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Abstract 
 

Over the past few years, the presence of mobile robots has significantly 
increased. Nowadays, they can be used for a wide range of applications and they 
can be found in diverse kinds of environments, such as industrial, household, 
educational and healthcare. Regarding mobile autonomous robots, these 
systems need a high degree of autonomy to develop their tasks. This means that 
they must be able to localize themselves and to navigate through environments, 
which are a priori unknown. Therefore, the robot will have to carry out the 
mapping task, which consists in obtaining information from the environment and 
creating a model. Once this task is done, the robot will be able to address the 
localization task, i.e., estimating its position within the environment with respect 
to a specific reference system.  
 
 
This thesis presents the analysis and design of mapping and localization methods 
in indoor environments. On the one hand, the thesis presents a work that focuses 
on solving these problems in underfloor voids with the aim of tackling a spray 
foam insulation task. On the other hand, a hierarchical localization framework is 
proposed and evaluated, considering severe visual effects that can influence the 
accuracy of the proposed method. 
 
 
The present thesis carries out a work, which focuses on solving the mapping and 
localization problems in voids between floor and foundations. Solving these tasks 
in such environments is especially challenging concerning visual information 
because the environment is dark and the terrain is uneven as stones, bricks 
fragments or sand are often present. Within these environments, the robot should 
be able to localize itself and apply insulation foam to the underside of the floor. 
Hence, the localization process is solved by estimating the position of the robot 
with respect to previously known position. This is done by using the alignment 
between point clouds (depth information). The robot is equipped with a 2D laser 
sensor, which permits building point clouds from several positions of the 
underfloor environment. This thesis describes several algorithms to obtain 
robustly the alignment between two positions. The proposed algorithms are 
tested with a set of point clouds captured with a laser scan under real working 
conditions. The results show that the localization problem can be solved and the 
accuracy obtained is enough to develop the insulation task. 
 
The present thesis also proposes the study of the hierarchical visual models to 
address the mapping and localization tasks. This work is based on the use of 
omnidirectional images obtained from indoor environments such as offices, 
corridors, bathrooms, etc. Therefore, this thesis proposes new methods for 
obtaining the hierarchical maps and solving the localization. 
 
The first proposed work focuses on studying the compression of topological 
models. Two clustering methods are tested with the aim of knowing their utility to 
build a compressed model of the environment and to solve the localization task. 
Omnidirectional images are characterized through global-appearance 
descriptors, which are used to build a compact model and to estimate the robot 



position. The results collected from this work confirm that compression of visual 
information contributes to a more efficient localization process through saving 
computation time and keeping a relatively good accuracy. 
 
The second work proposed is a method for addressing the localization task 
hierarchically. This approach is solved by calculating global-appearance 
descriptors of the omnidirectional images and the position of the robot is 
estimated by comparing these descriptors with the information contained in a 
topological visual model. The proposed localization method is evaluated with 
some sets of images, captured in large indoor environments under real operating 
conditions, including illumination changes that affect substantially the 
appearance of the scenes. The results show a reasonable tradeoff computation 
time-accuracy when the localization is addressed in a hierarchical way. 
 
The third proposed work focuses on analysing two machine-learning techniques 
to carry out hierarchical localization tasks. On the one hand, three classifiers are 
trained with three different global-appearance description methods and then 
these classifiers are evaluated to retrieve the area or room where a query 
omnidirectional image was captured. On the other hand, data fitting neural 
networks are used to calculate the position where the image was captured within 
the selected area. The results show that these methods introduce an efficient 
alternative to conduct hierarchical localization regarding computing time and 
accuracy. 
 
Finally, the fourth proposed work focuses on the use of deep learning techniques. 
Two main works are developed in this line. First, two deep learning techniques 
are proposed to calculate global-appearance descriptors. That is, intermediate 
layers of pre-trained convolutional neural networks and autoencoders are used 
to obtain holistic descriptors by introducing panoramic images into the network. 
That is, the robot estimates its position through a nearest neighbour search by 
comparing the obtained descriptor with the visual model contained in the retrieved 
room. These description methods are compared with the analytic methods used 
during the last few years for visual mobile robotics. The results show that deep 
learning based descriptors can provide also an interesting solution to address 
visual localization tasks. Second, a deep learning convolutional neural network is 
developed from scratch to carry out the room retrieval task within an indoor 
environment. Moreover, the developed network is also used to calculate global-
appearance descriptors from intermediate layers and to tackle the position 
retrieval where the image was captured within the room. The blend of the room 
retrieval method and the position retrieval method constitutes a novel hierarchical 
localization approach. The results obtained from the experiments show that the 
proposed deep learning technique and the novel hierarchical localization method 
constitute a successful solution to carry out the visual localization task. 
 

 

 



Resumen 
 

Durante los últimos años, la presencia de robots móviles ha crecido 
sustancialmente y hoy en día se utilizan para un amplio espectro de aplicaciones. 
Dichos robots se pueden encontrar en diversos entornos como industriales, 
familiares, de ámbito educativo y de salud. En cuanto a los robots móviles 
autónomos, éstos requieren un alto grado de autonomía para poder desarrollar 
la tarea para la cual han sido desarrollados. Esto significa que deben ser capaces 
de localizarse y de navegar por un escenario que a priori es desconocido. Por lo 
tanto, el robot tendrá que llevar a cabo la tarea de mapeo, que consiste en 
obtener información del entorno y crear un modelo del mismo. Una vez se ha 
realizado dicha tarea, el robot será capaz de localizarse, esto es, estimar su 
posición dentro del entorno con respecto a un sistema de referencia. 
 
Esta tesis presenta el análisis y diseño de métodos de mapeo y localización en 
entornos de interior. Por un lado, la tesis presenta un trabajo que se centra en 
resolver dichas tareas en subsuelos de edificios con el objetivo de llevar a cabo 
la tarea de rociado de aislante térmico. Por otro lado, se propone un desarrollo 
de localización jerárquica y se evalúan varios efectos visuales que pueden 
repercutir en la precisión de dicho método. 
 
En cuanto al trabajo que se centra en resolver el mapeo y la localización en 
huecos entre el suelo y los cimientos de edificios, la presente tesis parte de la 
consideración de que resolver estas tareas en los entornos propuestos presenta 
una dificultad añadidita desde el punto de vista visual. Eso es debido a que estos 
entornos suelen ser oscuros y el terreno suele presentar superficies 
desniveladas con presencia de piedras, trozos de ladrillos y/o arena. Dentro de 
estos entornos, se propone que un robot, de manera autónoma, se localice y 
posteriormente aplique aislante térmico sobre la parte inferior del suelo del 
edificio. Por tanto, se propone que el proceso de localización se resuelva 
estimando la posición del robot con respecto a posiciones anteriores conocidas. 
Esto se realiza utilizando algoritmos de alineación entre nubes de puntos 
(información de profundidad). Para esto, el robot está equipado con un sensor 
laser 2D, el cual permite construir nubes de puntos desde diferentes posiciones 
del entorno. Esta tesis propone distintos algoritmos para realizar de manera 
robusta el alineamiento entre nubes de puntos. Los algoritmos propuestos son 
evaluados a través de un conjunto de nubes de puntos capturadas con un láser 
bajo condiciones reales de trabajo. Los resultados recogidos muestran que el 
problema de localización se puede resolver con la precisión necesaria para poder 
llevar a cabo la tarea de aislamiento. 
 
La presente tesis también propone el estudio de modelos jerárquicos visuales 
para resolver las tareas de mapeo y localización. Este trabajo se basa en el uso 
de imágenes omnidireccionales, las cuales se obtienen en entornos de interior 
tales como oficinas, pasillos, servicios, etc. Por tanto, esta tesis propone nuevos 
métodos y técnicas que mejoren la obtención de mapas jerárquicos y también 
que mejoren la tarea de localización. 
 
En esta línea, el primer trabajo se centra en estudiar la compresión de modelos 
topológicos visuales. De este modo, dos métodos de agrupamiento (clustering) 



son evaluados con la finalidad de conocer su utilidad para construir modelos 
compactos del entorno y llevar a cabo la tarea de localización. Para ello, las 
imágenes omnidireccionales son caracterizadas a través de descriptores de 
apariencia global, los cuales se utilizan para construir los modelos compactos y 
también para estimar la posición del robot. Los resultados recogidos de este 
trabajo confirman que la compresión de los modelos visuales aporta métodos de 
localización más eficientes, ahorrando tiempo de cómputo y manteniendo una 
precisión relativamente buena. 
 
El segundo trabajo propuesto se basa en un método para realizar la tarea de 
localización jerárquica. Esta estrategia es desarrollada mediante el cálculo de 
descriptores de apariencia global calculados a partir de imágenes 
omnidireccionales. La posición del robot se estima comparando los descriptores 
con la información contenida en el modelo visual. El método propuesto se evalúa 
a través de conjuntos de imágenes que han sido capturados en entornos grandes 
bajo condiciones reales de trabajo, incluyendo cambios de iluminación, los 
cuales afectan considerablemente la apariencia de las escenas. Los resultados 
muestran que existe una compensación entre tiempo de cálculo y precisión 
cuando se aplica la localización jerárquica. 
 
El tercer trabajo analiza el uso de dos técnicas de aprendizaje máquina (machine 
learning) para poder realizar la localización jerárquica. Por un lado, tres 
clasificadores son entrenados con tres métodos de descripción global y tras esto, 
dichos clasificadores son utilizados para recuperar el área o la estancia donde 
una imagen omnidireccional fue capturada. Por otro lado, se utiliza una red 
neuronal de ajuste de datos para calcular la posición de captura de la imagen 
dentro del área seleccionada. Los resultados muestran que las técnicas 
propuestas introducen una alternativa eficiente para realizar la tarea de 
localización jerárquica en cuanto a tiempo de cálculo y precisión. 
 
Por último, el cuarto trabajo relacionado con la línea de modelos jerárquicos se 
centra en aplicar técnicas de aprendizaje profundo (deep learning). En concreto, 
se han desarrollado dos líneas de trabajo. La primera, propone el uso de técnicas 
de aprendizaje profundo para calcular descriptores de apariencia global. Esto es, 
usar capas intermedias de redes neuronales convolucionales y de autoencoders 
para calcular descriptores mediante la introducción de imágenes panorámicas a 
dichas redes. De esta forma, el robot estima su posición a través de un método 
de búsqueda del vecino más cercano mediante la comparación del descriptor 
obtenido con los descriptores que componen el modelo visual del entorno. Estos 
métodos de descripción son comparados con los métodos analíticos que han 
sido utilizados comúnmente durante los últimos años para realizar tareas 
relacionadas con la robótica móvil visual. Los resultados han demostrado que los 
descriptores basados en aprendizaje profundo también pueden proporcionar 
soluciones interesantes en cuanto a la tarea de localización visual. La segunda 
línea de trabajo trata del desarrollo de una red neuronal desde cero para realizar 
la recuperación de estancia en un entorno de interior. Además, dicha red también 
se utiliza para calcular descriptores de apariencia global de las capas intermedias 
y llevar a cabo la recuperación de la posición de captura de una imagen dentro 
de la estancia. La combinación de la recuperación de estancia y la recuperación 
de posición dentro de la estancia forman un novedoso método de localización 



jerárquica. Los resultados obtenidos muestran que las técnicas de aprendizaje 
profundo propuestas y el nuevo método de localización jerárquica constituyen 
una solución satisfactoria para realiza la tarea de localización visual. 
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“What we know is a drop,  

what we don't know is an ocean.” 

- Isaac Newton 
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1 Introduction

1.1 Motivation

The present thesis focuses on autonomous mobile robots, a field that has substantially
increased during the past few years. Robotics are systems that replace humans to
develop mechanical, routine or dangerous tasks and need a high degree of autonomy
to develop their tasks. In the case of autonomous mobile robots, it means that they
must be able to localize themselves within a map and to navigate through environments
which are unknown. Therefore, the robot has to tackle the mapping task, which consists
in obtaining information from the environment and creating a representative model.
Once this task is done, the robot is able to address the localization task, i.e., estimating
its position within the environment with respect to the model created. Many sensors
have been proposed to tackle the mapping and localization tasks in mobile robotics. For
example, Bloesch et al. [28] use the kinematic information from the encoder together
with an IMU (Inertial Measurement Unit) to estimate the state for legged robots, Kim
et al. [126] use GPS and odometry data by using the framework of extended Kalman
filter to localize a mobile robot. Lingemannet al. [157] propose a laser-based approach
for tracking the pose of a high-speed mobile robot.

Regarding vision sensors, they have been successfully used to tackle the mapping
as well as the localization tasks. For instance, Häne et al. [98] use fisheye cameras
for 3D mapping, visual localization and obstacle avoidance, Pire et al. [219] propose a
visual SLAM system based on stereo cameras to solve real-time localization for mobile
robots, Arth et al. [9] introduce an instant outdoor SLAM based on 2.5D maps and
Fuentes-Pacheco et al. [81] present a broad review of the state-of-the-art of visual
SLAM algorithms. Nevertheless, these approaches present drawbacks in environments,
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such as their sensitivity to changes of lighting conditions. For instance, underfloor
environments may be completely dark and the illumination is only provided by light
sources installed either on the robot and/or in a specific position of the environment.
Hence, the shadows will generate inaccuracies both in the keypoints detected and in
their descriptors calculated.

Considering the disadvantages of a purely visual approach, this thesis also con-
siders a possibility that consists in using the depth data obtained from laser scanners.
For instance, Lingemann et al. [158] propose a laser-based approach for indoor and
outdoor localization for fast mobile robots, Nguyen et al. [202] present an broad evalu-
ation of different line extraction algorithms on 2D laser scans for localization in indoor
environments. These devices can capture point clouds from specific poses of the envi-
ronment. Additionally, there are some authors who use both visual and depth data to
estimate the position of the robot. This method consists in using the visual informa-
tion to obtain an initial estimation and the using the depth information to get more
accurate results. For example, Endres et al. [71] used either SURF, SIFT or ORB for
Pairwise Feature Matching. Henry et al. [102] also used SIFT. However, instead of
ICP point-to-point, they used ICP point-to-plane. More recently, dos Santos et al. [68]
use visual information (SIFT) for the coarse alignment. However, instead of ICP they
use SLIC (Simple Linear Iterative Clustering) in the fine alignment.

Depending on the number of cameras and the field of view, different configu-
rations have been proposed. Some authors (such as Okuyama et al. [203]) have used
monocular configurations. Others proposed stereo cameras by using binocular (such
as Yong-Guo et al. [311] or Gwinner et al. [94]) or even trinocular systems (such as
Jia et al. [115]). Although stereo cameras can measure the depth of images, these
systems have a limitation related to their field of view. In addition, to obtain complete
information about the environment, several images must be captured. In this sense,
omnidirectional cameras are a good alternative. They can provide a lot of informa-
tion with a 360 degree field of view around it and its cost is relatively low compared
to other types of sensors. Additionally, omnidirectional vision systems present further
advantages. For example, the characteristics of the images are more stable (because
they remain longer as the robot moves) and allow to estimate both the position and
the orientation of the robot. Different authors have successfully used omnidirectional
cameras for mapping and localization [283],[21], [271], [191], [179]. Payá et al. [211]
conducted an extensive study, presenting a state of the art of the most relevant lo-
calization and mapping algorithms developed with omnidirectional visual information.
Fig. 1.1(a) shows an example of a mobile robot having an omnidirectional camera
mounted on it and fig. 1.1(b) shows an example of an omnidirectional image.

Visual mapping and localization have been resolved primarily using two main
approaches to extract the most relevant information from the scenes; either by de-
tecting, describing, and tracking some relevant landmarks, or by working with holistic
algorithms, that is, by constructing a unique descriptor per image.

In the related literature, two main frameworks have been proposed to carry
out the mapping task: metric maps, which represent the environment with geometric
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(a) (b)

Figure 1.1: (a) Example of a Pioneer P3-AT R© robot equipped with an omnidirectional vision
system and a laser rangefinder. (b) Example of an omnidirectional image captured from an
outdoor environment. Image obtained from the Fukuoka Datasets for Place Categorization [174].

accuracy; and topological maps that describe the environment as a graph containing a
set of locations with related links. Concerning the second option, some authors have
proposed to arrange the information on the map hierarchically, in a set of layers. The
way in which a robot efficiently solves the task of locating on hierarchical maps is
as follows: first, an approximate but rapid localization is carried out using high-level
layers; second, a fine localization in a local area is addressed using low-level layers.
Hence, to address the problem of mapping and localization, hierarchical maps are an
efficient alternative (as shown in works [207], [96] and [110]), since they can provide
less computational time while maintaining similar accuracy.

In the light of the previous information, in this thesis, the use of hierarchical
models is proposed to solve the localization task efficiently. In this sense, compression
methods are used as a solution to generate the high-level layers of the hierarchical
model. Some authors have used clustering algorithms to perform the compression task.
For example, Zivkovic et al. [324] use spectral clustering to obtain higher-level models
that improve route planning efficiency. Grudic and Mulligan [92] build topological
maps through the use of an unsupervised learning algorithm which works with spectral
clustering. Valgren et al. [282] tackle an online topological mapping through the use of
incremental spectral clustering. Štimec et al. [264] use an unsupervised clustering based
on the multiple eigenspace algorithm to perform topological mapping hierarchically
using omnidirectional images. More recently, Shi et al. [250] have proposed the use of
a differential clustering method to improve the compression of telemetry data.
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Additionally, in recent years, machine learning techniques have contributed to
solve a variety of problems in mobile robotics. For example, Gonzalez et al. [88] use
machine learning to detect different levels of slip for robotic missions in Mars. Dymczyk
et al. [70] propose the use of a boosted classifier to classify landmark observations and
carry out the localization task in a more robust fashion.

The purpose of the present thesis is to introduce and test the performance of
some machine learning techniques in mapping and localization, and to carry out a
comparative evaluation between different global-appearance descriptors and machine
learning approaches. The efficiency of these tools will be evaluated through their
ability to estimate robustly the position of the robot using the information stored in
the map. The approach evaluated consists in the use of a variety of classifiers, neural
networks and clustering algorithms, used in combination with global-appearance visual
descriptors, to solve the localization problem.

1.2 Objectives

The main objective of the present thesis is to optimize the mapping and localization
tasks in mobile robotics by reducing the localization error and the computing time
through using omnidirectional vision, depth data and machine learning tools. To reach
this purpose, the following goals were established:

• Localization through alignment between point clouds. Visual features are
not enough to carry out the localization task under visually complex environ-
ments. For example, estimating the movement of the robot just using visual
information in underfloor environments can be inaccurate. In order to avoid im-
portant drawbacks introduced in this type of environments, it is necessary to use
depth information provided by laser sensors. Hence, to carry out the localization
task through this type of information, an alignment algorithm between point
clouds is developed and evaluated.

• Comparison between methods to create hierarchical maps. In order to
create hierarchical models based on visual information, compression techniques
are proposed and afterwards evaluated. Hence, the obtained maps are analyzed
according to compression parameters.

• Evaluation of localization through hierarchical maps. After obtaining differ-
ent hierarchical maps based on several compression tools, the obtained maps are
used to carry out the localization task and to evaluate its performance regarding
accuracy and time. This performance is solved as an image retrieval problem
and considers also how these methods are affected by changes of illumination.
This effect is very common in real-operation conditions, then, the methods have
to be robust enough to reach successful results.

• Developing of global-appearance descriptors through machine learning
tools and evaluation of these descriptors to carry out the localization
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task. In order to get more efficient localization methods, one important key is
the visual information used. This thesis not only uses global-appearance descrip-
tors based on analytic methods such as gist or HOG, but novel methods based on
machine learning techniques are also developed and evaluated. This work creates
novel global-appearance descriptors departing from auto encoders and also from
intermediate layers of Convolutional Neural Networks which have been already
pre-trained to solve classification tasks.

• Evaluation of machine learning tools to optimize the hierarchical local-
ization. Once evaluated the efficiency of the localization task by means of
hierarchical methods, this work focuses on optimizing the processes involved.
Therefore, different classifiers and neural networks are evaluated to carry out
the rough as well as the fine localization steps. The objective is to improve the
efficiency regarding computing time, accuracy and robustness against changes of
illumination.

• Obtaining Convolutional Neural Networks for mapping and developing a
novel global-appearance descriptor to solve the localization task. After
analyzing the machine learning tools to carry out the hierarchical localization
step and also to obtain global-appearance descriptors, the aim of this work is
to go one step ahead by using deep learning. Therefore, a Convolutional Neural
Network (CNN) is developed, trained and evaluated to carry out localization-
related tasks. This network has panoramic images as input and predicts the
room where the input image was captured within the environment. Afterwards,
the CNN is also used to obtain global-appearance descriptors from intermediate
layers. This way, the aim of using this technique is to generate holistic descriptors
to solve the localization task more efficiently.

1.3 Framework of this Thesis

The present thesis has been developed under a framework supported by different col-
laborations, grants and research projects, as detailed next.

1.3.1 Grants and Awards
The development of this thesis has been supported by a ACIF grant from Conselleria
de Educación, Investigación, Cultura y Deporte confunded by the European Social
Fund (ESF). This grant, whose reference number is ACIF/2017/146, has supported
financially the author of the present thesis during three years (from December 2017
to December 2020), in order to develop this thesis during this period. This grant was
extended up to 100 days by Real Decreto-ley 11/2020, de 31 de marzo, with the aim
of palliating the effects produced by the COVID-19 crisis.

Also, another two grants were conceded to the author of this thesis in order to
do short research stays at foreign universities, as described in the next subsection. The
first one was conceded from the Miguel Hernandez University in 2018 and the second
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one was conceded from the Conselleria de Educación, Investigación, Cultura y Deporte
and the European Social Fund (ESF) in 2020.

1.3.2 Research Stays and Collaborations
From September to November 2018, the author of this thesis spent three months
collaborating at the Department of Computer Science of the University of Münster
(Germany). The objective of this research stay, which was supervised by Prof. Dr.
Xiaoyi Jiang, was to investigate the use of classifiers to tackle the rough localization step
within a hierarchical localization method, as well as to investigate and learn about deep
learning tools to develop more efficient global-appearance descriptors for localization
tasks. This research stay was supported by the Miguel Hernandez University.

Additionally, from September to December 2020, the author of this thesis spent
four months collaborating at the Computer Science Department in the Northumbria
University and the Computer Science department at Durham University (United King-
dom). The objective of this research stay, which was supervised by Prof. Dr. Hubert P.
H. Shum, was to investigate the creation of 3D maps and robots localization through
the use of artificial intelligence techniques with the aim to estimate also the height.
This research stay was supported by the Generalitat Valenciana and the European
Social Fund (ESF).

1.3.3 Projects
During the development of the present thesis, the author has participated in several
research projects as detailed next.

• “Creación de modelos jerárquicos y localización robusta de robots móviles
en entornos sociales”. Project supported by the Generalitat Valenciana from
January 2019 until December 2020.

• “Creación de Mapas Mediante Métodos de Apariencia Visual para la
Navegación de Robots ”. Project supported by Ministerio de Ciencia e In-
novación from January 2017 until December 2019.

• “Navegación de Robots en Entornos Dinámicos Mediante Mapas Com-
pactos con Información Visual de Apariencia Global ”. Project supported
by Ministerio de Ciencia e Innovación from September 2014 until May 2017.

• “Localización y Creación de Mapas Visuales para Navegación de Robots
con 6 GDL”. Project supported by the Generalitat Valenciana from January 2015
until December 2016.

• “Creación de mapas topológicos a partir de la apariencia global de un con-
junto de escenas”. Project supported by Generalitat Valenciana from January
2015 until December 2016.
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1.4 Publications

1.4.1 Quality Evidences
The main contributions are supported by four articles which were published in JCR-
indexed journals. Three journals were categorized in the first quartile (Q1) of their
respective categories and one was categorized in the second quartile (Q2) of its re-
spective journal. These publications, whose metadata are provided next, are directly
aligned with the purpose and aim of this thesis.

• Mapping and Localization Module in a Mobile Robot for Insulating Building
Crawl Spaces. [41]
S. Cebollada, L. Payá, M. Juliá, M. Holloway, O. Reinoso
Automation in Construction. Vol 87, pp. 248-262 (March 2018)
ISSN:0926-5805. Ed. Elsevier
JCR-SCI Impact Factor: 4.313, Quartile Q1
Web: https://doi.org/10.1016/j.autcon.2017.11.007
DOI: 10.1016/j.autcon.2017.11.007

• Evaluation of Clustering Methods in Compression of Topological Models and Vi-
sual Place Recognition Using Global-Appearance Descriptors. [44]
S. Cebollada, L. Payá, W. Mayol, O. Reinoso
Applied Sciences. Vol 9(3), 377 (2019)
ISSN:2076-3417. Ed. MDPI
JCR-SCI Impact Factor: 2.474, Quartile Q2
Web: https://doi.org/10.3390/app9030377
DOI: 10.3390/app9030377

• Hierarchical Localization in Topological Models Under Varying Illumination Us-
ing Holistic Visual Descriptors. [45]
Sergio Cebollada, Luis Payá, Vicente Román, Oscar Reinoso
IEEE Access. Vol 7(1), pp. 49580-49595 (2019)
ISSN:2169-3536. Ed. IEEE
JCR-SCI Impact Factor: 3.745, Quartile Q1
Web: https://doi.org/10.1109/ACCESS.2019.2910581
DOI: 10.1109/ACCESS.2019.2910581

• A State-Of-The-Art Review on Mobile Robotics Tasks Using Artificial Intelligence
and Visual Data. [40]
Sergio Cebollada, Luis Payá, Maria Flores, Adrián Peidró and Oscar Reinoso
Expert Systems with Applications. pp. 114195. (2020)
ISSN:0957-4174. Ed. Elsevier
JCR-SCI Impact Factor: 11.0 (2019), Quartile Q1
Web: http://www.sciencedirect.com/science/article/pii/S095741742030926X

7



Chapter 1. Introduction

DOI: 10.1016/j.eswa.2020.114195

The first article proposes two novel algorithms to robustly obtain the alignment
between two point clouds. The alignment between point clouds is used to estimate
the position of the robot with respect to previously known positions. The proposed
methods, which are developed in chapter 3, are tested and validated to tackle the
localization task in challenging underfloor voids through the use of depth information.
They firstly consist in downsampling the point cloud information and removing the top
and bottom information, after that, the registration is carried out assuming four initial
rotations and the transformation matrix is obtained. Secondly, through the second
contribution method, a novel algorithm is developed to solve the cases in which the
alignment between consecutive poses was not possible. The results presented in this
work show the robustness and effectiveness of the proposed methods and their ability
to cope with such challenging underfloor environments.

The second article proposes an exhaustive study about the compression of topo-
logical models in indoor environments. For this aim, two clustering methods are tested
in order to know their utility both to build a model of the environment and to solve
the localization task. To evaluate the goodness of the proposed clustering algorithms,
which is shown in chapter 4, several datasets were considered. They are composed
of either panoramic or omnidirectional images captured in several environments, un-
der real-operation conditions. The results collected proved that the use of clustering
methods to tackle the compression step are more efficient than carrying out a direct
downsampling process of the images from the database.

The third article proposes a hierarchical localization framework using just om-
nidirectional cameras as source of information. Several holistic descriptors are ob-
tained and compared between them to tackle the hierarchical localization task pro-
posed. Moreover, a new global-appearance descriptor based on a intermediate layer of
a pre-trained CNN is also proposed. The evaluation also considers changes of illumina-
tion during the localization process. The results obtained are shown in chapter 4 and
they prove that the compaction proposed throughout the present thesis is suitable to
solve the localization task efficiently.

The fourth article presents a survey about the use of artificial intelligence and
visual data to address mobile robotics tasks. This manuscript, which is presented in
chapter 2, focuses on showing how researchers have addressed relevant tasks in mobile
robotics by means of artificial intelligence tools and visual information; and how these
approaches have evolved in recent years. Among these tasks, it its worth citing mapping
(building a robust model of the environment; (b) localization (estimating the position in
the environment; (c) SLAM (Simultaneous Localization and Mapping); (c) navigation
(planning a path and controlling the movement of the robot towards a target point) and
exploration (exploring the free space of an environment). These abilities are essential to
address any high-level task by using mobile autonomous robots. Hence, the manuscript
carries out a state of the art review of them by using AI and visual information.

These articles are appended in Appendix A.
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1.4.2 Other Works Related to this Thesis
This subsection presents other works developed within the framework of the thesis that
have been sent and published in conferences and other journals, as a consequence of
the tasks carried out within the framework of this thesis in its different lines of research.

• A Novel Method to Estimate the Position of a Mobile Robot in Underfloor En-
vironments Using RGB-D Point Clouds. [208]
Cristóbal Parra, Sergio Cebollada, Luis Payá, Mathew Holloway, Oscar Reinoso
IEEE Access. Vol. 8, pp. 9084-9101 (2020)
ISSN:2169-3536. Ed. IEEE
JCR-SCI Impact Factor: 4.098, Quartile Q1
Web: https://doi.org/10.1109/ACCESS.2020.2964317
DOI: 10.1109/ACCESS.2020.2964317

• S. Cebollada, L. Payá, M. Flores, V. Román, A. Peidró, O. Reinoso. A Deep
Learning Tool to Solve Localization in Mobile Autonomous Robotics. ICINCO
2020, 17th International Conference on Informatics in Control, Automation and
Robotics (Lieusaint-Paris, France, 7-9 July, 2020). Ed. INSTICC [43].
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Additionally, there are some results of the present thesis which have not been
published yet. They are expected to be submitted for publication in other journals or
conferences in the near future. These pending publications are:

• A paper about the use of machine learning tools to carry out the hierarchical
localization task, related to Chapter 5.

• A paper about the use of deep learning to solve the localization task, related to
Chapter 6.

1.5 Structure of this Thesis

This document has been organized as follows:

• Chapter 2 presents an up-to-date literature review about autonomous mobile
robots and computer vision used to solve the mapping and localization tasks,
discussing the advantages and drawbacks of using these techniques. After re-
viewing several works tackled in the last few years, this chapter also reviews some
of the artificial intelligence tools which have been related to solve computer vision
tasks.

• Chapter 3 presents a study of techniques used to solve the localization in un-
derfloor voids. On the one hand, novel algorithms based on local features over
images were considered whereas, on the other hand, novel algorithms to carry out
the alignment between point cloud data was also proposed. Concerning this, the
techniques proposed were evaluated in order to study their effectiveness regarding
the error made for each of the methods proposed.

