UNIVERSIDAD MIGUEL HERNÁNDEZ DE ELCHE

ESCUELA POLITÉCNICA SUPERIOR DE ELCHE GRADO EN INGENIERÍA MECÁNICA

"DISEÑO Y ANÁLISIS DE UN CARRO DE COMPRA PARA PERSONAS CON MOVILIDAD REDUCIDA"

TRABAJO FIN DE GRADO

Septiembre - 2020

AUTOR: Isidoro Mateo De Miguel Rodríguez DIRECTOR/ES: José María Marín López

AGRADECIMIENTOS

Deseo aprovechar este espacio para agradecer a todas aquellas personas que han contribuido a la ejecución de este proyecto.

A mis padres y a mi hermano por su apoyo incondicional, siempre ayudándome en momentos difíciles y animándome a no rendirme jamás. Sin ellos nada de esto habría sido posible.

A mi tutor José María Marín López por su increíble labor asesorándome en la realización del trabajo y por su profunda implicación.

Me gustaría hacer una mención especial a mi abuela Francisca Compañy Campos, que falleció el pasado mes de febrero y no ha podido verme graduado. Té lo dedico con todo mi amor y cariño.

ÍNDICE DE DOCUMENTOS

l.	MEMORIA	4
П.	ANEXOS	102
III.	PLANOS	133
IV.	PLIEGO DE CONDICIONES	188
V.	PRESUPUESTO	196
VI.	BIBLIOGRAFÍA	201

I. MEMORIA

ÍNDICE

1. INTRODUCCIÓN	8
1.1. CONTEXTO SOCIAL	8
1.2. ESTRUCTURA DEL PROYECTO	11
2. OBJETIVOS	12
3. ANTECEDENTES	13
3.1. HISTORIA DEL CARRITO DE SUPERMERCADO	13
3.2. MODELOS ACTUALES	14
3.2.1. MODELOS ESTÁNDAR	14
3.2.2. MODELOS PARA PERSONAS CON MOVILIDAD REDUCIDA.	16
3.2.3. PROBLEMÁTICA EXISTENTE	17
4. REQUISITOS DEL DISEÑO	
4.1. MARCO REGULADOR	20
4.2. DIMENSIONES SILLA DE RUEDAS	22
4.2.1. DIMENSIONES MÁXIMAS	22
4.2.2. DIMENSIONES COMUNES	22
4.2.3. DIMENSIONES MÍNIMAS	24
4.2.4. CONCLUSIÓN	25
4.3. ESTUDIO ANTROPOMÉTRICO	27
4.3.1. INTRODUCIÓN	27
4.3.2. ANTROPOMÉTRIA EN EL DISEÑO	28
4.3.3. DATOS ANTROPOMÉTRICOS	29
4.3.3.1 CLASIFICACIÓN	
4.3.3.2. DISTRIBUCIÓN NORMAL	
4.3.3.3 ESTUDIO POBLACIÓN ESPAÑOLA	
4.3.3.4. ESTUDIO PERSONAS EN SILLAS DE RUEDAS	34

5.	PROCESO DE DISEÑO	40
	5.1. INTRODUCCIÓN AL CAD	40
	5.2. PREMISAS DE DISEÑO	41
	5.3. FUNCIONAMIENTO GENERAL	42
	5.3.1. SISTEMA DE REGULACIÓN DE ALTURA	43
	5.3.2. SISTEMA DE GIRO	49
	5.3.3. BASE PRINCIPAL	50
	5.3.4. CAJA DE REDUCTORES	52
	5.3.5. SISTEMA DE ANCLAJE A LA SILLA DE RUEDAS	53
	5.4. POSICIONES DE FUNCIONAMIENTO	57
	5.4.1. REGULACIÓN ALTURA	57
	5.4.2. GIRO DE LA CESTA	
	5.5. VISTAS GENERALES	
	5.6. ANÁLISIS DE ALTERNATIVAS DE DISEÑO	
	5.6.1. SISTEMA DE ELEVACIÓN	66
	5.6.2. DISPOSI <mark>CIÓN DE</mark> LAS RUEDAS	68
	5.6.3. CESTA CUADRADA DE MAYORES DIMENSIONES	69
	5.7. JUSTIFICACIÓN DE LAS SOLUCIONES ADOPTADAS	71
	5.8. IMÁGENES RENDERIZADAS CON LA SILLA DE RUEDAS	72
6.	ANÁLISIS ESTRUCTURAL	74
	6.1. MÉTODO DE ANÁLISIS	74
	6.2. CONDICIONES DE LA SIMULACIÓN	75
	6.2.1. GEOMETRIA	75
	6.2.2. MALLADO	76
	6.2.3. CONDICIONES DE CONTORNO	78
	6.2.4. CONDICIONES DE CARGA	79
	6.2.5. PARAMETROS A ANALIZAR	79

6.2.5.1. TENSIÓN EQUIVALENTE DE VON MISES	79
6.2.5.2. DEFORMACIÓN TOTAL	80
6.2.5.3. COEFICIENTE DE SEGURIDAD	80
6.3. RESULTADOS	81
6.3.1. ALTURA MÍNIMA (A)	82
6.3.2. ALTURA PRINCIPAL (B)	86
6.3.3. ALTURA PERCENTIL P50-P95 MUJER (C)	88
6.3.4. ALTURA PERCENTIL P50-P95 HOMBRE (D)	90
6.3.5 ALTURA MÁXIMA (E)	92
6.3.6 ANALISIS DE LOS RESULTADOS	96
7. CONCLUSIONES	99
8. TRABAJOS FUTUROS	100
9. PLANIFICACIÓN	101

1. INTRODUCCIÓN

1.1. CONTEXTO SOCIAL

Actualmente la mayoría de los países occidentales, entre los que se encuentra España, están experimentando un aumento de la esperanza de vida de su población.

En la tabla 1.1 se muestra la proyección de la esperanza de vida al nacer en España (medida en años). Se observa cómo se produce un crecimiento ininterrumpido año tras año. Dichos resultados son consecuencia directa del aumento general de la calidad de vida de la población, pero también acarrean importantes retos para la sociedad. En la figura 1.1 se muestran los datos en forma de gráfico de barras para una percepción más visual.

Año	Hombres (años)	Mujeres (años)	Brecha de género (mujeres-hombres) (años)
2067	86,4	90,8	4,4
2063	86,1	90,5	4,4
2058	85,7	90,1	4,4
2053	85,3	89,7	4,4
2048	84,8	89,3	4,4
2043	84,3	88,8	4,5
2038	83,6	88,3	4,6
2033	82,9	87,7	4,8
2028	82,2	87,1	4,9
2023	81,3	86,4	5,1
2018	80,4	85,8	5,4

Tabla 1.1: Proyección de la esperanza de vida al nacimiento en España. Unidades: años. [1]

Figura 1.1: Proyección de la esperanza de vida en España. Mujeres: barras naranjas. Hombres: barras azules.[1]

Este aumento en la esperanza de vida implica que un mayor porcentaje de la población va a pertenecer al grupo de la tercera edad. La pirámide poblacional en España está envejeciendo, según datos del Instituto Nacional de Estadística (INE) existen 8.908.151 personas mayores de 65 años, lo que implica un 19,1% de la población total. Siendo el porcentaje de personas de 80 años o más, el 6,1% sobre la población total.[2]

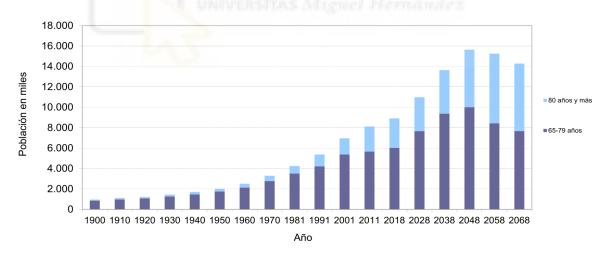


Figura 1.2: Evolución de la población de 65 y más años.[2]

En la figura 1.2 se aprecian tanto los datos reales en aumento de población de (1900 a 2018) como las proyecciones de cara a las próximas décadas (de 2028 a 2068).

Esta mayor longevidad acarrea un aumento de las dificultades de movilidad y un incremento de distintas patologías crónicas como la artrosis entre otras. Por lo tanto, el número de personas con movilidad reducida va a ir experimentando un aumento año tras años, ya que a este grupo pertenece un gran porcentaje de personas de avanza edad. Por esta razón, es crucial desarrollar productos y servicios adaptados a sus necesidades. De esta situación surge la idea de este proyecto, ya que como se verá más adelante las personas con movilidad reducida se encuentran con una gran cantidad de problemas y de obstáculos a la hora de realizar una tarea cotidiana como realizar la compra.

Además del aumento generalizado a nivel global de la población de avanzada edad hay que considerar las personas que sufren limitaciones físicas por algún tipo de minusvalía independientemente de la edad del sujeto.

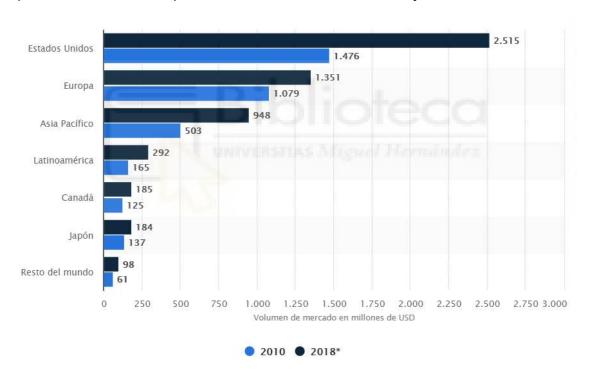


Figura 1.3: Volumen del mercado mundial de sillas de ruedas en 2010 y 2018.

En la figura 1.3 se visualiza la demanda de sillas de ruedas en las diferentes partes del mundo proporcionándonos dos conclusiones fundamentales. La primera de ellas es el hecho de la gran cantidad de personas que precisan de sillas de ruedas a nivel global, lo cual justifica la necesidad de aportarles soluciones y mejoras para que puedan realizar sus tareas diarias de una forma

adecuada. La segunda conclusión es que el número de usuarios de sillas de ruedas ha sufrido un aumento considerable en apenas 8 años. Tal y como se puede observar, los aumentos más pronunciados se producen en países donde la esperanza de vida ha experimentado un aumento en los últimos años. De esta manera, obtenemos pruebas empíricas que justifican la hipótesis de que una mayor población envejecida supone un aumento considerable de usuarios que precisan silla de ruedas.

1.2. ESTRUCTURA DEL PROYECTO

El presente proyecto se divide en las siguientes partes:

- 1) Memoria: En esta primera parte se establecen los objetivos y las necesidades que motivan el proyecto, se presenta el diseño del producto explicando el correcto funcionamiento y manipulación de este. A continuación, se realiza un análisis de elementos finitos en distintas configuraciones para asegurar su correcto funcionamiento. Finalmente se establecen las conclusiones y las líneas futuras de trabajo.
- 2) Anexos: Se muestran los documentos imprescindibles para la realización del proyecto que no se incluyan en la memoria. En nuestro caso se trata de los cálculos justificativos del proyecto y el catálogo de las distintas piezas comerciales empleadas.
- 3) Planos: En esta parte se presentan los planos necesarios para la correcta fabricación de la máquina. Comenzando por planos de conjunto, de subconjuntos y de dimensiones generales para después mostrar los planos de cada una de las piezas que conforman el carrito.
- 4) Pliego de condiciones: Establece las restricciones técnicas y de seguridad que hay que aplicar en cada una de las fases de las que consta el proyecto.
- 5) Presupuesto: Se especifican los costes derivados de la fabricación final.
- 6) Bibliografía: Se citan las referencias bibliográficas empleadas a lo largo del proyecto.

2. OBJETIVOS

El principal objetivo de este proyecto es el diseño y análisis de un prototipo de carro de supermercado adaptado a las personas con movilidad reducida. Este trabajo nace de una colaboración con la empresa Rois Medical, especialistas en el diseño y desarrollo de sillas de ruedas, con la intención de proponer soluciones a la problemática y las limitaciones existentes en los modelos actuales.

Para cumplir dicho objetivo se seguirán la siguientes directrices:

- El diseño ha de ser ergonómico, de tal manera que su uso y manejo sea lo más cómodo posible, en especial tratándose de un colectivo tan vulnerable.
- La utilización de piezas procedentes de catálogos en la medida de lo posible para poder obtener una estimación ajustada del precio y de la disponibilidad de los elementos.
- Realizar un diseño lo más eficiente posible pero que asegure su buena fijación y comportamiento mecánico.
- Realizar un análisis de esfuerzos exhaustivo en las condiciones de funcionamiento habitual asegurándose que se obtiene valores de tensión, deformación y de coeficientes de seguridad aceptables.
- La ejecución minuciosa de los planos de todas las piezas imprescindibles para su correcto montaje y ejecución aplicando las normas pertinentes.
- La realización de un estudio de viabilidad económica, analizando el coste aproximado de la máquina.
- Realizar todos los procedimientos considerando y aplicando correctamente la normativa vigente.
- Proponer posibles mejoras y variaciones para futuros proyectos. Con el objetivo de que el prototipo pueda optimizarse de manera que sea atractivo para las empresas del sector.

3. ANTECEDENTES

3.1. HISTORIA DEL CARRITO DE SUPERMERCADO

El carrito de supermercado fue inventado¹ en 1937 por el empresario americano Sylvan Nathan Goldman en Oklahoma, Estados Unidos.[3] Fue en 1934, cuando el Sr. Goldman adquirió un establecimiento en Oklahoma de la cadena de supermercados Humpty-Dumpty, que se dio cuenta de que las personas que acudían a sus tiendas paraban de comprar en cuanto las cestas de mano que utilizaban eran demasiado pesadas para llevarlas.[4]

Dispuesto a solucionar esta problemática e incentivar a los clientes a comprar mayor cantidad de productos, decidió inspirar su invento en una silla plegable. De esta manera, diseñó (véase patente No. 2,196,914) lo que hoy consideramos como el primer carrito de supermercado tal y como se puede observar en la figura 3.1.

Figura 3.1. Primer carrito de supermercado.

MEMORIA 13

.

¹ Cabe destacar que hubo otros modelos similares en la décadas de 1930. No obstante, dado su poco éxito y aceptación por el público se considera universalmente la invención del Sr. Golman como el primer carrito de supermercado.

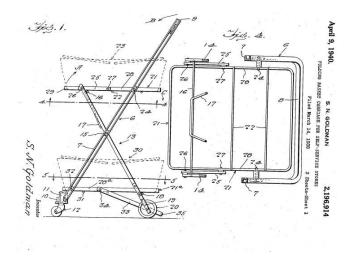


Figura 3.2: Patente del primer carrito de supermercado. (No. 2,196,914).

Desde este primer diseño, el carrito ha ido evolucionando y transformándose de tal manera que su diseño ha ido cambiando hasta lo que existe hoy en día. Siendo su cambio más significativo la sustitución de las dos cestas que se ven en la figura 3.2 por una única cesta de mayor capacidad formada mediante tubos de acero doblados y soldados como se muestra en la figura 3.3.

3.2. MODELOS ACTUALES

3.2.1. MODELOS ESTÁNDAR

Hoy en día, en la gran mayoría de supermercados podemos encontrar diferentes modelos, una primera clasificación es conforme al material con el que se fabrican: enteramente de metal, de plástico o una combinación de ambos (híbridos). Los carritos de acero son la configuración clásica de este tipo de producto, desde su invención hasta recientemente todos los carritos de supermercado han sido fabricado prácticamente en su totalidad en acero (a excepción del manillar y algún otro elemento como el asiento para los niños pequeños).

La elección de uno u otro tipo depende del coste económico y del ambiente donde se encuentre el supermercado. Los metálicos son preferibles en aquellos supermercado en que tienen los carritos almacenados en el exterior donde le

incide el sol directamente. Sin embargo, en ambientes cerca del mar serán preferible de plásticos porque son más inertes.

• Carros de supermercados de acero.

Figura 3.3: Carrito de acero.

• Carros de supermercado de plástico.

Figura 3.4: Carrito de plástico.

 Carros de supermercado híbridos, en los que la cesta está fabricada en plástico.

Figura 3.5: Carrito con cesta de plástico.

3.2.2. MODELOS PARA PERSONAS CON MOVILIDAD REDUCIDA

Actualmente en el mercado disponemos de algunos modelos para personas que utilizan sillas de ruedas, tanto por tratarse de personas con algún tipo de minusvalía o por ser de avanzada edad.

Figura 3.6: Carrito adaptado para silla de ruedas Modelo 1.

Figura 3.7: Carrito adaptado para silla de ruedas. Modelo 2.

Tanto en la figura 3.6 como en la 3.7 se observan dos modelos distintos de carritos de supermercado adaptado a personas con movilidad reducida. Se aprecia que a pesar de ser modelos diferentes presentan una gran cantidad de similitudes. La forma de la cesta es prácticamente la misma, al igual que la estructura que la soporta. La única diferencia notable entre ambas es en la forma de anclaje a la silla de ruedas que, aunque en ambos están basados en el mismo principio de unir el carrito a la silla de ruedas por medio de unos agarres la forma de implementarlo es diferente.

Figura 3.8: Carrito adaptado para silla de ruedas. Modelo 3.

En la figura 3.8 se puede ver otro enfoque utilizado por algunos fabricantes, el cual consiste en utilizar el mismo diseño que para carritos de supermercados estándares pero que estén a una altura inferior para que el usuario en silla de ruedas pueda utilizarlo más cómodamente.

3.2.3. PROBLEMÁTICA EXISTENTE

Tal y como se puede apreciar en las imágenes anteriores, el diseño de un carrito de supermercado para personas con movilidad reducida no está optimizado y presenta ciertas limitaciones y problemas que abordaremos a continuación.

El primer impedimento notable es la reducida capacidad que tiene la cesta, debido a que su diseño está enfocado a que la persona en silla de ruedas sea capaz de acceder a todos los puntos de la misma estirando el brazo. Por este motivo, la gran mayoría de modelos ofertados hoy en el mercado tienen está configuración. No obstante, aun considerando la poca capacidad que ofrecen, los usuarios tienen que hacer esfuerzos para poder alcanzar el extremo opuesto de la cesta para llenarlo. De tal manera que aun teniendo una capacidad de llenado muy limitada sigue siendo incómodo para las personas alcanzar el fondo, teniendo que separarse de la silla de ruedas con las consiguientes molestias que esto ocasiona, y en muchos casos puede que la persona no sea capaz de realizar dicho movimiento.

Figura 3.9: Carrito adaptado para silla de ruedas. Modelo 4.

En las figuras 3.8 y 3.9 se hace aún más evidente la dificultad del usuario para poder llegar al extremo de la cesta, de tal manera que no se está aprovechando la capacidad total y a su vez supone que el individuo tenga que realizar un esfuerzo extra para tratar de alcanzarlo. De igual manera, al tratar de alcanzar el fondo, se clavarían en muchos casos la empuñadura en el regazo.

Otra gran limitación es el hecho de que no se pueda regular la altura del carrito. Ya que existen una gran cantidad de modelos diferentes de sillas de ruedas y a su vez cada usuario tiene una altura determinada. De tal manera que el diseño se ha realizado teniendo en cuenta unos valores promedios pero el hecho de no poder regular la altura supone una limitación ergonómica que dependiendo de cada usuario podrá ser una simple molestia o tratarse de un impedimento para el uso del dispositivo.

En el caso de la figura 3.8 se añade el hecho de que no existe ningún tipo de acoplamiento entre la silla de ruedas y el carrito lo que le complica aún más su utilización. En este caso tiene que con una mano impulsar la silla de rueda y con la otra tratar de dirigir el carrito lo cual conlleva un esfuerzo y una dificultad extra.

Resumiendo, tenemos los siguientes problemas comunes en los modelos existentes actualmente en el mercado:

- Capacidad de carga pequeña.
- Dificultad para alcanzar el extremo opuesto de la cesta.
- La altura del carrito no se puede regular para adaptarse a las medidas específicas que cada usuario pueda requerir.

Se justifica de esta manera la necesidad de obtener un diseño que resuelva todos estos problemas de la manera más eficiente posible. Se ha concluido que para maniobrar y utilizar estos carritos la persona tiene que realizar en determinadas ocasiones unos esfuerzos adicionales. Considerando que un porcentaje importante de los usuarios de sillas de ruedas son personas de edad avanzada o que presentan limitaciones físicas de movilidad se concluye que las alternativas actuales no son las adecuadas y es necesario disminuir el esfuerzo y la incomodidad experimentada por el individuo al mínimo posible.

4. REQUISITOS DEL DISEÑO

Este capítulo establece los criterios que se han considerado previamente a la realización del diseño del producto. Tanto desde un punto de vista legislativo, empleando la normativa vigente aplicable a nuestro proyecto como los requisitos antropométricos y ergonómicos necesarios. De esta manera conseguimos un producto final cuyas dimensiones y forma están adaptados a la normativa española actual y a su vez se garantiza un uso cómodo y funcional.

4.1. MARCO REGULADOR

En esta sección se presentan las distintas normativa que se emplean a lo largo del presente proyecto:

- UNE-EN 1929-1:1998: Carros de supermercado. Parte 1: Requisitos y ensayos para carros de supermercado con o sin asiento para niños.[5]
- UNE-EN 1929-2:2005: Carros de supermercado. Parte 2: Requisitos, ensayos e inspección para carros de supermercado con o sin asiento para niños, destinados a ser utilizados en cintas transportadoras de pasajeros.[6]
- UNE-EN 1929-3:2005: Carros de supermercado. Parte 3: Requisitos y ensayos para carros de supermercado con dispositivos adicionales para el transporte de objetos, con o sin asiento para niños.[7]
- UNE 111915:1991: Sillas de ruedas. Dimensiones totales máximas.[8]
- UNE-EN ISO 7250-1:2017: Definiciones de las medidas básicas del cuerpo humano para el diseño tecnológico. Parte 1: Definiciones de las medidas del cuerpo y referencias (ISO 7250-1:2017).[9]
- UNE-ISO 21542:2012. Edificación. Accesibilidad del entorno construido.[10]
- Código técnico de la edificación. Documento básico. Seguridad en caso de incendios (CTE DB-SI).[11]
- UNE-EN ISO 5457:2000: Documentación técnica de productos.
 Formatos y representación de los elementos gráficos de las hojas de dibujo. (ISO 5457:1999).[12]

- UNE-EN ISO 3098-1:2015: Dibujos técnicos. Escritura. Requisitos generales. (ISO 3098:1 997).[13]
- UNE-EN ISO 7200:2004: Documentación técnica de productos. Campos de datos en bloques de títulos y cabeceras de documentos. (ISO 7200:2004).[14]
- UNE-EN ISO 6433:2012: Dibujos técnicos. Referencias de los elementos. (ISO 6433: 198 1).[15]
- UNE 1 135:1989: Dibujos técnicos. Lista de elementos.[16]
- UNE-EN ISO 128-20:2002: Dibujos técnicos. Principios generales de representación. Parte 20: convenciones generales para las líneas. (ISO 128-20:1996).[17]
- UNE-EN ISO 128-21:2002: Dibujos técnicos. Principios generales de representación. Parte 21: Preparación de líneas mediante sistemas de DAO (Diseño Asistido por Ordenador). (ISO 128-21:1997).[18]
- UNE-EN ISO 5455 :1996: Dibujos técnicos. Escalas. (ISO 5455:1 979).[19]

4.2. DIMENSIONES SILLA DE RUEDAS

4.2.1. DIMENSIONES MÁXIMAS

El primer criterio fundamental a tener en cuenta a la hora de elegir las dimensiones de nuestro carrito es conocer las medidas de las sillas de ruedas a las que va a ir acoplado.

En España las dimensiones de las sillas de ruedas de tipo convencional vienen regulado por la norma UNE 111915:1991 "Sillas de ruedas. Dimensiones totales máximas".[4]

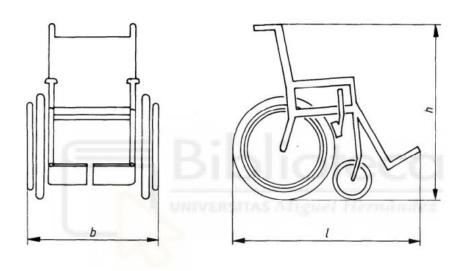


Figura 4.1: Dimensiones máximas silla de ruedas según UNE 111915:1991.[8]

Cuyos valores numéricos expresados en milímetros son los siguientes:

Anchura máxima (b):700 mm

Altura máxima (h):1090 mm

Longitud máxima (I): 1200mm

4.2.2. DIMENSIONES COMUNES

Cabe destacar que la norma UNE 111915:1991[8] establece los valores máximos de las medidas previamente mencionadas con el objetivo entre otros de asegurar la adecuación de las sillas de ruedas a la distintas normativas de

accesibilidad como por ejemplo la UNE-ISO 21542:2012. Edificación. Accesibilidad del entorno construido.[10]

Por consiguiente, para nuestro diseño no nos basta con conocer el valor máximo sino también los valores que suelen tener para asegurar que se diseña teniendo en mente las medidas habituales y no únicamente no sobrepasar las máximas permitidas. Para lograr este objetivo utilizamos diferentes catálogos y estudios realizados al respecto.

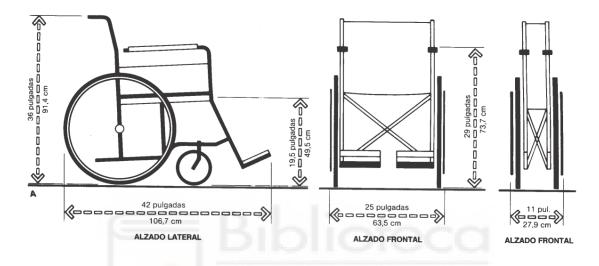


Figura 4.2: Medidas medias de las dimensiones principales.[14]

La figura 4.2 representa las medidas medias en base a un estudio realizado en estados unidos, después de haber analizado más de 200 modelos diferentes.[15] Por consiguiente, son valores representativos que nos sirven para hacernos una idea de las posibles medidas a seleccionar. Cabe destacar que como se observa en la figura 4.2 ninguna de las medidas sobrepasa el límite establecido por la normativa española UNE 111915:1991.[8] Por esta razón, hemos considerado adecuado consultar dicho estudio ya que las medidas se aproximan bastante a los modelos actuales encontrados en España.

Ya tenemos valores de las medidas máximas y medidas medias. No obstante, para tratar de ser lo más riguroso posibles vamos a obtener también unos valores mínimos.

4.2.3. DIMENSIONES MÍNIMAS

El último dato necesario para poder obtener el deseado intervalo de las medidas es el valor mínimo. En este caso nos vamos a centrar en otro estudio realizado en Estados Unidos con las diferentes medidas de sillas de ruedas empleadas por diferentes agencias públicas.

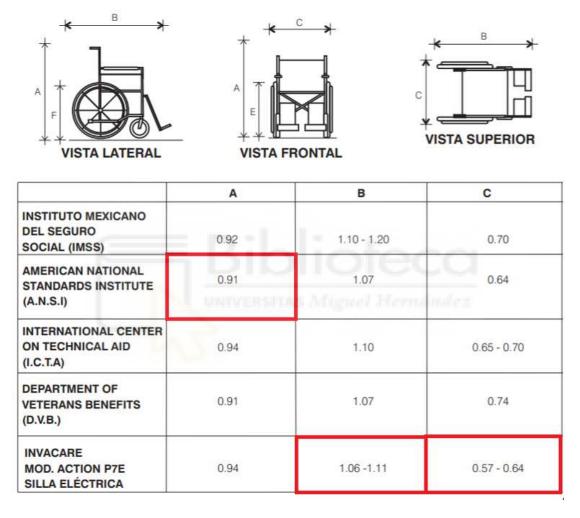


Figura 4.3: Medidas estándares de diferentes asociaciones.[15]

Marcamos en rojo los valores mínimos de cada una de las dimensiones que nos interesan para nuestro diseño. Se observa cómo no existe un modelo estándar de silla de ruedas, sino que las dimensiones varían de una silla a otra, lo cual justifica la necesidad de que en los carritos la altura sea regulable para adaptarse correctamente a cada usuario.

4.2.4. CONCLUSIÓN

Con todos los datos obtenidos anteriormente ya podemos establecer nuestro rango de medidas para asegurar que nuestro diseño es apto y funcional para una gran variedad de silla de ruedas.

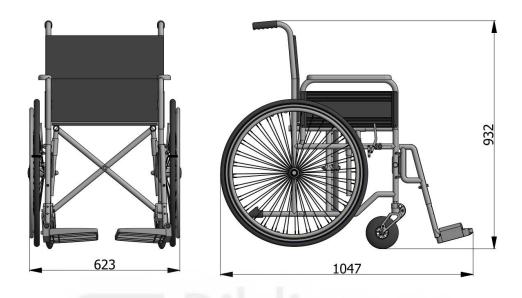


Figura 4.4: Medidas silla de ruedas empleada (medidas en mm).

Por consiguiente, considerando los resultados obtenidos en los estudios anteriores y aplicando la normativa UNE 111915:1991[8] consideramos que la figura 4.4 es la mejor opción para nuestro proyecto.

Cuyas medidas, utilizando la misma nomenclatura que en la figura 4.1 son:

Anchura (b): 623 mm	< Anchura máxima (b):700 mm
Altura (h): 932 mm	< Altura máxima (h):1090 mm
Longitud (I): 1047 mm	< Longitud máxima (I): 1200mm

Tabla 4.1: Dimensiones generales silla de ruedas.

Ya hemos logrado el primer objetivo de estipular que nuestro carrito sea apto para acoplarlo a una gran variedad de silla de ruedas. Para visualizar mejor su uso en la vida real, las simulaciones y las imágenes las implementaremos de tal forma que aparezcan conjuntamente el carrito con la silla de ruedas. Con dicho objetivo empleamos el siguiente ensamblaje de la silla de ruedas seleccionada.

Figura 4.5: Silla de ruedas empleada.

Cabe destacar que nuestro diseño tiene como uno de sus objetivos principales la adaptabilidad a las necesidades de distintos usuarios. Por lo tanto, aunque el diseño y la simulación se hagan considerando la silla de ruedas de la figura 4.5 como modelo estándar, nuestro carrito será capaz de adaptarse a todos los modelos actuales de silla de ruedas independientemente de sus medidas. Con esto se consigue un uso más cómodo y ergonómico facilitándoles a las personas la tarea de realizar la compra y favoreciendo la sensación de autosuficiencia al no necesitar la ayuda de terceros para realizar esta actividad. Por consiguiente, con nuestro diseño del carrito conseguimos los siguientes beneficios:

- Beneficios físicos por la posibilidad de realizar menos esfuerzos y movimientos que puedan resultarles incomodos.
- Beneficios psicológicos al aumentar su autoestima y confianza en ellos mismos, al ser capaces de realizar la compra de manera autónoma sin requerir la asistencia de terceros.

4.3. ESTUDIO ANTROPOMÉTRICO

Una vez que hemos establecido las dimensiones de la silla de ruedas el siguiente paso es establecer las dimensiones de las personas.

4.3.1. INTRODUCIÓN

La Real Academia Española (RAE) define antropometría como: "Estudio de las proporciones y medidas del cuerpo humano".[20] En definitiva, es la ciencia que estudia las medidas del cuerpo humano con el objetivo principal de establecer diferencias entre los individuos.[21] La palabra antropometría proviene del griego anthropos (hombre) y metrikos (medida).[22]

El interés por el cuerpo humano y sus dimensiones se remonta a muchos siglos atrás. Marco Vitrubio Polión fue un arquitecto, escritor e ingeniero romano del siglo I a.C. el cual desarrolló el canon romano que dividía el cuerpo en 8 cabezas.

En el siglo XV, Leonardo da Vinci estableció los principios clásicos de las proporciones humanas basándose en los textos de Vitruvio. Plasmó dichas proporciones en el famoso dibujo "El hombre de Vitruvio" que se observa en la figura 4.6. En dicho dibujo se retrata la imagen de un hombre circunscrita dentro de un círculo y un cuadrado. Esta obra trata de representar las proporciones del ser humano perfecto.[21]

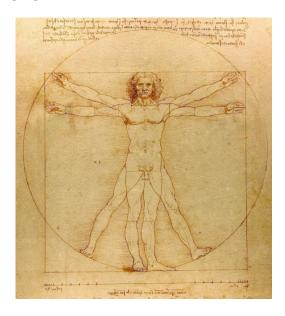


Figura 4.6: El hombre de Vitruvio de Leonardo da Vinci.

Aunque han servido de base para muchos estudios posteriores dichas proporciones no coinciden con las reales del ser humano actual. Se considera la obra científica "Los cuatro libros de las proporciones humanas" de Alberto Durero (1471-1528) como el origen de la antropometría moderna.

4.3.2. ANTROPOMÉTRIA EN EL DISEÑO

En la tarea que nos concierne es por lo tanto fundamental poseer datos antropométricos provenientes de estudios estadísticamente significativos para ser capaz de diseñar nuestro carrito de tal manera que la altura sea regulable y sea apta para todos los potenciales usuarios existentes.

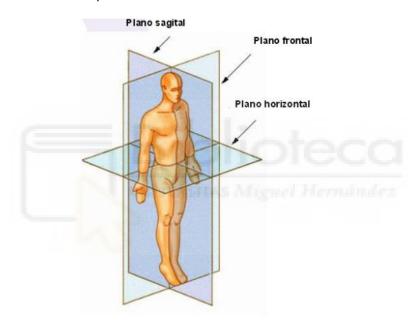


Figura 4.7: Planos de referencia.[22]

Teniendo esto en mente, se consigue alcanzar el objetivo de crear un producto que se adapte a las necesidades particulares de cada individuo. No siendo por tanto el individuo el que se tenga que adaptar a la máquina. Este concepto de diseño se conoce como Diseño Centrado en el usuario (DCU) cuya popularidad ha ido en auge durante las últimas décadas. De esta manera se justifica la necesidad de nuestro producto ya que las opciones existentes actualmente en el mercado, tal y como se comentó en el capítulo 3, en todos los modelos es el usuario el que se tiene que adaptar al carrito. Por consiguiente, no se tratan de productos eficientes desde un punto de vista ergonómico y antropométrico ya

que carecen de sistemas de regulación o de adaptabilidad a las necesidades particulares de cada usuario.

Por lo tanto, de igual modo que en la sección anterior analizábamos diferentes datos de estudios de medidas de silla de ruedas para que nuestro producto final se adapte al mayor rango posible, vamos a proceder de manera exacta a la hora de tomar las medidas corporales La normativa española aplicable en este apartado es la UNE-EN ISO 7250-1:2017: Definiciones de las medidas básicas del cuerpo humano para el diseño tecnológico. Parte 1: Definiciones de las medidas del cuerpo y referencias (ISO 7250-1:2017).[9]

4.3.3. DATOS ANTROPOMÉTRICOS

4.3.3.1 CLASIFICACIÓN

Las dimensiones corporales que afectan en el diseño de productos se dividen en dos categorías:

- Datos estructurales o estáticos.
- Datos funcionales o dinámicos.

Las dimensiones estructurales o estáticas son aquellas que se miden con el cuerpo situado en una posición fija. Mientras que, por el contrario, las dimensiones funcionales o dinámicas son aquellas que se toman a partir de un movimiento asociado a ciertas actividades.

Ejemplos de datos estructurales son las medidas de la cabeza, el tronco y extremidades en posiciones estándar. Este tipo de medidas se obtienen con mayor facilidad y rapidez que las funcionales.

La recopilación de datos funcionales o dinámicos requiere de conocimientos de biomecánica para poder analizar el movimiento del individuo en las operaciones que está realizando. Un ejemplo serían las medidas de una persona en silla de ruedas para poder pulsar el botón del ascensor, es un proceso complejo ya que el alcance del brazo no depende exclusivamente de la longitud del mismo. Intervienen distintos factores como el movimiento de rotación del hombro, la rotación del tronco, etc. [21]

4.3.3.2. DISTRIBUCIÓN NORMAL

El modelo general de distribución de las medidas antropométricas se aproxima a una distribución normal o Gaussiana. A pesar de la variabilidad existente en las medidas corporales, la aproximación es lo suficientemente exacta desde un punto de vista estadístico. Este fenómeno era previsible ya que existe un patrón recurrente en las medidas de fenómenos de la naturaleza a seguir una distribución normal.

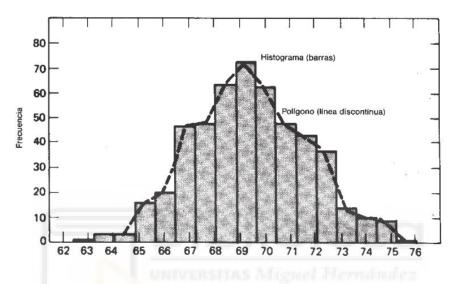


Figura 4.8: Ejemplo de histograma y polígono de frecuencia.[21]

En la figura 4.8 se observan los valores de un estudio antropométrico y como su distribución se aproxima de manera bastante fidedigna a una distribución normal donde se aprecia la forma de campana característica (campana de Gauss).

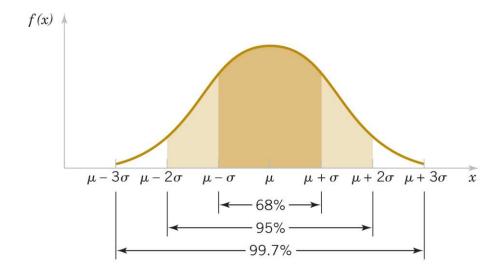


Figura 4.9: Distribución normal.[24]

Para poder interpretar correctamente lo que implica que los datos antropométricos sigan una distribución gaussiana es necesario recordar brevemente ciertos aspectos estadísticos:

- Mediana (Me): representa el valor de la variable de posición central en un conjunto de datos ordenados. En caso de que el número total de datos (n) sea par la mediana es el valor medio de los dos datos centrales.
- Media o promedio (μ): representa el valor característico de una serie de datos cuantitativos. Se calcula a partir de la suma de todos sus valores dividido entre el número de sumandos.
- Moda muestral: son aquellos valores de la variable en los cuales la distribución de frecuencias alcanza un máximo relativo.
- Desviación típica(σ): es una medida que se emplea para cuantificar la variación o dispersión de un conjunto de datos numéricos.
- Percentiles muestrales: ordenando los datos de la muestra de menor a mayor, se define el percentil p como el primer valor que deja por debajo un p% de los datos.
 - Si p=25 →P25 recibe el nombre de primer cuartil o cuartil inferior(Q1).
 - Si p=50 → P50 recibe el nombre de segundo cuartil el cual coincide con la mediana(Q2=Me).
 - Si p=75 → P75 recibe el nombre de tercer cuartil o cuartil superior(Q3).[25]

Tal y como se representa en la figura 4.9, la distribución normal presenta las siguientes propiedades:

- La distribución es simétrica respecto de su media (μ).
- La media, la moda y la mediana son iguales.

Estas propiedades son cruciales para el análisis antropométrico porque nos proporcionan conclusiones muy útiles a la hora de analizar y utilizar los datos que dispongamos. En la distribución normal, al coincidir la media, la moda y la mediana implica que los valores más probables son aquellos que se encuentras cercanos a la media. Conforme nos alejamos de este valor la probabilidad decrece tanto para valores inferiores como para valores superiores. En la figura

4.10 se observa como al ser una distribución normal, el valor medio de la altura en este caso coincide con el valor de la mediana (valor central).

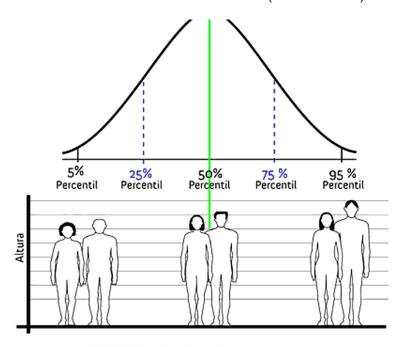


Figura 4.10: Distribución de alturas.

A la hora del diseño es fundamental considerar todo el espectro de medidas existentes. Debido a las importantes variaciones dimensionales en las medidas corporales es fundamental trabajar con los percentiles a la hora de diseñar. El percentil P5 de altura por ejemplo implica que el 95% de la población consultada supera dicho valor y el 5% tendría una altura igual o inferior. De igual forma el percentil P95 implica que únicamente el 5% de la población consultada sobrepasa ese valor y el 95% de la población tendría una altura igual o inferior a dicho valor. En el diseño ergonómico se suelen emplear los percentiles P5 y P95 de tal forma que el diseño es funcional para el 90% de la población.

Un concepto muy interesante en el ámbito del diseño es la falacia del hombre medio.[21] Este concepto se basa en el error que supone coger las dimensiones del percentil P50 como la representación del "hombre medio" y diseñar en función de estos datos. El procedimiento correcto es que en función del problema que se quiera resolver se tendrá que dimensionar considerando el percentil P5 o el P95 para que se pueda ajustar a la mayor proporción de personas posibles. En nuestro caso vamos a diseñar para que el carrito sea ajustable y pueda ser utilizado tanto para los valores de P5 y P95, dándole además bastante margen

para tratar de garantizar que satisface al 100% de la población, aunque no tengamos datos de los percentiles P1 y P99.

4.3.3.3 ESTUDIO ANTROPOMÉTRICO POBLACIÓN ESPAÑOLA

Considerando que existen infinidad de dimensiones posibles del cuerpo humano es necesario delimitar aquellas que nos interesan desde el punto de vista ingenieril. La literatura establece como criterio general que las diez dimensiones principales a tomar son, por orden:

- Estatura.
- Peso.
- Altura en posición sedente.
- Distancia nalga-rodilla.
- Distancia nalga-poplíteo (músculo situado en la parte posterior de la rodilla debajo del gemelo).
- Separación entre codos en posición sedente.
- Separación entre caderas en posición sedente.
- Altura de rodillas.
- Altura de poplíteos.
- Anchura de muslos.

Todas estas medidas vienen reflejadas en la figura 4.11. Por consiguiente, estas dimensiones se consideran suficientes para realizar un diseño ergonómico, siendo empleadas para el trabajo del arquitecto, diseñador industrial o diseñador de interiores.

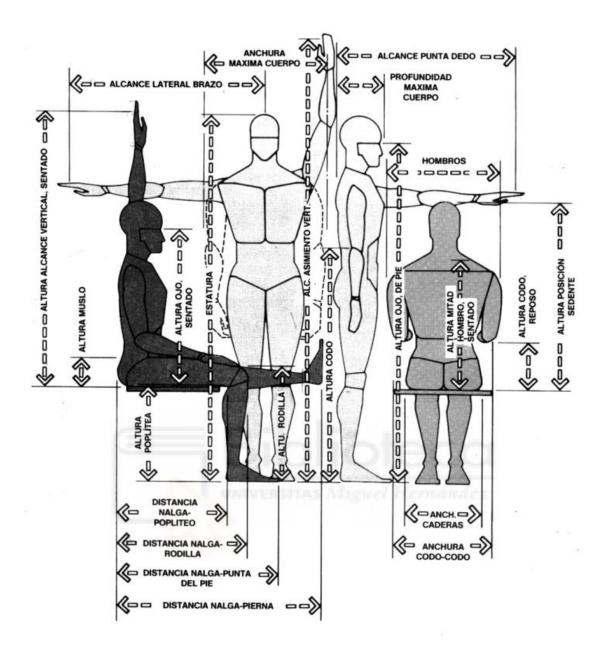


Figura 4.11: Medidas antropométricas.[21]

El último estudio antropométrico que se realizó en España fue publicado en 1999 bajo el título "Aspectos antropométricos de la población laboral española aplicados al diseño industrial". En la tabla 4.2 se observa los datos de dicho estudio expresados en mm. Para cada dato antropométrico se detalla el tamaño de la muestra, la media, la desviación típica, el error típico y los percentiles P1, P5, P50, P95 y P99.

	Tamaño muestra	Media	Desviación típica	Error típico	Percentiles				
					P 1	P 5	P 50	P 95	P 99
Altura de los hombros, sentado	1719	578,66	33,70	0,813	500	524	579	635	660
Altura del codo, sentado	1711	224,98	26,44	0,639	169	182	224	269	294
Anchura de hombros, biacromial	1721	369,58	39,46	0,951	281	304	372	432	453
Anchura entre codos	1717	457,85	53,33	1,287	335	367	461	542	574
Anchura de caderas, sentado	1718	365,14	30,44	0,734	294	316	364	417	445
Longitud de la pierna (altura del poplíteo)	1721	418,17	29,17	0,703	350	368	419	464	487
Profundidad de asiento	1721	493,52	28,05	0,676	426	450	492	540	568

Tabla 4.2: Datos antropométricos población laboral española en 1999.[22]

4.3.3.4. ESTUDIO ANTROPOMÉTRICO PERSONAS EN SILLAS DE RUEDAS

La tabla 4.2 ofrece una gran cantidad de información muy útil y que nos sirven de referencia. No obstante, dado que nuestro proyecto se basa en un producto adaptado a personas en silla de ruedas, vamos a necesitar ciertos datos diferentes y adicionales. Para ser lo más preciso posible, los datos antropométricos han de ser obtenidos con el conjunto individuo-silla de ruedas.

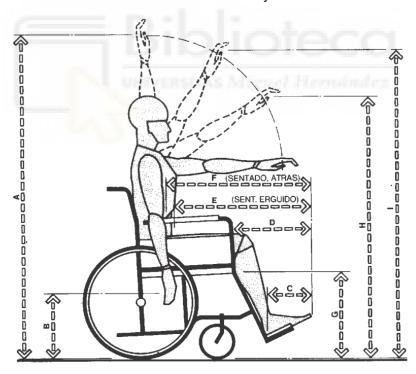


Figura 4.12: Datos antropométricos persona en silla de ruedas.[21]

Considerando la pequeña variación que hay en las magnitudes de la silla de ruedas y considerando la altura de las personas como una distribución normal, podemos concluir que la altura con respecto al suelo de las personas en sillas

de ruedas también posee una distribución aproximadamente normal. De tal manera que la mediana coincidirá con la moda y con la media como se explicó en el apartado anteriormente. Por consiguiente, el valor de percentil P50, es decir la mediana, coincide con la media.

Dado que en este caso estamos considerando la silla de ruedas, es necesario también analizar la capacidad de giro de esta. Dichos valores antropométricos y ergonómicos se representan el la figura 4.13. donde se aprecia la existencia de distintos radios de giro en función de distintos parámetros como por ejemplo que una rueda este bloqueada y la otra no.

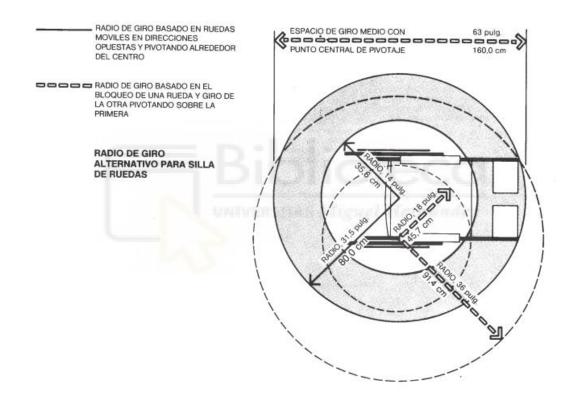


Figura 4.13: Datos antropométricos giro silla de ruedas.[21]

En las siguientes figuras se representan los datos antropométricos de personas de sexo masculino y femenino en vista frontal y lateral.

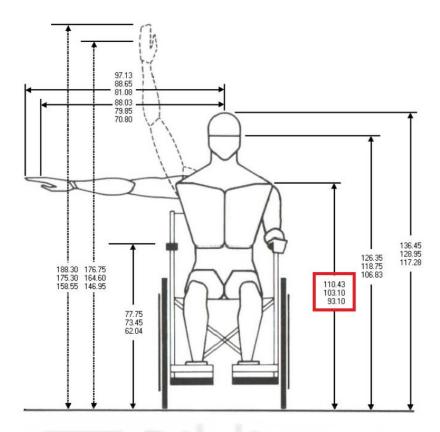


Figura 4.14: Datos antropométricos personas de sexo masculino.

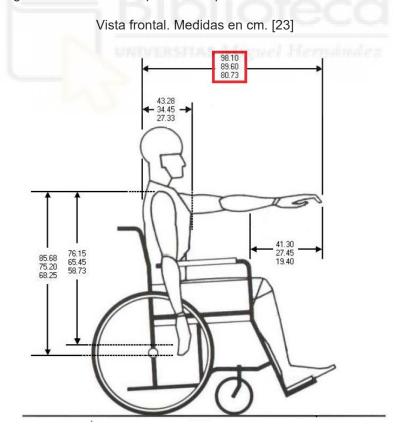


Figura 4.15: Datos antropométricos personas de sexo masculino.

