL

basic architecture, namely the generation of two mutually coherent OFC with different

spectral spacing necessary for dual-comb spectroscopy (DCS) [6] or all-optical correlation

detection [7], can be realized by use of a bidirectional FSL [5].

In our work we explore the unidirectional AO-FSL as a 80-MHz OFC generator for pulse

compression systems in the 1.55-µm telecom band. In chapter 1 we expose the general

layout and also the devices that comprise the FSL, explaining the generation of the

output complex field by use of the theory of temporal Talbot effect [8, 9]. Subsequently,

in chapter 2, we show all the characterizations performed for this project (both results

and methods). These include our laser’s linewidth, the optical amplifier’s noise, and the

real-time or Digital Storage Oscilloscope (DSO) quantization noise, among others. In

chapter 3 we present and analyze our resulting waveforms and provide a comprehensive

account of their autocorrelation. In particular, the detection bandwidth is limited by

the 6-GHz real-time oscilloscope, so that the observable electrical waveforms are shown

to have a TBP of ∼65 and a resolution of 2.7 cm. Finally, in chapter 4 we end with

our conclusions. Short MATLAB code examples are shown throughout this document,

which is concluded with a number of appendices describing (A) the theory of temporal

Talbot effect in fiber optics —supported by the spatial Talbot effect—, (B) the definition

of TBP and compression ratio as the quotient of the period and the autocorrelation’s

equivalent bandwidth, (C) the theoretical basis of the self-heterodyne method used for

the characterization of our laser’s linewidth, and (D) a very simple proof for the allowance

of computing the autocorrelation of the real field instead of the complex field (which can

be done in real-time) and then Hilbert-transforming.





Chapter 1

Working principles and design

In this chapter we explain how and why FSLs are able to generate chirped optical pulses

from a continuous wave injection laser as well as the different designs and configurations

that we tested through the development of our project.

While the simplest FSL could be made with only a frequency shifter, it is required

to compensate for the losses inside the loop to achieve bandwidths higher than just

a few hundreds of MHz. Therefore, aside from the AOFS (Acousto-Optic Frequency

Shifter), the loop includes an EDFA (Erbium Doped Fiber Amplifier) and a TBPF

(Tunable BandPass Filter) to reduce the ASE (Amplified Spontaneous Emission) noise

introduced by this amplifier. Additionally, an isolator and a PC (Polarization Controller)

are needed inside the loop to force unidirectional propagation (i.e. negate backscattering)

and maintain the polarization, respectively. The schematic of the complete FSL, together

with the heterodyne detection is shown in Fig. 1.1, where the order of the components

inside the loop represents the implemented system. Notice how the PC is placed right

after the amplifying stage1 since this stage does not maintain polarization.

The goal of the ν0 = 1550 nm injection-seeded FSL is to generate spectral lines equi-

spaced by fs ∼ 80 MHz with minimum losses, where fs is the tunable frequency shift

introduced by the AOFS. Assuming the losses are at least partially compensated by the

EDFA, the total bandwidth B and therefore the number of spectral lines N will be lim-

ited by the TBPF. This comb-like spectrum implies that the resulting signal is periodic

with period T = 1
fs

. Since the AOFS’s frequency shift is either positive or negative

but not both (here is positive), these waveforms will have a one-sided spectrum, hence

simple detection of the complex envelope by means of heterodyning2 is possible. As

demonstrated in the literature —[10, 9, 1]—, this envelope may be expressed as

e(t) =
N−1∑
n=0

gne
−jπfsτcn(n+1)ej2πnfst, (1.1)

1Amplifying stage refers to the combination of the EDFA and the TBPF.
2Heterodyne detection allows the preservation of optical phase by referencing the signal with the

original LO (Local Oscillator). Only one photodetector (PD) is necessary.
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Figure 1.1: FSL schematic. The loop is presented in red, and the heterodyne detection is presented in blue.

where τc is the FSL’s round-trip time, gn are the slow exponentially decaying amplitudes

of the spectral lines, and a global delay term, exp (−j2πnν0τc), has been neglected in

this equation. The quadratic phase of this envelope gives place to the Talbot effect,

explained in Appendix A, which means that the period of the FSL’s output intensity

as well as the chirping effect is completely determined by the product fsτc. With k a

positive integer and p and q positive coprime integers:

� If fsτc = k, then the integer Talbot condition is satisfied, resulting in a waveform

composed of transform-limited pulses, as all spectral components in Eq. 1.1 are in

phase. Both the field e(t) and its intensity have the same period T .

� If fsτc = k+ p
q
, then the fractional Talbot condition is satisfied. The output field is

composed of q transform-limited pulses per period T , leading to pulse repetition-

rate multiplication (PRRM) by a factor of q. The period of the intensity is thus

T/q. The field, however, maintains the periodicity T , since q consecutive pulses

show a set of q different phases which are repeated in the following group of q

pulses. This set of phases is usually referred to as the Talbot phase.

� If fsτc = k+ p
q

+ δfsτc, where |δfs| � fs is a slight shift from a Talbot plane, then

the previously described pattern undergoes dispersion, and therefore the observed

field is composed of chirped pulses. We will refer to this type of situation as

the dispersed (fractional or integer) Talbot condition, and characterize it by the

associated Talbot index (p/q) and the frequency mismatch (δfs).

When introducing this δfs frequency mismatch, the FSL acts as an highly dispersive

medium with group delay dispersion (GDD) [1]

φ =
δfsτc

2πfs
2 ,
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equivalent, under standard operation conditions, to hundreds or even thousands of

standard SMF (Single Mode Fiber) kilometers. In this work we define group veloc-

ity dispersion (GVD) as β2 = d
dω

(
1
vg

)
, where vg is the group velocity, and GDD as

Lβ2 ≡ φ = d
dω

(
L
vg

)
= dτg

dω
. The chirp rate is then given by

C =
1

2πφ
. (1.2)

The FSL thus generates a series of waveforms with a repetition rate in the range of

80 MHz, whose temporal profile is determined by the detuning of the AOFS driving

frequency fs. In the pulse compression scenario, the resolution attainable by matched

filtering is given by the inverse of the available bandwidth, which in our case is B = 6

GHz. The TBP or compression ration is given by the number of spectral lines N = B/fs
of the optical frequency comb, Eq. 1.1. These figures of merits are briefly review in

Appendix B.

Although Fig. 1.1 shows the final configuration of the system, some modifications were

also tested. The simplest one consists on swapping the 2:1 combiner at the input of

the PD for a symmetrical 2× 2 coupler. This allows the monitoring of the output with

an OSA (Optical Spectrum Analyzer). We found this to be useful at the start of the

project because it allowed us to see the central wavelength and bandwidth of the TBPF

(using the ASE noise). In the end we were able to set the TBPF by looking at the comb

spectrum in the DSO without the use of the OSA. We also experimented with a single

2× 2 symmetrical coupler as a substitute for both the FSL’s 90/10 output splitter and

the 50/50 combiner at the PD’s input. Although the goal of this change is to make the

loop shorter —to have a larger number of coherent lines—, the result was significantly

less controllable. The last modification that was tested was the use of a 50/50 splitter for

the FSL’s injection (as a substitute for the 99/1) with the addition of manual variable

optical attenuators at its outputs, which permits the control of the FSL’s injection power

and the heterodyne mix. These attenuators introduced additional degrees of variability

that we found to be very useful and were used throughout the majority of the project.

However, we discovered that (maybe due to excessive tightening) they modified the

polarization of light inside the fiber and, therefore, had to be removed. In Fig. 1.2 we

show a photograph of the implemented system.

To conclude this chapter, let us summarize the adjustable parameters of the system.

These are: the laser’s power, the outer PC, the inner PC, the EDFA’s pump current

(which affects gain and noise), the TBPF’s central wavelength, the TBPF’s bandwidth,

the AOFS’s RF power level, and the AOFS’s frequency. The challenge is to adjust all of

these parameters to reduce the instability of the resulting waveforms as much as possible

while obtaining an appropriate number of spectral lines.
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Figure 1.2: Photograph of the FSL.



Chapter 2

Characterizations

To properly utilize the physical devices needed for this project and to obtain useful and

analyzable empirical results it is of high importance to characterize such devices. In

this chapter we show both the experimental and digital processing methods —as well

as the results obtained— that were used to characterize the following components: a

high-power RF amplifier, an acousto-optic modulator, an ITLA’s (Integrable Tunable

Laser Assembly) linewidth, and an erbium doped fiber amplifier. Additionally, we also

studied the quantization noise of our DSO, and the vibrations and possible noise sources

present in the lab that can affect the FSL’s interferometer.

2.1 High power RF Amplifier

Device model: Mini-Circuits’ zhl-03-5wf+.

The purpose of this device together with a signal generator is to feed the RF input of the

AOM, which requires around 2 watts of power at 80 MHz. This specific application makes

(1) the NF (Noise Figure) somewhat irrelevant —allowing us to focus purely on gain,

harmonics, and adaptation— and (2) the process easier and faster since characterization

can be done at only one frequency. The manufacturer’s datasheet specifies a frequency

range from 60 to 300 MHz and 35.31 dB gain at 80 MHz. We must make sure that the

amplifier’s output power never reaches the power limits that the input port of the SA

(Spectrum Analyzer) can withstand. This presents a challenge when trying to determine

the 1 dB compression point, P1dB, since this requires high input power that would result

in high output power. To solve this issue, we use attenuators and, to reach high input

power levels, we use an auxiliary amplifier as shown in Fig. 2.1.

Before the measurement, we ensure that the output power given by our source is stable

and correctly displayed in its user interface. For that purpose, a direct measurement

of the power source is performed, obtaining a 0.7 dBm deviation from the displayed

power which must be considered when analyzing the results. With this procedure, and
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Figure 2.1: Schematic of the circuit used to characterize the RF amplifier. L stands for attenuation in dB, G

stands for gain in dB, P stands for power in dBm, and SA stands for Spectrum Analyzer. The first amplifier

(with gain G1) is the auxiliary amplifier, while the second one (with gain G2) is the amplifier under test,

that is, Mini-Circuits’ zhl-03-5wf+. With this scheme, Pg is the signal generator’s output power, Pin is the

input power at the amplifier under test, Pout is the output power at the amplifier under test and PSA is the

input power at the Spectrum Analyzer. Note that the first attenuator at the amplifier’s output must endure

high amounts of power.

performing least squares linear regression, we obtain the relationship between output

and input power shown in Fig. 2.2a.

Even though P1dB is not reached by our measurements, this is not a problem due to our

specific requisite of 33 dBm output power, which we can easily obtain before nonlinearity.

Table 2.1 collects the main results found.

Table 2.1: RF amplifier characterization results.

Symbol Parameter Conditions Value Units

P Power consumption
Vcc = 24 V

I = 2.077 A

49.848

(< 67.2)
W

G Linear zone gain

(average i)

@80 MHz

Pin,max = 5.12 dBm ii

34.462

(35.31)

dB

SHD
Second-order

Harmonic

Distortion iii

@80 MHz

Pout = 36.6 dBm
0.996 %

[S] Scattering matrix @80 MHz

[
−25.14 −43.61

34.44 −21.20

]
dB

In parenthesis: the manufacturer’s specification.

i. Gain variance: σ2 = 0.0021 dB.

ii. No empirical data beyond Pin,max. This value is still in linear zone as shown in Fig. 2.2a.