• Chapter 4 presents an exhaustive study regarding the compression of topologi-
cal models to tackle an efficient localization task. For this purpose, the study
considers several items which can play an important role. In this respect, the
developed studies considered: different global-appearance descriptor techniques,
different compression methods, different map dispositions and different distance
metrics to calculate similitude between descriptors. Furthermore, this work also
considers to study how the changes of illumination can affect the localization
carried out through the hierarchical maps created.

• Chapter 5 deals several machine learning techniques to enhance the localization
task. In this respect, auto encoders and CNN intermediate layers are proposed
to create novel global-appearance descriptors which outputs more efficient local-
ization tasks. Besides this, an exhaustive study was developed to study different
layers from a pre-trained CNN (Convolutional Neural Network) in order to obtain
global-appearance descriptors which suit the localization under indoor environ-
ments and also present robustness against changes of illumination conditions.
At the same time, this chapter also presents the study of different classifiers to
carry out the low level map and the use of fitting neural networks for the high
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level maps. Both tools are developed with the aim to obtain more efficient and
robust hierarchical localization tasks.

• Chapter 6 presents a work related to the use of deep learning tools. This work
creates a novel CNN departing from an already created one, but adapted and re-
trained to solve a room classification task within an indoor environment. Further
this, some intermediate layers will be analyzed with the objective to obtain global-
appearance descriptor that present optimal solutions to solve the localization
in the environment trained or even in different environments but with similar
characteristics.

• Last, chapter 7 summarizes the main contributions presented along this thesis,
and also remarks possible future research works derived from these contributions.

1.6 Summary of Materials, Methods, and Discussion of
Results

This section presents a summary of the main materials and methods used for developing
the research lines presented in the present thesis. Additionally, this section exposes
briefly a discussion about the main results obtained in each chapter.

1.6.1 Materials
The following list details the materials used to tackle the research works:

• A 2D laser sensor and a monocular data used to obtain colored point cloud data.

• Vision-based database with omnidirectional and panoramic images captured at
the Miguel Hernández University [209].

• Vision-based database with omnidirectional images under different illumination
conditions captured at three indoor laboratories which are located in three cities:
the Autonomous Intelligent Systems Laboratory at the University of Freiburg,
Germany; the Visual Cognitive Systems Laboratory at the University of Ljubljana,
Slovenia; and the Language Technology Laboratory at the German Research
Center for Artificial Intelligence in Saarbrücken, Germany [222].

• PC with a CPU Intel Core i7-7700 R© at 3.6 GHz with a GPU NVIDIA GEFORCE
GTX 1080TI R©.

1.6.1.1 Methods

The following list details the methods used to tackle the research works:

• Methods to treat the point cloud data through the PCL (Point Cloud Library):
VoxelGrid, downsampling, planar segmentation. These tools were used in chap-
ter 3.
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• Matehmatical tools: Fourier Signature, gist descriptor, HOG descriptor, Eu-
clidean distance, cosine distance, correlation distance, Manhattan distance, ICP
(Iterative Closest Point) algorithm and spectral clustering.

• Several clustering algorithms (k-mean, spectral clustering, etc.) to compress the
visual information which composes the topological maps. These tools were used
in chapter 4.

• Several hierarchical localization algorithms used to estimate the current position
of a robot in a visual hierarchical model. These tools were used in chapter 4,
chapter 5 and chapter 6.

• Different machine learning tools: auto encoders and pre-trained CNNs (Con-
volutional Neural Networks) used to obtain global-appearance descriptors and
classifiers and nerual networks to tackle the hierarchical localization. These tools
were used in chapter 5.

• Data augmentation: technique that enables to significantly increase the diversity
of data available for training models, without actually collecting new data. In
this case, the images obtained from the databases were increased by applying
effects such as changes of illumination, Gaussian noise, random rotation, blur
effect, etc. This technique was used in the Chapters chapter 5 and chapter 6.

• Deep learning tools to develop, train and evaluate a CNN able to solve the hier-
archical localization in an indoor environment. This tool was used in chapter 6.

1.6.1.2 Results and Discussion

Finally, this subsection summarizes and discusses the results obtained from the research
works described in each chapter. These results have been published either in national
and international conferences or in JCR-indexed journals. These publications have been
listed in 5.7.

• Chapter 3: The results presented in this chapter show the robustness and ef-
fectiveness of the two methods proposed to solve the registration task between
poses and their ability to cope with such challenging underfloor environments.

– The first contribution is an algorithm that uses point cloud information
captured by a robot from different poses. After obtaining the point clouds,
they are downsampled and the information in the top and bottom planes
is removed in order to obtain clouds with less points and more robust re-
sults. At the end of this algorithm, the transformation matrix is calculated.
This method works well in environments where the characterization using
regular algorithms is difficult. Most of the current registration algorithms
do not work well in this kind of environments due to the fact that they
are not able to extract reliable features. Additionally, although the regis-
tration algorithms are commonly based on a coarse alignment (using visual
information), a fine alignment (using depth information) and an optional
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optimization, the method proposed here is able to find accurate enough
results just using the depth information.

– As the second contribution, a novel algorithm is proposed to solve the cases
that the alignment between consecutive poses was not possible. This algo-
rithm tries to align the poses which were not well aligned with other poses
within the environment. The results show that this method successfully
aligns the majority of cases. Hence, this can be useful for online localiza-
tion processes to ensure that no information is lost in order to determine the
exact path followed by the robot within the environment. Although extra
computing time is required, no pose information is lost and an accurate
global map can be created.

• Chapter 4: This chapter focuses on studying the mapping and localization tasks
through compression techniques.

– Regarding the mapping task, this work proposes two different methods to
compact topological maps. During the experiments, with the aim of com-
pacting the information of the environment, the number of instances was
reduced to a value in the interval from 10 to 100. That means a reduc-
tion of instances up to between 1.1% and 11.5% of the original number.
The proposed methods are (1) spectral clustering and (2) Self-Organizing
Maps. Moreover, three global-appearance descriptors are used since they
present a good solution for environments whose data size is high. The work
shows that it is possible to reduce considerably the visual information from
the original model. Among these combinations of method-descriptor, spec-
tral clustering together with gist descriptor has been proved to be the best
choice to compact the model.

– As for the localization task, an evaluation is carried out with the aim of
measuring the goodness of the localization task through the use of com-
pact maps and global-appearance descriptors. In this case, three descriptors
and two indoor environments were evaluated. Furthermore, a mixture be-
tween indoor environments was also created with the aim of evaluating
whether it is possible, first, to detect the right environment and second, es-
timate the position of the instance. From this study, HOG is the description
method whose localization results are the best. Additionally, gist presents
the most successful results in order to select the correct environment of a
test instance from a combined dataset. Additionally, this work also ana-
lyzes the utility to solve the localization task hierarchically when substantial
illumination changes are present. A comparative evaluation between four
methods to globally describe images has been carried out: FS, HOG, gist
and a CNN-based descriptor. The work showed that it is possible to keep a
good localization error departing from a compact model. The CNN-based
descriptor and cosine distance has been proved to be the best choice. Nev-
ertheless, this work also proved the efficiency of this localization framework
under severe changes of illumination. Moreover, it has proved that the test
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images under sunny conditions affect more negatively the results than the
night conditions.

• Chapter 5: In this chapter, on the one hand, we have evaluated the use of machine
learning tools to carry out hierarchical localization task with mobile robotics. On
the other hand, a study was also tackled regarding the use of global-appearance
descriptors based on deep learning techniques for localization.

– Regarding the use of deep learning techniques to obtain global-appearance
descriptors for localization, this task was solved as an image retrieval prob-
lem. Five global-appearance descriptors were evaluated: two based on ana-
lytic methods (HOG and gist), two based on auto encoders and one based
on CNN intermediate layers. As conclusion, the minimum localization er-
ror is obtained through the CNN-based descriptor option. The CNN-based
descriptor introduces also the best option regarding the computing time to
calculate the descriptor. Nevertheless, regarding the time to estimate the
pose of the robot, HOG is the fastest. Notwithstanding, using an auto en-
coder which has been trained with images that belong to the environment
outputs good-enough accuracy results to solve efficiently the localization.
As for the use of CNN-based descriptors, we have proved that prior layers
can output interesting descriptors despite they are not fully connected layers
(typically proposed to obtain descriptors), because the obtained descriptors
produce optimal localization solutions among all the methods evaluated:
size of descriptor relatively small, low computing time to calculate the de-
scriptor and very accurate localization.

– As for the use of machine learning tools to improve the hierarchical local-
ization task, the experiments were carried out with an indoor dataset which
contains omnidirectional images and presents dynamic changes, blur effects
and different illumination conditions. The work shows that most of the
machine learning techniques proposed provide good localization results de-
parting from a compact model. First, the classifiers have been validated as
a tool to perform the rough localization. SVM (Support Vector Machine)
and shallow neural network classifiers together with global-appearance de-
scriptors (gist and CNN-fc7) provide high hit ratio to retrieve the corre-
sponding room. Second, a data fitting neural network was proposed for
the fine localization step and it works well for most of the cases. More-
over, these techniques present robustness against changes of illumination.
Third, through the use of spectral clustering, the localization results are
improved in comparison to the ones provided by the ground truth labeling
information.

• Chapter 6: In this chapter, first, we have developed and evaluated a deep learning
tool for visual classification. Second, a study was also tackled regarding the use
of global-appearance descriptors based on the developed deep learning tool for
localization.
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– Regarding the development of the deep learning tool, this chapter presents
the process to train and also to evaluate a Convolutional Neural Network
(CNN) implemented for classification. In this case, the CNN is designed to
estimate the room within the environment where a test image was captured.
First, an architecture is chosen among common architectures developed by
experts, after that, the visual data from an indoor environment is selected
and augmented to train the network. Once the network has been trained,
it is evaluated with new data from the same environment. As conclusion,
the CNN is properly trained to carry out the classification, since it presents
few wrong predictions. Moreover, through analyzing the confusion matrix
obtained from the test dataset, the erroneous predictions are presented in
images whose correct room is adjacent to the wrong room predicted. This
CNN is proposed to be used as tool to tackle the rough localization step of
a hierarchical localization method.

– As for the use of this deep learning tool to obtain holistic descriptors, this
technique basically consists in introducing a test image into the CNN and
obtaining a global-appearance descriptor from a layer of the network. This
description method is evaluated to carry out the localization task. In this
sense, descriptors are obtained from 5 different layers of the CNN (conv4,
conv5, fc6, fc7 and fc8) and their efficiency for localization is measured
by calculating the average localization error and the average computing
time to solve the localization task in an indoor environment. The results
obtained proved to be more efficient than the results obtained by mean
of classical analytic description methods (gist and HOG). Afterwards, two
whole hierarchical localization methods are proposed. The first one con-
sists in using the CNN in the rough step to predict the room where the test
image was captured. After that, the holistic descriptor is obtained from a
layer of the CNN and this descriptor is compared through a nearest neigh-
bour search with all the descriptors contained in the room estimated. In
this way, the localization results keep the accuracy whereas the computing
time is reduced, since less comparisons are conducted. The two hierarchi-
cal localization method proposed is quite similar to the previous one but
introducing a confidence threshold. This is due to the fact that the results
obtained from the hierarchical localization method proved that there is a
light worsening of the localization error, since the CNN occasionally fails
to estimate the room. Through analyzing the results obtained from the
CNN to estimate the room, we appreciate different likelihood values of the
classification layer depending whether the CNN success or fails. Hence,
this hierarchical localization method establishes a threshold regarding the
likelihood values of the classification layer. In this way, when the CNN is
not “completely sure” about which room is the correct one, the fine lo-
calization step is carried out with all the data contained in the most likely
rooms. Through this second method, the localization error is reduced in
comparison to the results obtained with the first hierarchical localization
method proposed.
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2 State of the Art

2.1 Mobile Autonomous Robots

The presence of autonomous robots in many kinds of environments has increased
substantially during the last few years. The aim of these systems is to provide a
service regarding a specific task. Robots have been commonly used to carry out either
hazardous, repetitive or highly accurate tasks. For example, Baldawi [14] proposes the
use of a robot to carry out duties of firefighters, Longo and Muscato [163] propose
a climbing robot to inspect non-porous vertical walls, some authors have proposed
the use of the da Vinci Surgical System, which is controlled by a surgeon with the
objective to facilitate complex surgeries ([29] and [146]). Regarding the autonomous
mobile robots, they are designed to carry out a specific task throughout traveling along
an environment of work [253]. This type of robot eases a wide variety of tasks such
as floor cleaning [322], exploration within hazardous environments [263], or planetary
exploration [300] (see fig. 2.1).

In order to develop the task desired, they must be able to localize themselves
and to navigate through environments that are beforehand unknown. Hence, the robot
has to carry out the mapping task, which consists in obtaining information from the
environment and creating a model which represents it. Once this task is done, the
robot is able to address the localization task, i.e., estimating its position within the
environment with respect to a specific reference system (see fig. 2.2). Concerning
navigation, this task basically involves solving the problem to find out how the robot
can get to other places from its current position [152]. That is, make a trajectory to
reach a certain place. Mapping, localization, and navigation are the classic problems
of mobile robotics. They have attracted a great attention and nowadays continue
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(a) (b)

Figure 2.1: (a) Example of the Mars Exploration Rover. Image extracted by NASA JPL
Cornell University, Maas Digital LLC. (b) Mopping vacuum cleaner Robot. Image obtained by
Mamirobothk [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0)].

being a prominent research area, since a robust solution to these problems is critical to
increase the autonomy of mobile robots and subsequently expand their use for other
applications. Several authors have proposed different methods for performing these
tasks. Some relevant examples are presented in the following subsections.

2.1.1 Mapping
To perform mobile robotics tasks, the robot must be provided with relevant informa-
tion about the environment. To do this, the robots are equipped with sensors that
allow them to obtain information from the environment. Subsequently, robots need
to process the data captured from the environment and transform it into useful infor-
mation for their tasks. The related literature highlights two main frameworks: metric
and topological maps. On the one hand, metric maps are a grid-based representation,
that is, they represent the environment with geometric accuracy. On the other hand,
topological maps lead a graphical representation, that is, the environment is described
as graphs that contain locations and relate to each other with links.

A wide range of works have been recently addressed regarding this task. For
example, Markom et al. [172] solve the mapping task through using a low cost laser
rangefinder. Sünderhau et al. [267] propose a system based on convolutional network
which learns to recognise new semantic classes online while the robot is navigating
along an environment. Kuric et al. [140] developed a software which uses the metric
form of space representation to get a multilayer map system suitable for different tasks
of mobile robot. More recently, Rao et al. [227] propose a work to create a map of an
indoor environment through using Lidar and other sensors and perform autonomous
navigation with using capabilities like dynamic obstacle avoidance, speech recognition
and video streaming. Many other examples can be found regarding this task. Some
of them can be found in the work presented by Kostavelis and Gasteratos [134], which
presents an exhaustive survey about semantic mapping for mobile robotics tasks.

18



2.1. Mobile Autonomous Robots

Regarding the map typology for visual mapping, in the related literature, two
main frameworks have been commonly proposed: the metric and the topological maps.
As for the metric maps, they represent the environment with geometric accuracy by
representing some features from the environment regarding a reference system. For
example, Gil et al. [87] propose an approach to the SLAM task by using a team of
autonomous vehicles equipped with vision sensors. The metric map is built by the
position of the robots in the movement plane and local features extracted with vision
systems. Regarding the topological maps, they describe the environment as a graph
that contains a set of locations with the related links among them. For instance,
Fraundorfer et al. [78] create an online topological representation during robot explo-
ration based on visual information. Blochliger et al. [26] propose a framework which
simplifies the navigation task by transforming a sparse feature-based map from a visual
SLAM system into a three-dimensional topological map. Garcia-Fidalgo and Ortiz [85]
presented a review about the main approaches considered to carry out topological map-
ping and localization through visual information in the last years. More recently, da
Silva et al. [57] propose a localization and navigation approach for mobile robots using
topological maps and using CNN to obtain descriptors from omnidirectional images.

Apart from these options, arranging the information hierarchically is an efficient
alternative. This framework consists of creating a map that consists of several layers
with a hierarchical structure. The high-level layers present a relatively compact amount
of information, allowing for an approximate but rapid localization. Low-level layers
usually have more information and are used to refine the position. Hence, in order to
address the mapping and localization issue, hierarchical maps constitute an efficient
alternative, like the works [207], [96] and [110] show. A good example of this issue was
developed by Štimec et al. [264], who proposed an unsupervised hierarchical mapping
method. Kuipers et al. [138] propose a hierarchically hybrid map, which consists in
using a metrical map to build local maps of small-scale space and topological maps
to represent the structure of large-scale space. This approach is proposed to solve the
SLAM task in an environment with multiple nested large-scale loops.

2.1.2 Localization

To perform the localization task, the environment must be modeled in advance. There-
fore, in this way, first the robot performs the mapping task and then, once the map
is available, the localization can be performed. Recently related literature presents a
wide variety of works. For instance, Memon et al. [177] propose a model which ad-
dresses localization of two fire detecting mobile robots on a round lattice in a dynamic
domain. Nazemzadeh et al. [198] propose a technique to fuse odometry and gyroscope
data with position and heading measurements based on quick response (QR) code
landmark recognition to carry out an optimal localization task which minimizes the
error. Sahdev and Tsotsos [239] present a method for mobile robots which allow them
to learn from experience and then to recognise previously observed places in known
environments and also to categorize previously unseen places in new environments. A
review of localization-related works is presented by Chen et al. in [50].
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Figure 2.2: Mapping and localization tasks overview. On the left side (a), a representation of
the environment in a reference system is built by obtaining information. On the right side (b),
once the model is built, the robot has to be able to estimate its position within the environment
through comparing the data acquired in its current position and the data contained in the model.

Moreover, the related literature has also studied a combination of both tasks
that can be performed at the same time. This concept is known as Simultaneous
Localization And Mapping (SLAM). This process basically consists in knowing the en-
vironment as the robot moves around it and, at the same time, estimating its position
and orientation. For example, DaMota et al. [56] present a work in which a SLAM task
is conducted through a petri net (PN) and radio-frequency identification (RFID) tech-
nology. Li et al. [153] introduce a technique that uses visual circle and corner features
as landmarks in the scene and improves the SLAM process stability using saliency mea-
surement. A wide survey of visual SLAM algorithms is presented by Fuentes-Pacheco
et al. in [81].

2.2 Data Acquisition Systems

With regard to the mapping and localization process, the robot requires one or several
sensors to capture information from the surroundings. Over the last years, many
authors have proposed many different sensors to use to solve the tasks. For instance,
Shen et al. [249] propose a mobile robot system using LIDAR (Light Detection and
Ranging) to solve the SLAM task in indoor and unknown environments. Doi et al. [64]
use GPS (Global Positioning Systems) with an extended Kalman filter (EKF) to carry
out a path planning method for off-road mobile robots. Silva Almeida et al. [254]
have developed an exhaustive analysis regarding the use of omnidirectional SONAR
(SOund Navigation And Ranging) along with machine learning techniques to tackle
the localization in an unknown environment. The present thesis focuses on the use of
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depth data acquired from laser scanners and fundamentally on the use of vision data
acquired from omnidirectional cameras.

2.2.1 Depth Data

Regarding the use of depth data obtained from laser scanners in mobile robotics, these
devices can capture point clouds from specific poses of the environment. For example,
Yang et al. [309] have proposed series of approaches to solve the problem of the mobile
robot motion control and autonomous navigation through using 3-D laser scanning
in large-scale outdoor for environments where GPS is not available. The localization
task is usually solved by registration between two point clouds captured in different
poses of the robot. Registration basically consists in estimating the translation and the
rotation between one fixed point cloud and a moving point cloud. The most common
registration algorithm is ICP (Iterative Closest Point) [23], however, many variations of
this method have been proposed, such as the one presented in [246], where plane-plane
matchesare considered instead of point-to-point, or [10], where SVD (Singular Value
Decomposition) is used to calculate the transformation matrix. Jost and Hügli use a
heuristic approach to find the nearest points and thus reduce complexity and speed up
the process [118]. Despite the robustness of this information, there are some authors
who extract key points (presented in subsection 2.4) from the visual information and
then use in-depth data to estimate the position of the robot. Fig 3.5 shows this process.
For example, Endres et al. [71] use SURF, SIFT, or ORB to match features in pairs
and then a point-to-point registration algorithm. Henry et al. [102] also use SIFT,
but use point-to-point ICP instead of point-to-point ICP. More recently, Cappelletto
et al. [36] use color information to weight the distances between matching points in
the ICP algorithm. For more information, an extensive comparison can be found on
the methods presented in [301].
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Figure 2.3: Schematic overview of the registration approach based on visual and depth data. A
coarse alignment algorithm is tackled by using visual descriptors and, after that, a registration
algorithm is tackled between two point clouds and using the initial transformation matrix obtained
from the previous step.
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2.2.2 Vision Data
These types of sensors have been widely used to address the tasks of mobile robotics.
Many authors have proposed using visual information to solve mapping and localization
tasks, as vision sensors are usually cheaper than other sensors such as laser or GPS
scanners. In this way, Reinoso and Payá [229] present a special issue on some of the
possibilities offered by vision systems, focusing on the different configurations that can
be used and new applications, from mapping to navigation of mobile robots until the
recognition of objects or scene reconstruction. The vision-based robot systems pro-
vide a “see and move” fashion or in real-time mode. By using these types of sensors,
the amount of information collected may be enough to address most of the problems
related to mobile robotics. In addition, these sensors present a relatively low cost alter-
native as they maintain a good enough accuracy. Nonetheless, these approaches have
disadvantages, such as their sensitivity to changes in lighting conditions. For instance,
underground environments can be completely dark and lighting is only provided by
sources installed in a specific position in the environment and/or in the robot itself.
For this reason the shadows will probably provoke inaccuracies [41, 208].

As for the type of cameras and the different configurations proposed, omnidirec-
tional cameras are a good alternative. They are capable of providing a high quantity
of information about the environment around them, with a 360-degree field of view,
with a single snapshot. Their cost is also relatively low compared to other types of
sensors. In addition, omnidirectional vision systems have additional advantages. For
example, the characteristics of the images are more stable (because they remain longer
as the robot moves) and allow to estimate both the position and the orientation of
the robot. As mentioned previously, omnidirectional cameras have been successfully
used by different authors for mapping and localization [284],[213], [271], [191], [179].
A wide state of the art review was carried out by Payá et al. [211], which presents
the most relevant localization and mapping algorithms developed with omnidirectional
visual information.

2.3 Artificial Intelligence Tools

In recent years, various tools and techniques based on artificial intelligence (AI) have
been shown to be capable of addressing a variety of problems with a deep data treat-
ment. The use of these techniques has become very popular among mobile robotics.
The present thesis has studied the use of different Artifical Intelligence (AI) tools to
carry out more efficiently the visual mapping and localization tasks.

Regarding machine learning methods, they try to automate the construction
of analytic models from data analysis. These methods are based on the idea that
the systems can learn to identify patterns departing from the data. Common machine
learning techniques include decision trees, support vector machines and ensemble meth-
ods. Numerous works regarding the use of machine learning tools together with visual
information can be found in the related literature. For example, Zhang and Wu [316]
use a method based on kSVM (Kernel Support Vector Machine) with the aim of clas-
sifying images of fruits; Murthy and Jadon [193] use feed-forward neural networks
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to detect hand gestures; and Fan et al. [73] use a feed-forward neural network with
back-propagation to predict the texture characteristics from food surface images. Fur-
thermore, in recent years, machine learning techniques have contributed to solve a
variety of problems in mobile robotics. For instance, Triebel [277] proposes the Infor-
mative Vector Machine (IVM) classifier for semantic mapping in autonomous mobile
robotics; Duguleana and Mogan [69] propose a path planning algorithm based on the
use of Q-learning and artificial neural networks for mobile robots obstacle avoidance;
Gonzalez et al. [88] use machine learning to detect different levels of slip for robotic
missions in Mars; and Dymczyk et al. [70] propose the use of a boosted classifier to
classify landmark observations and carry out the localization task in a more robust
fashion.

As for deep learning, this branch belongs to the Machine learning and these
methods try to construct automatically high level data models through architectures
that allow linear, non-linear, multiple and iterative transformations [20] from the initial
data matrices. The idea is to train the architecture to reach a model that is capable
of creating representations which best define the inputs. Many deep learning tools
have been applied over fields such as computer vision [32], speech recognition [142] or
audio-visual recognition [3] and they have proved to performance cutting-edge results
for many tasks. The present thesis studies the use of deep learning to address the
mapping and localization tasks by using computer vision. A wide review can be found
in the work presented by Voulodimos et al. in [289].

2.3.1 Definition and Areas of Use
Some definitions of artificial intelligence can be highlighted among the definitions found
in the related literature. For example, Minsky [184] defined AI as “the science of making
machines do things that would require intelligence if done by men”. Charniak et al. [48]
defined it as “the study of mental faculties through the use of computational model”.
Within the recent past, Schalkoff [243], defines AI as “a field of study that seeks to
explain and emulate intelligent behavior in terms of computational process”. As for
the birth of AI, many researchers believe this happened during World War II, when
scientist Alan Turing worked to decipher the ‘Enigma’ code used by German forces to
send messages securely. Turing and his team created the Bombe machine, which was
used to decipher Enigma messages. Both Enigma and Bombe Machines are considered
the foundations of artificial intelligence [228]. Focusing on the use of AI to solve
robotics tasks, this science can be defined as a set of techniques that are applied in
computer programming to solve problems whose difficulty requires a certain degree of
intelligence.

AI has been widely used in different areas. Depending on the type of manipula-
tion, we can establish two categories: physical manipulation and thinking manipulation.
In terms of physical manipulation, it covers the fields of artificial vision, robotics, and
control systems. For instance, Vyborny et al. [290] have successfully used computer
vision along with AI in mammograms to detect or characterize abnormalities in digital
images. With the help of this approach, radiologists are capable of detecting abnormal-
ities better and thus, errors in the interpretation of mammograms are greatly reduced.
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Another example of computer vision and AI is proposed by Wachs et al. [291], who
propose vision-based hand gesture recognition for human interaction with the computer
based on an artificial neural network, fuzzy logic, and genetics algorithms. Concerning
the use of Artificial Intelligence for Robotics, Singh and Parhi [256] propose a neural
network to solve the problem of route and time optimization of mobile robots. The
inputs to the proposed neural controller consist of distances to the obstacles with re-
spect to the position of the robot and the angle of the target. The output of the
neural network is the angle of direction. De Momi and Ferrigno [60] propose a back-
propagation algorithm in the healthcare field with the aim of assisting surgeons with
a robotic system controlled by a high-level intelligent controller capable of collecting
and integrating surgeon information, diagnostic imaging, and a series of sensors in the
field. As for the use of control systems, Wong et al. [302] propose a novel modeling
and optimization approach for the tuning of the performance in permanent and tran-
sient regime of an engine at idle. Regarding electrical control, a genetic algorithm and
particle swarm optimization are applied to obtain an optimal fit of the control unit
automatically. Gadoue et al. [82] present a comparison between four different speed
controller design strategies based on AI techniques; two are based on the fit of con-
ventional PI (Proportional-Integral) controllers, the third makes use of a fuzzy logic
controller and the last is based on hybrid fuzzy slider control theory.

In terms of thought manipulation, this branch covers fields such as Natural
Language Processing, Data Mining, Neural Networks, Machine Learning, and Pattern
Recognition. A wide amount of works can be found in the related literature. To cite a
few examples, Kohavi and Quinlan [129] present data mining tasks by using decision-
tree discovery for classification. Xing et al. [305] propose a learning-based framework
for robust and automatic kernel segmentation with shape preservation.. Krittanawong
et al. [135] review recent applications of AI in cardiovascular clinical care and discuss
its potential role in facilitating precision cardiovascular medicine. Calderon et al. [33]
carry out the design and development of the system architecture to recognition of Elec-
tromyography signal patterns by using Feedforward-backpropagation Artificial Neural
Network. Minaei-Bidgoli et al. [183] introduce an approach to classify students in
order to predict their final grade based on features extracted from big data recorded
in a web-based education system and also propose the use of a genetic algorithm for
learning an adequate weighting of characteristics.

2.3.2 Applications of AI
After introducing some AI definitions and examples of use, this subsection focuses on
the main applications of AI that have been developed during the past few years.

Self-driving or autonomous navigation means that a vehicle can plan its path
and execute it without human intervention. This task is addressed by using data
captured from sensors on board the vehicle and sometimes by using remote navigation
aids [181]. This application is quite common in vehicles such as cars and trucks, but
also for robots and UAVs (Unmanned Aerial Vehicles). Interest in such applications has
increased in recent years due to the desire to develop a fully autonomous vehicle with
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the main goal of reducing traffic accidents caused by humans. These systems basically
consist of a mobile platform that integrates a set of sensors. The data collected by the
sensors provide the perception of the environment. This information can be processed
through AI algorithms with the aim of tackling the task of path-planning to move
around the environment with minimal human intervention. Autonomous navigation
also considers tasks such as move-on-route, obstacle detection and avoidance and
leader/follower capabilities.

As for the use of AI for this application, a considerable number of works have
been developed in recent years. Li et al. [155] introduce a fully autonomous navigation
system for a smart microvehicle with a CCD camera (Charge-Coupled Device), an AI
planner, and a magnetic field generator. The AI planner is divided into three functional
modules: a computer vision module to track the microvessel and detect obstacles in its
environment; a motion planner that generates an optimal unobstructed route between
the point of departure and the destination; and a magnetic motion controller for ma-
nipulating the movement of the microvessel along a predesigned trajectory. Polvara et
al. [220] propose a path planning and collision detection methods for autonomous Un-
manned Surface Vehicles by using artificial neural networks and evolutionary algorithms.
Sharma et al. [248] apply artificial intelligence to protect wireless communications from
connected vehicles, which facilitates the exchange of security messages to prevent col-
lisions in autonomous vehicles. The AI system learns to increase its ability to discern
and recognize its environment. Badue et al. [13] conduct a survey on the state of
the art in standalone performances focusing on published work since the birth of the
DARPA (Defense Advanced Research Projects Agency) challenges. This survey focuses
on perception systems and decision-making systems based on methods that make use
of AI.