Vista lateral. Medidas en cm. [23]

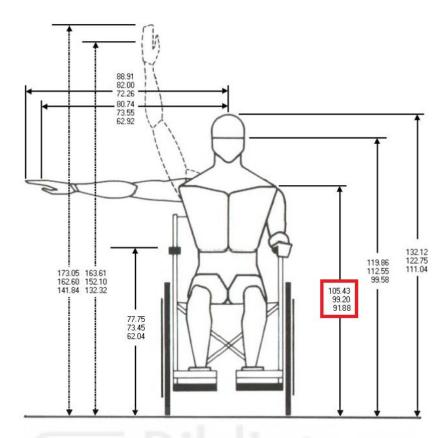


Figura 4.16: Datos antropométricos personas de sexo femenino.

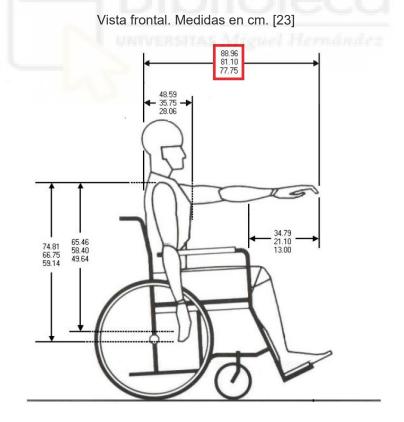


Figura 4.17: Datos antropométricos personas de sexo femenino.

Vista lateral. Medidas en cm. [23]

Para cada uno de los datos proporcionados por las figuras el valor superior representar el percentil P95, el valor intermedio representa el percentil P50 (mediana=media) y el valor inferior representa el percentil P5. De tal manera que todo el rango de valores (de P5 a P95) incluye al 90% de la población que participó en dicho estudio. Concretamente para dimensionar nuestro diseño nos harán falta principalmente aquella que hemos marcado en rojo en las fotos. En las imágenes de la vista frontal se trata de la distancia entre el suelo y el hombro del individuo y en las imágenes de la vista lateral es la distancia entre el respaldo de la silla de ruedas y los dedos de la mano. La primera magnitud se empleará para dimensionar la altura del carrito y la segunda tanto para la longitud total del mismo como para la posición del acople carrito-silla de ruedas, para garantizar que una vez el usuario se haya acoplado al carrito la distancia sea la adecuada.

Para una visualización más rápida e intuitiva organizamos los datos que vamos a utilizar de las figuras de sexo masculino y sexo femenino en las tabla 4.3 y en la tabla 4.4 respectivamente. Cabe destacar que los valores de las figuras se encuentran en cm ya que es como se realizó el estudio, pero para trabajar nosotros las vamos a pasar a mm para que todas las unidades del proyecto sean coherentes.

MEDIDAS CORPORALES HOMBRE				
Percentil Altura del suelo al hombro (mm) Alcance del brazo (mm)				
5	931	807,3		
50	1031	896		
95	1104,3	981		

Tabla 4.3: Medidas corporales hombre.

MEDIDAS CORPORALES MUJER				
Percentil Altura del suelo al hombro (mm) Alcance del brazo (mm)				
5	918,8	777,5		
50	992	811		
95	1054,3	889,6		

Tabla 4.4: Medidas corporales mujer.

5. PROCESO DE DISEÑO

En este capítulo vamos a explicar detalladamente las distintas partes del carrito, así como su funcionamiento y las distintas posiciones en las que se puede utilizar. De esta manera garantizamos un correcto entendimiento de los elementos y los posibles movimientos del conjunto. Vamos a tratar también los tipos de unión empleados entre las distintas partes principales. No obstante, en lo referido a los métodos de ensamblaje y montaje, se considera el documento de planos como el documento principal para su comprensión, siendo este capítulo un complemento para su correcto entendimiento.

Otro aspecto evaluado en este capítulo son las alternativas consideradas durante el proceso de diseño, justificando la elección final.

5.1. INTRODUCCIÓN AL CAD

El diseño asistido por ordenar, denominado CAD, por sus siglas en inglés (Computer Aided Design) ha supuesto una revolución sin precedentes en el ámbito ingenieril. Los métodos tradicionales de dibujos a mano han sido sustituidos por software de altas prestaciones que proporcionan un conjunto de herramientas para diseñar, simular y documentar entre otras posibilidades. Las ventajas principales que ofrecen son:

- La posibilidad de tener una representación tridimensional del producto final, siendo capaz por lo tanto de visualizar el modelo completo de forma virtual. De esta manera, se sustituye el procedimiento habitual de tener que realizar varios prototipos que se iban adaptando en función de las necesidades. Actualmente se puede simular el comportamiento en las respectivas condiciones de funcionamiento y ya una vez se ha simulado y los resultados son satisfactorios, proceder a la fabricación del prototipo resultando un gran ahorro económico.
- La capacidad de realizar análisis estructurales como el método de elementos finitos para comprobar el comportamiento estructural del producto final.

 La posibilidad de diseñar de forma adaptativa, es decir, la existencia de relaciones entre distintas piezas de forma que en caso de ser necesario modificar las dimensiones geométricas de alguna de ellas, las que guarden relación se adapten de forma automática.

En definitiva, se observa la gran cantidad de beneficios que ofrecen este tipo de productos. En nuestro caso hemos recurrido a la utilización del software Autodesk Inventor en la versión 2020.

5.2. PREMISAS DE DISEÑO

A la hora de plantear el diseño el primer factor a considerar es dar respuesta a los problemas persistentes en los modelos actuales, como ya se mencionó anteriormente estos problemas son tales como la imposibilidad de poder regular la altura y la pequeña capacidad de la cesta entre otros. En definitiva, nuestro objetivo principal es que el usuario pueda acceder de forma fácil a todos los puntos de la cesta sin tener que adoptar posturas extrañas y poder regular el carrito en altura para adaptarlo a las necesidades particulares de cada individuo.

Un aspecto esencial de este proyecto es tratar de obtener un conjunto lo más modular posible, de tal manera que, en los casos de unión entre piezas se ha tratado siempre de utilizar uniones atornillas en vez de soldadura recurriendo a esta únicamente en casos en los que no fuera posible otra opción o para subconjuntos que se quieren que estén unidos de forma permanente como es el caso de la cartela.

Otro factor a considerar son las dimensiones máximas del mismo, las cuales deben asegurar un uso correcto y adecuado, tanto en el interior como en el exterior de los establecimientos donde va a usarse este producto. Por último, se trata de conseguir un diseño final que nos permita tener el centro de gravedad lo más bajo posible con el objetivo de obtener un producto más estable, siendo un aspecto fundamental especialmente cuando la cesta está cargada.

5.3. FUNCIONAMIENTO GENERAL

El primer paso es identificar los conjuntos principales que forman el ensamblaje tal y como se muestra en la figura 5.1. y se especifican en la tabla 5.1.

Tabla 5.1: Conjuntos principales.

Dada la profundidad interrelación que existe entre los diferentes componentes del carrito vamos a ir explicando el funcionamiento del mismo conforme al orden que consideramos más conveniente. De esta manera, comenzamos explicando el sistema de elevación seguido del de giro de la cesta, al tratarse de los dos movimientos fundamentales. A continuación, procedemos a explicar el resto de subensamblajes principales (base principal, cartela, caja de reductores y las patas inferiores).

5.3.1. SISTEMA DE REGULACIÓN DE ALTURA

El primer objetivo que se trata de alcanzar es adaptar los carritos para personas en sillas de ruedas a la altura a la que les sea más cómodo en función de sus necesidades. Con este objetivo en mente se diseña el sistema de elevación que se muestra en la imagen 5.2.

Figura 5.2: Sistema de regulación de altura.

El modo de uso es muy sencillo, en el caso de querer aumentar la altura, el usuario debe girar el volante en sentido antihorario, tal y como se detalla en la figura 5.2. Por el contrario, en caso de querer disminuir la altura, el procedimiento consiste en hacer girar el volante en sentido horario en este caso. De esta manera, cada persona puede elegir la altura a la que le es más cómoda utilizar el carrito.

Mediante este sistema se consigue solventar una de las mayores limitaciones de los modelos existentes actualmente en el mercado. Como veremos más adelante, las dimensiones del carro nos aseguran que sea apto para la gran mayoría de la población.

Hemos descrito el sistema como si se tratase de una caja negra, es decir, explicamos las ordenes de entrada que da el usuario y especificamos como responde el sistema. En este caso la orden de entrada es girar el volante y la

respuesta del sistema es modificar la altura del mismo en función del sentido de giro. A continuación, vamos a explicar los elementos que lo componen.

El sistema se basa en la utilización de columnas de elevación, cuyos elementos principales se observan en la siguiente figura 5.3.

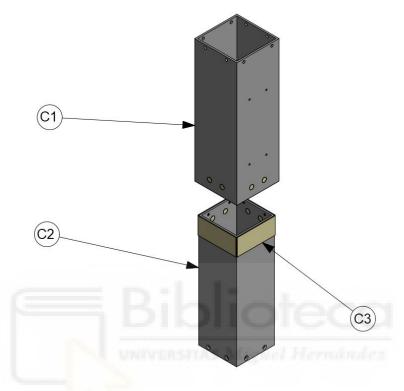


Figura 5.3: Sistema de elevación de columnas.

MARCA DESCRIPCIÓN		
C1	Columna exterior	
C2	Columna interior	
C3	Patines deslizantes	

Tabla 5.2: Sistema de elevación de columnas.

El sistema de elevación consiste en una columna exterior, la cual es la que se desplaza verticalmente en función de la regulación de altura que realice el usuario, mientras que la columna interior mantiene una posición fija. Entre los dos elementos, en todas las caras, hay acoplados por presión unos patines deslizantes de nylon. Dichas piezas cumplen una doble función, por un lado, evitan el roce acero-acero de las dos columnas y a su vez hacen la función de guiado, asegurando que la columna exterior se desplace de manera correcta, sin desviaciones.

Figura 5.4: Patines deslizantes de nylon.

El proceso de modificación de la altura comienza con la manipulación del volante de la izquierda por parte del usuario. Dicho movimiento de rotación es transmitido a través de un eje que conecta con la reductora por medio de un acoplamiento de fuelle, tal y como se muestra en la figura 5.5.

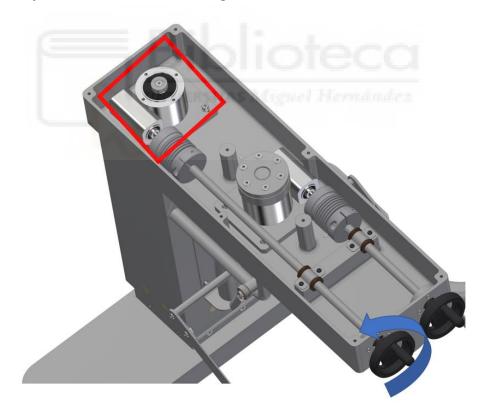


Figura 5.5: Interior caja reductores.

Por medio de la reductora sinfín-corona se transforma el movimiento de rotación del eje en desplazamiento longitudinal del husillo al cual está acoplado.

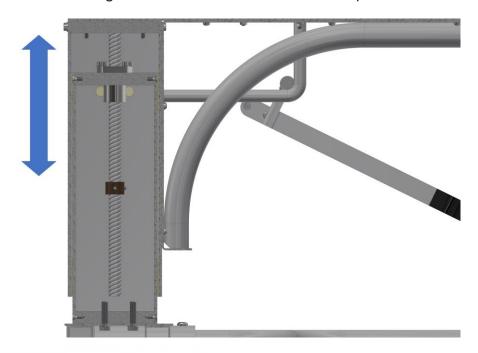


Figura 5.6: Interior columna de elevación.

La tuerca del husillo se encuentra atornillada a una placa intermedia que a su vez está atornillada a la columna interior, tal y como se aprecia en las imágenes.

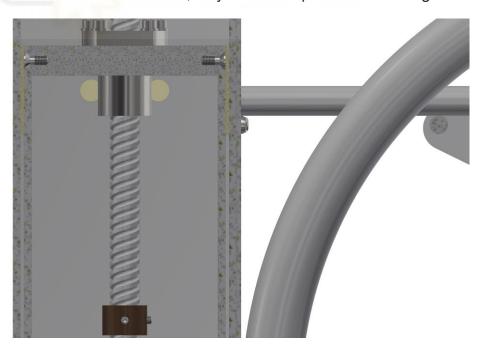


Figura 5.7: Tuerca del husillo.

De esta manera se consigue que se modifique la altura del carrito ya que, al ser la columna interior fija, el giro del husillo hace que se eleve el conjunto de la columna exterior y la caja de reductores, que como veremos más adelante, también se encuentran atornillados entre sí.

Tal y como se detalla en el anexo 1, es necesario delimitar la altura máxima para evitar tanto que el husillo pueda salirse como que se produzca autorretención entre los elementos de la columna.

Figura 5.8: Limitador carrera husillo.

Por consiguiente, mediante el uso de un casquillo con dos prisioneros formando un ángulo de 90° conseguimos delimitar la carrera del husillo. La determinación de la altura máxima se realiza de forma extensa en el anejo 1.

Por último, como hemos mencionado previamente, uno de nuestros propósitos es obtener un diseño lo más modular posible. De esta manera se procede a realizar la unión de la cartela a la columna exterior de elevación mediante tornillos tal y como se muestra en la siguiente imagen.

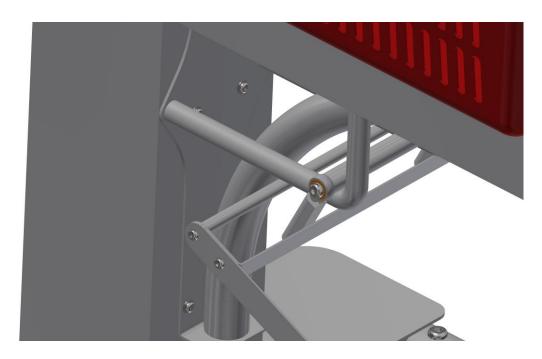


Figura 5.9: Unión cartela-columna exterior.

La cartela, la cual se utiliza con el propósito de rigidizar el conjunto y repartir las cargas, se puede reemplazar en caso de ser necesario ya que va atornillada tanto a la columna como a la caja de los reductores.



Figura 5.10: Cartela.

5.3.2. SISTEMA DE GIRO

La otra gran limitación presente en la mayoría de los modelos actuales es la poca capacidad de carga y la necesidad de aproximarse mucho el carrito al cuerpo para que los usuarios puedan alcanzar el extremo opuesto. Con el objetivo de solucionar este problema se diseña un sistema que permite el giro de la cesta. De esta manera podemos hacer las cesta de mayor capacidad puesto que se podrá acceder a todos los puntos de la misma, sin tener que adoptar posturas extrañas o incomodas, la persona solamente tendrá que girar 180º la cesta para alcanzar el extremo opuesto, tal y como se muestra en la figura 5.11.

Figura 5.11: Sistema de giro.

Se observa como al girar el volante de la derecha en sentido antihorario la cesta girará también en el mismo sentido respecto a su eje vertical. Como ocurría en el caso del sistema de elevación aquí también se procede en sentido contrario (horario) para hacer girar la cesta en el sentido opuesto. No obstante, a diferencia de lo que ocurría en el sistema anterior, en este, está pensado para que la persona realice el giro en el sentido en que le sea más cómodo ya que no existe ninguna diferencia a hacerlo de una manera o de otra. Como se ha explicado, hay que girar 180º para alcanzar el extremo opuesto pero el hecho de que se alcance en sentido horario o antihorario es elección del usuario.

Se evita por tanto que la persona tenga que hacer esfuerzos extras que puedan causar riesgos a su salud o suponer molestias considerables al tratar de alcanzar el extremo opuesto de la cesta.

El proceso de giro de la cesta comienza con la manipulación del volante de la derecha por parte del usuario. Dicho movimiento de rotación es transmitido a través de un eje que conecta con la reductora por medio de un acoplamiento de fuelle, tal y como se muestra en la figura 5.12.

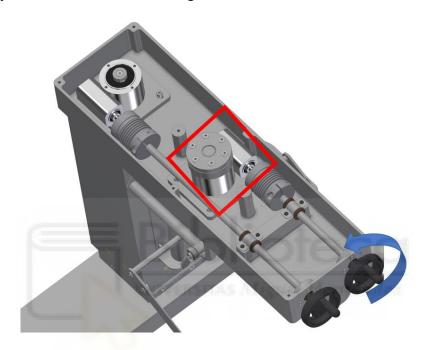


Figura 5.12: Interior caja reductores.

5.3.3. BASE PRINCIPAL

La principal función es servir como base de apoyo a la columna interior, y a su vez permitir el acoplamiento de las ruedas delanteras.

Figura 5.13: Base principal.

La unión con la columna interior se realiza mediante el uso de una placa a la que se atornilla tanto la base como la columna interior. De esta manera se fijan entre sí mediante la placa como elemento intermedio de unión.

Para la colocación de los tornillos se utilizará una llave de vaso debido a la disposición particular que presentan.

Figura 5.14: Unión base-columna exterior.

Otro aspecto fundamental es el hecho de que la base está unida a los tubos que conectan con las ruedas traseras como se muestra a continuación.

Figura 5.15: Unión base tubos ruedas posteriores.

5.3.4. CAJA DE REDUCTORES

En lo referente a la caja de reductores ya hemos comentado los aspectos más importantes en las secciones donde hemos analizado el sistema de elevación y de giro. Únicamente cabe destacar y resaltar el tipo de unión a los elementos con los que colinda.

A continuación, se muestra la unión que presenta con la columna exterior de elevación.

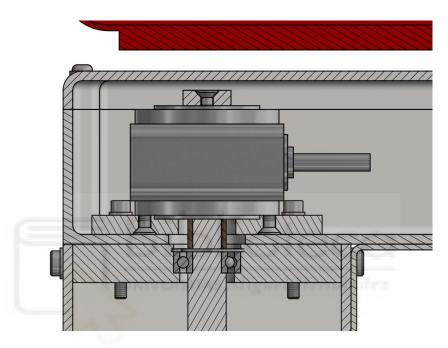


Figura 5.16: Unión caja de reductores-columna exterior.

Al igual que ocurría en el caso de la unión de la base con la columna interior, se procede a realizar la unión mediante el uso de una placa. De tal manera que la columna exterior se atornilla a la chapa por el lateral, mientras que la caja de reductores se atornilla a la chapa de forma vertical. Se aprovechan estos tornillos también para fijar la reductora, tal y como se observa en la figura 5.16.

La unión con la cartela se realiza también mediante el uso de tornillos, tal y como se muestra en la siguiente figura. Se observa el carácter modular que predomina a lo largo del proyecto.

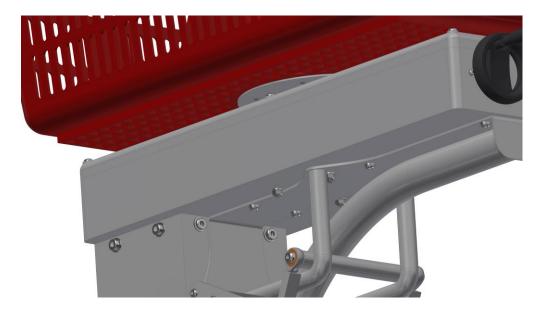


Figura 5.17: Detalle uniones atornilladas cartela.

5.3.5. SISTEMA DE ANCLAJE A LA SILLA DE RUEDAS

Finalmente, un elemento crucial para el correcto funcionamiento del carrito es el sistema de anclaje a la silla de ruedas. Con el objetivo de asegurar que elegimos un método que asegure una fijación correcta, procedemos a la investigación de las opciones que existen. De esta manera encontramos la patente US20030218312A1.

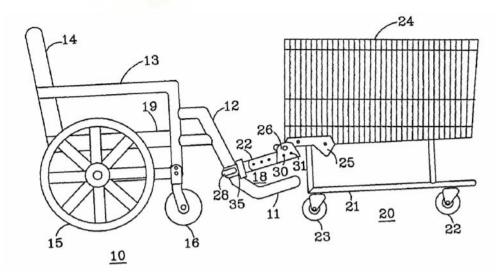


Figura 5.18: Detalle 1 patente US20030218312A1.

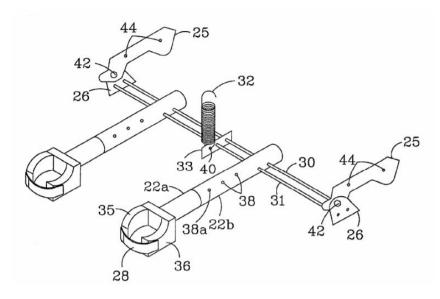


Figura 5.19: Detalle 2 patente US20030218312A1.

Dicho diseño nos sirve como base de partida para elegir nuestra solución final. Continuando con el proceso de análisis de alternativas, encontramos un modelo existente que se basa en la utilización de una pletina fina y alargada de tal forma que se pueda deformar sin mucho esfuerzo y acoplarlo a la silla de ruedas sin problemas. Dada la simplicidad del método, lo adoptamos como solución realizando algunas modificaciones.

Figura 5.20: Sistema de anclaje silla de ruedas.

En la figura 5.21 se observa, nuestra propia versión del sistema de anclaje a la silla de ruedas.

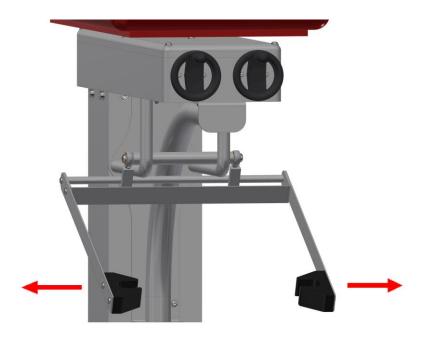


Figura 5.21: Sistema de anclaje diseñado.

Cabe destacar, que las medidas y la forma se ha diseñado para garantizar que se cumplan los requisitos antropométricos establecidos en el capitulo 4. De tal forma, que la distancia entre el respaldo de la silla de ruedas y el centro de la cesta es inferior al valor minimo estipulados en dicho estudio (777,5 mm).

A continuación, se muestran imágenes de como sería el proceso de fijación real a la silla de ruedas.

Figura 5.22: Proceso de fijación a la silla de ruedas.

Figura 5.23: Anclaje a la silla de ruedas.

A pesar de ser un método perfectamente aceptable y testado, se propone a continuación una alternativa consistente en la inclusión de una bisagra con resorte. De manera que la pletina pasaría de ser una única pieza a dividirse en dos, las cuales estarían unidas entre sí por medio de la bisagra que puede estar atornillada o soldada.

Figura 5.24: Implementación de bisagra con resorte.

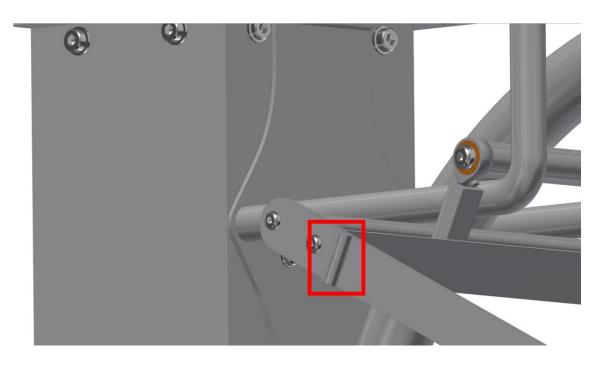


Figura 5.25: Detalle bisagra con resorte.

5.4. POSICIONES DE FUNCIONAMIENTO

5.4.1. REGULACIÓN ALTURA

En esta sección vamos a analizar las distintas posiciones en las que se puede encontrar el carrito, las cuales han sido simuladas en el programa Autodesk Inventor 2020 como se muestra a continuación.

Figura 5.26: Posiciones analizadas.

Cabe destacar que el carrito puede situarse en infinidad de posiciones concretas delimitadas entre la altura mínima y la máxima, nuestro objetivo es, por tanto, seleccionar ciertas alturas que representen al total de los usuarios.

Se pretende asegurar que el carrito sea adaptable a las necesidades de la mayor parte de la población, con este objetivo en mente, se dimensiona el carrito para que su rango de altura abarque todos los valores presentados en el estudio antropométrico descrito en el capítulo 4 (tabla 4.3 y 4.4).

Dado que la altura sigue una distribución normal, consideramos como altura principal del carrito (altura a la que va a estar en la mayor cantidad de ocasiones) la altura media entre el percentil P50 de la altura del suelo al hombro de los hombres y el percentil P50 de mujeres.

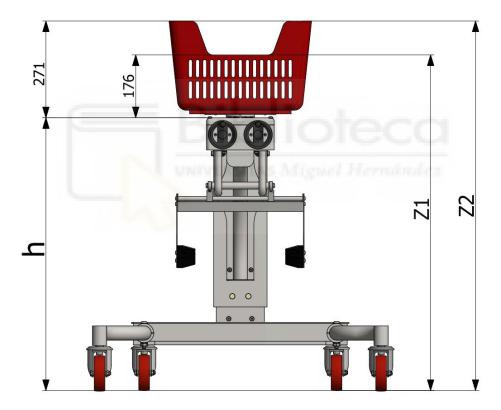


Figura 5.27: alturas características. Unidades en mm.

Para seleccionar las alturas principales es necesario definir ciertos parámetros longitudinales que se observan en la figura 5.27.

- h: Distancia vertical entre el suelo y la tapa de la caja de reductores.
- Z1: Distancia vertical entre el suelo y la apertura inferior de la cesta.
- Z2: Distancia vertical entre el suelo y la apertura superior de la cesta.

Se observa por lo tanto que dichas magnitudes guardan la siguiente relación entre sí:

$$Z1 = h + 176$$

$$Z2 = h + 271$$

Seleccionamos 7 alturas características que abarcan todas las alturas especificadas en el estudio antropométrico del capítulo 4 (tabla 4.3 y 4.4). De esta manera, nuestro análisis se centra en las siguientes configuraciones:

Altura Principal Altura P50-P95 Mujer Altura P50-P95 Hombre Altura Máxima

Figura 5.28: Configuraciones de altura.

Posición	h (mm)	Z1 (mm)	Z2 (mm)
Altura Mínima	726	902	997
Altura P5-P50 Mujer	742,8	918,8	1013,8
Altura P5-P50 Hombre	755	931	1026
Altura Principal	764	940	1035
Altura P50-P95 Mujer	781,3	957,3	1052,3
Altura P50-P95 Hombre	831,3	1007,3	1102,3
Altura Máxima	889	1065	1160

Tabla 5.3: Rango de alturas.

Por consiguiente, en la tabla 5.3 se recoge a qué altura se sitúa Z1 y Z2 en las distintas configuraciones de altura. Marcando en verde aquellos valores extremos que se obtienen.

Por lo tanto, hemos conseguido el objetivo principal de obtener un diseño que sea adaptable a la altura requerida por cada persona. Cabe destacar que la altura mínima y máxima son valores que hemos establecido nosotros para nuestro diseño, asegurando tener un margen de seguridad para valores de altura que no se encuentran representados en el estudio, es decir cuya altura exceda los límites del estudio tanto de forma superior como inferior.

La reductora empleada para el sistema de elevación tiene una relación de reducción de 1:5 y el husillo tiene un paso de 10 mm. Estos factores implican que para que el husillo de una vuelta completa sobre su eje, el volante tiene que dar 5, produciéndose un desplazamiento vertical del husillo de 10 mm (1 cm).

De esta manera podemos calcular de una manera sencilla el número de vueltas necesario para pasar de una posición a otra. Para ilustrarlo, tomamos como posición inicial la posición principal y como final la altura P50-P95 mujer.

El primer paso es calcular la distancia a salvar entre ambas posiciones, es decir, la diferencia entre ambas alturas (datos en tabla 5.3).

$$\Delta h = h_{final} - h_{inicial}$$

En este caso tenemos:

$$\Delta h = h_{final} - h_{inicial} = 781,3 - 764 = 17,3 \ mm$$

El número de vueltas que el usuario ha de dar al volante será, por tanto:

$$N^{\circ}vueltas = \Delta h \cdot \frac{5 \ vueltas \ volante}{10 \ mm} = 17,3 \ mm \cdot \frac{5 \ vueltas \ volante}{10 \ mm} = 8,7 \ vueltas$$

Por lo tanto, el usuario, tendrá que dar 8,7 vueltas para pasar de la altura principal a la altura P50-P95 mujer.

En la tabla 5.4 recogemos el número de vueltas requerido para alcanzar las distintas posiciones finales partiendo de la altura principal, también se especifica el sentido del giro y el tipo de movimiento que se produce.

Posición Inicial	Posición Final	Distancia a salvar (mm)	Nº Vueltas	Sentido	Movimiento
	Altura Mínima	38	19	Horario	Descendente
	Altura P5-P50 Mujer	21,2	10,6	Horario	Descendente
Altura Principal	Altura P5-P50 Hombre	9	4,5	Horario	Descendente
Altura Principal	Altura P50-P95 Mujer	17,3	8,6	Antihorario	Ascendente
	Altura P50-P95 Hombre	67,3	33,7	Antihorario	Ascendente
	Altura Máxima	125	62,5	Antihorario	Ascendente

Tabla 5.4: Regulación de la altura desde la posición principal.

5.4.2. GIRO DE LA CESTA

La reductora empleada para el giro de la cesta tiene una relación de reducción de 1:8, lo que implica que una vuelta completa del volante produce un giro de 45°.

Ángulo girado por cada vuelta de volante =
$$\frac{360^{\circ}}{8}$$
 = 45°

Por lo tanto, en nuestro diseño de cesta estándar será necesario únicamente realizar 4 vueltas al volante para alcanzar el extremo opuesto, tal y como se ilustra en la figura 5.29.

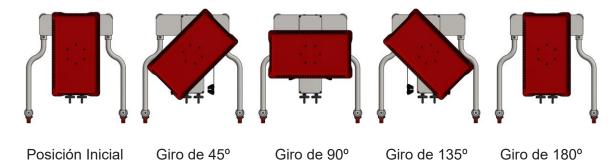


Figura 5.29: Disposiciones de la cesta.

- 1 vuelta =giro de 45°.
- 2 vueltas =giro de 90°.
- 3 vueltas = giro de 135°.
- 4 vueltas =giro de 180°.

Otro aspecto fundamental es que se garantiza la capacidad de la persona para llenar la cesta, al haber sido diseñado el carrito para que el apoyo lumbar de la silla quede a una distancia de 775 mm, inferior al valor mínimo de 777,5 mm obtenido en el estudio antropométrico del capítulo 4. Por tanto, se asegura que cualquier individuo sea capaz de aprovechar todo el volumen de la cesta, sin que exista ninguna parte de la misma que no sea alcanzable por el usuario.

Figura 5.30: Distancia entre el centro del carrito y el apoyo de la silla de ruedas.

Finalmente, merece la pena mencionar que el ancho máximo de la silla se ha dimensionado de forma que su uso sea adecuado para las medidas de los supermercados. De esta manera, el CTE, concretamente el "Documento Básico. Seguridad en caso de Incendio" regula que el ancho entre los pasillos donde se prevea el uso de carros ha de ser de mínimo 1,80 m, ya que todos los recorridos se consideran de evacuación.[11]

En la figura 5.31 se aprecia que con nuestro diseño se adapta a la normativa, permitiendo que puedan circular dos carros en direcciones opuestas.

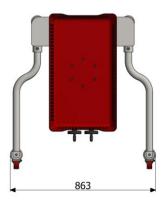


Figura 5.31: Ancho máximo del carro.

5.5. VISTAS GENERALES

En esta sección se presenta el modelo 3D del carrito que hemos considerado el más apropiado para cumplir con los objetivos propuestos, en su posición de altura principal.

Figura 5.33: Vista de perfil del conjunto.

Figura 5.35: Vista en planta del conjunto.

5.6. ANÁLISIS DE ALTERNATIVAS DE DISEÑO

El proceso de diseño es un proceso iterativo lo que implica que el resultado final normalmente difiere de manera significativa de la idea inicial. A lo largo de la fase de modelado se han considerado distintas alternativas las cuales se exponen a continuación identificando sus ventajas e inconvenientes.

Resulta necesario establecer brevemente las soluciones que se han aportado a las limitaciones de los modelos actuales existentes en el mercado.

- Limitación nº1: Las cestas son muy pequeñas para que las personas en sillas de ruedas puedan llegar al extremo opuesto alargando el brazo.
 Solución nº1: Sistema que permite a la cesta girar, de tal manera que el usuario únicamente tenga que alcanzar la mitad de la longitud de la cesta estirando el brazo.
- Limitación nº2: Les incomoda el diseño del carrito ya que se tienen que aproximar mucho el carrito al cuerpo para poder llegar al otro extremo.
 Solución nº2: Al poder girar la cesta no es necesario que se aproximen tanto por lo que es más ergonómico.
- Limitación nº3: Imposibilidad de modificar la altura del carro a pesar de la existencia de distintos modelos de sillas de ruedas y de distintas personas con distinta altura. Solución nº3: Sistema de regulación de la altura del carrito, siendo el usuario el que seleccione la posición más adecuada a sus necesidades.

5.6.1. SISTEMA DE ELEVACIÓN

Inicialmente se consideró la opción de un sistema de elevación basado en el mecanismo de tijera tal y como se observa en la figura 5.36.

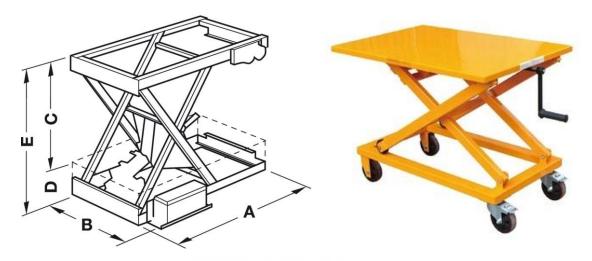


Figura 5.36: Mecanismo tijera.

La principal ventaja de esta disposición radica en la facilidad de montaje y la simplicidad del elemento ya que consta básicamente de cuatro barras unidas 2 a 2 y conectadas entre sí transversalmente.

No obstante, una vez realizado el ensamblaje del mismo en Autodesk inventor (figura 5.37) se llegó a la conclusión de que presentaba desventajas considerables respecto a otro sistema basado en columnas de elevación (Figura 5.38).

Figura 5.37: Ensamblaje sistema de elevación de tijera.

5.39: Ensamble columna.

Las principales ventajas del sistema de elevación de columnas respecto al tijera son las siguientes:

- El husillo no es accesible al público, ya que está contenido en el interior de las columnas, a diferencia de en la opción de la tijera que se encuentra al descubierto, lo cual entraña riesgos al estar al alcance de los usuarios y de los niños. También, en el caso de las columnas requiere menos mantenimiento al no verse tan expuesto.
- La existencia de una gran cantidad de fabricantes, existiendo la posibilidad de comprarlo construido ya que se trata de un elemento comercial. A diferencia del mecanismo de tijera que tendríamos que construirlo nosotros incrementando el coste de fabricación y de montaje.
- El montaje es mucho más sencillo debido a su forma. En nuestro caso únicamente será necesario fijarlo de manera adecuada a la base de tal forma que la columna se adapta al carrito perfectamente. No como en el caso de la tijera donde el diseño del carro ha de adaptarse al mecanismo.

5.6.2. DISPOSICIÓN DE LAS RUEDAS

En este aspecto hay dos configuraciones principales consideradas. Por una parte, tenemos el diseño final elegido (figura 5.32) donde tenemos dos tubos a cada extremo de manera que la silla de ruedas se encuentra en el interior de dichos tubos. No obstante, existe otra posibilidad la cual consiste en la utilización de una única barra unida a la base, esta configuración se contempla en la figura 5.40.

Figura 5.40: Disposición de un único apoyo.

La principal ventaja que se obtiene es el menor espacio ocupado por el carrito, considerando que se va a utilizar en los pasillos de un supermercado cuanto menor sea el espacio que ocupen mejor, siendo por tanto está configuración idónea en supermercados de dimensiones reducidas.

No obstante, se desestimó finalmente esta disposición por la inestabilidad que genera al tener un único punto de apoyo en la parte trasera introduciendo un riesgo adicional, siendo especialmente peligroso en las situaciones en las que la cesta se encuentre girando. Por consiguiente, se decide dar prioridad a la seguridad en vez de a la reducción del tamaño del mismo y se elige la

configuración de la figura 5.32. como la definitiva. De esta manera, se tienen cuatro puntos de apoyo y se minimiza el riesgo de vuelco frente al de tres puntos de apoyo

5.6.3. CESTA CUADRADA DE MAYORES DIMENSIONES

Una de las principales premisas de nuestro producto es su carácter modular, de tal forma que la cesta que se ha representado inicialmente en la figura 5.32. es únicamente el modelo que se toma como estándar para las necesidades habituales de los usuarios. No obstante, la forma en la que está diseñado el carrito permite la utilización de infinidad de tipos de cesta con diferentes dimensiones. Por tanto, en este aspecto más que alternativas de diseño se tratan de diferentes configuraciones que podemos aplicar. Una disposición interesante es el caso de utilizar cestas cuadradas de grandes dimensiones (figura 5.41).

Figura 5.41: Cesta cuadra de grandes dimensiones. Vista isométrica.

Las ventajas principales de esta configuración radican en su mayor capacidad de carga y en el hecho de que al tener forma cuadrada se podrá seguir llenando el carro girando la cesta únicamente 90°. De la otra forma, como se explicó anteriormente, para poder seguir llenando se tenía que girar la cesta 180°.

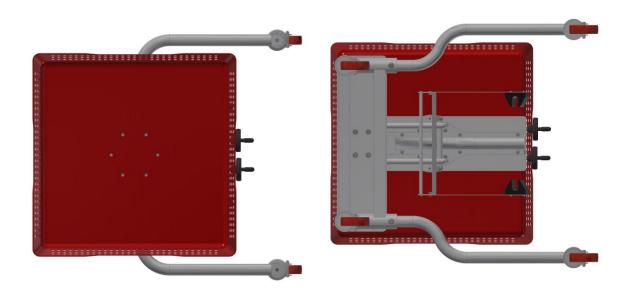


Figura 5.42: Cesta cuadra de grandes dimensiones. Vista en planta e inferior.

Figura 5.43: Cesta cuadra de grandes dimensiones. Vista en alzado.

La duda que surge al plantearse este tipo de cesta es cuál es el tamaño máximo que puede alcanzar para evitar problemas de inestabilidad. En este caso el problema de estabilidad se produce cuando el centro de gravedad de la compra contenida en la cesta sobresalga el área limitada por la línea que une los puntos de contacto de las ruedas con el suelo. Por tanto, tal y como se observa en las

figuras anteriores, en nuestro caso no hay problema ya que, aunque sobresalga ligeramente con respecto a las ruedas delanteras el centro de gravedad de la compra no sobresaldría.

No obstante, el hecho de que posea mayor capacidad implica que el centro de gravedad de la máquina sea más alto que el de la figura 5.32. lo que produciría una mayor inestabilidad que con la cesta más pequeña. Por esta razón, se considera como modelo estándar la figura 5.32.

5.7. JUSTIFICACIÓN DE LAS SOLUCIONES ADOPTADAS

Puesto que se trata de desarrollar un prototipo, una de las consideraciones principales del diseño es que sea lo más modular posible, de manera que se puedan realizar cambios fácilmente en función de los resultados de los ensayos realizados sobre el prototipo una vez fabricado. Se ha diseño de manera que las piezas sean fácilmente sustituibles por modelos equivalentes o por distintas alternativas. De esta forma, también se ha tratado en la medida de lo posible de diseñar uniones atornilladas en vez de soldadas para poder realizar cambios fácilmente en un futuro al tener piezas más pequeñas, siendo por tanto el coste de cambio por sustitución más económico.

Dado que en el diseño el proceso de implementar mejoras y cambios es un proceso iterativo de prueba y mejora, con un diseño modular se pueden modificar aspectos puntuales del diseño sin que ello conlleve la necesidad de fabricar otro carrito desde cero sino simplemente aplicar los cambios pertinentes al prototipo en cuestión.

5.8. IMÁGENES RENDERIZADAS CON LA SILLA DE RUEDAS

Figura 5.44: Conjunto carrito-silla de ruedas. Vista isométrica.

Figura 5.45: Conjunto carrito-silla de ruedas. Vista de perfil.

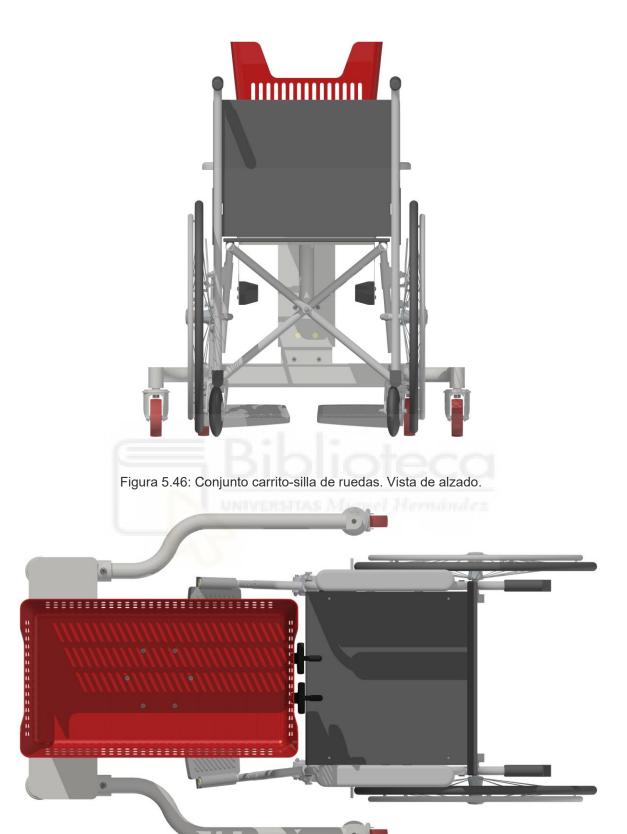


Figura 5.47: Conjunto carrito-silla de ruedas. Vista en planta.

6. ANÁLISIS ESTRUCTURAL

Una vez finalizado el diseño, se procede a analizar la máquina en distintas condiciones de carga y sobrecarga a las que va a estar sometido durante su funcionamiento.

6.1. MÉTODO DE ANÁLISIS

Dada la complejidad geométrica que presenta nuestra máquina y el elevado número de componentes que posee, la metodología empleada para analizar estructuralmente nuestro diseño es el método de elementos finitos (MEF).

Para tratar de obtener la mejor simulación se utiliza el software ANSYS, programa líder en el sector que proporciona un amplio conjunto de herramientas para poder optimizar la simulación de manera que los resultados se aproximen lo máximo posible a los valores reales.

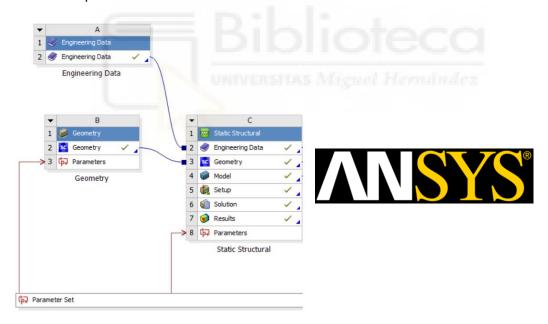


Figura 6.1: Simulación en ANSYS.

Hay que destacar que la simulación se ha establecido de forma paramétrica, es decir, que se pueda modificar la altura del carrito para obtener valores de tensión, deformación y coeficiente de seguridad en distintas condiciones de uso, para asegurar que cumple con las exigencias estructurales necesarias en todas las posiciones descritas en el capítulo anterior.

6.2. CONDICIONES DE LA SIMULACIÓN

6.2.1. GEOMETRIA

El primer paso ha sido simplificar el diseño de tal forma que únicamente se simulen los elementos que realmente soportan la carga. De esta manera, se consigue la optimización de los recursos informáticos, ya que este tipo de simulaciones requieren mucha potencia computacional. Por lo tanto, es necesario eliminar los elementos que, aunque sirven para el correcto funcionamiento de la máquina, no aportan valor de resistencia tal y como se observa en la figura 6.2.

Figura 6.2: Ensamblaje para la simulación.

Con el mismo objetivo de optimizar los recursos, se procede a dividir el carrito por su plano de simetría de tal manera que únicamente sea necesario mallar la mitad del conjunto. De esta forma se consiguen por una parte reducir el tiempo invertido optimizando la malla y por otro reducir la demanda de recursos informáticos requeridos para su simulación introduciendo un parámetro de simetría en el programa.

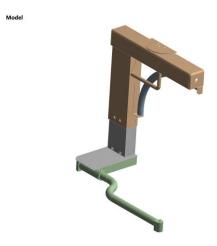


Figura 6.3: Modelo para la simulación.

En conclusión, conseguimos reducir a la mitad el tiempo necesario para realizar la simulación. Además, dado que vamos a realizar el análisis con una malla optimizada y con el carrito en distintas posiciones, en un aspecto fundamental.

6.2.2. MALLADO

Una vez introducida la geometría se procede a realizar su mallado. En esta sección es fundamental encontrar el equilibrio entre un mallado lo suficientemente ajustado para que los resultados sean concluyentes con no realizar una malla tan fina que el proceso de simulación requiera una gran cantidad de tiempo y de recursos computacionales. En nuestro caso, seleccionamos nodos tetraédricos de un tamaño de 5mm, ya que es la metodología más exacta, como nuestra malla general. A continuación, se realiza un mallado más fino y ajustado en las posiciones más críticas.

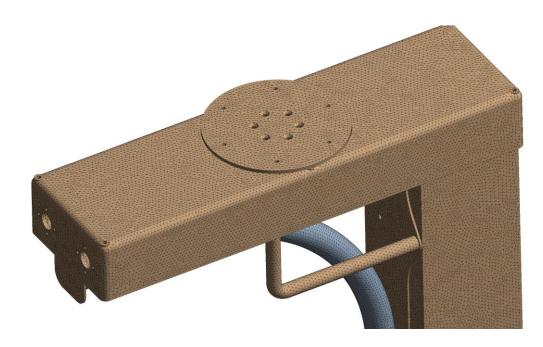


Figura 6.4: Detalle 1 de la malla.

Figura 6.5: Detalle 2 de la malla.

Con el objetivo de encontrar el equilibrio entre precisión y recursos necesarios utilizaremos el parámetro denominado calidad del mallado cuyo valor va del 0% al 100%. El valor mínimo del conjunto para que los datos del análisis puedan ser considerados como fiables es un 60%.

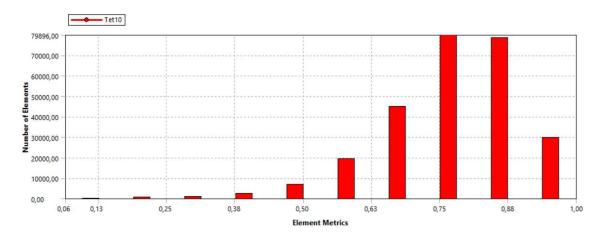


Figura 6.6: Calidad del mallado.

En la figura 6.6 se observa como la mayoría de nuestro conjunto se encuentra con valores comprendidos entre 0.75 y 0.88, es decir, entre el 75% y 88% por lo tanto nuestro mallado es adecuado.

6.2.3. CONDICIONES DE CONTORNO

Las condiciones de contorno empleadas en este análisis consisten, tal y como se muestra a continuación, en situar apoyos fijos en las ruedas delanteras (apoyo B), es decir, quedan impedidos todos los posibles movimientos. Mientras que, en las ruedas traseras se impide el desplazamiento vertical estando permitido el desplazamiento horizontal (apoyo A).

Figura 6.7: Condiciones de contorno.

6.2.4. CONDICIONES DE CARGA

Tal y como se justifica en el anejo 1, la carga que ha de soportar como máximo son 200kg, aplicada en el soporte de la cesta de forma distribuida. Por simplicidad se considera la gravedad como 10 m/s² y se realiza la simulación por consiguiente aplicando una carga de 2000N.