The manufacturer’s datasheet specifies a 1 dB compression point of 5.97 dBm input power.

iii. SHD obtained as a voltage ratio percentage.
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Figure 2.2: Characterization of the RF amplifier. (a) — Output Power vs Input Power. Vcc is the DC (Direct

Current) supply voltage and f stands for frequency. Collected data is represented with circles and a linear

fit is represented with a thin black line. (b) — S-parameters. In blue, the transmission coefficient from the

input port to the output; in green, the reflection coefficient at the output; in black, the reflection coefficient

at the input; and in red, the transmission coefficient from the output port to the input.

The SHD value is increased by the auxiliary amplifier. However, this auxiliary amplifier is

working in its linear regime due to the very low power input, which makes the increment

negligible. For the measurement of the S parameters, a frequency sweep from 70 MHz

to 420 MHz is performed, Fig. 2.2b, with only one 20 dB attenuator and very low input

power. Note that two measurements must be done to obtain accurate S11 and S22 results,

one with the attenuator at the amplifier’s input and another one with the attenuator at

its output. Additionally, due to the 20 dB attenuation, the transmission coefficient from

the output port to the input port is below noise level. This is the reason for a noise-like

|S12| parameter —despite the already performed correction of 20 dB.

In conclusion, this amplifier is very suited for our needs since it can provide 2 watts of

power while still operating in linear zone and the reflection coefficient is especially low

at 80 MHz as seen in Fig. 2.2b.

2.2 Frequency shifter: AOM

Device model: AA Opto-Electronic’s MT80-B10-IIR30-Fio-PM0.5-J1-A-VSF.

In optics, the refractive index of a transparent material can change due to mechanical

deformation. Given that sound waves are periodic traveling compression and rarefaction

disturbances, an AOM takes advantage of these two phenomena to induce Bragg diffrac-
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tion on the incident light beam using a piezoelectric transducer. This process results in

a sum-frequency generation, that is, if the input optical frequency is νin and the input

radiofrequency is f , the output optical frequency is νout = νin + f . This device, together

with the RF amplifier, is necessary for the Frequency Shifting Loop and will also be used

to characterize our laser’s line shape.

Therefore, characterizing the AOM implies measuring the following relationships:

� RF input reflection coefficient, |S11|, versus radiofrequency, Fig. 2.3a.

� Optical power loss versus optical wavelength input, Fig. 2.3b.

� Optical power loss versus radiofrequency input, Fig. 2.3c.

� Optical power loss versus RF power input, Fig. 2.3d.

First, the reflection coefficient is presented, showing its minimum at ∼ 78 MHz. For

a precise measurement, it is important to use the same type of connectors, otherwise

this could generate undesired reflections. For example: although 3.5 mm and SMA

connectors are mechanically compatible, the difference in dielectric material will cause

an impedance mismatch that could result in an unwanted multiple reflection in the RF

path.

Second, optical power loss versus optical wavelength input is presented. While the

optimal wavelength seems to be slightly shifted from the manufacturer’s specification of

1550 nm to 1542 nm, the device’s high bandwidth makes this difference less than 0.1 dB.

Note that the optical power that reaches the AOM must be measured since there will

always be losses between the laser source and the optical input port of the device under

test. Additionally, an optical polarization controller is used after the laser’s isolator.

In both Fig. 2.3a and Fig. 2.3b, a nonlinear least squares fit has been performed. Here

we show a MATLAB example:

MatLab Example 1: Nonlinear polynomial fit

order = 3; points = 100;

[p,S,mu] = polyfit(x,data,order);

x1 = linspace(min(x),max(x),points);

[fit,delta] = polyval(p,x1,S,mu);

Finally, the remaining relationships are presented in figures 2.3c and 2.3d, from which

we can see that (1) the optimal input radiofrequency for minimum optical losses is 78
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Figure 2.3: Characterization of the AOM. (a) — RF input reflection coefficient vs radiofrequency. Pin is

the input power and |S11| is the reflection coefficient. (b) — optical losses versus optical wavelength. (c)

— optical losses versus RF. (d) — optical losses versus RF power. In all cases, P opt
in and PRF

in are optical

and radiofrequency input power respectively, f stands for radiofrequency, and λ0 is the optical wavelength.

Collected data is represented with circles and linear interpolations between data points are represented with

thin black lines. Polynomial fits are represented with thick black lines, and their 95% prediction intervals are

shown with grey dashed lines.
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Figure 2.4: Mach-Zehnder fiber interferometer for delayed self-heterodyne linewidth measurement. A con-

tinuous wave laser (without dithering) is injected into both arms through a 50/50 splitter (not drawn). The

delayed signal and the frequency-shifted signal are then combined with another 50/50 reciprocal splitter (not

drawn) and converted by the photodetector. The resulting photocurrent is then analyzed with a spectrum

analyzer.

MHz —the nominal value was 80 MHz— and (2) the optical losses as a function of the

RF power —to allow for quick, accurate calculations when using the device.

In conclusion, our AOFS has a high optical bandwidth and minimal losses at 78 MHz

(which coincides with the best RF adaptation point). Additionally, for RF powers greater

than 32.5 dBm at 78 MHz, the optical losses are below 2.5 dB.

2.3 Laser source: ITLA’s linewidth

Device model: Keysight Technologies’ N7711A.

In the FSL, the laser line recirculates up to N times —N being the number of spectral

lines— and, therefore, travels a total distance of N×L, where L is the length of the loop.

If this distance is greater than the coherence length of the laser, lines corresponding

to higher frequencies would lose coherence, which could induce instability. Since the

coherence length of the laser is inversely proportional to its linewidth [11, 12], as shown

in equations 2.2 and 2.1, a measurement of this width is required to ensure coherence

between lines. To measure the laser’s spectral linewidth, we use a common method

known as delayed self-heterodyne, which in practice consists of a Mach-Zehnder fiber

interferometer where one arm has a path length imbalance, and the other arm has a

frequency shifter (in this case, an AOM), as show in Fig. 2.4. Analytical explanation of

this method can be found in Appendix C.
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When performing this experiment there are some factors to account for, apart from

the usual problems in fiber optics (dirtiness, bends and, in this case, adjusting the

polarization controller). One of them is the possible injection of noise by the 50 Ω resistor

in the opto-electric conversion. Since the photocurrent generated by the photodetector

will be around 78 MHz, depending on the technology, the resistor may act as an antenna

which, in our case, had to be shielded to avoid interference from FM radio channels.

However, the most important factor is the design of a suitable fiber length for the delayed

arm, which goes hand in hand with the type of laser and its expected line shape. If the

laser’s linewidth is expected to be around several tens of kHz or more —in our case, a

100 kHz linewidth is expected— an arm length longer than its coherence length should

be chosen, resulting in Lorentzian-dominant spectra (f−2 noise). In many situations,

however, results show a Voigt profile, that is, the convolution of Gaussian and Lorentzian

spectra, where none of the two contributions can be discarded. This is, as we present

later, what our experimental results show. Then, we can estimate the coherence time of

the expected Lorentzian line shape as

τcoh =
1

π∆νFWHM

(2.1)

and the coherence length as

Lcoh =
c

n
τcoh, (2.2)

where n ≈ 1.5 is the refractive index of the optical fiber and c is the speed of light

in vacuum. Hence, a 10 km arm length is just enough (one order of magnitude higher

than the coherence length) to measure the linewidth of a Lorentzian laser line shape

with ∆νFWHM
∼= 100 kHz. We must also consider that if the arm is too long, dispersion

properties of the fiber play a significant role, resulting in a wider profile. Besides, both

arms should, ideally, present the same losses. For a 10 km SMF operating at third

window the total attenuation is about 2 dB, which is very similar to losses due to the

AOM as shown in Fig. 2.3d.

After designing the arm length, shielding the resistor load, adjusting the polarization (by

trying to achieve maximum power output), and making sure there is no dither1 from the

laser source, we can then take measurements for different optical laser powers. Note that

each trace may take several minutes to complete due to the need of averaging. Obtained

data is shown in Fig. 2.5.

We can see that these profiles resemble Lorentzian profiles which can then be subject to

non-linear least squares logarithmic (data is in dBm) Lorentzian fit. In the next lines

we describe the processing methods used to obtain the linewidth from our data using

MATLAB.

1Dithering tries to mitigate SBS (Stimulated Brillouin Scattering) by modulating the laser’s frequency

with a few hundred MHz, which enlarges its linewidth.
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Figure 2.5: Characterization of the laser source: measured line shapes. fAO is the input radiofrequency

to the AOM and PRF is its power, λ0 is the laser’s optical wavelength and Plaser is its optical power,

“Points” is the number of data points of each trace, “Power (dBm)” in the vertical axis refers to the power

corresponding to the photocurrent generated by the photodiode to a 50 Ω resistor, “BASE” trace refers to

background noise when the laser is turned off (useful for subsequent digital processing). Traces for different

optical laser powers, ranging from 6 dBm to 16 dBm in steps of 1 dB, are presented.

When using numerical methods, it is important to consider every feature of the data

that we have previous knowledge of. In this case, for example, the main feature —but

not the only one, as we will see— is the fact that our data can be fit with the logarithm

of a Lorentzian function:

f(x) = 10 log10

(
aγ2

γ2 + (x− x0)2 + c

)
where 2γ is the FWHM, a is the amplitude of the peak, c is the background additive

noise and x0 is the center frequency, the parameters to optimize. However, we face two

problems: (1) our data have magnitudes of about −100 dBm, which in linear form

are 10−10 mW, and (2) there are several orders of magnitude of difference between

parameters. The first problem implies that we would lose numerical resolution when

converting to linear, and so the reason we cannot fit the data directly in linear form.

The second problem implies that the numerical methods for finding the minimum error

may not detect the optimal parameters that we are looking for with our seeds since a

slight slope in one direction could be shadowed by a more pronounced one in another.

While the first problem is overcome by using f(x), the second problem may be overcome

by rearranging the function as

Γ(f) = −120 + C + 10 log10

(
1 +

A∆ν2B

∆ν2 + f 2

)
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Now,

� γ ≡ ∆ν,

� −120 + C = 10 log10 c, the BASE in dB,

� A = a
Bc

, the quotient between the peak and the base divided by B,

� and B ∼= 106 is a factor that is not meant to be optimized but manually changed

instead.

By introducing this factor B, we can compensate the difference in orders of magnitude

between a and c. Also, both ∆ν and f are in kHz.

All three parameters are now in the same 101 ∼ 102 order. We can use the fminsearch

MATLAB function to find the minimum of the squared error. An example code is shown

below.

MatLab Example 2: Lorentzian fit

B = 1e6; A = 3; delta v = 30; C = 0;

seed = [A,delta v,C];

fun = @(x)lorfit(fkHz0,data6dBm,x,B);

x = fminsearch(fun,seed);

y = - 120 + C + 10∗log10(1+A∗(delta v^2)∗B./(delta v^2+fkHz0.^2));

y opt = - 120 + x(3) + 10∗log10(1+x(1)∗(x(2)^2)∗B./(x(2)^2+fkHz0.^2));

function y = lorfit(f, data, x, B)

y = sum((data + 120 - x(3) - 10∗log10(1+x(1)∗(x(2)^2)∗B./...

(x(2)^2+f.^2))).^2);

end
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Figure 2.6: Characterization of the laser source: linewidth versus optical output power. Data, represented

with black dots, is the FWHM linewidth of our ITLA. The manufacturer’s specification for the laser’s linewidth

is 100 kHz, represented with a black horizontal line. As can be seen, measurements surpass the manufacturer’s

specification at 11 dBm.

As can be seen in the example above, a Lorentzian fit does not accurately represent our

data, which points to the existence of a Gaussian contribution to the linewidth. In this

regard, the overall form would thus be a Voigt profile. This, as we hypothesized with a

high degree of confidence, is due to the ITLA2 nature of our laser.