As forface detection, this is the preliminary step for face recognition, and it
basically consists of detecting faces in images. These tasks have played an important
role in robotics issues such as surveillance [122] and home service robots [116]. The
face detection task can be addressed in two steps [308]. The first step is to find out if
there is any face in a given image or not. The second step, if there is any face within
the image, is to calculate where it is located. In the related literature, many works in
this field can be found. Romdhani et al. [231] propose a face detection algorithm that
is based on running an observation window in all possible positions and using SVM to
determine if a face is contained within the window. Ahuja et al. [122] propose local
Binary Patterns (LBPs) to detect the ROI (Region Of Interest) of the face within the
image and a Haar feature-based cascade classifiers for developing the face recognition.
However, the revolution in this task comes when Viola and Jones [288] introduced
the real-time face detector, which is capable of detecting faces in real time with high
accuracy. The three main contributions of this work are the introduction of a new
image representation that allows fast calculations, a simple and efficient classifier built
through the AdaBoost learning algorithm [79] to select a small number of critical
visual features from a very large set of potential features, and a method that combines
cascading classifiers, allowing you to quickly reject background regions and spend more
calculations on promising face-shaped regions. This task has been widely used to
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identify multiple appearances in smartphone cameras [95]. Currently, face detection
is usually proposed in any type of storage system or social media such as Google or
Facebook, which use face detection in images uploaded to social media. [223].

Subsequently, face recognition is presented as a system for verifying the identity
of a person identity between a set of candidates using as input a facial image and
a database of facial images of known people [113]. This task has aroused enormous
interest in the automatic processing of digital images in order to solve a variety of
applications such as biometric authentication or surveillance [114]. Face recognition
has been proposed during the past few years as an identification system in the same
way that fingerprint and iris were proposed before. According to Abate et al. [2], face
recognition systems fall into two categories: verification and identification. As for face
verification, it is a one-to-one match that compares an image of a face, whose identity
has to be recovered, against a template face. Furthermore, concerning face identifica-
tion, it is a one-to-many problem that compares a candidate face image with all image
templates that are contained in a face database with the goal to determine the identity
of the candidate face. This application has been addressed for several purposes. For
example, Kim [125] a security system that performs an automatic recognition for veri-
fication between the passport photo and the face of the individual; this work proposes
a clustering algorithm that creates adaptive clusters to variations in input patterns and
applies them to the extracted areas for recognition. In terms of surveillance, CCTVs
(Closed-circuit television)can be used to search for someone. Wang et al. [296] use
face recognition in real-world surveillance. They propose a CNN which is trained with a
labeled dataset and subsequently proposes to recognize people on campus surveillance
system.

Concerning objects recognition and categorization, these tasks have played
an important role in robotics regarding building object-based representations of the
environment and object manipulation. Object recognition basically involves detecting
an object instance and object categorization involves classifying a specific object (such
as a pen or a keyboard). [161]. Gao et al. [83] propose an object classification method
using RGB-D data to train a convolutional neural network with the goal of detecting
and categorizing common objects in an autonomous vehicle environment such as pedes-
trians, cyclists, trucks or even other cars. In a similar way, Zhu et al. [321] introduce
a CNN to detect and classify traffic signs. In addition, there are several jobs that use
this application to additionally perform a pose estimate of detected objects. Kanezaki
et al. [121] propose CNNs to categorize objects from multi-view images and estimate
their position. Wei et al. [297] developed an end-to-end Mask-CNN model that selects
deep convolutional descriptors for fine-grained object recognition. Zaki et al. [313] pro-
pose a multi-scale feature representation based on a convolutional hypercube pyramid
(HP-CNN) that is capable of performing a categorization of invariant semantic scenes
and objects from the point of view.

Object manipulation or manipulation planning is a task related to the motion
planning, but the focus is not on the movement of the robot, but on the objects to be
manipulated. This task basically consists of changing the position and/or orientation
of a specific object (or set of objects), avoiding collisions or breaking the objects
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involved [117]. Interest in this application has increased substantially in recent decades
with the aim of replacing human workers in challenging (due to the required accuracy)
or dangerous tasks, especially in industrial, health and domestic environments [258].
Many works on manipulations and planning can be found in the bibliography that are
based on AI tools. For example, Boularias et al. [30] introduce a robot system to
catch objects in a dense clutter by using depth images. To do this, the robot learns
to manipulate objects by trial and error using a decision-making problem based on a
reinforcement learning framework. Yang et al. [310] propose a system that learns the
action of manipulation by processing Internet videos using two CNNs, one for classifying
the type of manual capture and the other for object recognition. Matas et al. [175]
present a combination of state-of-the-art deep reinforcement learning algorithms to
solve the problem of handling deformable objects.

2.3.3 Frameworks Commonly Proposed for Mapping and
Localization

After presenting some definitions and common applications of AI in the field of robotics,
this subsection presents some of the most popular AI tools used to address mapping
and localization in mobile robotics.

2.3.3.1 Machine Learning Classifiers

Classification is a task that predicts the class or category to which an ‘object’ belongs.
The object is also known as a pattern and is assumed to belong to a single class
among a set of categories. Each pattern is represented by a set of measures known as
characteristics, which must provide sufficient class discriminatory information to predict
the category of the pattern with high probability. [273]. Normally, n feature variables,
x1, ..., xn, are selected and arranged in a feature vector, x ∈ Rn. The goal is to train
a classifier whose function (or set of functions) f(x) in Rn is capable of estimating the
class which the pattern belongs to.

This technique has been widely used to solve a variety of problems. For instance,
Atkinson and Campos [12]propose a feature-based emotion recognition model using a
multi-class SVM with EEG-based brain-computer interfaces. Narudin et al. [195] use
different machine learning classifiers to detect malware on mobile phones using the
anomaly-based approach. As for the field of computer vision, there is a wide range of
work using classifiers. For example, Korytkowski et al. [133] introduce a fuzzy classifier
with local image features to do object classification. Zhang et al. [314] propose an
automatic method for detecting defective apples by using a weighted relevance vector
(RVM) machine classifier. Aguilar et al. [4] propose a pedestrian detector for UAVs
based on a combination of Haar-LBP features with Adaboost and using cascading
classifiers with Meanshift.

2.3.3.2 Clustering

Classifiers, as described in the previous section, is a technique based on supervision,
i.e. you need properly labeled data to carry out the training process. In this case,
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clustering is an unsupervised technique, where class labeling of training patterns is
not available. Therefore, the main goal is to know the organization of patterns into
clusters (also known as groups). To organize specific data into clusters, a clustering
(or several) criterion must be established. Then, each pattern is categorized into its
respective group and each group is characterized by the common attributes of the data
that belongs to it. [274].

This artificial intelligence tool has been commonly proposed in a wide range of
fields related to robotics and computer vision. For instance, Dhanachandra et al. [62]
propose image segmentation by means of k-means clustering. Schroff et al. [245] pro-
pose a system based on clustering and face recognition approach that directly learns a
measure of facial similarity. Fan et al. [74] an unsupervised progressive learning method
based on pedestrian pooling and fine-tuning a CNN to transfer previously trained deep
representations to invisible domains. Wang et al. [293] propose an improvement in 3D
object recognition by introducing a view clustering and pooling layer based on dominant
sets. Additionally, clustering methods have been proposed to compress the informa-
tion to obtain the high-level layers of hierarchical maps. This type of approaches have
proved to be more effective than the traditional mapping methods when the data size
is high. Furthermore, the Spectral Clustering developed by Ng et al. [200] confirmed to
be a good solution to compress global-appearance description information [281, 264].

2.3.3.3 Deep Feedforward Networks

Deep feedforward networks, also known as feedforward neural networks or multilayer
perceptrons (MLPs), are models of deep learning whose goal is to approach some
function f∗. This network defines a mapping y = f(x;φ) where x and y are respectively
the input and output data.This network learns the value of the φ parameters that
best approximate the function f [90]. These models perform a flow through the
f function evaluating from x to output y. However, these models do not provide
feedback connections, that is, the model results are not fed back into the model itself.
During training, the goal is to make f(x) match f∗(x):training data is provided and
f∗(x) is evaluated with this data. In addition, a label y is included with each example
x to achieve y ≈ f∗(x).

These networks are extremely important in machine learning, as they are the
basis of many applications. For example, many object recognition approaches are
based on such models. Like the work of Mostajabi et al. [188], who propose a feedback
architecture for semantic segmentation to address a rich representation of features that
is used for object recognition.

2.3.3.4 Autoencoders

An autoencoder is a neural network architecture composed basically of an encoder and
decoder system whose goal is to find a compressed representation of the given input
data. The process involves finding a representation or code to make useful transforma-
tions about the input data. Traditionally, autoencoders were proposed for dimensional-
ity reduction or even for feature learning [90]. Denoising autoencoders try to find code
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that can convert noisy data into clean data. In addition, autoencoders are also used to
perform coloring, function arithmetic, detection, tracking, and segmentation, among
others. As for the encoder, it transforms the input data x into a latent low-dimensional
representation h = f(x). This latent representation is a low-dimensional vector. The
encoder learns to extract the most important features from the input data. As for the
decoder, it retrieves the input data from the latent representation, r = g(h) with the
goal that g(f(x)) = r, with r being the closest possible at x. Overall, the encoder and
decoder are non-linear functions and the dimension of the latent representation h is
considerably smaller than the input dimensions. Like other neural networks studied, the
autoencoder attempts to minimize a loss function during the training process. The loss
function is set to measure how different input x and rebuilt input r are. For example,
the Mean Squared Error (MSE) is used for this purpose.

L(x, r) = MSE = 1
m

i=m∑
i=1

(xi − ri) (2.1)

where m is the output dimensions (m = width× height× channels).

Autoencoders have been a successful tool for dimensional reduction and also
for information retrieval. In terms of dimensionality reduction, this tool has provided
reconstructions with a lower error rate than with other techniques such as PCA (Prin-
cipal Component Analysis) [104]. Hence, by improving the representations of smaller
dimensions, other related tasks have also been improved. First, in sorting tasks, au-
toencoders provide a model with fewer memory requirements and computational time
consumption [168]. Second, by reducing dimensionality, information retrieval can be
tackled more efficiently. With the use of autoencoders and their related dimension-
ality reduction, exhaustive search becomes more efficient. For instance, Pfeiffer et
al. [218] present a study on classification learning approaches and refining queries for
information retrieval in the pharmacogenomic domain. Zhu et al. [321] propose us-
ing an autoencoder for learning features from 2D images with the goal of performing
3D shape retrieval. In addition, autoencodershave been widely proposed to produce
binary and low-dimensional encodings. This way, entries of a database can be stored
in a hash table and information retrieval can be performed by returning all entries
that have the same binary code as the query. To cite one example of this approach,
Carreira-Perpinán, and Raziperchikolaei [37] introduce a fast search in image databases
with binary hashing, where each high-dimensional, real-valued image is mapped with
an autoencoder into a binary vector of low dimension and the search is performed in
this binary space. In addition to these examples, many others can be found in the
related literature on the use of autoencoders for mobile robotics. Sergeant et al. [247]
tackle a navigation task by using a deep autoencoder that learns to navigate from
sensory data stored in a dataset. Wang et al. [294] propose an autoencoder for the
fusion and extraction of multiple visual characteristics of different sensors with the aim
of carrying out a movement planning based on deep reinforcement learning. Fig. 5.5
shows the architecture design of the autoencoders for this purpose.
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Figure 2.4: Autoencoder architecture design and extraction of features departing from the latent
representation.

2.3.3.5 Convolutional Neural Networks

Convolutional Neural Networks tool, commonly known for its acronym (CNNs), are
currently the most popular tool among the deep learning techniques developed, as
they have resulted in successful results in many practical applications. They are a type
of specialized neural network for processing data that has an already known topology.
These networks are commonly designed to receive images as input and have different ap-
plications such as classification or object detection. These types of networks are based
on the use of convolutions, which is a specialized type of linear mathematical opera-
tion [90]. This means that while traditional neural networks use matrix multiplication
with a separate parameter that describes the interaction between inputs and outputs,
CNNs use specific and significant features obtained from the input data. CNNs con-
sist of local connections between neurons and hierarchically organized transformations
of data. Basically, CNNs are made up of three types of neural layers: convolutional
layers, pooling layers, and fully connected layers. Each layer transforms the input and
generates an output according to the established parameters. This process is addressed
through several layers until the last layer is reached, which is a fully connected layer
that generates a 1D feature vector that provides the most likely prediction.

Well-known CNN architectures have been used as a starting point to develop new
artificial vision tasks. For example, AlexNet was presented by Krizhevsky et al. [136].
As shown in fig. 2.5, this network consists of eight layers (five convolutional layers
and three fully connected layers) with a final 1000-way softmax and three grouping
layers. The input image is 227× 227× 3 and the network was trained to classify 1000
categories of objects, such as keyboards, pencils, and a variety of animals. GoogLeNet
was proposed by Szegedy et al. [268]. This network has 22 layers, is also trained for
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object classification, but uses 12 times fewer parameters than AlexNet. An extensive
review of the top CNNs can be found in [206]. In addition, table 2.1 shows a summary
chart of the most popular CNNs.

Moreover, there are other options that permit reusing robust CNNs that have
yielded successful results, to solve different input image problems. On the one hand, the
transfer learning technique involves the process of retraining a pre-trained network to
classify a new set of images, that is, reusing the architecture, weights, and parameters
of a CNN. which already works properly as a starting point for building a new CNN for
a different purpose. The main idea is to take advantage of most of the intermediate
layers, as their parameters have been fine-tuned with a large number of images. The
problem, then, comes down to changing the final layers (to readjust to the proposed
new task) and perhaps the initial layers (if the size of the images does not match the
size used previously). Once the new network is established, the training process begins
by using the new input data. The components needed for transfer learning are: pre-
trained network layers, training data, and algorithm options. Therefore, this technique
can save a considerable amount of time for training and even generate better results
from creating a new network from scratch. This idea has been used by many authors.
For instance, Han et al. [97] use CNN transfer learning along with augmented data to
overcome good solutions despite the small size of the data sets used. In addition, as
mentioned above, Wozniak et al. [303] use the transfer learning technique to retrain
the VGG-F network and retrain it to classify places among 16 rooms acquired by a
humanoid robot. On the other hand, many authors have also proposed the use of
intermediate layers to generate global-appearance descriptors of the input image. In
this sense, once the network is properly available to tackle the desired task, the hidden
layers perform a vector description that can be used to characterize the input data.
This idea has been exploited by some authors such as Arroyo et al. [8], who use a CNN
that automatically learns to generate robust visual descriptors in the face of station
changes, to perform a robust topological localization. Wozniak et al. [303] also use
the features extracted from the fc6 layer to train a linear classifier SVM. Mancini et
al. [170] use this visual information to perform site categorization with a Naïve Bayes
classifier.

Table 2.1: Summary of the most popular CNNs developed in recent years.

CNN Year Developed
by

No. of
convolutional layers

No. of
parameters

LeNet 1998 LeCun et al. [145] 5 60,000
AlexNet 2012 Krizhevsky et al. [136] 8 60 million

GoogLeNet 2014 Szegedy et al. [268]
(Google company) 22 4 million

VGG Net 2014 Simonyan and
Zisserman [255] 19 138 million

Inception 2015 Szegedy et al. [268] 65 5 million
ResNet 2016 He et al. [101] 152 25.6 million
Xception 2017 Chollet [52] 42 23 million
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Figure 2.5: AlexNet architecture. Input images are 227×227×3 and output can classify objects
into 1000 categories.

As for the use of CNN to solve robotics tasks through visual information, there
are many works that have yielded successful results when using this technique. For
example, Sinha et al. [257] propose a CNN to process data from a monocular camera
and address precise relocalization of the robot in indoor and outdoor environments
without GPS. Wozniak et al. [303] use a transfer learning technique to retrain an
existing CNN and retrain it to classify places among 16 rooms the image data was
acquired by a humanoid robot. Payá et al. [213] propose using CNN-based descriptors
to create hierarchical visual models for mobile robots localization. Chaves et al. [49]
propose a CNN to construct a semantic map by means of using the network to detect
objects in images, and then the results are placed within a geometric map of the
environment. Xu et al. [306] propose a multi-sensor-based global indoor localization
system that integrates visual localization with the help of CNN-based image retrieval
with a Monte Carlo probabilistic approach.

2.3.3.6 Regression neural networks

Regression neural networks are among the most popular deep learning tools. Deep
neural networks are well known for classification problems, where the goal is to predict
a single discrete label of input data. However, the regression problem is to obtain
a continuous value. Hence, this type of network has been commonly proposed for
continuous predictions like forecasting. Bilgili and Sahin [25] propose an analysis of
regression neural network models to predict wind speed; and Kumar et al. [139] in-
troduce a study on regression neural networks to estimate monthly mean global solar
radiation. These models have also been proposed for other types of predictions, such
as medical diagnoses. For example, Kayaer and Yıldırım [123] propose using a general
regression neural network to diagnose diabetes. Ferreira et al. [76] use a general re-
gression neural network to build the foundation of an adaptive neuro-fuzzy system and
to tackle a foot control of an autonomous bipedal robot. Regarding mobile robotics,
the related literature also presents different application examples. Wang et al. [295]
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use a general regression neural network to approximate the functional relationship be-
tween high-dimensional map features and robot states. Rahman et al. [226] propose
a location estimation algorithm using a generalized regression neural network and a
wireless sensor network (WSN). Dezfoulian et al. [61] propose a method to interpret
the data from various types of two-dimensional range sensors and a regression of the
neural network to perform the navigation task.

2.4 Visual Description Methods

As presented in subsection 2.2.2, vision sensors have been widely used for mobile
robotics purposes. However, images are highly dimensional data and they also change
for several reasons apart from the movement of the robot, such as change of illumina-
tion or position of some objects that constitute the environment. Hence, the way to
work with these data consists commonly in extracting the most relevant and invariant
information from scenes. In this regard, two main approaches have been commonly
proposed to extract the most relevant information from scenes; either by detecting, de-
scribing and tracking some relevant landmarks, or by working with global-appearance
algorithms, that is, by building a unique descriptor for the image. On the one hand,
methods based on local characteristics consist of extracting some highlights from each
scene and creating a descriptor for each point, using the information around it. The
most popular description methods used for this purpose are SIFT (Scale Invariant Fea-
ture Transform) [164] and SURF (Speeded-Up Robust Features) [17]. More recently,
descriptors such as BRIEF (Binary Robust Independent Elementary Features) [34] or
ORB (Oriented FAST and Rotated BRIEF) [234] have been proposed, trying to over-
come some drawbacks such as the computational time and invariance against rotation.
These descriptors have become very popular in visual mapping and localization and
many authors have proposed methods that use them. For example, Angeli et al. em-
ploy SIFT [6] and propose this descriptor to perform a visual topological SLAM; Murillo
et al. [191] use SURF to perform a localization with omnidirectional images; Campos
et al. [35] propose the fusion of local features to perform a classification for the visual
localization of robots. However, these methods have some disadvantages. For exam-
ple, to obtain reliable landmarks, environments must be rich in detail. In addition, the
detection of keypoints is not always robust to changes in environments (e.g., changes in
lighting conditions) and sometimes, the description is not entirely invariant to changes
in the position of the robot. In addition, these approaches can be computationally
complex. Hence, in these cases, it would not be possible to build models in real time.

On the other hand, methods based on the global appearance of scenes consist of
treating each image as a whole. This approach consists of working with the image as
a whole, that is, without extracting any local information. For this type of approaches,
each image is represented by a unique descriptor, which contains information about its
global-appearance [211]. With regard to mobile robotics, this method of description
has advantages in dynamic and poorly structured environments, where the extraction of
stable local characteristics can be difficult. In addition, these methods lead to simpler
localization and mapping algorithms, due to the fact that each scene is described by a
single descriptor [5, 22].
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Therefore, mapping and localization can be done simply by storing and compar-
ing the descriptors in pairs. Besides, they could be more robust in dynamic, unstruc-
tured environments. Nonetheless, as drawbacks, these methods present a lack of metric
information (commonly used to construct topological maps), visual aliasing can also
have a negative impact on mapping and localization tasks, as environments interiors
are prone to present repetitive visual structures. In addition, modeling large environ-
ments requires a large number of images, and this can present serious problems when
these techniques have to be used in real-time applications. Therefore, using holistic
descriptors is an intuitive alternative to solve the mapping and localization problem,
but its robustness against these issues must be tested. Many authors have addressed
mapping and localization using global-appearance descriptors. For example, Menegatti
et al. [178] use the Fourier Signature to construct a visual memory of a relatively small
environment from a set of panoramic images. Liu et al. [159] propose a descriptor based
on color characteristics and geometric information for the recognition of scenes with
omnidirectional vision in topological maps. Through the use of this type of descriptors,
topological maps can be constructed using this type of descriptor. For instance, Payá
et al. [210] propose a mapping method from global-appearance and solve the localiza-
tion in a probabilistic way using a Monte Carlo approach. In addition, they develop a
comparative analysis of some description methods. Rituerto et al. [230] propose the
use of the descriptor gist [150, 204] to create topological maps from omnidirectional
images. More recently, Berenguer et al. [21] propose the Radon transformation as a
holistic descriptor of omnidirectional images and a hierarchical localization method. By
this method, in the first place, an approximate localization is obtained; after that, a
local topological map of a region is created and used to refine the localization of the
robot.

2.4.1 Local Features by Using AI
Since the emerge of SIFT a considerable number of methods of extraction and de-
scription of local features have been developed. Many later developments focused on
reducing their computational requirements or improving invariability for other purposes.
For example, SURF has a lower computational cost and greater robustness compared
to image transformation and BRIEF is designed to be used in real time at the expense
of lower tolerance to image distortion and transformations. All of these examples are
known as traditional or hand-crafted features, as they are based on the detection of vi-
sual structures. An profound study of these tools can be found in [211] and Mukherjee
et al. [190] carried out an exhaustive comparative experimental study.

As for the development of local features based on AI techniques, they are widely
known as learned features and, similar to the hand-crafted, AI methods generally consist
of detecting or describing features, or even both (detect and describe). FAST (Fea-
tures From Accelerated Segment Test) [232] was one of the first successful methods
and is designed for high-speed corner detection. Despite being built primarily for speed
purposes, this method was also shown to outperform existing corner detectors. Sub-
sequently, was proposed to optimize the parameters of the FAST detector to achieve
image repeatability [233]. This work shows that the use of machine learning produces
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significant improvements in repeatability, speed, and quality. The first attempts were
based on genetic algorithms. In this sense, Trujillo and Olague [278] present an ap-
proach to automatically extract low-level features through the application of genetic
programming. These authors present an implementation of genetic programming that
is capable of discovering a modified version of a feature operator that addresses a high
level of performance. This work also highlights the balance between genetic program-
ming and domain knowledge experience for results that improve hand-crafted solutions.
More recently, machine learning tools have typically been used in feature detection to
mimic and/or accelerate previously defined methods. Šochman and Matas [260] pro-
pose a faster version of binary decision algorithms by using a WaldBoost classifier,
which learns to minimize the decision time of the classifier while guaranteeing a pre-
defined accuracy. Holzer et al. [108] carry out the Interest Point (IP) as a regression
problem through the use of machine learning. A regression forest (RF) model learns
to detect if there is an IP in the center of a given image patch.Other researchers use
machine learning to reduce the size of the descriptor, such as Strecha et al. [265], who
propose metric learning to reduce the size of descriptors by representing them as short
binary strings. In summary, they map the descriptor vectors in the Hamming space,
which is used to compare the resulting representations. In this way, the size of the de-
scriptors is reduced by representing them as short binary strings. Simonyan et al. [255]
develop a descriptor of local features learned through the use of convex optimization.
This work shows that learning clustering regions for the descriptor can be formulated as
a convex optimization problem. It also shows a reduction in the dimensionality of the
descriptor by using the regularization of the nuclear norm of the Mahalanobis matrix.
Both formulations are based on high-margin discriminatory learning restrictions.

As for features learned based on deep learning techniques, they have often
been used to improve rather than replace hand-crafted local features. For example,
they have been used to learn detectors of invariant covariant features in the face of
unsupervised point of view changes. For instance, Lenc and Vedaldi [147] propose
a general machine learning formulation for covariant feature detectors. In addition,
many other improvements can be made, such as the explicit inclusion of confidence in
model detection, the prediction of multiple features in a patch, or the joint training of
detectors and descriptors. Mishkin et al. [185] introduce a method for learning local
related covariant regions. The proposed similar shape estimator is trained considering
the loss function, the type of descriptor, the geometric parametrization, and so on. In
addition, the training process does not require geometrically accurate aligned patches.

However, despite the widespread use of deep convolutional networks, locally
invariant features based on hand-crafted techniques continue to play an important role
in applications such as image retrieval and motion. Recently, Lenc and Vedaldi [148]
have conducted an profound evaluation of local feature detectors by evaluating a range
of state-of-the-art local feature detectors. Through this study, they concluded that
machine learning-based detectors help to improve lighting invariance, that traditional
methods are still competitive, and also suggest that significant progress can be made
with respect to machine-based detectors in deep learning.
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2.4.2 Holistic Description by Using AI
A wide range of works have been proposed during the past few years to develop holistic
descriptors by using AI techniques. Known by some authors as feature engineering, this
is a way to take advantage of human inventiveness and prior knowledge to compensate
for weakness of current learning algorithms [20]. One of the main objectives of devel-
oping learning descriptors is to address faster solutions to proposed AI problems. In
addition, AI applications have been shown to be capable of understanding the environ-
ment that sorrounds the camera, thanks to its ability to identify interesting information
and reject unprofitable information from sensory data. Highlighting holistic descriptors
based on deep architectures, they are generally effective at training robust models and
introduce two advantages in this topic: first, deep architectures promote feature reusal
and second, they lead to more abstract layered features superiors that are typically
invariant to local variations. A deep study was carried out in [20] about unsupervised
feature learning techniques.

Among the first proposed techniques, PCA [128] was one of the first alternatives
that presented robustness. PCA basically performs a linear transformation h = f(x) =
WTx + b of the input x ∈ Rn and the results are dh features that are the first
components of the representation h. Similar to PCA, Independent Component Analysis
(ICA) performs a linear analysis to obtain distinctive features based on linear generative
models with non-Gaussian independent variables. Like sparse coding, ICA and its
variants have also been used to obtain non-linear features as in [19, 120, 144].

Successful feature learning algorithms and related applications are used in many
works using a variety of approaches such as RBMs (Restricted Boltzmann Machines).
For instance, Hinton et al. [103] propose a technique of stacking previously trained
RBMs into deep belief networks (DBNs), where the top layer is interpreted as an
RBM and the bottom layers as a directed sigmoid belief network. This work has been
shown to provide a better digit classification than discriminative learning algorithms.
Salakhutdinov and Hinton [240] propose to combine the parameters from RBM to
DBM (Deep Boltzmann Machines) by halving the RBM weights to obtain the DBM
weights and train them with an approximate maximum probability. In this way, this
work shows that DBM learns good generative models and performs well in visual object
and handwritten digit recognition tasks. Larochelle et al. [143] conduct an empirical
study on the use of different RBM input unit distributions. This study confirms the hy-
pothesis that the greedy unsupervised layered training strategy improves optimization
by initializing weights in a region close to a good local minimum and also leads to better
input generalization.Another important perspective on holistic descriptors is based on
the manifold learning, a geometric notion the premise is based on the concentration
of high-dimensional input space in the vicinity of a manifold M of lower dimensional-
ity. Most methods based on this technique lead to a nonparametric approach based
on neighbour graphs. Belkin and Niyogi [18] propose a geometric algorithm to rep-
resent high-dimensional data that provides a computationally efficient dimensionality
reduction. This reduction has preservation properties of the locality and a natural
connection to clustering. Donoho and Grimes [67] propose a Hessian-based local lin-
ear embedding method to retrieve the underlying parameterization of scattered data.
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Weinberger and Saul [298] introduce an algorithm for unsupervised learning of image
manifolds by semidefinite programming. The algorithm calculates a low-dimensional
representation of each image so that the distances between nearby images are pre-
served. Van der Maaten [285] proposes variants of the Barnes-Hut algorithm with the
t-SNE algorithm (t-distributed Stochastic Neighbor Embedding) to learn embedding
data sets with millions of objects. More recently, some authors have proposed using
free energy functions, that is, without explicit latent variables. For example, Ngiam et
al. [201] use a Monte Carlo hybrid to train the free energy function. In summary, they
propose the use of deep-feeding neural networks to model the energy landscapes that
define probabilistic models. The lower layers of the model adapt the training of the
upper layers and therefore this produces better generative models. Using this method,
all layers of the model are trained simultaneously and efficiently. Kingma and Cun [127]
propose to eliminate noise from the coincidence of scores. The differentiation of the
loss with respect to the parameters of the model is automated with an extended version
of a double backpropagation algorithm.

In addition to the techniques mentioned above, the use of deep neural networks,
especially CNNs, to obtain global-appearance descriptors, as several studies have shown
that these networks can learn more transferable features for the adaptation of domains
and produce successful results in a wide range of scenarios and applications. For
example, Donahue et al. [65] propose the use of features extracted from the activation
of a fully supervised deep convolutional network trained in a large, fixed set of object
recognition tasks and use them for a completely different task. The works focuses on
investigating the semantic clustering of deep convolutional features with respect to a
variety of tasks, as scene recognition, domain adaptation, and detailed recognition. The
study addresses an efficiency comparison that relies on several levels of network to define
a fixed function. Yosinski et al. [312] conduct an profound study of how transferable
features are in deep neural networks. They conclude that the characteristics obtained
from the initial layers do not seem to be specific to a particular data set or task
and the characteristics become more specific as the selected layer approaches the last
one. In addition, they conclude that the initialization of a network with characteristics
transferred from almost any number of layers can drive generalization. Long et al. [162]
propose a Deep Adaption Network (DAN) architecture that generalizes deep CNNs to
the domain adaptation scenario. The DAN architecture learns transferable features
and can scale linearly using an unbiased estimate of kernel incorporation. Arandjelovic
et al. [7] solve the problem of image retrieval by developing a CNN and using it to
obtain holistic descriptors. This network incorporates a new layer which is inspired by
the “Vector of Locally Aggregated Descriptors” (VLAD) image representation, which is
widely proposed to address image retrieval tasks. Gordo et al. [91] introduce a method
that employs a region proposal network to find out which regions need to be grouped to
form the final global descriptor. This approach produces a global image representation
in a single step forward. Very recently, Xu et al. [306] propose a transfer learning
method based on a previously trained model to transform general characteristics into
special characteristics, which are adapted to the desired task. The previously trained
Faster R-CNN model is used to extract the high-dimensional convolution features from
the images.
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2.5 Mobile Robotics Tasks by Using Vision and AI

This section presents a review of recent work related to solving mapping, localization,
and SLAM tasks in robotics using visual information and AI tools.