6.2.5. PARAMETROS A ANALIZAR

6.2.5.1. TENSIÓN EQUIVALENTE DE VON MISES

La tensión equivalente de Von Mises es un parámetro que establece el equivalente de las tensiones que actúan sobre un material dúctil. Bajo esta suposiciones se considera que un material falla si la tensión de Von Mises es superior al valor de la resistencia del material en cuestión. Nuestro objetivo será por tanto que la resistencia elástica (σ_E) sea siempre superior a la tensión de Von Mises (σ_{VM}).[26]

$$\sigma_E \ge \sigma_{VM} \tag{6.1}$$

6.2.5.2. DEFORMACIÓN TOTAL

La deformación total es otra magnitud fundamental a analizar cuando se está simulando el comportamiento mecánico de una máquina. Este parámetro establece la deformación total que experimenta cada miembro con respecto a su posición inicial.

6.2.5.3. COEFICIENTE DE SEGURIDAD

El coeficiente o factor de seguridad en términos generales se define como el cociente entre el valor calculado de la capacidad máxima de un sistema y el valor real al que se verá sometido. Por lo tanto, para un correcto funcionamiento de cualquier elemento es necesario que el coeficiente de seguridad sea mayor o igual a 1.[26]

En nuestro diseño hemos tomado como base de partida que ningún elemento debe tener un coeficiente de seguridad inferior a 2 para asegurar que va a soportar los casos de carga y sobrecarga a los que va a estar sometido durante su funcionamiento.

6.3. RESULTADOS

A continuación, se presentan los resultados de la simulación en distintas posiciones en las que se puede encontrar el carrito. Se comienza por la altura mínima y se va aumentando hasta llegar a la altura máxima. Para facilitar la clasificación de las distintas posiciones vamos a designar las posiciones en función del valor de la altura entre el suelo y la tapa de la caja de los reductores (h), tal y como se especifica en la tabla 6.1.

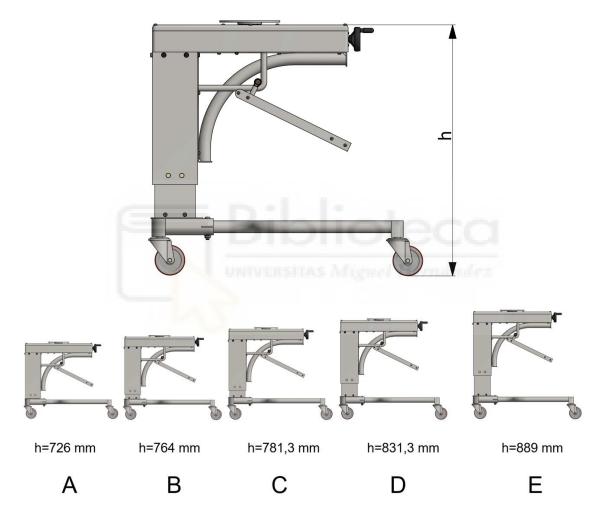


Figura 6.9: Alturas de referencia.

Posición	Designación	h (mm)
Altura Mínima	А	726
Altura Principal	В	764
Altura P50-P95 Mujer	С	781,3
Altura P50-P95 Hombre	D	831,3
Altura Máxima	E	889

Tabla 6.1: Designación diferentes alturas.

6.3.1. ALTURA MÍNIMA (A)

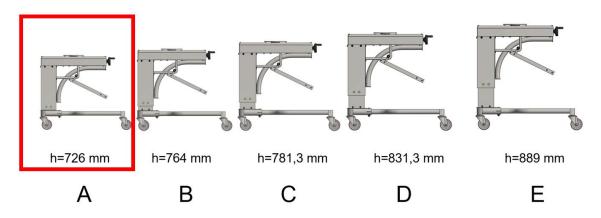


Figura 6.10: Altura de referencia A.

• TENSIÓN DE VON MISES

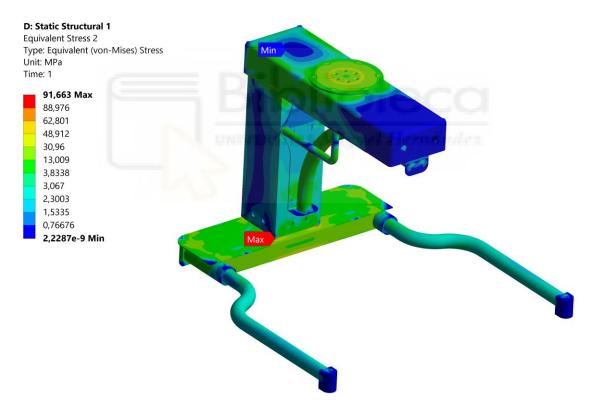


Figura 6.11: Tensión de Von Mises. Altura mínima (A).



Figura 6.12: Detalle tensión máxima de Von Mises. Altura mínima (A).

DEFORMACIÓN TOTAL

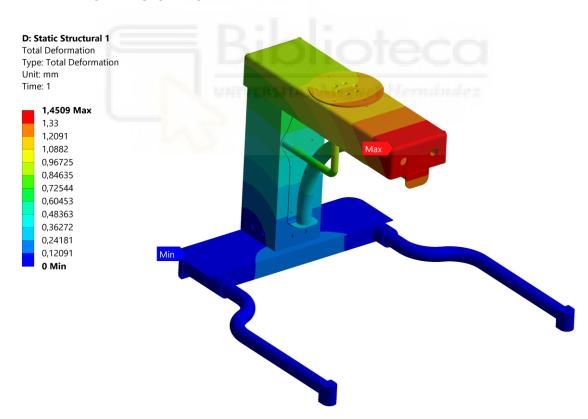


Figura 6.13: Deformación total. Altura mínima (A).

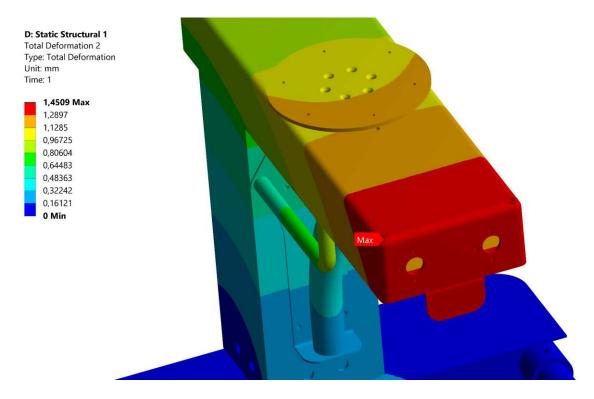


Figura 6.14: Detalle deformación total. Altura mínima (A).

Figura 6.15: Coeficiente de seguridad. Altura mínima (A).

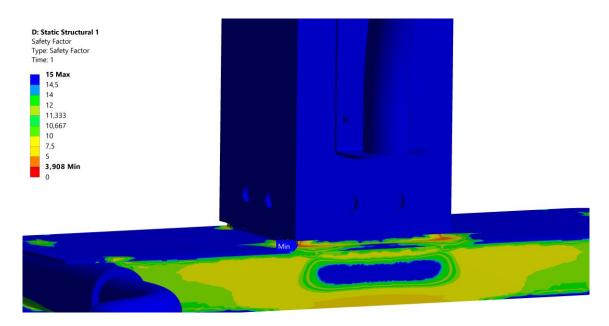


Figura 6.16: Detalle Coeficiente de seguridad mínimo. Altura mínima (A).

6.3.2. ALTURA PRINCIPAL (B)

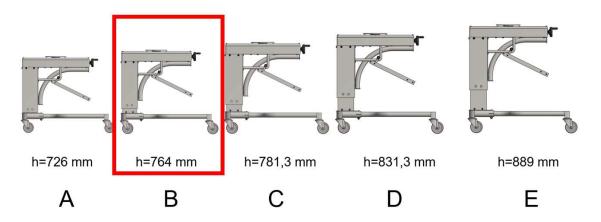


Figura 6.17: Altura de referencia B.

Dado que en todas las condiciones de la simulación se producen los valores máximos y mínimos, para todos los parámetros analizados, en las mismas posiciones, vamos a representar detalles únicamente de los valores extremos (altura mínima y altura máxima). Por consiguiente, para las otras posiciones vamos a representar las vistas isométricas globales únicamente.

• TENSIÓN DE VON MISES

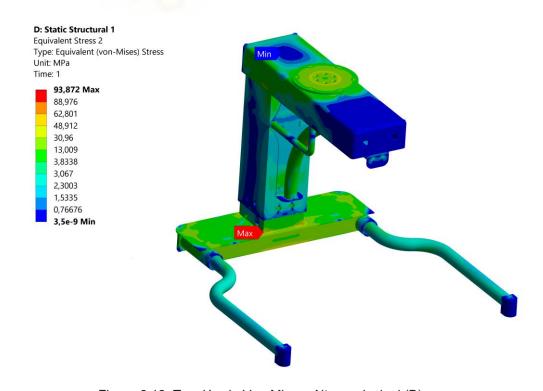


Figura 6.18: Tensión de Von Mises. Altura principal (B).

• DEFORMACIÓN TOTAL

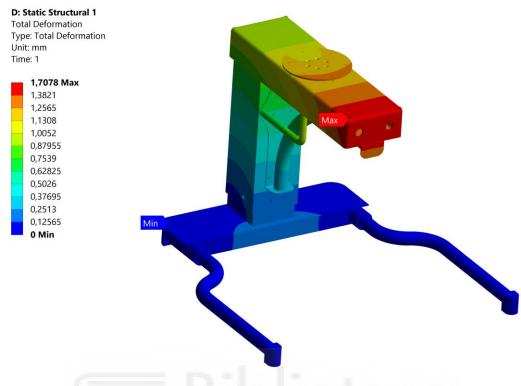


Figura 6.19: Deformación total. Altura principal (B).

COEFICIENTE DE SEGURIDAD

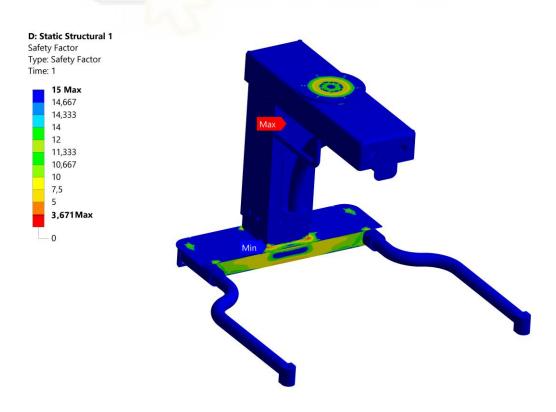


Figura 6.20: Coeficiente de seguridad. Altura principal (B).

6.3.3. ALTURA PERCENTIL P50-P95 MUJER (C)

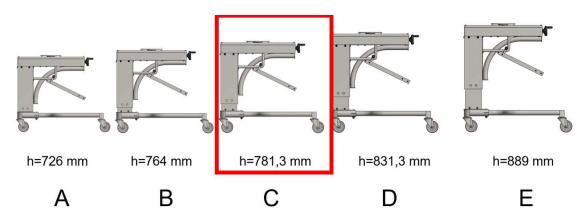


Figura 6.21: Altura de referencia C.

TENSIÓN DE VON MISES

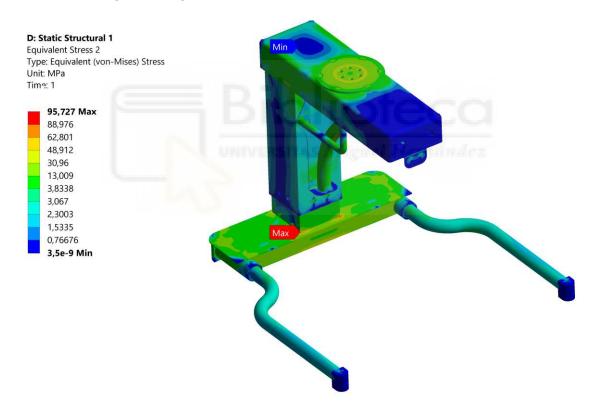


Figura 6.22: Tensión de Von Mises. Altura percentil P50-P95 mujer (C).

DEFORMACIÓN TOTAL

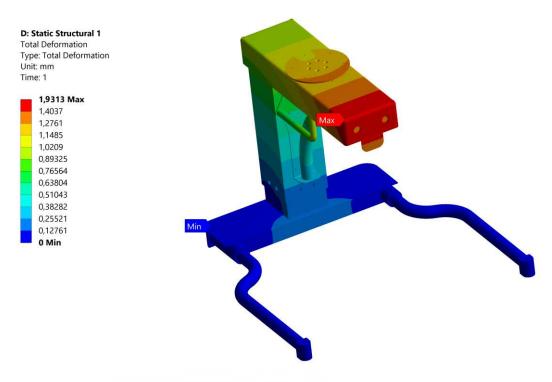


Figura 6.23: Deformación total. Altura percentil P50-P95 mujer (C).

COEFICIENTE DE SEGURIDAD



Figura 6.24: Coeficiente de seguridad. Altura percentil P50-P95 mujer (C).

6.3.4. ALTURA PERCENTIL P50-P95 HOMBRE (D)

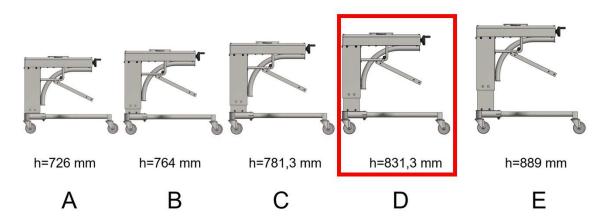


Figura 6.25: Altura de referencia D.

TENSIÓN DE VON MISES

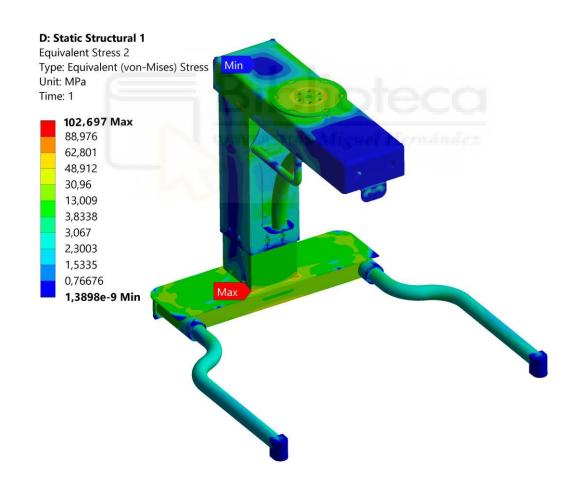


Figura 6.26: Tensión de Von Mises. Altura percentil P50-P95 hombre (D).

• DEFORMACIÓN TOTAL

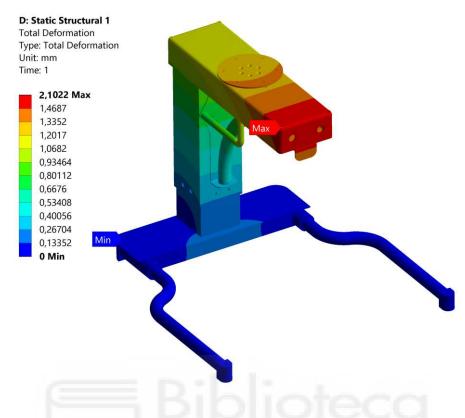


Figura 6.27: Deformación total. Altura percentil P50-P95 hombre (D).

COEFICIENTE DE SEGURIDAD

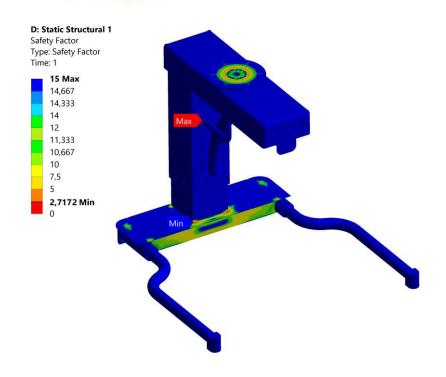


Figura 6.28: Coeficiente de seguridad. Altura percentil P50-P95 hombre (D).

6.3.5 ALTURA MÁXIMA (E)

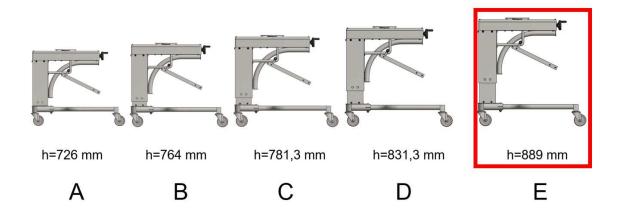


Figura 6.29: Altura de referencia E.

• TENSIÓN DE VON MISES

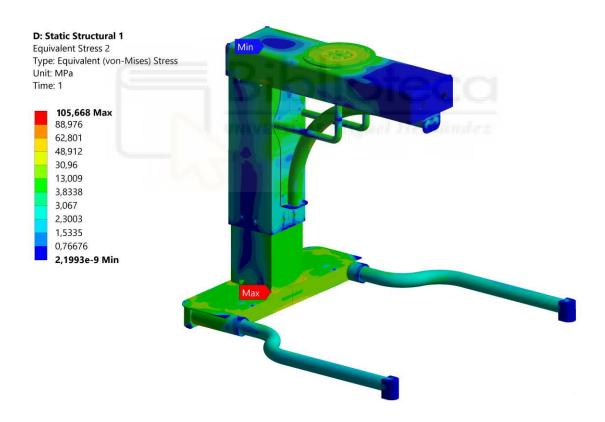


Figura 6.30: Tensión de Von Mises. Altura máxima (E).

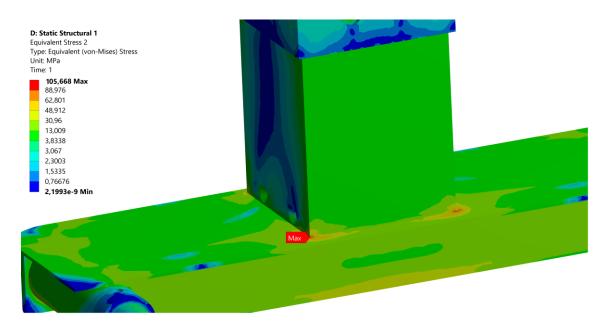


Figura 6.31: Detalle tensión máxima de Von Mises. Altura máxima (E).

DEFORMACIÓN TOTAL

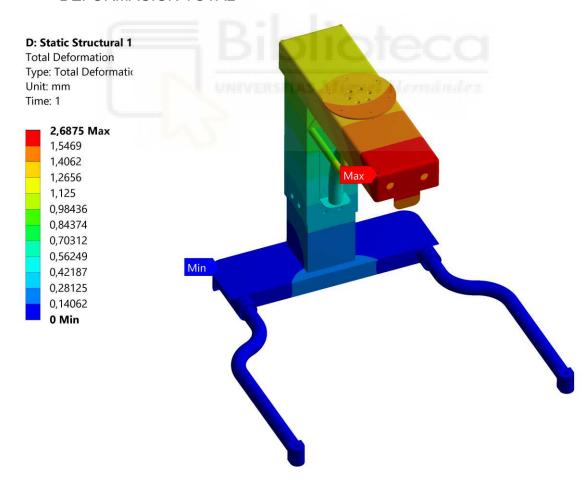


Figura 6.32: Deformación total. Altura máxima (E).

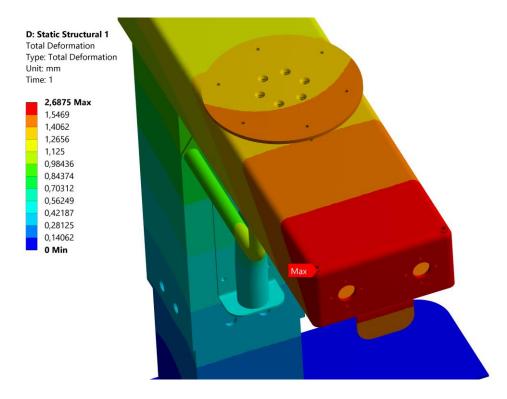


Figura 6.33: Detalle deformación total. Altura máxima (E).

Figura 6.34: Coeficiente de seguridad. Altura máxima (E).

Figura 6.35: Detalle Coeficiente de seguridad mínimo. Altura máxima (E).

6.3.6 ANALISIS DE LOS RESULTADOS

En esta sección vamos a interpretar los resultados obtenidos en la simulación para las distintas alturas, analizándolas de menor a mayor.

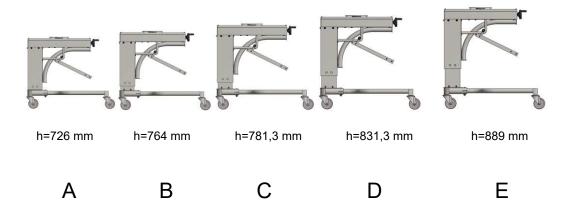


Figura 6.36: Alturas principales. Posición A,B,C,D y E respectivamente.

Recopilamos los datos obtenidos en la simulación de ANSYS en la siguiente tabla.

ANÁLISIS ESTRUCTURAL					
Posición	Α	В	С	D	E
h (mm)	726	764	781,3	831,3	889
Tensión Máxima (Mpa)	91,663	93,872	95,727	102,697	105,668
Deformación Máxima (mm)	1,451	1,708	1,931	2,102	2,688
CS Mínimo	3,908	3,671	3,293	2,717	2,632

Tabla 6.2: Resultados simulación.

Para proceder a analizar los resultados obtenidos vamos a representar los valores en las siguientes gráficas.

TENSIÓN DE VON MISES

Como se observa en el siguiente gráfico, conforme aumenta la altura, se incrementa el valor de la tensión máxima de Von mises. La variación que se produce es una variación no lineal, es decir, los incrementos de tensión no son proporcionales a la posición que presenta el carrito.

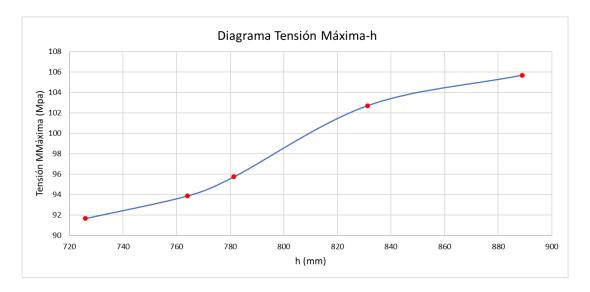


Figura 6.37: Diagrama tensión máxima-h.

DEFORMACIÓN

La deformación máxima se produce en el punto de menor tensión de la caja de las reductoras, lo cual también es un resultado esperado. De igual forma que ocurría con la tensión, la deformación total va aumentando conforme aumenta la altura y la variación de la deformación que se experimenta es una deformación no lineal.

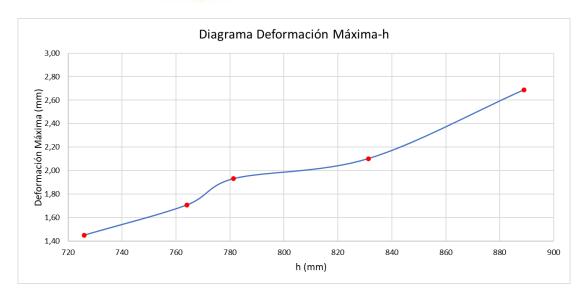


Figura 6.38: Diagrama deformación máxima-h.

COEFICIENTE DE SEGURIDAD.

Se observa que el coeficiente de seguridad mínimo disminuye conforme aumenta la altura y se encuentra en el punto de mayor tensión de Von Mises. Hay que tener en cuenta que se ha cumplido el objetivo marcado de que el coeficiente de seguridad mínimo nunca fuese menor a 2. Para lograr este objetivo ha habido que realizar un proceso iterativo de diseño, análisis y modificar el diseño hasta que se obtuviesen los valores deseados.

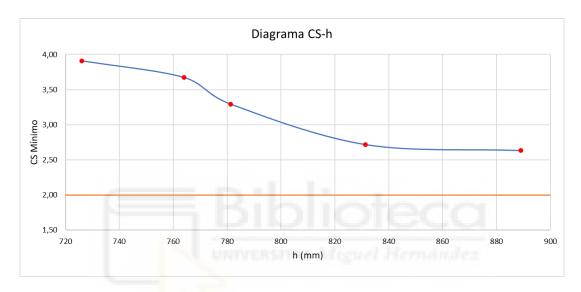


Figura 6.39: Diagrama CS-h.

7. CONCLUSIONES

Hemos comenzado exponiendo los problemas fundamentales existentes en las opciones disponibles hoy en día en el mercado:

- Diseño no adaptable en altura.
- Imposibilidad de aprovechar la capacidad total de la cesta.
- Cestas de pequeñas dimensiones e incomodas de llenar para los usuarios.

Una vez identificadas y analizadas las limitaciones fundamentales de los modelos actuales, procedemos a evaluar las distintas alternativas de diseño, eligiendo finalmente la configuración que consideramos más adecuada. A continuación, realizamos el análisis de elementos finitos en distintas posiciones para asegurarnos de que no solo es funcional desde un punto de vista de diseño, sino que es capaz de soportar las condiciones de carga y sobrecarga a las que se puede ver expuesto durante su vida útil. En conclusión, hemos sido capaces de dar solución a los problemas principales expuestos, con un diseño ergonómico, adaptado a una gran variedad de usuarios y con una resistencia estructural adecuada. Para solventar los problemas actuales implementamos las siguientes posibilidades en nuestro diseño:

- Capacidad de controlar la altura del carrito.
- Accesibilidad a todos los puntos de la cesta.
- Aumento de la capacidad de la cesta al tiempo que se consigue un uso más cómodo de la misma.

8. TRABAJOS FUTUROS

En este capítulo se proponen las futuras líneas de trabajo con el objetivo de mejorar el producto final una vez se haya construido y ensayado el prototipo descrito en este trabajo.

La primera mejora sería que las ruedas delanteras estuvieran motorizadas y por consiguiente fueran ruedas motrices, de tal manera que sea el carrito el que lleve a la silla de ruedas y no al revés. Debido a esta futura línea de acción se ha diseñado la base de manera que sea posible la adición de un motor sin necesidad de modificar el diseño actual.

De forma similar, se propone también la utilización de motores eléctricos para accionar el sistema de elevación y el sistema de giro de la cesta con el principal objetivo de reducir la necesidad de la utilización de volantes que podrían ser sustituidos por botones. De esta manera, el usuario únicamente tendría que manipular los botones hasta alcanzar la posición deseada.

Otra línea de trabajo futura consiste en un utilizar la esencia de este diseño para facilitar la tarea de introducir elementos pesados en los maleteros de los coches. Por ejemplo, en las tiendas de muebles, tipo IKEA, tienes que elevar elementos de grandes dimensiones para introducirlos en el maletero, realizando en ocasiones un esfuerzo excesivo. De esta manera, mediante un sistema de elevación, basado en este proyecto, se podría facilitar el trasvase de la compra realizada con carritos tipo transpaleta como el que se muestra en la siguiente imagen:

Figura 8.1: Carrito para carga pesada.

9. PLANIFICACIÓN

En la siguiente tabla se presentan el número de horas empleado en cada una cada de las fases del proyecto.

Etapa	Actividad	Número de horas	Número de días	Porcentaje
lavo atian si fa	Estudio y análisis problemática actual	16	2	2,33%
	Investigar opciones en el mercado	14	2	2,04%
	Visita establecimientos	10	1	1,46%
Investigación	Planteamiento de soluciones	12	2	1,75%
	Lectura normativa vigente	7	1	1,02%
	Recopilación y lectura bibliografía	8	1	1,17%
	SUBTOTAL	67	8	9,77%
	Toma de medidas modelos actuales	6	1	0,87%
Dradicaña	Estudio de ergonomía	11	1	1,60%
Prediseño	Estudio antropométrico	13	2	1,90%
	Elaboración de los cálculos pertinentes	16	2	2,33%
	SUBTOTAL	46	6	6,71%
	Modelado piezas fabricación propia	80	10	11,66%
D: ~ 2D	Selección piezas comerciales de catalogo	20	3	2,92%
Diseño 3D	Ensamblaje de la máquina	32	4	4,66%
	Inserción uniones atornilladas	3	1	0,44%
	SUBTOTAL	135	17	19,68%
	Establecimiento requisitos de carga	16	2	2,33%
Análisis	Selección posiciones a analizar	48	6	7,00%
Estructural	Análisis elementos finitos en distintas		~ ~ ~	
	configuraciones	20	3	2,92%
	SUBTOTAL	84	11	12,24%
	Elaboración plano de conjunto	16	2	2,33%
Planos	Elaboración planos de subconjunto	40	5	5,83%
	Elaboración planos piezas individuales	90	11	13,12%
	SUBTOTAL	146	18	21,28%
	Investigación coste de los elementos	8	1	1,17%
Presupuesto	Investigación coste mano de obra	4	1	0,58%
	Investigación coste montaje	5	1	0,73%
	SUBTOTAL	17	2	2,48%
Redacción	Establecimiento formato del documento	6	1	0,87%
	Redacción de las partes del proyecto	95	12	13,85%
	Unión todas las partes en un único documento	5	1	0,73%
SUBTOTAL		106	13	15,45%
Fabricación y	Fabricación piezas diseñadas	80	10	11,66%
Montaje	Montaje conjunto	5	1	0,73%
SUBTOTAL		85	11	12,39%
	TOTAL	686	86	100%

Tabla 9.1: Planificación proyecto.

II. ANEXOS

ÍNIDICE

ANEXO 1: CÁLCULOS JUSTIFICATIVOS	104
1.1. ALTURA MÁXIMA	104
1.1.1. CONDICIONES DE CARGA	105
1.1.2. ESTUDIO DE ROZAMIENTO	105
1.1.3. ANÁLISIS ESTÁTICO	108
1.2. PASO DEL HUSILLO	114
ANEXO 2: FICHAS TÉCNICAS	117
2.1. VOLANTE DIAMETRAL	117
2.2. RUEDAS	120
2.3. RÓTULA	123
2.4. ACOPLAMIENTO DE FUELLES	126
2.5. REDUCTORA SINFÍN CORONA	128
2.6 HUSULO	131

ANEXO 1: CÁLCULOS JUSTIFICATIVOS

1.1. ALTURA MÁXIMA

A la hora de dimensionar la altura máxima que es capaz de alcanzar el carrito, el primer criterio es asegurar que se establece una distancia mínima entre los patines deslizantes de nylon de la columna interior y exterior de elevación para evitar que se produzca la retención entre los elementos de la columna. Por consiguiente, es necesario realizar un análisis estático para determinar la altura máxima a la que se produciría dicho bloqueo. Procediendo de esta forma se establece un primer parámetro para delimitar la carrera del husillo.

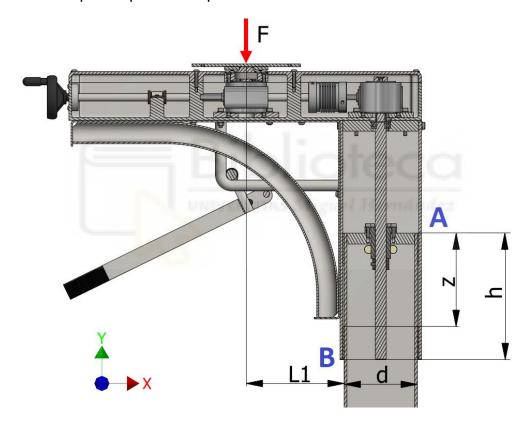


Figura 1.1: Carga externa.

Donde:

- h: Separación vertical mínima entre los puntos de contacto, a partir de la cual se produciría el bloqueo al deslizamiento sobre la guía.
- d: Distancia horizontal entre los puntos de contacto paredes opuestas.
- L1: Distancia horizontal entre el punto de contacto B y el punto de aplicación de la fuerza.
- z: Distancia vertical entre las superficies superiores de las piezas de nylon.

1.1.1. CONDICIONES DE CARGA

En la figura 1.1 se observa la carga externa que actúa sobre el carrito. El valor de la fuerza empleado para realizar los cálculos y el dimensionado del sistema es de 200 kg. Se considera una compra de 50 kg y que, a su vez, sea capaz de aguantar el peso de una persona de 80 kg. Además, se le aplica un factor de mayoración de 1'5. Durante todos los cálculos y consideraciones a lo largo del proyecto se considera un valor de la gravedad de 10 m/s².

$$F = \gamma \cdot (Pc + Pp) = \gamma \cdot g \cdot (mc + mp) \tag{1.1}$$

Donde:

- γ: Coeficiente de mayoración de la carga.
- *g*: Gravedad (m/s²).
- Pc: Peso de la compra (N).
- *mc*: Masa de la compra (Kg).
- *Pp*: Peso estipulado de persona adulta (N).
- *mp*: Masa estipulada de la persona adulta (Kg).

En nuestro caso tenemos los siguientes valores:

$$F = \gamma \cdot (Pc + Pp) = \gamma \cdot g \cdot (mc + mp) = 1'5 \cdot 10 \cdot (50 + 80) = 1950N$$

Redondeamos a 2000 N, lo que constituye una carga mayorada de 200 kg. Por consiguiente, todos los planteamientos que se efectúen se realizan considerando una carga de F=2000 N, tanto en esta sección como a lo largo del proyecto.

1.1.2. ESTUDIO DE ROZAMIENTO

La fuerza externa F produce los esfuerzos internos en la columna elevadora que se observan en la figura 1.2. Dado que el sistema de regulación de altura nos permite modificarla en ambos sentidos hay que considerar las dos posibilidades de movimiento. En caso de movimiento ascendente (aumenta la altura) las fuerzas de fricción irán en sentido contrario al eje y (hacia abajo). Mientras que en movimiento descendente (disminuye la altura) las fuerzas de fricción irán en el sentido del eje y (hacia arriba). Dicha variación en el sentido se debe a que la

fuerza de fricción se opone al avance, el resto de las fuerzas (normales y de la carga de la cesta) mantienen la dirección y el sentido. Para facilitar el entendimiento y la comprensión realizamos la siguiente elección de colores de las flechas para las posteriores figuras:

- Fuerzas de fricción caso movimiento ascendente: Flechas rojas.
- Fuerzas de fricción caso movimiento descendente: Flechas verdes.

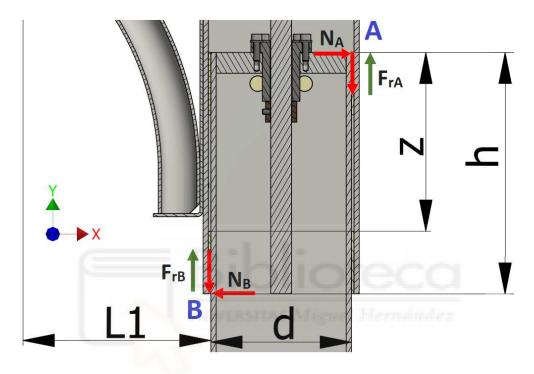


Figura 1.2: Reacciones internas columna elevadora.

Donde:

- N_A: Fuerza normal en el punto de contacto A (N).
- N_B: Fuerza normal en el punto de contacto B (N).
- F_{rA}: Fuerza de rozamiento en el punto de contacto A (N).
- F_{rB}: Fuerza de rozamiento en el punto de contacto B (N).

La fricción se define como la resistencia que se ejerce sobre un cuerpo impidiendo o retardando el deslizamiento con respecto a un segundo cuerpo o superficie, los cuales están en contacto.[27]

La fuerza límite de fricción estática, es directamente proporcional a la fuerza normal resultante. El coeficiente de proporcionalidad (μ) se denomina coeficiente de fricción estática.

$$F_r = \mu \cdot N \tag{1.2}$$

En la figura 1.3 se observan los valores que se utilizan en función de la superficies a analizar.

Table 8.1. Approximate
Values of Coefficient of Static
Friction for Dry Surfaces

Metal on metal	0.15-0.60
Metal on wood	0.20 - 0.60
Metal on stone	0.30 - 0.70
Metal on leather	0.30 - 0.60
Wood on wood	0.25 - 0.50
Wood on leather	0.25 - 0.50
Stone on stone	0.40 - 0.70
Earth on earth	0.20 - 1.00
Rubber on concrete	0.60 - 0.90

Figura 1.3: Valores del coeficiente estático de fricción (µ).[27]

Consideramos un valor de μ =0.5. En nuestro caso tenemos en contacto acero (columna de elevación interior) y nylon (piezas de separación).

1.1.3. ANÁLISIS ESTÁTICO

En la siguiente figura se representa tanto la fuerza externa F, como las fuerzas internas que sufre las columnas de elevación, tal y como se ha descrito anteriormente. No obstante, también representamos la fuerza que va a experimentar el husillo tanto en el movimiento de bajada como en el de subida (F_H) .

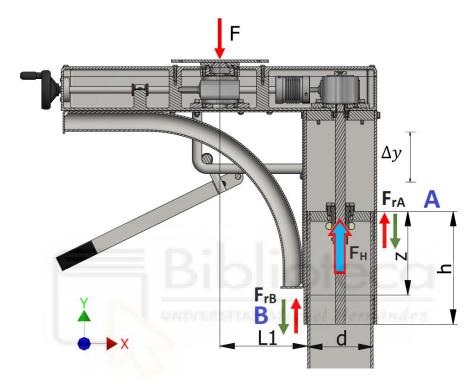


Figura 1.4: Equilibrio de fuerzas internas.

El efecto flector de la carga F visto de una manera simplificada y exagerando la deformación que produce se visualiza en la figura 1.5.

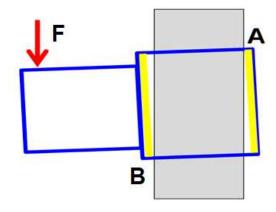


Figura 1.5: Puntos de contacto.[29]

Se observa como en el caso más desfavorable se produciría una pérdida de contacto de la pieza con la columna interior. De tal manera que en el caso extremo que se analiza en la figura 1.5 los únicos puntos en contacto serían A y B.

Dado que el cuerpo está sometido a un sistema de fuerzas definidas en el plano xy las condiciones de equilibrio son las siguientes:[27]

$$\sum F_{x} = 0 \tag{1.3}$$

$$\sum F_{v} = 0 \tag{1.4}$$

$$\sum M_B = 0 \tag{1.5}$$

Analizando el equilibrio de fuerzas en el eje x (1.3) y observando la figura 1.4 obtenemos la siguiente expresión:

$$\sum F_x = N_A - N_B = 0 \rightarrow N_A = N_B = N$$

$$N_A = N_B = N \tag{1.6}$$

Dado que $N_A = N_B$ reescribimos a ambas fuerzas normales como N para simplificar la nomenclatura. Para analizar tanto el equilibrio de fuerzas en el eje y el equilibrio de momentos respecto al punto B vamos a analizar por separado el movimiento de subida y de bajada ya que los sentidos de algunas fuerzas varían según qué caso estemos considerando.

Caso 1: Movimiento descendente (flechas verdes Fr).

Equilibro de fuerza en el eje y (1.4):

$$\sum F_{y} = F_{rA} + F_{rB} + F_{H} - F = 0$$

Considerando (1.2) y (1.6):

$$\mu \cdot N_A + \mu \cdot N_B + F_H - F = 0 \Rightarrow \mu \cdot N + \mu \cdot N + F_H - F = 0$$

$$2 \cdot \mu \cdot N + F_H - F = 0 \tag{1.7}$$

Finalmente, aplicando el sumatorio de momentos sobre el punto B (1.5) obtenemos:

$$\sum M_B = -N_A \cdot h + F_{rA} \cdot d + F_H \cdot \frac{d}{2} + F \cdot L1 = 0$$

Considerando (1.2) y (1.6):

$$-N \cdot h + \mu \cdot N \cdot d + F_H \cdot \frac{d}{2} + F \cdot L1 = 0$$
 (1.8)

Considerando la fuerza del husillo (F_H) variable frente a la distancia entre los puntos de contacto (h), podemos crear un gráfico a partir del cual obtendremos la distancia mínima para evitar que se produzca la retención en la guía. Teniendo en cuenta que la fuerza máxima que es capaz de soportar el husillo en condiciones de funcionamiento es de 4000 N obtenemos los siguientes valores de F_H en función de h.

Tabla 1.1: valores de F_H en función de h.

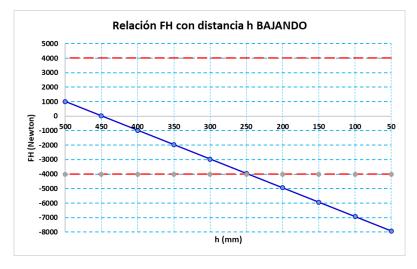


Figura 1.6: Relación F_H con distancia h. Movimiento de bajada.

Caso 2: Movimiento ascendente (flechas rojas Fr).

Equilibro de fuerza en el eje y (1.4):

$$\sum F_{v} = -F_{rA} - F_{rB} + F_{H} - F = 0 \Rightarrow F_{rA} + F_{rB} - F_{H} + F = 0$$

Considerando (1.2) y (1.6):

$$\mu \cdot N_A + \mu \cdot N_B - F_H + F = 0 \rightarrow \mu \cdot N + \mu \cdot N - F_H + F = 0$$

$$2 \cdot \mu \cdot N - F_H + F = 0 \tag{1.9}$$

Finalmente, aplicando el sumatorio de momentos sobre el punto B (1.5) obtenemos:

$$\sum M_B = -N_A \cdot h - F_{rA} \cdot d + F_H \cdot \frac{d}{2} + F \cdot L1 = 0$$

Considerando (1.2) y (1.6):

$$-N \cdot h - \mu \cdot N \cdot d + F_H \cdot \frac{d}{2} + F \cdot L1 = 0 \tag{1.10}$$

Procediendo de la misma forma que en el caso de movimiento descendente, obtenemos los siguientes valores de F_H en función de h.

h (mm)	FH (Newton)
50	11920
100	6960
150	5307
200	4480
250	3984
300	3653
350	3417
400	3240
450	3102
500	2992

Tabla 1.2: valores de F_H en función de h.

Figura 1.7: Relación F_H con distancia h. Movimiento de subida.

Analizando ambos gráficos llegamos a la conclusión de que el valor mínimo de la separación (h) es de 250 mm, ya que para valores superiores se sobrepasaría el valor límite de carga del husillo, establecido por el fabricante en 4000 N.

Una vez obtenido el valor teórico de h, procedemos a analizar otras consideraciones. La relación de apoyo se define como el cociente la distancia vertical existente entre los dos puntos de apoyo (h) y la separación horizontal entre dichos puntos (d).[26]

Cuyo valor nunca debería ser inferior a 1 para evitar problemas de autorretención.

Valor mínimo teórico:

$$\frac{h}{d} \ge 1 \tag{1.11}$$

$$h \ge d = 135 = 135 \, mm$$

No obstante, se recomienda que dicha relación sea siempre que sea posible superior a 1'5.

Valor mínimo recomendado:

$$\frac{h}{d} \ge 1'5 \tag{1.12}$$

$$h \ge 1'5 \cdot d = 1'5 \cdot 135 = 202'5 \, mm$$

Por lo tanto, tiene que cumplir las siguientes tres condiciones.

$$\begin{cases} h \ge 250 \ mm \\ h \ge 135 \ mm \\ h > 202'5 \ mm \end{cases}$$

Siendo la condición referente al cálculo teórico que hemos realizado la más restrictiva.

$$h = 250 \, mm$$

Con el objetivo último de asegurar que se cumpla dicha separación mínima, implementamos un casquillo con dos pasadores situados a 90º entre sí, dicha configuración impide que el husillo pueda seguir ascendiendo por mucho que el usuario intente girar el volante. Este diseño se ilustra en la figura 1.8, en la posición de altura máxima.

Figura 1.8: Casquillo limitador carrera husillo.

De dicha manera se cumplen dos objetivos: por un lado, conseguimos limitar el avance del husillo y a su vez aseguramos que no se produzca la autorretención entre los elementos de la columna.

Además, con está condición de diseño se obtiene una altura máxima desde el suelo a la apertura de la cesta de 1160 mm por lo que cumple ampliamente los requisitos antropométricos expuestos en el capítulo 4 de la memoria.

1.2. PASO DEL HUSILLO

En esta sección se va a seleccionar el husillo necesario para que el sistema pueda ser accionado de manera adecuada. De tal manera que la persona sea capaz de utilizar el carrito sin que ello suponga un gran esfuerzo y a su vez que se garantice el correcto funcionamiento del mismo.

Una vez el usuario procede a girar el volante que conecta con la reductora que acciona el husillo, el esquema de fuerzas es el siguiente.

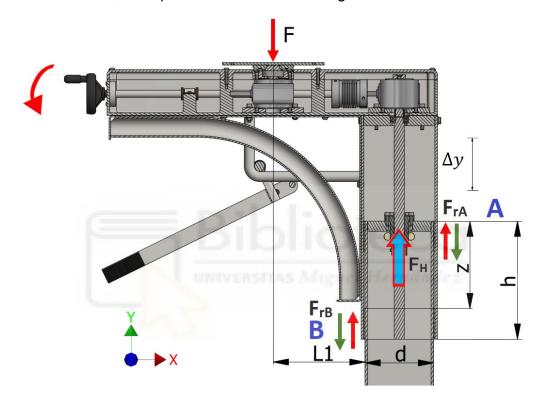


Figura 1.9: Sistema de regulación de la altura.

El par que puede ejercer una persona es de aproximadamente 5 Nm. [30] La figura 1.9 representa la situación en la cual el carrito se encuéntrate tanto en movimiento ascendente (flechas verdes) como descendente (flechas rojas) ya que las fuerza de rozamiento siempre llevan el sentido opuesto a la dirección de avance

Por consiguiente, al aplicar que el trabajo de entrada es igual al trabajo de salida obtenemos la siguiente expresión:[31]

$$W_{entrada} = W_{salida} (1.13)$$

$$M_{v} \cdot \Delta \varphi = F_{H} \cdot \Delta y \tag{1.14}$$

$$M_v \cdot n_{volante} \cdot 2\pi \cdot \eta = F_H \cdot P \cdot n_{husillo}$$
 (1.15)

Teniendo en cuenta que la relación de transmisión i se define como el número de vueltas que se produce en la salida (husillo) respecto al número de vueltas a la entrada (volante).[32]

$$i = \frac{n_{husillo}}{n_{volante}} \tag{1.16}$$

$$M_{v} \cdot 2\pi \cdot \eta = (F_{H}) \cdot P \cdot i \tag{1.17}$$

$$P = \frac{M_{v} \cdot 2\pi \cdot \eta}{(F_{H} \cdot) \cdot i} \tag{1.18}$$

Donde:

- $W_{entrada}$: Trabajo de entrada al sistema (Nm).
- W_{salida}: Trabajo de salida del sistema (Nm).
- Mv: Par que aplica el usuario al volante (Nm).
- $\Delta \varphi$: Variación angular que experimenta el volante (rad).
- F_H: Fuerza máxima que puede soportar el husillo. (N).
- Δy: Desplazamiento vertical del husillo (m).
- $n_{volante}$: Número de vueltas que da el volante.
- n_{husillo}: Número de vueltas que da el husillo.
- η: Rendimiento del sistema
- P: Paso del husillo (m).
- i: Relación de transmisión.

Considerando los valores de nuestro sistema tenemos:

- Mv = 5Nm.
- $\eta = 0'65$.
- $F_H = 4000N$.
- i = 1:5.

Paso máximo teórico del husillo:

$$P = \frac{M_v \cdot \pi \cdot \eta}{F_H \cdot i} = \frac{5Nm \cdot \pi \cdot 0'65}{4000N \cdot \frac{1}{5}} = \frac{5Nm \cdot 5 \cdot \pi \cdot 0'65}{4000N} = 0,01276 m = 12,76mm$$

Se ha llegado al resultado final que el paso máximo para que la persona pueda manipular el volante de manera cómoda sin realizar mucho esfuerzo y que sea capaz de soportar la carga de 200kg es 12.76 mm.

$$P \le 12,76m$$

$$P = 10 mm = 1cm$$

En nuestro caso seleccionamos un husillo comercial de la marca Hydromec con un paso de 10 mm (véase anexo 2). Por lo tanto, trabajamos en el lado de la seguridad suponiendo una carga de 2000 N.

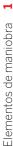
De esta manera, teniendo en cuenta que contamos con una reductora 1:5 y que el husillo seleccionado tiene un paso de 10 mm, quiere decir que por cada 5 vueltas que de el usuario al volante, el husillo va a dar una vuelta. Por lo tanto, la altura del carrito variará en 1 cm. Dichos valores son totalmente adecuados considerando que la variación de alturas entre la posición máxima y mínima es de 165 mm, es decir, 16'5 cm.

ANEXO 2: FICHAS TÉCNICAS

2.1. VOLANTE DIAMETRAL

Elemento	Volante banda diametral
Referencia	VRTP.80+IR-A8-K
Vendedor	elesa+ganter
Unidades	2

Tabla 2.1: Datos volante.