Due to this phenomenon and the unknown characteristics of the Gaussian contribution,

Lorentzian nor Gaussian fit would work, while also making a Voigt fit extremely hard.

Therefore, we chose to manually measure the linewidth from a polynomial fit. Note that

attempting to fit the entire trace would result in a rippled, useless fit, whereby only

the vicinities of the peak (at least until the 3 dB fall) are included in the least squares

processing. The results are found in Fig. 2.6.

According to Eq. 5.18, the Schawlow-Townes equation, linewidth should decrease with

power output as ∆ν ∝ Plaser
−1. However, our ITLA produces an exponential-like in-

crease instead. Linewidth will be less than 100 kHz as long as the laser’s optical power

output does not exceed 10 dBm.

Also, from the polynomial fit, we may infer that (1) the difference in amplitude of the

2Integrated Tunable Laser Assemblies provide lasing with tunable wavelength and power output.

The amplification stages outside the cavity that are used to provide such high optical powers may add

additional Gaussian noise.
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peaks varies between 1 dB and 2 dB due to polarization fluctuations and (2) the deviation

from 78 MHz never surpasses 3 measurement points from the total 601, which, with a

resolution of 8.3 kHz, is about 25 kHz.

2.4 Optical amplifier: EDFA

Device model: Orion Laser’s EDFA-EM-B-20-FC/APC.

To compensate for losses inside the FSL (which are expected to be around 10 dB), an

optical amplifier —in this case of Erbium Doped Fiber— must be used. As the name

suggests, their working principle is amplification by stimulated emission when pumped

with another optical source of different wavelength, typically 980 nm or 1480 nm. The

main characteristics of this component are gain and gain saturation, and Noise Figure.

To communicate and issue commands to the device, serial communication software is

needed. We used HyperTerminal. Furthermore, optical attenuators are necessary to

cover a wider range of input powers and to avoid damaging the OSA.

Before starting to take measurements, it is very important to acquire knowledge on how

the logical and communication part of the amplifier works, which should be detailed by

the manufacturer. In our case:

� Only a communication speed of 115200 bps (bits per second) would work.

� The amplifier has three possible modes of operation: fixed gain, fixed output power,

and fixed pump current or “manual mode”. The first two modes use variable pump

current to always provide the specified gain or specified output power, respectively.

The third mode allows to manually specify a fixed pump current, which gives more

stability to the output signal.

� The device has a set of alarms that may prevent certain actions. Especially im-

portant is the Loss of Input Signal Alarm, which completely blocks the amplifier

from working properly if the input signal is too low.

� The power output given by the amplifier’s internal PD is the total amount of

power, including ASE noise. Therefore, not useful when trying to measure the

power output at 1550 nm.

The set of attenuators must be previously characterized with a simple optical power

meter to make precise measurements.
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Figure 2.7: Characterization of the EDFA: gain versus output power. The operation mode of the amplifier is

“fixed pump current”. Several traces are shown, each one for a different pump current value (from 75 mA up

to 300 mA). Each trace is represented with a different marker shape and marker color. Note the saturation

state of the device for all pump current values and the high gain values.

2.4.1 Gain

The gain of any amplifier is expected to reach a certain saturation point. For optical

amplifiers, this point is known as saturation power, Psat, and is defined as the output

power that corresponds to a 3 dB decrease of the small signal gain. Utilizing the manual

mode of the device we obtain the results shown in Fig. 2.7.

It is evident that the amplifier is already in saturation only at 75 mA and that its gain

is extremely high. This is a downside since the purpose of the device is to compensate

about 10 dB of losses, which the gain exceeds even with only 75 mA of pump current.

Also, as we experimentally tested, the output power is very unstable for pump currents

lower than 150 mA, even reaching fluctuations of ±2 dB at ∼ 80 mA. We can infer that

the amplifier will operate in saturation regime in the FSL.

2.4.2 Noise

Aside from the amplifier’s gain, G, a more significant characteristic is the Noise Figure

of the amplifier, which is defined as the ratio between input signal-to-noise ratio (SNRin)

and output signal-to-noise ratio (SNRout), i.e. the noise degradation introduced by the
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device. Let us obtain an expression for NF. By definition,

SNR =
I2

σ2
,

where σ2 is the noise power and I = RP is the photocurrent, with P the optical signal’s

power (Pin for the input signal and Pout = GPin for the output signal), R = η e
hν

the

photodiode’s responsivity, e the electron’s charge, h the Planck’s constant, ν the optical

frequency and η ≈ 1 the quantum efficiency. There are four noise contributions [13]—

shot noise, σ2
shot; thermal noise, σ2

t ; beat signal-ASE noise, σ2
s−ASE; and beat ASE-ASE

noise, σ2
ASE−ASE. Since thermal noise and beat ASE-ASE noise are negligible for our

signal power levels (P > −25 dBm), the signal-to-noise ratios are

SNRin =
(RPin)2

σ2
shot

and

SNRout =
(GRPin)2

σ2
shot + σ2

s−ASE

.

Now, given a certain photodiode’s electrical bandwidth, ∆f , and the PSD (Power Spec-

tral Density) of ASE in one polarization, SASE, the noise contributions are σ2
shot =

2eRP∆f and σ2
s−ASE = 4R2GPinSASE∆f . Thus, the signal-to-noise ratios result

SNRin =
(RPin)2

2eRPin∆f
=

Pin

2hν∆f

and

SNRout =
(GRPin)2

2eRGPin∆f + 4R2GPinSASE∆f
=

GPin

(4SASE + 2hν) ∆f
.

Since SASE = nsphν (G− 1), where nsp is the inversion population coefficient (typically,

nsp ≈ 1.6), then the noise figure is

NF =
SNRin

SNRout

=
2SASE

Ghν
+

1

G
= 2nsp

(
1− 1

G

)
+

1

G
.

Notice that, for our gains, the additive 1/G term —which corresponds to shot noise at

the amplifier’s output— is negligible. Also, both the amplifier and the ASE noise are

removed for G = 1, so that NF = 1.

Finally, let us express the noise figure with the OSNR (optical signal-to-noise ratio).

This parameter is defined as the margin between the signal power level at the output,

GPin, and the ASE noise that is left in the spectral bandwidth ∆ν after the output

optical filtering done by the EDFA. That is,

OSNR =
GPin

PASE

=
GPin

2SASE∆ν
.
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Provided that the optical filtering is adjusted so that ∆f ≈ ∆ν, then

NF =
Pin

OSNR · hν∆ν
,

which is the final expression that is employed since the OSNR and ∆ν are already

given by the OSA. Note that the additive 1/G term has already been neglected in this

expression. Results for OSNR and NF for certain current pump values are presented in

figures 2.8a and 2.8b.

As we can see, the noise figure is extremely high for pump currents smaller than 125

mA. However, as the NF decreases, the gain increases, moving away from the desired 10

dB. This behavior induces the need of using high pump currents with attenuators at the

output of the amplifier when constructing the FSL. The power levels inside the loop will

force the amplifier to operate in saturation.

Because of the specific desire of 10 dB gain, a fixed gain mode test was performed too.

Results are presented in Fig. 2.8c. It is clear that the NF is too high to be able to operate

the amplifier at such gains unless the input power is greatly increased. Furthermore, this

experiment showed that the device was not able to provide the established fixed gain

when working with low input power levels.

2.5 DSO

Device model: LeCroy’s SDA6000A.

To characterize the quantization noise (Q-noise) of our 8-bit 6 GHz DSO, we attempted

to analyze the noise floor of single RF tones ranging from 10 MHz to 80 MHz. However,

we found that (1) our signal generator was too noisy and (2) a modulation of the RF

sine wave with the DSO’s sample frequency took place—several peaks separated by an

amount equal to the signal’s oscillation frequency appeared centered at a sixth and a

third of the sample frequency. Additionally, the Q-noise may be correlated to the input

signal, especially for low amplitude periodic signals, therefore yielding misleading results.

Moreover, we did not manage to acquire full scale traces and instead obtained either very

few quantization levels (∼ 10) or many more levels that expected (∼ 3000 to ∼ 4000)

when using higher voltages. We must clarify that the DSO has an option to increase

from 8 to 11 bits, but 211 quantization levels is still lower that the mentioned values.

Due to these problems, we used the interferometer’s characterization traces —which are

explained in the next section— to analyze the Q-noise.

The unilateral power spectral density of the quantization noise may be computed as

Sq = 2Tsσq
2, (2.3)



2.5. DSO 31

-15 -10 -5 0 5 10 15 20

Output Power (dBm)

10

15

20

25

30

35

40

45

O
S

N
R

 i
n

 0
.1

 n
m

 (
d

B
)

75

100

125
150

200 300

Pump Current (mA)

(a)

-15 -10 -5 0 5 10 15 20

Output Power (dBm)

2

4

6

8

10

12

14

16

18

20

N
o

is
e 

F
ig

u
re

 (
d

B
)

75

100

125

150
200

300

Pump Current (mA)

(b)

-10 -5 0 5 10 15 20

Output Power (dBm)

4

6

8

10

12

14

16

18

20

22

24

26

N
o

is
e 

F
ig

u
re

 (
d

B
)

G = 10 dB

G = 15 dB

Fixed Gain

(c)

Figure 2.8: Characterization of the EDFA: noise. (a) — OSNR versus output power. The OSNR improves

as the pump current increases. The value 0.1 nm refers to the optical bandwidth, ∆ν. (b) — Noise Figure

versus output power. Note the significant decrease of the NF as the pump current increases. In both figures,

the operation mode of the amplifier is “fixed pump current”. Several traces are shown, each one for a

different pump current value (from 75 mA up to 300 mA). Each trace is represented with a different marker

shape and marker color. (c) — NF versus output power for fixed gains of 10 and 15 dB. Data for a fixed

gain of 10 dB is represented with blue circles while data for a fixed gain of 15 dB is represented with red

triangles. The instability is evident for low powers, and the NF for these gains is high compared to the usual

expected values of 4 to 8 dB. The actual gains did not reach the fixed values of 10 and 15 dB.
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where Ts is the sampling period and σq
2 = q2

12
is the quantization noise power, with q the

quantum in volts. In Fig. 2.9b we see that for a particular trace with sample frequency

10 kS/s, total elapsed time of 100 seconds, and maximum voltage of around 20 mV,

the quantum is q = 0.4419 mV. This is a common value that we found in many traces.

With Eq. 2.3, the Q-noise results Sq = 3.25 × 10−12 V2/Hz, or in dB: Sq = −114.87

dBV/Hz. As we can see in figures 2.9a and 2.9c, this value matches the experimental

value. This computation was performed for different traces, always resulting in less than

1 dB discrepancy between the theoretical and experimental values.

Finally, the Q-noise turns out to follow an exponential distribution,

f(x) =

{
1
µ
e−

x
µ , x ≥ 0

0, x < 0
(2.4)

where µ is the mean. This is shown in figures 2.9c and 2.9d.

2.6 Interferometer

Part of the instability that we found in the output waveforms of the system was due

to the mixing stage—the heterodyne detection. Interferometers are highly sensitive to

noise and vibrations which, since we did not use an anti-vibrations optical table, became

even more significant.

To characterize the interferometer, a simple homodyne system was built. This consists

of only the transmitter, a 50/50 splitter, a 50/50 combiner and the receiver. With this

setup, several slow acquisition long traces where taken with the DSO, see Fig. 2.10a. The

devices with fans or potential vibration/noise sources that were present in the lab are:

the RF generator, the RF amplifier, the PD’s supply, the laser, two laptops, the DSO,

and a loud chiller. Each of the traces mentioned was the result of a certain ON/OFF

combination of all of these devices. Additionally, audio recordings of each device were

collected to compare their spectral components with the frequency peaks found in these

traces.