2.5.1 Map Building
As explained above, mapping basically involves creating a map, model, or representation
of the environment using the data provided by the sensors mounted on the robot.
Thrun [275] presented an exhaustive of the concept of robotic mapping. As for the
use of vision systems together with AI for mapping, a wide range of work has been
proposed in recent years. For instance, Tanzmeister et al. [270] propose an approach
that estimates a uniform, low-level, grid-based global model that includes dynamic and
static objects. Da Silva et al. [57] propose a localization and navigation approach for
mobile robots using topological maps and using CNN to obtain omnidirectional image
descriptors. Kuipers et al. [138] address a mapping process by means of hierachical
models, they propose a hierarchically hybrid map, which consists of using a metric
map to construct local small-scale space maps and topological maps to represent the
structure of space in large scale. This approach is proposed to solve the SLAM task in
an environment with multiple large-scale nested loops.

Regarding mapping by means of visual data information, the models are built
by either using local or global features. Furthermore, the use of AI with vision systems
has contributed to the emergence of new paradigms for creating visual maps. Zivkovic
et al. [323] build a hierarchical model based on omnidirectional images and the char-
acterization of the data is done by means of local characteristics (SIFT) and a cluster
algorithm is proposed to address the graph partitioning, and define the map hierar-
chically. Peretroukhin et al. [215] propose the use of Bayesian Convolutional Neural
Networks (BCNN) to train and implement a sun detection model from a single RGB
image to incorporate global orientation information from the sun into a visual odometry
pipeline. They also propose an uncertainty associated with each prediction by using
a Monte Carlo dropout scheme. Clark et al. [53] perform a mapping and subsequent
relocalization task by feeding an LSTM network with holistic descriptors obtained from
a CNN.The proposed model estimates the current position within an environment from
short sequences of monocular frames. Similar to this work, on the use of CNN to ob-
tain holistic descriptors, many authors have proposed this strategy. For example, Iyer
et al. [112] propose an estimation approach based on self-supervised visual odometry.
The approach first obtains holistic descriptors from the fully connected layer of CNN
VGG-11. After that, an LSTM network is used to make a pose transformation regres-
sion between sequences of pairs of monocular frames. Kopitkov and Indelman [131]
propose an approach to estimate robot position through holistic CNN descriptors and
the use of neural networks to learn a generative model depending on the point of view
of CNN characteristics given the position of the robot and approximate this model
by a spatially varying Gaussian distribution. In addition, once the proposed model is
developed, it is used within a Bayesian framework of probabilistic inference to solve the
localization task. Sarlin et al. [242] propose a hierarchical model by means of a CNN.
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This network simultaneously predicts local characteristics and holistic descriptors that
are used for an accurate 6-DOF localization. Once the model is constructed, the coarse
localization is solved using global retrieval through a k-nearest neighbour algorithm and
holistic descriptors. Fine localization is solved by evaluating the matching points of
the local characteristics.

Another widely developed strategy is the use of neural networks to model a
system that is capable of estimating position directly from raw data. For instance,
Kuse et al. [141] propose a deep residual network to model the representation of
the environment. Naseer and Burgard [196] developed a model that allows 6-DOF
localization using a regression neural network and a single monocular RGB image. The
resulting map size is constant with respect to the size of the dataset and during the
localization task, the time complexity is also constant and independent of the size of
the dataset. Walch et al. [292] introduce a CNN + LSTM model to estimate the pose
in both indoor and outdoor environments. The raw data is entered into the network
and trained so that CNN layers learn the appropriate local characteristics and then are
used by LSTM layers to improve the pose estimate. In this way, the whole network
learns how to optimize the localization task. Brahmbhatt et al. [31] propose a mapping
model based on a regression neural network, which enables learning a data-driven map
representation. In addition,the proposed network can be updated with unlabelled data.
Sinha et al. [257] also propose a mapping and a subsequent localization task based
on regression neural networks. The proposed method first trains a CNN that takes
RGB images from a monocular camera as input and performs regression for robot pose
estimation. It then incorporates the relocalization output of the CNN in an Extended
Kalman Filter to tackle the localization task. Moolan-Feroze et al. [187] propose the
deployment of a model to map the environment that surrounds wind turbines. For this
purpose, a CNN is trained to extract an estimate of the projection of the 3D skeleton
representation departing from monocular images. After that, the localization task is
solved by means of a pose graph optimization that uses the 3D representation outputs
from the CNN.

2.5.2 Localization
As it was denoted in 2.1.2, localization is the task that attempts to estimate the
current position and orientation of the robot within a model. Filliat and Meyer in [77]
presented a profound review about strategies for addressing localization on mobile
robots. Concerning the use of vision systems together with AI, a wide range of works
have been proposed in recent years. For instance, Kendall et al. [124] present a robust
and real-time monocular 6-DOF relocalization system. The proposed system trains
CNN to retrieve the position of the 6-DOF camera from a single RGB image from
one end to the other without additional graphics optimization. Neto [199] proposes
a topological localization system based on monocular images, learning classification
systems, and self-organized maps (SOM). The entire system performs a localization
task by detecting and avoiding obstacles using both local and holistic features. Meng et
al. [180] carry out the localization problem by using random forest-based methods that
directly estimate 3D positions with SIFT features as input. Li et al. [154] introduce an
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indoor localization approach serving a dual-flow regression CNN by entering color and
depth data from monocular images. This system is tested in night lighting conditions
and also with blur effects. As with mapping, there is also a wide range of work proposed
over the past few years that proposes and evaluates the use of intermediate layers from
various CNNs to obtain local features and holistic descriptors. For example, Sünderhauf
et al. [259] present a real-time localization recognition algorithm using different layers
of CNN to perform localization on large maps by integrating a variety of existing
optimization techniques, such as semantic partitioning of search space.

Cascianelli et al. [38] propose a subsequent mapping and localization strategy
based on the use of a CNN to obtain local features that are robust to appearance
variations. Similarly, Unicomb et al. [280] also use a CNN to extract local features; in
this case, they extract the map edges of the earth and then estimate a 6-DOF position
using an EKF (Extended Kalman Filter) algorithm. Moolan-Feroze and Calway [186]
present a framework that uses CNN to predict feature points of objects that are out of
view in the input image. These feature points are then fed to estimate more robustly
the position of the robot within the environment. Holliday and Dudek [105] propose
a combination of deep-learning-based hierarchical object features and SIFT charac-
teristics. These points are used to perform more robust localization tasks.Regression
networks have been also widely proposed to directly estimate position within map.
For instance, Sommer et al. [261] perform a 6-DOF localization task by developing a
regression CNN by applying transfer learning over a previously trained CNN (Google
Inception-V4). Xu et al. [306] introduce a multi-sensor-based global indoor localization
approach that uses visual localization with the help of CNN-based image retrieval with
a probabilistic Monte Carlo method. Cattaneo et al. [39] develop a regression network,
which learns to localize an RGB-D image of a scene on a map constructed from LIDAR
(Laser Image Detection and Range) data. Similarly, Weinzaepfel et al. [299] intro-
duce a CNN-based regression strategy for visual localization from a single RGB image
that is based on densely matching a set of objects of interest. Given a query image,
the network model detects the object, segments it, and finds a dense set of 2D-2D
matches between each detected object and its corresponding reference image. Given
these 2D-2D matches, a Perspective-n-Point problem is used to estimate the pose.

2.5.3 Simultaneous Localization and Mapping
n addition to the mapping and subsequent localization task, SLAM presents a combined
alternative. This process involves continuously building a map and updating it as
the robot simultaneously estimates its position within the model. Fuentes-Pacheco
et al. [81] presented a profound review about strategies for conducting SLAM. The
related literature shows that not many approaches have been proposed to solve this
task by using visual information and artificial intelligence tools. Apart from some
of the examples discussed in subsections 2.5.1 and 2.5.2, which propose mapping or
localization tasks with the aim of developing later SLAM, there are other examples
that propose complete SLAM systems. For example, Wu and Qin [304] propose a
SLAM algorithm based on omnidirectional images. This algorithm uses incremental
learning of the appearance of reference points to provide a later probability distribution
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to estimate the position of the robot in a particle filtering frame. The main contribution
of the work is to represent the subsequent robot pose estimation by using incremental
probabilistic PCA, which can be incorporated into the particle filtering algorithm for
SLAM task. Lu et al. [165] propose a machine learning tool known as multi-task point
retrieval to develop a regression model based on local characteristics of 3D points
extracted from monocular images. Garg et al. [86] address an unsupervised deep
convolutional network that behaves like an autoencoder, as it does not require ground
truth information. This network is trained to predict the depth map of the source
image. During the training step, a couple of images (source and target) are fed into
the network. Schmidt et al. [244] introduce a CNN to produce robust local features
and then use them to estimate dense correspondence and solve the SLAM task. Gao
and Zhang [84] developed a work in which they perform a loop detection by training
an autoencoder that calculates local characteristics from monocular images. Tateno et
al. [272]propose an approach consisting of two CNNs based on monocular RGB images.
The first network is trained to predict depth. CNN-predicted dense depth maps are
naturally fused together with depth measurements obtained from direct monocular
SLAM, based on a scheme that privileges depth prediction in image localization and
the second network is trained to address segmentation semantics. Once the information
is obtained from CNN, it is merged with more data to address the SLAM task in a
highly accurate way. Mukasa et al. [189] introduce a SLAM framework that integrates
geometric measurements obtained from a monocular vision system with predicted depth
information using a CNN. Tang et al. [269] introduce the use of CNN powered by visual
information and human voice commands with the goal of successfully solving the SLAM
task on a mobile robot. Focusing on visual information, raw data is entered into two
CNNs, the first network is used to produce accurate localization updates, and the
second is used to perform an object recognition task. Recognized objects are used
to reinforce the mapping task. Zhang et al. [315] propose a loop closure detection
framework based on CNNs. This way, the images are introduced into a previously
trained CNN model to extract global-appearance descriptors, and after that, these
descriptors are preprocessed with PCA.

Very recently, Milz et al. [182] conducted an exploration of the deep learning
tools that can be used to improve visual SLAM. On the one hand, they propose the use
of CNN to perform depth estimation. they propose the use of CNN to address an end-
to-end approach to learning feature matching. Since this technique can learn diversity
and distribution instead of choosing the superior features of high textured features.
Zhong et al. [317] carries out SLAM and object detection by using a Single Shot multi-
box object Detector (SSD). RGB-D information is entered into the SSD and detects
moving and static objects within the image. After that, the detected moving objects
are removed and the rest of the data is used to construct a semantic map composed
of all the static objects detected in the mapping thread. At the same time, dynamic
objects are used to update the local tracking and mapping thread. Liang et al. [156]
address visual navigation and SLAM tasks in outdoor environments by mean of a CNN
based on panoramic images with information from 360 degrees to perform. Bloesch
et al. [27] perform a compact but dense representation of scene geometry based on a
deep autoencoder. This method is suitable for solving a dense monocular SLAM task
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based on keyframes Liu et al. [160] propose a visual SLAM based on features by means
of using a CNN to get more robust object localization information. Lu and Lu [166]
propose a SLAM approach that uses a regression CNN for estimating pose without
ground truth.

2.6 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• S. Cebollada, L. Payá, M. Flores, A. Peidró and O. Reinoso. A State-Of-The-
Art Review on Mobile Robotics Tasks Using Artificial Intelligence and Visual
Data. Expert Systems with Applications. Ed. Elsevier. pp. 114195 (November
2020) [40] JCR-SCI Impact Factor (2019): 11.0, Quartile Q1.

– This paper presents a state-of-the-art review that focuses on how researchers
have addressed relevant tasks in mobile robotics through the use of arti-
ficial intelligence and visual information; and how these approaches have
evolved in recent years. This work focuses in the main tasks that should
be addressed for mobile autonomous robotics, that is, mapping, localiza-
tion, SLAM, navigation and exploration. The review is divided in three main
blocks. First, relevant AI tools in the fields of mobile robotics and computer
vision are outlined, among which Neural Networks stand out. Second, the
review presents a state of the art of the works developed during the past
few years regarding the description of the visual information by using AI
tools. Finally, a state of the art of the works developed during the past few
years to address mapping, localization, SLAM, exploration and navigation
by using AI and visual sensors is presented.
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3 Alignment of Point Clouds

3.1 Introduction

There are many buildings in Europe and around the world that have voids between
foundations and floor due to building techniques. This type of uninsulated suspended
timber floors can be a critical factor in heat loss, as some studies show. [99] [1]. This
includes conductive heat loss to the ground and also infiltration of cold air through the
underfloor environment and wooden flooring. Given this fact, the energy efficiency of
these existing buildings can be improved by applying insulation under the floor. This
process usually involves removing the carpet and floor boards, applying rigid panels or
insulation rolls, and rebuilding everything. Therefore, this causes a lot of inconvenience
to the occupants of the building as they often have to leave the premises during
installation. To make this process less disruptive and faster, a robotic vehicle can be
used. This robotic vehicle must be able to access gaps, move autonomously and apply
foam insulation. An autonomous mobile robot that can maneuver around the void
and apply insulation where necessary. Within this group, we can distinguish between
three main types: robots with legs, with wheels and aerials. When choosing one of
these three types, two main requirements must be considered. First, an umbilical hose
must be connected to the robot to transmit energy and supply the robot with foam
insulation. To meet these requirements, the hose would weigh about 3.5 kg per linear
meter [106]. Second, a sprinkler filter must be mounted on the robot to expel the
foam to the bottom of the floor. During this process, it will exert pressure on the
robot. Therefore, the robot must remain stable. For these reasons, neither aerial nor
leg robots would work properly. In addition, an aerial robot would also create too much
dust and disturbance. Hence, a platform with wheels is used in this work.
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This work was conducted in collaboration with the company Q-bot. This com-
pany has developed a robot to address the insulation task. As it is shown in the fig. 3.1,
the robot consists of 4 small wheels, a horizontal front laser and a laser-powered cam-
era system (3D scanner). Moreovoer, it has a spray nozzle that expels insulating foam.
The vendor website1 as well as the work presented in [106] provide further information
about the robot specifications.

Spray gun 
on rotating 
platform

Pivoting 
rear axle

Camera 
and laser 
on rotating 
turret

Figure 3.1: Bird eye’s view of the robot with the main components.

The insulation task has been commonly developed through teleoperated assis-
tance, i.e. the robot vehicle is driven by an expert human operator [119]. When a mo-
bile robot is used to address this task, the robot needs to move around the environment
in order to apply foam insulation in the required areas. When assisting teleoperated,
the human operator recognizes and interprets the environment and makes decisions
about moving the robot and the tasks to be tackled. However, despite the successful
use of teleoperated robots, the use of autonomous robots would improve performance
and speed while reducing costs. They could complete the task without the continuous
supervision of skilled workers.

If autonomous development is desired, many problems arise and must be ad-
dressed accurately. First, access to the environment can be done by making an access
hatch and placing the robot in the underground environment. Once the robot is in-
side, a number of challenges must be overcome. The main problems arise because the
terrain tends to be extremely rugged, as there are often stones, fragments of bricks
or sand. In this way, the robot must move along irregular 3D paths, also taking into
account the presence of unknown obstacles. Figure 3.2 shows two sample images of
typical underground environments. The robot must tackle the insulation task in such
challenging and previously unknown environments.

To carry out this task in an autonomous way, the robot must be firstly able
to map the environment with accurately with the aim of recognizing the areas where

1http://www.q-bot.co
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Figure 3.2: Images obtained from typical underground environments where the registration task
is difficult to address due to their characteristics.

insulation is required. In addition, the robot bust be capable of estimating its position
within the map with accuracy. If both processes are tackled at the same time, this is
known as Simultaneous Localization And Mapping (SLAM). To address mapping and
localization, it is necessary to use one or more sensors to obtain some information about
the environments. On the one hand, the SLAM task has traditionally been addressed
using range sensors, such as the laser, which measures distance to the environment
and usually leads to models showing occupied and unoccupied areas. [54] [80]. On the
other hand, vision systems can also be used for this purpose and many researches has
been proposed on mapping and localization using locally based methods such as SIFT,
SURF, FAST or Harris corners. [16]. These features are detected in each frame and
after that, they are matched with a sequence of frames. Numerous researchers have
successfully addressed the mapping and localization tasks in controlled environments
through such vision systems as Davison et al. [59] who use a single camera. Nonethe-
less, if the proposed process is not robust enough, the tasks are prone to fail. This
problem is common in such unstructured and changing environments. Additionally,
the environments studied in this work present also elements such as dust, sand, poor
illumination or shadows and they provoke mapping and localization process extremely
complex. Extreme unevenness of the ground is an additional issue to consider (see
fig. 3.2). Because of this, the movement of the robot is not flat at all and can be
considered a movement of 6 DoF (degrees of freedom). Given all these peculiarities
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and challenges, both a laser and a vision system are considered to accurately construct
a map of the environment and are installed on the robotic platform.

By using the visual and depth sensors, mapping and localization are addressed
by means of the following process. First, from a specific pose of the environment,
a scanning process is performed. During it, the sensors capture information on 360
degrees around the robot. The result is a local 3D map consisting of a point cloud
that combines depth and color information. Once the local map has been built from a
specific pose, the robot will move a relatively long distance to a new, unknown pose.
To estimate this new pose, the environment will be scanned again and a new local
map (point cloud) will be built. The translation and rotation from the first to the
second position can be estimated by comparing these two local maps. After repeating
this process from various positions, the set of local maps will compose a complete
description of the environment (global map). This global map can be used not only
to estimate the position of the robot as it moves, but also to determine the physical
properties of the environment under the floor to control the spray gun and, after the
insulation step, to validate if all areas are properly covered with foam. Also, in terms
of the relatively high distance between consecutive positions, this is due to the fact
that the data acquisition process takes quite some time [119]. Therefore, the pose
estimation algorithm should work well considering this additional constraint.

Hence, obtaining a robust and accurate global map is very relevant. With this
aim, having a precise knowledge of the pose where each local map was captured is
crucial. This is why this work focuses on this problem: estimating the current pose
of the robot with respect to the previous one. The problem will be solved either by
using the point clouds obtained from both poses using a registration approach, or by
using visual information to achieve robust matches with global-appearance and SURF
features. Odometry information will not be used because the extreme unevenness of
the ground introduces a severe error on it (by displacements, landslides and changes of
orientation). In this way, the global map is expected to be robust to these phenomena.

On account of the issues exposed, in this chapter, an approach to solve the
alignment between two consecutive locations is presented. It is capable of building a
global map of the environment so that the robot can autonomously tackle the task
of isolation in this type of environments. In this sense, the work is based on the
robot architecture presented by Julia et al. [119]. In this previous work, a system was
proposed for selecting the next best position for performing a 3D scan. Multiple scans
were aligned using the Iterative Closest Point (ICP) algorithm and merged together
into a global map model. However, this system depends on a correct functioning of
the ICP algorithm which is prone to fail or converge to a local minimum due to the
complexities of the underfloor environments. Consequently, we present an algorithm
that solves the registration in such environments. Thus, the major contributions of this
chapter are a novel method to enhance the results of the registration algorithm and
an algorithm for making the global mapping process more robust against alignment
failures.

The remainder of the chapter is structured as follows: Section 3.2 shows the
acquisition system which was used in the experiments. Next, section 3.3 presents the
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methods proposed to obtain the alignment between poses the algorithm to solve wrong
alignment cases. Section 3.4 presents the experimental results and the discussions.
Section 3.5 outlines the conclusions. Last, section 3.6 presents the publications related
to the present work

3.2 Acquisition of the Data

The data acquisition system consists of a 2D laser sensor and a monocular camera.
They are attached to a turret that rotates around its vertical axis, which is perpendicular
to the base of the robot. The laser is mounted for scanning in a vertical plane, which
changes as the turret rotates. This system acquires complete 360-degree information
from the environment surrounding the robot. Hence, from a specific pose, the robot
can capture a scan of the environment and a set of RGB images (see fig. 3.3 (a)). The
complete system is described introduced in the present section. Additionally, subsection
3.2.1 describes the reference systems. After that, subsection 3.2.2 details the image
acquisition process and the process to assembly the 3D point cloud. Last, subsection
3.2.3 explains how the color information is added to the depth data.

3.2.1 Reference Frames
This work uses three reference frames: the robot, the camera and the laser reference
frames. Fig. 3.3 (a) shows the robot reference frame. XR is the vertical axis and
YR, ZR are the axes which define the plane of movement of the robot. Fig. 3.3 (b)
shows the camera reference system, whose axes are XC , YC , ZC . Last, fig. 3.4 shows
the laser reference system {XL, YL, ZL}. The laser as well as the camera frames rotate
around their X axes. The laser provides a set of distance readings ρi that are measured
at different angles θi. These readings are expressed as 3D points in the laser frame
q

[l]
i ∈ R3 = [ρi cos θi ρi sin θi 0]T and they can be transformed to the robot frame
by:

q
[f ]
i,j = RφjTLq

[l]
i,j (3.1)

where TL ∈ SE3 is the transformation that relates the calibrated position of the laser
in the robot frame and Rφj ∈ SO3 is the rotation matrix that expresses that the
turret has rotated an angle φj . Furthermore, the conversion between 3D vectors and
the corresponding homogeneous 4D vectors is omitted with the aim of simplifying the
notation.

3.2.2 Point Cloud and Image Acquisition
During a complete acquisition process, the robot remains stable at a specific position
~ps and both the camera and the laser capture data as the turret rotates a complete
revolution around the axis vertical. In this way, this data contains 360-degree envi-
ronmental information around the robot. On the one hand, the camera acquires 37
RGB images as the turret rotates a complete revolution, with orientations evenly dis-
tributed around the x axis of the robot frame. The number of 37 RGB images per
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Figure 3.3: (a) Robot sensors and robot frame of reference. (b) Schematic description of the
camera frame of reference and the image acquisition process.

pose is chosen to produce an overlay at low capture distances of at least two-thirds
of the image between consecutive captures. Significant overlap is required to perform
correct visual alignment between poses. Each image K is acquired from the position
corresponding to the pose s of the robot and is defined in a set as Ks,r ∈ RNx×Ny ,
where Nx ×Ny is the resolution of the image (in this case 1448× 1928 pixels) and
r defines the orientation of the turret. The orientation of the first capture and the
direction in which the turret spins may change between two different capture positions
s and s− 1.

On the other hand, the laser system performs several scans during this process.
Each scan covers a vertical plane (fig. 3.4(a)) in which the resolution is equal to 0.36
deg. (angle between two consecutive beams).This vertical scan covers 240 degrees,
but only 120 degrees (the central ones) are used. In addition, the motor that spins
the turret has 2400 steps. Therefore, the minimum angle between two consecutive
exploration planes is equal to 0.15 degrees (fig. 3.4(b)). Hence, a point cloud formed
for about 800,000 points is created from each ~ps and is named by Poriginal,s.

3.2.3 Adding Color to the Point Cloud
According to the color information provided to each pixel in the related images, the
association is as follows:

c{i,j},k = Ik(π(HcalTcamRφjq
[f ]
i,j )) (3.2)
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Figure 3.4: Schematic description of laser system. The laser frame of reference rotates around
the xL axis. Figure (a) shows one laser scan and figure (b) is a bird eye’s view of the scan planes
during a whole acquisition process.

where Rφj ∈ SO3 is the rotation matrix corresponding to the turret at the angle φk at
which the image was acquired. Tcam ∈ SE3 is the transformation corresponding to the
calibrated camera pose in the robot frame. Hcal is the calibrated camera matrix and
u = π(x) is a function which performs the dehomogenization of x ∈ R3 = (x, y, z)
in order to obtain u = (x/z, y/z). Ik : Ω → N3 is the subpixel mapping between the
image space domain Ω ⊂ R2 and the color values corresponding to the rectified image
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K.

Despite color information is not used during the localization process, because it
does not contain distinctive information in underground environments (due to its low
color variety). This information is essential once the foam insulation has been sprayed,
to check that the necessary areas have been covered correctly. Hence, this is why it is
added to the cloud.

3.3 Techniques Proposed

In the present work, the mobile robot follows a trajectory that covers the environment
to be modeled, initially unknown, and new methods are proposed to estimate this tra-
jectory. The trajectory is defined as a set of adjacent positions traversed consecutively
by the robot. The robot captures a set of visual and depth data from each pose that
cover a 360-degree field of view. Notwithstanding, as it was mentioned in 5.1, due to
the time consuming, the distance between consecutive poses is relatively high. A con-
siderable amount of the works solve the registration with depth data by using the ICP
(Iterative Closest Point) algorithm. Many of these algorithms present a good balance
between accuracy and computing time. Nonetheless, their main problem is the need for
a relatively accurate initial estimation to converge to the global optimum rather than
the local minimum. The high similarity of the data acquired in the environments of
this work aggravates this problem. In addition, the poses obtained through odometry
are not reliable due to the characteristics of the terrain.

As it is presented in several previous works, a common method to solve the
alignment between poses is through a coarse and a subsequent fine alignment. The
idea is to obtain a rough but fast alignment estimation with a lower accurate data
and after that, this information is used along with a more accurate data to carry
out the alignment estimation more accurately. In this sense, two possibilities have
been commonly proposed. The first option uses the visual information for the coarse
alignment step and the point clouds in the refinement step (see fig. 3.5). First, this
family of registration methods extracts keypoints from visual information. Second, a
descriptor is calculated for each key point. This value is calculated using neighbourhood
information and the result is a vector that characterizes the keypoint and allows it to
be distinguished from other keypoints. Third, the keypoints in one image match the
keypoints in another image captured from a different robot pose. Fourth, alignments
are established between different images. Usually, there are some coincidences that are
wrong, so a rejection step can be applied (a common method is RANSAC). Fifth, after
establishing solid mappings between keypoints, the transformation matrix is calculated
and used as the initial matrix for the refinement step (ICP algorithm), which provides
a more accurate matrix.

In the second option, the depth information is used in the approximate align-
ment. Keypoints are extracted from scenes and their 3D positions are calculated using
laser information. After that, the descriptors are calculated using in-depth information
and a comparison is performed. Then, as in the first case, a rejection step is addressed
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and an approximate transformation matrix is calculated through the correspondences
between keypoints. Finally, a more accurate matrix is obtained using ICP.
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Figure 3.5: Schematic description of the usual localization method.

Preliminary experiments confirmed the negative impact to estimate the align-
ment by ICP due to the difficulties of building crawl spaces, as it was presented in
section 5.1. Furthermore, the large distance between consecutive poses produces also
considerable mistakes. An example of unsuccessful registration by ICP is shown in
fig. 3.6. This example shows the typical results obtained when using ICP in underfloor
environments with large distance between consecutive poses. Hence, the pose estima-
tion algorithm must be robust enough. Throughout this section, novel methods based
on depth and visual data are proposed to carry out the estimation between consecutive
poses. These methods use registration approaches for this purpose.

3.3.1 Use of Depth Data
This subsection proposes a version of the second option by using the depth information
in the coarse alignment, since the visual data obtained from the underfloor voids provide
considerable disadvantages (see fig. 3.2). There is a lack of illumination, the walls are
composed of bricks that do not contain characteristic information and the lower part of
the floor is usually composed of identical beams and evenly distributed. Initial data are
two point clouds captured from two poses s and s-1 (Poriginal,s and Poriginal,s−1).
The goal is to obtain the transformation matrix (relative position and orientation)
between these two poses, using a registration approach with the two point clouds.
The proposed algorithm consists of three main steps: point selection, registration and
validation.

Regarding the points selection step, this is crucial, since the original point
clouds are composed of a large amount of points. This is due to the fact that the
insulation task requires accurate information. If the ICP algorithm used all this infor-
mation, the computation time would be excessively high. In addition, the information
collected from the upper and lower planes, especially the wooden beams at the top
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(a) (b)

Figure 3.6: Examples of the registration process, using two point clouds captured from different
poses in a sample environment. The alignment is unsuccessful. (a) Lateral view and (b) Bird’s
eye view.

of the environment, would be detrimental as it would generate confusion. As noted
above, these beams are almost equal and equidistant, so many points can be mistakenly
considered to be correctly matched. Consequently, a misalignment could be accepted
as successful because of the large number of matching points (see fig. 3.6). Such
environments are very prone to present such erroneous results due to the geometry of
the upper and lower planes. That is why we propose to delete this information before
the registration process.

Hence, considering the previous premises, a process is tackled to select some of
the points of the original cloud. This process consists of two steps. First, a homo-
geneous filtration is performed to considerably reduce the number of points. Second,
segmentation is performed to select only the points located in the planes that are
most useful for achieving a successful registration. With the aim of addressing these
purposes, some functions of the Point Cloud Library (PCL) [236] have been used:

• The homogeneous filtering is addressed by following the scheme shown in fig. 3.7.
Initially, a VoxelGrid filter is used. It consists of creating a grid of 3D voxels (in
this case, a 1 x 1 x 1 cm cube) over the point clouds. Subsequently, the points
inside each cube are approximated with their centroid. After that, a random
sampling filter is applied, which randomly selects a number of points from the
resulting cloud and discards the rest. The more points are eliminated, the faster
this step and also the next ones will be. Nonetheless, removing too many points
can be counterproductive because the subsequent ICP algorithm may not work
well. Thus, despite random filtering, the structure must be maintained. After
several tests, the conclusion is that maintaining 30% of the points is the optimal
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value for balancing speed and reliability. From this step, a reduced point cloud is
obtained for each position of the robot (Pdownsampled,s and Pdownsampled,s−1).