Volantes de banda diametral

Tecnopolímero

MATERIAL

Tecnopolímero de base polipropilénica (PP), alta resistencia, color negro, acabado mate.

TAPA DE INSERTO

- Placa frontal de aluminio anodizado autoadhesiva.
- VRTP.375: cubierta de poliéster con base de tecnopolímero (PBT), color gris RAL 7035, acabado brillante, montaje a presión.

EJECUCIONES ESTÁNDAR

Inserto de acero pavonado, agujero en tolerancia H7.

- VRTP.: sin empuñadura.
- VRTP.I: con empuñadura giratoria I.621+x (ver página) en tecnopolímero.
- VRTP.IEL: con empuñadura giratoria IEL+x SOFT (ver página) en tecnopolímero recubierto de elastómero termoplástico "Softtouch" (TPE).
- VRTP+IR: con manilla de seguridad giratoria y abatible IR.620 (ver página) en tecnopolímero.
- K: identificación para ejecuciones con agujero y chavetero según DIN 6885/1 (ver página A16), tolerancia P9 es decir:

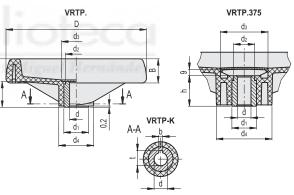
78411-R-K VRTP.80 A-8-K

ACCESORIOS BAJO PEDIDO

- GN 184: arandela de retención axial en acero pavonado negro (ver
- ECB.T: tapa de inserto de tecnopolímero de base poliamídica (PA) reforzado con fibra de vidrio, en colores Elecolors, acabado mate, montaje a presión, disponible para VRTP.125, VRTP.160 y VRTP.200 (ver tabla).

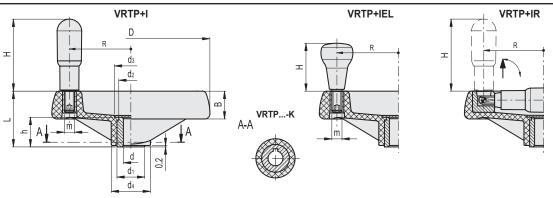
ECB.T

Código	Descripción	Tapa de inserto para
29552-*	ECB.T2-*	VRTP.125
29553-*	ECB.T3-*	VRTP.160
29554-*	ECB.T4-*	VRTP.200


^{*} Completar con el código de color (C1, ..., C6).

VRTP.

Código	Descripción	D	dH7	L	В	d1	d2	d3	d4	h	C# [Nm]	L#	7,7
78411-R	VRTP.80-A8	80	8	35	18	18	16	20.5	25	17	32	5	74
78412-R	VRTP.80-A10	80	10	35	18	18	16	20.5	25	17	32	5	70
78510-R	VRTP.100-A8	99	8	37	20	18	16	20.5	25.5	17	54	7	105
78511-R	VRTP.100-A10	99	10	37	20	18	16	20.5	25.5	17	54	7	100
78512-R	VRTP.100-A12	99	12	37	20	18	16	20.5	25.5	17	54	7	95
78610-R	VRTP.125-A8	125	8	44	22	22	20	26	31	22	94	10	165
78611-R	VRTP.125-A12	125	12	44	22	22	20	26	31	22	94	10	160
78612-R	VRTP.125-A14	125	14	44	22	22	20	26	31	22	94	10	155
78710-R	VRTP.160-A8	160	8	51	25	26	24	32	40	27	185	15	282
78711-R	VRTP.160-A14	160	14	51	25	26	24	32	40	27	185	15	275
78712-R	VRTP.160-A16	160	16	51	25	26	24	32	40	27	185	15	263
78810-R	VRTP.200-A8	200	8	61	28	30	28	36	48.5	34	300	24	490
78811-R	VRTP.200-A16	200	16	61	28	30	28	36	48.5	34	300	24	460
78813-R	VRTP.200-A20	200	20	61	28	30	28	36	48.5	34	300	24	430
78911-R	VRTP.250-A20	250	20	69	32	35	33	45	58	38	420	28	730
78913-R	VRTP.250-A24	250	24	69	32	35	33	45	58	38	420	28	710
78948-R	VRTP.300-A20	300	20	78	35.5	40	37	52	66	43	480	36	940
78951-R	VRTP.300-A26	300	26	78	35.5	40	37	52	66	43	480	36	970
79011-R	VRTP.375-A26	375	26	87	39	35	33	70	81	43	380	55	1350


- * Para pedir la versión con agujero y chavetero añadir el código -K al final de la referencia y descripción: (p. ej. 78411-R-K VRTP.80 A-8-K).
- # Para el par de torsión máximo aplicable (C) y la resistencia al impacto (L) ver Datos técnicos en página A3.

ELESA Original design

VRTP+I

Código	Descripción	D	dH7	L	В	d1	d2	d3	d4	h	н	m	R	C# [Nm]	[J]	7.7
78421-R	VRTP.80+I-A8	80	8	35	18	18	16	20.5	25	17	45	M6	29	32	5	104
78422-R	VRTP.80+I-A10	80	10	35	18	18	16	20.5	25	17	45	M6	29	32	5	100
78520-R	VRTP.100+I-A8	99	8	37	20	18	16	20.5	25.5	17	60	M6	37	54	7	150
78521-R	VRTP.100+I-A10	99	10	37	20	18	16	20.5	25.5	17	60	M6	37	54	7	145
78522-R	VRTP.100+I-A12	99	12	37	20	18	16	20.5	25.5	17	60	M6	37	54	7	140
78620-R	VRTP.125+I-A8	125	8	44	22	22	20	26	31	22	65	M8	48	94	10	250
78621-R	VRTP.125+I-A12	125	12	44	22	22	20	26	31	22	65	M8	48	94	10	245
78622-R	VRTP.125+I-A14	125	14	44	22	22	20	26	31	22	65	M8	48	94	10	240
78720-R	VRTP.160+I-A8	160	8	51	25	26	24	32	40	27	73	M8	65	185	15	363
78721-R	VRTP.160+I-A14	160	14	51	25	26	24	32	40	27	73	M8	65	185	15	356
78722-R	VRTP.160+I-A16	160	16	51	25	26	24	32	40	27	73	M8	65	185	15	339
78820-R	VRTP.200+I-A8	200	8	61	28	30	28	36	48.5	34	80	M8	84	300	24	579
78821-R	VRTP.200+I-A16	200	16	61	28	30	28	36	48.5	34	80	M8	84	300	24	552
78823-R	VRTP.200+I-A20	200	20	61	28	30	28	36	48.5	34	80	M8	84	300	24	525
78921-R	VRTP.250+I-A20	250	20	69	32	35	33	45	58	38	90	M10	103	420	28	904
78923-R	VRTP.250+I-A24	250	24	69	32	35	33	45	58	38	90	M10	103	420	28	888
78958-R	VRTP.300+I-A20	300	20	78	35.5	40	37	52	66	43	90	M10	127	480	36	1050
78961-R	VRTP.300+I-A26	300	26	78	35.5	40	37	52	66	43	90	M10	123	480	36	1111
79021-R	VRTP.375+I-A26	375	26	87	39	35	33	70	81	43	90	M10	160	380	55	1240
VRTP+IEL																
78926-R	VRTP.250+IEL-A20	250	20	69	32	35	33	45	58	38	65	M10	103	420	28	914
78928-R	VRTP.250+IEL-A24	250	24	69	32	35	33	45	58	38	65	M10	103	420	28	818
78964-R	VRTP.300+IEL-A20	300	20	78	35.5	40	37	52	66	43	65	M10	127	480	36	1060
78966-R	VRTP.300+IEL-A26	300	26	78	35.5	40	37	52	66	43	65	M10	127	480	36	1121
79026-R	VRTP.375+IEL-A26	375	26	87	39	35	33	70	81	43	65	M10	160	380	55	1260

VRTP+IR

Código	Descripción	D	dH7	L	В	d1	d2	d3	d4	h	н	R	C# [Nm]	L#	2,7
78431-R	VRTP.80+IR-A8	80	8	35	18	18	16	20.5	25	17	45	29	32	5	102
78432-R	VRTP.80+IR-A10	80	10	35	18	18	16	20.5	25	17	45	29	32	5	98
78530-R	VRTP.100+IR-A8	99	8	37	20	18	16	20.5	25.5	17	60	37	54	7	170
78531-R	VRTP.100+IR-A10	99	10	37	20	18	16	20.5	25.5	17	60	37	54	7	163
78532-R	VRTP.100+IR-A12	99	12	37	20	18	16	20.5	25.5	17	60	37	54	7	155
78630-R	VRTP.125+IR-A8	125	8	44	22	22	20	26	31	22	65	48	94	10	235
78631-R	VRTP.125+IR-A12	125	12	44	22	22	20	26	31	22	65	48	94	10	230
78632-R	VRTP.125+IR-A14	125	14	44	22	22	20	26	31	22	65	48	94	10	225
78730-R	VRTP.160+IR-A8	160	8	51	25	26	24	32	40	27	73	65	185	15	395
78731-R	VRTP.160+IR-A14	160	14	51	25	26	24	32	40	27	73	65	185	15	388
78732-R	VRTP.160+IR-A16	160	16	51	25	26	24	32	40	27	73	65	185	15	380
78830-R	VRTP.200+IR-A8	200	8	61	28	30	28	36	48.5	34	80	84	300	24	625
78831-R	VRTP.200+IR-A16	200	16	61	28	30	28	36	48.5	34	80	84	300	24	593
78833-R	VRTP.200+IR-A20	200	20	61	28	30	28	36	48.5	34	80	84	300	24	560
78931-R	VRTP.250+IR-A20	250	20	69	32	35	33	45	58	38	90	105	420	28	932
78933-R	VRTP.250+IR-A24	250	24	69	32	35	33	45	58	38	90	105	420	28	892
78968-R	VRTP.300+IR-A20	300	20	78	35.5	40	37	52	66	43	90	123	480	36	1080
78971-R	VRTP.300+IR-A26	300	26	78	35.5	40	37	52	66	43	90	123	480	36	1210
79031-R	VRTP.375+IR-A26	375	26	87	39	35	33	70	81	43	90	160	380	55	1350

^{*} Para pedir la versión con agujero y chavetero añadir el código -K al final de la referencia y descripción: (p. ej. 78411-R-K VRTP.80 A-8-K).

[#] Para el par de torsión máximo aplicable (C) y la resistencia al impacto (L) ver Datos técnicos en página A3.

2.2. RUEDAS

Elemento	Rueda
Referencia	RE.FF-100-FBL-SST-N
Vendedor	elesa+ganter
Unidades	4

Tabla 2.2: Datos rueda.

Ruedas de poliuretano inyectado

Soporte en acero o acero inoxidable

RECUBRIMIENTO

Poliuretano inyectado, dureza 55 Shore D.

CUERPO CENTRAL DE LA RUEDA

Tecnopolímero de base poliamídica (PA).

ACCIÓN ROTATIVA

Núcleo con agujero pasante.

SOPORTE FIJO

Chapa de acero cincado o acero inoxidable AISI 304 (modelo SST). El soporte está diseñado para soportar cargas de hasta 3000N.

SOPORTE GIRATORIO

Chapa de acero cincado o acero inoxidable AISI 304 (modelo SST). El soporte está diseñado para soportar cargas de hasta 3000N.

La disposición de una doble pista de bolas y el contacto directo entre la placa y el anillo de la pista de bolas con pasador interno montado asegura una maniobravilidad excelente.

No requiere mantenimiento.

consta de (ver Fig.1):

- 1. Pletina de fijación: acero cincado electrolíticamente o acero inoxidable AISI 304;
- 2. horquilla: en acero cincado electrolítico o acero inoxidable AISI 304;
- 3. anillo porta-cojinetes: en acero cincado electrolítico o acero inoxidable AISI 304;
- 4. perno central: integrado en el soporte, estampado en frío;
- 5. sistema de rotación: doble corona lubricada;
- 6. junta antipolvo: en tecnopolímero gris oscuro RAL 7015.

FRENO FRONTAL

Freno total que bloquea la rueda y la rotación del soporte.

Las dimensiones optimizadas y el pedal abatible garantizan un espacio mínimo y un sencillo accionamiento. Resorte de acero templado al carbono o de acero inoxidable (modelo SST).

El carro debe girarse para usar el dispositivo. El freno es eficaz y fácil de usar: se acciona y libera moviendo simplemente de arriba a abajo la punta de dos pedales separados, garantizando así la máxima capacidad de maniobra.

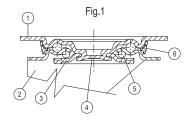
La eficacia de la frenada puede ajustarse mediante un tornillo de cabeza hueca M8.

EJECUCIONES ESTÁNDAR

- PBL: soporte fijo, sin freno.
- SBL: soporte giratorio, sin freno.
- SBF: soporte giratorio, con freno.
- FBL: soporte giratorio y agujero pasante, sin freno.
- FBF: soporte giratorio y agujero pasante, con freno. Índice para el material del soporte:
- N: soporte en acero cincado.
- N-SST: soporte en acero inoxidable AISI 304.

APLICACIONES

Excelente elasticidad, y gran resistencia al desgaste, la rodadura y la


Para más información, consulte la ficha de datos técnicos RE.FF (en página 1979).

Código	Descripción	D	d1	d2	l1	l2	13	н	В	L	s	b1	b2	b 3	R	Resistencia a rodadura# [N]	Capadicad de carga dinámica# [N]	2,7
451151	RE.FF-080-PBL-N	80	-	-	45	60	30	107	100	85	9	75	80	-	-	1200	1200	380
451156	RE.FF-100-PBL-N	100	-	-	45	60	30	128	100	85	9	75	80	-	-	1700	1700	430
451161	RE.FF-125-PBL-N	125	-	-	45	60	35	156	100	85	9	75	80	-	-	2300	2200	660
451166	RE.FF-150-PBL-N	150	-	-	73	85	45	194	140	114	11	105	105	-	-	2800	3000	1460
451051	RE.FF-080-SBL-N	80	-	-	45	60	30	107	100	85	9	75	80	39	-	1200	1200	620
451056	RE.FF-100-SBL-N	100	-	-	45	60	30	128	100	85	9	75	80	35	-	1700	1700	740
451061	RE.FF-125-SBL-N	125	-	-	45	60	35	156	100	85	9	75	80	37	-	2300	2200	910
451066	RE.FF-150-SBL-N	150	-	-	73	87	45	194	140	110	11	105	105	56	-	2800	3000	1830
451101	RE.FF-080-SBF-N	80	-	-	45	60	30	107	100	85	9	75	80	39	120	1200	1200	810
451106	RE.FF-100-SBF-N	100	-	-	45	60	30	128	100	85	9	75	80	35	120	1700	1700	890
451111	RE.FF-125-SBF-N	125	-	-	45	60	35	156	100	85	9	75	80	37	120	2300	2200	1050
451116	RE.FF-150-SBF-N	150	-	-	73	87	45	194	140	110	11	105	105	56	156	2800	3000	2110
451171	RE.FF-80-FBL-N	80	73	12	-	-	30	107	-	-	-	-	-	39	-	1200	1200	550
451173	RE.FF-100-FBL-N	100	73	12	-	-	30	128	-	-	-	-	-	35	-	1700	1700	670
451176	RE.FF-125-FBL-N	125	73	12	-	-	35	156	-	-	-	-	-	37	-	2300	2200	850
451179	RE.FF-150-FBL-N	150	102	20	-	-	45	188	-	-	-	-	-	56	-	2800	3000	1690
451181	RE.FF-80-FBF-N	80	73	12	-	-	30	107	-	-	-	-	-	39	120	1200	1200	730
451183	RE.FF-100-FBF-N	100	73	12	-	-	30	128	-	-	-	-	-	35	120	1700	1700	880
451186	RE.FF-125-FBF-N	125	73	12	-	-	35	156	-	-	-	-	-	37	120	2300	2200	1000
451189	RE.FF-150-FBF-N	150	102	20	-	-	45	188	-	-	-	-	-	56	156	2800	3000	1980

RE.FF-SST-N STAINLESS STEEL

KE.FF-33	I-1N																SIAINLESS	JIEEE
Código	Descripción	D	d1	d2	l1	I2	13	н	В	L	s	b1	b2	b 3	R	Resistencia a rodadura# [N]	Capadicad de carga dinámica# [N]	44
451301	RE.FF-080-PBL-SST-N	80	-	-	45	60	30	107	100	85	9	75	80	-	-	1200	1200	350
451306	RE.FF-100-PBL-SST-N	100	-	-	45	60	30	128	100	85	9	75	80	-	-	1700	1700	400
451311	RE.FF-125-PBL-SST-N	125	-	-	45	60	35	156	100	85	9	75	80	-	-	2300	2200	640
451201	RE.FF-080-SBL-SST-N	80	-	-	45	60	30	107	100	85	9	75	80	39	-	1200	1200	610
451206	RE.FF-100-SBL-SST-N	100	-	-	45	60	30	128	100	85	9	75	80	35	-	1700	1700	650
451211	RE.FF-125-SBL-SST-N	125	-	-	45	60	35	156	100	85	9	75	80	37	-	2300	2200	810
451251	RE.FF-080-SBF-SST-N	80	-	-	45	60	30	107	100	85	9	75	80	39	120	1200	1200	780
451256	RE.FF-100-SBF-SST-N	100	-	-	45	60	30	128	100	85	9	75	80	35	120	1700	1700	830
451261	RE.FF-125-SBF-SST-N	125	-	-	45	60	35	156	100	85	9	75	80	37	120	2300	2200	950
451351	RE.FF-080-FBL-SST-N	80	73	12	-	-	30	107	-	-	-	-	-	39	-	1200	1200	550
451353	RE.FF-100-FBL-SST-N	100	73	12	-	-	30	128	-	-	-	-	-	35	-	1700	1700	670
451356	RE.FF-125-FBL-SST-N	125	73	12	-	-	35	156	-	-	-	-	-	37	-	2300	2200	850
451361	RE.FF-080-FBF-SST-N	80	73	12	-	-	30	107	-	-	-	-	-	39	120	1200	1200	550
451363	RE.FF-100-FBF-SST-N	100	73	12	-	-	30	128	-	-	-	-	-	35	120	1700	1700	670
451366	RE.FF-125-FBF-SST-N	125	73	12	-	-	35	156	-	-	-	-	-	37	120	2300	2200	860

[#] Para resistencia a la rodadura y capacidad de carga dinámica, véase Datos técnicos en página 2014.

Modelos ELESA y GANTER propiedad reservada según la ley. Mencionar siempre la fuente cuando se reproduzcan nuestros dibujos.

10

0 11

2.3. RÓTULA

Figura 2.3: Rótula.

Elemento	Rótula
Referencia	GN 648.2-8-M8L-N
Vendedor	elesa+ganter
Unidades	2

Tabla 2.3: Datos rótula.

Rótulas con espárrago roscado

ESPECIFICACIÓN

Tipos (emparejamientos)

- Tipo N: Bronce / Acero con lubricación posible
- Tipo W: Acero-PTFE / Acero autolubricada

Carcasa de acero

- Cincado, azul pasivado
- d1 = 5 y hasta 12: mecanizado
- d1 = 14 y hasta 25: forjado

Tipo N (posible con lubricación) Alojamiento Latón, CuZn40Al1

Anillo interno Acero, 100Cr6 endurecido, rectificado, pulido

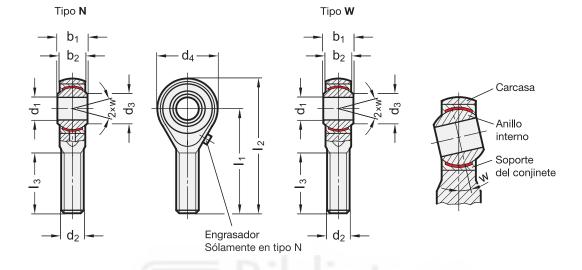
Tipo W (autolubricado) Alojamiento Acero, zincado con inserto PTFE

Anillo interno Acero, 100Cr6 endurecido, rectificado, pulido

Las rótulas GN 648.2 son similares a DIN ISO 12240-4, serie K (anteriormente DIN 648 K).

- Más información sobre las rótulas axiales y la capacidad de carga (ver página 1134)

BAJO PEDIDO


- modelo estrecho (ISO 12240-1, serie E)

DATOS TÉCNICOS

- Tolerancias fundamentales ISO (ver página A21)

w NIVERSITAS Adignel Hernández

*Completar con el tipo de Rótulas esfércias

GN 648.2

GN 648.2											
Descripción	d1 H7	d2	b1 -0.12	b2	d3	d4	l1	12	13	w	47
GN 648.2-5-M5-*	5**	M 5	8	6	7.7	18	33	42	20	13°	15
GN 648.2-5-M5L-*	5**	M 5L	8	6	7.7	18	33	42	20	13 °	15
GN 648.2-6-M6-*	6	M 6	9	6.75	8.9	20	36	46	22	13°	20
GN 648.2-6-M6L-*	6	M 6L	9	6.75	8.9	20	36	46	22	13 °	20
GN 648.2-8-M8-*	8	M 8	12	9	10.4	24	42	54	25	14 °	40
GN 648.2-8-M8L-*	8	M 8L	12	9	10.4	24	42	54	25	14 °	40
GN 648.2-10-M10-*	10	M 10	14	10.5	12.9	28	48	62	29	13 °	60
GN 648.2-10-M10L-*	10	M 10L	14	10.5	12.9	28	48	62	29	13 °	60
GN 648.2-12-M12-*	12	M 12	16	12	15.4	32	54	70	33	13 °	90
GN 648.2-12-M12L-*	12	M 12L	16	12	15.4	32	54	70	33	13 °	90
GN 648.2-14-M14-*	14	M 14	19	13.5	16.8	36	60	78	38	16°	135
GN 648.2-14-M14L-*	14	M 14L	19	13.5	16.8	36	60	78	38	16°	135
GN 648.2-16-M16-*	16	M 16	21	15	19.3	42	66	87	40	15°	205
GN 648.2-16-M16L-*	16	M 16L	21	15	19.3	42	66	87	40	15°	205
GN 648.2-18-M18x1,5-*	18	M 18 x 1.5	23	16.5	21.8	46	72	95	44	15°	270
GN 648.2-18-M18x1,5L-*	18	M 18 x 1.5L	23	16.5	21.8	46	72	95	44	15°	270
GN 648.2-20-M20x1,5-*	20	M 20 x 1.5	25	18	24.3	50	78	103	47	14 °	355
GN 648.2-20-M20x1,5L-*	20	M 20 x 1.5L	25	18	24.3	50	78	103	47	14°	355
GN 648.2-22-M22x1,5-*	22	M 22 x 1.5	28	20	25.8	54	84	111	51	15°	455
GN 648.2-22-M22x1,5L-*	22	M 22 x 1.5L	28	20	25.8	54	84	111	51	15°	460
GN 648.2-25-M24x2-*	25	M 24 x 2	31	22	29.6	60	94	124	58	15°	605
GN 648.2-25-M24x2L-*	25	M 24 x 2L	31	22	29.6	60	94	124	58	15°	600
GN 648.2-30-M30x2-*	30***	M 30 x 2	37	25	34.8	70	110	145	71	17°	1020
GN 648.2-30-M30x2L-*	30***	M 30 x 2L	37	25	34.8	70	110	145	71	17°	1020

^{**} d1 = 5 tipo N sin posibilidad de lubricación | *** solo disponible en tipo W

Peso tipo W

2.4. ACOPLAMIENTO DE FUELLES

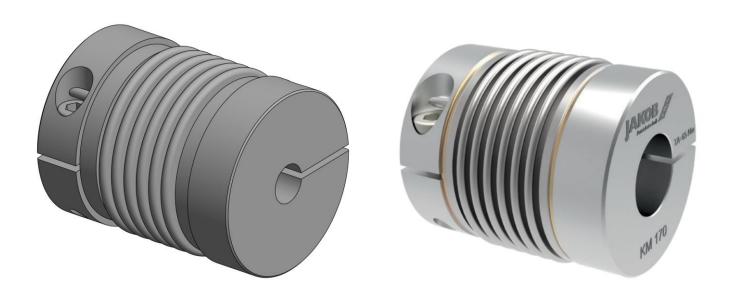


Figura 2.4: Acoplamiento de fuelles.

Elemento	Acoplamiento de fuelles
Referencia	KM 20
Vendedor	Tecnopower
Unidades	2

Tabla 2.4: Datos acoplamiento de fuelles.

ACOPLAMIENTOS DE FUELLE - SERIE KM

CÓDIGO DE PEDIDO: KP 170 D1=3067 D2=35H6

KP 170/104 D1=28^{G6} D2=42^{G6}

CON SUJECIÓN POR PINZA

• 6 resortes

• Pares hasta 1800 Nm

• Facilidad de montaje, sujeción por pinza

• Series estándar de bajo coste

• Cubos: Aluminio de alta resistencia

• Fuelle: Acero inoxidable

• Rango de temperatura: -40 hasta +200 °C

CARACTERÍSTICAS

Tipo	Par nominal	Momento de inercia	Rigidez torsional	Desalineación	ı máxima (mm)		idez nm)	Peso aproximado	Par de apriete de los tornillos
	(Nm)	(10 ⁻⁶ kgm ²)	(Nm/arcmin)	Axial ±	Lateral	Axial	Lateral	(g)	(Nm)
KM 20	20	0,14	5,2	0,8	0,25	51	190	0,3	14
KM 35	35	0,14	5,8	0,8	0,25	51	190	0,3	14
KM 60	60	0,29	8,7	0,9	0,3	49	260	0,5	35
KM 80	80	0,79	14	1	0,3	45	280	0,8	65
KM 170	170	0,83	17	1	0,3	80	470	0,8	65
KM 270	270	2,2	32	1	0,3	70	450	1,4	115
KM 400	400	2,4	47	1	0,3	100	640	1,5	115
KM 600	600	5,3	67	1	0,3	100	980	2,4	180
KM 900	900	9	105	1	0,3	145	1000	3,3	180
KM 1300	1300	14	170	1	0,3	130	920	4,2	290
KM 1800	1800	15	260	1	0,3	250	1900	4,5	290

Para la correcta selección de los acoplamientos, el par máximo constante transmisible debe ser inferior al valor especificado en la tabla por T_N . En casos excepcionales, por ejemplo durante choques, el acoplamiento puede soportar un par mayor durante un determinado número de ciclos, pero si se sobrepasa continuamente el par nominal T_N el fuelle metálico se deforma perdiendo de esta manera sus propiedades.

DIMENSIONES (mm). Longitud s/DIN ISO 2768 cH

Time	ď-			_		,	L*	ØD	1/2	Ø	
Tipo	Øa	C	l 	g	h	_ L	L"	min	max	premeca- nizado	
KM 20	56	19	M 6	30	8	70	81	8	32	7	
KM 35	56	19	M 6	30	8	70	81	10	32	7	
KM 60	66	22	M 8	33	9	77	87	13	28 (35)	12	
KM 80	82	28,5	M 10	38	11,5	90	102	16	32 (43)	15	
KM 170	82	28,5	M 10	40	11,5	92	104	18	32 (43)	15	
KM 270	101	35	M 12	42	13	100	106	25	42 (55)	24	
KM 400	101	35	M 12	48	13	106	112	28	42 (55)	24	
KM 600	122	42	M 14	52	16	120	-	32	55 (68)	27	
KM 900	133	47	M 14	53	18,5	143	-	40	65 (75)	38	
KM 1300	157	54	M 16	55	20	145	-	48	70 (85)	38	
KM 1800	157	54	M 16	55	20	145	-	65	85	38	

ATENCIÓN: En los casos en que el Diámetro eje D_{min}, sea inferior al indicado, el par transmisible también será inferior al indicado en la tabla. El ajuste entre eje y pinza de sujeción admite unos valores entre 0,01 y 0,04 mm (Ej. G6/h6).

2.5. REDUCTORA SINFÍN CORONA

Figura 2.5: Reductora.

Elemento	Reductora sinfín corona
Referencia	R 030FB
Vendedor	Hydromec
Unidades	2

Tabla 2.5: Datos reductora.

- QUICK	■ QUICK SELECTION / Selezione veloce											input speed $(n_1) = 1400 \text{ min}^{-1}$		
Output Speed								Avai B14 mot o		Dynamic efficiency	Tooth Module			
n.	i	P	M _{2M}		P _{1R}	M _{2R}	-A	-B		- O	-P			
n ₂ [min ⁻¹]		[kW]	[Nm]	f.s.	[kW]	[Nm]	56	63		56	63	RD	[mm]	Ratios code
280	5	0.18	5	3.3	0.60	17	В			B-C		82	1.26	09
200	7	0.18	7	2.4	0.44	17	В			B-C		80	1.44	01
140	10	0.18	10	1.8	0.32	17	В			B-C		78	1.44	02
93	15	0.18	13	1.4	0.25	19	В			B-C		73	1.44	03
70	20	0.18	17	1.1	0.20	19	В			B-C		70	1.09	04
47	30	0.12	15	1.4	0.17	21	В			B-C		62	1.44	05
35	40	0.12	19	1.1	0.13	20	В			B-C		57	1.09	06
23	61	0.09	19	1.1	0.10	20	В			В-С		50	0.72	07
17.5	80	0.06	16	1.0	0.06	16	В			B-C		48	0.56	08
14	100	0.06*	16	0.5	0.03	8	В			B-C		40	0.45	10

- Motor Flanges Available
- B) Supplied with Reduction Bushing
- B)Available on Request without reduction bushing Disponibile a Richiesta senza Bussola di Riduzione
- Motor Flange Holes Position
 Posizione Fori Flangia Motore
- * Power higher than the maximum one which can be supported by the gearbox. Select according to the torque Max Potenza superiore a quella massima sopportabile dal riduttore. Selezionare in base al momento torcente Max
- **EN** Unit **030** is supplied with synthetic oil, providing "long life" lubrication. For mounting position V5-V6 please contact us.

See table 1 for lubrication and recommended quantity. In table 2 please see possible radial loads and axial loads on the gearbox.

- Il riduttore tipo **030** viene fornito lubrificato a vita con olio sintetico. Per posizioni V5-V6 contattare il ns. servizio tecnico.

 Vedi tab.1 per oli e quantità consigliati.

 In tab.2 sono presenti i carichi radiali e assiali applicabili al riduttore.
- Für die Lebensdauerschmierung ist das Getriebe der Größe **030** mit synthetischem Öl befüllt.

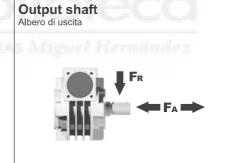
 Bei Einbaulage V5 oder V6 bitten wir um Rücksprache. In Tabelle 1 ist die Schmiermenge und das empfohlene Schmiermittel angegeben.

 In Tabelle 2 sind die zulässigen Radial und

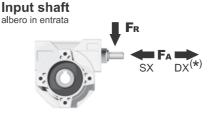
In Tabelle 2 sind die zulässigen Radial - und Axialbelastungen des Getriebes aufgeführt.

- F Le réducteur de type 030 est fourni lubrifié à vie avec de l'huile synthétique. Concernant les positions V5.V6, contactez notre service d'assistance technique. Voir tableau 1 concernant les huiles et les quantités conseillées. Les charges radiales et axiales applicables au réducteur sont précisées dans le tableau 2.
- El reductor tamaño 030 se suministra, lubricado de por vida con aceite sintético. Para las posiciones V5 y V6 contactar con nuestro servicio técnico.

 Ver tabla 1, para cantidades y aceites recomendados.


 En la tabla 2, se encuentran las cargas radiales y axiales admitidas por el reductor.

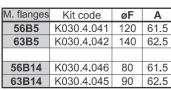
-LUBRICATION 030	Oil Quantity 0.03 Lt.
AGIP Telium VSF 320	SHELL Omala S4 WE 320

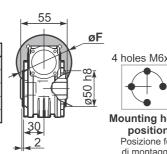

RADIAL AND AXIAL LOADS

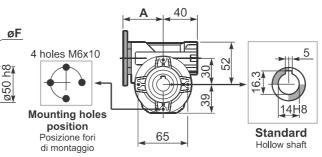
For all details on lubrication and plugs check our website
Per maggiori dettagli su lubrificazione e tappi olio vedi il nostro sito web

tab. 1

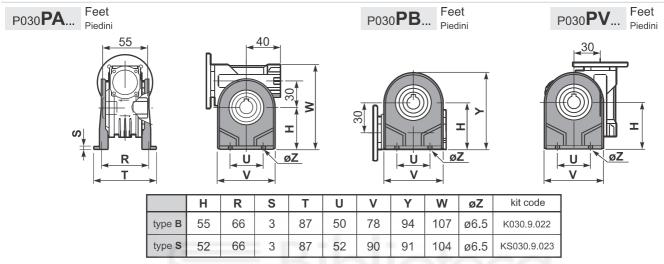
n₂ [min⁻¹]	FA [N]	FR [N]
200	120	600
150	140	700
100	160	800
75	180	900
50	200	1000
25	250	1250
15	280	1400

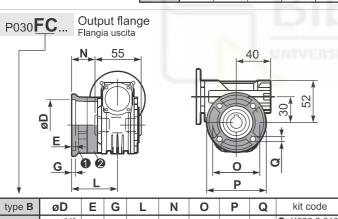


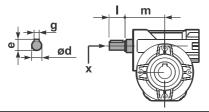

n _{1.}	FA	FR
[min ⁻¹]	[N]	[N]
1400	20	100

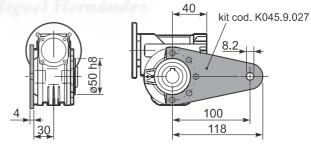

*Strong axial loads in the DX direction are not allowed. Non sono consentiti forti carichi assiali con direzione DX

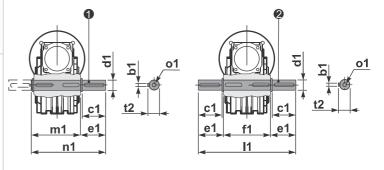
tab. 2


P030**FB...** Basic worm Basic wormbox






type B	øD	Е	G	L	N	0	Р	Q	kit code
FC	50 +0.15	6	6	50.5	23	68	80	7	● K030.9.010 ● -
FL	60 +0.05	6	6	55.5	28	87	110	ואה	● K045.9.010 ② -
type S	øD	Е	G	L	N	0	Р	Q	kit code
F1	40 +0.15	3.5	5.5	49	21.5	56	80	6.5	1 KS030.9.012


	ød	е	g	I	m	х	kit code
type B	9 h6	10.2	3	20	58	-	K030.5.006 PAM63
type S	-	-	-	-	-	-	-

Reaction arm P030**BR...** Braccio di reazione

P030.....S... Single Stratt Albero lento semplice

P030.....D... Albero lento bisp. Double Shaft

1 kit cod. K030.5.028 type B

2 kit cod. K030.5.029 type B

	b1	с1	d1	e1	f1	11	m1	n1	t2	o1
type B	5	25	14 ^{-0.005}	35.5	55	126	59	94.5	16	M5x14
type S	-	-	-	_	ı	-	ı	-	-	_

2.6. HUSILLO

Figura 2.6: Husillo.

Elemento	Husillo paso 10 mm			
Referencia	R12-10K3-FSCDIN			
Vendedor	Hydromec			
Unidades	1			

Tabla 2.6: Datos husillo.

HUSILLOS DE BOLAS LAMINADOS

TUERCAS PARA HUSILLOS DE BOLAS LAMINADOS

TUERCA SIMPLE CON BRIDA FSCDIN / FSIDIN

CÓDIGO DE PEDIDO: R 25 10 K4 FSCDIN 650 730 0,052

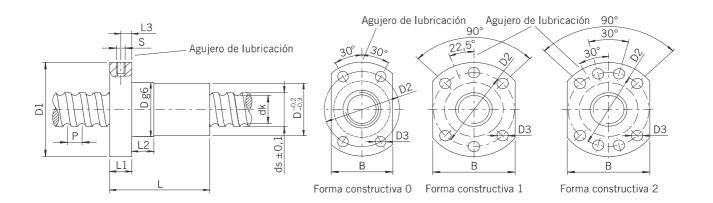
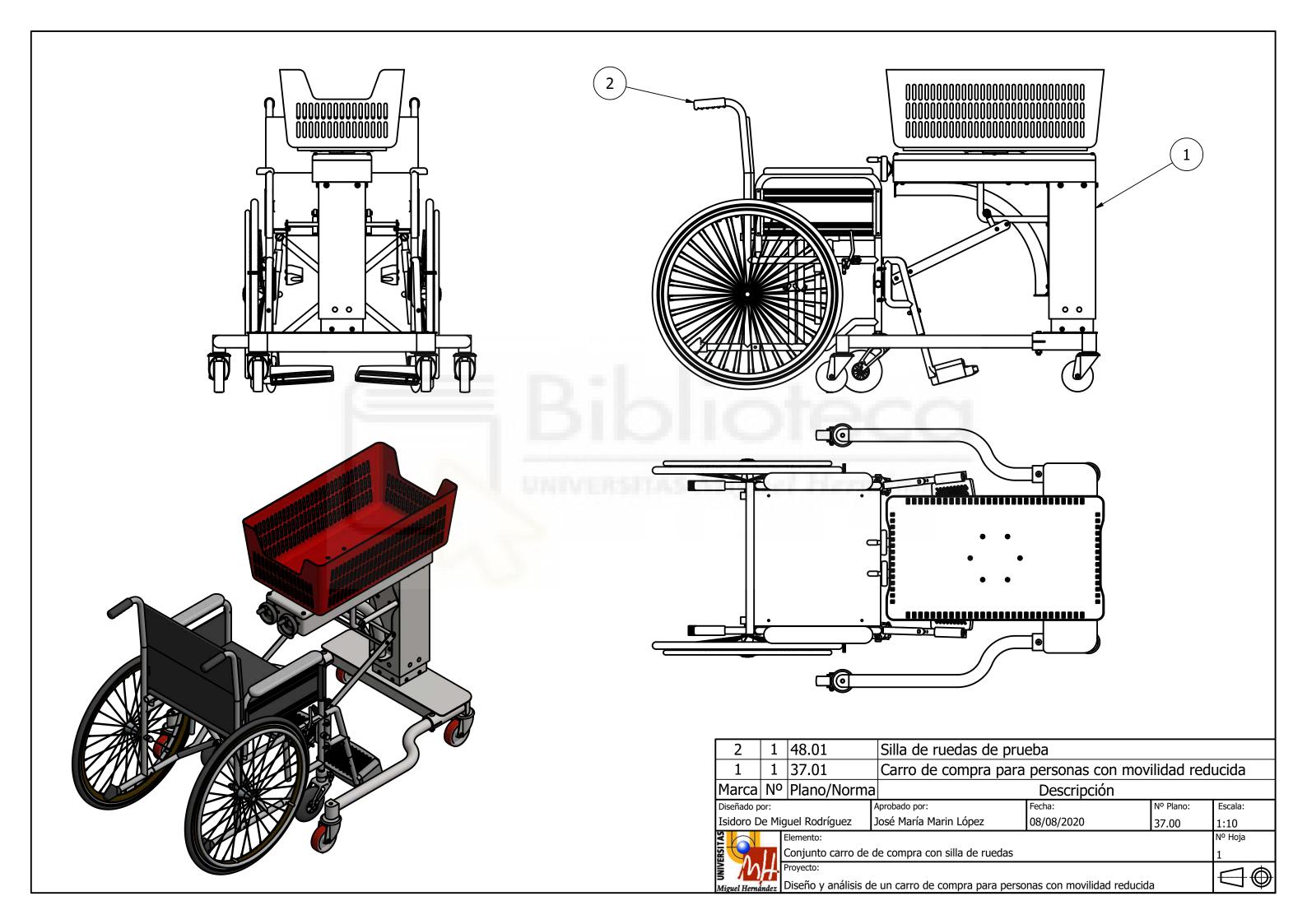


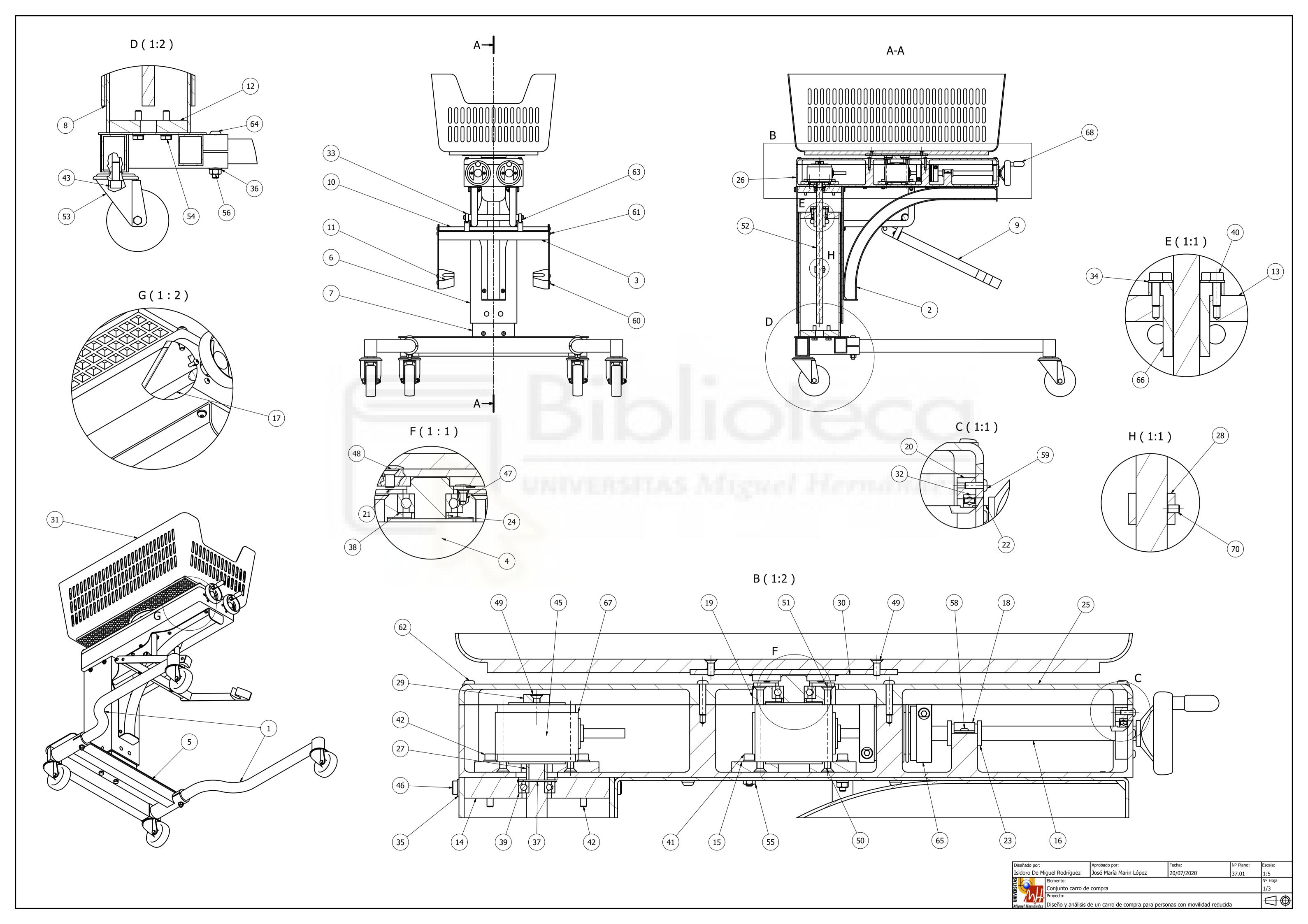
Tabla 4.4 **DIMENSIONES DE TUERCAS.** Todas las dimensiones en mm

Artícul	ne on	etock
AILICUI	ווס כט	JUULN

Artículo número	ds	Р	D	D1	D2	D3	Forma constructiva	ι	L1	L2	L3	s	В	dk	C _{dyn} (N)	C ₀ (N)	Juego axial máx. (mm)	Masa (kg/ St.)
R12-05K4-FSCDIN	11,7	5	24	40	32	4,5	0	33	8	8	4	M3	26	9,9	5.500	12.000	0,02	0,11
R12-10K3-FSCDIN	118	10	24	40	32	4,5	0	43	8	8	4	M3	26	9,6	5.100	10.100	0,02	0,13
R15-05K4-FSCDIN	13,9	5	28	48	38	5,5	1	38	10	10	5	M6	40	11,8	12.600	21.000	0,04	0,18
R16-05T3-FSIDIN	15,5	5	28	48	38	5,5	1	40	10	10	5	M6	40	12,9	6.500	11.700	0,04	0,18
R16-10K3-FSCDIN	14,7	10	28	48	38	5,5	1	45	10	10	5	M6	40	12,5	9.100	19.300	0,04	0,20
R16-16K3-FSCDIN	15,0	16	28	48	38	5,5	1	61	12	20	6	M6	40	13,0	7.900	17.000	0,04	0,26
R16-20K2-FSCDIN	14,0	20	28	48	38	5,5	1	56	10	10	5	M6	40	11,8	5.200	10.400	0,04	0,25
R20-05K4-FSCDIN	19,6	5	36	58	47	6,6	1	40	10	10	5	M6	44	16,9	13.400	32.740	0,04	0,28
R20-10K3-FSCDIN	19,3	10	36	58	47	6,6	1	48	10	10	5	M6	44	16,6	10.000	23.500	0,04	0,32
R20-20K2-FSCDIN	19,7	20	36	58	47	6,6	1	57	10	10	5	M6	44	17,1	6.800	15.300	0,04	0,37
R20-20K4-DFSCDIN	19,7	20	36	58	47	6,6	1	57	10	10	5	M6	44	17,1	12.300	30.500	0,04	0,36
R25-05K4-FSCDIN	24,9	5	40	62	51	6,6	1	43	10	12	5	M6	48	22,3	14.900	41.500	0,04	0,22
R25-10K4-FSCDIN	24,5	10	40	62	51	6,6	1	61	10	16	5	M6	48	21,8	16.100	44.900	0,04	0,43
R25-25K2-FSCDIN	24,7	25	40	62	51	6,6	1	70	10	16	5	M6	48	22,1	7.400	19.100	0,04	0,48
R25-25K4-DFSCDIN	24,7	25	40	62	51	6,6	1	70	10	16	5	M6	48	22,1	13.500	38.200	0,04	0,46
R32-05K6-FSCDIN	31,7	5	50	80	65	9	1	48	12	10	6	M6	62	29,1	23.900	81.900	0,04	0,59
R32-10K5-FSCDIN	31,8	10	50	80	65	9	1	77	12	16	6	M6	62	28,6	31.500	80.100	0,04	0,82
R32-20K3-FSCDIN	31,8	20	50	80	65	9	1	88	12	16	6	M6	62	28,6	17.000	48.500	0,04	0,91
R32-32K2-FSCDIN	31,9	32	50	80	65	9	1	88	12	20	6	M6	62	28,7	11.600	31.800	0,04	0,90
R32-32K4-DFSCDIN	31,9	32	50	80	65	9	1	88	12	20	6	M6	62	28,7	20.600	62.200	0,04	0,87

sigue > ...