The final result is shown in Fig. 2.11, where we may highlight four specific frequency

components. First, we associated 11.5 Hz to human walking in the building —[14]— as

this frequency component has a higher bandwidth. Second, we found that the always-

present 100 Hz frequency component was due to the rectified 50 Hz electric signal.

Finally, the 90 Hz and 150 Hz are originated by the ILS (Instrument Landing System) of

a nearby airport since the location of our lab is almost aligned (∼ 12◦) with its runway.

Also, note the low frequency f−2 noise that characterizes the interferometer’s stability,

which is due to thermal fluctuations.
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Figure 2.9: Characterization of the DSO. (a) — Spectral density of the blue trace in Fig. 2.10a, i.e. sample

frequency of 10 kS/s and total duration of 100 seconds. In red, the noise-only part of the spectrum used to

compute the quantization noise. The mean (in dB) shown in the figure is computed with the linear values

and then converted to decibels. Only the values inside the red zone are used. (b) — The amplitude difference

between consecutive points of the time domain trace and its histogram. q is the quantum. (c) — Histogram

of 1000 bins computed with the linear values. (d) — Probability Density Function (PDF) of the quantization

noise, computed with an histogram of 100 bins, in blue. In red dots, an exponential distribution computed

with Eq. 2.4 and then normalized so that
∫
f(x)dx = 1. The horizontal axis of the figure is normalized by

the mean.
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Figure 2.10: Characterization of the interferometer: collected data. (a) — time domain traces. Sample

frequency (in samples per second) for each trace is shown in the figure. (b), top — a 20 microseconds trace

at 2.5 MS/s. (b), bottom — time tracing of the average voltage. There are a total of 2000 averages (each

of 20 µs) at 20 avg/s (total length of 100 seconds). The interferometer was built with a 50/50 splitter and

a 50/50 combiner. A vibration was induced to the interferometer’s fiber to show the full scale.
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Figure 2.11: Characterization of the interferometer: results. This spectrum corresponds to the grey trace

(sample frequency fs = 5 kS/s) in Fig. 2.10a.
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To conclude, some time average traces were collected. One of them is presented in Fig.

2.10b, where a vibration on the interferometer’s fiber was introduced to see the full scale

(∼ 22 mV).





Chapter 3

Results

In this chapter we present all the results obtained that characterize the FSL —waveforms,

Talbot planes, loop delay, chirp rates, correlation, etc.— and the digital processing meth-

ods used as well as some challenges faced when attempting to acquire the data. In all

figures, when talking about injection power we refer to the output power of the laser, so

that its linewidth can be directly retrieved from Fig. 2.6. The optical power feeding the

FSL is then 30 dB lower, see Fig. 1.1 for reference.

3.1 Waveforms

First, we characterize the Talbot planes by disconnecting the heterodyne detection, which

results in intensity traces like the ones shown in Fig. 3.1. For the measurement of

exact Talbot planes, this method is much more effective than heterodyning owing to the

visual clarity of the spectral lines—amplitude, spacing, and number of lines. The final

result is presented in Fig. 3.2, where a linear fit has been applied to the experimental

data obtaining the FSL’s round-trip time, τc = 183.034 ns (5.46 MHz), and the Talbot

integer for p/q = 0, k = 14. Notice the extremely good coefficient of determination

R2 = 0.9999992. Unfortunately, the round-trip time —which is equivalent to a length

of Lc = 36.6 m— is quite high and, consequently, the coherence decay between lines

starts to be significant at 17 lines for a Lorentzian lineshape, Eq. 2.1, and 36 lines for a

Gaussian lineshape, τcoh = 1
∆νFWHM

√
2 ln 2
π

[15]. Due to the frequency-to-time mapping,

this loss of coherence produces noticeable instability in the dispersed pulses’ tails, as will

be explained below.

Before presenting the resulting waveforms, a note on the DSO’s trigger must be discussed.

We observed that setting a high trigger would greatly —and artificially— increase the

chirp rate at lower frequencies as the amplitude of the initial pulse would be considerably

higher. In fact, the bandwidth of this high chirp rate zone would be very similar to the

bandwidth of this initial pulse. This phenomenon can be seen in Fig. 3.3.
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Figure 3.1: Intensity traces. (a) — Talbot plane 0: 76.504 MHz. (b) — Talbot plane 1/3: 78.327 MHz. In

both cases, EDFA’s pump current is 150 mA (fixed), AOFS’s RF level is −1 dBm, injection power is 8 dBm

and sample frequency is 20 GS/s. Peak at 6.66 = 20/3 GHz is due to the DSO’s internal clock. Notice the

PRRM by a factor of 3.
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Figure 3.2: Measured Talbot planes. The FSL’s round-trip delay results τc = 183.034 ns, the Talbot

integer for p/q = 0 is k = 14 and the coefficient of determination is R2 = 0.9999992, computed as

R2 = 1−
∑

i(yi−fi)
2∑

i(yi−ȳ)2
, where yi are the experimental p/q values, fi are the fitted values, and ȳ is the mean

of the experimental values. The smallest measured p/q value is 1/19 and the biggest (fractional) is 18/19.
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Figure 3.3: The effect of a high trigger in the DSO. (a) — High trigger. Frequency is 76.537 MHz, EDFA’s

Pump current is 100 mA (fixed), RF level is −1 dBm. (b) — Low trigger. Frequency is 76.560 MHz, EDFA’s

Pump current is 95 mA (fixed), RF level is −2 dBm. Both figures are a slight shift from Talbot plane 0

(76.504 MHz), the sample frequency is 20 GS/s and the injection laser power is 10 dBm. The top plots

show the time domain signals while the bottom plots show the Smoothed Pseudo Wigner-Ville Distribution

(SPWVD) with a 0 dB threshold.

Some heterodyne waveforms are presented in Fig. 3.4, where the pulse chirping due to

induced dispersion is apparent. In a typical configuration, the induced dispersion φ

takes a value of φ ∼ 2.8 × 105 ps/rad (computed for dispersed Talbot 0). Under such

a large dispersion, pulses undergo frequency-to-time mapping, so that the pulse profile

follows the optical spectrum. In words, the pulse’s amplitude content is a (inverted

or non-inverted) replica of the optical spectrum, and so the pulse’s peak is determined

by the wavelengths closer to the injected carrier whereas his tail is determined by the

most distant wavelengths. In this plot we also show the fact that the FFT (Fast Fourier

Transform) spectra for all these waveforms are the same. This FFT spectra coincides

with the optical spectra, and only differs by the slight change in frequency spacing. The

different types of temporal signals are due to the different spectral phases in the field’s

spectrum. The quadratic nature of the phase, which arises as a consequence of the high

dispersion undergone by the optical field, is shown in Fig. 3.6 and the SPWVD (Smoothed

Pseudo Wigner-Ville Distribution) of these waveforms are shown in Fig. 3.5a, where we

show chirp rates up to ∼2 GHz/ns and TBPs up to 68. This time-frequency energy

distribution is computed with function wvd of MATLAB’s Signal Processing Toolbox,

which uses the following equation for its computation:

SPWD(t, f) =

∫ +∞

−∞
g(t)H(f)x

(
t+

τ

2

)
x∗
(
t− τ

2

)
e−j2πfτdτ ,

where g(t) and H(f) are the time and frequency windows, respectively, and x(t) is the
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DC filtered analytic1 signal. For all computations, both windows are Kaiser windows

with shape factor 20. Compared to other time-frequency representations such as the

spectrogram (windowed Fourier Transform), the SPWVD enables the best possible res-

olution in both axis and minimizes the interference terms. Besides the SPWVD, the

chirps may also be analyzed with the instantaneous frequency —Fig. 3.5b—. This phase

jumps represent the capture of the pulse tails’ phase by the following pulse [9]. The

following MATLAB code shows this computation.

MatLab Example 3: Instantaneous frequency

analytic v = hilbert(v-mean(v));

inst freq = sampfreq/(2∗pi)∗diff(unwrap(angle(analytic v)));

We now discuss some considerations with regard to the chirp rates. There are three

possible ways to compute these, which we may denote as “theoretical 1”, “theoretical

2” and “experimental”. Both the “theoretical 1” and “theoretical 2” chirp rates are

computed as C = fs
2

δfsτc
, see Eq. 1.2. The difference relies on the computation of δfs.

In the case of the “theoretical 1” chirp rate, the frequency mismatch is obtained as

δfs = fs− k+p/q
τc

, with k and τc obtained with the linear regression performed in Fig. 3.2.

Here, one must be careful with the numerical precision of τc and, especially, k. Although

the ideal value of k is an integer, at least three decimal places should be used to calculate

δfs. The reason for this is the fact that δfs is in the kilohertz range, while fs and τc are

in the megahertz and nanosecond range, respectively. So,

δfs (kHz)× 10−3 = fs (MHz)− k + p/q

τc (ns)
× 103.

On the other hand, in the case of the “theoretical 2” chirp rate, the frequency mismatch

is simply computed as δfs = fs − fT , where fT is the frequency shift corresponding to

the exact Talbot plane which value is experimentally obtained (Fig. 3.2). Finally, the

“experimental” chirp rate is found by linear regression of the time-frequency distribution

of the acquired waveforms. Since these chirps are in the 1 ∼ 10 GHz/ns range, very

slight changes in the data sets used for the linear fit can yield significant different results.

Moreover, a slight change in these results may also yield significant changes in the relative

error with respect to the “theoretical 1” and “theoretical 2” methods. Additionally, we

found the dispersed fractional Talbot planes with higher q values to have a lower chirping

quality (some undulations may be seen in Fig. 3.5a), due to the fact that these waveforms

may experience significant inter-pulse interference, as can be seen in Fig. 3.5b. These

effects further contribute to the sensitivity of the linear regression model.

1The analytic signal is a complex signal whith the real part being the original waveform and the

imaginary part being its Hilbert transform.
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Figure 3.4: FSL heterodyne waveforms and their FFT spectra. (a) — Positive chirp. From top to bottom,

frequencies are 76.560 MHz, 79.260 MHz, 78.344 MHz, and 77.880 MHz. (b) — Negative chirp. From

top to bottom, frequencies are 76.448 MHz, 79.210 MHz, 78.310 MHz, and 77.860 MHz. Both figures

correspond to the dispersion of Talbot planes 0 (76.504 MHz), 1/2 (79.235 MHz), 1/3 (78.327 MHz), and

1/4 (77.870 MHz). Sample frequency is 20 GS/s, injection laser power is 10 dBm, EDFA’s pump current

is 95 mA (fixed), and RF level is −2 dBm. (c) and (d) — FFT spectra of waveforms in (a) and (b),

respectively. Spectra corresponding to dispersed Talbot planes 0 and 1/2 are computed from time traces

with a total duration of 500 ns (10002 samples) while spectra corresponding to dispersed Talbot planes 1/3

and 1/4 are computed from time traces with a total duration of 50 ns (1002 samples).
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Figure 3.5: SPWVD and instantaneous frequency of the chirped waveforms. (a) — SPWVD of the chirped

waveforms. (b) — instantaneous frequency. These time-frequency representations correspond to the wave-

forms presented in Fig. 3.4a plus the dispersed Talbot plane 1 (81.970 MHz) with frequency 82.030 MHz.