• The aim of segmentation is to eliminate those points that belong to the upper
and lower planes. To address this step, the point cloud obtained after step 1
is grouped into planes. The planes whose normal vector is parallel to the axis
x are considered as the upper and lower and the rest as walls. The algorithm
removes the top and bottom planes, discards the points that belong to them,
and keeps the rest. In order to consider the presence of beams in the upper
planes and eliminate their information, once the planes that are placed on the
robot are detected, the one of lower height is extracted and all the information
in and on itself is eliminated. As a result, clearer clouds are obtained (Pfiltered,s
and Pfiltered,s−1).

To sum up, the process starts with the original point clouds (Poriginal), ob-
tained from the data acquisition, which contain more than 800.000 points. Then,
the downsampled point clouds (Pdownsampled) are obtained after applying VoxelGrid
and random sampling filters. Finally, the filtered point clouds (Pfiltered) are obtained
through segmentation and removal of the top and bottom planes. These clouds will
be used for the registration step. Fig. 3.8 shows the whole process with an original
point cloud. Fig. 3.8(a) is Poriginal,s, fig. 3.8(b) is Pdownsampled,s and fig. 3.8(c) is
Pfiltered,s.

The next step consists in carrying out a registration process between the two
filtered clouds (Pfiltered,s and Pfiltered,s−1). The results of this process are: (a) the
transformation matrix (Ts,s−1) that relates both poses; (b) the number of matched
points (Ns,s−1) and (c) the EFSs,s−1 (Euclidean Fitness Score) defined in eq. 3.3.

EFSs,s−1 =
Ns,s−1∑
j=1

dist(P ests (j), Ps(j))2 (3.3)

where dist(P ests (j), Ps(j)) is the Euclidean distance between the j-th matched point
of the clouds P ests and Ps. P ests = Ts,s−1 × Ps−1.

Classical ICP algorithms may present erroneous results with respect to the detec-
tion of relative orientations between positions. This is due to the fact that the algorithm
can converge to a local minimum when the target environment has some symmetry.
The subsoil environments modeled in this work are very prone to present this problem
as they have two main directions in the horizontal plane (those perpendicular to the
walls) and the walls may erroneously coincide with their opposites. Since the odometry
information is untrustworthy, it cannot be used to have an initial estimation to apply
the ICP algorithm. To overcome this problem, the following four initial conditions are
considered: no translation and three rotations (90, 180, and 270 degrees) around the
vertical axis. After that, the classical ICP algorithm runs four times in parallel (one
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Figure 3.7: Filtering stages.

for each of the four initial estimates). The alignment between the four addressed that
maximizes eq. 3.4 is considered the optimal one.

max{αNk
s,s−1 + β

1
EFSks,s−1

} (3.4)

Where α and β are two weighting values that were empirically tuned according
to the characteristics of the environment and k is an index that defines the initial
orientation (k = 0, 90, 180, 270).

The process to select the best alignment between the two consecutive poses is
shown in Fig. 3.9 shows the process to select the best alignment between continuing
poses. To summarize, this step takes into consideration four initial versions of the
cloud Pfiltered,s aligned with Pfiltered,s−1 by using ICP. The transformation matrix
Ts,s−1 of the resultant optimal alignment is retained.

The previous step provides the optimal alignment matrix Ts,s−1 once all four
possibilities have been evaluated. Nevertheless, this does not guarantee that the align-
ment is correct. Hence, the algorithm should include a validation step.
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(a) (b)

(c)

Figure 3.8: Points selection process. (a) Original cloud. (b) Reduced point cloud after VoxelGrid
and random filtering. (c) Resulting cloud after removing top and bottom planes.

To validate this alignment matrix, the downsampled point clouds are considered
(Pdownsampled). In the previous subsection, Pfiltered has been used because the re-
moval of the upper and lower planes would be beneficial for the registration process.
Nonetheless, to verify whether this process was really successful, this information must
be considered. Otherwise, failures could not be detected along the x axis.

Three parameters are considered to address the validation:

• The Euclidean Fitness Score.

• The ratio of correspondences over the number of points in Pdownsampled,s (eq.
3.5).

• The ratio of correspondences over the number of points in Pdownsampled,s−1 (eq.
3.6).

rats = Ns,s−1

Npoints(s)
(3.5)
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Figure 3.9: Algorithm diagram. First, the cloud s is rotated 4 times with 0, 90, 180 and 270
degrees. Each resulting cloud is compared to the s-1 using ICP. Through the values of EFS
(Euclidean Fitness Score) and the number of matched points, the optimal transformation matrix
is chosen.

rats−1 = Ns,s−1

Npoints(s−1)
(3.6)

where Npoints(s) and Npoints(s−1) are the number of points in the downsampled point
clouds Pdownsampled,s and Pdownsampled,s−1 respectively. Ns,s−1 is the number of
correspondences between Pfiltered,s and Pfiltered,s−1.

Using only one of these two proportions may seem like enough to validate the
result. However, although one percentage might be high enough to meet the valida-
tion threshold, the other percentage may not reach that threshold, and consequently
alignment should be rejected.
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Therefore, given the equation:[
η∆rats + λ∆rats−1 + µ∆ 1

EFS
> V alidationth

]
(3.7)

where η, λ and µ are weighting values and V alidationth is the threshold. If the sum of
the left side is higher than the established threshold (V alidationth), then the alignment
between the two point clouds will be considered successful and accepted. Otherwise,
the alignment will be considered failed and will be rejected. Furthermore, it should
be emphasized that although the registration between Pfiltered,s and Pfiltered,s−1 is
not correct, the inverse registration (registration between Pfiltered,s−1 and Pfiltered,s)
may be correct. Hence, in a case of unsatisfactory validation, the inverse registration
will be performed and validated to see if it meets the eq. 3.7.

By this third step, the alignment matrix Ts,s−1 obtained after step 2 is validated.
Two possibilities can be given:

1. Equation 3.7 is satisfied. Then, a successful alignment between the current pose
and the previous one is co considered, i.e the matrix Ts,s−1 is considered correct.

2. Equation 3.7 is not satisfied. Then, the alignment matrix Ts,s−1 is not accepted
as valid and, thus, the current pose ~ps cannot be estimated with respect to the
previous one ~ps−1. The matrix Ts,s−1 is considered incorrect.

3.3.2 Algorithm to Locate Lost Poses
Despite proposing a robust algorithm for alignment, sometimes there are unsuccessful
cases. Typically, these cases tend to appear either when the distance between the two
poses is relatively prominent or when there is a big difference between the captured
environments (i.e. the robot has entered in a different room). For this reason, in the
present work is presented a pose estimation algorithm when the registration carried out
with the previous pose was not successful. This algorithm attempts to align poses that
were not properly aligned and also to locate poses that did not meet the validation
condition. After the alignment step, with the aim to obtain the alignment matrix
between Pfiltered,s and Pfiltered,s−1, three different cases are considered (see algorithm
1):

1. The alignment between Pfiltered,s and Pfiltered,s−1 is correct (alignment matrix
Ts,s−1 from the alignment algorithm is considered valid) and the previous pose
(~ps−1) is correctly located. A pose is considered well located when its position
is well known through a successful alignment between this pose and the previous
one, the position is also known. In this case, the current pose ~ps will be estimated
through the matrix Ts,s−1. Thus, the pose ~ps will be considered as correctly
located.
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2. The alignment between Pfiltered,s and Pfiltered,s−1 is not valid ( eq. 3.7 is not
met). In this case, a near pose would be searched in order to obtain a good
alignment (see algorithm 2). In this sense, despite the fact that Ts,s−1 is not
correct, this matrix is used to make a rough estimation of the pose ~ps with
respect to ~ps−1. Afterwards, the distances between the pose ~ps and the previous
ones (~pn where n = 0, ..., s− 2 are known) are calculated by using:

ds,n =
√

(xs − xn)2 + (ys − yn)2 ; n = 0, ..., s− 2 (3.8)

where (xs, ys) and (xn, yn) are the Cartesian coordinates of the poses ~ps and ~pn
within the map. After calculating the distances, the previous poses are sorted
by distance and then the registration is tried between the filtered Pcloud,s and
the nearest cloud. The registration step is repeated with the next nearest clouds
while the registration is not done correctly.
Two situations can occur. If a good alignment with a pose ~pn is obtained,
then the alignment problem will be successfully solved for the pose ~ps. The
transformation matrix will be stored and the pose ~ps would be located in the
map. If a successful alignment is not reached with any of the previous poses, ~ps
will be saved in a list of poses that are pending to be located. The poses that
are in the pending list will not be considered in subsequent registration attempts
because their location is not well known.

3. The alignment between Pfiltered,s and Pfiltered,s−1 is correct (i.e. the alignment
matrix Ts,s−1 is considered valid), but the location of the previous pose (~ps−1)
is not considered valid. If the alignment between the two consecutive poses is
considered valid but the previous pose (~ps−1) is not correctly located (i.e. it is in
the pending list), then, the registration of Pfiltered,s will be addressed with the
closest clouds until a good alignment is obtained. If ~ps is successfully aligned
with any of the well located poses, the transformation matrix will be stored and
the pose ~ps will be included in the map. Additionally, ~ps−1 will be removed from
the pending list and it will be considered correctly located too (see algorithm 3).

The algorithm includes a final step, which is always performed when a pose has
been aligned correctly. After locating the new pose, the algorithm attempts to align
that pose with each pose that is on the pending list. Although this step increases the
computation time, it is very beneficial, since it can reduce the number of poses that
are not located yet. Therefore, more information can be obtained about the map and
the movement of the robot.

3.3.3 Use of Visual Data
In this subsection, the localization process is addressed as a problem to align the
information captured from two consecutive poses s and s-1. The proposed method
consists in selecting robust points from the point clouds Poriginal,s and Poriginal,s−1
acquired from two consecutive poses as the robot moves through the underfloor en-
vironment. Previous research works have proposed the use of the point clouds with
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Algorithm 1 Online algorithm
1: if Registration(Pfiltered,s, Pfiltered,s−1) OK then
2: if ~ps−1 Located then
3: Store(Ts,s−1)
4: Locate(~ps)
5: else
6: Case B (algorithm 3)
7: end if
8: else
9: Case A (algorithm 2)
10: end if

Algorithm 2 Case A
1: Ts,s−1 is not accurate.
2: pcorrect: Array of located poses.
3: v: Array of correct poses. Sorted by distance.
4: dk: Array of distances between ~ps and the rest of correct poses ~pi.
5: P estfiltered,s = Ts,s−1 × Pfiltered,s−1
6: for i=0; (i < s− 1); i++ do
7: dk(i) =

√
(xests − xi)2 + (yests − yi)2

8: end for
9: v = sort{pcorrect, dk}
10: for j=0; {j < (Nposes − 2) and Registration(Pfiltered,s, Pfiltered,v(j)) is

WRONG } ; j++ do
11: if Registration(Pfiltered,s, Pfiltered,v(j)) OK then
12: Store(Ts,v(j))
13: Locate(~ps)
14: END CASE A
15: end if
16: end for
17: Listpending ← ~ps
18: END CASE A
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Algorithm 3 Case B
1: ~ps−1 is not accurate.
2: Ts,s−1 is accurate.
3: pcorrect: Array of located poses.
4: v: Array of correct poses. Sorted by distance.
5: dk: Array of distances between ~ps and the rest of correct poses ~pi.
6: P estfiltered,s = Ts,s−1 × P,filtered,s−1
7: for i=0; (i < s− 1); i++ do
8: dk(i) =

√
(xestfiltered,s − xfiltered,i−)2 + (yestfiltered,s − yfiltered,i)2

9: end for
10: v = sort{pcorrect, dk}
11: for j=0; {j < (Nposes − 2) and Registration(Pfiltered,s, Pfiltered,v(j)) is

WRONG } ; j++ do
12: if Registration(Pfiltered,s, Pfiltered,v(j)) OK then
13: Store(Ts,v(j))
14: Locate(~ps)
15: Locate(~ps−1)
16: Listpending 6← ~ps
17: END CASE B
18: end if
19: end for
20: Listpending ← ~ps
21: END CASE B

the Iterative Closest Point (ICP) algorithm to calculate the registration [107] or similar
methods that derive from ICP such as CPD (Coherent Drift Point) [194] and NDT
(Normal-Distributions Transform) [24]. Nevertheless, this subsection proposes a novel
alternative which estimates the alignment using visual information. Hence, the aim of
this subsection is to estimate the transformation matrix Ts,s−1 between the poses s
and s− 1. If the pose s− 1 is known, then, once the transformation matrix has been
calculated, the pose s can be estimated and integrated into the model.

Considering the facts that the alignment algorithms based on ‘pure’ ICP regis-
tration do not work properly for the proposed task, the visual information acquired by
the camera is used to obtain robust matches. The method proposed in this subsection
to estimate the transformation matrix Ts,s−1 consists of the following steps:

1. Pairing up the images in the set Ks−1,l with the images in the set Ks,m, l,m =
0, ..., 36. For each image in the first set, the most similar image in the second
set is calculated and matched with the first image. It should be noted that the
turret performs a uniform and constant rotation of 360 degrees while capturing
images from each set.

2. Coincidence of visual characteristics. For each of the pairs of images resulting
from the previous step, visual features are extracted and described and correspon-
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dences are established between them. As a result, each pair of images provides
a list of visual correspondences.

3. Performing the alignment by means of information of depth. The depth of each
corresponding point is calculated and, as a result, two new point clouds are
generated with a significantly reduced number of points. These point clouds
are expected to provide solid alignment because they are constructed using only
points that have been shown to have trustworthy matching. This process ends
with the estimation of the transformation matrix Ts,s−1.

To summarize, the whole algorithm is represented in fig. 3.10 and it basically
consists in three steps: (1) Matching images by global-appearance descriptors, (2)
matching visual features and extraction, and (3) alignment of depth information.

As for matching images by global-appearance descriptors, the aim of this
step consists in paring up the images captured from the position s − 1 with the im-
ages captured from the following position s. The movement between poses regarding
orientation can not be estimated with enough accuracy, since the odometry provided
is not trustworthy. Hence, in order to obtain a reliable measurement, an algorithm is
proposed with the objective to find out which image in the set Ks,m is most similar to
each image in the set Ks−1,l, l,m = 0, ..., 36. For this purpose, global-appearance de-
scriptors are proposed to compare the images pairwise and to make the pairing process.
In this case, the Fourier Signature (FS) descriptor [178] has been proposed.

As for this global-appearance description method, it consists basically in ob-
taining the one-dimensional Discrete Fourier Transform (1D-DFT) of each row from
an image with Nx rows and Ny columns. This way, each row x of the original image
rx = {rx,0, rx,1, ..., rx,Ny−1}, x = 0, ..., Nx−1 is transformed into the sequence of com-
plex numbers Fx = {Fx,1, Fx,2, ..., Fx,Ny−1}, x = 0, ..., Nx−1 by using eq. 3.3.3 [214]:

Fx,k =
Ny−1∑
n=0

rx, n · e−j(2π/Ny)kn ,

k = 0, ..., Ny−1, x = 0, ..., Nx−1

After transforming the whole image, the resultant matrix F (v, y), where v is
the frequency variable , is expressed in cycles/pixel. The most relevant information is
concentrated on the low frequency components, and the high frequency components
tend to present more noise. This way, a compression is conducted based on discarding
the last columns of the matrix and retaining only the first Nk columns. Hence the
resulting compressed matrix is named as Fourier Signature F (v, y) ∈ RNx×Ny . This
resultant matrix can be decomposed into a magnitude matrix A(v, y) and an arguments
matrix Φ(v, y). The magnitudes matrix contains non localized information on the global
appearance of the scene, then it can be used as a global-appearance descriptor of the
original image. Therefore, considering all these facts, a holistic descriptor is calculated
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for each one of the images contained in the set of Ks−1,l and Ks,m. This information
is stored in the matrices As−1 and As respectively.

After obtaining all the descriptors, the comparison between images can be done.
That is, each image of the set Ks−1,l is compared with one image from the set Ks,m by
using the Euclidean distance. The image that presents the minimum distance is paired
up. According to this process, it is possible that the image in the set Ks,m is assigned
to several images in the set Ks−1,l. However, there must be only some offset in the
order or acquisition of the images from both poses. Additionally, the direction in which
the turret rotates can be different. Therefore, the correct association between two
images depends on two variables (r, t). The first one indicates the rotation direction
(clockwise or counterclockwise) r = [−1, 1] and t represents the relative offset between
the first image of each set. Estimating these values is necessary to carry out robustly
the movement estimation Ms−1,s between poses s−1 and s. Hence, once Ms−1,s has
been estimated, a comparison of the 2×37 possible paring matrices is done, considering
r = [−1, 1] and t = [0, 1, ..., 36]. The algorithm compares Ms−1,s with all the possible
solutions and selects the most similar one (using the Hadamard product as the criterion
to obtain the degree of similitude between matrices), which is named M ′s−1,s. Once r
and t are known, the images of both sets are paired up according to the final matrix
of match-ups M ′s−1,s. Mathematically, once t and r are known, the pairings can be
calculated through the next expression. The image Ks−1,l is paired up with the image
Ks,m, where:

m =
{

(l + r · t) mod 37 if r = 1
(37− l − r · t) mod 37 if r = −1

(3.9)

After pairing up the set of images Ks−1,l with Ks,m, the following step con-
sists in matching visual features, that is, conducting the detection, description and
matching of local features. First, the visual features of each image are detected and
described by means of the Speeded Up Robust Features (SURF) algorithm [16]. The
choice of this descriptor is due the robustness presented in preliminary experiments
concerning the target environment. Once the visual features have been obtained and
described, a matching step is tackled. Then, as result, a set of matched visual features
is obtained, for each pair of images. An example of this process is depicted in the
fig. 3.11. Taking into consideration that the images acquired by the robot in a specific
pose present a high degree of overlapping, only 6 pairs of equally spaced images are
used (Ks−1,l·i,Ks,m·i) with i = 1, ..., 6 in order to avoid adding redundant information
(see fig. 3.10)

The third step of the registration process consists in extracting and aligning
the depth information, that is, recovering the 3D information of each keypoint de-
tected. In order to carry out the 3D information recovery, the image that presents
the keypoint as well as the original point cloud are considered. After that, the 3D
coordinates of the matched keypoints are available and, then, two new point clouds
are created, one corresponding to the pose s− 1 and the other to the pose s. Due to
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Figure 3.10: Schematic description of the visual-data-based alignment algorithm. The images
in both sets are firstly paired. After that, the visual keypoints are extracted and combined consid-
ering each pair of images. Last, 3D points are generated from the matches and the transformation
matrix Ts,s−1 is obtained.

the fact that the points contained in ceiling and floor are expected to contain incon-
sistencies, they are removed from the point cloud set. Hence, the final point clouds of
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Figure 3.11: Example of the extraction of keypoints (in this case, SURF keypoints) and match-
ing with a previous image.

the poses s−1 and s are named P ′s−1 and P ′s respectively and they have a significantly
lower number of points compared to the original clouds. Afterwards, the transforma-
tion matrix Ts−1,s, which represents the relative rotation and translation of the pose
s with respect s − 1, is obtained through using the alignment algorithm of the Point
Cloud Library (PCL) [236] over the two new point clouds. As the number of points in
each cloud is relatively small, the necessary time to reach a solution is reduced.

The benefit of the proposed method is twofold. First, the proposed process
ensures that subsequent mappings are more robust and trustworthy, as keypoints have
been previously selected from similar images. This feature is especially relevant in
challenging environments such as target environments (building crawl spaces). Second,
the number of matches used to estimate the alignment matrix is substantially less than
the use of the full point cloud provided by the laser sensor, then this improves the
computation time.

3.4 Experiments

This section presents the experiments and results carried out through applying the
methods proposed in previous sections. The algorithms were run on a 2 × 2.66 GHz
Dual-Core Intel Xeon CPU R© with 10 GB of memory. To develop the experiments,
the robot took some sets of laser measurements and images from different poses from
various environments and assembled a point cloud per pose. Therefore, there is a point
cloud and 37 images associated with each pose of the robot within the environment
(Ps is the point cloud in the pose ~ps). As mentioned before, the characteristics of the
terrain do not allow to obtain sufficiently precise odometry measures. Consequently,
for experiments related to depth data, the quality of the calculated alignment will be
measured through confidence values that indicate the quality of the estimated trans-
formation matrix. In the case of experiments related to visual data, in-depth data
information is used as ground truth. Therefore, an alignment matrix is considered
correct or rejected according to the criteria presented in subsection 3.3.1.
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First, the environment and datasets are described in subsection 3.4.1. After that
three experiments have been carried out to validate the algorithms proposed with the
depth data (3.4.2) and other two experiments have been carried out concerning the use
of visual data (3.4.3). Regarding the experiments conducted with depth data, three
three experiments are performed to verify the validity of the presented algorithms. The
first experiment is to evaluate the method for aligning consecutive positions (algorithm
presented in 3.3.1). The second experiment focuses on the alignment of poses that
were not successfully registered with the previous one (explained in section 3.3.2). Last,
an experiment is proposed to adjust the validation threshold of the eq. 3.7. As for the
experiments tackled with visual data, the algorithm for matching images with using
global appearance is first tested, and then the performance of the alignment algorithm
is evaluated.

3.4.1 Dataset

A set of data captured by ourselves is considered to perform the experiments. Six dif-
ferent underfloor environments are used to collect the data. Within each environment,
the robot followed a trajectory and captured data from various poses. For each pose,
a point cloud is stored. The table 3.1 shows the number of poses considered for each
environment.

Environment 1 2 3 4 5 6
Number of poses 4 9 10 10 21 21

Table 3.1: Number of poses in each environment

Fig. 3.12 shows the appearance of some of the environments. Environments
1 and 2 are relatively small (the average distance between captures is less than 10
cm) and are well structured. Environment 3 is larger and consists of several rooms.
This way, consecutive point clouds can differ considerably, so it is expected to be more
challenging. Environment 4 has a simpler structure compared to previous environments,
but is the one that presents a greater distance between consecutive positions. Finally,
5 and 6 correspond to the same environment but before and after applying the foam
insulation to the bottom of the floor.

Environment	2 Environment	4 Environment	6

Figure 3.12: Examples of images taken from different environments that have been used to
develop the experiments.
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3.4.2 Experiments Using Depth Data
Concerning the experiments carried out by using depth information, the six datasets
were used to evaluate the proposed algorithms to solve the registration problem in
environments that present a challenge for characterization. For these experiments, an
alignment matrix (T ) will be considered either correct or rejected through the criteria
presented in subsection 3.3.1. Three experiments are addressed to verify the validity of
the presented algorithms. The first experiment is to evaluate the method for aligning
consecutive positions (algorithm presented in subsection 3.3.1). The second experiment
focuses on the alignment of poses that were not successfully registered with the previous
one (explained in subsection 3.3.2). Finally, an experiment is proposed to adjust the
validation threshold of the eq. 3.7.

3.4.2.1 Experiment 1. Alignment between consecutive poses through
the proposed registration algorithm.

The first experiment consists of a registration between consecutive positions and is
developed through the alignment algorithm presented by subsection 3.3.1. The per-
centage of correspondences is calculated as subsection 3.3.1 details (eq. 3.5 and 3.6),
since the number of matches depends on the characteristics of the point cloud (number
of points after downsampling, shape, etc.). In addition, computation time to complete
the registration was also collected.

Fig. 3.13 and 3.14 show the results of each pair of consecutive positions (s− 1, s)
in the six environments: the percentage of matches rs and rs−1 (eq. 3.5 and 3.6) and
the EFS value (eq. 3.3) divided by the number of correspondences (Ns,s−1). In addi-
tion, table 3.2 shows the average computation time and the average number of matches
for each environment.

As explained in subsection 3.4.2, an alignment is considered valid when equation
3.7 is accomplished. According to it, a high number of correspondences and low values
of EFS denote good alignments. Taking it into account, an analysis of figures 3.13
and 3.14 permits knowing which registrations are successful and which are not.

As it is shown, the alignments tackled in the environments 1 and 2 were all
successful, since the parameters to measure the correspondences present similar and
also high values. There is no alignment whose values rats−1, rats and EFS/Ns,s−1
are substantially worse than the others, so none of the alignments should be rejected.
Nevertheless, in the environment 3, the percentage of matched points between the
poses 6 and 7 and also between 7 and 8 are considerably lower than those of the rest
of alignments and, at the same time, the EFS values are substantially higher. This
denotes that the alignment between these point clouds was unsuccessful and hence
these alignments should be rejected. In the environment 4, the alignments between
P5−P6 and between P8−P9 present a percentage of correspondences that is slightly
lower than in the others. Since this difference is relatively low, these alignments should
be considered valid. The two last registrations in the environment 5 (P18 − P19 and
P19 − P20) have respectively an average of 16% and 25% of correspondences, which
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Figure 3.13: Results of the experiment 1. Percentage of matched points and EFS divided by
the number of matches in environment (a) 1 , (b) 2 and (c) 3.

are considerably lower than the rest of registrations (around 40% of correspondences),
while the EFS values for these alignments are also higher. This way, these two cases
should be categorized as unsuccessful. In the environment 6, similar issues can be
found in P10 − P11 and P19 − P20.

Hence, from the results collected through these experiments, the conclusion
reached is that both parameters (number of correspondences between consecutive point
clouds and the Euclidean Fitness Score) are capable of validating the alignment results
between point clouds.

Finally, in this experiment, the calculation time of the alignment between point
clouds was also measured. Table 3.2 shows the average computation time and the
average number of correspondences for each environment. From this table, it is noticed
that the problem can be solved in few seconds.
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Figure 3.14: Results of experiment 1. Percentage of matched points and EFS divided by the
number of matches in environment (a) 4 , (b) 5 and (c) 6.
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Environment Average Time (ms) Average N. correspondences
1 4224 10411
2 3639 13332
3 4184 10855
4 4934 16577
5 5955 14466
6 5284 14732

Table 3.2: Results of experiment 1. Average computing time and average number of correspon-
dences of the registration process in the six studied environments.

3.4.2.2 Experiment 2. Alignment between poses that have not been
successfully aligned with the previous one.

This experiment assesses the algorithm presented in the subsection 3.3.2. As the
results of the experiment 1 show, although the alignment achieve successful results for
a majority of cases, some poses were not well aligned with the previous one. To solve
this problem the algorithm that tries to align poses with other poses different from the
previous one is executed. This experiment has been evaluated using environments 5
and 6.

Figures 3.15 and 3.16 show two alignments of sample point clouds through the
transformation matrices calculated in experiment 1 and in experiment 2. Fig. 3.15
shows point clouds from the environment 5 and fig. 3.16 shows point clouds from the
environment 6. First, concerning environment 5, the alignment calculated in experi-
ment 1 between the poses 18 and 19 was not successful (fig. 3.15(a)). Nonetheless,
the experiment 2 provides a successful alignment with the pose 11 (fig. 3.15(b)). Sec-
ond, in the case of environment 6, the experiment 1 was unable to calculate a correct
alignment between the 10th and the 11th poses (fig 3.16(a)). In this way, experiment
2 was run and, as a result, the pose 11 was successfully aligned with the pose 13
(fig. 3.16(b)). In this case, the alignment was performed following this process. First,
the point cloud was obtained at pose 11 and the 1 algorithm was executed. Registration
between poses 10 and 11 was unsuccessful. Hence, the 2 algorithm was executed. The
registration between 10 and 11 was unsuccessful. Therefore, the algorithm 2 was run.
The previous poses (from ~p0 to ~p9) were sorted according to the distance to the pose
11 (~p11 was calculated as T11,10 × ~p10, where T11,10 was a coarse alignment matrix).
After trying to align unsuccessfully the pose 11 with all the previous ones, this pose
was stored on the pending list. Second, a new pose (12) was obtained and successfully
aligned with 11 using the algorithm 1. Nevertheless, since 11 was on the pending list,
the Case B (algorithm 3) was executed. The pose 12 was unsuccessfully registered
with any of the previous poses (0, 1...., 10). Therefore, this pose was also stored on the
pending list. Again, a new pose (13) was obtained and was correctly registered with
(12). After that, the algorithm 3 was executed and pose 13 was successfully registered
with the pose 10. Thus, both the 13 and 12 poses were located correctly and 12 was
removed from the pending list. Last, as mentioned in subsection 3.3.2, after localizing
a new pose, the algorithm executes a final step to try to localize poses that were still
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(a) (b)

Figure 3.15: Examples of alignment between point clouds. (a) Incorrect alignment between
poses 18 and 19 in environment 5. (b) Correct alignment of pose 19 with pose 11 in environment
5 after using case A algorithm 2 of the novel registration algorithm.

in the pending list. Registration between 13 and 11 was successfully addressed, thus,
11 was successfully located as ~p11 = T11,13 × ~p13.

Fig. 3.17 shows the computing time of the alignment process. This time takes
reasonably low values when the pose is successfully aligned with the previous one
(experiment 1) and increases substantially when experiment 2 has to be processed to
achieve a correct alignment.

Therefore, despite using the algorithm that aligns consecutive poses allows to
get correct alignments, there is a low number of cases that still do not present valid
alignments. Consequently, an algorithm to align non-consecutive poses has been de-
veloped and tested. This algorithm not only attempts to align incorrect poses with
previous ones, but it also manages a pending list for the cases in which the alignment
with previous poses is unsuccessful with the aim of aligning the pose with future ones.

3.4.2.3 Experiment 3. Validation threshold adjustment

The results of experiment 1 showed that the percentage of correspondences (rats and
rats−1) and the EFS take different values depending on the environment (fig. 3.13
and 3.14). This is due to the fact that the characteristics of point clouds depend on
some factors such as the size of the environment, the elements that make it up, and
its structure. This leads us to the conclusion that the validation threshold (eq. 3.3.1)
can not be global. If we tried to set the same threshold for all environments, most
records would be categorized incorrectly; either because successful alignments would
be considered unsuccessful, or even because incorrect alignments might be accepted as
correct. The latter case is especially dangerous and should be categorically avoided.

To resolve this issue, the following process is followed. Initially, the first reg-
istration (between the poses ~p0 and ~p1) is addressed and the alignment results are
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(a) (b)

Figure 3.16: Examples of alignment between point clouds. (a) Incorrect alignment between
poses 10 and 11 in the environment 6. (b) Correct alignment of the pose 11 with the pose 13 in
the environment 6 after using the case B algorithm 3 of the novel registration algorithm.

obtained. The average value of the two percentages of correspondences (rats and
rats−1) is obtained and the result is multiplied by a coefficient γ. The result will be
considered as the threshold (eq. 3.7) for this environment. Subsequently, the following
records in the environment will be accepted as correct if eq. 3.7 is met.