III. PLANOS

ÍNDICE

37.00 Conjunto carro de compra con silla de ruedas	136
37.01 Conjunto carro de compra	137
37.02 Dimensiones generales	140
37.03 Pata inferior rueda trasera	141
37.03.1 Pata inferior rueda trasera _A	142
37.03.2 Pata inferior rueda trasera _B	143
37.04 Refuerzo nervio estructura	144
37.04.1 Refuerzo nervio estructura_A	145
37.04.2 Refuerzo nervio estructura_B	146
37.04.3 Refuerzo nervio estructura_C	147
37.04.4 Refuerzo nervio estructura_D	148
37.05 Bisagra anclaje inferior	
37.05.1 Bisagra anclaje inferior_A	150
37.05.2 Bisagra anclaje inferior_B	151
37.06 Eje fijación cesta a motor	152
37.06.1 Eje fijación cesta a motor_A	153
37.06.2 Eje fijación cesta a motor_B	154
37.07 Base principal	155
37.07.1 Base principal_A	156
37.07.2 Base principal_B	157
37.07.3 Base principal_C	158
37.07.4 Base principal_D	159
37.07.5 Base principal_E	160
37.08 Columna exterior de elevación	161
37.09 Columna interior de elevación	162
37.10 Nylon intermedio columnas	163
37.11 Brazo anclaje inferior	164

37.12 Eje tope bisagra	165
37.13 Garra anclaje inferior	166
37.14 Placa inferior de elevación	167
37.15 Placa intermedia rodamiento bolas	168
37.16 Placa superior columna elevación	169
37.17 Placa anclaje reductora reguladores	170
37.18 Eje corto regulación ángulo	171
37.19 Eje largo regulación altura	172
37.20 Brida ejes regulación	173
37.21 Buje rodamiento regulación giro	174
37.22 Buje rodamiento volante	175
37.23 Tapa rodamiento eje giro	176
37.24 Casquillo separador rodamiento	177
37.25 Casquillo sopo <mark>rte eje</mark> s regulación	178
37.26 Casquillo sepa <mark>r</mark> ador rodamiento	179
37.27 Tapa zona reguladores	180
37.28 Base principal zona reguladores	181
37.29 Casquillo separador husillo	182
37.30 Casquillo tope husillo	183
37.31 Arandela tope superior husillo	184
37.32 Base anclaje cesta	185
37.33 Cesta superior inyección	186
37.34 Cesta superior inyección cuadrada	187

			1					
45	1	DIN 6885	Chaveta para	lela		Acer	כ	
44	2	DIN 6885	Chaveta para	lela		Acer	כ	
43	4	DIN 912 - M12 x 30	Tornillo de cabeza cilíndrica			Acer)	
42	4	DIN 912 - M6 x 45	Tornillo de ca	beza cilíndrica		Acer	כ	
41	2	DIN 912 - M6 x 25	Tornillo de ca	beza cilíndrica		Acerd	כ	
40	6	DIN 912 - M6 x 20	Tornillo de ca	Tornillo de cabeza cilíndrica			כ	
39	1	DIN 625	Rodamientos	de bolas		Acer)	
38	1	DIN 625	Rodamientos	de bolas		Acerd)	
37	1	DIN 472 - 35x1,5	Anillas de rete	ención para taladro	S	Acerd)	
36	2	DIN 125 - A 10,5	Arandela	Arandela				
35	8	DIN 125 - A 8,4	Arandela				0	
34	30	DIN 125 - A 6,4	Arandela				Acero	
33	2	GN 648.2-8-M8L	Rótula con pe	erno roscado		Acer	0	
32	2	6001-2RSR	Rodamientos	de bolas		Acer)	
31	1	37.33	Cesta superio	r inyección		Polip	ropileno	
30	1	37.32	Base anclaje	cesta		Acer	כ	
29	1	37.31	Arandela tope	superior husillo		Acerd)	
28	1	37.30	Casquillo tope	e husillo		Bron	се	
27	1	37.29	Casquillo sepa	arador husillo		Bron	се	
26	1	37.28	Base principa	l zona reguladores		Acero		
25	1	37.27	Tapa zona re	guladores		Acero		
24	1	37.26	Casquillo separador rodamiento			Bron	ce	
23	2	37.25	Casquillo soporte ejes regulación			Bron	ce	
22	2	37.24	Casquillo separador rodamiento			Bron	ce	
21	1	37.23	Tapa rodamie	ento eje giro		Acero)	
20	2	37.22	Buje rodamie			Bron	ce	
19	1	37.21	Buje rodamie	nto regulación giro		Acero)	
18	2	37.20	Brida ejes reg	julación		Acero)	
17	1	37.19	Eje largo regu	ulación altura		Acero)	
16	1	37.18	Eje corto regi	ulación ángulo		Acero)	
15	2	37.17	Placa anclaje	reductora regulado	res	Acer)	
14	1	37.16	Placa superior columna elevación)	
13	1	37.15	Placa interme	dia rodamiento bol	as	Acero		
12	1	37.14	Placa inferior	de elevación		Acero)	
11	2	37.13	Garra anclaje inferior				Polipropileno	
10	1	37.12	Eje tope bisag	igra Acero				
9	2	37.11	Brazo anclaje inferior			Acero		
8	8	37.10	Nylon intermedio columnas			Nilón		
7	1	37.09	Columna interior de elevación			Acero		
6	1	37.08	Columna exterior de elevación			Acero		
5	1	37.07	Base principal			Acero		
4	1	37.06	Eje fijación cesta a motor			Acero		
3	1	37.05	Bisagra anclaje inferior			Acero		
2	1	37.04	Refuerzo nervio estructura			Acero		
1	2	37.03	Pata inferior i	rueda trasera		Acero)	
Marca	Ио	Plano/Norma		escripción		M	aterial	
Diseñado por		Aprobado por:		Fecha:	Nº Pla		Escala:	
10		el Rodríguez José María Memento:	iarın Lopez	20/07/2020	37.01	_	1:5 Nº Hoja	
SILLAS		emento: aniunto carro de compra					n∘ πoja 2/3	

MH.

Elemento: Conjunto carro de compra

Proyecto:

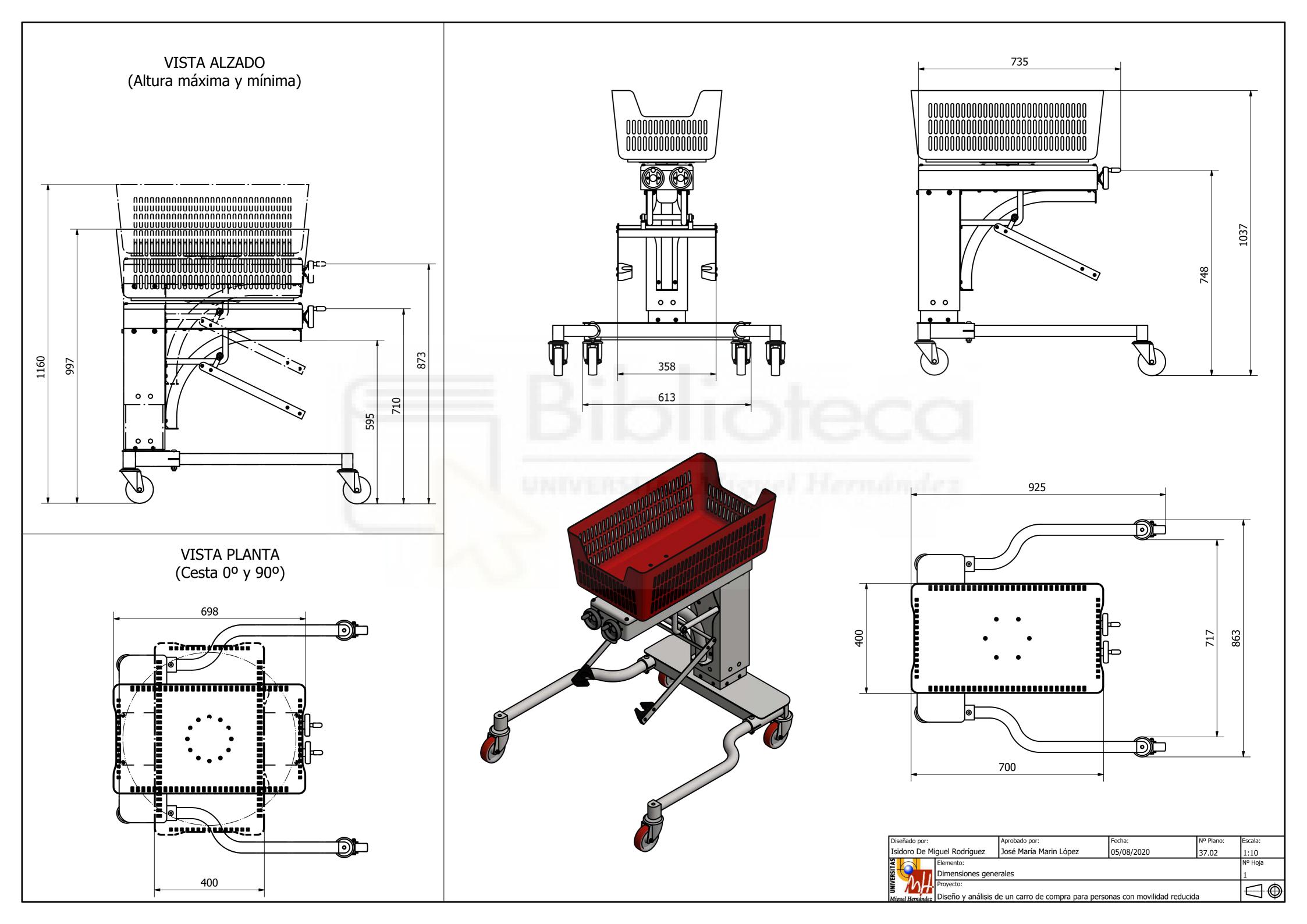
Diseño y análisis de un carro de compra para personas con movilidad reducida

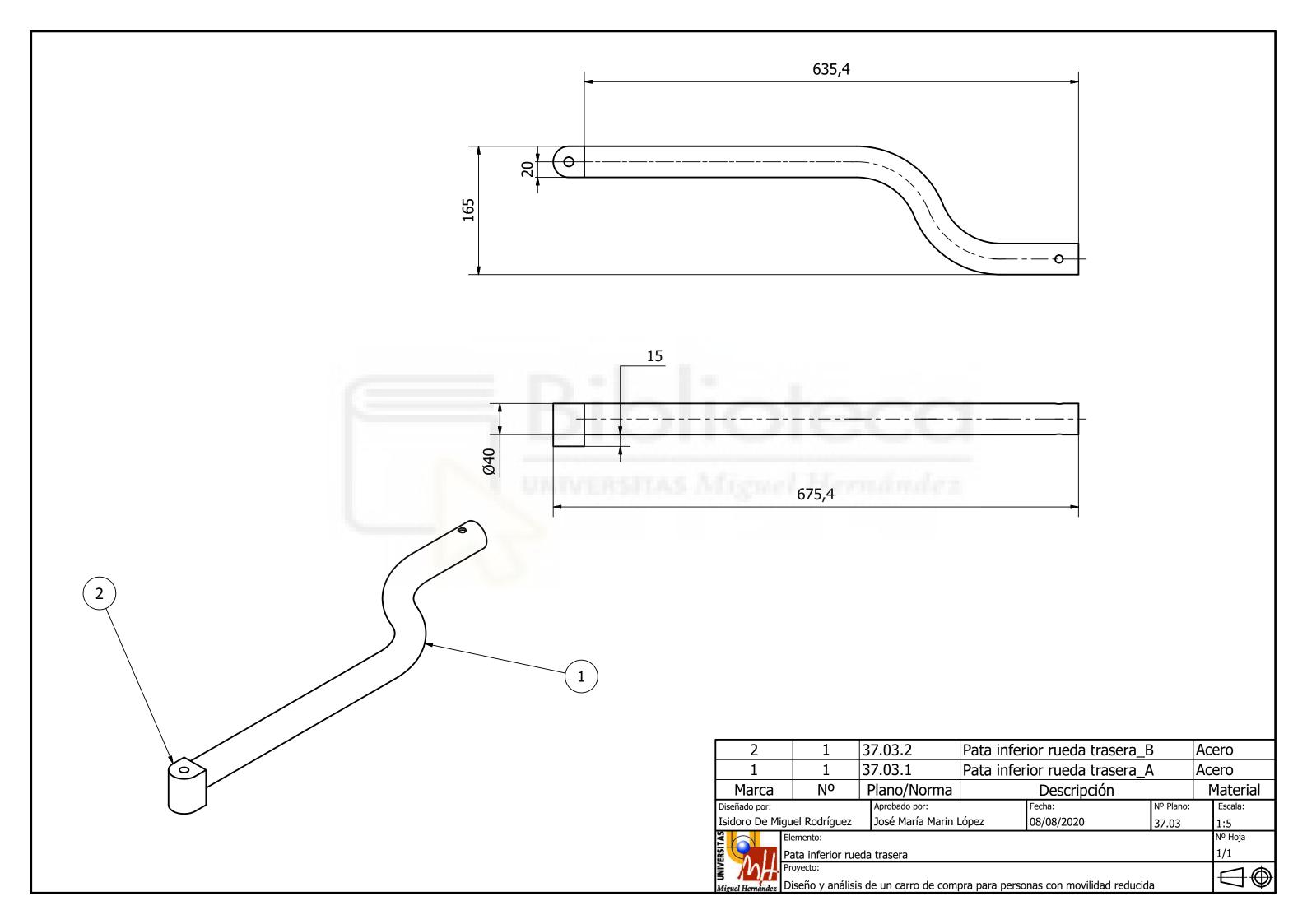
Nº Hoja 2/3

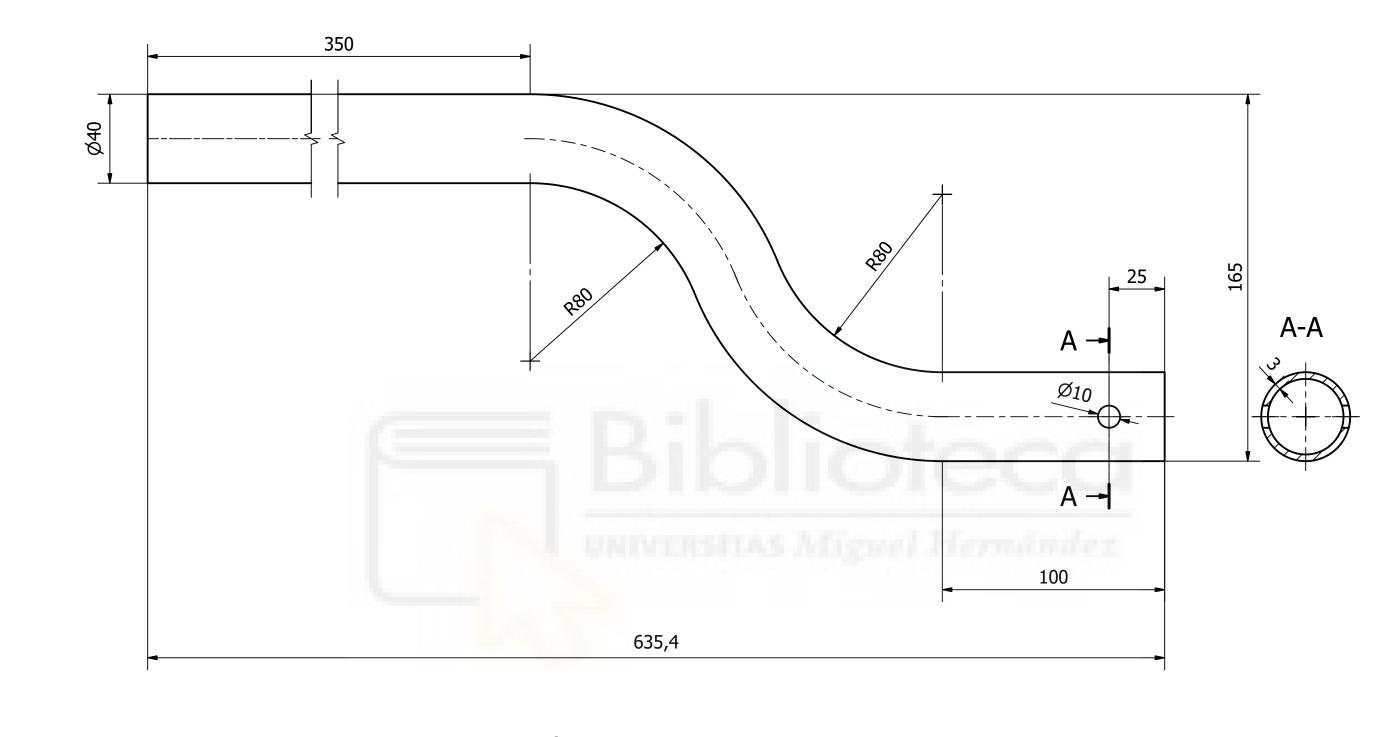
Biblioteca

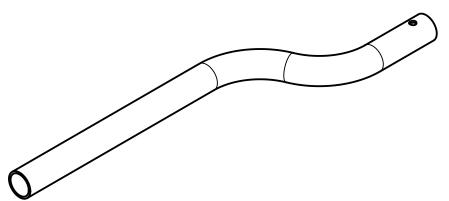
70	2	DIN 913 - N	15 x 8	Tornillo sir	n cabeza	Acero			
69	2	DIN 912 - N	16 x 30	Tornillo de	e cabeza cilíndrica	Acero			
68	2	VRTP.80+IF	R-A8-K	Volante ba	anda diametral	polipror	oileno		
67	2	R030FB		Reductora	sinfin corona	Acero			
66	1	R12-10K3-F	SCDIN	Tuerca hu	sillo	Bronce			
65	2	KM 20		Acoplamie	nto de fuelles	Acero			
64	2	ISO 7380-1	- M10 x 70	Tornillos d	le cabeza cilíndrica	Acero	Acero		
63	2	ISO 7380-1	- M8 x 25	Tornillos d	le cabeza cilíndrica	Acero			
62	8	ISO 7380-1	- M6 x 30	Tornillos d	le cabeza cilíndrica	Acero			
61	4	ISO 7380-1	- M6 x 12	Tornillos d	le cabeza cilíndrica	Acero			
60	14	ISO 7380-1	- M6 x 10	Tornillos d	le cabeza cilíndrica	Acero	Acero		
59	8	ISO 7380-1 - M4 x 12		Tornillos d	le cabeza cilíndrica	Acero	Acero		
58	4	ISO 7380-1 - M4 x 8		Tornillos d	le cabeza cilíndrica	Acero	Acero		
57	4	ISO 7092 - ST 10		Arandelas	planas	Acero			
56	2	ISO 4032 -	M10	Tuercas he	exagonales	Acero			
55	6	ISO 4032 - M6		Tuercas he	exagonales	Acero			
54	4	ISO 4017 - M10 x 40		Perno de o	cabeza-hex	Acero			
53	4	RE.FF-100-FBL-SST-N		Conjunto i	rueda	Acero	Acero		
52	1	R12-10K3-F	SCDIN	Husillo reg	julación altura	Acero	Acero		
51	4	DIN 7991 -	M6 x 30	Tornillo av	rellanado	Acero	Acero		
50	8	DIN 7991 -	M6 x 20	Tornillo av	rellanado	Acero	Acero		
49	23	DIN 7991 -	M6 x 16	Tornillo av	rellanado	Acero	Acero		
48	6	DIN 7991 -	DIN 7991 - M6 x 12		rellanado	Acero	Acero		
47	4	DIN 7991 -	M4 x 8	Tornillo av	rellanado	Acero	Acero		
46	8	DIN 6912 - M8 x 20		Tornillo de	e cabeza cilíndrica	Acero	Acero		
Marca	Ио	Plano/	/Norma		Descripción	Ма	terial		
Diseñado po	or:		Aprobado por:	_	Fecha:	Nº Plano:	Escala:		
	e Migu	uel Rodríguez	José María Marin	López	20/07/2020	37.01	1:5		
TAS	El	emento:					Nº Hoja		

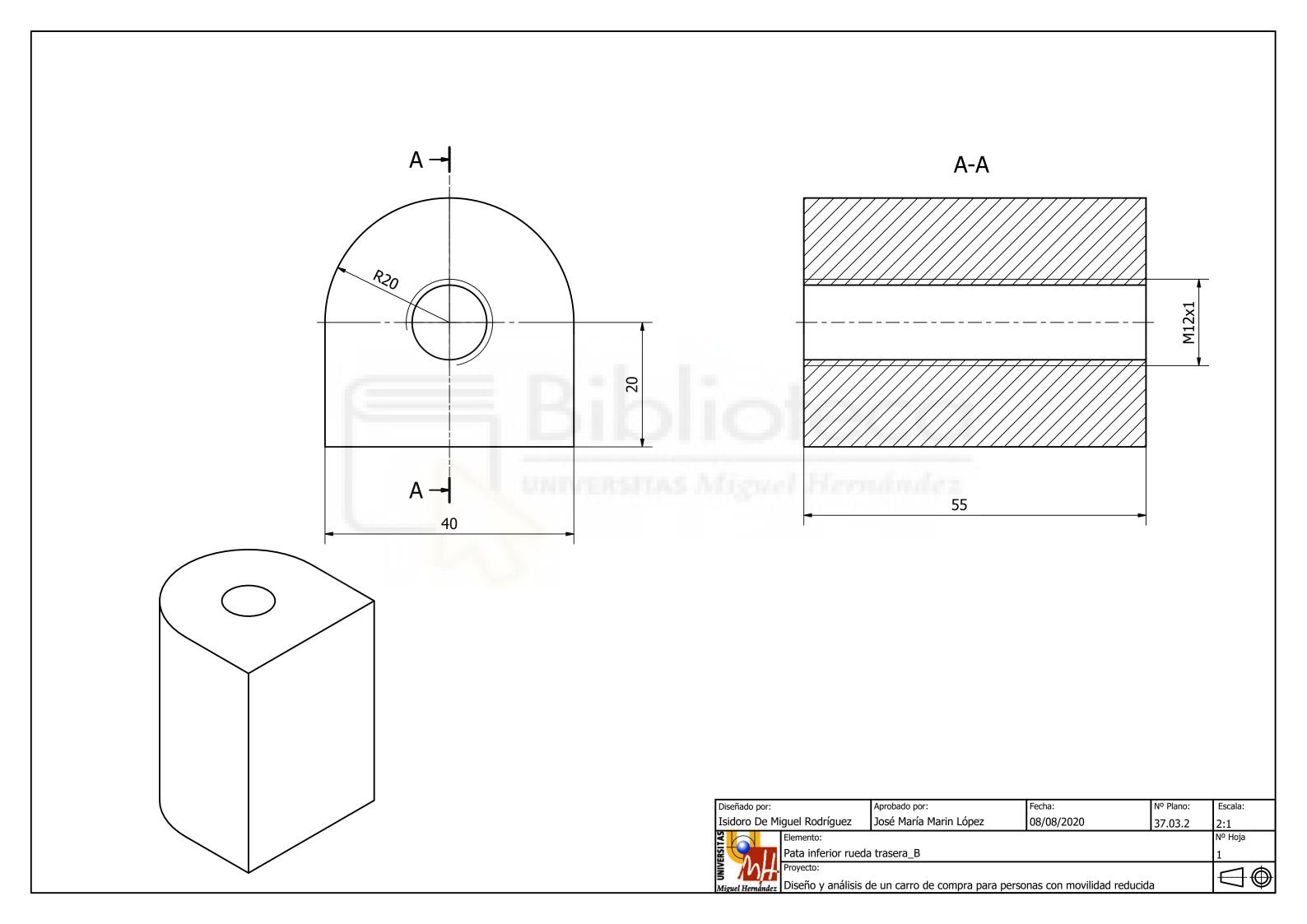
Miguel Hernández

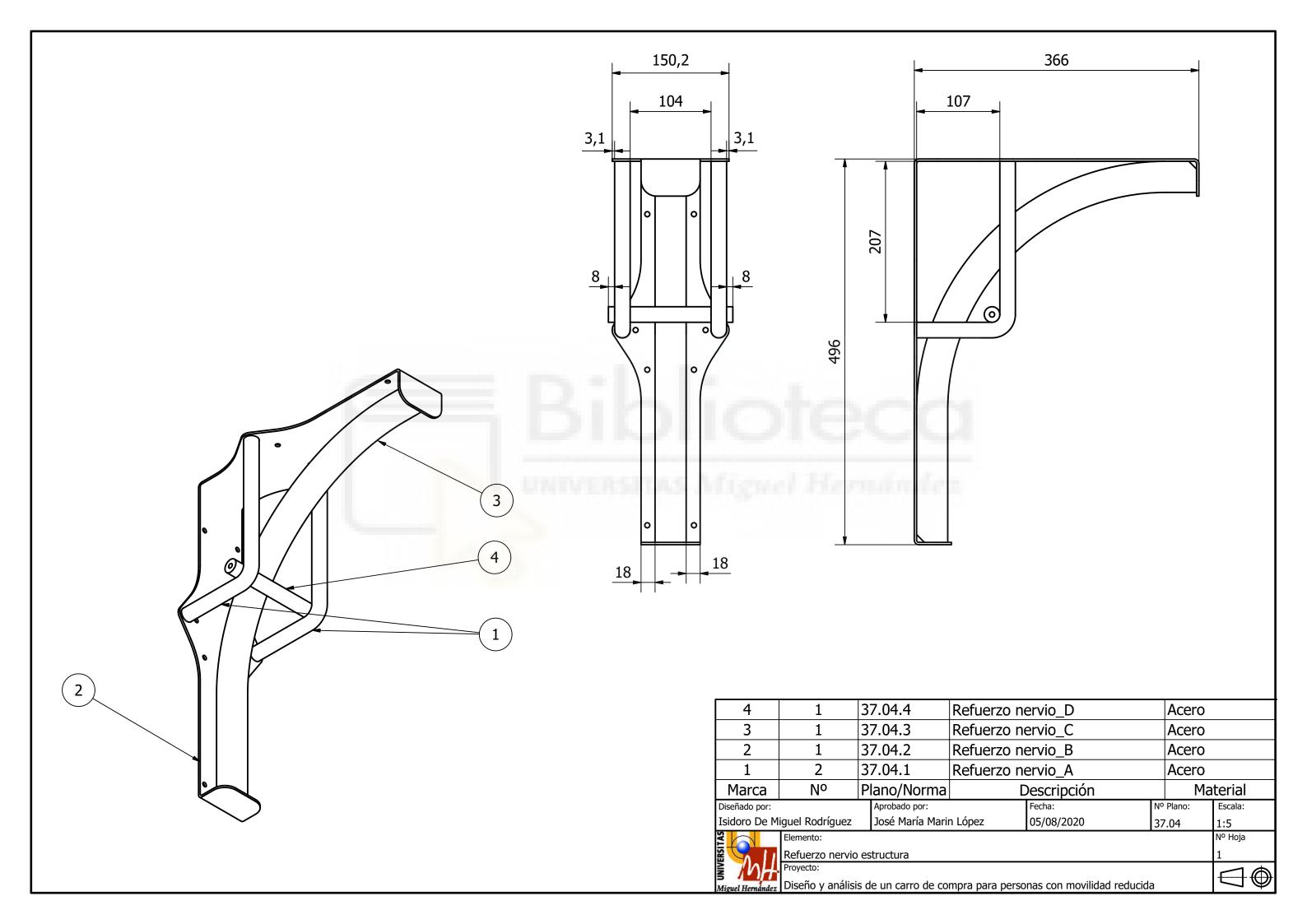

Elemento:

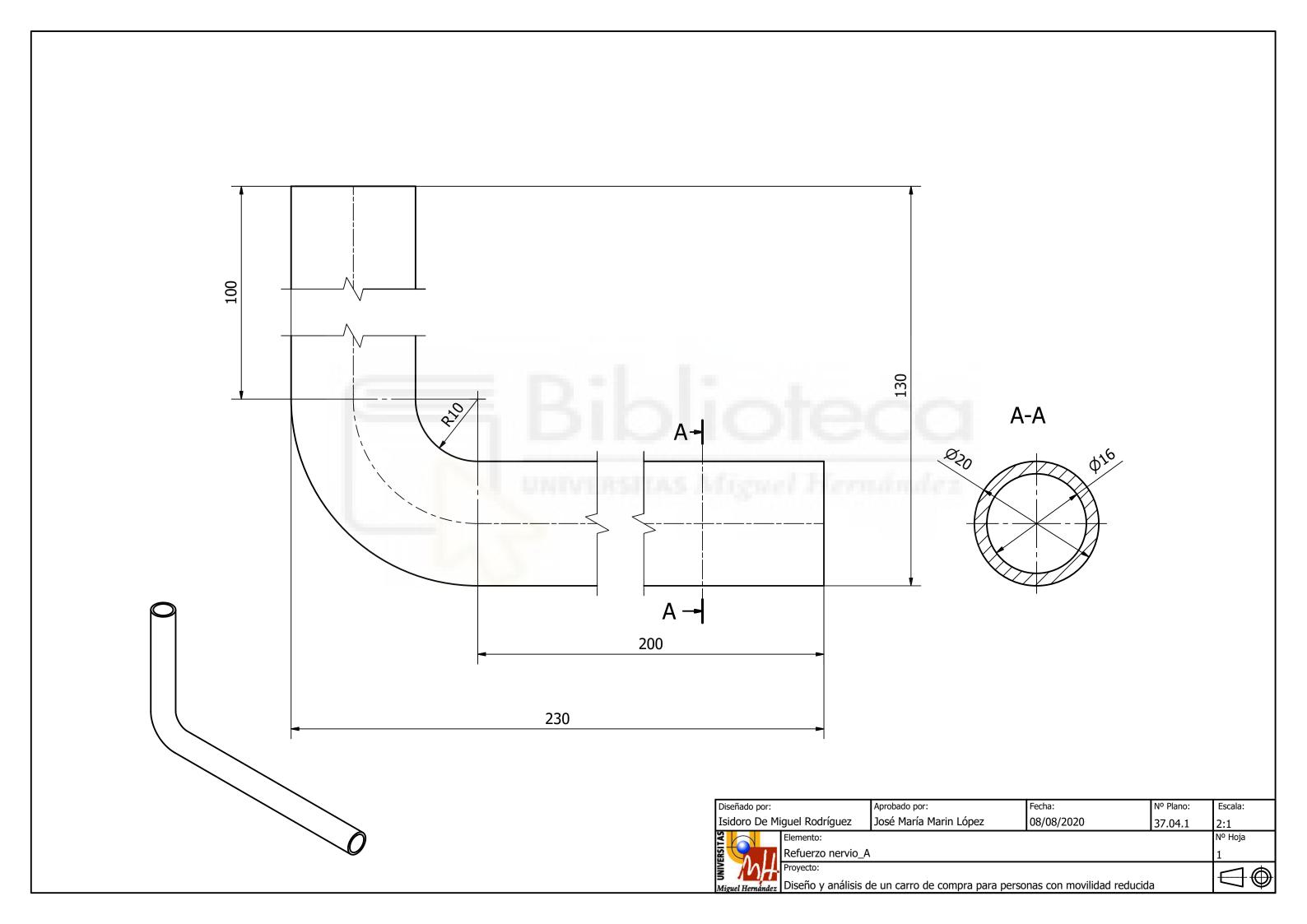

Conjunto carro de compra

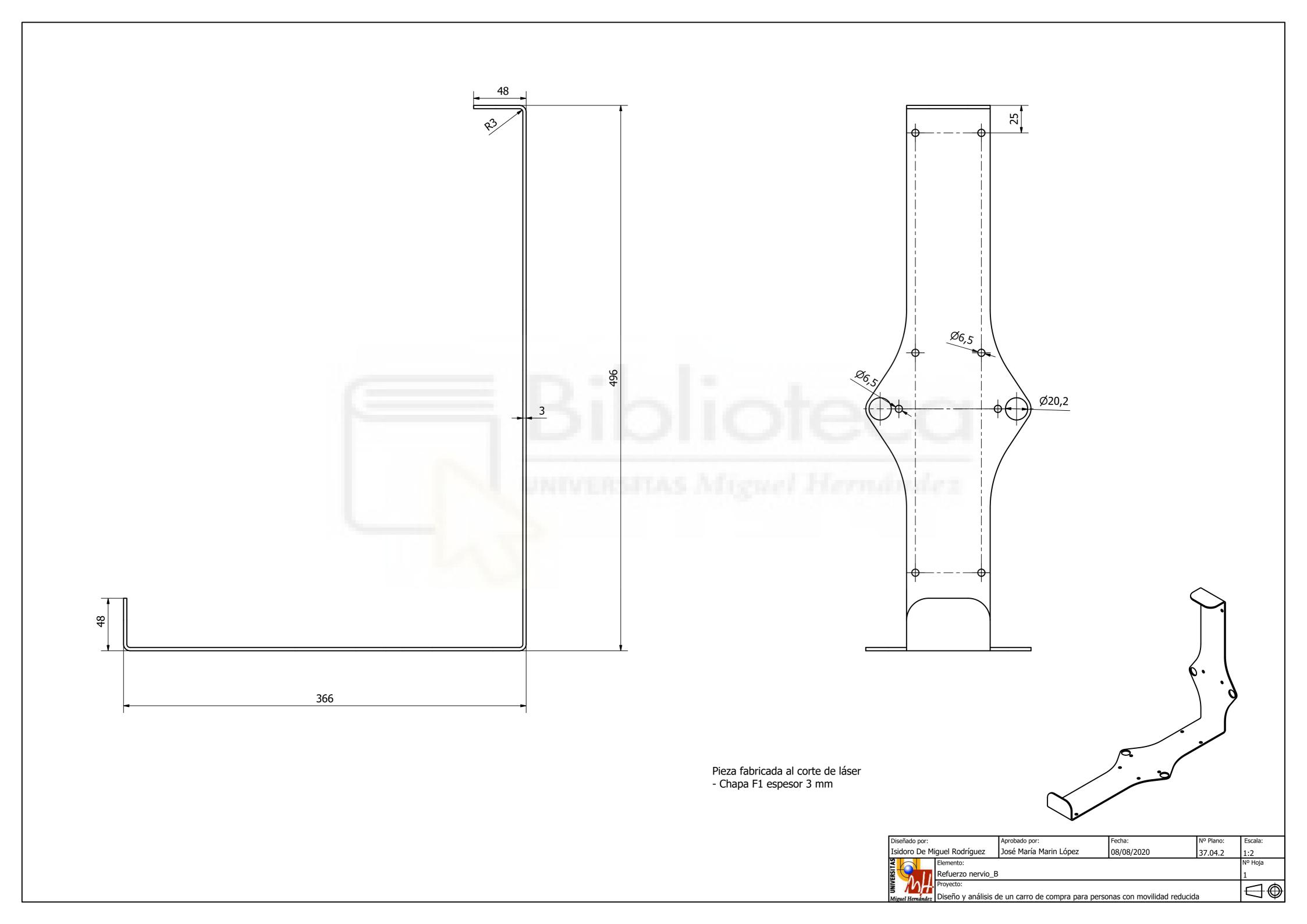

Proyecto:

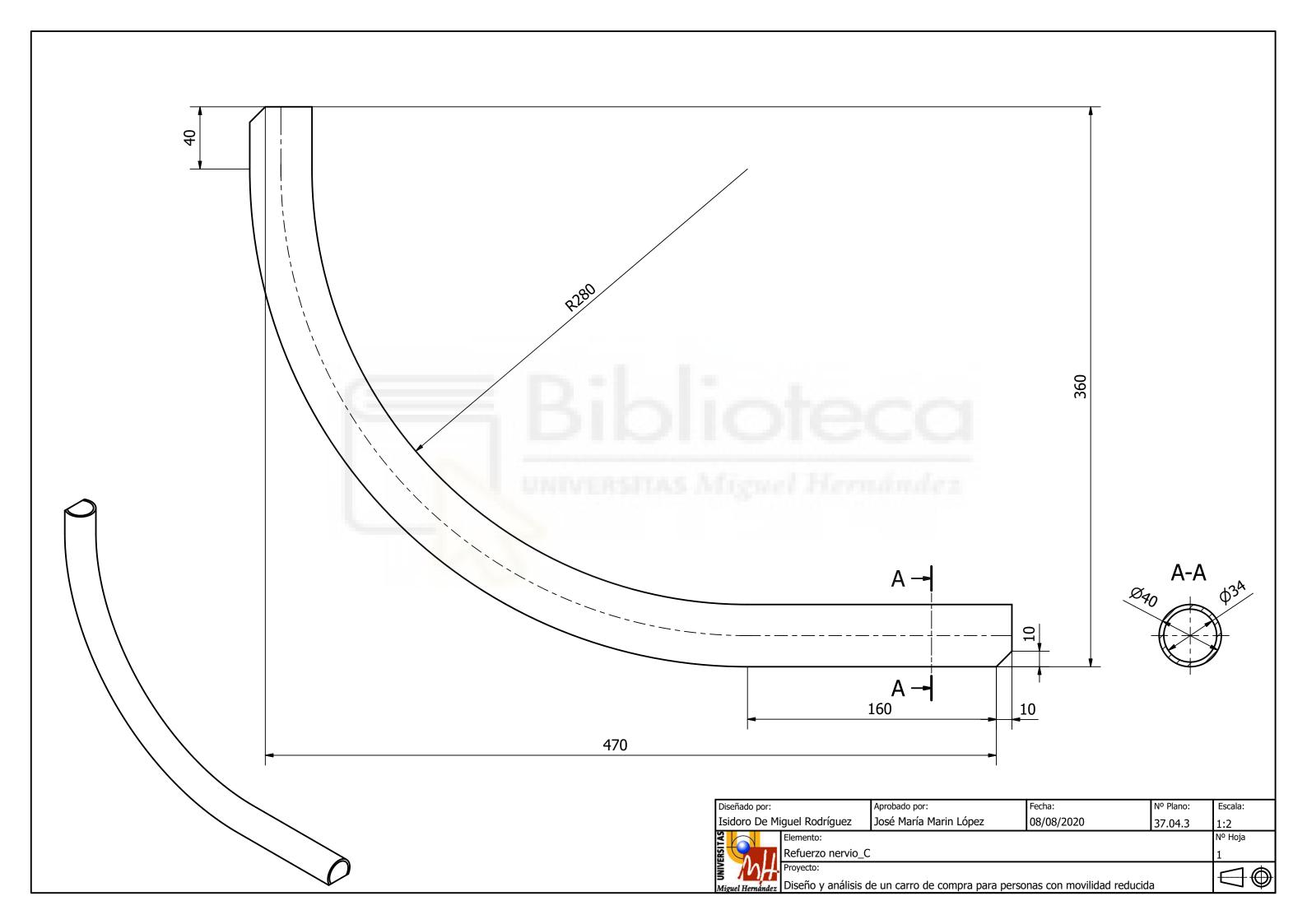

Diseño y análisis de un carro de compra para personas con movilidad reducida

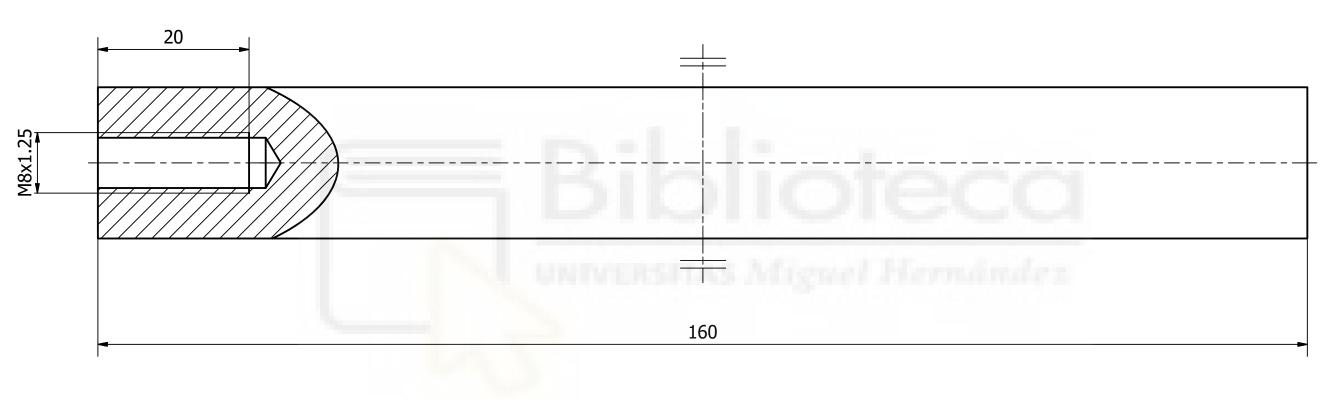


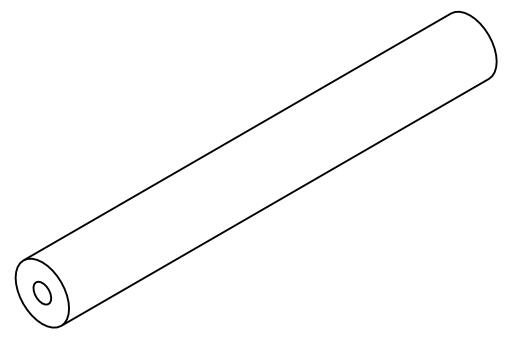


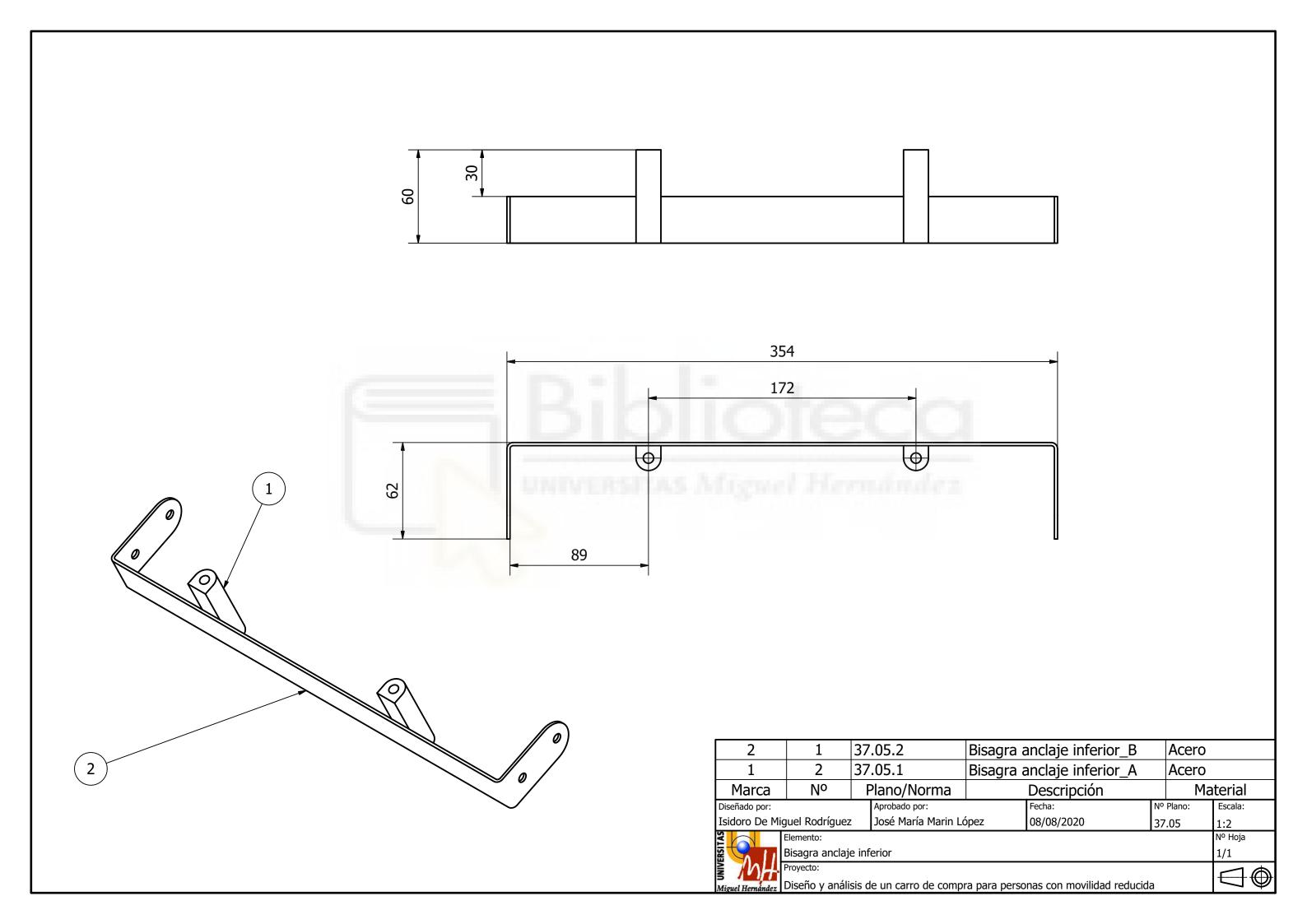


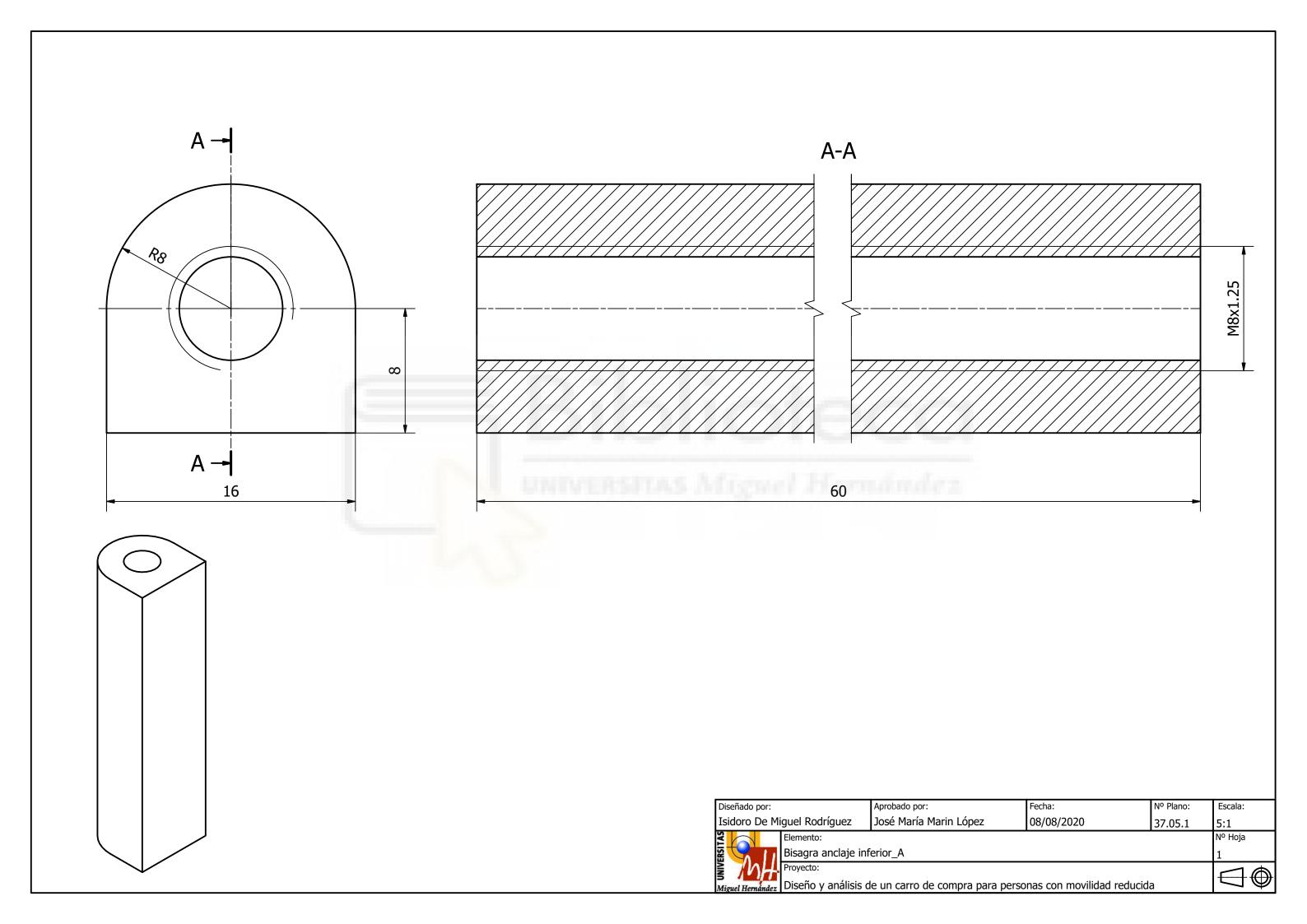


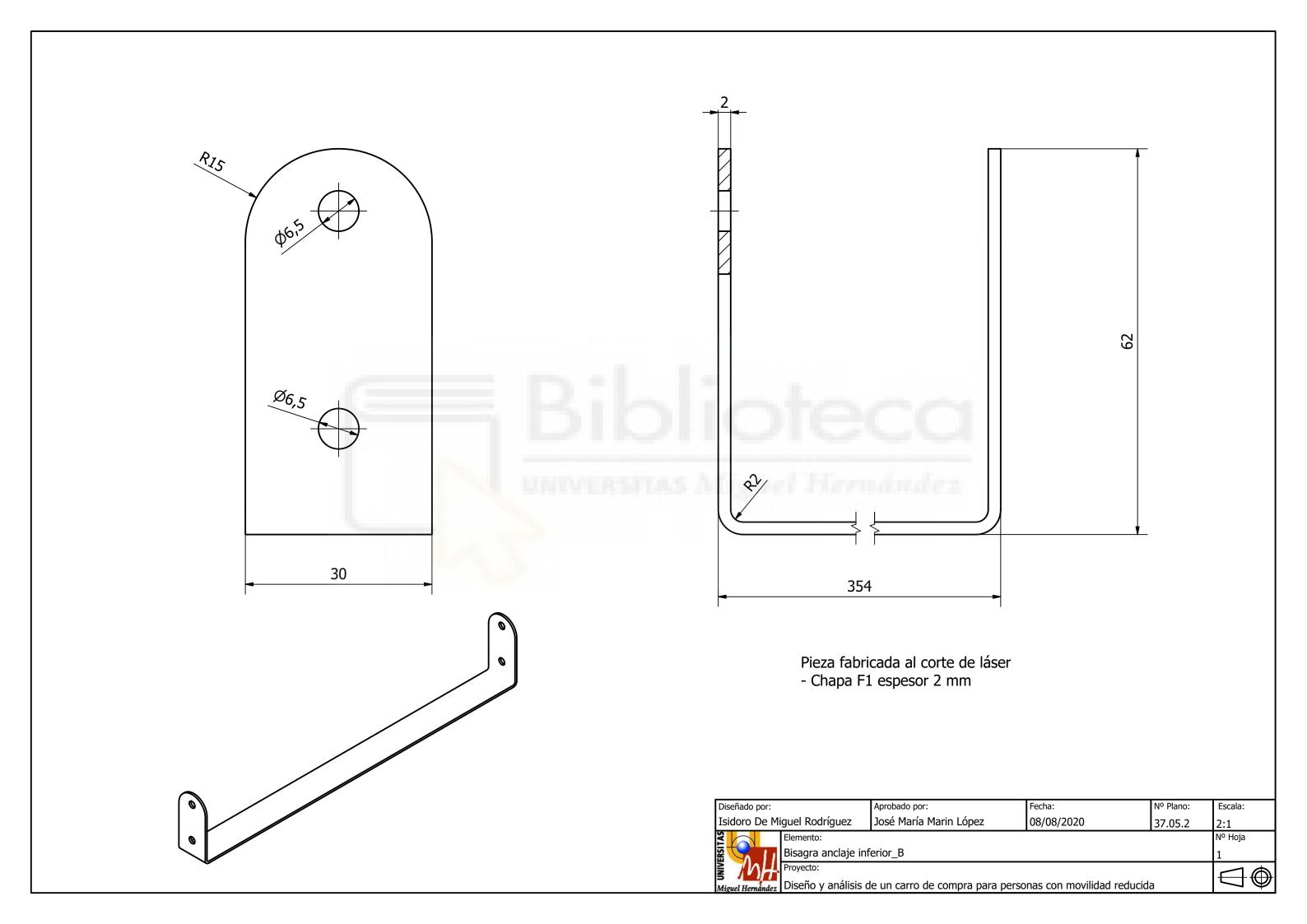

Diseñado por:		Aprobado por: Fecha:		Nº Plano:	Escala:			
Isidoro De Mi	iguel Rodríguez	José María Marin López 08/08/2020 37.03.1		37.03.1	1:2			
TAS	Elemento:							
UNIVERSIT	Pata inferior rueda trasera_A							
	Proyecto:							
Miguel Hernández Diseño y análisis de un carro de compra para personas con movilidad reducida								