From top to bottom, the “theoretical 1” chirp rates are 0.570 GHz/ns, 1.404 GHz/ns, 1.763 GHz/ns, 3.213

GHz/ns, and 0.586 GHz/ns; the “experimental” chirp rates are 0.570 GHz/ns, 1.448 GHz/ns, 1.793 GHz/ns,

2.875 GHz/ns, and 0.601 GHz/ns; and the time-bandwidth products are 61, 66, 65, 68, and 68, computed

with the autocorrelation’s equivalent width, see appendix B.
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Figure 3.6: Quadratic phase of the heterodyne signal. Frequency is 76.560 MHz, which corresponds to the

dispersion of Talbot plane 0 (76.504 MHz). Sample frequency is 20 GS/s, injection laser power is 10 dBm,

EDFA’s pump current is 95 mA (fixed), and RF level is −2 dBm. The phase capture point is clearly visible

at around 12 ns.
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The instrumental resolution is 1 kHz, which means that the differential precision (i.e.

the error of the frequency mismatch) is εδ =
√

(1 kHz)2 + (1 kHz)2 =
√

2 kHz ≈
1.41 kHz. Since dispersed fractional Talbot planes with higher q values require lower

frequency mismatches —to reduce the chirp duration and, therefore, minimize inter-

pulse interference—, they will present higher relative errors (εr,δ = εδ
δfs

). For instance,

εr,δ (δfs = 40 kHz) = 3.5 %, while εr,δ (δfs = 10 kHz) = 14.1 %. Finally, in Table 3.1

we show the relative error between “experimental” and “theoretical 1” chirp rates, εr,

of some waveforms. Here, εr is computed with k = 14.002826 and τc = 183.034329 ns.

Notice how the error increases with q due to inter-pulse interference.

Table 3.1: Chirp rates.

fs(MHz)
Exact Talbot plane Chirp Rate (GHz/ns)

freq. (MHz) p/q theoretical 1 experimental εr (%)

76.560 76.504 0 0.570 0.570 0.01

79.260 79.235 1/2 1.404 1.448 3.05

78.344 78.327 1/3 1.763 1.793 1.69

77.880 77.870 1/4 3.213 2.875 11.77

82.030 81.970 1 0.586 0.601 2.47

Avoiding the lasing effect inside the loop has been a challenge throughout the project due

to the high gain of the EDFA. In Fig. 3.7 we show the FSL operating as a mode-locked

laser.

3.2 Autocorrelation

Following the nomenclature used in chapter 1, the complex envelope resulting from the

FSL is shown in Eq. 1.1. We may write

e(t) =
N−1∑
n=0

ene
j2πnfst, (3.1)

with en = gne
−jπfsτcn(n+1) the complex amplitude of the n-th harmonic —note that Eq.

3.1 is nothing but an Inverse Discrete Fourier Transform (IDFT). However, the detected

signal is s(t) = Re {e(t)} and, therefore, to obtain the analytic representation, one must

compute its Hilbert transform so that e(t) = s(t) + jH{s(t)}. Here we denote the real

part as Re {·}, the imaginary part as Im {·}, and the Hilbert transform as H{·}. The

validity of this reconstruction technique is justified by the observation that, from Eq.
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Figure 3.7: Lasing effect. Top plot shows the time domain signal while bottom plot shows the power

spectrum. Notice the spectral components multiples of 1/τc = 5.46 MHz and 1/ (2τc) = 2.73 MHz. The

latter are due to aliasing. Injection laser power is 13 dBm (−3 dB from an initial attenuator). Sample

frequency is 500 MS/s, EDFA’s pump current is 200 mA (fixed), AOFS’s frequency is 76.891 MHz, RF level

is −1 dBm. Peak at 500/3 = 166.66 MHz is due to the DSO’s internal clock.

3.1, the real part s(t) is composed of a discrete number of cosine functions of different

frequency, which under Hilbert transform directly leads to the sine part of the complex

exponential. The periodic autocorrelation function (PACF) of the field is, by definition,

Re(τ) = 〈e∗(t)e(t+ τ)〉 =

∫ 1/fs

0

e∗(t)e(t+ τ) dt, (3.2)

where 〈·〉 is the expected value operator, i.e. the ensemble average. In practice, this

computation can only be estimated since just one realization of finite length is available.

Using MATLAB’s xcorr function without any normalization, the estimator is

R̂xx(m) =

{∑N−m−1
n=0 x[n]∗x[n+m], m ≥ 0

R̂∗xx[−m], m < 0
,

with N the length of x, which in the case at hand is the complex envelope e(t). However,

this estimator is biased. For our purposes, this means that the PACF will present a

slow (artificial) decay towards higher lag values. By specifying an unbiased flag in this

function, the estimator is normalized so that

R̂xx,unbiased(m) =
1

N − |m|
R̂xx(m).

This removes the decay, but introduces high variance at higher lag values owing to the low

number of data points. The following MATLAB example shows a comparison of these
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two computations, where a complex field with 10 spectral lines of uniformly distributed

random phases has been simulated. To conclude with the bias problem, we mark that

a reasonable solution is to use the unbiased estimator and discard the last few periods

where the variance is high.

MatLab Example 4: Autocorrelation bias

N = 10;

fs = 80e6;

Fs = 20e9;

t = (0:1/Fs:20/fs)’;

E = zeros(length(t),1);

phi = rand(N,1)∗2∗pi;

for i=1:N

En = exp(1j∗(2∗pi∗i∗fs∗t + phi(i)));

E = E + En;

end

R = xcorr(E,E,’biased’);

R2 = xcorr(E,E,’unbiased’);

Biased (dB) Unbiased (dB)

Biased Unbiased

Even though the PACF in Eq. 3.2 is computed with the complex field, it may also be

computed with the real signal and then Hilbert-transformed, this is,

1

2
Re(τ) = Rs(τ) + jH{Rs(τ)}. (3.3)

Proof of this equation is shown in Appendix D. This is an important result, inasmuch

as the PACF can be computed in real-time directly with the DSO without loss of the

complex envelope. A visual representation is shown in Fig. 3.8a.

Although the PACF can be computed with the estimator (as we have stated), the issues

originated by it may be completely solved by developing a model for the PACF, which
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Figure 3.8: Simulated field’s PACF. (a) — Comparison of the modulus (blue), real part (red), and imaginary

part (yellow) of the PACF. (b) — Normalized PACF in dB, 10× log10 (|Re|). The peak-to-sidelobe level is

6.53 dB. These figures are the autocorrelation estimation of a simulated complex field with 10 spectral lines

of the same amplitude and uniformly distributed random phases. The visual representation of the Hilbert

transform in the periodic autocorrelation function is clearly visible, where the imaginary part is phase-shifted

by 90 degrees with respect to the real part.

we now present. The model —[10]— is based on the power decay of the spectral lines,

0 < ρ < 1, so that |en|2 = P0ρ
n, where P0 = |e0|2 is the power of the first line of the

comb. With a simple computation it is easy to see that

Re(τ) =
P0

fs

N−1∑
n=0

ρnej2πnfst =
P0

fs

1− ρNej2πNfsτ

1− ρej2πfsτ
. (3.4)

We now present our results in Fig. 3.9. As we can see, the model accurately represents

the estimation, but it does not predict the sidelobes due to fractional Talbot fields.

This is expected, as this model is an approximation for heterodyne detection, [10]. A

computation of the PSD from the PACF is shown in Fig. 3.9b to compare the simulation

and the experiment. We also attempted to improve the dynamic range of the PACF by

windowing the PSD. Although the simulation shows a 10 dB increase, the experiment

barely shows any improvement due to the high level of the noise floor. As demonstrated

in [9], this noise could be greatly reduced by band-pass filtering each individual spectral

line —assuming that a large enough number of temporal periods is available. However,

this windowing technique seems to suppress the secondary peaks due to fractional Talbot

field 1/2, which is shown in Fig. 3.10. In this digital processing, the power decay ρn was

corrected before the windowing (equalization). A simple MATLAB example of both

processes is shown below, where R is the already computed PACF, Fs is the sample

frequency, and N is the number of spectral lines.
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Figure 3.9: Autocorrelation. (a) — Normalized PACF of the experimental heterodyne signal (blue) and

simulated PACF (orange) for dispersed Talbot planes 0 and 1/2. Frequency shifts are fs = 76.560 MHz and

fs = 79.260 MHz, respectively. (b) — PSD of the experimental heterodyne signal (blue) and simulated PSD

(orange) for dispersed Talbot plane 0. Both traces are vertically shifted to improve visual clarity. Sample

frequency is 20 GS/s. The simulation parameters are ρ = 0.9731 and N = 84 for Talbot 0; and ρ = 0.9818

and N = 82 for Talbot 1/2. The values for ρ are obtained by fitting the FFT’s envelope of the experimental

signal. The simulation of the PACF is performed with Eq. 3.4

MatLab Example 5: Equalization of the PSD

f = linspace(0,Fs,length(R));

cond = f <= 6e9; cond2 = f > 6e9;

PSD = fft(R);

w = kaiser(length(PSD(cond)),5);

n = 1:N;

decay = rho.^n;

x = linspace(n(1),n(end),length(PSD(cond)));

decay = interp1(n,decay,x);

PSD2 = PSD(cond)./decay’;

PSD2 = [PSD2’ PSD(cond2)’]’;

PSD2(cond) = w.∗PSD2(cond);

cond3 = find(cond2);

PSD2(cond2) = PSD2(cond3(1)-1);

R2 = ifft(PSD2);

To conclude, we end with a table showing the values for (1) the autocorrelation’s central

peak width, (2) the TBP, and (3) the spatial resolution (Res.) in free space of waveforms
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Figure 3.10: The effect of windowing the PSD. In red, the PACF obtained as the inverse FFT of the windowed

and equalized PSD for dispersed Talbot 1/2 (fs = 79.260 MHz). In blue, the original PACF. Top plot shows

the simulation —computed with Eq. 3.4, ρ = 0.9818 and N = 82— and bottom plot shows the experiment.

The window used is a Kaiser window with β = 5 centered at 3 GHz. Notice the significant increase in

dynamic range of the simulation, but not on the experiment. However, the secondary peaks are suppressed.

corresponding to dispersed Talbot fields 0, 1/2, 1/3, 1/4, and 1. Two types of widths are

computed and compared, which result in slightly different TBPs and resolutions. The

effective (Eff.) or equivalent width is computed as shown in Eq. 5.14 in Appendix B

while the FWHM width is manually measured from the PACF’s width at −3 dB. We

can see that, although the FWHM is a good approximation, it gives worse results. The

best (ideal) resolution achievable is limited by our 6 GHz DSO, and is 1/ (6 GHz) = 2.5

cm. The maximum TBP also follows the same limitation but depends on the frequency

shift, fs, therefore it is shown in the table.

From the values presented, we mention that the best spatial resolution obtained (in free

space) is 2.71 cm, for the dispersed Talbot field 1; and the longest range (in free space) is

Table 3.2: TBPs and spatial resolutions in free space.

fs(MHz)
Exact Talbot ∆τ (ns) TBP Res. (cm)

freq. (MHz) p/q Eff. FWHM Eff. FWHM Ideal Eff. FWHM

76.560 76.504 0 0.215 0.238 60.7 54.8 78.4 3.23 3.58

79.260 79.235 1/2 0.190 0.218 66.3 57.8 75.7 2.85 3.28

78.344 78.327 1/3 0.195 0.210 65.3 60.8 76.6 2.93 3.15

77.880 77.870 1/4 0.190 0.204 67.6 62.9 77.0 2.85 3.06

82.030 81.970 1 0.181 0.198 67.5 61.5 73.1 2.71 2.98
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Figure 3.11: Resolution in free space. Zoom into the central peak of the PACF for dispersed Talbot 1

(fs = 82.030 MHz). In blue, the unbiased estimator of the experimental PACF; in orange, the simulated

PACF computed with Eq. 3.4 (ρ = 0.9882 and N = 76).