It should be noted that this threshold will only work well if the first registration
was correct. Otherwise, the error will spread to the following registrations. To avoid
this, the translation and rotation of the robot between the poses ~p0 and ~p1 should
be small. This allows to tune the parameters by considering the diversity of the envi-
ronments. In addition, the γ value should be chosen by the user. In this experiment,
different γ values are considered to test the influence of this parameter on the valida-
tion results. Environments 3, 4, 5, and 6 are used to adjust this setting, as they are
the most challenging. Additionally, it is considered a mix between environments 5 and
6 in order to add more complexity and taking advantage of the fact that environments
5 and 6 are the same except for the top plane.

Three values are tested for the γ coefficient (0.6, 0.7 and 0.8). For each reg-
istration within an environment, four possible cases can occur. First, the registration
between poses is detected as correct when in fact it is correct (True positive). Second,
the record is detected as incorrect when in fact it is incorrect (True negative). Third,
the record is detected as incorrect when in fact it is correct (False negative). Last,
the record is detected as correct when in fact it is incorrect (False positive).

Therefore, for each γ value, two graphs are plotted. The first shows in each
environment how many registrations have been detected as True positive, True neg-
ative, False negative or False positive. The second graph shows how many decisions
were correct (True Positive or True Negative) and how many decisions failed (False
Negative or False Positive). The results obtained are shown in fig. 3.18, 3.19 and 3.18.
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Figure 3.17: Computing time of experiment 2. (a) Environment 5. (b) Environment 6.
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Figure 3.18: Experiment 3 performance when the coefficient γ is 0.8. (a) Number of true
positive, true negative, false negative and false positive registrations . (b) Number of times when
the result of the algorithm is correct and the number of failures occurred.
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Figure 3.19: Experiment 3 performance when the coefficient γ is 0.7. (a) Number of true
positive, true negative, false negative and false positive registrations . (b) Number of times when
the result of the algorithm is correct and the number of failures occurred.
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Figure 3.20: Experiment 3 performance when the coefficient γ is 0.6. (a) Number of true
positive, true negative, false negative and false positive registrations . (b) Number of times when
the result of the algorithm is correct and the number of failures occurred.
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Using the transformation matrices calculated in experiment 1, and visually an-
alyzing the results, the following registrations proved to be unsuccessful:

• Environment 3: p1 − p2 and p7 − p8.

• Environment 4: All registrations were correct.

• Environment 5: All registrations were correct.

• Environment 6: p10 − p11 and p19 − p20.

• Environment mix. 5-6: p2 − p3.

These results allow to make a deep analysis of fig. 3.18, 3.19 and 3.18.

• When γ = 0.8 (see fig. 3.18). In the environment 3, the two wrong registrations
were detected as incorrect and one registration was rejected when it was actu-
ally aligned correctly. In environment 4, all poses were detected as correct. In
environment 5, four poses were detected as misaligned when in fact they were
correct. In environment 6, the two misaligned poses were detected as incorrect.
Last, in the environment of the mixture, the incorrect registration was also de-
tected. Consequently, the validation algorithm failed once in the environment 3
and four times in 5 (see fig. 3.18 (b)).

• When γ = 0.7 (see fig. 3.19). In environment 3, the two incorrectly aligned
registrations were detected as incorrect and one registration was rejected when
it was actually aligned correctly. In environment 4, all poses were detected as
correct. In environment 5, it was detected that a pose was misaligned when
it was actually aligned correctly. In environment 6, the two misaligned poses
were detected as incorrect. Finally, in the mixing environment, the incorrect
registration was detected. Consequently, the validation algorithm failed once in
the environment 3 and once in 5 (see fig. 3.19(b)).

• When γ = 0.6 (see fig. 3.20). In environment 3, the two misaligned registra-
tions were detected as incorrect and one registration was rejected when it was
actually aligned correctly. In environment 4, all poses were detected as correct.
In environment 5, all poses were detected as correct. In environment 6, the two
incorrectly aligned poses were detected as incorrect. Finally, in the mixing envi-
ronment, the incorrect registration was detected. Hence, the validation algorithm
failed only once, in the environment when γ = 0.6 (see fig. 3.20(b)).

None of the three coefficients produce the false positive case (registration de-
tected as successful when in fact it was not). This is very important because this
situation must be firmly avoided. For a γ coefficient of 0.8,the threshold is too strict
and therefore in many cases good alignments are rejected. When γ = 0.6, the calcu-
lated threshold appears to be correct more often, but γ = 0.7 ensures that incorrect
alignments are not detected as correct. In conclusion, the range should be adjusted in
the range of 0.6 to 0.7 for the users according to their needs.
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3.4.3 Experiments Using Visual Data

Concerning the experiments carried out by using visual information, only three datasets
were used. On the one hand, the environment 4 is especially challenging because of
the poor lighting conditions and the lack of objects in the scenes, what makes it
especially prone to visual aliasing and complicates the detection and correct matching
of visual features. Within this environment, 9 locations are considered and data from
these locations are captured. As a result, 9 point clouds and 333 RGB images are
available to model the environment (37 images per position). On the other hand,
environments 5 and 6 cover a wider area, whose size is around 2.5×2.5 m. Environment
5 contains information from 21 different poses but only 19 are used for this purpose as
the two discarded are relatively close to other poses and can create visual confusion.
Environment 3 also contains information from 21 different poses and in this case, all
are used.

3.4.3.1 Evaluation of the Algorithm to pair-up the images using
global appearance

The visual alignment algorithm is run for every pair of consecutive locations s− 1 and
s. Table 3.3 shows the values of the variables t and r, obtained after running the
algorithm presented in subsection 3.3.3. Assuming that the image Ks−1,l1 has been
matched up with the image Ks,m1 , the results of the acquisition process are considered
valid if the orientation of the turret is between Ks,m1−1 and Ks,m1+1 when Ks−1,l1
was acquired.

Given this criterion, all the pairings provided by the algorithm turn out to be
correct, despite the challenging properties of the three environments. An example of
this pairing-up process can be seen in fig. 3.21 for the environment 5. The result
of the image pairing process is t = 36, r = 1. This means that the image K9,18 is
matched-up with the image K10,17 where m1 = (l1 + r · t) mod 37 (eq. 3.3.3).
Fig. 3.21(a) shows the image K9,18, and the images K10,16 , K10,17 and K10,18 are
shown on figures 3.21(b), 3.21(c) and 3.21(d) respectively. These figures show that the
pairing provided by the algorithm is successful, since the orientation of the image K9,18
is between the orientations of images K10,16 and K10,18. Additionally, the experiments
have shown that the average necessary time to pair up the images of pose s− 1 with
the images of pose s is equal to 90 milliseconds.

3.4.3.2 Evaluation of the alignment algorithm

This subsection assesses the performance of the alignment algorithm presented in sub-
section 3.3.3. For every pair of consecutive locations s− 1, s, the second pose can be
estimated with respect to the first one by using the transformation matrix calculated
with the proposed alignment algorithm Ts−1,s. After considering each pair of consecu-
tive locations and the three environments proposed for this aim, the results are shown
in fig.3.22, 3.23 and 3.24. In these figures, both the position of the robot calculated
with the algorithm and the ground truth (considered as the estimated position using
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Table 3.3: Results of the image pairing-up process

Position Environment 4 Environment 5 Environment 6
s− 1 s t r t r t r

0 1 36 -1 1 -1 2 -1
1 2 0 1 36 -1 35 -1
2 3 36 -1 0 -1 1 -1
3 4 36 -1 0 -1 36 -1
4 5 0 1 0 1 36 -1
5 6 0 1 36 1 35 -1
6 7 36 -1 0 1 0 -1
7 8 36 -1 1 1 0 -1
8 9 - - 36 1 0 1
9 10 - - 36 1 36 1
10 11 - - 0 1 36 1
11 12 - - 24 1 36 -1
12 13 - - 4 1 36 -1
13 14 - - 35 1 36 -1
14 15 - - 33 1 0 -1
15 16 - - 36 1 36 -1
16 17 - - 35 1 36 -1
17 18 - - 35 1 1 1
18 19 - - - 1 31 -1
19 20 - - - 1 10 -1

depth data) are represented. For clarity, the position of the robot in the horizontal
plane (yz) and in the vertical plane (xy) is shown separately.

Fig. 3.25 represents the localization error at each robot position (mm), con-
sidering each environment separately. Environment 4 shows relatively accurate results
with error values below 4.5 mm, compared to ground truth (fig. 3.25(a)). With respect
to environment 5, it presents slightly less accurate results, compared to environment
4, with a maximum global error around 25 mm in the pose 12 (fig. 3.25(b)). Last,
regarding the results in environment 6, it is shown that the algorithm produces good
results (global error lower than 20 mm), in the last two poses (19 and 20), where the
method fails (figures 3.25(c) and 3.25(d)). In general, considering all the results, the
method provides relatively accurate position estimations and is unsuccessful in only
two cases. The results confirm that even in these particularly challenging underfloor
environments, the proposed approach exhibits relatively accurate behaviour for esti-
mating alignment between two consecutive poses and thus estimating the location of
the robot from an initial position.

Last, table 3.4 shows some relevant information about each environment. The
parameter #Features specifies the total number of visual keypoints matched between
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(a)

(b) (c) (d)

Figure 3.21: Results of an image pairing-up process. Figure 3.21(a) is the image 18 acquired
from location (pose) s = 9 (named image K9,18). Figures 3.21(b), 3.21(c) and 3.21(d) are the
images 16, 17 and 18 acquired from pose s = 10 (named, respectively, K10,16, K10,17 and K10,18).
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Figure 3.22: Results of the proposed alignment method in environment 4. Horizontal (yz) plane
and vertical (xy) plane. The position of the robot obtained with the proposed algorithm and the
ground truth, which was estimated from depth data. are shown, separately.
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Figure 3.23: Results of the proposed alignment method in environment 5. Horizontal (yz) plane
and vertical (xy) plane. The position of the robot obtained with the proposed algorithm and the
ground truth, which was estimated from depth data. are shown, separately.

images. The second parameter, #Correspondences, indicates the number of points
used by the system to do the alignment and estimate the transformation matrix once
outliers have been removed. Finally, %Correspondences is the ratio between the two
previous parameters. The results show that the parameter %Correspondences allows
to know whether the alignment is correct or wrong. For instance, the estimation of
pose 19 with respect to pose 18 in environment 6 presents 20% the lowest number
of correspondences, which is the lowest value of all the experiments. In this point,
the algorithm starts to fail. Hence, a threshold to consider the alignment correct can
be set around 40%, this way, subsequent poses are not aligned with respect to this
unsuccessful ones to avoid spreading the error. Regarding computing time, this part of
the process (finding the matches, getting the depth of these matches and aligning two
point clouds) has an average calculation time of 760 ms. Considering this together
with the time required to match the images, the average total time to obtain the
transformation matrix between two consecutive poses is equal to 850 ms.

3.5 Conclusion

This chapter proposes novel methods to solve the localization problem of a mobile robot
which moves through underfloor voids that present challenging features for traditional
methods. To solve this problem, the robot is equipped with an RGB-D sensor that
extracts images and depth data from the environment. The results presented in this
work show the robustness and effectiveness of the proposed methods and their ability
to cope with such challenging underfloor environments.

As for the contribution carried out with the depth data information, three main
contributions were conducted. The first contribution is an algorithm that uses point
cloud information to estimate the registration between poses. The proposed algorithm
present noticeable improvements in comparison with previous proposed methods, due
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Figure 3.24: Results of the proposed alignment method in environment 6. Horizontal (yz) plane
and vertical (xy) plane. The position of the robot obtained with the proposed algorithm and the
ground truth, which was estimated from depth data. are shown, separately.

to the fact that they are not able to extract reliable features in the type of environments
proposed. After obtaining the point clouds from the laser sensor, these are downsam-
pled and the information in the top and bottom planes is removed with the aim to
obtain clouds more light that lead to more robust results. Last, the transformation ma-
trix is calculated through the registration and, thus, the alignment is estimated. The
experiments showed that this algorithm works successfully in environments where the
characterization using regular algorithms is difficult. Furthermore, although the regis-
tration algorithms are usually based on a coarse alignment (using visual information),
fine alignment (using depth information), and an optional optimization, the method
proposed here can reach sufficiently accurate results simply by using the depth infor-
mation. The results show that this algorithm works successfully in most cases and also
takes a few seconds to arrive at the solution.

Moreover, as second contribution, a novel algorithm is proposed to solve the
cases in which the alignment between consecutive poses was unsuccessful. This algo-
rithm attempts to align the poses that were not well aligned with other poses within
the environment. The obtained results show that this method successfully aligns the
majority of cases. Therefore, this approach can manage a notorious utility for online
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Figure 3.25: Error obtained along every axis for every pose in each environment and total
error, expressed in mm. Fig. 3.25(a): environment 4; fig. 3.25(b): environment 5 and fig.
3.25(c): environment 6. Fig. 3.25(d) shows again the results obtained in environment 6 but
removing the two last poses (which have proved to be unsuccessfully estimated).

82



3.5. Conclusion

Table 3.4: Results of the alignment using the previously selected 3D points.

Poses #Features #Correspondences %Correspondences
(s− 1) - (s) Env4 Env5 Env6 Env4 Env5 Env6 Env4 Env5 Env6

0-1 99 102 117 152 138 146 65 74 80
1-2 107 105 106 155 160 133 59 66 80
2-3 99 84 87 161 105 124 61 80 70
3-4 99 130 90 155 162 129 63 80 70
4-5 106 91 170 161 142 272 65 64 63
5-6 95 65 108 159 97 155 60 67 70
6-7 127 87 111 178 115 153 71 76 73
7-8 108 107 99 168 164 117 64 65 85
8-9 - 79 85 - 105 102 - 75 83
9-10 - 126 183 - 206 207 - 61 88
10-11 - 86 20 - 112 29 - 77 69
11-12 - 141 126 - 204 147 - 69 86
12-13 - 98 137 - 132 168 - 74 82
13-14 - 33 104 - 64 133 - 52 78
14-15 - 47 111 - 90 145 - 52 77
15-16 - 102 93 - 122 124 - 84 75
16-17 - 30 121 - 71 147 - 42 82
17-18 - 50 91 85 118 - 59 77
18-19 - - 12 - - 59 - - 20
19-20 - - 87 - - 147 - - 59

localization processes where it is desirable to ensure that no information is lost while
the robot obtains the exact route within the environment. Although additional com-
puting time is required, barely no pose information is lost and an accurate global map
can be created.

The percentage of correspondences together with the value of EFS allows to
calculate a validation parameter. The third contribution is to adjust this validation
threshold and test its influence on the accuracy of the validation process. Good results
were obtained when γ = 0.7 and γ = 0.6. From these results, we can conclude that
users (according to their needs) should choose a value within this range: when this
coefficient approaches 0.6, the validation step tends to be correct in most cases; if it
is closer to 0.7, the validation step reduces the chance of detecting failed alignments
as correct.

Concerning the contributions related to the use of visual data, this approach
extracts visual keypoints from sets of color images and matches them. The point
clouds used to get the alignment are constructed using only these matches. Taking
these point clouds as input, we use the PCL library to robustly estimate the transfor-
mations between two consecutive postures of the mobile robot. Finally, the approach
is quantitatively evaluated using different RGB-D data sets acquired in real underfloor
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environments. Experiments in these environments show that the framework presents
successful results in position estimation.

3.6 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• C. Parra, S. Cebollada, L. Payá, M. Holloway, O. Reinoso. A Novel Method
to Estimate the Position of a Mobile Robot in Underfloor Environments Using
RGB-D Point Clouds. IEEE Access. Ed. IEEE. Vol. 8, pp. 9084-9101 (January
2020) [208] JCR-SCI Impact Factor (2019): 3.745, Quartile Q1.

– This paper presents a the localization approach for a mobile robot, which is
equipped with a laser scanner and an RGB camera. The data captured by
both sensors is used to build point clouds that describe the appearance of
the environment. To estimate the current position of the robot within the
environment, a point cloud is captured and the aliment algorithm is tackled
with point clouds previously captured in prior poses.

• S. Cebollada, L. Payá, M. Juliá, M. Holloway, O. Reinoso. Mapping and localiza-
tion module in a mobile robot for insulating building crawl spaces. Automation in
Construction. Ed. Elsevier. Vol 87, pp. 248-262 (March 2018) [41] (SCI-JCR
Impact Factor: 4.313, Q1).

– This paper presents two depth-data based algorithms to robustly obtain
the alignment between two point clouds captured in challenging underfloor
environments.

• S. Cebollada, C. Parra, M. Juliá, M. Holloway, L.M. Jiménez, O. Reinoso. Alin-
eamiento 3D desde posiciones no cercanas de un robot para trabajos en inte-
riores a partir de imágenes RGB-D. XXXVII Jornadas de Automática (Madrid
(Spain), 7-9 September 2016) .Ed. CEA-IFAC. ISBN:978-84-617-4298-1 - pp.
374-381 [238]

– This paper presents methods based on visual and depth data to solve the
alignment between poses within a challenging environment. Additionally,
this paper also presents a method to manage the alignment of poses whose
registration algorithm presented mistakes.
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4 Compression and Subsequent
Localization in Hierarchical Maps

4.1 Introduction

Vision sensors have been widely used for mapping and localization purposes. Among
the different configurations frequently proposed by authors, as mentioned in chapter 1,
omnidirectional cameras constitute a good alternative. This is due to the fact that
they can provide a big amount of information with a field of view of 360 deg. around
them and their cost is relatively low in comparison with other kinds of sensors. Con-
cerning additional advantages through using this type of systems, the features in the
images are more stable (because they stay longer as the robot moves) and permits
both building rich maps and estimating the robot position. Omnidirectional cameras
have been successfully used by different authors for mapping and localization. For ex-
ample, Valiente et al. [283] used local features extracted from omnidirectional images
to generate reliable visual odometry to improve the task of Simultaneous Localization
And Mapping (SLAM). Marinho et al. [171] used feature extractions and machine
learning techniques to tackle localization using omnidirectional images. Faessler et
al. [72] present a vision-based quadrotor system for mapping a dense three-dimensional
area in line for the purpose of eliminating the delay between the quadrotor and external
systems. Payá et al. [211] conducted an extensive study, which presents a state of the
art of the most relevant localization and mapping algorithms developed with omnidi-
rectional visual information. An example of a mobile robot that has an omnidirectional
camera mounted on it is shown in fig. 4.1(a) and an example of omnidirectional image
is shown in fig. 4.1(b).

Subject to how to extract and represent the information most relevant, map-
ping and localization tasks based on visual information have been commonly solved
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(a) (b)

Figure 4.1: (a) Example of a robot equipped with an omnidirectional vision system. Image
licensed under Creative Commons Attribution-Share Alike 2.5 Generic license. (b) Example of
an omnidirectional image that was captured from an office.

by using two frameworks. The first approach is based on detecting, describing and
tracing relevant local features obtained from a set of scenes [282], [234]. The second
approach consists in building a unique descriptor per image that contains information
on its global appearance [137], [150], [279]. Concerning the methods that are based
on using local features, they consist in extracting some outstanding pixel points from
each scene and then creating a descriptor for each point, using the information around
it (fig. 4.2(a)). These descriptors have been widely used for solving visual mapping
and localization. A wide range of authors have proposed methods that use them, such
as Angeli et al. who employ SIFT [6] or Murillo et al. who use SURF [191]. Nonethe-
less, these methods present some disadvantages such the environments must be rich
in details in order to obtain reliable landmarks. Another drawback is that keypoints
detection is not always robust against changes in the environments (e.g. changes of
lighting conditions) and sometimes, description is not totally invariant to changes in
the robot position. Moreover, these methods can be computationally complex, hence,
in those cases, building models in real time would not be possible. As for the meth-
ods based on global-appearance or holistic descriptors, they consist in treating each
image as a whole. That is, each image is represented by a unique descriptor that
contains information about its global appearance (fig. 4.2(b)). These approaches lead
to simpler mapping and localization algorithms, since each scene is described by only
one descriptor. Thus, mapping and localization can be done simply by storing and
comparing the descriptors in pairs. In addition, they could be more robust in dy-
namic, unstructured environments. As disadvantages, these methods present a lack
of metric information. Visual aliasing can also create a negative impact on mapping
and localization tasks, as indoor environments are prone to presenting repetitive visual
structures. Additionally, modeling large environments would require a large number of
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images, and this would introduce serious problems when this form of representation has
to be used in real-time applications. Hence, holistic descriptor method is an intuitive
alternative to solve the mapping and localization problem, but its robustness against
several issues must be evaluated. Many authors have addressed mapping and local-
ization using global-appearance descriptors (fig. 4.2(b)). For example, Liu et al. [159]
propose a descriptor based on color features and geometric information. By using this
descriptor, a topological map can be built. Payá et al. [210] develop a comparative
analysis of some description methods to carry out the mapping and localization tasks
by using omnidirectional vision sensors. Rituerto et al. [230] propose the use of the de-
scriptor gist [150, 204] to create topological maps from omnidirectional images. More
recently, Berenguer et al. [21] propose the Radon transform [224] as global-appearance
descriptor of omnidirectional images as hierarchical localization method.

"⃗#

(a)

(b)

"⃗$

"⃗%

…

Figure 4.2: Two main approaches to obtain the most relevant information from images and use
that information for visual mapping and localization purposes. (a) Detection, description and
tracking of some relevant landmarks along a set of scenes. (b) Building a unique descriptor per
image that contains information on its global appearance.

Concerning map building, in the related literature, two main frameworks have
been proposed to address this task: metric maps, which represent the environment
with geometric precision; and topological maps that describe the environment as a
graph containing a set of locations with related links. In this sense, Garcia-Fidalgo
and Ortiz [85] presented a review of the main approaches considered to perform topo-
logical mapping and localization through visual information in recent years. Regarding
this second option, arranging the topological information hierarchically constitutes an
efficient alternative. This framework consists of creating a map that consists of sev-
eral layers with a hierarchical structure. High-level ones present a relatively compact
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amount of information, allowing for a rough but quick localization. Low-level layers
usually have more information and are used to refine the position. Hence, to address
the problem of mapping and localization, hierarchical maps are an effective alternative.
To cite one example, da Silva et al. [57] a localization and navigation approach for
mobile robots using topological maps and using CNN to obtain omnidirectional image
descriptors.

Some authors have proposed data compression strategies to build efficient high
level maps using visual information.To create a visual model, initially, a set of images
captured from various points of view of the environment is usually available for mapping.
Among the compression methods, clustering algorithms can be used to compact the
information in this model to create a high-level map, which would cluster this set
of images into several groups containing visually similar scenes and represent each
cluster with a representative instance. Some authors have used clustering algorithms
to perform the compression task. For example, Valgren et al. [282] address online
topological mapping using incremental spectral clustering. Štimec et al. [264] use
an unsupervised clustering based on their own multiple-space algorithm to perform
topological mapping hierarchically using omnidirectional images. More recently, Shi
et al. [250] s have proposed the use of a differential clustering method to improve
the compression of telemetry data. Ideally, using only visual information, a clustering
algorithm should group images that have been captured at geometrically near points.

Therefore, in this chapter, we present an exhaustive comparative evaluation of
several image descriptors to create compact models of an unknown environment and
an approach to solve the localization problem using hierarchical models. Moreover, a
comparative evaluation of some global descriptors is carried out to know which one
behaves more robustly against illumination changes. The results of the present work
can be useful in this field as they will allow to choose the best method of description
and to tune correctly the main parameters in such a way that a compromise between
computational cost and precision is reached. To construct and compress models only
visual information is considered. This leads to purely topological models that must be
able to deal with the phenomenon of visual aliasing. We focus on the use of holistic
descriptors, as local descriptors have been considered in previous research. To carry out
the batch of experiments, different sets of omnidirectional images captured in an indoor
environment are used. They include regions with similar appearance and changes in
lighting conditions. Additionally, this work also considers the use of approaches based
on deep learning to describe the scenes globally. The aim consists in evaluating which
method solves more efficiently the localization task under the conditions previously
exposed.

The remainder of the chapter is structured as follows: Section 4.2 introduces the
global-appearance descriptors that are tested along the chapter. After that, section 4.3
presents the clustering methods proposed to compress visual models. Section 4.4 shows
the experiments tackled to test the validity of the proposed methods to solve the
localization. Additionally, this chapter also presents the experiments concerning the
evaluation of these methods under changing lighting conditions. Section 4.6 outlines
the conclusions. Last, section 5.7 presents the publications related to the present work.
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4.2 Holistic Descriptors

This section presents the holistic description methods proposed in this work to char-
acterise the set of images. The use of this methods to carry out this study is justified,
since global-appearance descriptors constitute an interesting alternative for mapping
and localization. In this chapter, four methods are evaluated to compress visual models
and also carry out visual localization: the Fourier Signature (FS), the Histogram of
Oriented Gradients (HOG), the gist of the scenes and a holistic descriptor based on a
Convolutional Neural Network (CNN).

Basically, the mobile robotics task that is proposed to study in the present
work consists in the following. The robot moves along the floor plane and captures
omnidirectional images using a hyperbolic mirror that is mounted over a camera along
the vertical axis. After obtaining the omnidirectional images, a conversion to panoramic
must be carried out (im(x, y) ∈ RNx×Ny ), since panoramic images are the starting
point of the propsoed method. Afterwards, a description methods (among the four
proposed) is used to calculate the global-appearance descriptor vector ~d ∈ Rl×1. After
using the description method, a descriptor for each image is calculated; thus, the visual
model is composed of a set of descriptors, D = { ~d1, ~d2, ..., ~dN} where each descriptor
is ~dj ∈ Cl×1 and corresponds to the image imj .

4.2.1 Fourier Signature Descriptor
This description method is based on the use of the Discrete Fourier Transform (DFT).
The process to obtain the holistic descriptor is as follows. The Fourier signature (FS) of
a panoramic image is calculated from the intensity matrix of the original image. After
that, a new complex matrix is obtained (IM(u, v) ∈ CNx×Ny ). Departing, the DFT of
each row is calculated. Only the k1 first columns of this matrix are retained, because the
main information is in the low frequency components. Afterwards, the resultant matrix
(IM(u, v) ∈ CNx×k1) is decomposed into a matrix that contains the magnitudes and
another that contains the arguments. The matrix of magnitudes (A(u, y) ∈ RNx×k1)
is invariant against changes of the robot orientation in the movement plane (if the
original image is panoramic). Last, the holistic descriptor is obtained by arranging the
k1 columns of the magnitudes matrix in one single column (~d ∈ RNx·k1×1).

The Fourier Signature descriptor was firstly proposed by Menegatti et al. [178]
to create an image-based memory to carry out a robot navigation task. Payá et al. [210]
tackle a deep study about the computational cost and the error in localization by using
this descriptor together with a Monte Carlo approach with the aim to solve localization
tasks in indoor environments.

4.2.2 Histogram of Oriented Gradients Descriptor
The Histogram of Oriented Gradients (HOG) is a description method that has been
extensively proposed to carry out object detection tasks. This descriptor is remarkable
because it is easy to build, leads to successful results concerning detection tasks and
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does not require a high computational cost. The building process is based on the
orientation of the gradient in localized parts of the image. The development process
carried out in this work consists basically in dividing the panoramic image into small
regions (k2 horizontal cells) and compiling a histogram with b bins for the pixels that
are included inside each cell by using their gradient orientation. The combination of
this information provides the objective descriptor (~d ∈ Rb·k2×1). HOG description was
originally used in mobile robotics by Dalal and Triggs [58] to solve people detection
task. Zhu et al. [319] presented a version that improved the computational time as well
as the efficiency to detect people. Dong et al. [66] propose an HOG-based multi-stage
approach for object detection and pose recognition in the field of service robots. A
detailed explanation of the description method proposed can be found in [209].

4.2.3 Gist Descriptor
The gist description was introduced by Oliva et al. [205] and it has been commonly
used to recognize scenes. Since then, several versions have been developed, which are
based on different features from the original images, such as color, orientation, texture,
etc. [252]. Some authors have proposed the use of this holistic descriptor descriptor
to solve visual mobile robotics tasks. For example, Chang et al. [47] used this global-
appearance descriptor for localization and navigation. Murillo et al. [192] also used a
reduced version (by means of a Principal Components Analysis) of the gist descriptor
to solve the localization problem.

The version proposed throughout this thesis is described in [209] and works with
the orientation information obtained by means of a set of Gabor filters. The process
is basically as follows. Different resolution levels m are obtained from the panoramic
image. Then, nmasks orientation filters are applied over each level. Last, the pixels
of each image are grouped in k3 horizontal blocks and the information obtained from
each block is arranged in a vector (~d ∈ Rnmasks·m·k3×1).

4.2.4 CNN-based Descriptor
This method comes from the use of deep learning for classification, as Krizhevsky et
al. [136] do. The neural network training is addressed in two steps. First, it performs
a learning process, that is, a set of images (which are already labelled) are collected
and introduced into the network. Second, once trained, the network receives validation
images (also labelled) and adjusts its internal parameters to optimize results. These
steps are repeated until considering the resultant performance is accurate enough.
Subsequently, the network is available to tackle the classification task: a new image
is introduced and the CNN returns the most likely label. During the classification
process, descriptors are obtained from the fully connected layers of the neural network.
This information can be viewed as a holistic descriptor of the input image. Hence,
they can also be used to perform the localization task in the same way as the previous
proposed holistic descriptors. The neural network architecture we use in this chapter
is places [318], that was trained with around 2.5 million images to categorize 205
possible types of scenes. Fig. 4.3 shows the architecture of this CNN.To obtain holistic
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Figure 4.3: CNN places architecture, which is designed departing from the ‘Caffe’ network.
Layers fc7 and fc8 are used in this work to obtain global-appearance descriptors from the original
input image.

descriptors of these layers, the networks are used directly with the pre-training network
developed by the creators, so no retraining is addressed. CNN is used directly as shown
in [318]. The descriptors extracted from this network correspond to those calculated in
layers fc7 and fc8. These descriptors contain respectively 4096 (~d ∈ R4096×1) and 205
(~d ∈ R205×1) components. This type of descriptor has been used by other authors such
as Mancini et al. [170], who use it to categorize sites with the Naïve Bayes classifier.
As for mobile robot localization, Payá et al. [213]proposed descriptors based on CNN
to create hierarchical visual models. Differently, Xu et al. [307] propose the use of a
CNN that detects objects from the images and establishes relationships between the
detected objects, then the established relationships are used to calculate the similarity
between images.