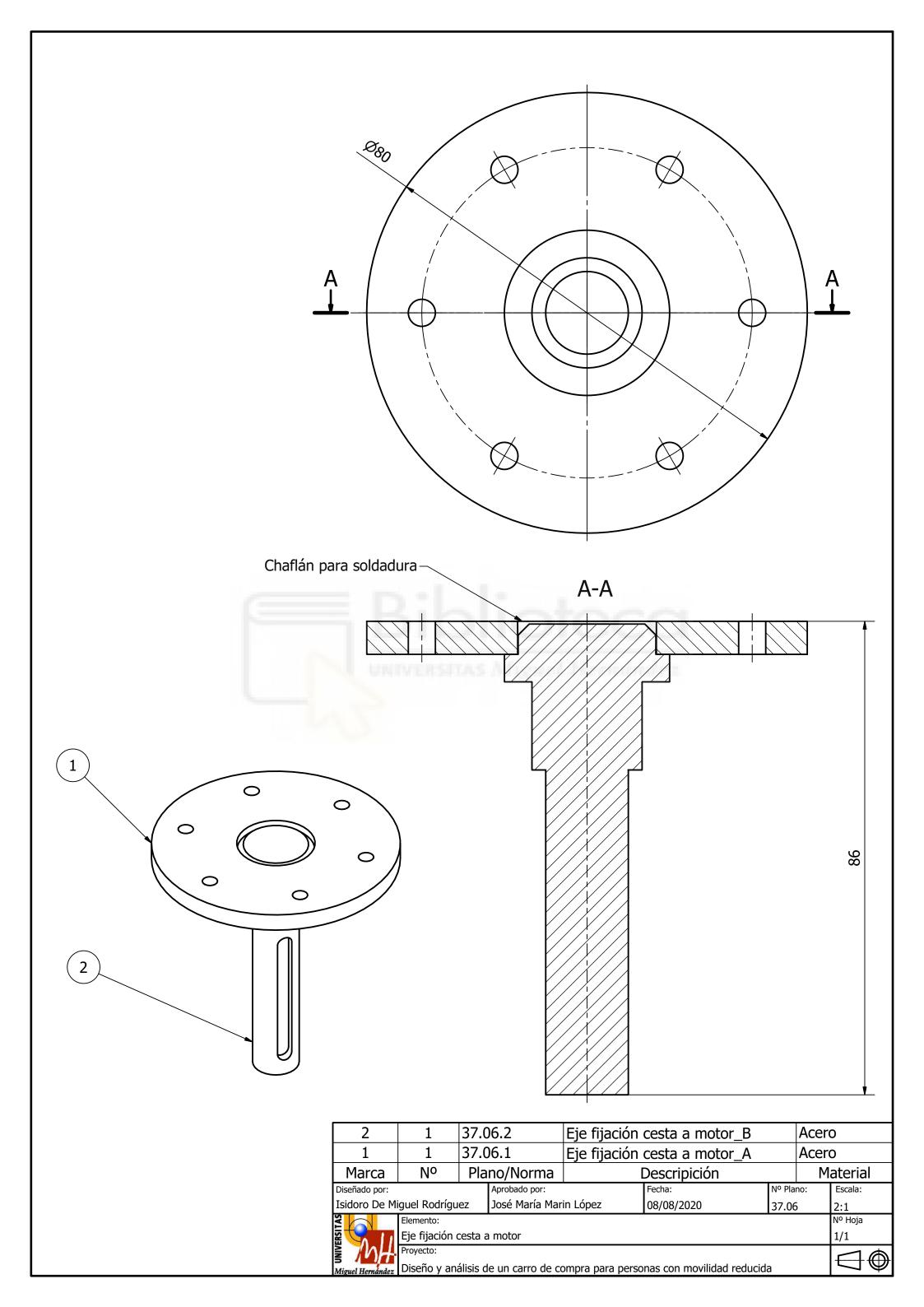


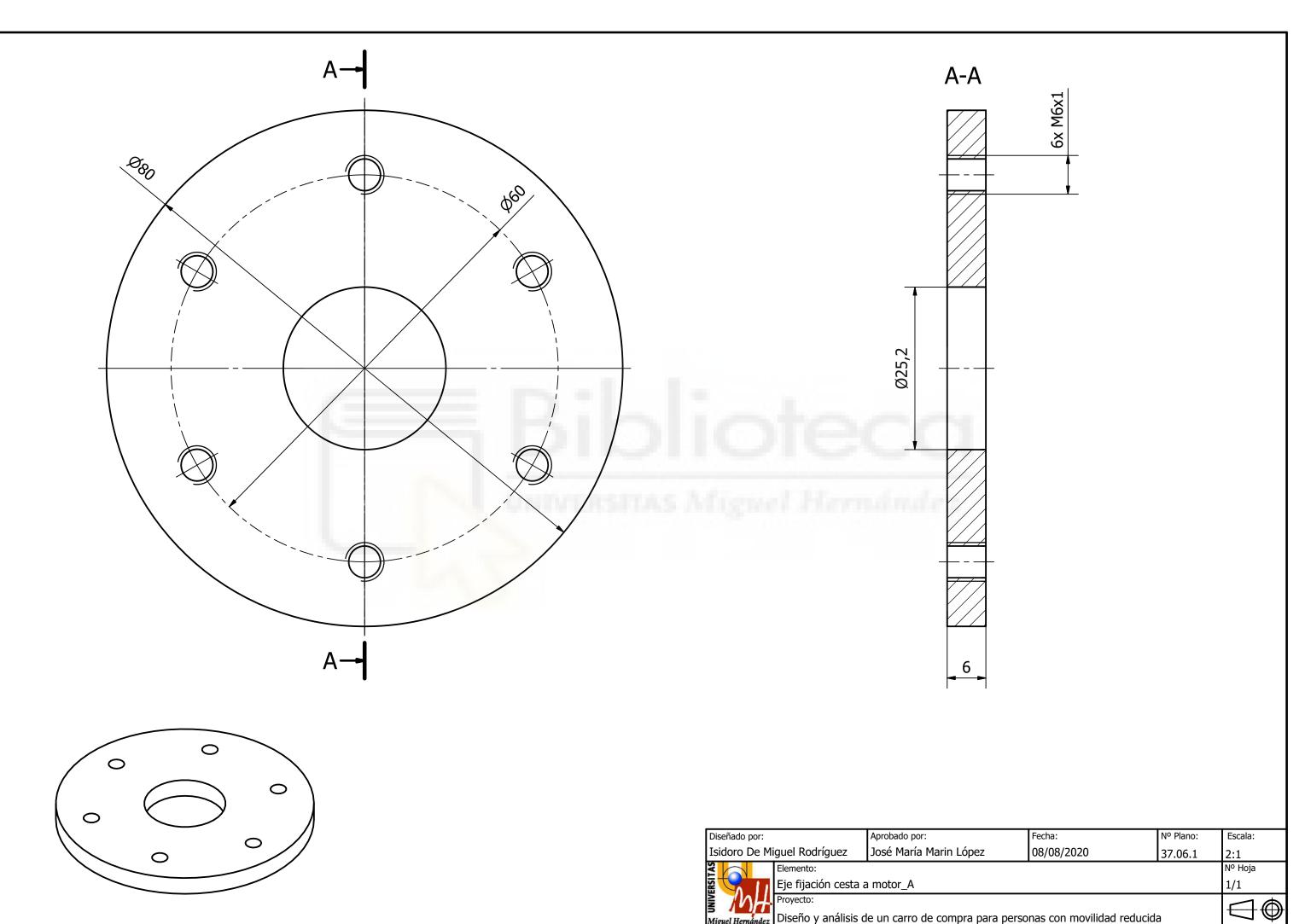


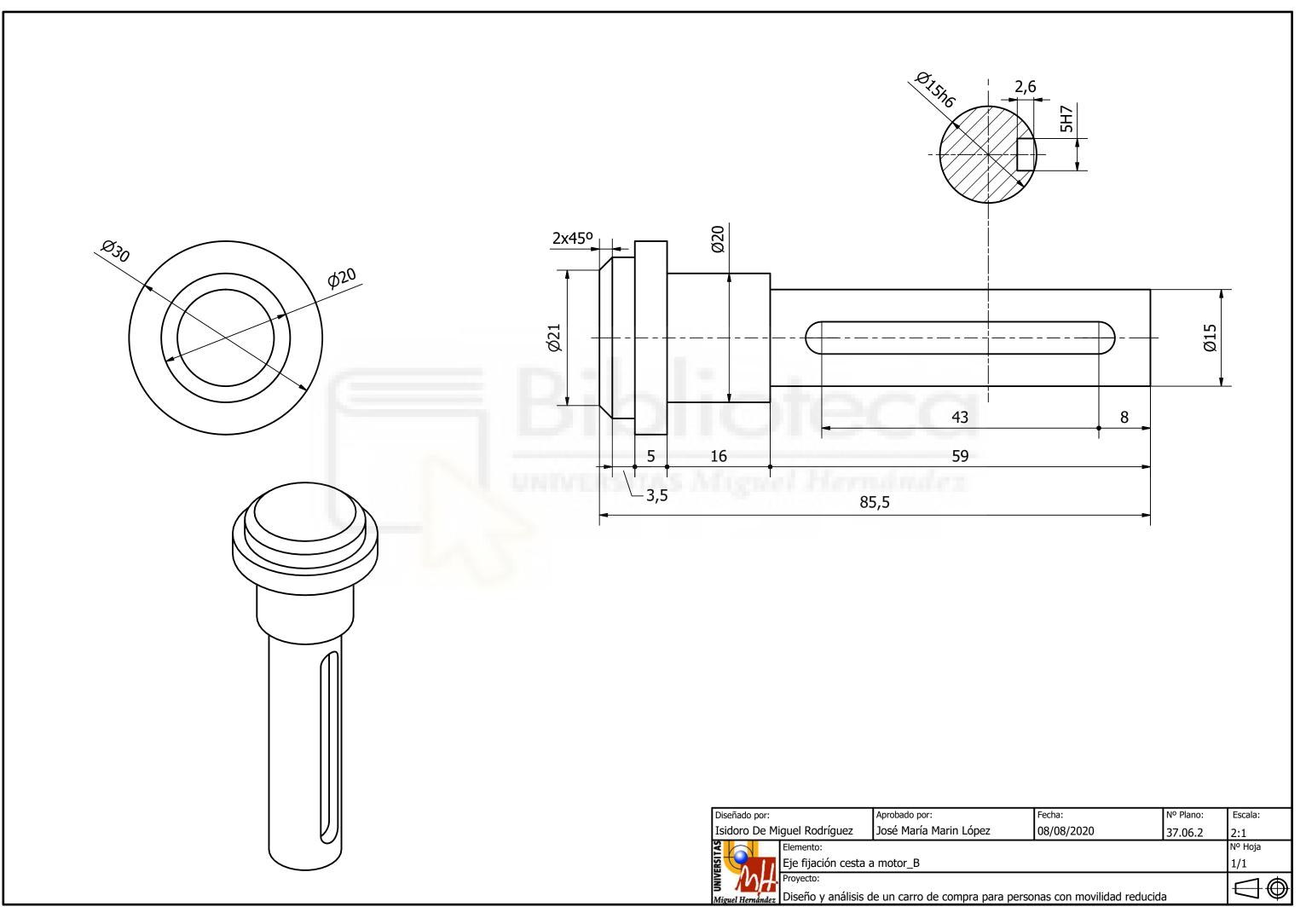


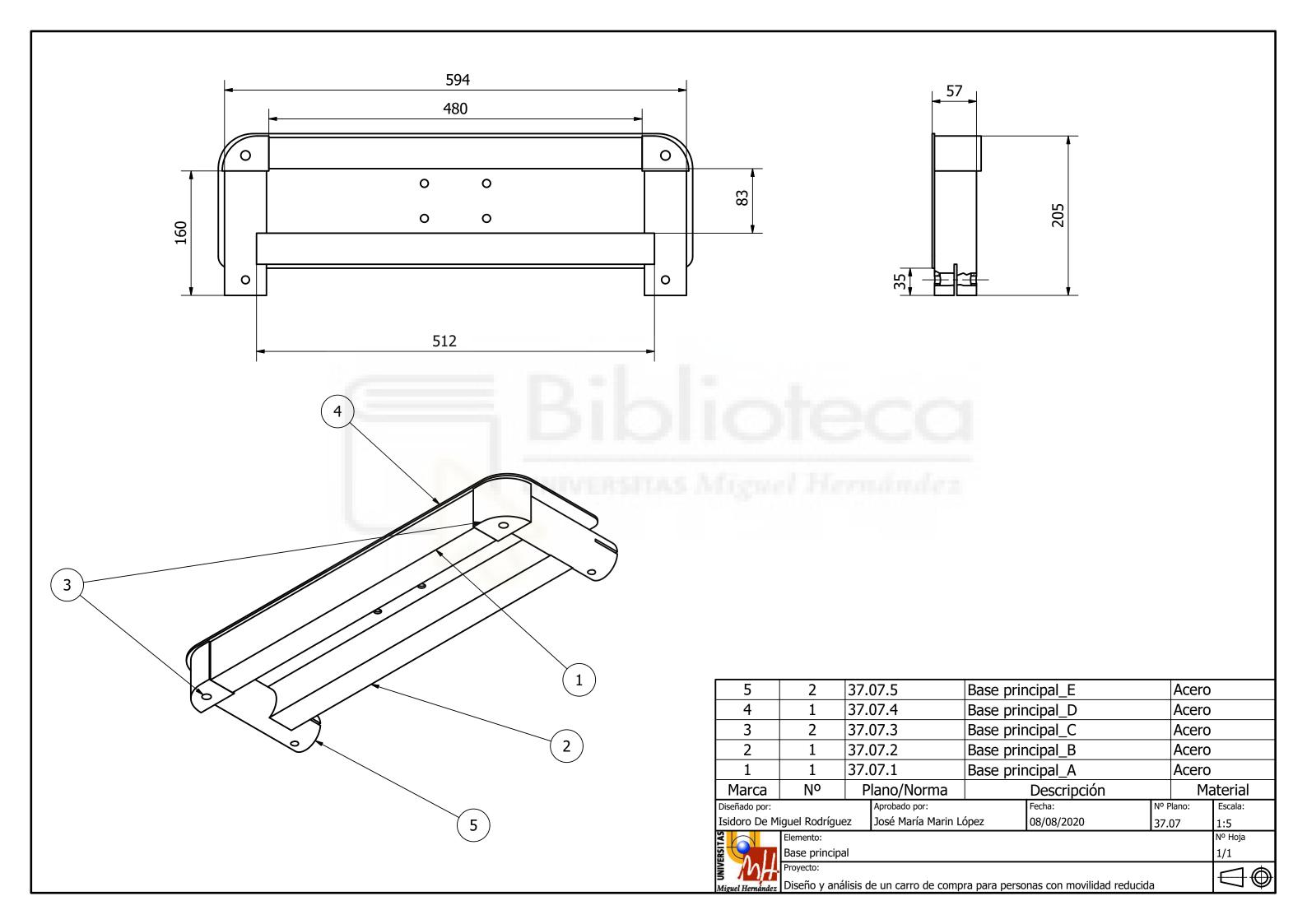


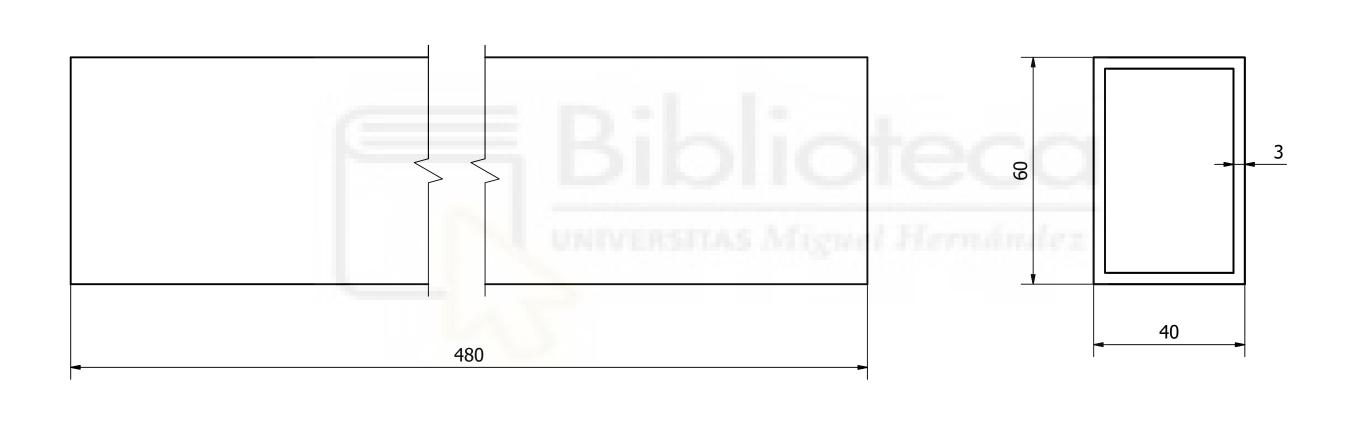


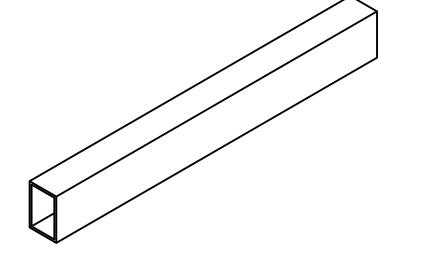


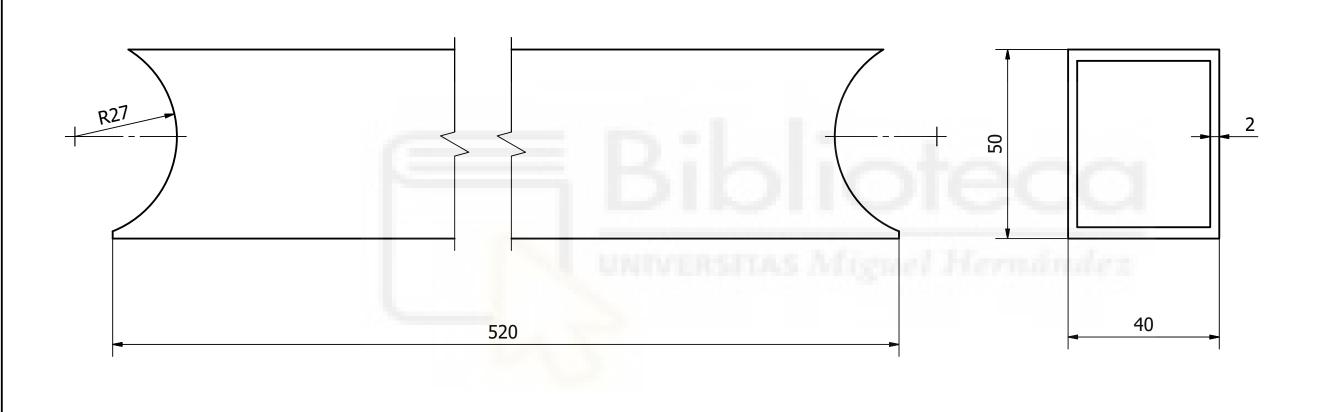

Diseñado por:	Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Miguel Rodríguez	José María Marin López	08/08/2020	37.04.4	2:1
Elemento:				Nº Hoja
Refuerzo nervio_Proyecto:)			1
Proyecto:				
Miguel Hernández Diseño y análisis de un carro de compra para personas con movilidad reducida				

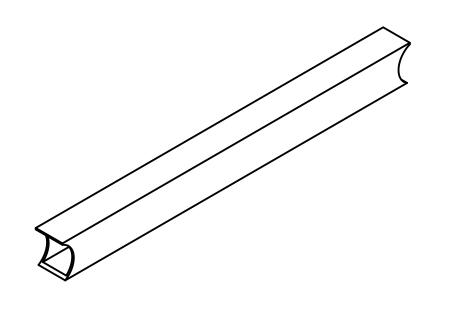


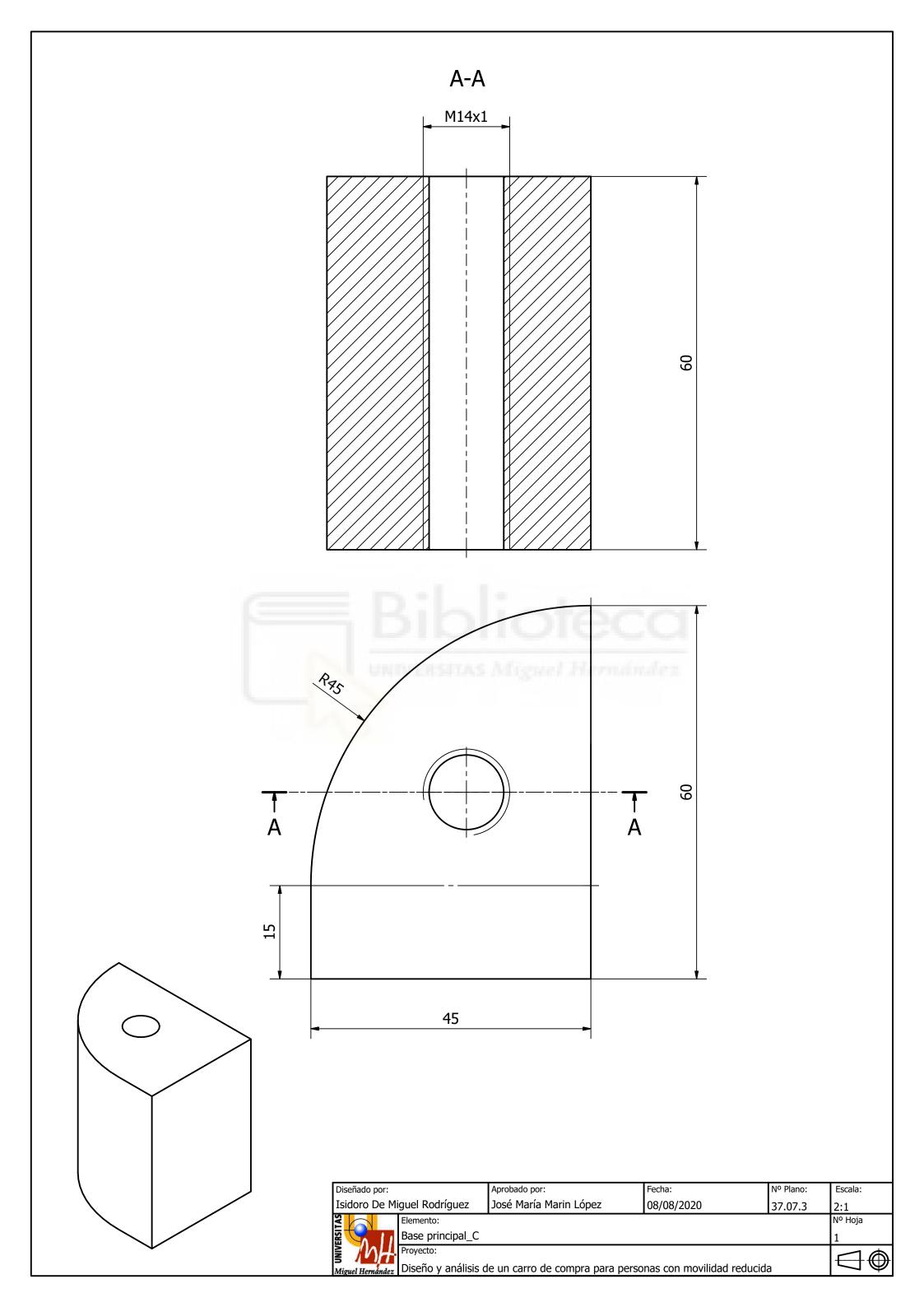


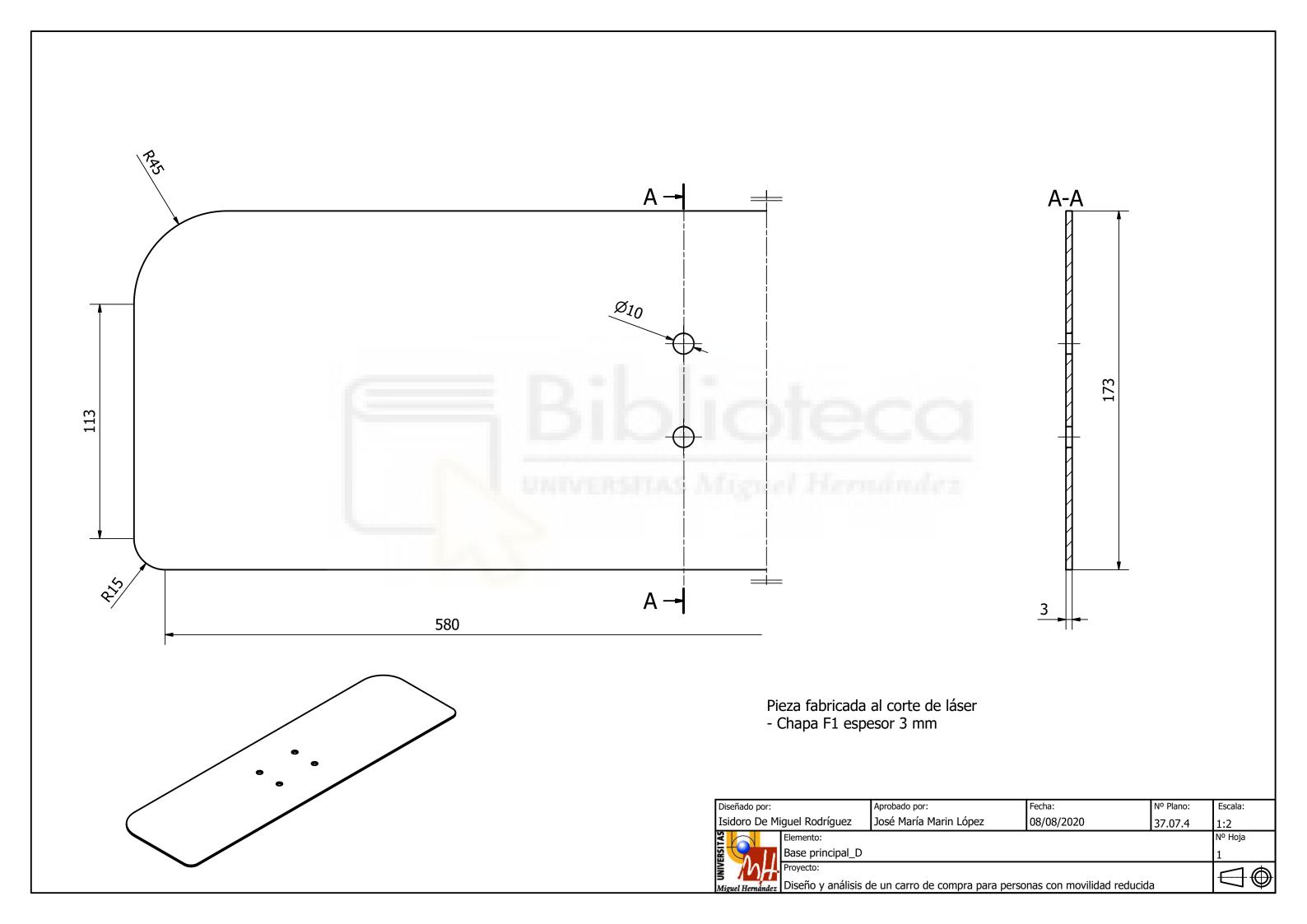


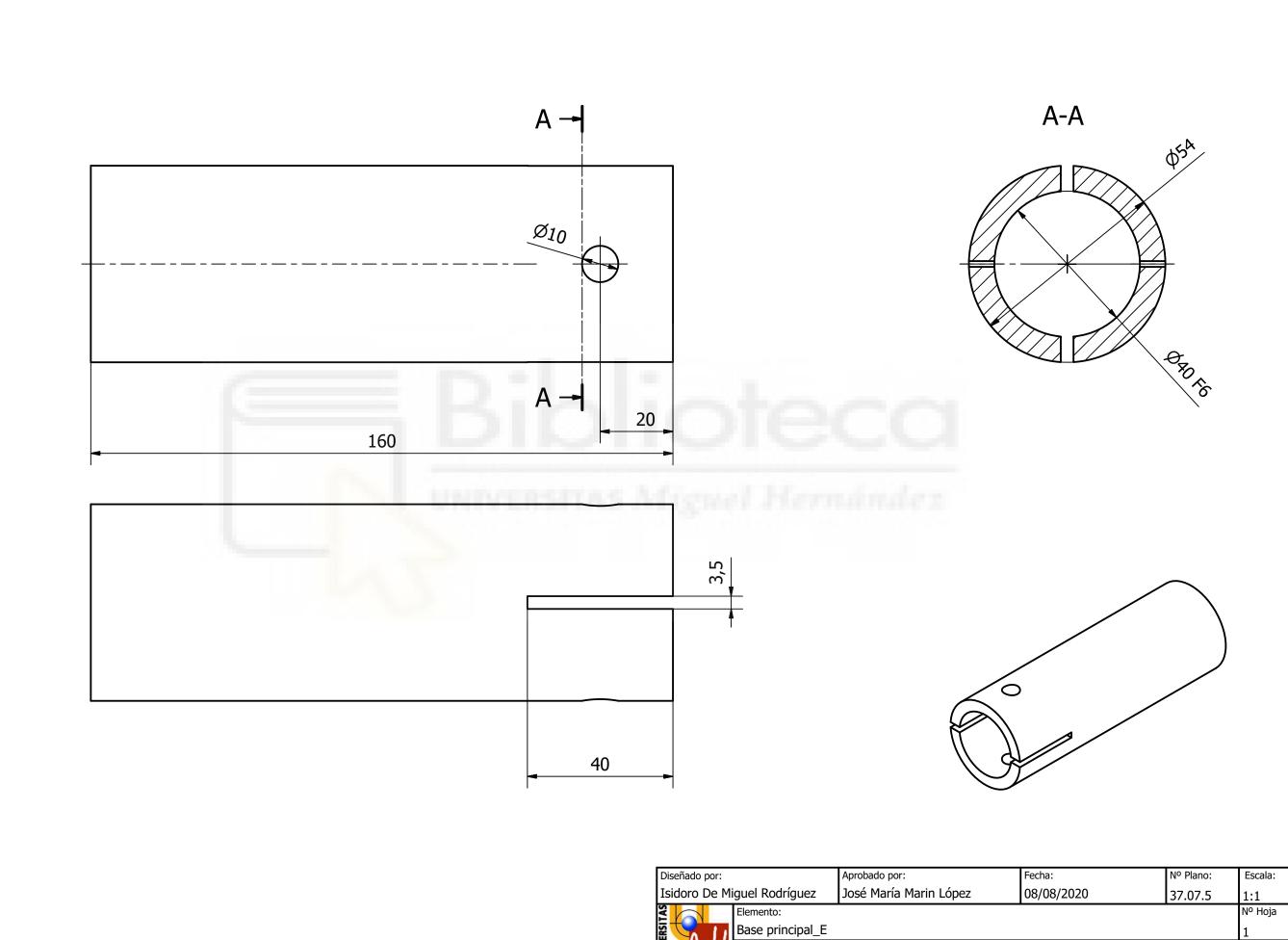


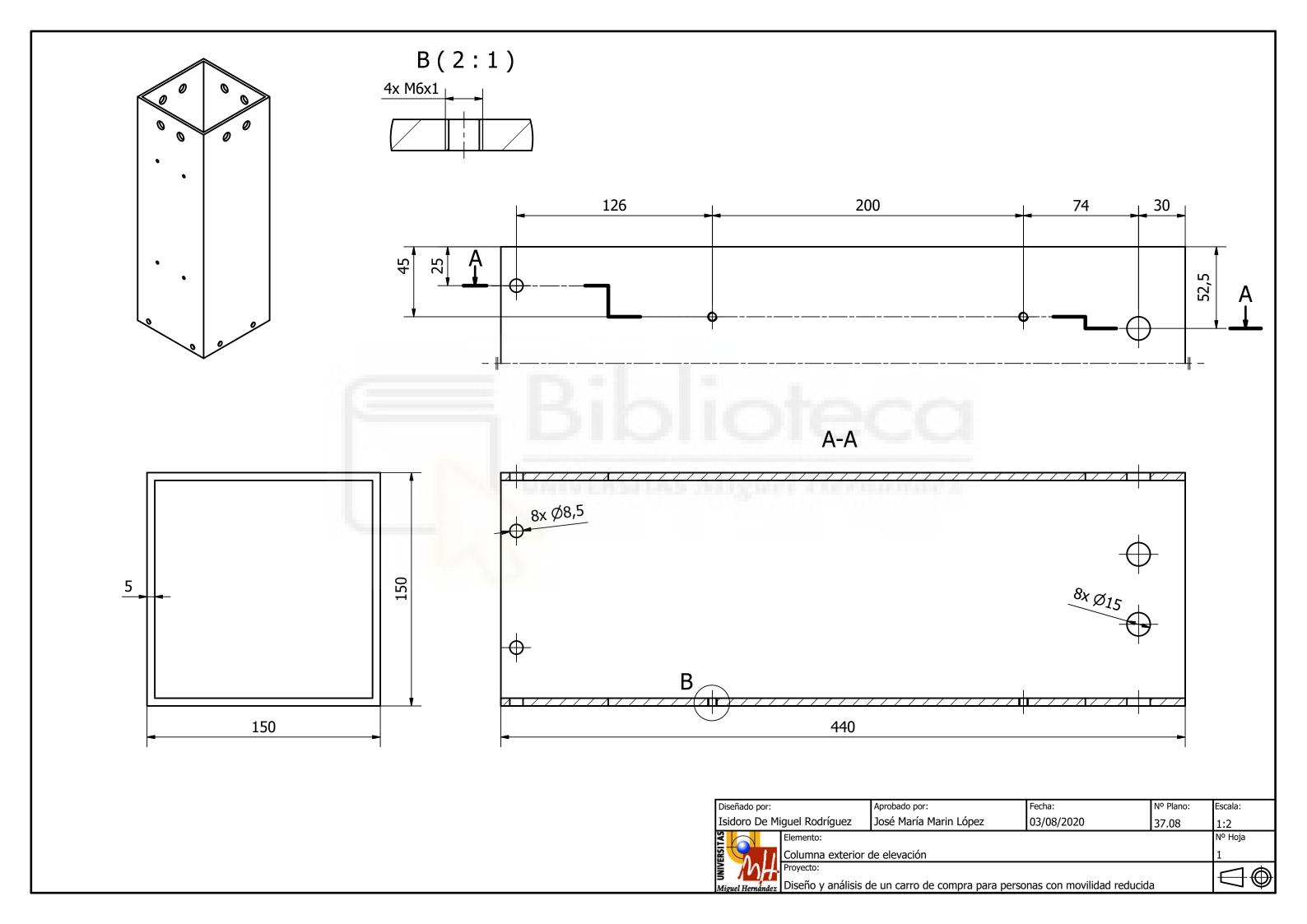

_

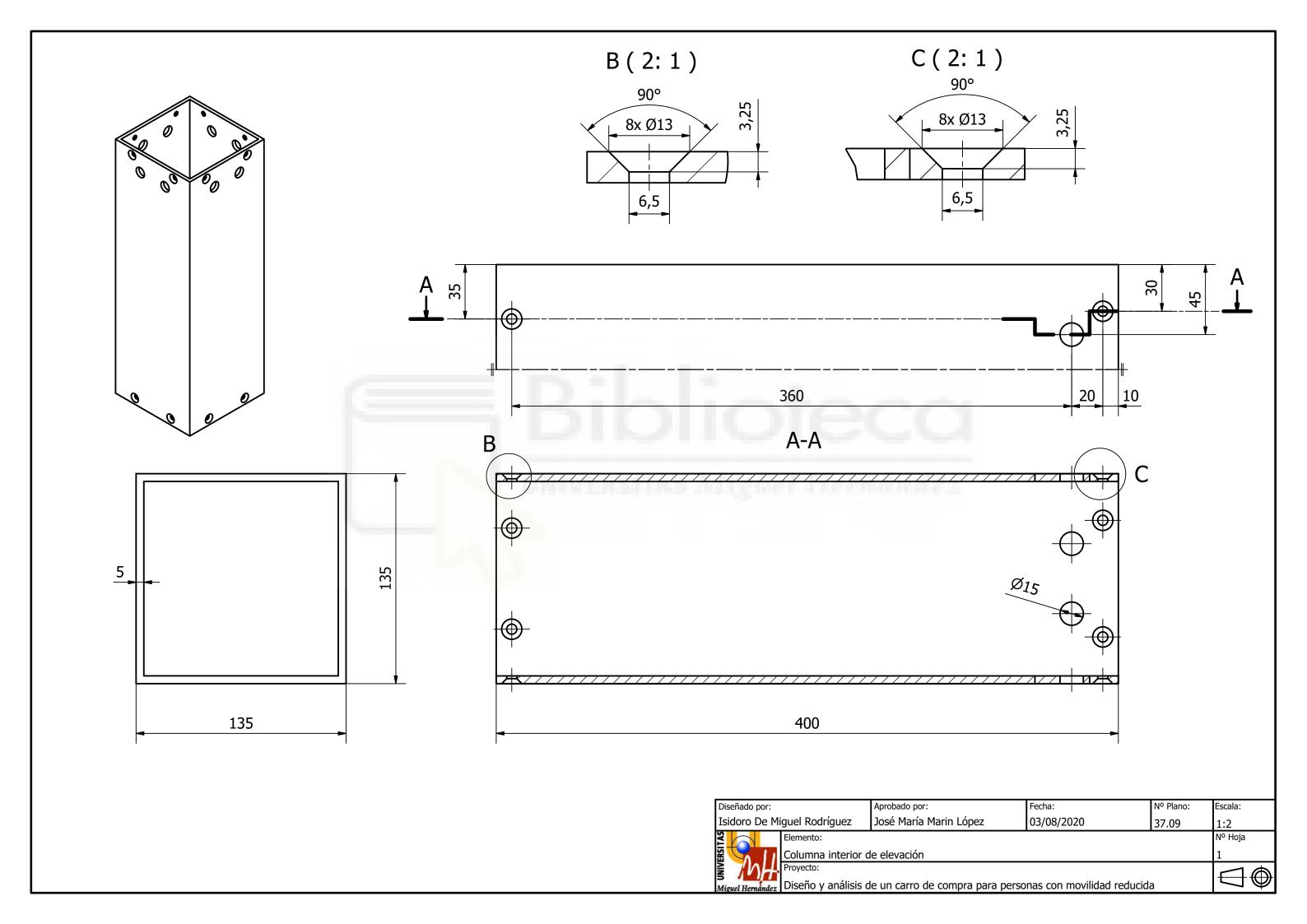


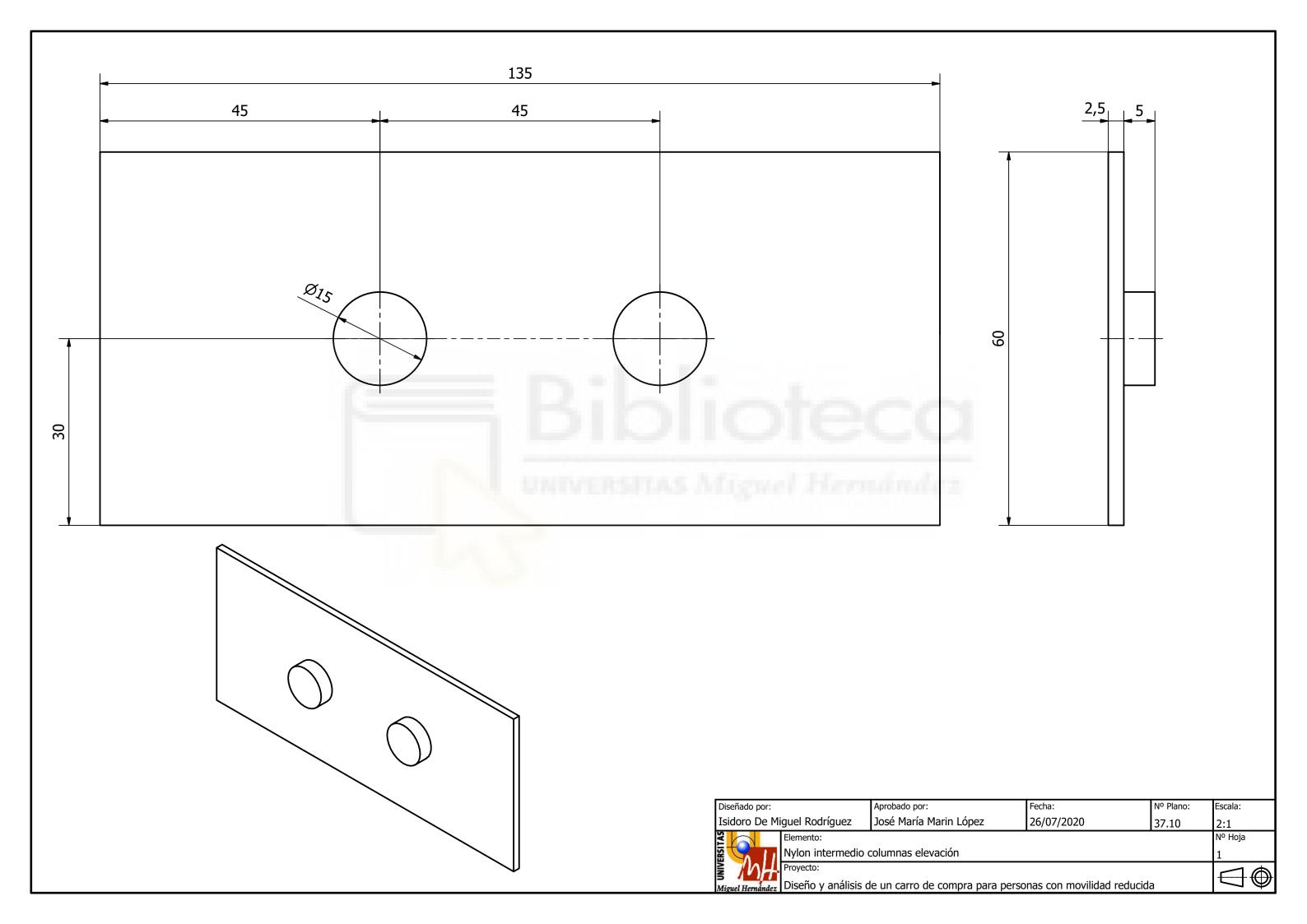


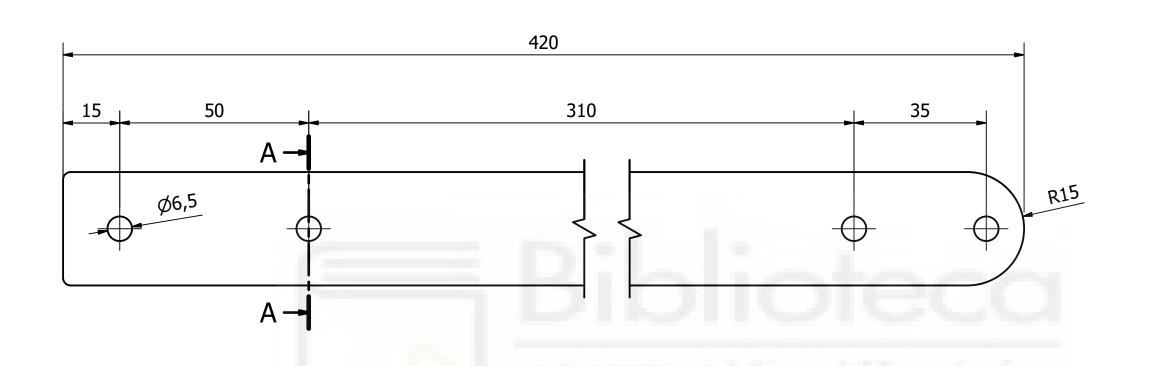

Diseñado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De M	iguel Rodríguez	José María Marin López	08/08/2020	37.07.1	1:1
	Elemento:			•	Nº Hoja
Base principal_A Proyecto:					1
	Proyecto:				
Miguel Hernández Diseño y análisis de un carro de compra para personas con movilidad reducida					