1.9592 m, for dispersed Talbot field 0 —determined by 1/fs. Additionally, in Fig.3.11 we

zoom into the PACF’s central peak for dispersed Talbot field 1 as an example, illustrating

its resolution.

A very simple example for these computations is shown below, where v is the real elec-

trical signal, Fs is the sample frequency, and fs is the frequency shift of the FSL.

MatLab Example 6: TBP, resolution, and range

R = xcorr(hilbert(v-mean(v)),hilbert(v-mean(v)),’unbiased’);

tau = linspace(-t(end),t(end),length(R))’∗fs;

BW = sum(abs(R(tau>=-0.5 & tau<0.5)).^2)/(R(tau==0)^2)/Fs;

TBP = 1/(fs∗BW);

resolution = BW∗3e8/2;

range = 1/fs∗3e8/2;





Chapter 4

Conclusions

We have presented an implementation of acousto-optic frequency shifting loops, and

studied its use as an optical waveform generator based on an all-fiber optical frequency

comb. These systems represent a simple yet versatile, flexible, and cost-effective solution

for pulse compression in the optical coherent domain built from a single continuous wave

laser. Thanks to the one-sided spectrum of the output field, the approximate complex

envelope can be easily retrieved with a single detector by means of heterodyning and

Hilbert-transforming —while still allowing for the determination of the exact field with

balanced detection.

The resulting comb’s spectra, whose line spacings lay around 80 MHz and are determined

by the RF signal driving the AOFS, are limited by our digital storage oscilloscope’s band-

width —6 GHz— and present a number of spectral lines close to 80. With pulse durations

in the 10 ns scale, optical waveforms having time-bandwidth products in excess of 60

have been demonstrated. In ranging applications, this system is able to provide, after

matched-filter detection, resolutions of ∼ 2.7 cm in free space in an unambiguous range

of 2 m, together with peak-to-sidelobe levels of ∼ 15 dB, which cannot be increased

through windowing techniques due to the high level of the noise floor. However, win-

dowing the power spectral density has been shown to remove the secondary peaks due

to fractional Talbot conditions.

These figures, however, can be improved, as has been demonstrated in the literature.

Bandwidths of several tens or even hundreds of GHz can be achieved. This, together

with arbitrary line spacings using electro-optic modulators or dual-comb techniques,

may result in >1000 lines. Moreover, pulse durations in the µs-scale result in time-

bandwidth products that are also in the hundreds. Digital denoising methods have been

proven to greatly increase the overall quality of the waveforms and the dynamic range

of the autocorrelation. In ranging experiments, these systems would be able to provide

millimeter resolution at kilometer distances.

As discussed in the text, some direct and evident improvements can be incorporated

to our system. The list includes the incorporation of a low noise (and lower gain)
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optical amplifier to reduce the total amount of ASE noise within the loop, the increase

in detection bandwidth by use of a high-bandwidth DSO, the reduction of coherence

issues with a laser source with sub-kHz linewidth, or shortening the total loop length to

increase its thermal stability and also improve the coherence of the resulting frequency

comb.

In summary, these fiber loops represent an important and useful alternative for opti-

cal waveform generation, with demonstrated application in photonic signal processing,

including real-time Fourier transformation, electrical waveform generation, spectral esti-

mation, and the particular scenario analyzed here, namely broadband optical waveform

generation for its application in optical metrology systems [16, 17] based on pulse com-

pression.



Chapter 5

Appendices

A Talbot effect

The purpose of this appendix is to give understanding of the Talbot effect in fiber optics

[8, 18]. Therefore, only the necessary concepts for this goal are explained, focusing

merely on their specific application to this phenomenon. To understand the temporal

fractional Talbot effect, we first show its spatial integer counterpart.

Fresnel Diffraction

Let us consider the Fresnel diffraction integral as an approximation to the Kirchhoff-

Fresnel diffraction for near-field in free space

E(x′, y′, z) =
1

jλ0

∫∫ +∞

−∞
E(x, y, 0)

ejk0r

r

z

r
dx dy. (5.1)

This expression models the diffraction pattern created by waves propagating in z and

passing through an aperture, where E(x, y, 0) is the electric field at the aperture, k0 =

2π/λ0 is the wavenumber, r =
√

(x− x′)2 + (y − y′)2 + z2, and j =
√
−1 is the imagi-

nary unit. We may introduce the Fresnel approximation (x− x′)2 + (y− y′)2 � z2, that

is, a small aperture compared to the distance z. This allows us to rewrite Eq. 5.1 as

E(x′, y′, z) =
ejk0z

jλ0z

∫∫ +∞

−∞
E(x, y, 0)e

jk0
2z [(x−x′)2+(y−y′)2] dx dy.

For our purpose, we will also assume paraxial propagation so that (y − y′)2 ≈ 0 and

forgo the dependence of z to ease the notation. Thus,

E(x′) =
ejk0z

jλ0z

∫ +∞

−∞
E(x)e

jk
2z

(x−x′)2 dx =
ejk0z

jλ0z
e(x), (5.2)
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where e(x) is the complex envelope of the spherical wave originated in z, ejk0z

jλ0z
. For

simplicity, we will work with these envelopes instead of the total field.

We can see that Eq. 5.2 represents the propagation of a wave through an aperture as

an LTI (Linear Time-Invariant) filter model and may, therefore, be expressed as the

convolution of the initial field with the impulse response h of the aperture:

e(x′) = e(x) ∗ h(x)

and

h(x) = e
j π
λ0z

x2
.

In the frequency domain, E ′(ν) = E(ν)H(ν), where

H(ν) = F{h(x)} = jλ0ze
−jπλ0zν2

is the transfer function, F{·} denoting the Fourier Transform. Note that the term jλ0z

will cancel out in the resulting total field, hence we will employ the notation

H(ν) ≡ e−jπλ0zν
2

.

This quadratic dependence of the phase with ν is the key to the Talbot effect.

Spatial integer Talbot effect

Consider the situation shown in Fig. 5.1. This is the case of a periodic amplitude grating

that we will assume to be infinite and of spatial period P and alternating amplitude 0

or 1.

The function t(x) describes this spatial structure so that the complex envelope created at

the grating is e(x) = e0t(x). Due to the periodicity of the grating, t(x) can be expressed

as a Fourier series with real coefficients ck as

t(x) =
∑
k

cke
j2π k

P
x.

The Fourier Transform of this function results T (ν) =
∑

k ckδ(ν −
k
P

), which means that

the spectrum of the complex envelope of the electric field at a certain distance z from

the aperture plane is given by

T ′(ν) =
∑
k

ckδ(ν −
k

P
)e−jπλ0z

k2

P2 .

Hence, when the phase difference among consecutive deltas is constant and equal to nπ

(with n integer), whereby they are coherent, the image at z will be an exact copy of the
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Figure 5.1: Diffraction of a wave on an amplitude grating, resulting in a self image at a certain distance.

original structure, known as self image. Following this reasoning, we can determine the

specific distances for which this phenomenon holds:

∆θ ≡ πλ0z
(k + 1)2

P 2
− πλ0z

k2

P 2
= mπ,

πλ0z
1

P 2
(2k + 1) = mπ,

λ0z
1

P 2
l = m, l ∈ Zodd.

Therefore,

λ0z
1

P 2
= n

and, finally, the Talbot integer condition

z = n
P 2

λ0

.

In the literature, the basic Talbot length is usually defined for n = 2 so that the compo-

nents are in phase,

z̃T =
2P 2

λ0

.

However, one can also find the condition that includes both even and odd integers, that

is, for n = 1 so that the components are in antiphase,

zT =
P 2

λ0

.
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We shall consider this shifted condition in our work.

It must be reinstated that these expressions only hold when λ � z so that the Fresnel

approximation is valid, which is the case when working with optical wavelengths. If the

object is periodic but finite, the spectral components of the complex envelope will not be

Dirac deltas but rather have a certain width. As long as the phase behaves linearly inside

that width, the Talbot effect will be present. As shown in the next section, distances

that are rational multiples of these Talbot lengths will also feature copies of the object,

but with different period and amplitude.

In conclusion, the basis of the Talbot effect relies on the relationship —integer, fractional,

or even fractal— between the phases of each component of a comb —or comb-like—

spectrum of some complex periodic structure. This manifests as copies of the original

object.

Temporal Talbot effect in fiber optics

Talbot condition and transfer function

Let us consider a modulated optical wave with carrier angular frequency ω0 and electric

field E(t) = e(t)ejω0t, where e(t) is its periodic complex envelope of period T . This

wave propagates inside an optical fiber whose transfer function may be modeled as

H(ω) = e−jΦ(ω) = e−jβ(ω)L. Then, the output field is

e′(t) =
1

2π

∫ +∞

−∞
E(ω)H(ω)ejωtdω, (5.3)

the inverse Fourier Transform of its spectrum E ′(ω) = E(ω)H(ω). We may perform a

Taylor expansion of β(ω) around the carrier,

β(ω) = β0 + β′0(ω − ω0) +
1

2
β′′0 (ω − ω0)2 + · · · ,

where β
(n)
0 denotes dnβ

dωn

∣∣∣
ω=ω0

. For single mode fiber operating at third window (λ0 = 1550

nm), β(ω) can be approximated —with high accuracy— by truncating at the quadratic

term, that is, β(ω) ≈ β0 + β′0(ω − ω0) + 1
2
β′′0 (ω − ω0)2. With this, Eq. 5.3 results

e′(t) =
1

2π
ej(ω0t−β0L)

∫ +∞

−∞
E(ω0 + η)ejηte−jβ

′
0Lηe−j

1
2
β′′
0Lη

2

dη,

where η = ω− ω0, the envelope’s angular frequency. Note that β0L is the delay suffered

by the carrier and β′0L is the group delay, τg, which we assume to be constant. Therefore,

with Ẽ(η) = 1
2π
E(ω0 + η)ej(ω0t−β0L) we may write

e′(t− τg) =

∫ +∞

−∞
Ẽ(η)ejηte−j

β′′0 L
2
η2dη. (5.4)
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Let us recall that the envelope is periodic with period T , hence η ≡ ωm = 2πm
T

. As in

the previous section, we may ask ourselves what happens if the quadratic phase term

is of the form nπ or p
q
π, n being integer and p and q being mutually coprime positive

integers. Defining φ , β′′0L = |φ|σφ, where σφ is the sign of φ, then

e−j
β′′0 L
2
η2 = e−jφ

ω2m
2 = e−j|φ|σφ2π2m2

T2 = e−jσφπ
p
q
m2

(5.5)

and the Talbot condition is

2π|φ| = p

q
T 2 . (5.6)

Note that this is possible because ejπm
2

= (−1)m
2 ≡ (−1)m = ejπm, m ∈ Z. From Eq. 5.4

and Eq. 5.5 we can see that the transfer function that describes the periodic envelope’s

propagation is

H(ωm) = e−jσφπ
p
q
m2

. (5.7)

To conclude, notice that Eq. 5.6 relates the dispersion in a fiber with the period of the

initial train. This, for instance, allows us to compute the specific frequencies that would

be needed to satisfy certain fractional Talbot conditions given a total dispersion value,

or the necessary fiber length for a given modulation frequency and dispersion coefficient.