4.2.5 Homomorphic Filter
In visual localization tasks, typical situations may happen such as lighting variations and
changes in the position of some objects (chairs, tables, open doors, etc.). Therefore,
the descriptors used to carry out the task must be robust against these circumstances.
Based on studies like the showed by Fernandez et al. in [75], it is proved that some
image pre-treatments can improve the localization accuracy in indoor environments
with different lighting levels. Among the studied techniques, the use of homomorphic
filter [89] is highlighted.

The homomorphic filter permits filtering the luminance and reflectance compo-
nents from an image separately. The localization results have been improved by using
the HOG descriptor with the homomorphic filter has showed. Nevertheless, in the FS
and gist cases, the results were similar or worse than without using this pre-treatment
filter. Therefore, in the present thesis, the following configurations are used through-
out the experiments based on hand-crafted global-appearance descriptors: FS without
filter, HOG with filter and gist without filter.
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4.3 Clustering Methods to Compact the Visual
Information

This section addresses the creation and compaction of topological models. In this
case, the topological models proposed are based purely in visual information, then, only
global-appearance descriptors are used. Moreover, the localization task is subsequently
solved through these visual models. This way, the mobile robotics tasks are addressed
through the next two steps.

1. Learning the visual model (mapping): Building a map of the environment and
compacting it. A set of omnidirectional images are obtained from different posi-
tions within the environment and a global-appearance descriptor is calculated for
each image. After capturing the images and calculating the holistic descriptors,
a clustering method is used to determine the structure and compact the model.

2. Estimating the current position (Localization): After building and compressing
the map, the robot is ready to estimate its position inside the model. That is, the
robot obtains a new image from an unknown position, then it calculates a holistic
descriptor and compares that descriptor with the set of descriptors obtained in
the learning step. Using this comparison, the robot is able to estimate its position
in the map.

Concerning the mapping step, the robot moves around the environment, cap-
tures omnidirectional images from different positions to cover the whole environment
and convert those images to panoramic. This way, a set of images is collected I =
{im1, im2, ..., imN} where imj ∈ RNx×Ny . After that, a global-appearance descriptor
is calculated for each image, thus, a set of descriptors is obtained D = { ~d1, ~d2, ..., ~dN}
where ~dj ∈ Cl×1.

The main problem of considering this mapping strategy appears when the en-
vironment of work has considerable dimensions. This is due to the fact that larger
environments imply more images to capture, hence this also leads to require more
memory space to store the data and also more computational time to process the in-
formation. This is the reason to propose compacting models as a possible solution in
such a way that the compacted model retains most of the visual information and also
permits solving the localization problem efficiently.

Therefore, through the present work, we propose a model compressing frame-
work based on clustering methods, with the aim to create a two-layer hierarchical
structure. The low-level layer is composed of a set of descriptors and the high-
level layer is the set compacted via clustering. Each cluster is characterized by the
common attributes of the instances that form its group. This way, the data set
D = { ~d1, ~d2, ..., ~dN} is divided into nc clusters C = {C1, C2, ..., Cnc} under the
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conditions:
Ci 6= ∅, i = 1, ..., nc

m⋃
i=0

Ci = D

Ci
⋂
Cj = ∅, i 6= j, i, j = 1, ..., nc.

(4.1)

After clustering the information, each group of descriptors is reduced to a unique
representative descriptor, which is obtained by calculating the average of all the de-
scriptors that compose that cluster. Therefore, a set of representatives is obtained
R = {~r1, ~r2, ..., ~rnc}, and this set of representatives compose the high-level layer (the
model is compacted).

The compaction process can be visually explained by means of the pictures
presented in the fig. 4.4. First, images are captured in different position within a
whole map (fig. 4.4(a)). The result obtained from the clustering process is shown
in fig 4.4(b). Last, the representatives descriptors are obtained (fig. 4.4(c)). The
representative descriptors are calculated as the average descriptor among those grouped
in the same cluster. Additionally, the position of these representative descriptors are
also calculated as the average position of the capture points of the images included in
the same cluster. These positions are used to represent visually the high-level layer and
they are only used as a ground truth to test the performance obtained by using the
compact map for localization. This positions are not used neither to build the map nor
to localize the robot. Since in this chapter, different clustering methods are analysed
and only visual information is used for this purpose.

Regarding the clustering process to compact the visual models, two methods
are studied: spectral clustering and self-organizing maps. Concerning the visual data,
three global-appearance descriptors are proposed: FS, HOG and gist. To evaluate the
correctness of the approach, the geometrical compactness of the clusters and their
utility to solve the localization task are tested.

4.3.1 Spectral Clustering Algorithm
Spectral clustering algorithms [167]have been proved to be suitable for processing large
data. In the present work, a spectral normalized clustering algorithm is used as it was
introduced by Ng et al. [200]. This algorithm has already been used for mapping along
with local features extracted from the scenes [264, 281]. Spectral clustering may be
more efficient than traditional methods such as k-means or hierarchical clustering in
large environments due to the fact that spectral clustering considers mutual similarity
between instances.

The algorithm proposed to compress the visual information departs from the
set of global-appearance descriptors D = { ~d1, ~d2, ... ~dN} obtained from the images
collected in the environment and the desired number of clusters nc. The similitude
between descriptors is firstly calculated. This parameter is calculated for each pair of
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Figure 4.4: Example of indoor map and information compression. (a) Positions where im-
ages were captured. (b) Result of the clustering process. (c) Each cluster is reduced to one
representative.

descriptors contained in the dataset. Thus, a matrix of similitudes S is obtained as

Sij = e−
| ~di− ~dj |

2

2σ2 where σ is a parameter that controls the rapidity of reduction of the
similitude when the distance between ~di and ~dj increases. The process to carry out
the clustering is as follows:

1. Calculation of the normalized Laplacian matrix:

L = I −D−1/2SD1/2 (4.2)

where D is a diagonal matrix Di =
∑N
j=1 Sij .

2. Calculation of the nc main eigenvectors of L, { ~u1, ~u2, ..., ~unc}. Arranging these
vectors by columns, the matrix U ∈ RN×nc is obtained.

3. Normalization of the matrix U to obtain the matrix T ∈ RN×nc .

4. Extraction of vector ~yi ∈ Rnc from the i-th row of the matrix T . i = 1, ..., N .

5. Clustering of the ~yi vectors by using a simple clustering algorithm (such as k-
means or hierarchical clustering). Through this, the clusters A1, A2, ..., Anc are
obtained.

6. Obtaining the clusters with the original data as C1, C2, ..., Cnc where Ci = ~dj |
~yj ∈ Ai.

If the number of instances N or the dimension l is high, the computation of the
nc eigenvectors will be computationally high. The solution proposed for this issue by
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Luxburg [167] consists in cancelling some components of the similitude matrix. Then,
only the components Sij so that j is among the t nearest neighbours of i are retained
in the matrix S. Afterwards, the nc first eigenvectors of the Laplacian matrix L are
calculated by using the Lanczos/Arnoldi factorization [262]. Last, for each cluster, a
representative is obtained as the average visual descriptor of the set of descriptors that
compose the cluster.

4.3.2 Cluster with a Self-Organizing Map Neural Network
As alternative, Self-Organizing Maps (SOM) is a clustering algorithm introduced by
Kohonen [130] and is an effective option for making a mapping distribution when the
data present a high dimensionality [286]. This algorithm has been commonly used to
group or reduce data size. The map size of the neural network determines the number
of clusters as WSOM ×HSOM = nc. The data are then grouped into nc clusters.

SOM clustering method automatically learns to classify input vectors according
to their similarity and topology in the input space. Rather than competitive layers,
neighbouring neurons in the SOM learn to recognize neighbouring sections of the
input space. Hence, SOM learn both the distribution (as the competitive layers do)
and topology of the input vectors they are trained with. Neurons can be organized
into a grid, hexagonal, or random topology. The SOM network identifies a wining
neuron i∗ using the same procedure as the one used by the competitive layer but,
instead of updating only the winning neuron, all neurons are updated within a given
neighbourhood Ni∗(d) of the winning neuron.

4.4 Solving the Localization Problem Using Compact
Topological Maps

At this point, the robot holds a visual (compressed) model of the environment, which
is a hierarchical model. Departing from this model, the robot firstly uses the high-level
layer to carry out a rough localization and after that, a fine localization is tackled
through the use of the low-level layer. The visual localization problem has been solved
by many authors through local features by using probabilistic approaches such as par-
ticle filters or Monte Carlo localization ([276] and [216]). Nonetheless, the proposals
developed with holistic descriptors are scarcer. Thus, the present chapter introduces
a comparative of this type of information to estimate the position of the robot by
means of a hierarchical map in a specific time instant. To measure the goodness of the
methods studied, the coordinates provided by the ground truth are used. Nevertheless,
this information is not used to solve the localization task, since the proposed method
only considers visual information. This decision permits studying the feasibility of vi-
sual sensors as the only source of information to create a compact topological map
and, more concisely, of holistic descriptors. Hence, not using the position information
in the mapping and localization algorithms permits isolating the effect of the main
parameters of these descriptors and knowing the performance of this kind of informa-
tion. The accuracy of the method is evaluated through the following error equation
error =

√
(xgt − xest)2 + (ygt − yest)2, where (xgt, ygt) is the pose provided by the
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ground truth and (xest, yest) is the pose estimated by the algorithm for the captured
image in the test dataset.

4.4.1 Distance Measures Between Descriptors
In order to know how similar two panoramic images are by means of their holistic
descriptors, some distance measurements have been proposed. Previous research works
([210], [209]) have evaluated the relation between the geometrical distance between
capture points and the distance between holistic descriptors. Those works show that
even if the robot moves a short distance, the descriptor changes. Therefore, global-
appearance descriptors can be used to detect even small movements.

In this manner, an evaluation among different distance methods can be carried
out with the aim to obtain the method that best performs the distance between images.
The lower the distance between those images is, the more similar they are. This kind
of distances are used in the localization step. We consider two descriptors ~a ∈ Rl×1

and ~b ∈ Rl×1, where ai and bi are the i− th components of ~a and ~b with i = 1, ..., l.
The distances used in this work are:

• Euclidean distance. This a particular case of the weighted metric distance and
is defined as:

disteuclidean(~a,~b) =

√√√√ l∑
i=1

(ai − bi)2 (4.3)

• Cosine distance. Departing from a similitude metric, which is defined as the
scalar product between two vectors, the distance is defined as:

distcosine(~a,~b) = 1− simcosine(~a,~b)

simcosine(~a,~b) = (~a)T ·~b
|~a| · |~b|

(4.4)

• Correlation distance. Again, departing from a similitude metric, which is defined
as a normalized version of the scalar product between two vectors, the distance
is defined as:

distcorrelation(~a,~b) = 1− simcorrelation(~a,~b)

simcorrelation(~a,~b) = (~a− a)T · (~b− b)√
(~a− a)T (~a− a) ·

√
(~b− b)T (~b− b)

(4.5)

where

a = 1
l

l∑
i=1

ai; b = 1
l

l∑
i=1

bi (4.6)
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4.4.2 Resolution of the Localization Problem Using Holistic
Descriptors

Concerning the localization case that considers non-compacted models, the map is
composed of a straightforward set of descriptors, that means that this set has not been
treated to create a hierarchical map through any clustering process. Once this straight-
forward map is available, the localization process leads an image retrieval method:

1. The robot captures a new image in an instant t from an unknown position (imt).

2. It calculates the holistic descriptor of the captured image ~dt.

3. The distances between this new descriptor and the set of descriptors contained
in the compact model are obtained. The comparison between descriptors is done
through one of the distance metrics presented in the subsection 4.4.1.

4. A distance vector lt = {lt1, ..., ltN} is obtained where ltj = dist{~dt, ~dj} accord-
ing to any measure of distance.

5. The current position of the robot is considered to be the position of the nearest
neighbor within the map (problem known as Image Retrieval [235]), i.e. the
corresponding position of the robot is the position on the map that minimizes
the distance argminj ltj . Thus, the position of the robot (x, y) in the instant t
is estimated.

Concerning the image retrieval issue, this is an inefficient process due to the fact
that the maps are usually composed by a huge number of images and the descriptors
have a high size, so the computational cost and the space memory required could be
a problem. Hence, localization methods based on compacted models may lead more
efficient solutions.

As for the localization case that considers compacted models, in this case of
study, clustering is used to compact the map. Additionally, indoor environments may
present visual aliasing. As explained in section 4.3, clustering methods are proposed to
carry out the compression of the visual model. Once the clustering is done, the map
M will be formed only by a set of clusters C = {C1, ..., Cnc}, where nc is the number
of clusters. Thus, the compressed map consists of a set of cluster representatives
{~r1, ..., ~rnc} and the coordinates of each representative {(x, y)r1 , ..., (x, y)rnc} .

The localization in this map is carried out as follows. (1) The robot captures a
new image imt from an unknown position (xt, yt), which must be estimated and (2) the
descriptor corresponding to the new captured image is obtained (~dt) by using any of the
description algorithms explained in sec. 4.2 (FS, HOG, gist or CNN-based descriptors).
(3) The distance vector is obtained ~lt = {lt1, ..., ltnc} where ltj = dist{~dt, ~rj} is the
distance (one of the three types explained in subsection 4.4.1) between the descriptor
~dt and each representative ~rj . Finally, (4) the estimated position of the robot (xe, ye)
is the position associated to the nearest neighbour dnnt |t = argminj ltj . A block
diagram about these steps is shown in fig. 4.5.
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Figure 4.5: Block diagram on the steps to perform the localization task using compact models.

4.4.3 Hierarchical Localization

In the previous subsection, the localization has been proposed using only the compact
map, i.e. only the high-level layer is used, and the result is an coarse localization. In
this subsection, we go a step further and the localization is approached hierarchically.
That is, first, a coarse localization is performed, as explained in subsection 4.4.2.
Once the nearest cluster has been recovered, a second step is carried out to refine the
estimation. Hence, the hierarchical localization task consists of the following processes:
first, the robot describes the captured image in the instant of time t (test image)
imt → ~dt. After that, the distance vector is obtained again ~lt = {lt1, ..., ltnc}. The
most likely cluster is then selected as having the minimum value of ~lt. In this step, a
new comparison is made between the descriptor of the test image ~dt and the descriptors
of the images that belong to the chosen cluster. From this step, a new distance vector
is obtained ~qt = {qt1, ..., qtmi} where mi is the number of images within the selected
cluster i. Last, the minimum value of ~qt indicates the most similar image and therefore
corresponds to the current position of the robot with a higher accuracy. Fig. 4.6
shows the block diagram about these steps. An alternative method has been also
considered. This consists in selecting more than one representative as candidate in
the rough localization step. This could reduce the error, but it also leads to more
comparisons in the fine localization step.
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Figure 4.6: Block diagram on the steps to perform the task of hierarchical localization using
compact models.

4.5 Experiments

This section presents the experiments and results carried out by applying the methods
proposed in sections 4.3 and 4.4 to carry out the compaction of the models as well
as the localization task by using the model proposed. The algorithms were run on a
2× 2.66 GHz Dual-Core Intel Xeon CPU R© with 10 GB of memory.

4.5.1 Datasets
The experiments developed in the present chapter were developed by using two dif-
ferent types of databases; COLD DB, which contains images along a trajectory, and
Quorum V DB, which contains grid-distributed visual information. Concerning the
COLD (COsy Localization Database) database [222], it contains several sets of images
captured in three different indoor environments that are located in three different cities:
Freiburg, Saarbrücken (both in Germany) and Ljubliana (Slovenia). This database is
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composed of omnidirectional images captured while the robot traversed several paths
within the environments. The robot tackle the image capturing task under real oper-
ating conditions, that is, people that appear and dissapear from scenes, changes in the
furniture, etc. The present work is tested with Freiburg and Saarbrücken. This selec-
tion is done because these environments are the two most challenging. Both datasets
include several rooms such as corridors, personal offices, printer areas, kitchens, bath-
rooms, etc. Additionally, with the aim to represent the same distance between images
as the distance presented in the Quorum V database, a downsampling is carried out to
obtain an acquisition distance between images of 40 cm approximately. This distance
is considered reasonable for indoor applications. Therefore, after downsampling, two
training datasets are generated: Freiburgtraining and Saarbruckentraining with 519
and 566 images respectively. Moreover, the remaining images are stored in a different
dataset to use them to test the proposed methods. The fig. 4.7 shows the bird’s eye
view of the environments and the path that the robot traversed to obtain the images.
To summarize, the table 4.1 shows the training and test datasets used in this work and
the number of images and rooms that each of them contains.
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Figure 4.7: Bird’s eye view of the COLD database. (a) Freiburg and (b) Saarbrücken environ-
ment. Extracted from https://www.cas.kth.se/COLD/

Regarding Quorum V, it is a publicly available database [11] consisting of a set
of omnidirectional images captured in an interior building of the Miguel Hernández
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University (Spain). The datasets include 3 offices, a library, a meeting room and a
main corridor. This database consists of two sets of data; the first is a training dataset
and consists of 872 images that were captured in a dense 40×40 cm grid of points. As
for the second dataset, the test dataset, it consists of 77 images captured in different
parts of the environment, in intermediate positions between the points of the training
dataset and including changes in the environment (e.g. walking people, position of
furniture, etc.). Fig. 4.8 shows the bird’s eye view of the Quorum V database and grid
points captured by the robot for the training dataset.

Room 1:	Corridor.	

Room 2:	Office	A.

Room 3:	Office	B.	

Room 4:	Office	C.

Room 5:	Library.

Room 6:	Events room.	

Room 1:	Corridor.	

Room 2:	Office	A.

Room 3:	Office	B.	

Room 4:	Office	C.

Room 5:	Library.

Room 6:	Events room.	

Figure 4.8: Bird’s eye view of the Quorum V database.

Table 4.1: Datasets used to carry out the experiments.

Dataset name Number
of images

Number
of rooms

QuorumV_training 872 6QuorumV_test 77
Freiburg_training 519 9Freiburg_test 52
Saarbrucken_training 566 8Saarbrucken_test 57

Additionally to the three proposed environments to evaluate the model com-
paction and the subsequent localization, the Freiburg and Saarbücken datasets were
also used to evaluate the robustness of the localization methods under changes of
illumination. The images of these datasets were collected under three different illu-
mination conditions (cloudy days, sunny days and at nights). The images captured
during cloudy weather are used to build a compact model through spectral cluster-
ing since they are the ones that are less affected by brightness, reflections, dark areas
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and thus, they provide more information. The sunny weather images, which are only
available for the Freiburg dataset, and also the images captured at night are used as
test datasets to evaluate the localization task under lighting changes. These datasets
contain also images that do not provide much information due to the acquisition po-
sition and blurry images. All these handicaps make these datasets suitable to carry
out experiments under real operating conditions. The table 4.2 summarizes the sets
created for the experiments related to test the localization methods under changes of
illumination conditions. The fig. 4.9 shows some examples of omnidirectional images
in both environments under the proposed illumination conditions.

Table 4.2: Datasets created from the COLD database to carry out the experiments.

Dataset name Illumination
condition

Number

of images

Path
length
(m)

Freiburg_training Cloudy 519 104.2
Freiburg_test_night Night 58
Freiburg_test_sunny Sunny 45
Saarbrücken_training Cloudy 566 156.6
Saarbrücken_test Night 57

4.5.2 Creating Compact Maps through Clustering
This subsection evaluates the clustering methods to compact the information con-
tained in a set of holistic descriptors. The present experiment consists in evaluating
two clustering methods under the three environments proposed and considering three
global-appearance descriptors. The first method (Method 1) consists on spectral clus-
tering along with k-means as was explained in subsection 4.3.1. Other configurations
were tested, such as to use of SOM instead of k-means to solve the step 5 of the spec-
tral clustering, but the results were almost identical. For this reason, only the spectral
clustering along with k-means to cluster the normalized matrix of the nc eigenvectors
is shown. The second method (Method 2) consists on the use of SOM, which was
explained in subsection 4.3.2.

Therefore, for the two proposed methods, several experiments are tackled to
study the influence of the parameters of the three global-appearance descriptors. Ta-
ble 4.3 summarizes the experiments developed.

The values k1, k2 and k3 define the length of each descriptor, but their meaning
is not the same (equal values of k1, k2 and k3 would not lead to the same size of
descriptor). Hence, as the goal is to study the correct tuning of these values to use
each descriptor as efficiently as possible, different values are applied for each descriptor
throughout the experiments.

In order to determine whether the compression tackled brings compaction or
not, we should establish certain measures that permit quantifying the compactness
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(a) (b)

(c)

(d) (e)

Figure 4.9: Some omnidirectional sample images belonging to the Saarbrücken environment
under (a) cloudy and (b) night illumination conditions and also images that belong to the to the
Freiburg environment under (a) cloudy, (b) night and (c) sunny illumination conditions.
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Table 4.3: Summary of the parameters which have been varied to carry out the clustering
experiments.

Parameter Values

Environment
Quorum V
Freiburg (COLD)
Saarbrücken(COLD)

Descriptor
FS
HOG
gist

Descriptor parameters

FS: k1=4,8,16,32,64,128,256
HOG:k2=2,4,16,32,64,128
gist: k3=2,4,8,16,32,64
gist: nmasks=2,4,8,16,32,64

Number of clusters
Quorum V: nc=15 25 40 60 80 100
Freiburg: nc=10 20 30 40 50 60 70
Saarbrücken nc= 10 20 30 40 50 60 70

carried out in the map. In this context, the concept of silhouette is widely proposed.
The quantification of the goodness of each method is carried out by three parameters:

• The average moment of inertia of the cluster.

• The average silhouette of the points.

• The average silhouette of the descriptors.

These values are collected after clustering the visual data contained in the mod-
els. As for the moment of inertia, it measures the compactness of the clusters (if the
clusters group images captured from geometrically close points) and is calculated as:

M =
nc∑
i=1

∑ni
j=1 dist((x, y)ri , (xj , yj))

2

ni
(4.7)

where dist((x, y)ri , (xj , yj)) is the Euclidean distance between the coordinates of the
representative ~ri and the position of the j-th image that belongs to the cluster Ci and
ni is the number of images within this cluster.

Silhouette values indicate the degree of similarity between instances within the
same cluster and at the same time dissimilarity with instances belonging to other
clusters. The silhouette takes values in the range ]−1, 1[ and provides information on
how compact the clusters are. Two types of silhouette are used, the average silhouette
of points is defined as:

Spoints =
∑N
w=1 sw
N

(4.8)
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N is the number of instances (images) and sw is the silhouette of each instance and
is calculated as:

sw = bw − aw
max(aw, bw) (4.9)

where aw is the average distance between the capture point of instance ~dw and the
capture points of the other instances in the same cluster, and bw is the minimum
average distance between the point instance capture point ~dw and the instance capture
point on the other clusters.

In a different way, the average silhouette of the descriptors is commonly obtained
as:

Sdescr =
∑N
k=1 sk
N

(4.10)

where N is the total number of instances and sk is the silhouette of each instance.
This value is calculated as:

sk = bk − ak
max(ak, bk) (4.11)

where ak is the average distance between the descriptor ~dk and the descriptor of the
rest of entities contained in the same cluster, bk is the minimum average distance
between ~dk and the instances contained in the other clusters.

The silhouette of the descriptors has traditionally been used to measure the
compactness of the clusters. Nonetheless, it does not measure geometric compactness.
That is why we introduce the silhouette of points, which can provide more appropriate
information as we are interested to know if the clusters have grouped images nearby
captured.

4.5.2.1 Clustering in Quorum V Environment

Fig. 4.10 shows the results of the two clustering methods using FS as descriptor de-
pending on the parameter k1. Fig. 4.11 shows the results using HOG depending on the
parameter k2. Fig. 4.12 shows the results using gist depending on the parameter k3
and with nmasks=16. These figures present the graphs that determine the goodness
of each configuration to carry out the mapping task through clustering. The three
figures show the moment of inertia and average silhouettes vs. the number of clusters.
In all cases, for comparative purposes, the range of the vertical axis is the same. Fur-
thermore, the fig. 4.13 shows the computing time necessary to cluster the environment
through the two clustering methods.
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Figure 4.10: Results of the two clustering methods: average moment of inertia, average silhou-
ette of points, and average silhouette of descriptors vs. number of clusters, when FS is used in
the Quorum V environment.

As for the parameters used to measure the compactness of the maps, the smaller
the moment of inertia and the higher the silhouettes, the more compact the map.
Generally, method 1 (spectral clustering) produces the best results. Method 2 (SOM)
does not improve these results. Regarding the use of the holistic descriptor with the
spectral clustering method, FS is not able to create reliable clusters. As for HOG, the
moment of inertia and silhouettes depend considerably on the value of k2. When k2
is low, the results are poor but when k2 > 8, the moment of inertia as well as the
silhouettes improve significantly. Last, concerning the gist descriptor, low values of k3
produce low silhouettes and high moments of inertia, and high values of this parameter
imply better results.

Concerning the computation time required to carry out the clustering through
the two methods, the SOM method requires more time. The computing time for
clustering using the FS descriptor is the highest whereas the time for clustering with
either HOG or gist is lower. As expected, the computing time is directly proportional
to the size of the descriptors.

Hence, in the case of HOG, a value of k2 = 32 or k2 = 64 might be a good
choice to achieve a compromise between compactness and computation time and in
the case of gist, an intermediate value of k3 could be also a good choice for the
same aim. In general, the FS descriptor performs the worst results: the moment of
inertia is higher and the silhouettes are lower. Therefore, the best clustering results
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Figure 4.11: Results of the two clustering methods: average moment of inertia, average silhou-
ette of points, and average silhouette of descriptors vs. number of clusters, when HOG is used in
the Quorum V environment.

are obtained through the use of the Spectral clustering method and the use of HOG
(for a configuration of k2 = [32, 64]) or gist (for a configuration of k3 = [16, 32] and
nmasks = 16) as holistic descriptor. Fig. 4.14 shows the results performed by using
the clusters obtained with spectral clustering and gist with k3 = 32 and nmasks = 16.

4.5.2.2 Clustering in COLD Environments

The results obtained by using the Quorum V dataset have shown that the use of FS for
clustering is less suitable. Considering this, only HOG and gist descriptors are analysed
in the experiments with the COLD environments. Fig. 4.15 shows the results using
HOG depending on the parameter k2 in the Freiburg environment. Fig. 4.16 shows
the results of the clustering methods using gist depending on the parameter k3 and
with nmasks=16 in the Freiburg environment. In the same way, for the Saarbrücken
environment, fig. 4.17 shows the results using HOG and fig. 4.18 shows the results
with gist. Regarding the use of the SOM clustering with HOG, it was not able to solve
the clustering task for k2 = [4, 16] when nc > 60.

Again, spectral clustering is the best method and, in this case, gist presents
better clustering outcomes. Fig. 4.19 shows two clustering solutions obtained in the
COLD environments by using the best configuration reached: spectral clustering +
gist descriptor. Hence, through the experiments carried out in the environments of
the COLD database, a confirmation of the results obtained in Quorum V is reached.
Therefore, the proposed method is generalizable despite the type of map used (linear
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Figure 4.12: Results of the two clustering methods: average moment of inertia, average silhou-
ette of points, and average silhouette of descriptors vs. number of clusters, when gist is used in
the Quorum V environment.

or grid). As conclusion, the best option to carry out the compression of visual maps is
reached when spectral clustering with gist is applied.

4.5.3 Localization using the Compact Models

This subsection evaluates the performance of the compact maps to solve the localiza-
tion problem. The aim is to achieve a compactness that presents a balance between the
computing time and the localization accuracy. To perform the evaluation, the Spectral
Clustering algorithm is selected with the gist descriptor (k3 = 32 and nmasks = 16).
With this configuration, an environmentally compacted map is constructed, using the
training images. After that, test images are used to assess the localization problem.
The previous subsection showed that the best option for building the compressed map
was by using the gist descriptor. However, the three proposed holistic descriptors are
again proposed to solve the localization task, because mapping and localization are two
independent processes and the performance of the descriptors could be different in a
localization framework. The localization method proposed to perform this experiment
is basically to obtain test images of unknown positions within the map, for each test
image is calculated its descriptor (either by FS, HOG or gist) and then it is compared
with the cluster representatives of the compact map. Thereafter, the most similar
cluster is preserved. In this experiment, three distance measurements are considered:
(1) the correlation distance, (2) the cosine distance, and (3) the Euclidean distance.
As mentioned in previous sections, in order to make a realistic comparison, only visual
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Figure 4.13: Results of the two clustering methods: computing time vs. number of clusters,
when using FS, HOG and gist descriptors in the Quorum V environment.

information will be used to estimate the position of the robot. Metric information will
be used only as ground truth, for comparative purposes. As in the clustering experi-
ments, the datasets used to evaluate this experiment are the Quorum V, Freiburg and
Saarbrücken, and no illumination variations are considered.

4.5.3.1 Localization in the Quorum V environment

Regarding the localization within grid maps, fig. 4.20 and 4.21 shows the average
localization error (cm) the computational time (in sec.) obtained respectively when
FS (first row), HOG (second row) and gist (third row) are used as description method.
As for HOG, the effect of homomorphic filtering adds a constant time of 0.02 sec per
test image. Concerning the number of clusters, nc = 872 is considered with the aim of
providing localization results without compacting the map, i.e. using no compression
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Figure 4.14: Quorum V environment. Cluster obtained with Spectral clustering with gist
descriptor (k3 = 32, nmasks = 16).
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Figure 4.15: Results of the two clustering methods: average moment of inertia, average silhou-
ette of points and average silhouette of descriptors vs. number of clusters, when using HOG in
the Freiburg environment.
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Figure 4.16: Results of the two clustering methods: average moment of inertia, average silhou-
ette of points and average silhouette of descriptors vs. number of clusters, when using gist in the
Freiburg environment.

and thus to know the relative utility of the compacted maps.

The FS descriptor is not good for localization as the best option (correlation
distance) has errors between 650 cm and 800 cm depending on the number of clusters
and the size of descriptor. HOG improves considerably the localization task with the
exception of k2 = 2. The average localization error decreases as the number of clusters
increases and these values range from 500 cm when nc is low and achieve values under
100 cm (when nc is high). As for the gist descriptor, it also produces relatively good
results, but not as good as those obtained by using HOG. The localization task achieves
the best results when the correlation distance is used.