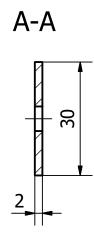


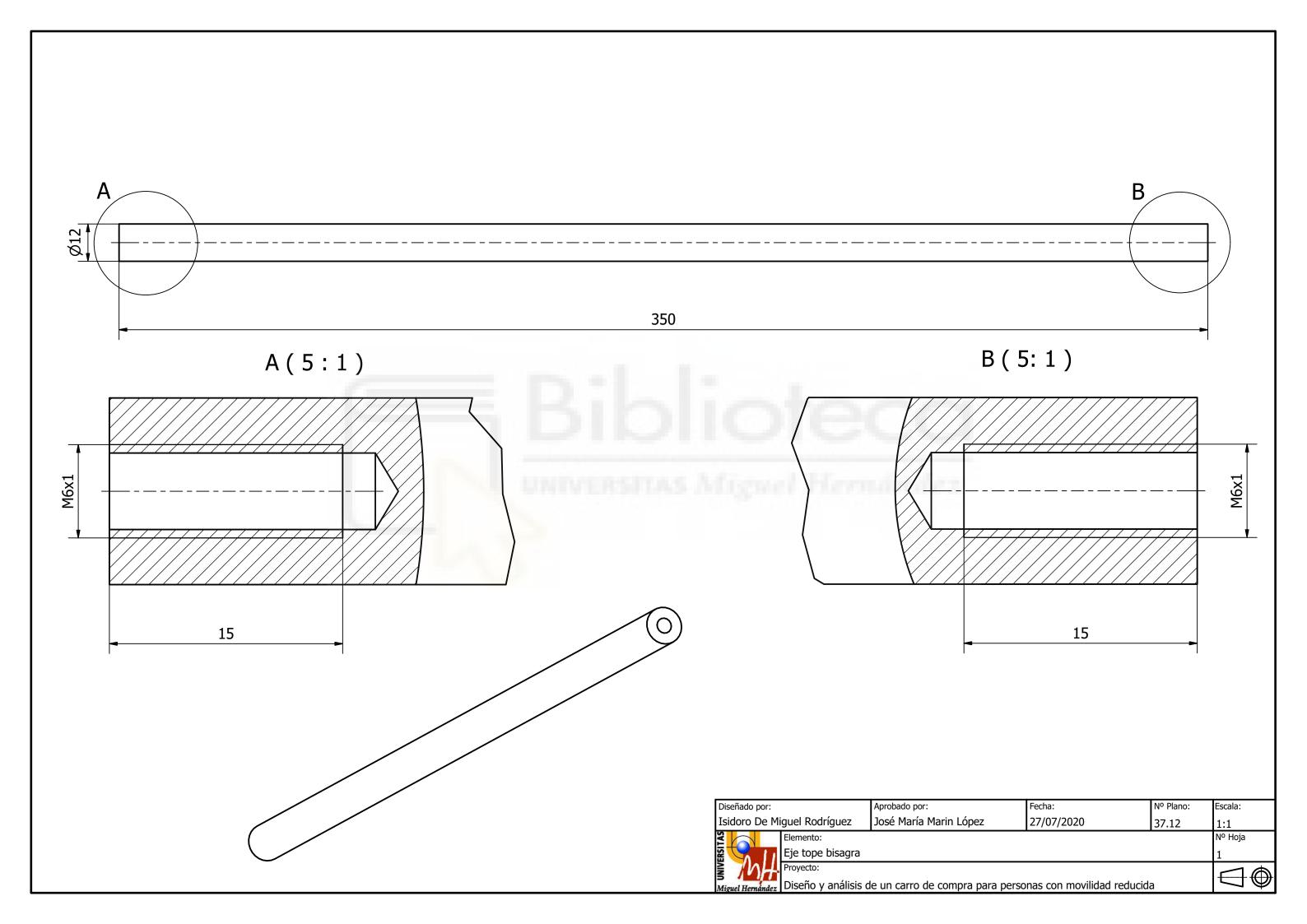

Diseñado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Mig	uel Rodríguez	José María Marin López	08/08/2020	37.07.2	1:1
S E	lemento:		_	-	Nº Hoja
Base principal_B Proyecto:					1
Proyecto:					
Miguel Hernández Diseño y análisis de un carro de compra para personas con movilidad reducida					

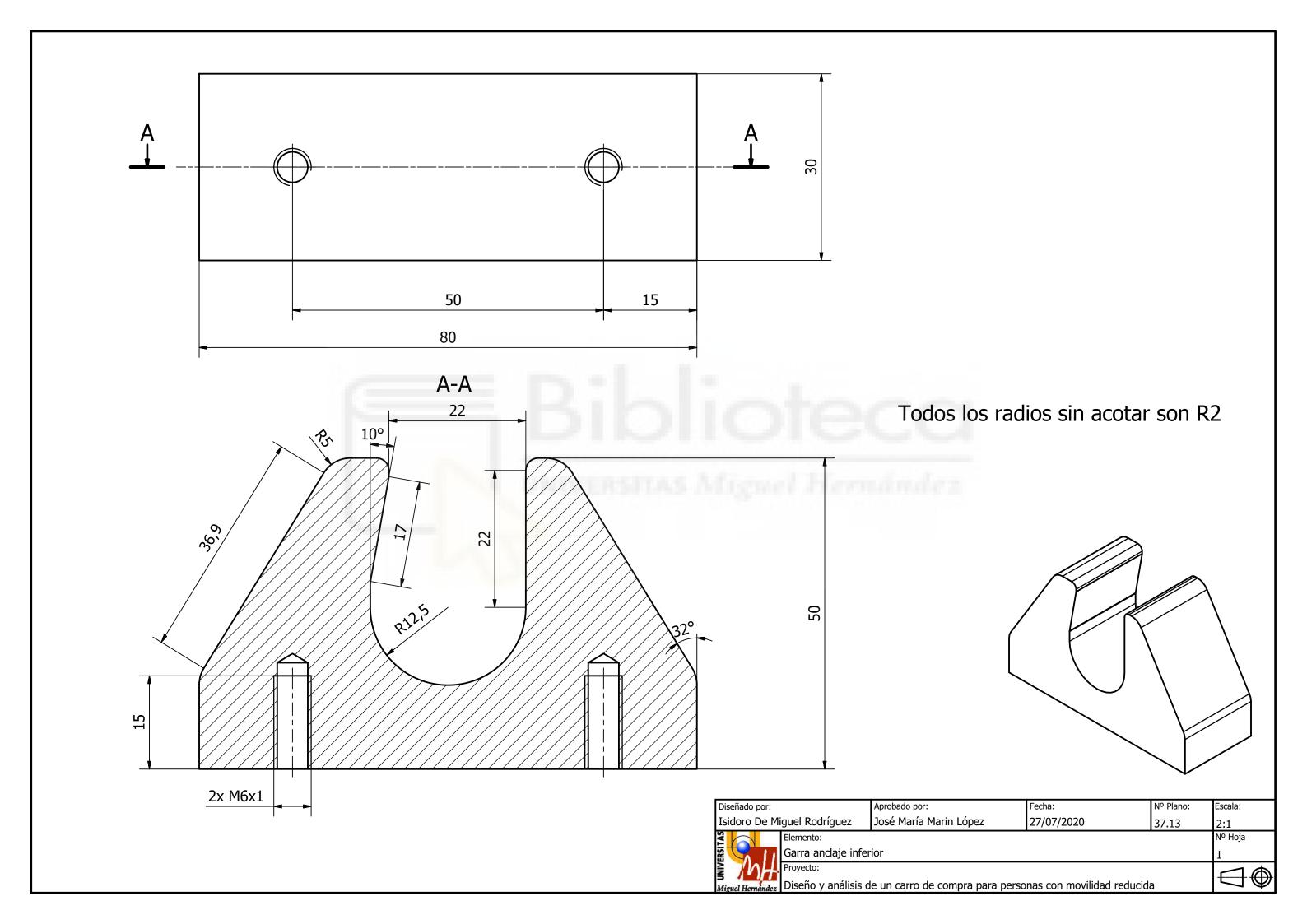


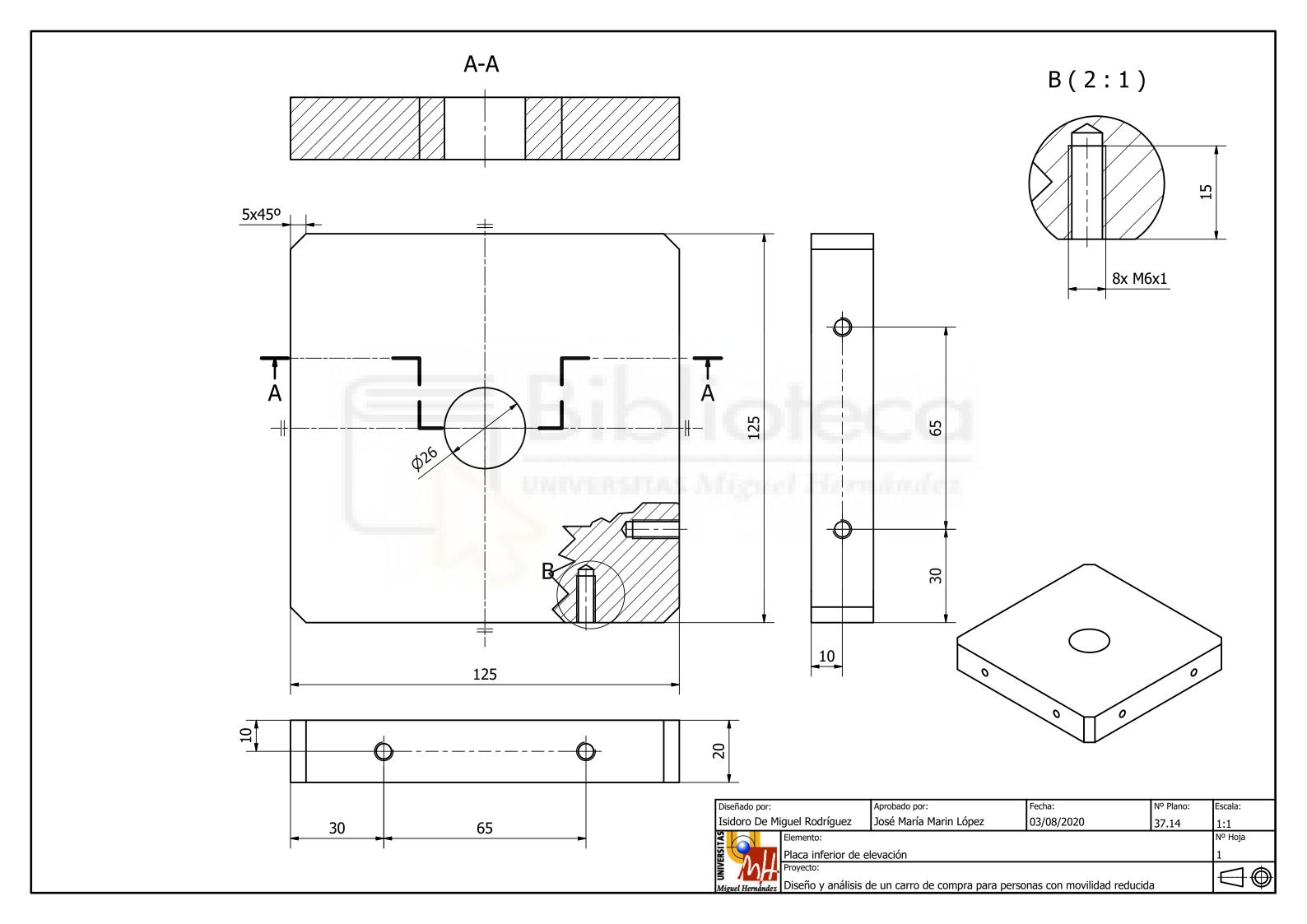


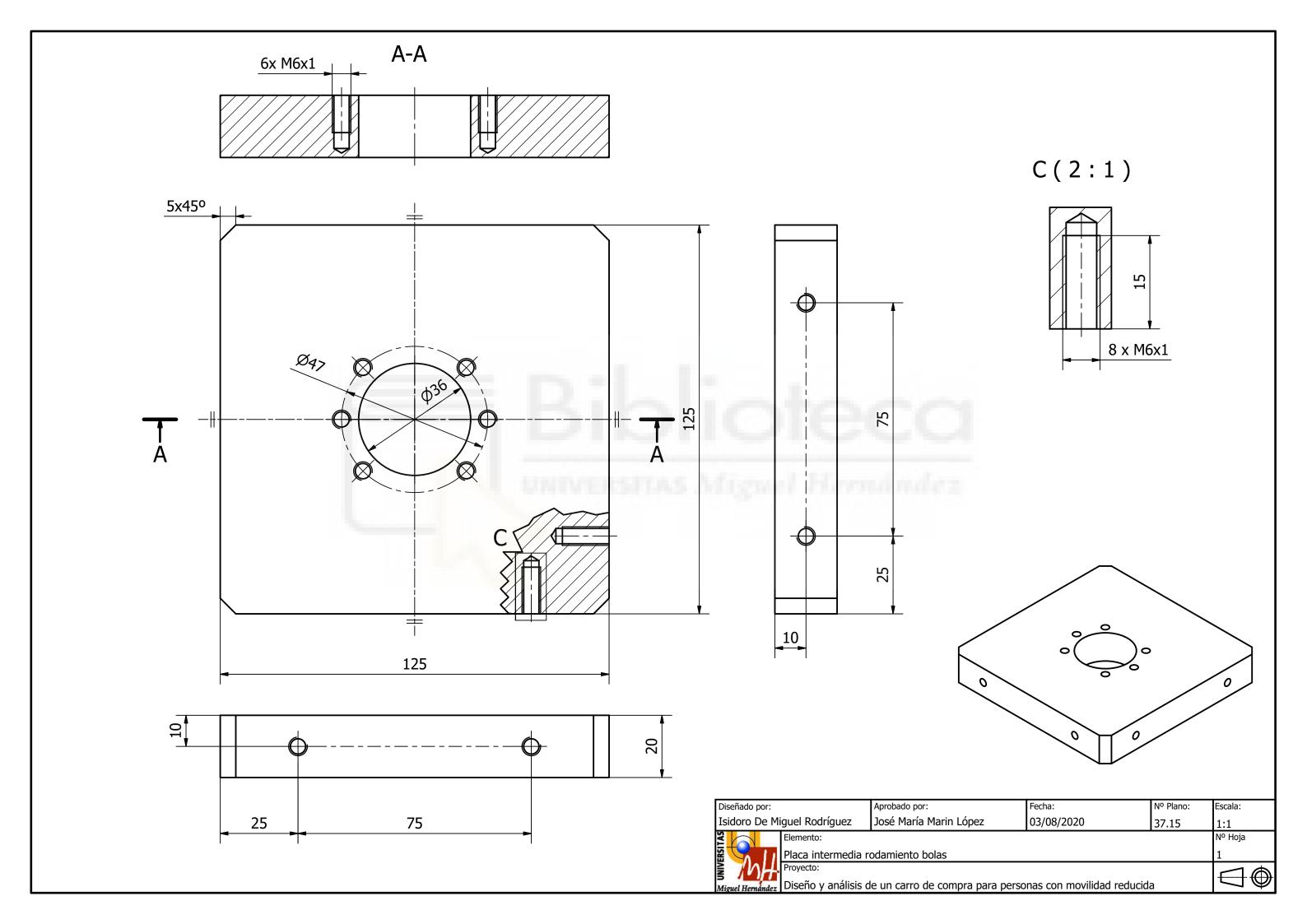


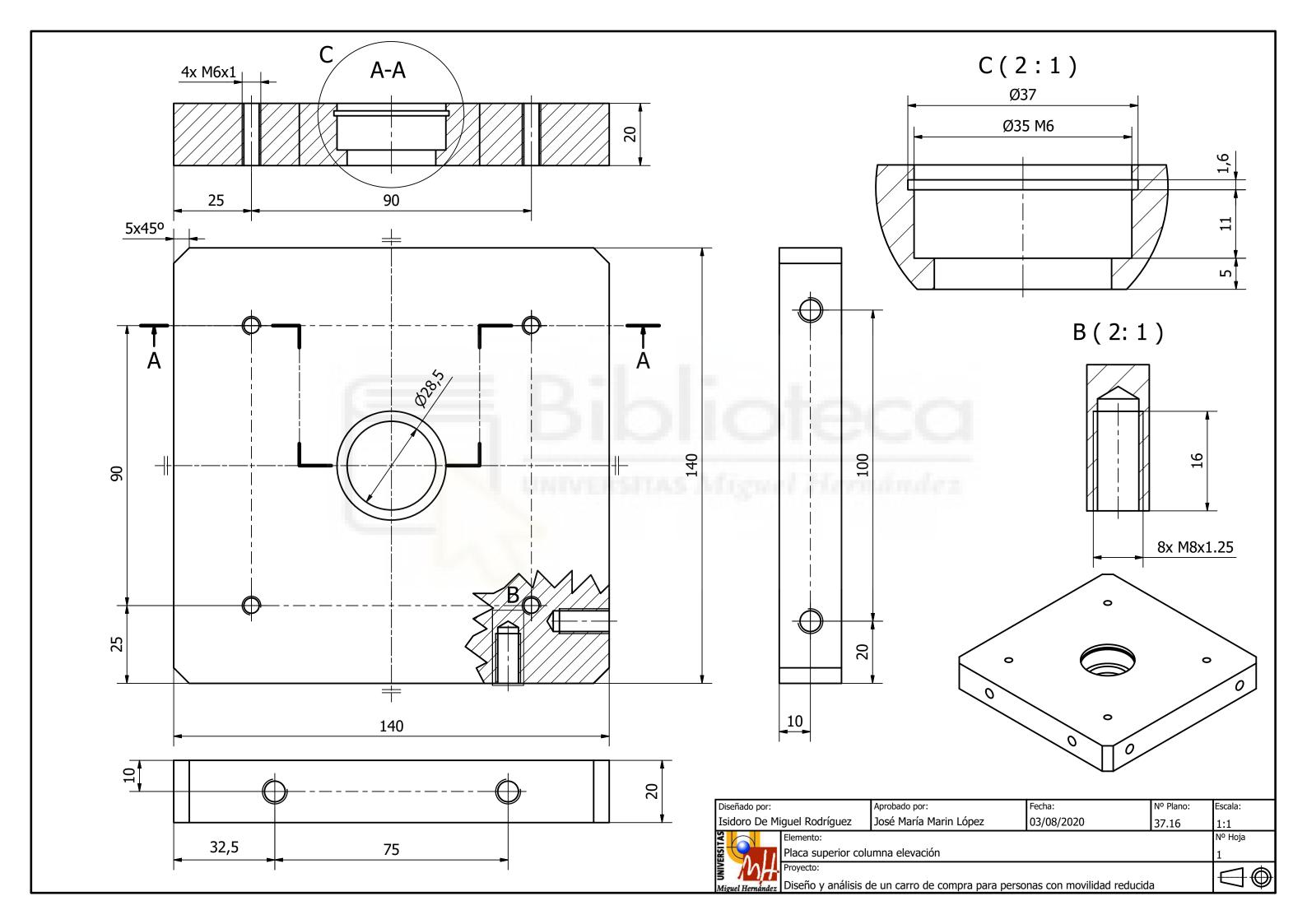

Diseño y análisis de un carro de compra para personas con movilidad reducida

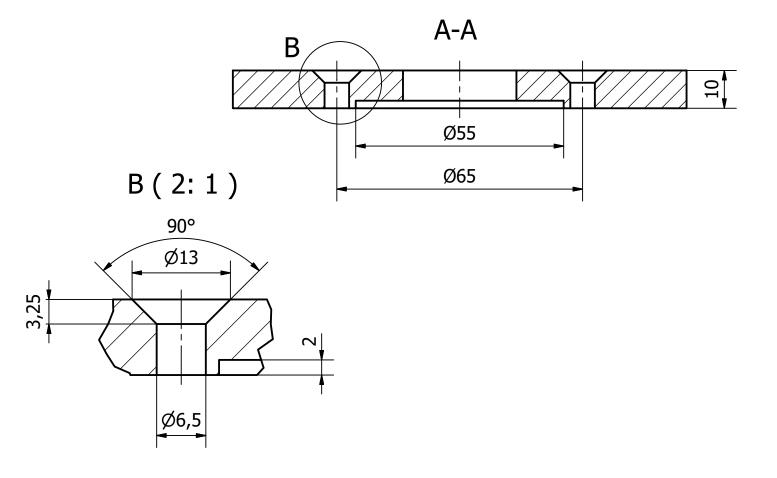


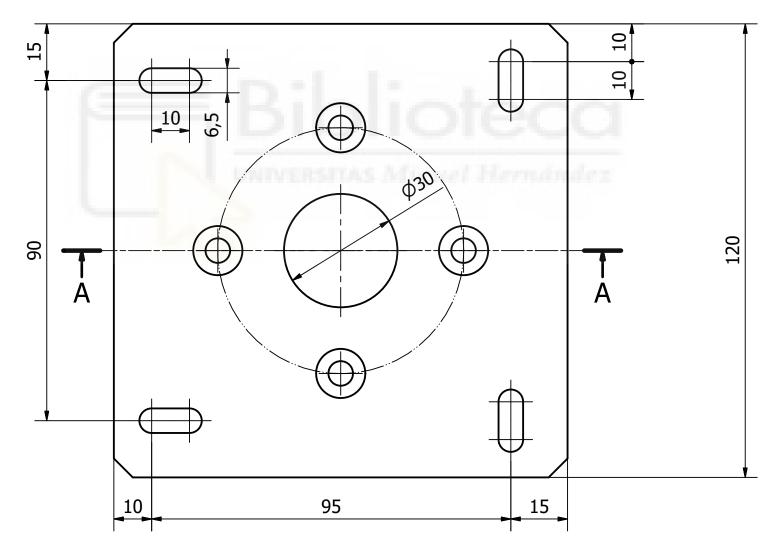


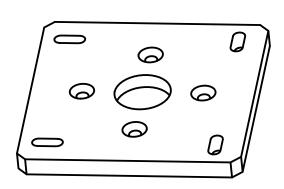

Todos los radios sin acotar son R2

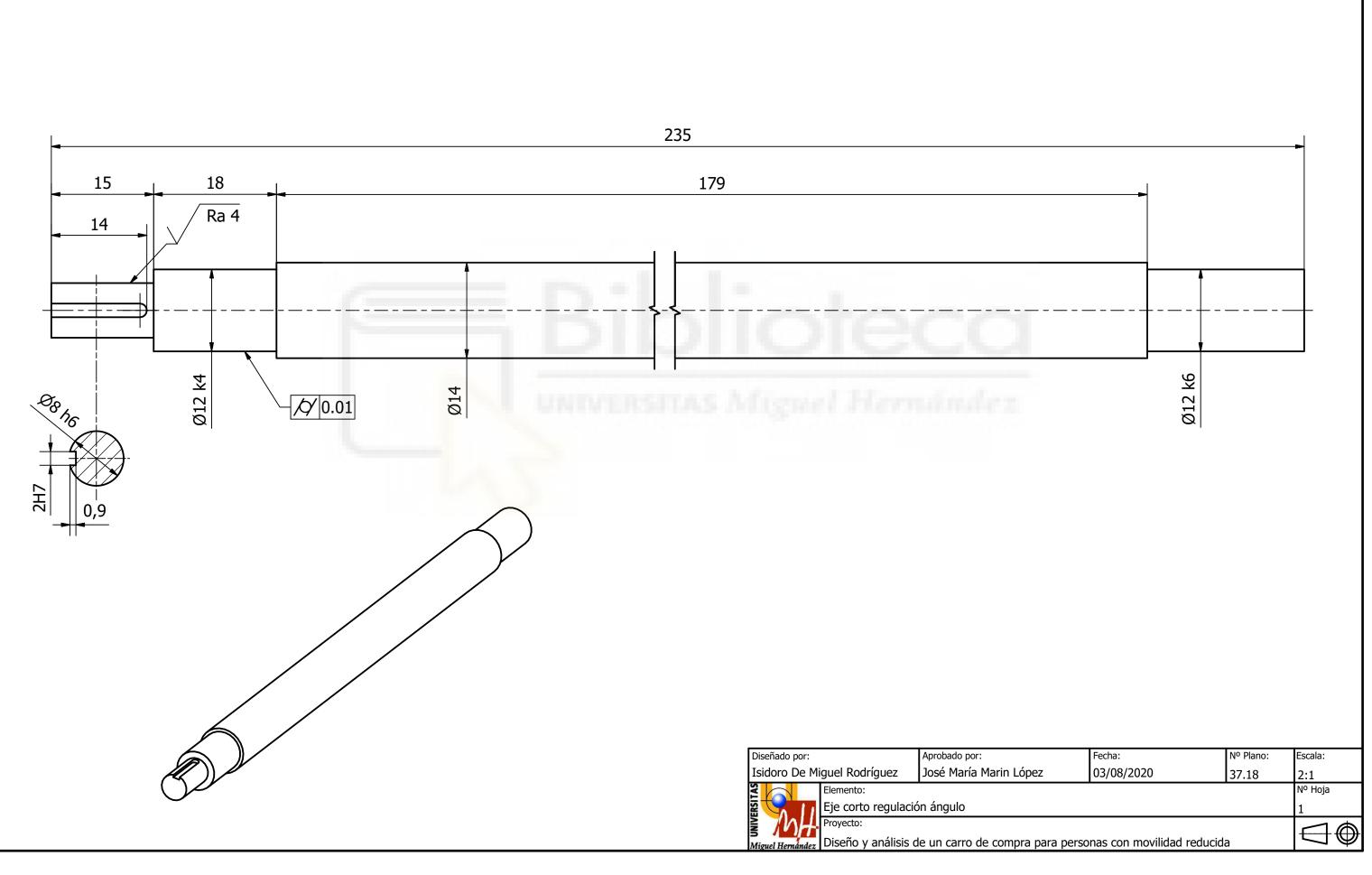

Pieza fabricada al corte de láser - Chapa F1 espesor 2 mm

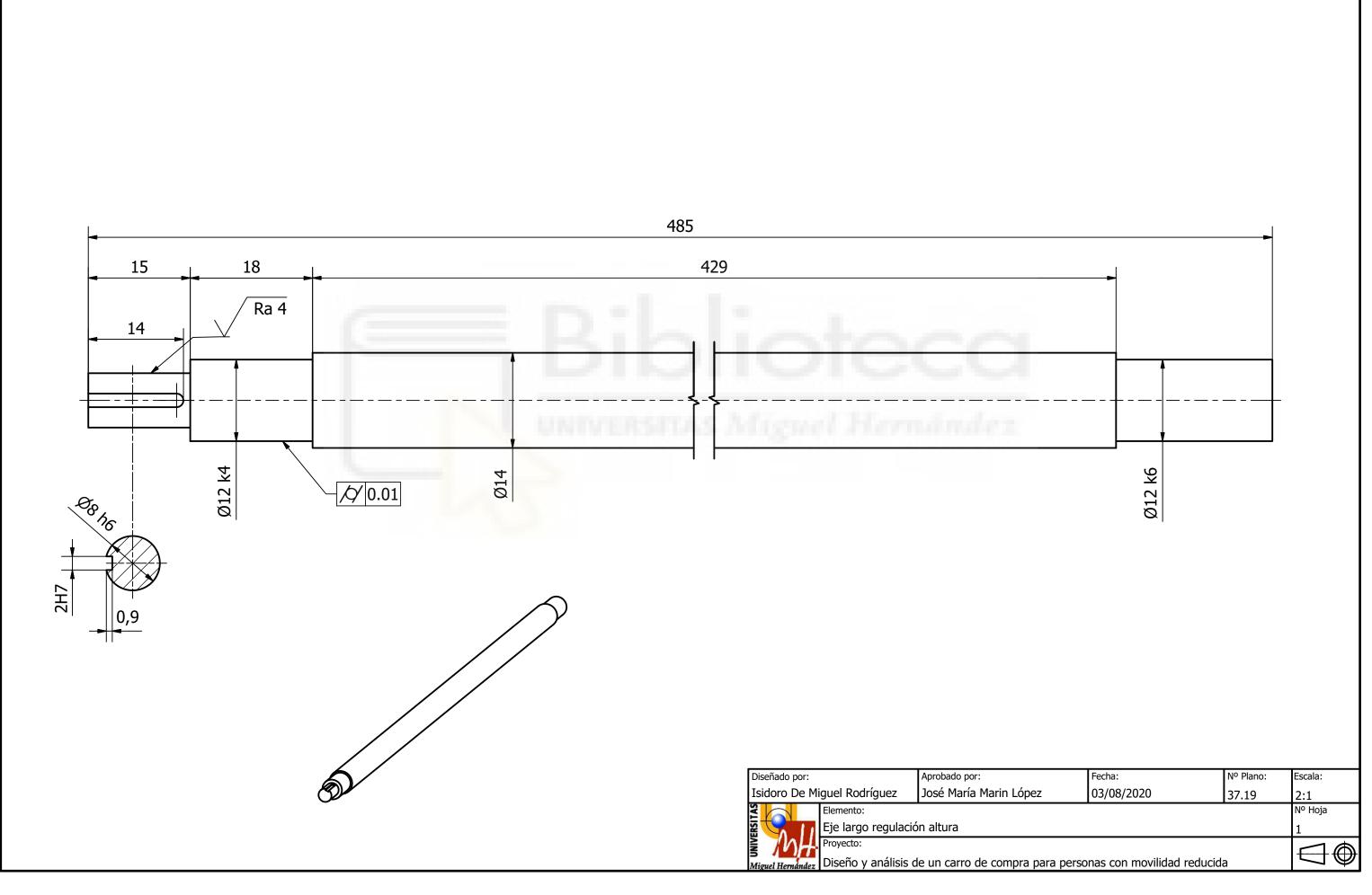

señado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
idoro De Mi	guel Rodríguez	José María Marin López	27/07/2020	37.11	1:1
	Elemento:				Nº Hoja
1	Brazo anclaje infer	ior			1
NH.	Proyecto:				
	Diceño v análicie d	e un carro de compra para perco	nas con movilidad reducid	2	

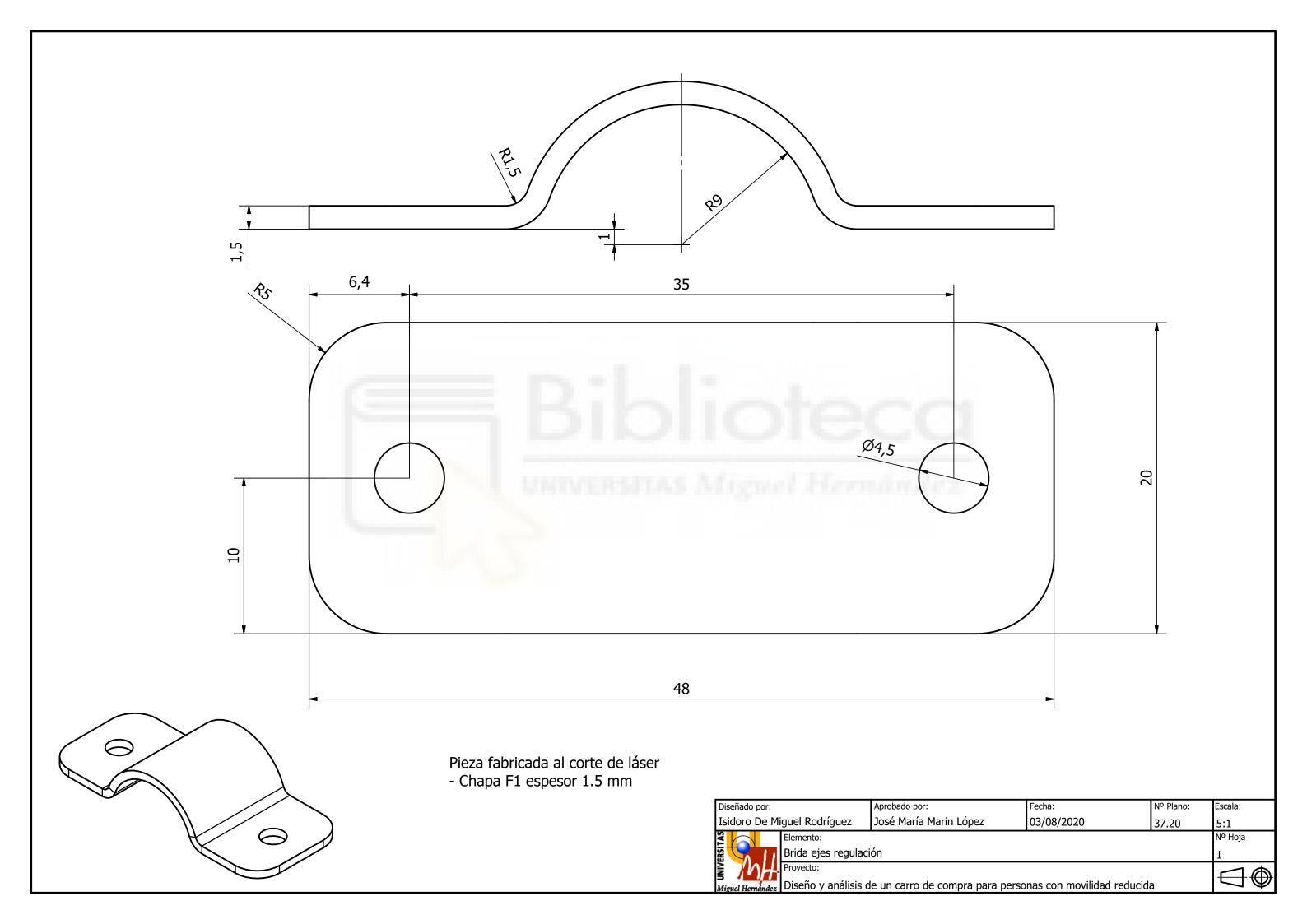


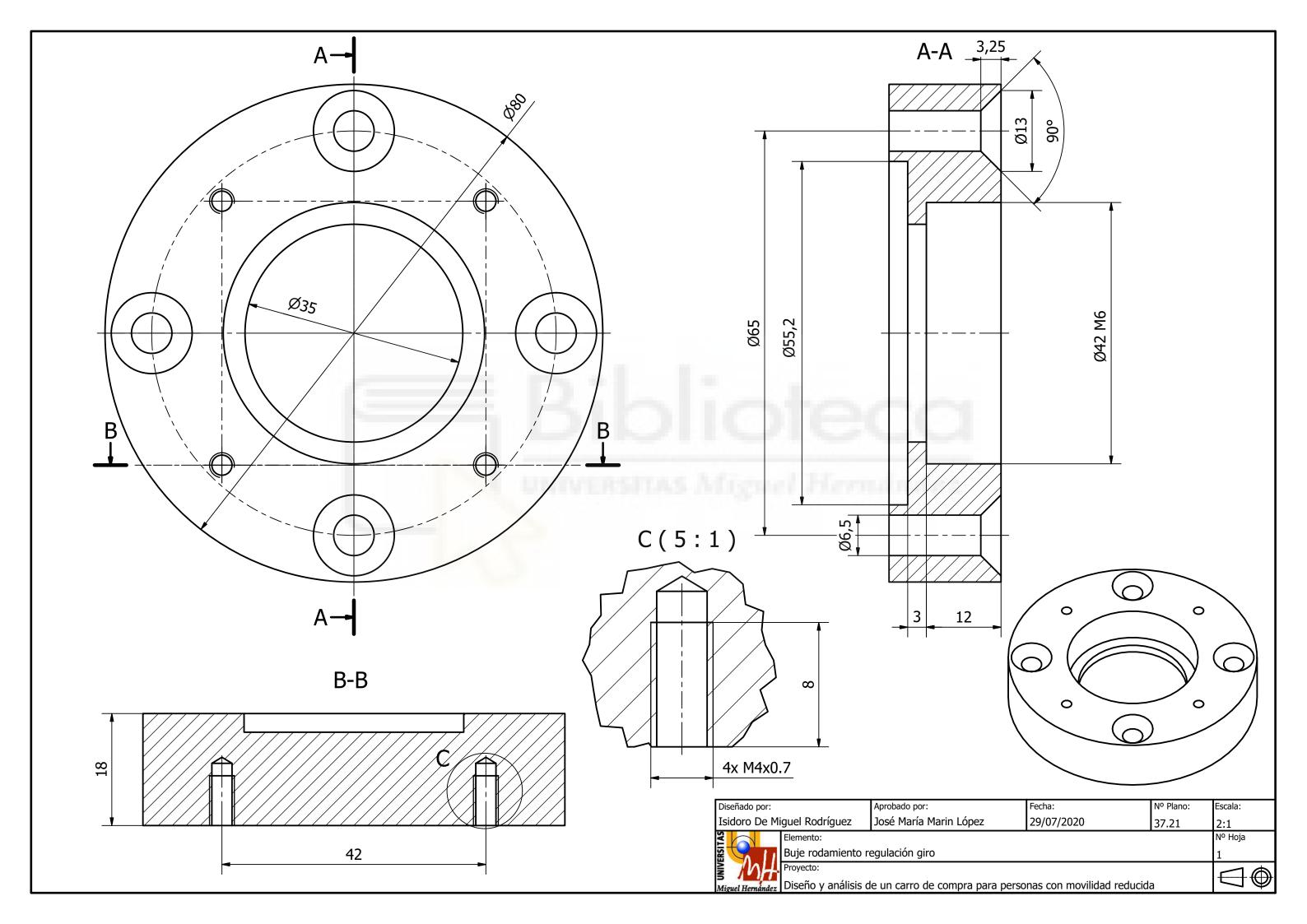


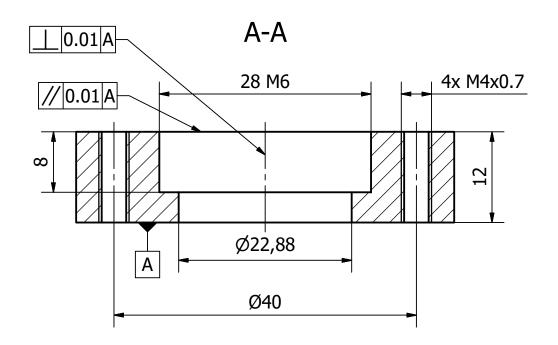


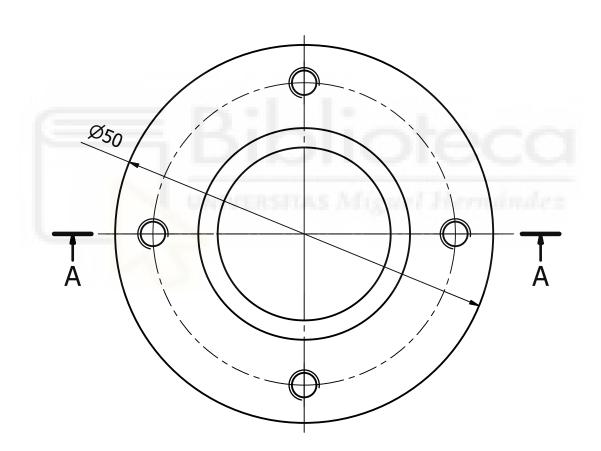


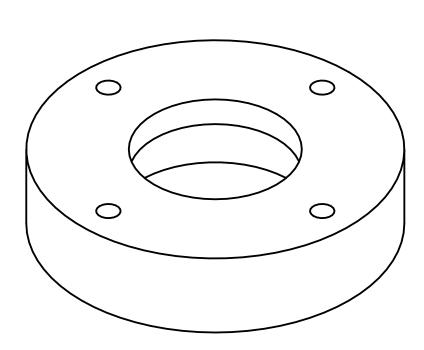

Todos los chaflanes sin acotar son de 5x45°

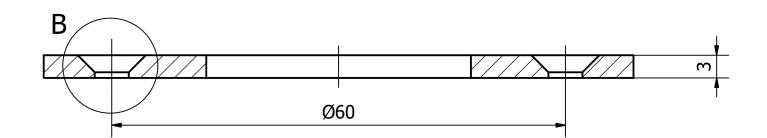

Diseñado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Miguel Rodríguez		José María Marin López	27/07/2020	37.17	1:1
Elemento:					Nº Hoja
UNIVERSIT	Placa anclaje redu	luctora reguladores			
Proyecto:					
Miguel Hernández	Diseño y análisis de un carro de compra para personas con movilidad reducida				

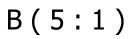


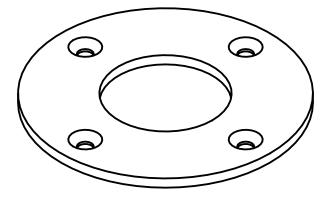

__



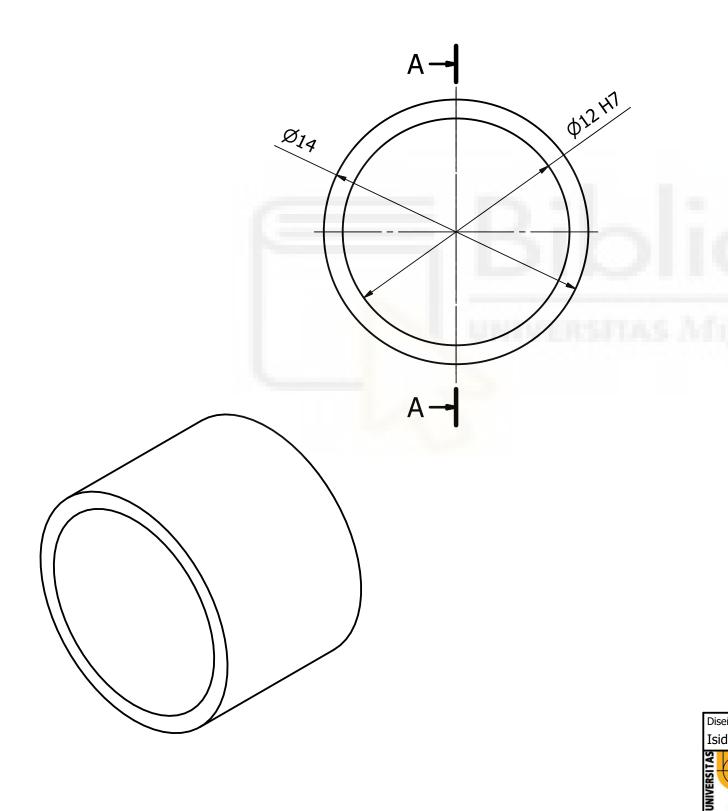

__

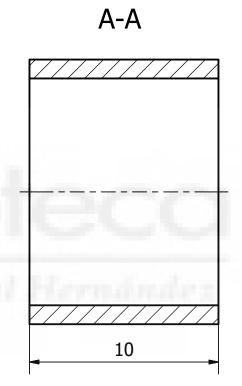


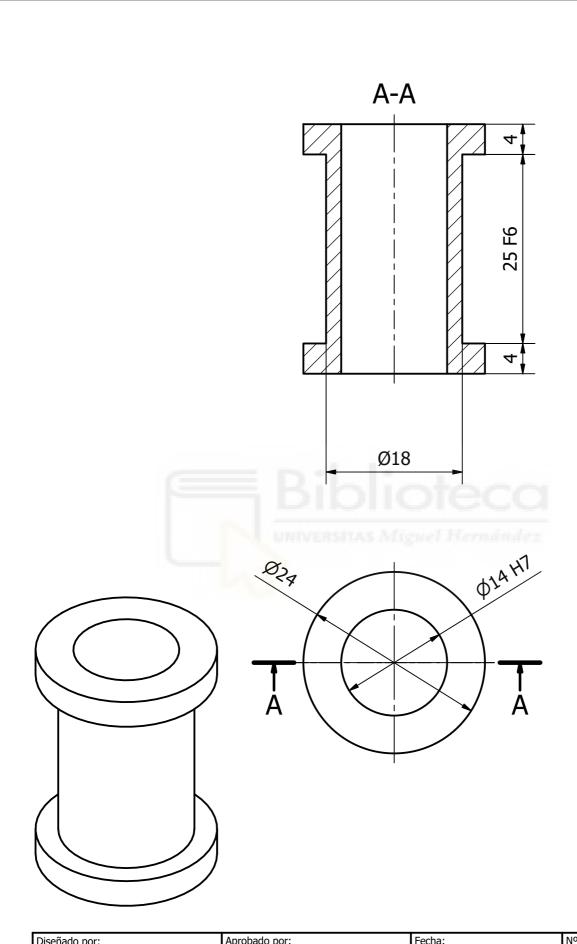



Diseñado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Mig	uel Rodríguez	José María Marin López	27/07/2020	37.22	2:1
	lemento:				Nº Hoja
Buje rodamiento v Proyecto:		volante			1
	royecto:				
Miguel Hernández	Diseño y análisis d	le un carro de compra para p	ersonas con movilidad r	educida	

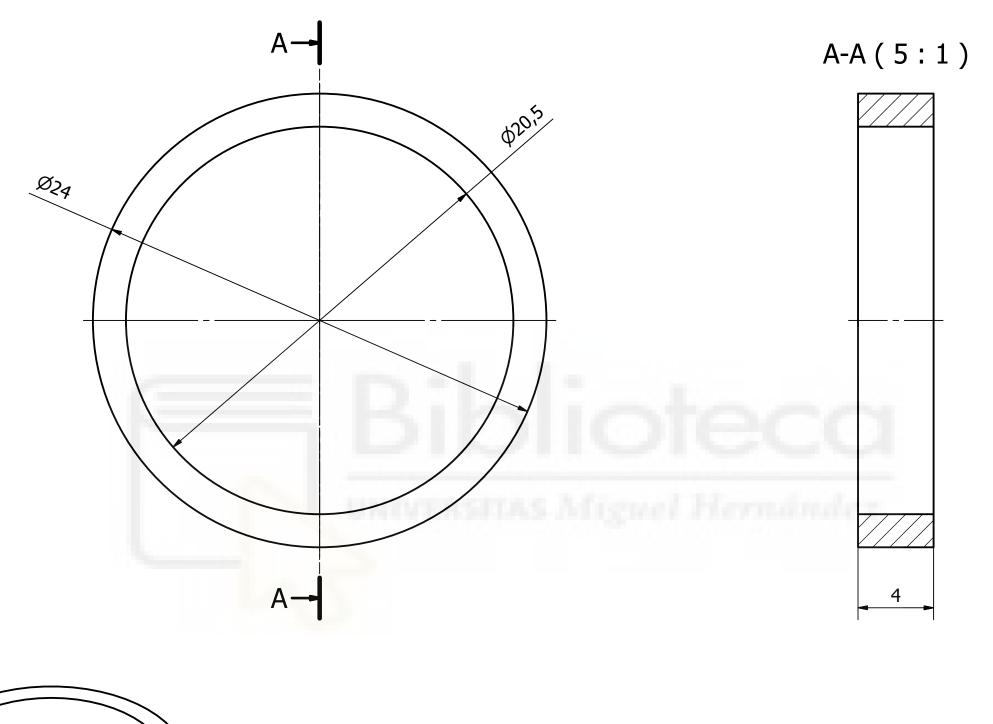
A-A

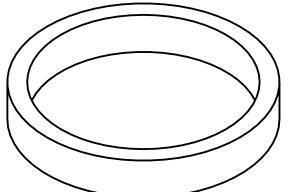




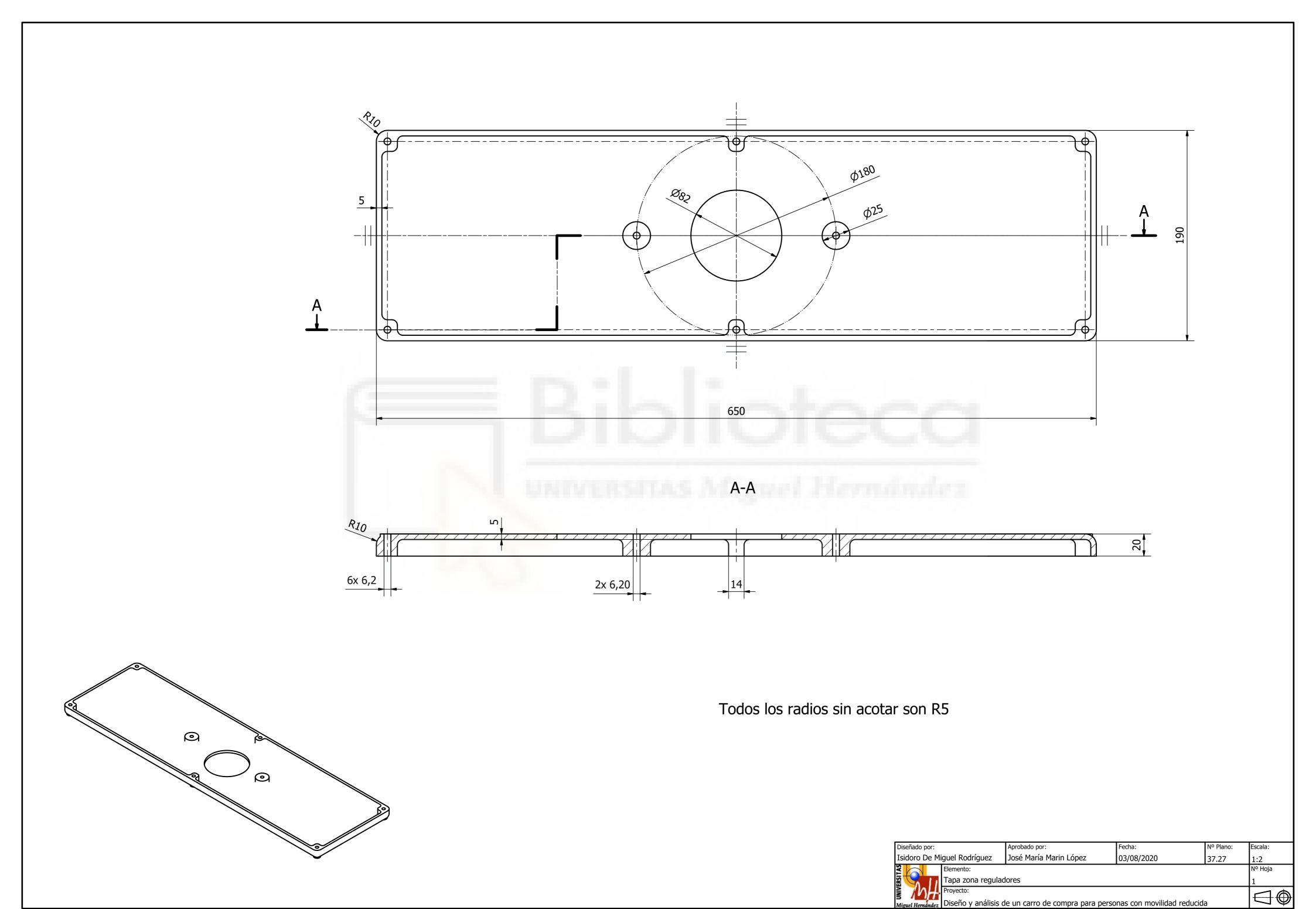


Diseñado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Mig	guel Rodríguez	José María Marin López	29/07/2020	37.23	2:1
	Elemento:				Nº Hoja
UNIVERSIT	Tapa rodamiento e	eje giro			1
	Proyecto:				
Miouel Hernández	Diagna y análisia da un agura da compus para paragnas con magilidad raducida				