Fractional Talbot and Gauss sums

Now, let us express the envelope as the repetition of a certain function w(t) that is

contained in a period, 0 ≤ w(t) < T :

e(t) =
+∞∑

n=−∞

δ(t− nT ) ∗ w(t),

where ∗ denotes convolution. We know that, in the spectral domain, E ′(ω) = E(ω)H(ω),

whereby, using Eq. 5.7, the spectrum of the output envelope results

E ′(ω) =
1

T

+∞∑
m=−∞

δ(ω − ωm)e−jσφπ
p
q
m2

W (ω).

Therefore, using the Poisson summation formula1,

e′(t) =
+∞∑

m=−∞

e−jσφπ
p
q
m2

δ(t−mT ) ∗ w(t) =
1

T

+∞∑
m=−∞

e−jσφπ
p
q
m2

ej2πm
t
T ∗ w(t). (5.8)

1
∑

n f(n) =
∑

k f̂(k), where f̂ is the Fourier Transform of f .
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The goal is to find an equivalent expression to Eq. 5.8 that shows e′(t) as a repetition of

w(t) (the final result is shown in Eq. 5.10). For that purpose, we define the repetition

function as

r(t) =
1

T

+∞∑
m=−∞

e−jσφπ
p
q
m2

ej2πm
t
T

so that e′(t) = r(t) ∗ w(t).

First we compute the decomposition of the sum by changing the index m = −∞, . . . ,+∞
to m = nq+l, where n = −∞, . . . ,+∞ and l = 0, . . . , q−1, both integers. It is important

to notice that l = m (mod q). With this change, we are arranging Z into sets of q terms

as shown in Eq. 5.9.

m = −∞, . . . , 0, . . . , kq − 1, kq, . . . , (k + 1)q − 1︸ ︷︷ ︸
n=k

, (k + 1)q, . . . ,+∞ (5.9)

Infer that the value for l is the same for the ith element in each set. Hence, to perform

the sum for all m, we may first sum the ith element for every n (every set) and repeat

the process for all l (all the elements in each set):

+∞∑
m=−∞

Am =

q−1∑
l=0

(
+∞∑

n=−∞

Anq+l

)
.

Thus,

r(t) =
1

T

q−1∑
l=0

+∞∑
n=−∞

e−jπσφ
p
q

(nq+l)2ej2π(nq+l) t
T

=
1

T

q−1∑
l=0

+∞∑
n=−∞

e−jπσφ
p
q
l2e−jπσφ2plne−jπσφpqn

2

ej2πl
t
T ej2πnq

t
T .

The term e−jπσφ2pln is always equal to 1 since it is of the form e−j2πk with k ∈ Z.

Additionally, the term e−jπσφpqn
2

can be simplified as follows:

e−jπσφpqn
2

= (−1)σφpqn
2

= (−1)σφpqn = (−1)pqn = (−1)epqn = e−jπepqn,

where epq is the parity of the product pq,

epq =

{
0, pq even

1, pq odd
.

Then, r(t) is:

r(t) =
1

T

q−1∑
l=0

e−jπσφ
p
q
l2ej2πl

t
T

+∞∑
n=−∞

e−jπepqnej2πnq
t
T .
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We can manipulate the summation over n with, again, Poisson formula, noticing that

e−jπepqn is just a epq
2
T time shift:

1

T

+∞∑
n=−∞

e−jπepqnej2πnq
t
T =

1

q

+∞∑
k=−∞

δ(t− epq
2
T − kT

q
)

=
1

q
δ(t− epq

2
T ) ∗

+∞∑
k=−∞

δ(t− kT
q

).

Because f(x)δ(x− x0) = f(x0)δ(x− x0), then

r(t) =
1

q

q−1∑
l=0

[
e−jπσφ

p
q
l2

+∞∑
k=−∞

ej2πl(
epq
2

+ k
q

)δ(t− epq
2
T − kT

q
)

]

= δ(t− epq
2
T ) ∗

+∞∑
k=−∞

[
δ(t− kT

q
)
1

q

q−1∑
l=0

e−jπσφ
p
q
l2ejπlepqej2πl

k
q

]
,

which means that the complex envelope is

e′(t) = δ(t− epq
2
T ) ∗ 1

√
q

+∞∑
k=−∞

ejσφξkδ(t− kT
q

) ∗ w(t) (5.10)

where the phases of Eq. 5.10 are given by the following Gauss sums:

ejσφξk =
1
√
q

q−1∑
l=0

e−jπσφ
p
q
l2ejπlepqej2πl

k
q

=
1
√
q

q−1∑
l=0

e−jπσφ
p
q
l2(−1)pqlej2πl

k
q

=
1
√
q

q−1∑
l=0

e−jπσφ
p
q

(1+qeq)l2ej2π
lk
q .

(5.11)

In the last part of Eq. 5.11 we have used (−1)pql = (−1)peql
2σφ . Finally, we can see

that the periodic complex envelope at the output is a repetition of w(t) (as the original

envelope was) but (1) weighted with 1√
q
, (2) with repetition period T

q
, (3) shifted T

2
if

the parity of the product pq is odd, and (4) with phases ejσφξk that follow Gauss sums.

The factor 1√
q

is introduced in these sums so that they are unitary and, therefore, only

contribute to the phase. Let us further develop these phases.

With Xq[l] = e−jπσφ
p
q
l2ejπlepq and xq[k] = 1

q

∑q−1
l=0 Xq[l]e

j2πl k
q we can see that Xq[l] and

xq[k] are a DFT (Discrete Fourier Transform) pair. Let us prove that Xq[l] is q periodic,

that is, Xq[l] = Xq[l + q]:
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Proof. We have that

Xq[l + q] = e−jπσφ
p
q

(l+q)2ejπ(l+q)epq = e−jπσφ
p
q
l2e−jπσφ2ple−jπσφpqejπlepqejπqepq .

Since, e−jπσφ2pl is always equal to 1 and ejπqepq = ejπpq
2

= ejπpq, then

Xq[l + q] = e−jπσφ
p
q
l2ejπlepqe−jπσφpqejπpq = e−jπσφ

p
q
l2ejπlepqejπpq(1−σφ).

Now, ejπpq(1−σφ) is always equal to 1 since the phase is either 0 (σφ = 1) or a multiple of

2π (σφ = −1). Hence,

Xq[l + q] = e−jπσφ
p
q
l2ejπlepq = Xq[l].

Let us use Theorem 1 from [8], this is:

Theorem. Given two coprime and positive integers, p and q, there exists a unique integer

s, verifying

(a) s lies in the range 1 ≤ s ≤ 2q − 1,

(b) s is a solution of the congruence:

sp = 1 + qeq (mod 2q),

(c) s has opposite parity to q,

(d) s is coprime with q.

From this theorem, it follows that

s =


[

1
p

]
2q
, q even

2
[

1
2p

]
q
, q odd

,

where
[

1
a

]
b

denotes the inverse of a (mod b).

Since s and q are coprime, the set {sm | m = 0, . . . , q − 1} is a complete set of residues

modulus q. Due to the periodicity shown, we may perform the change l = sm in Eq.
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5.11 and then sp = 1 + qeq, leading to

ejσφξk =
1
√
q

q−1∑
m=0

e−jπσφ
p
q

(1+qeq)s2m2

ej2π
smk
q

=
1
√
q

q−1∑
m=0

e−jπσφ
s
q

(1+qeq)2m2

ej2π
smk
q

=
1
√
q

q−1∑
m=0

e−jπσφ
s
q
m2

ej2π
smk
q

=
1
√
q

q−1∑
m=0

e−jπ
s
q

(σφm
2−2km).

Completing to the square of a sum,

ejσφξk =
1
√
q
ejπσφ

s
q
k2

q−1∑
m=0

e−jπσφ
s
q

(m−σφk)2 ,

and note that

ejσφξ0 =
1
√
q

q−1∑
m=0

e−jπσφ
s
q
m2

.

Due to the periodicity and symmetry of these Gauss sums and the symmetry property

of the DFT, it can be shown that

ejσφξk = ejσφξ0ejπσφ
s
q
k2 .

Also, according to the parity of q, ejσφξ0 can be written as

ejσφξ0 =



(
s

q

)
ej

π
4

(q−1), q odd

(
q

s

)
e−j

π
4
s, q even

.

where
(
a
b

)
denotes the Jacobi symbol.

Finally, we may conclude that the complex envelope is

e′(t) =
1
√
q

+∞∑
k=−∞

w(t− kT
q
− epq

T

2
)ejσφξk ,

which means that the new period is T/q and that it is shifted by half a period when

both p and q are odd. Therefore, if w(t) (which was contained in a period, T ) is nonzero
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Figure 5.2: Examples of fractional Talbot effect in a unit cell for p/q = 1/5 and p/q = 1/4. The original

pulse duration in (a) and (b) is T/2 and, therefore, show overlap, while the duration in (c) and (d) is T/(2q),

resulting in a PRRM.

in the range [T/q, T ) or (T/q, T ], there will be pulse superposition. Some examples for a

rectangular pulse are shown in Fig. 5.2a and 5.2b. Pulse Repetition Rate Multiplication

(PRRM) will then take place when

supp w(t) ∈
[
0,
T

q

)
or supp w(t) ∈

(
0,
T

q

]
,

where

supp f(x) = {x ∈ R | f(x) 6= 0} .

Examples of PRRM are shown in Fig. 5.2c and 5.2d.
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B Time-Bandwidth Product

Let us begin with some general results; they can be consulted, for instance, in the

book by Levanon and Mozeson [19]. Let us consider a (baseband) pulse p(t), in general

complex, such that supp p(t) ∈ [0, a] for some time scale a. It is assumed an energy-

type signal, with energy Ep =
∫ a

0
|p(t)|2dt and Fourier spectrum P (f). The (two-sided)

energy spectral density is Se(f) = |P (f)|2, with f the Fourier frequency. In terms of the

spectrum, the energy is Ep =
∫ +∞
−∞ Se(f)df .

As is well known, the matched filter optimizes its detection in AWGN (Additive White

Gaussian Noise) with noise spectral density N0, so that the output SNR, evaluated a

seconds after the entrance of the pulse, is bounded by:

SNRa ≤
2Ep
N0

. (5.12)

The bound is attained by the matched filter, h(t) = p∗(a − t). The output d(u) of this

filter is given by:

d(u) = h(u) ∗ p(u) =

∫ +∞

−∞
p(t)h(u− t) dt =

∫ a

0

p(t)p∗(t− u+ a) dt.

This output can be expressed in terms of the pulse’s autocorrelation, defined as:

Rp(u) =

∫ +∞

−∞
p(t)∗p(t+ u) dt = Rp(−u)∗

so that the output is the autocorrelation delayed by the integration time a,

d(u) = Rp(u− a).

If the output is sampled after a seconds, it gives the pulse energy, Rp(0) = d(a) = Ep. In

fact, this is the highest value that the autocorrelation can attain, since |Rp(u)| ≤ Rp(0).

Also, recall that the autocorrelation is the Fourier transform of the spectrum (Wiener-

Kintchine theorem):

Rp(u) =

∫ +∞

−∞
Se(f) ej2πfu df.

In general, one is interested in a situation where p(t) is a radar pulse. Then, one can

assume that the instantaneous power |p(t)|2 is a peaked function, which reaches a maxi-

mum for some time in the interval [0, a]. We define the peak power as Ppeak = max |p(t)|2.

The temporal duration of the pulse is now defined as:

T =
1

Ppeak

∫ a

0

|p(t)|2 dt. (5.13)
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Figure 5.3: Schematic of the autocorrelation peak.

With this definition, the relationship between (peak) power and pulse energy is simply

Ep = PpeakT . From this it is clear the first lesson in radar theory: systems are usually

limited by (peak or average) power, so that in order to increase the SNR for given Ppeak

and N0 one must increase the temporal extent of the probe pulses.

The pulse bandwidth, in turn, can be defined in several ways, such as 3 dB decay in

power, equivalent bandwidth, or bandwidth between nulls in the energy spectral density.

There’s a nice exposition of all these bandwidth definitions in the book by Soliman and

Srinath [20]. All of them differ by a factor of the order of unity that depends on the type

of pulse model under consideration. A particularly suitable definition of bandwidth, for

the present purposes, is the following effective bandwidth:

B =

[∫ +∞
−∞ Se(f)df

]2

∫ +∞
−∞ S2

e (f)df
=

E2
p∫ +∞

−∞ S2
e (f)df

.

The reason for this choice will be clear soon.

Though the maximum value of the SNRa (Eq. 5.12) at u = a does not depend on the

pulse form p(t), only on its energy, the form of the autocorrelation does depend on it.

In Fig. 5.3 there is a schematic image of the situation.

Of particular relevance is the width ∆u of the autocorrelation peak, as this value deter-

mines the resolution of the radar system. Using the same type of definition as in Eq.

5.13 we have:

∆u =
1

Rp(0)2

∫ +∞

−∞
|Rp(u)|2du. (5.14)

Using the Parseval theorem, this can be alternatively expressed as:

∆u =
1

E2
p

∫ +∞

−∞
Se(f)2df
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(a) (b)

Figure 5.4: Schematic of arbitrary periodic waveforms.

and we find that the autocorrelation width is directly the inverse of the bandwidth,

∆u =
1

B
.

This is the reason for the aforementioned choice. Now, we define the compression ratio

as the ratio between the temporal spread of the pulse and the temporal width of the

autocorrelation, i.e., the temporal width of the pulse after compression:

T

∆u
= TB.

The compression factor represents the natural figure of merit of the pulse compression

process and always equals the TBP product (with these definitions of T and B). Usually

both terms (compression factor and TBP) are used as synonyms. High T implies (for a

given peak power), high SNR; and high B implies high resolution.

Let us now consider a more general situation: a matched filter acting over a periodic

probe waveform. In fact, this is not the most general situation: one can consider a

sequence of, say, M equal pulses and try to detect them with a global matched filter.

Levanon discusses these cases. But for our purposes this scenario will be sufficient.

In this case, a periodic signal x(t) is composed of fundamental unit cells, each described

by our previous function p(t). Mathematically:

x(t) =
+∞∑

k=−∞

p(t− ka).

We have assumed that the fundamental period is a. Here we may consider situations

where the periodic probe is composed of pulses or of more general waveforms, a fact that

is schematically illustrated in Fig. 5.4.

In this case, one can define the pulse width T as before, in terms of the peak power.

But now one is also free to refer the pulse width T ′ to the average power, P = Ep
a

=
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1
a

∫ a
0
|p(t)|2dt. In this case Ep refers to the energy contained in a single period. This new

temporal duration now coincides with a, since

T ′ =
1

P

∫ a

0

dt |p(t)|2 = a.

Notice that both definitions are interchangeable, since:

T ′ = T
Ppeak

P
.

In practice, the interesting waveforms are those with a low peak-to-sidelobe ratio, or

ideally,
Ppeak

P
≈ 1, as this can be more easily amplified. From now on we use T ′ and avoid

the use of a. The signal is periodic, and it can be expanded in Fourier series as:

x(t) =
∑
n

Xne
j2πn t

T ′ . (5.15)

The power spectral density is now given by:

Sp(f) =
∑
n

|Xn|2δ(f − n/T ′) ≡
∑
n

Pnδ(f − n/T ′),

where Pn = |Xn|2 is the power of the n-th spectral line. Correlation detection is imple-

mented by matching the periodic input with h(t) = p∗(T ′ − t), as before. The output is

a periodic autocorrelation:

Rp(u) =
1

T ′

∫ T ′

0

p(t)∗x(t+ u) dt. (5.16)

The periodic autocorrelation is also a periodic function. Substituting Eq. 5.15 in Eq.

5.16, one readily sees that again the autocorrelation is the Fourier transform of the power

spectrum:

Rp(u) =

∫ +∞

−∞
Sp(f)ej2πfu df =

∑
n

Pne
j2πn t

T ′ . (5.17)

Also, the autocorrelation at zero lag is the total (average) power: Rp(0) =
∑

n Pn = P .

We finally compute the autocorrelation’s width, as in the previous example:

∆u =
1

Rp(0)2

∫ T ′

0

|Rp(u)|2du.

Inserting the last form of Eq. 5.17 we are led to:

∆u = T ′
∑

n P
2
n

[
∑

n Pn]2
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so that the TBP product or compression ratio is

T ′

∆u
= T ′B =

[
∑

n Pn]2∑
n P

2
n

≡ Neff,

where we have defined the effective number of spectral lines, Neff. This definition is

equivalent to considering that the bandwidth is given by B = Neff/T
′. The nomenclature

of Neff is justified by the fact that, if there is a finite number of spectral lines N , it is

necessary that Neff ≤ N , the bound being saturated when all the lines carry the same

power. This justifies the statement that for a periodic waveform, the TBP or compression

ratio equals the number of lines in the optical comb.
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C Self-heterodyne method for linewidth measurement

In most lasers, the dominant noise source is spontaneous emission which, as a simple

model, may be regarded as emitted photons with the same frequency ν0 but uniformly

distributed random phases φk in [0, 2π), a stationary process. It can be shown that

the variance of the electric field’s total phase θ is σ2
θ = N

2n̄
, hence proportional to the

number of spontaneous emissions N , n̄ being the beam’s average number of photons.

This follows a process known as random walk, of which the mean is zero. Because the

number of spontaneous emissions is proportional to time, that is, N(t) = nsp
τc
t, where nsp

is the population inversion factor and τc is the cavity lifetime, the phase’s variance will

then increase linearly with time:

σ2
θ(t) =

nsphν0

2τc2Pout
t ≡ αt,

Pout = n̄hν0
τc

being the laser’s power output. Since the derivative of phase changes is

equivalent to frequency changes, then this corresponds to white frequency noise of which

the PSD (Power Spectral Density) is α. Therefore, the PSD of phase noise results f−2:

Sθ (f) =
α

|j2πf |2
=

nsphν0

8π2τc2Pout

1

f 2
.

From this, and assuming Gaussian differential phase ∆θ = θ(t + u) − θ(t) fluctuations,

it can be proven that the correlation of the electric field is

RE (u) = A2
0e
j2πν0u−π∆ν|u|

and, according to Wiener–Khintchine theorem, the PSD of the total electric field is

Lorentzian:

Se (ν) = A2
0

2/π∆ν

1 +
[

2(ν−ν0)
∆ν

]2 .

∆ν has been defined as ∆ν = α
2π

and A0 is the amplitude of the total electric field of

which the time fluctuations have been assumed to be negligible. Therefore, the power

spectrum of a laser governed by spontaneous emission noise has a Lorentzian shape.

We can then see that ∆ν is the FWHM (Full Width at Half Maximum) of the laser’s line

shape which can be expressed as a function of the resonator mode’s FWHM, ∆νR = 1
2πτc

,

as

∆ν =
πnsphν0 (∆νR)2

Pout
. (5.18)

This is the well-known Schawlow-Townes equation.
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In a Mach-Zehnder interferometer —Fig. 2.4—, the measured magnitude is the pho-

tocurrent iph(t). This photocurrent is proportional to the intensity of the field, iph (t) =

Ri′ (t) = R|e′(t)|2, where R is the responsivity of the PD (Photodiode) and e′ (t) is the

electric field at the PD’s input, which is the sum of the electric field on the frequency

shifted arm ef0 (t) plus the electric field on the delayed arm eτ0(t).

If we compute the ensemble average of this photocurrent, we can see that the interference

term cancels out only if ∆ν |τ0| � 1, therefore in incoherence regime:

〈iph(t)〉
R

= Af0
2 + Aτ0

2,

Af0 and Aτ0 being the amplitude of the electric field in each arm.

Assuming that 〈iph(t)〉 is DC blocked, let us find the correlation to be

〈iph(t)iph(t+ u)〉 = 2R2Af0Aτ0〈 cos [2πf0t+ θ (t)− θ (t− τ0)]×
cos [2πf0(t+ u) + θ (t+ u)− θ(t+ u− τ0)]〉,

where f0 is the frequency shift, that is, νout = ν0 + f0. Thus, this photocurrent is

statistically nonstationary, and an additional temporal averaging is required. It can be

shown that this results in:

〈iph(t)iph(t+ u)〉 = R2Af0Aτ0 cos
(
ej2πf0te−2π∆ν|u|) .

And, finally, using the Wiener–Khintchine theorem for nonstationary processes, its PSD:

Siph (f) =
1

2
R2A2

f0
A2
τ0

1/π∆ν

1 +
[
f−f0
∆ν

]2
Therefore, the resulting spectrum is of Lorentzian shape with double FWHM. This means

that the HWHM (Half Width at Half Maximum) of the measurements corresponds di-

rectly to the FWHM of the laser’s linewidth.
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D Proof of equation 3.3

The goal is to proof Eq. 3.3, this is

2Re(τ) = Rs(τ) + jH{Rs(τ)}. (5.19)

Proof. We begin with the output complex field of the FSL,

e(t) =
N−1∑
n=0

ene
j2πnfst,

and its periodic autocorrelation function (PACF),

Re(τ) = 〈e∗(t)e(t+ τ)〉 =

∫ 1/fs

0

e∗(t)e(t+ τ)dt.

Performing this computation,

Re(τ) =
N−1∑
k=0

N−1∑
p=0

∫ 1/fs

0

e∗kepe
−j2πkfstej2πpfs(t+τ)dt

=
N−1∑
k=0

N−1∑
p=0

ej2πpfsτ
∫ 1/fs

0

e∗kepe
−j2π(k−p)fstdt

=
1

fs

N−1∑
k=0

|ek|2 ej2πkfsτ

where, in the last part of the equation, it has been used the fact that Re(τ) = 0 for

k 6= p. This is the well-known Wiener–Khintchine theorem.

Now, we define

s(t) = Re {e(t)} =
N−1∑
n=0

|en| cos (2πnfst+ φn),

with φn the phase of en, and compute its PACF:

Rs(τ) =

∫ 1/fs

0

s(t)s(t+ τ)dt

=
N−1∑
k=0

N−1∑
p=0

∫ 1/fs

0

|ek| |ep| cos (2πkfst+ φk) cos (2πpfs (t+ τ) + φp)dt

,

using the same procedure as before,

Rs(τ) =
1

2fs

N−1∑
k=0

|ek|2 cos (2πkfsτ).
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It is easy to see, now, that

Rs(τ) =
1

2
Re {Re(τ)},

therefore, if we compute Rs(τ) + jH{Rs(τ)}, where H{·} denotes the Hilbert transform,

we get

Rs(τ) + jH{Rs(τ)} =
1

2fs

N−1∑
k=0

|ek|2 cos (2πkfsτ) + j
1

2fs

N−1∑
k=0

|ek|2 sin (2πkfsτ)

=
1

2fs

N−1∑
k=0

|ek|2 ej2πkfsτ

=
1

2
Re(τ).





References

[1] H. Guillet de Chatellus, L. R. Cortés, C. Schnébelin, et al., “Reconfigurable pho-
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