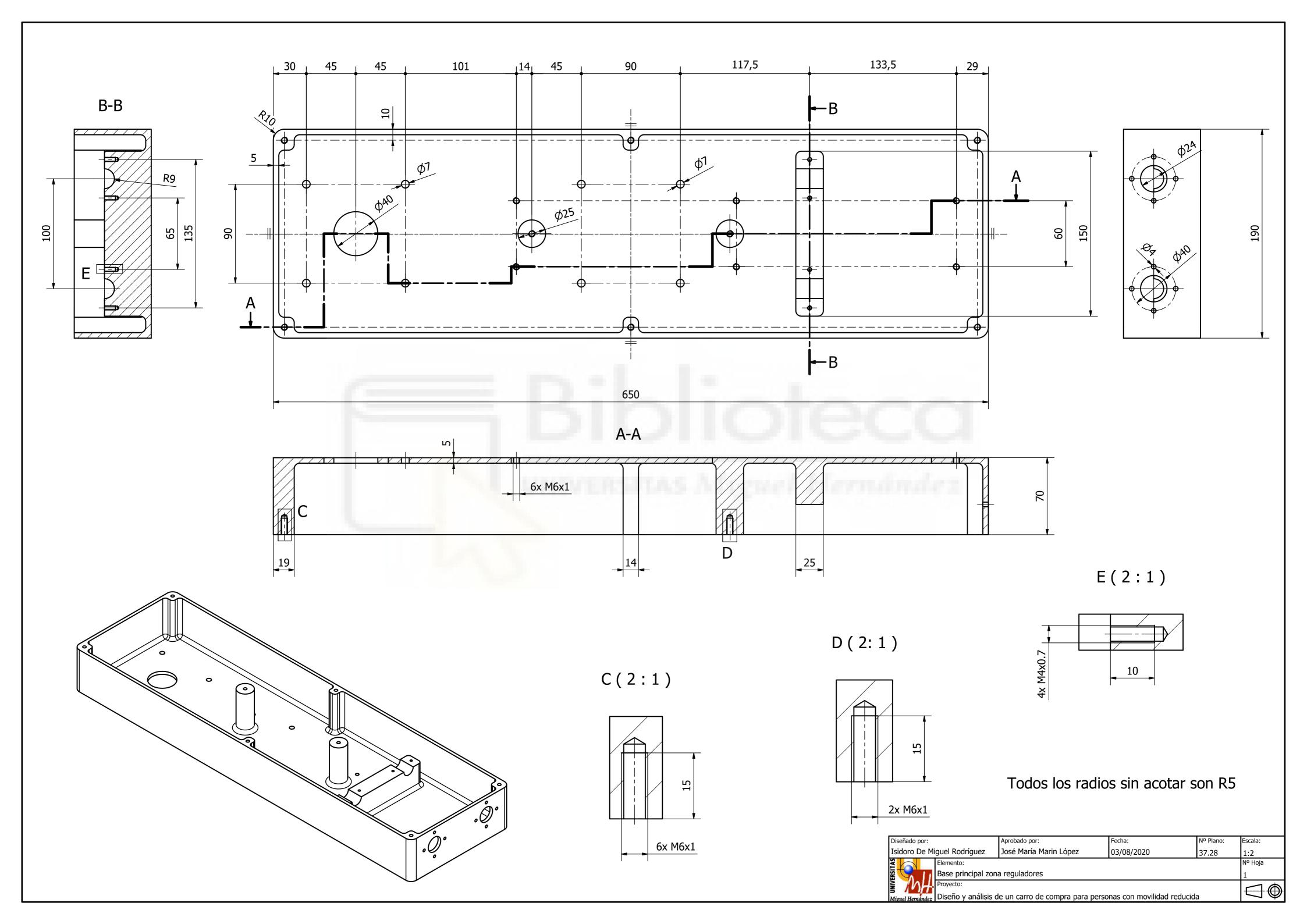


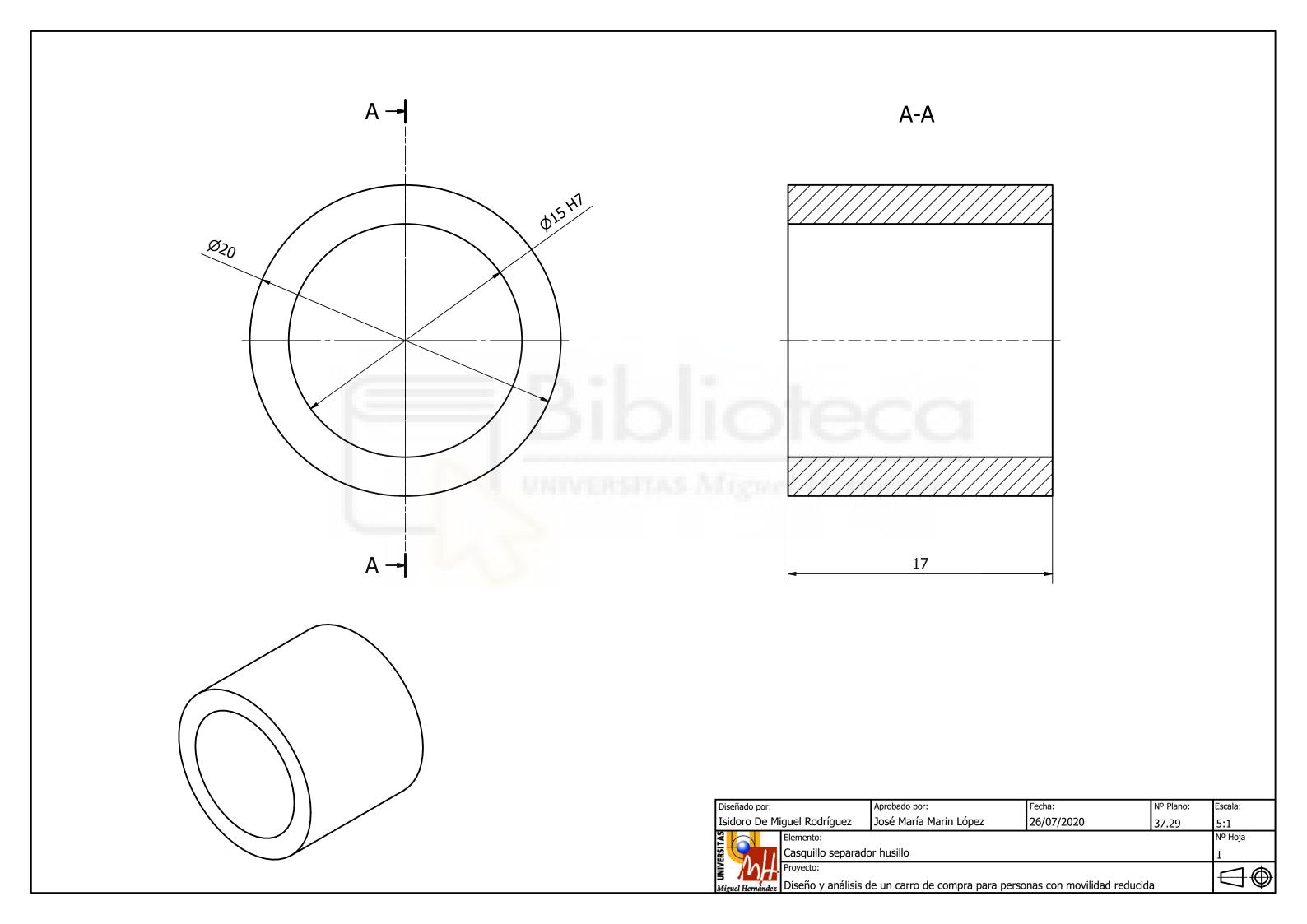


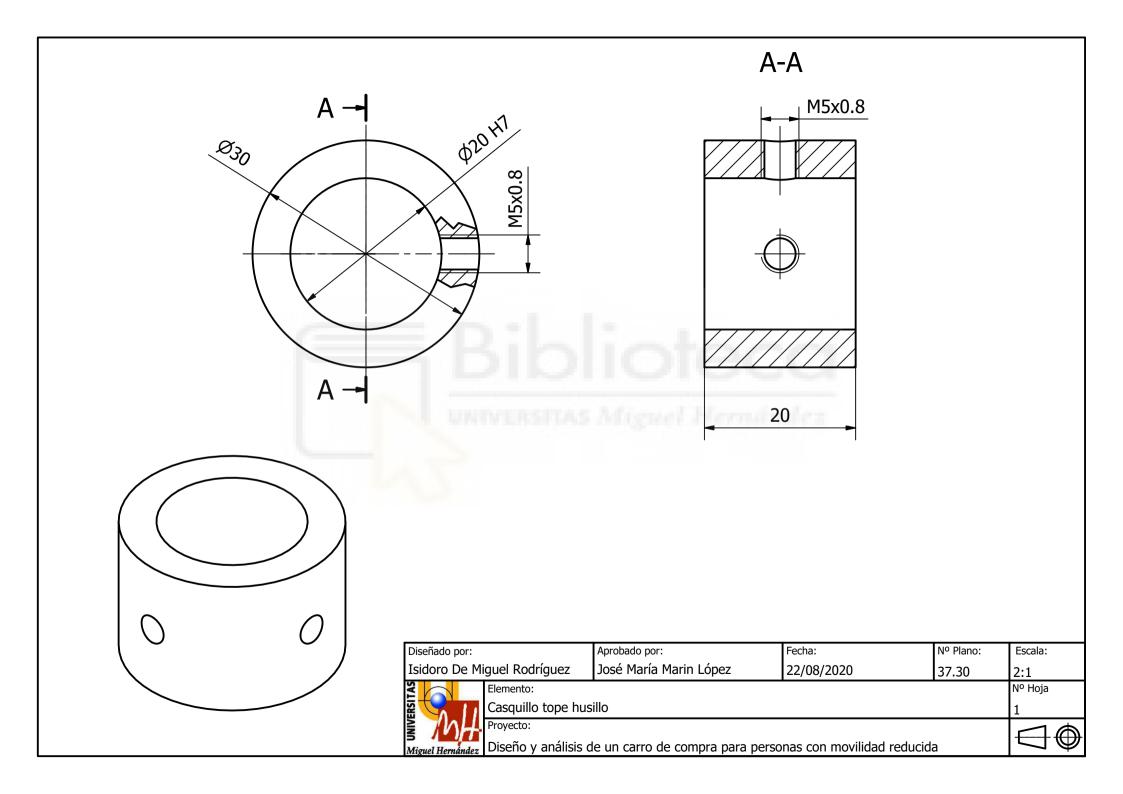
Diseñado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Mi	iguel Rodríguez	José María Marin López	27/07/2020	37.24	5:1
	Elemento:		_	-	Nº Hoja
Casquillo separ		dor rodamiento volante			
UNIVERSIT	Proyecto:				
Miguel Hernández	Dispiso y apólicio do un corre do compre poro por por movilidad reducida				

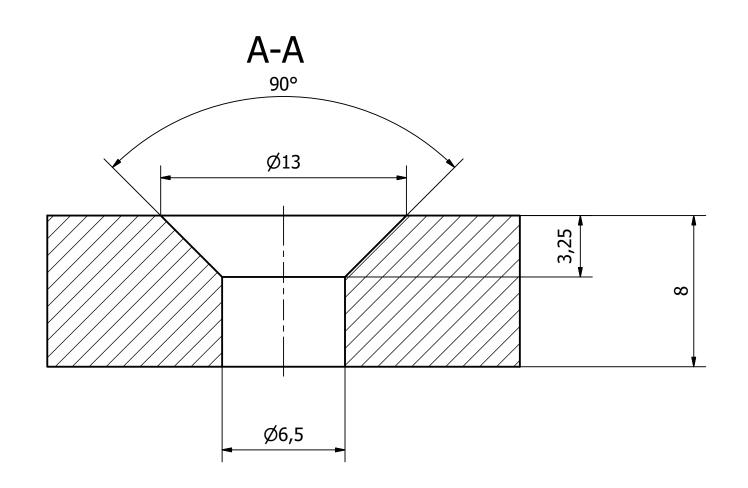


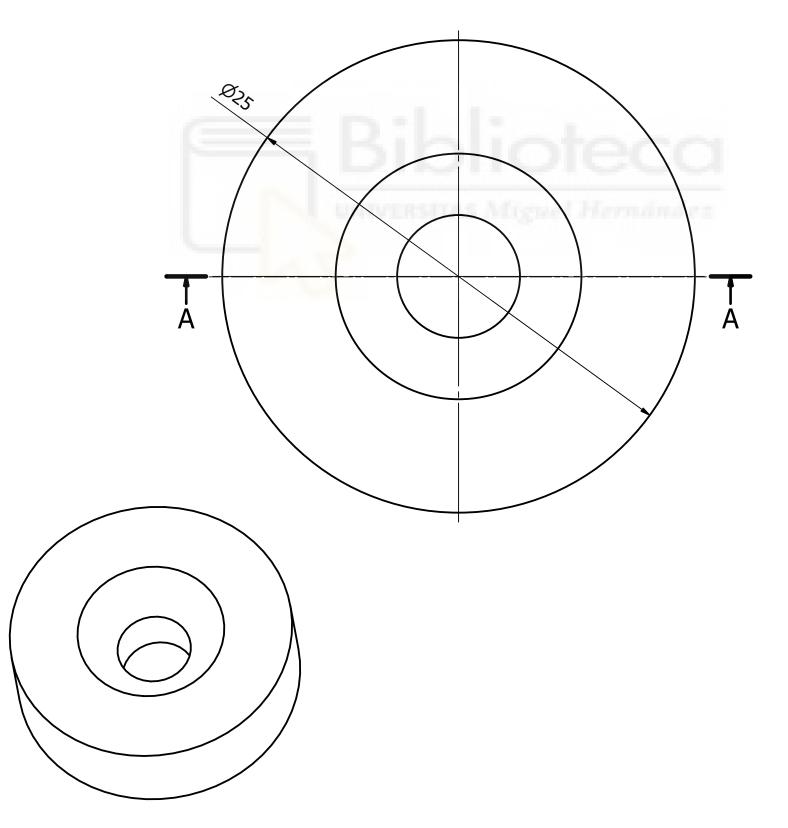
Diseñado por:	Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Miguel Rodrígue	z José María Marin López	27/07/2020	37.25	2:1
Elemento: Casquillo sop	Elemento: Casquillo soporte ejes regulación			Nº Hoja 1
Casquillo sor Proyecto: Miguel Hernández Diseño y aná	isis de un carro de compra para _l	personas con movilidad	reducida	

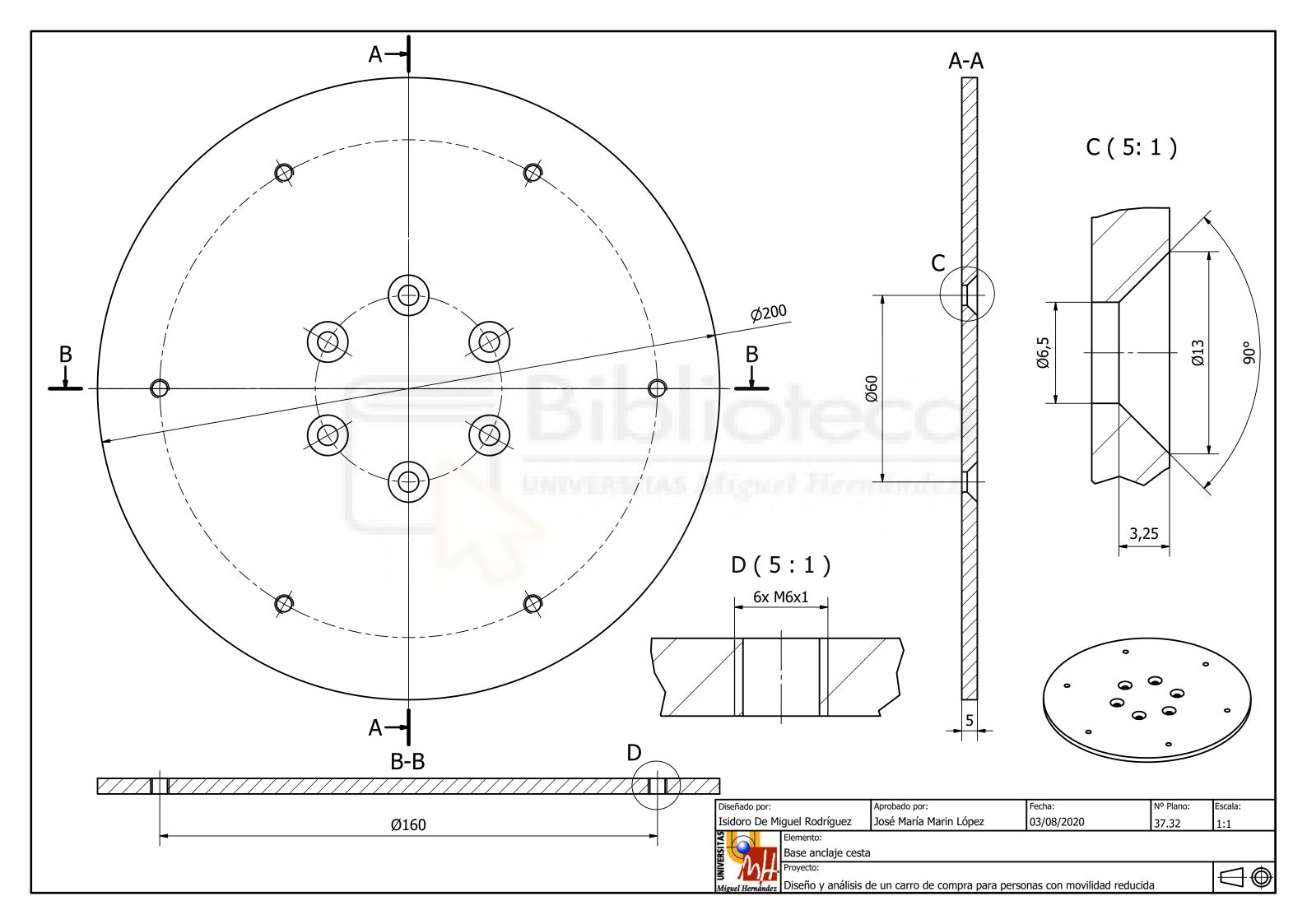


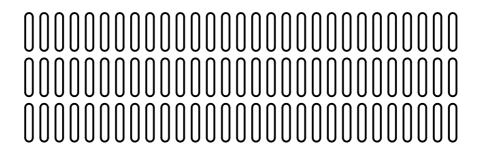


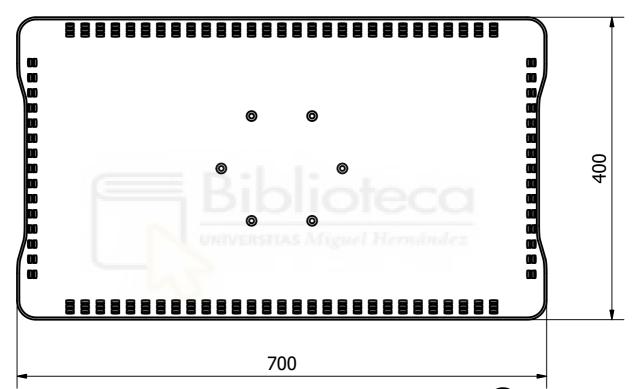

iseñado por:		Aprobado por:	Fecha:	Nº Plano:	Escala:
sidoro De Mi	guel Rodríguez	José María Marin López	27/07/2020	37.26	5:1
	Elemento:				Nº Hoja
11	Casquillo separado	or rodamiento regulación			1
Proyecto:					
	Dicoño y análicie d	o un carro do compra para porco	nac con movilidad roducid	3	



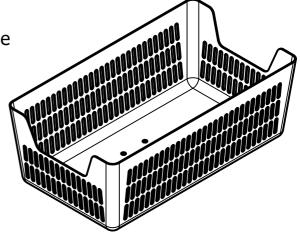

Diseño y análisis de un carro de compra para personas con movilidad reducida

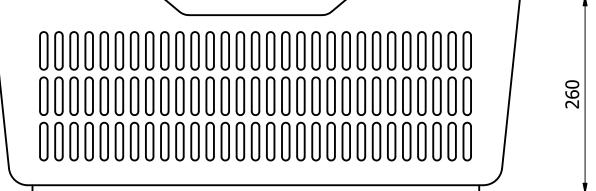


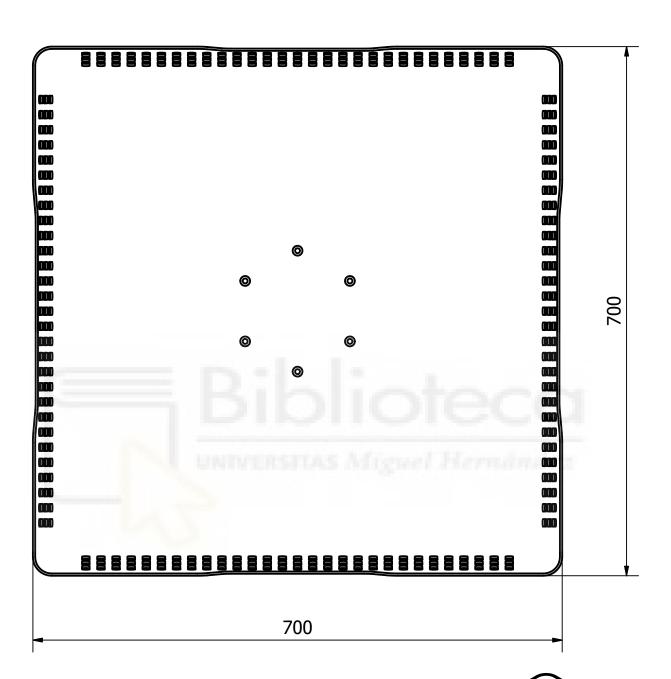


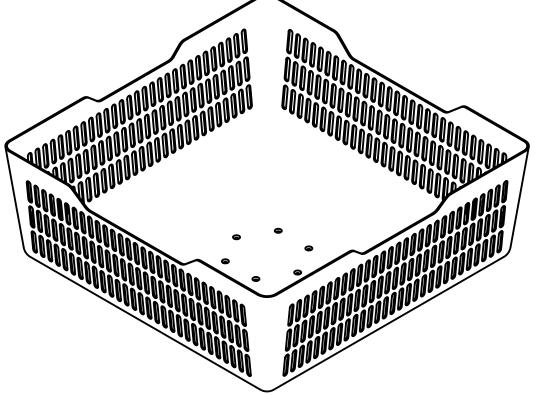


Diseñado por:	eñado por: Aprobado por:			Escala:
Isidoro De Miguel Rodríguez	José María Marin López	26/07/2020	37.31	5:1
Elemento:		_	_	Nº Hoja
Arandela tope superior husillo			1	
Elemento: Arandela tope superior husillo Proyecto:				
Miguel Hernández Diseño y análisis de un carro de compra para personas con movilidad reducida				




Fabricación por inyección de plastico en molde


- Material: Polipropileno (PP)


260

Diseñado por:	Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Miguel Rodrígue	z José María Marin López	18/08/2020	37.33	1:5
Elemento:	-	_	-	Nº Hoja
Cesta superio	r inyección			1
Proyecto:				
Diseño y análisis de un carro de compra para personas con movilidad reducida				

Fabricación por inyección de plastico en molde - Material: Polipropileno (PP)

Diseñado por:	Aprobado por:	Fecha:	Nº Plano:	Escala:
Isidoro De Miguel Rodríguez	José María Marin López	12/09/2020	37.34	1:5
Elemento:		_		Nº Hoja

Cesta superior inyección cuadrada

Proyecto:

Diseño y análisis de un carro de compra para personas con movilidad reducida

IV. PLIEGO DE CONDICIONES

ÍNDICE

1. CONDICIONES GENERALES	190
1.1. OBJETO DEL PLIEGO	190
1.2. NORMAS Y DISPOSICIONES APLICABLES	190
1.2.1. DISPOSICIONES GENERALES	190
1.2.2 NORMATIVA PARA LA INDUSTRIA	190
1.2.3. ACEROS Y ESTRUCTURAS METALICAS	191
1.3. DOCUMENTOS PRESENTES EN EL PROYECTO	191
1.4. RELACIÓN ENTRE DOCUMENTOS	192
1.5. CONTRADICCIONES Y OMISIONES DEL PROYECTO	192
2. ESPECIFICACIONES DE EJECUCIÓN	192
2.1. JEFE DE FABRICACIÓN	
2.2. OBLIGACIONES DEL CONTRATISTA	193
2.3. PLAZOS DE <mark>EJECUCIÓN</mark>	193
2.4. FALLOS DE E <mark>JECUCI</mark> ÓN	194
3.CALIDAD DE LOS MATERIALES UTILIZADOS	194
4. CONDICIONES ECONÓMICAS	194
4.1. GARANTÍAS	194
4.2. GASTOS	195
4.3. CONFLICTOS EN EL PRESUPUESTO	195
4.4 REALIZACIÓN DE LOS PAGOS	195

1. CONDICIONES GENERALES

1.1. OBJETO DEL PLIEGO

El objeto del presente pliego es definir las condiciones técnicas, facultativas, económicas y legales que se deben cumplir durante la ejecución del presente proyecto: Diseño y análisis de un carro de compra para personas con movilidad reducida.

1.2. NORMAS Y DISPOSICIONES APLICABLES

1.2.1. DISPOSICIONES GENERALES

- REAL DECRETO 487/1997, de 14 de abril, sobre disposiciones mínimas de seguridad y salud relativas a la manipulación manual de cargas que entrañe riesgos, en particular dorsolumbares, para los trabajadores.
- Pliego de cláusulas administrativas generales y particulares para la contratación de obras.
- Ley de contratos de las administraciones públicas.

1.2.2 NORMATIVA PARA LA INDUSTRIA

- Ley 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborales.
- Ley 54/2003, de 12 de noviembre, de reforma del marco normativo de la Prevención de Riesgos Laborales.
- Real decreto 39/1997 sobre servicios de prevención de riesgos laborales.
- Real Decreto 171/2004, de 30 de enero, por el que se desarrolla el artículo
 24 de la Ley 31/1995 de Prevención de Riesgos Laborales.
- Real Decreto Legislativo 5/2000, de 4 de agosto, por el que se aprueba el texto refundido de la Ley sobre Infracciones y Sanciones en el Orden Social.
- Real Decreto 707/2002, de 19 de julio, por el que se aprueba el Reglamento sobre el procedimiento administrativo especial de actuación de la Inspección de Trabajo y Seguridad Social y para la imposición de las medidas correctoras de incumplimientos en materia de prevención de riesgos laborales en el ámbito de la Administración General del Estado.

1.2.3. ACEROS Y ESTRUCTURAS METALICAS

- CTE DB SE-A: Documento Básico de Seguridad Estructural de Acero del Código Técnico de la Edificación. Se publicó en el BOE por primera vez el 28 de marzo de 2006. El texto actualmente vigente fue modificado por última vez por el RD 1371/2007, de 19 de octubre (BOE 23/10/2007), y por la corrección de errores publicada en el BOE de 25/01/2008.
- EAE: Instrucción Española de Acero Estructural, aprobada por Real Decreto 751/2011, de 27 de mayo de 2011 y publicada por el BOE el 23 de junio de 2011, y que entrará en vigor el próximo 23 de diciembre de 2011.

1.3. DOCUMENTOS PRESENTES EN EL PROYECTO

El proyecto está formado por los siguientes documentos:

- I. MEMORIA
- II. ANEXOS
- III. PLANOS
- IV. PLIEGO DE CONDICIONES
- V. PRESUPUESTO
- VI. BIBLIOGRAFÍA

Los documentos contractuales son aquellos que están presentes en el contrato firmado y que son de cumplimiento obligatorio. Dichos documentos son los siguientes:

- ANEXOS
- PLANOS
- PLIEGO DE CONDICIONES
- PRESUPUESTO

1.4. RELACIÓN ENTRE DOCUMENTOS

Los distintos documentos de los que está formado el presente proyecto se complementan unos a otros y son compatibles entre sí. En todo momento se trata de que únicamente con el uso de los documentos PLANOS, ANEXOS y PLIEGO DE CONDICIONES sea posible la ejecución completa del proyecto.

1.5. CONTRADICCIONES Y OMISIONES DEL PROYECTO

Aquellos aspectos especificados en la MEMORIA y en los PLANOS, pero omitido en el PLIEGO DE CONDICIONES, o viceversa, deberá ser ejecutado como si estuviera presente en todos los documentos.

En caso de que exista cualquier tipo de contradicción entre los documentos que forman el proyecto la prioridad dependerá de la naturaleza del conflicto.

- El documento MEMORIA tiene prioridad en los aspectos técnicos del proyecto.
- El documento PLANOS, tiene preferencia sobre el resto de los documentos en todo lo referente a dimensiones.
- El documento PLIEGO DE CONDICIONES, tiene preferencia sobre el resto en los aspectos relacionados con la ejecución y los aspectos legislativos.

2. ESPECIFICACIONES DE EJECUCIÓN

Durante el proceso de fabricación deberá estar presente un ingeniero técnico que se encargará de la dirección de la fabricación. Su principal objetivo será la comprobación y verificación de que las tareas se realicen acorde a las pautas establecidas en el proyecto.

Por su parte, el contratista tendrá que elegir a sus representantes durante el proceso, entre los cuales se encuentra el jefe de fabricación. Entre las funciones del contratista se encuentran la de proporcionar toda la información necesaria a la dirección de la fabricación y cumplir los plazos establecidos.

2.1. JEFE DE FABRICACIÓN

El jefe de fabricación escogido por el contratista es el responsable de la correcta fabricación del proyecto, siendo por tanto el representante oficial del Contratista durante la duración del proyecto.

Entre sus obligaciones se encuentran la responsabilidad de hacer cumplir y transmitir las órdenes recibidas desde la dirección facultativa, reportando cualquier tipo de incidencia ocurrida durante la fabricación.

2.2. OBLIGACIONES DEL CONTRATISTA

El contratista lleva acarreada la responsabilidad de la correcta ejecución del proyecto, siendo por tanto el responsable en caso de cualquier incumplimiento de los requisitos establecidos en el pliego de condiciones.

Entre sus obligaciones se encuentra la obligatoriedad de proporcionar los certificados de calidad de los materiales y equipo empleados en caso de ser necesario. De igual modo, deberá informar de cualquier percance acaecido durante la ejecución del proyecto.

El contratista tiene la obligación de asistir a las reuniones organizadas por la dirección facultativa. Además, debe estar presente en la ejecución durante su jornada laboral.

2.3. PLAZOS DE EJECUCIÓN

La fecha de inicio, así como los distintos plazos de fabricación serán estipulados en el contrato, siendo su cumplimiento responsabilidad del contratista que deberá informar a la dirección facultativa del día y la hora a la que se comienza. El contratista es el máximo responsable de cualquier tipo de retraso ocurrido.

El jefe de fabricación tiene la protestad de solicitar una modificación o ampliación de los plazos estipulados en el contrato justificándolos de forma apropiada. La decisión final de tramitar la solicitud recae en la dirección facultativa, la cual analizará las razones y expondrá su veredicto.

2.4. FALLOS DE EJECUCIÓN

La responsabilidad de los fallos o defectos en la máquina construida recae sobre el contratista. En el supuesto de la existencia de fallos de montaje, la máquina deberá ser desmontada y ensamblada de nuevo de forma correcta. De tal manera que los costes extras debidos a fallos de la ejecución serán cubiertos de forma íntegra por el contratista.

3.CALIDAD DE LOS MATERIALES UTILIZADOS

En esta sección se especifican las características que han de poseer los materiales empleados durante la fabricación y el montaje.

Los materiales utilizados han de poseer buenas propiedades de soldadura. Los sistemas de fijación de los diferentes elementos se realizarán mediante la utilización de tornillos de alta resistencia, con una calidad de 8.8 o superior, montados sin ningún tipo de holgura y siendo siempre la tuerca de la misma calidad que el tornillo utilizado o mayor. Las dimensiones se realizarán de acuerdo con la normativa DIN.

Los materiales empleados deberán poseer los certificados de calidad correspondiente expedidos por los propios fabricantes.

4. CONDICIONES ECONÓMICAS

4.1. GARANTÍAS

En caso de considerarse necesario se le podrá solicitar al contratista la presentación de referencias bancarias con el principal objetivo de asegurarse de que se encuentra en las condiciones adecuadas para el cumplimiento del contrato. Estos documentos los deberá presentar de forma previa a la firma del contrato.

4.2. GASTOS

El conjunto de los gastos e impuestos de cualquier tipo serán pagados por el contratista. Bajo ningún concepto se procederá a la revisión de los precios debido a una modificación con respecto al sistema tributario vigente a la firma del contrato.

4.3. CONFLICTOS EN EL PRESUPUESTO

El proyecto se ejecuta asumiendo que el contratista ha realizado un estudio profundo de los documentos que forman el proyecto, por lo que, si no realiza ningún tipo de comentario sobre errores o incompatibilidades, se asume que acepta lo referente a unidades y precios.

En caso de no haber realizado ningún tipo de reclamación por parte del contratista de forma previa a la firma del contrato, no podrá reclamar el aumento de los precios fijados en el presupuesto.

4.4. REALIZACIÓN DE LOS PAGOS

El propietario es el encargado de realizar los pagos en los plazos acordados. Bajo ninguna concepto tendrá derecho el contratista a detener la ejecución por un retraso en los pagos. En caso de la existencia de retrasos no justificados, el contratista tendrá la obligación de indemnizar al propietario cuya cifra consistirá en la suma de perjuicios materiales.

V. PRESUPUESTO

ÍNDICE

1.	CONSIDERACIONES	198
2.	PRESUPUESTOS PARCIALES	198
	2.1. PIEZAS DISEÑADAS	198
	2.2. PIEZAS NORMALIZADAS	199
	2.3. ELEMENTOS COMERCIALES DE CATÁLOGO	199
	2.4. MANO DE OBRA	200
3	COSTES TOTALES	200

1. CONSIDERACIONES

Todos los precios que se presentan en las siguientes secciones tienen ya aplicado el I.V.A. correspondiente (21%). Además, los costes de las piezas diseñadas incluyen tanto el precio del material como de su fabricación.

2. PRESUPUESTOS PARCIALES

2.1. PIEZAS DISEÑADAS

Elemento	Plano	Unidades	Material	Coste Unidad (€)	Coste total (€)			
Pata inferior rueda trasera	37.03	2	Acero	8	16			
Refuerzo nervio estructura	37.04	1	Acero	35	35			
Bisagra anclaje inferior	37.05	1	Acero	15	15			
Eje fijación cesta a motor	37.06	1	Acero	25	25			
Base principal	37.07	1	Acero	75	75			
Columna exterior de elevación	37.08	1	Acero	14	14			
Columna interior de elevación	37.09	1	Acero	14	14			
Nylon intermedio columnas	37.10	8	Nilón	6	48			
Brazo anclaje inferior	37.11	2	Acero	8	16			
Eje tope bisagra	37.12	1	Acero	10	10			
Garra anclaje inferior	37.13	2	Polipropileno	5	10			
Placa inferior de elevación	37.14	1	Acero	12	12			
Placa intermedia rodamiento bolas	37.15	1	Acero	12	12			
Placa superior columna elevación	37.16	1	Acero	12	12			
Placa anclaje reductora reguladores	37.17	2	Acero	12	24			
Eje corto regulación ángulo	37.18	1	Acero	10	10			
Eje largo regulación altura	37.19	1	Acero	15	15			
Brida ejes regulación	37.20	2	Acero	6	12			
Buje rodamiento regulación giro	37.21	1	Acero	5	5			
Buje rodamiento volante	37.22	2	Bronce	5	10			
Tapa rodamiento eje giro	37.23	1	Acero	5	5			
Casquillo separador rodamiento volante	37.24	2	Bronce	8	16			
Casquillo soporte ejes regulación	37.25	2	Bronce	8	16			
Casquillo separador rodamiento regulación	37.26	1	Bronce	8	8			
Tapa zona reguladores	37.27	1	Acero	50	50			
Base principal zona reguladores	37.28	1	Acero	125	125			
Casquillo separador husillo	37.29	1	Bronce	8	8			
Casquillo tope husillo	37.30	1	Bronce	8	8			
Arandela tope superior husillo	37.31	1	Acero	5	5			
Base anclaje cesta	37.32	1	Acero	15	15			
Cesta superior inyección	37.33	1	Polipropileno	120	120			
	TOTAL		TOTAL					

Tabla 2.1: Coste piezas diseñadas.

2.2. PIEZAS NORMALIZADAS

Elemento	Referencia/Norma	Material	Vendedor	Unidades	Coste unidad (€)	Coste total (€)
Anillas de retención	DIN 472 - 35x1,5	Acero	Würth	1	0,5	0,5
Arandela	DIN 125 - A 10,5	Acero	Würth	2	0,1	0,2
Arandela	DIN 125 - A 6,4	Acero	Würth	30	0,05	1,5
Arandela	DIN 125 - A 8,4	Acero	Würth	8	0,08	0,64
Arandelas planas	ISO 7092 - ST 10	Acero	Würth	4	0,15	0,6
Chaveta paralela	DIN 6885	Acero	Würth	3	2	6
Perno de cabeza-hex	ISO 4017 - M10 x 40	Acero	Würth	4	0,6	2,4
Rodamientos de bolas	6001-2RSR	Acero	Würth	2	10	20
Rodamientos de bolas	DIN 625	Acero	Würth	2	5	10
Tornillo avellanado	DIN 7991 - M6 x 16	Acero	Würth	23	0,25	5,75
Tornillo avellanado	DIN 7991 - M6 x 12	Acero	Würth	6	0,25	1,5
Tornillo avellanado	DIN 7991 - M6 x 20	Acero	Würth	8	0,25	2
Tornillo avellanado	DIN 7991 - M4 x 8	Acero	Würth	4	0,15	0,6
Tornillo avellanado	DIN 7991 - M6 x 30	Acero	Würth	4	0,25	1
Tornillo de cabeza cilíndrica	DIN 912 - M6 x 30	Acero	Würth	2	0,25	0,5
Tornillo de cabeza cilíndrica	DIN 912 - M12 x 30	Acero	Würth	4	1	4
Tornillo de cabeza cilíndrica	DIN 912 - M6 x 20	Acero	Würth	6	0,25	1,5
Tornillo de cabeza cilíndrica	DIN 912 - M6 x 25	Acero	Würth	2	0,25	0,5
Tornillo de cabeza cilíndrica	DIN 912 - M6 x 45	Acero	Würth	4	0,25	1
Tornillo de cabeza cilíndrica	DIN 6912 - M8 x 20	Acero	Würth	8	0,3	2,4
Tornillo sin cabeza	DIN 913 - M5 x 8	Acero	Würth	2	0,2	0,4
Tornillos de cabeza cilíndrica	ISO 7380-1 - M6 x 12	Acero	Würth	4	1	4
Tornillos de cabeza cilíndrica	ISO 7380-1 - M6 x 10	Acero	Würth	14	0,75	10,5
Tornillos de cabeza cilíndrica	ISO 7380-1 - M4 x 8	Acero	Würth	4	0,6	2,4
Tornillos de cabeza cilíndrica	ISO 7380-1 - M10 x 70	Acero	Würth	2	1,5	3
Tornillos de cabeza cilíndrica	ISO 7380-1 - M4 x 12	Acero	Würth	8	0,15	1,2
Tornillos de cabeza cilíndrica	ISO 7380-1 - M6 x 30	Acero	Würth	8	0,25	2
Tornillos de cabeza cilíndrica	ISO 7380-1 - M8 x 25	Acero	Würth	2	0,6	1,2
Tuercas hexagonales	ISO 4032 - M10	Acero	Würth	2	0,3	0,6
Tuercas hexagonales	ISO 4032 - M6	Acero	Würth	6	0,2	1,2
TOTAL						89,09

Tabla 2.2: Coste piezas normalizadas.

2.3. ELEMENTOS COMERCIALES DE CATÁLOGO

Elemento	Referencia	Vendedor	Unidades	Coste Unidad (€)	Coste total (€)
Volante banda diametral	VRTP.80+IR-A8-K	elesa+ganter	2	12	24
Rueda	RE.FF-100-FBL-SST-N	elesa+ganter	4	15	60
Rótula	GN 648.2-8-M8L-N	elesa+ganter	2	5	10
Acoplamiento de fuelles	KM 20	Tecnopower	2	10	20
Reductora sinfín corona	R 030FB	Hydromec	2	60	120
Husillo	R12-10K3-FSCDIN	Tecnopower	1	25	25
TOTAL					259

Tabla 2.3: Coste elementos comerciales.

2.4. MANO DE OBRA

Actividad	Personal	Número de horas	Coste por hora (€/h)	Coste total (€)
Montaje	Mecánico	5	35	175
	175			

Tabla 2.4: Coste sueldos.

3. COSTES TOTALES

Tipos de costes	Coste (€)
Coste piezas diseñadas	766
Coste piezas normalizadas	89,09
Coste piezas comerciales	259
Mano de obra	175
TOTAL	1289,09

Tabla 2.5: Costes totales.

El presupuesto total del carro de compra para personas con movilidad reducida asciende a la cantidad de **1289,09** € (mil doscientos ochenta y nueve euros y tres céntimos).

VI. BIBLIOGRAFÍA

- [1] Instituto Nacional de Estadística (INE). Proyección de la esperanza de vida al nacimiento por periodo y sexo. Brecha de género. España. [Internet]. [Consultado 18 abril 2020]. Disponible en: https://www.ine.es/jaxi/Datos.htm?path=/t00/mujeres_hombres/tablas_1/I 0/&file=d01003.px#!tabs-tabla
- [2] Abellán García, Antonio; Aceituno Nieto, Pilar; Pérez Díaz, Julio ; Ramiro Fariñas, Diego ; Ayala García, Alba; Pujol Rodríguez, Rogelio. Informes Envejecimiento en red nº 22, 38p.
- [3] Today I found out. Who invented the shopping cart? [Internet].

 [Consultado 23 mayo 2020]. Disponible en:

 http://www.todayifoundout.com/index.php/2015/12/invention-shopping-cart/
- [4] American comes alive. Who invented the shopping cart? [Internet].

 [Consultado 28 mayo 2020]. Disponible en:

 https://americacomesalive.com/2015/08/28/who-invented-the-shopping-cart/
- [5] UNE-EN 1929-1:1998: Carros de supermercado. Parte 1: Requisitos y ensayos para carros de supermercado con o sin asiento para niños.
- [6] UNE-EN 1929-2:2005: Carros de supermercado. Parte 2: Requisitos, ensayos e inspección para carros de supermercado con o sin asiento para niños, destinados a ser utilizados en cintas transportadoras de pasajeros.
- [7] UNE-EN 1929-3:2005: Carros de supermercado. Parte 3: Requisitos y ensayos para carros de supermercado con dispositivos adicionales para el transporte de objetos, con o sin asiento para niños.
- [8] UNE 111915:1991: Sillas de ruedas. Dimensiones totales máximas.
- [9] UNE-EN ISO 7250-1:2017: Definiciones de las medidas básicas del cuerpo humano para el diseño tecnológico. Parte 1: Definiciones de las medidas del cuerpo y referencias (ISO 7250-1:2017).
- [10] UNE-ISO 21542:2012. Edificación. Accesibilidad del entorno construido.

BIBLIOGRAFÍA 202

- [11] Código técnico de la edificación. Documento básico. Seguridad en caso de incendios (CTE DB-SI).
- [12] UNE-EN ISO 5457:2000: Documentación técnica de productos. Formatos y representación de los elementos gráficos de las hojas de dibujo. (ISO 5457:1999).
- [13] UNE-EN ISO 3098-1:2015: Dibujos técnicos. Escritura. Requisitos generales. (ISO 3098:1 997).
- [14] UNE-EN ISO 7200:2004: Documentación técnica de productos. Campos de datos en bloques de títulos y cabeceras de documentos. (ISO 7200:2004).
- [15] UNE-EN ISO 6433:2012: Dibujos técnicos. Referencias de los elementos. (ISO 6433: 198 1).
- [16] UNE 1 135:1989: Dibujos técnicos. Lista de elementos.
- [17] UNE-EN ISO 128-20:2002: Dibujos técnicos. Principios generales de representación. Parte 20: convenciones generales para las líneas. (ISO 128-20:1996).
- [18] UNE-EN ISO 128-21:2002: Dibujos técnicos. Principios generales de representación. Parte 21: Preparación de líneas mediante sistemas de DAO (Diseño Asistido por Ordenador). (ISO 128-21:1997).
- [19] UNE-EN ISO 5455:1996: Dibujos técnicos. Escalas. (ISO 5455:1979).
- [20] Real Academia Española (RAE). [Internet]. [Consultado 15 junio 2020]. Disponible en: https://dle.rae.es/antropometr%C3%ADa
- [21] Julius Panero, Martin Zelnik. Las dimensiones humanas en los espacios interiores. Estándares antropométricos. 2ª edición. Editorial Gustavo Gili, S.L., 2007.
- [22] Esperanza Valero Cabello. ANTROPOMETRÍA. Centro Nacional de Nuevas Tecnologías. Instituto Nacional de Seguridad e Higiene en el Trabajo.
- [23] Enrique Javier de la Vega Bustillos, Francisco Octavio López Millán, Selene Soto. Antropometría para discapacitados. 2004

BIBLIOGRAFÍA 203

- [24] Douglas C. Montgomery (Autor), George C. Runger. Applied Statistics and Probability for Engineers. 6a edición. JOHN WILEY & SONS INC, 2013
- [25] Carmona, A. (2003) Aspectos antropométricos de la población laboral española aplicados al diseño industrial. Instituto Nacional de Seguridad e Higiene en el Trabajo.
- [26] Robert L. Norton. DISEÑO DE MAQUINARIA. 4ª edición. McGraw-Hill Interamericana de España S.L., 2009.
- [27] R. C. Hibbeler. Mecánica vectorial para ingenieros: Estática. 10ª edición. Prentice Hall, 2010.
- [28] Universidad de Valladolid. Álgebra vectorial. [Internet]. [Consultado 30 Jul 2020]. Disponible en: https://www.eii.uva.es/reic/RMgrado/algebra_vectorial.htm
- [29] José María Marín López. Teoría de máquinas [apuntes]. 2º Curso Grado en Ingeniería Mecánica 2019-2020. Universidad Miguel Hernández (UMH) de Elche, Escuela Politécnica Superior de Elche (EPSE), 2020.
- [30] D. Gordon E. Robertson, Graham E. Caldwell, Joseph Hamill, Gary Kamen and Saunders N. Whittlesey. Research Methods In Biomechanics. 2nd Edition. Human Kinetics, 2013.
- [31] Miguel Ángel Oliva i Meyer, Abel R. Navarro Arcas, David Abellán López, Héctor Campello Vicente. Diseño de máquinas. Problemas resueltos I. 1^a edición. Universidad Miguel Hernández.
- [32] Jesús Félez, María Luisa Martínez. Ingeniería gráfica y diseño/ Graphics Engineering and Design. 1ª edición. Editorial Síntesis, 2008.

BIBLIOGRAFÍA 204