Concerning the computation time, with the FS descriptor, as the number of
clusters increases, the computation time required for the localization task increases
substantially. With HOG, the time is much lower than FS and remains constant re-
gardless of the number of clusters. This means that the time to calculate the descriptor
is greater than the time to compare it to the map. The calculation time required by gist
is also worse than the required for HOG. The time required for gist is approximately
twice the time using the HOG descriptor.

Overall, as the number of clusters increases, the calculation time required for
the localization task also increases and the average localization error decreases. This
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Figure 4.17: Results of the two clustering methods: average moment of inertia, average silhou-
ette of points and average silhouette of descriptors vs. number of clusters, when using HOG in
the Saarbrücken environment.

is an expected behaviour because a high number of clusters means that the map is less
compact, thus the information stays in representatives of the clusters whose distance
to the test image is lower. Therefore, the more clusters, the more comparisons with
representatives have to be made. This leads to a longer computation time and a
more accurate localization error. Hence, a balance must be achieved between these
behaviours. Therefore, to address the localization in an environment whose properties
are similar to the Quorum V environment (distributed grid data), the optimal values are
obtained by using the HOG descriptor with k2 = [32, 64] and the correlation distance.

4.5.3.2 Localization in the Freiburg environment

With the aim of confirming the results obtained in Quorum V, the localization task
is evaluated under the Freiburg environments. Freiburg is chosen among the three
available databases in COLD because this environment presents more rooms and also
is more challenging since the building presents many glass walls. In addition, FS
descriptor is discarded in these localization experiments, since the FS descriptor has
presented the worst results (see fig. 4.20). Euclidean distance results are omitted in
this section because it presented the worst outcomes. Fig. 4.22 shows the average
localization error (cm) obtained when HOG (first row) and gist (second row) are used
respectively as descriptor. No compaction is also considered (in this case, nc = 519).
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Figure 4.18: Results of the two clustering methods: average moment of inertia, average silhou-
ette of points and average silhouette of descriptors vs. number of clusters, when using gist in the
Saarbrücken environment.

In this experiment, some differences are noticed between the results collected
in the Quorum V environment and the results in the Freiburg environment. When
the number of clusters is low (nc = [15, 25, 40]), the localization task presents a lower
average localization error with gist. If this number is higher than 40, the localization
error is very similar for HOG and gist. Comparing the results obtained with the two
evaluated types of distances, no remarkable differences are found. Nonetheless, a
slightly improvement can be noticed when the cosine distance is used. For example,
the average error value when nc = 40 in HOG is lower with cosine than with correlation.

In addition, the value of k2 in HOG is very important. The average error varies
significantly according to it. Hence, to solve the localization in an environment whose
properties are similar to Freiburg (information along a trajectory), the optimal values
are obtained by using the HOG descriptor with k2 = [16, 32] and cosine distance.

4.5.3.3 Localization when multiple maps are available

In some applications, several maps of some different environments are initially available.
If the robot does not have information about the environment in which it is currently
located, it must first use the visual information to select the correct environment. After
that, the localization can be addressedd in the selected environment, as presented in
section 4.4. With this in mind, this section studies the ability to select the appropriate
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Figure 4.19: Clusters obtained in the COLD environments through the use of Spectral clustering
and gist description. (a) Freiburg and (b) Saarbrücken environment.
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Figure 4.20: Results of the localization process in the Quorum V environment. FS, HOG
and gist are used to describe the representatives of the clusters and the test images: average
localization error (cm) vs. number of clusters.

environment. To test the goodness of the descriptors for this purpose, the two COLD
maps built in section 4.5.2.2 are considered. In addition, a test dataset is created as
a combination of images from the Freiburg and Saarbrücken environments. A total of
60 test images make up the test dataset (34 from Freiburg and 26 from Saarbrücken).
In this experiment, only HOG and gist are tested again.In addition, since the cosine
distance presents the best solutions for COLD, only this type of distance is proposed.
Fig. 4.23 shows the success rate in selecting the appropriate environment for both
descriptors.

In general, the correct selection of the environment is almost always made.
There are many cases where 100% of success is achieved whereas the worst cases do
not have a success rate lower than 75%. If the environment selection is performed
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Figure 4.21: Results of the localization process in the Quorum V environment. FS, HOG and
gist are used to describe the representatives of the clusters and the test images: average computing
time vs. number of clusters.

with HOG, the results depend substantially on the chosen k2 value. For example, the
worst cases are presented for k2 = 2, 4. Nonetheless, for k2 = 32 − 128, a 100% of
success is achieved. Using the descriptor gist, a 100% of success is given regardless of
the number of clusters or the k3 value.

4.5.3.4 A comparative study of localization with straightforward and
with compact maps

Compact maps obtained after clustering present an effective solution for performing
the localization task on a high-level map as shown in the previous experiments. This
process requires capturing a large number of images of the environment for mapping,
prior to the clustering process. At this point, we could ask the following question:
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Figure 4.22: Results of the localization process in the Freiburg environment. HOG and gist are
used to describe the representatives of the clusters and the test images: average localization error
(cm) vs. number of clusters.
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Figure 4.23: Percentage of success to detect the correct environment between Freiburg and
Saarbrücken with FS, HOG and gist used to describe the representatives of the clusters and the
test images: percentage of success vs. number of clusters.

should we capture this large number of images, or could we create a compact model
directly, capturing only a limited number of images from the environment? This topic
is studied in this section. Two types of models are considered: (a) a compact model
obtained after clustering a large number of images and (b) a simple model, obtained
simply by capturing a limited number of views of the environment. Both types of
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models will be used to address the high-level localization task. The simple method we
propose to retain representatives is tackled by downsampling the databases, that is,
COLD databases are downsampled and only a certain number of images are retained.
The utility of this simple method will be compared with the utility of the best compact
model obtained in sec. 4.5.2.2 with spectral clustering.

Hence, two models are used as starting points to perform the localization task:
(model 1) based on the representative instances obtained using the spectral clustering
algorithm and (model 2) based on the instances obtained using database downsampling.
After that, the localization task is studied in the Freiburg environment in the same way
as it was done in subsection 4.5.3.2.

Fig. 4.24 shows a comparison of the usefulness of the two models in localization
tasks. The cosine distance is selected to show these results, because this distance
presented good results in previous localization experiments. The two best holistic de-
scriptors for localization (HOG and gist) are shown. As you can see, the localization
error gets worse when using the straightforward map. When the number of clusters
is low, the model obtained using the spectral clustering presents the best localization
results. For example, regardless of the descriptor, the average localization error is less
than 100 cm when nc > 20 for the model 1 and nc > 40 for the model 2. The
average localization error is smaller for model 2 only when the number of clusters is
substantially high, nc > 80 (HOG case) and nc > 70 (gist case). This result means
that the proposed alternative to spectral clustering can only be interesting when low
compactness is required. Nontheless, if the number of clusters is low (high compact-
ness), the spectral clustering provides better results. In conclusion, this experiment has
shown that the use of simple methods to retain visual representatives is less efficient
than the use of spectral clustering methods. Spectral clustering can create compact
models that provide accurate localization results.

4.5.4 Localization under Changes of Illumination
This subsection evaluates the performance of the compact maps to solve the localiza-
tion problem under changes of illumination. The objective is to test the robustness
of the methods proposed when the illumination conditions during the localization task
vary from the conditions given during the mapping task. As in previous localization
experiments, the compressed map is obtained by means of spectral clustering with the
holistic gist descriptor (k3 = 32 and nmasks = 16). To carry out this experiment, the
COLD environments (Freiburg and Saarbrücken) are used. As explained in 4.5.1, the
images captured during cloudy illumination conditions (that are less affected by bright-
ness, reflections and dark areas) are used to build a compact model through spectral
clustering. The datasets with images captured during sunny days and at night are used
as test images. Additionally, apart from the FS, HOG and gist descriptors, the two
global-appearance descriptors based on deep learning (see subsec. 4.2.4) are also pro-
posed. The same as previous experiments, the correlation distance, the cosine distance
and the Euclidean distance are chosen to calculate the distance between descriptors.

Fig. 4.25 shows the average localization error vs. the number of clusters nc
obtained in the Freiburg environment when the test dataset was night and fig. 4.26
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Figure 4.24: Results of the localization process in Freiburg by using two types of compact
models. Average localization error (cm) versus number of clusters. Model 1 uses representatives
obtained by spectral clustering, Model 2 obtains representatives by sampling the dataset.

.

when the test dataset was sunny; fig. 4.27 shows the average localization error obtained
in the Saarbrücken environment when the test dataset was night. In all cases, the
localization error is expressed in cm, and the colorbars that expresses this error has the
same range, to facilitate a comparative evaluation between figures.

Focusing on the effects noticed by the changes of illumination conditions, if
we compare the outputs obtained under night conditions and the ones obtained under
sunny conditions (see fig. 4.25 and fig. 4.26 ), generally, sunny conditions have a more
negative impact upon the localization. For example, when using the CNN descriptor
layer ‘fc7’, if nc = 10, the error under night conditions is over 200 cm whereas under
sunny conditions, it is over 300 cm. If nc = 60, the error under night conditions is
under 100 cm and under sunny conditions, it is over 200 cm.

Among the four evaluated global-appearance descriptors, FS is the one which
presents worst localization results generally. Concerning HOG, this descriptor presents
relatively good localization error results. For instance, for night conditions in the
Freiburg environment (see fig. 4.25), when a correct tuning of the k2 parameter is
tackled and for more than 50 clusters, the localization error values are under 100 cm.
This outcome is acceptable considering the size of the environment (table 4.1) and
the granularity of the compact map. In addition, the optimal results are presented
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Figure 4.25: Results of the localization task when the night illumination conditions affect the
Freiburg environment. Average localization error (cm) vs. number of clusters and descriptor size.
Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine and
Euclidean) are considered.

by using the cosine distance to calculate the distance between descriptors. As for
the Saarbrücken environment, HOG presents slightly worse results than in Freiburg
(fig. 4.27). Gist presents also relatively good localization results and its influence by
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Figure 4.26: Results of the localization task when the sunny illumination conditions affect the
Freiburg environment. Average localization error (cm) vs. number of clusters and descriptor size.
Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine and
Euclidean) are considered.

the k3 parameter (number of horizontal blocks) is lower than the HOG influence by k2.
For example, in the results presented using the gist descriptor (see fig. 4.25), the error
decreases until the number of clusters is 40 and after that value, the average localization
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Figure 4.27: Results of the localization task when the night illumination conditions affect the
Saarbrücken environment. Average localization error (cm) vs. number of clusters and descriptor
size. Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine
and Euclidean) are considered.

error keeps almost constant. For the gist descriptor, the Euclidean distance presents
the worst results whereas the cosine and correlation distances are quite similar. The
CNN descriptor presents localization results as good as using HOG in Freiburg at night
.Using the holistic descriptor obtained from the layer fc7, the localization error is lower
than 100 cm when nc > 30 (using either correlation or cosine distance). Additionally,
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the results obtained in the Saarbrücken environment with this descriptor are the best.
However, CNN is more affected than HOG under sunny conditions (see fig. 4.26).

Between the two best descriptors with the best localization results (HOG and
CNN), an evaluation of the computation time is obtained. To this end, the time
required to calculate the global-appearance descriptors is performed. Table 4.4 shows
the average computational time (sec) to compute the global-appearance descriptor for
the Freiburg_test_night dataset. Regarding HOG, the values obtained remain almost
constant regardless of the value of k2. As for the use of the CNN descriptor, the related
time values are higher (about 0.4 seconds).

Table 4.4: Computation time (sec) required to obtain the global-appearance descriptor (HOG
and CNN) per each test image. Freiburg test dataset under night conditions.

Descriptor Time (ms)
HOG k2=2 131.0± 0.58

k2=4 145.8± 0.34
k2=8 148.3± 0.12
k2=16 158.1± 0.19
k2=32 177.8± 0.93
k2=64 192.3± 0.41

CNN ‘fc7’ 444.7± 5.62
‘fc8’ 453.3± 4.51

In conclusion, FS and gist localization values are relatively worse. HOG presents
better results in the Freiburg environment, but in the Saarbrücken environment, results
for HOG are poor, whereas CNN keeps being also good. Despite the computing time
is not as low as the HOG one, it is not substantially higher than the HOG results.
Hence, among the different holistic descriptors studied to solve the localization task in
environments under changes of illumination, CNN performs the optimal solution. As
for the illumination changes, HOG is less affected by the sunny conditions than the
rest of descriptors. Regarding which type of distance measure is better to calculate the
distance between descriptors, both correlation and cosine present similar outputs.

4.5.5 Localization by Using Hierarchical Models
In this subsection, the hierarchical localization is evaluated in the Freiburg and Saar-
brücken environments under two illumination conditions (night and sunny) calculating
two types of distances (correlation and cosine) and using two kind of descriptors (HOG
and CNN-based). The Euclidean distance is discarded since it presented the worst
localization error results in the experiment 4.5.4. This experiment does not show FS
nor gist descriptors because, as shown in subsection 4.5.4, these results are worse for
localization purposes. This subsection also evaluates the pre-selection of more than
one cluster in the rough localization step.

Fig. 4.28 shows the average localization error (cm) vs. the number of clusters
nc obtained in the Freiburg environment when the test dataset was night and either
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one or two clusters are selected to carry out the fine localization. Fig. 4.29 shows
the average localization error (cm) obtained in the Freiburg environment results when
the test dataset was sunny and one cluster is selected for fine localization; fig. 4.30
shows the average localization error (cm) vs. the number of clusters nc obtained in the
Saarbrücken environment when the test dataset was night and one and two clusters
are selected to carry out the fine localization.

This method produces an efficient process for refining the localization with the
use of the low-level layer. However, this method only improves when the number of
clusters is low and no substantial differences are observed when the number of clusters
is relatively high. To select more than one cluster to perform fine localization is only
interesting when a large compression is performed, otherwise selecting only one cluster
produces more efficient results because its computation time is relatively low.

4.6 Conclusion

In this chapter, we present a deep study about the use of hierarchical models to carry
out the localization by using omnidirectional visual information in indoor environments.
With this aim, three datasets from indoor environments are used. These datasets are
composed by either panoramic images or omnidirectional images which are transformed
to panoramic. Our main contributions and the conclusions reached in this chapter are
summarized as follows.

• The work proposes two different methods for compacting topological maps.
Throughout the experiments, in order to compact the information, the number
of instances has been reduced to a value in the range of 10 to 100. That means
a reduction of instances up to between 1.1% and 11.5% of the original number.
The proposed methods are (1) spectral clustering and (2) Self-Organized Maps.
In addition, three holistic descriptors are used, since they present a good solution
for environments where data dimensionality is high.
The work shows that it is possible to reduce drastically the visual information from
the original model. Regarding the use of methods to compress visual models,
spectral clustering has proved to be, in general, more efficient than the SOM clus-
tering. Also, the global-appearance descriptor which presents better behaviour
to carry out the clustering task is gist. Concerning the localization task using
the compact models, HOG presents generally the best outcomes independently
on the type of map. The best results concerning mapping and localization are
summarized in the fig. 4.31.

• After compressing the original model, the resulting map can be used to solve
the. Therefore, an evaluation is tackled with the aim of measuring the goodness
of the localization task by using compact models and holistic descriptors. In this
case, three descriptors (FS, HOG and gist) are evaluated.
As for the computing time, comparing the localization results obtained after
compaction and by using raw, uncompacted models (nc = 872, nc = 519,
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and nc = 566 respectively for Quorum V, Freiburg and Saarbrücken), compact
models have proven to be an effective tool for reducing computation time and
maintaining localization accuracy (see sec. 4.4).

• As for the detection of the environment and a subsequent localization, a mixture
between indoor environments is created in order to evaluate if it is possible, first,
to detect the right environment and second, to estimate the position of the
instance. From this experiment, HOG is the description method that presents
the best localization performance. In addition, gist presents the most successful
results for selecting the correct environment of a test instance from a combined
dataset. Using this descriptor, 100% of success is achieved regardless of the
number of clusters and the value k3.

• Concerning the utility of clustering methods, a comparison was carried out
between clustering models and straightforward downsampling methods. The
conclusion reached is that the use of clustering methods to tackle the compression
step has proved to be more efficient than carrying out directly a downsampling of
the images from the database, despite straightforward methods might be faster
and easier. This is due to the fact that straightforward methods to compress the
information are not capable of keeping more information about the environment
than the proposed spectral clustering method.

• Regarding the use of holistic descriptors to solve localization under changes
of illumination, an experiment was tackled to test different holistic descriptors
against changes of illumination to solve the localization by using compact maps.
The localization task is tackled once the compact model of the environment is
created (using spectral clustering with gist descriptor). In this case, apart from
the three previously holistic description methods proposed, we also use holistic
descriptors obtained from intermediate layers of a CNN. In this regard, FS outputs
again the worst results and HOG usually leads to the best solutions. The use of
CNN-based descriptors has presented good results. Nevertheless, CNN is more
affected by the sunny illumination conditions than HOG is and CNN also needs
more computing time to calculate the descriptor than HOG. Furthermore, in
general the sunny illumination conditions affect more negatively the performance
of the methods than the night conditions.

• Last, a hierarchical localization method has been developed and evaluated.
In this sense, the related experiments evaluated the efficiency of this method.
Additionally, several configurations and input information (holistic descriptors)
were also tested. As conclusion, this localization method may result interesting
when high levels of compression are presented. Moreover, just selecting one
cluster as candidate may be enough for the majority of cases. The table 4.5
summarizes the localization error obtained along the experiments proposed in
this chapter without changes of illumination. Through this table, it is easy to
conclude that the CNN-based descriptor provides the best results to carry out
the localization task for both localization methods although HOG also presents
good results when the localization is addressed hierarchically.
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Table 4.5: Summary of the minimum localization error values obtained through the two local-
ization methods and the four descriptors evaluated throughout this work.

Localization
Method Descriptor Minimum localization error (cm)

nc = 20 nc = 40 nc = 60 nc = 80 nc = 100

Using a
compact model

FS 403.25 331.88 350.88 351.81 267.60
HOG 149.75 128.19 118.53 112.20 90.85
gist 201.33 125.77 149.45 125.92 153.38
CNN 133.54 71.39 76.23 78.27 66.51

Hierarchical
Localization

FS 360.73 308.40 327.13 328.32 252.17
HOG 61.41 81.27 54.89 33.59 42.52
gist 136.27 99.10 136.58 85.02 125.31
CNN 69.52 38.68 50.57 49.01 50.73

4.7 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• L. Payá, W. Mayol, S. Cebollada, O. Reinoso. Compression of topological mod-
els and localization using the global appearance of visual information. ICRA
2017. IEEE International Conference on Robotics and Automation (Singapore,
May 29th - June 3rd 2017). Ed. IEEE ISBN:978-1-5090-4632-4 - pp. 5630-5637
[212]

– This paper presents the development and evaluation of the spectral clus-
tering approach to obtain compact topological models in the Quorum V
dataset (grid map). This model is subsequently tested by studying their
utility to solve the robot localization problem. Omnidirectional visual in-
formation and global-appearance descriptors are used both to create and
compress the models and to estimate the position of the robot.

• S. Cebollada, L. Payá, W. Mayol, O. Reinoso. Evaluation of Clustering Methods
in Compression of Topological Models and Visual Place Recognition Using Global
Appearance Descriptors. Applied Sciences. Ed. MDPI ISSN:2076-3417 Vol 9(3),
377 (2019) [44] (JCR-SCI Impact Factor: 2.474, Q2).

– This paper presents a profound study about the compression of topological
models of indoor environments. Two clustering methods are tested in order
to know their utility as well as to build a model of the environment and
to solve the localization task. Omnidirectional images are used both to
create the compact model and to estimate the robot position within the
environment. These images are characterized through global-appearance
descriptors. To evaluate the goodness of the proposed clustering algorithms,
Quorum V, Freiburg and Saarbrücken datasets are considered.

126



4.7. Publications Related to this Chapter

• Sergio Cebollada, Luis Payá, Vicente Román, Oscar Reinoso. Hierarchical Local-
ization in Topological Models Under Varying Illumination Using Holistic Visual
Descriptors. IEEE Access. Ed. IEEE ISSN:2169-3536 Vol 7(1), pp. 49580-49595
(2019) [45] JCR-SCI Impact Factor: 3.745, Q1.

– This paper presents a hierarchical localization framework within indoor en-
vironments. To carry out this task severe variations of the illumination
conditions are considered. The only source of information both to build a
model of the environment and to solve the localization problem is a cata-
dioptric vision system, whose images are processed globally to obtain holistic
descriptors.
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Figure 4.28: Results of the complete hierarchical localization task when the night lighting
condition affects the Freiburg environment. Average localization error (cm) vs. number of clusters
and descriptor size. Pre-selection of either (a) one (c = 1) or (b) two (c = 2) clusters as the most
likely options.
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Figure 4.29: Results of the complete hierarchical localization task when the sunny lighting
condition affects the Freiburg environment. Average localization error (cm) vs. number of clusters
and descriptor size. Pre-selection of one cluster as the most likely option.
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Figure 4.30: Results of the complete hierarchical localization task when the night lighting
condition affects the Saarbrücken environment. Average localization error(cm) vs. number of
clusters and descriptor size. Pre-selection of either (a) one (c = 1) or (b) two (c = 2) clusters as
the most likely options.
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Figure 4.31: Best results of the clustering and localization processes. (a) Clustering with gist
and spectral clustering: Silhouette of Points (left axis, solid lines) and computing time (right axis,
dashed lines) vs. number of clusters. (b) Localization with HOG and cosine distance: average
localization error (cm)(left axis, solid lines) and computing time (right axis, dashed lines) vs.
number of clusters. Freiburg environment.
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5 Use of Machine Learning
Techniques for Localization

5.1 Introduction

Throughout the last years, many definitions about AI have been proposed. For instance,
Minsky [184] defined AI as “the science of making machines do things that would
require intelligence if done by men”. For Haugeland [100], artificial intelligence is, “the
exciting new effort to make computers think (...) in the full and literal sense”. Charniak
et al. [48] define AI as “the study of mental faculties through the use of computational
model”. More recently, according to Schalkoff [243], AI is “a field of study that seeks
to explain and emulate intelligent behaviour in terms of computational process”. If
we focus on the use of AI to solve robotics tasks, we can express this science as a
set of techniques that are applied in computer programming to solve problems whose
difficulty requires a certain grade of intelligence.

Machine learning techniques have contributed to solve a variety of problems in
mobile robotics during the last years. For example, Gonzalez et al. [88] use machine
learning to detect different levels of slippage for robotic missions in Mars and Dymczyk
et al. [70] propose the use of a boosted classifier to classify landmark observations and
carry out the localization task in a more robust fashion. The present work proposes
the performance of some machine learning techniques for addressing mapping and
localization tasks. The efficiency of the proposed tools is tested regarding their ability
to estimate the position of the robot within the environment using the information
stored in the map. The proposed method uses images obtained by an omnidirectional
vision system as a unique source of information. The approach consists in the use of
a variety of classifiers, neural networks and clustering algorithms, used in combination
with holistic visual descriptors, to solve the localization problem.
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As it has been exposed in previous chapters, global-appearance descriptors have
been proposed to extract characteristic information from images and use this infor-
mation to carry out the mapping and localization tasks. The first approaches were
commonly known as hand-crafted descriptors, that is, they were based on analytic
methods. Some of these methods were presented in chapter 4 and they were success-
fully used to carry out compression of visual maps as well as its related localization.
Nonetheless, during the last few years, some authors have proposed the use of deep
learning techniques to create global-appearance descriptors. To cite one example, Xu
et al. [306] used a CNN-based descriptor to obtain the most probable position within
an indoor map through Monte Carlo Localization and also to solve the kidnapping
problem. The use of intermediate layers from convolutional neural networks to obtain
holistic descriptors has been commonly proposed. Normally, the last fully-connected
layers have been used since they get profit from information learned in previous layers
and thus they provide a reliable characterization of the input image.

Therefore, through the present chapter, we present novel localization methods
with omnidirectional visual information in indoor environments. Holistic descriptors are
obtained from the images and they are used to solve the objective tasks. Our main
contributions in this chapter are summarized as follows.

1. We present a study about the use of classifiers to solve the hierarchical localiza-
tion. Global-appearance descriptors are obtained from the visual dataset. After-
wards, descriptors are introduced into classifier models, which estimate the most
probably area where the image was captured (rough localization step).

2. We present an alternative method to solve the fine localization step once the
capturing area was estimated. This method is based on a fitting neural network
that estimates the position where the image was captured within the area se-
lected. The learning process of the present method is also carried out through
the use of holistic descriptors.

3. We study the use of different deep learning tools with the aim to obtain holistic
descriptors that perform robustness with the aim to solve the localization task.
These novel methods are compared with hand-crafted holistic descriptors based
on analytic methods. The goodness of these methods are measured according
to the accuracy and computing time.

The remainder of the paper is structured as follows: Section 5.2 outlines the
machine learning tools used throughout this work. After that, section 5.3 outlines the
holistic descriptors based on deep learning tools that are proposed to solve a standard
localization task. Section 5.4 explains the use of the machine learning techniques
together with holistic descriptors to solve the localization in hierarchical maps. Then,
section 5.5 presents the experimental results and the discussion about them. Last,
section 5.6 outlines the conclusions reached.
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5.2 Machine Learning Tools

Machine learning methods try to automate the construction of analytic models from
data analysis. These methods belong to the AI (Artificial Intelligence) branch and they
are based on the idea that the systems can learn to identify patterns departing from the
data. Common machine learning techniques include decision trees, support vector ma-
chines and ensemble methods. Numerous works regarding the use of machine learning
tools together with visual information can be found in the related literature. For exam-
ple, Clark et al. [53] carry out a mapping and a posterior re-localization task by means
of feeding a LSTM network with holistic descriptors obtained from a CNN; Neto [199]
proposes a topological localization system based on monocular images, learning classi-
fier systems and self-organizing maps. The use of these techniques is widely extended
in the mobile robotics field. To cite one example, Triebel et al. [277] propose the Infor-
mative Vector Machine (IVM) classifier for semantic mapping in autonomous mobile
robotics. Regarding the present work, the machine learning tools employed are the
following: (a) clustering, (b) classification, and (c) data fitting neural networks. Their
fundamentals are outlined in the following paragraphs.

In the present chapter, machine learning are proposed to carry out the hierarchi-
cal localization, since they are expected to provide advantages both in the rough and
in the fine localization steps. The improvements reached by using of these techniques
are shown along the chapter, and they can be outlined as follows:

• More robustness against severe changes of lighting conditions.

• They present an efficient solution when the sizes of the data and the map are
large.

• Higher hit ratio in localization in the high-level map.

• More accurate resolution to estimate the position of the robot, since there will
not be limitations due to the resolution of the map (distance between consecutive
images within the dataset). Hence, more accuracy in the fine localization step.

As for Clustering algorithms, they consist in grouping information according
to some given criteria. The most usual criterion is the distance or the similitude
between the information, which is usually arranged in vectors. Clustering techniques
have proved to be a good solution to group visual data and more concretely data
provided as holistic descriptors [213]. Additionally, chapter 4 evaluated the use of
certain clustering algorithms concerning their usefulness to compact visual models.
The aim to compact those visual models is to create hierarchical structures based on
layers and use those models to tackle the localization task more efficiently.

Considering the results obtained in the previous chapter, spectral clustering [167]
is the method selected in the present work to carry out the clustering step. This algo-
rithm is proposed to perform a non-supervised labelling of a visual dataset composed by
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(a) (b)

Figure 5.1: Example of an indoor map and a non-supervised labelling by means of a clustering
method. (a) The red dots show the positions where the images were captured. (b) Result of the
clustering process. Each image is grouped according to its visual similitude with the rest of them.
This clustering process is tackled by using only visual information.

holistic descriptors obtained from omnidirectional images captured during the mapping
task. Fig. 5.1 shows an example of the clustering carried out in an indoor environment.

Regarding the classification tool, this consists in predicting the class of given
data instances. Classes are also called as labels and they represent categories. Be-
fore using this tool to predict categories, the model requires a learning step, where a
huge variety of input data (xtrain) together with the corresponding labels (ytrain) are
trained. These data used to train the model must be a good enough representation of
the whole type of data likely to be present. Therefore, the model carries out a mapping
function approximation from input variables to discrete output variables. Due to this,
the model is expected to achieve a well tuning configuration and it is ready to receive
new data (xtest) and estimate their categories (yestimated). Along the present chapter,
three types of classifications have been proposed, since they have already been used by
other author to solve mobile robotics tasks:

• Naïve Bayes (NB) classification. It is based on Bayes’ theorem with indepen-
dence assumptions between the features. This classification was introduced by
Maron [173] as a method for text categorization to solve the problem of judging
documents (such as spam or legitimate, sports or politics, etc.) with word fre-
quencies as features. To cite one example of use in mobile robotics, Posada et
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al. [221] propose a naive Bayes classifier to predict the occupancy in a local envi-
ronment of the robot by fusing the evidence provided by different segmentations
and models and hence to carry out a visual navigation.

• Shallow Neural Network Pattern Recognition classification. The shallow
neural network is a framework to solve different tasks through processing dif-
ferent data inputs and also through using many different machine learning al-
gorithms [287]. Such systems "learn" to perform tasks by considering examples
(training data), generally without being programmed with any task-specific rules.
The network automatically generates identifying characteristics from the learning
material that it processes. As an example of use, Barshan et al. [15] used this
type of classifier in mobile robotics to differentiate with higher accuracy targets
obtained by SONAR.

• Support Vector Machine (SVM) classification. Introduced by Cortes and
Vapnik [55], SVM can be used for classification or regression purposes. The
algorithm considers each data element as a point in an n-dimensional space
(where n is the number of features) and the value of each feature is the value of a
particular coordinate. Then, a classification is tackled by finding the hyperplane
or hyperplanes that best differentiate the categories. As an example of use,
Iagnemma and Ward [111] propose an approach based on signal recognition
to detect the immobilization of autonomous mobile robots in outdoor terrain
through the use of SVM classifiers, which are used to form class boundaries
in a feature space composed of statistics related to wheel inertia and speed
measurements.

Last, concerning the function approximation network, this is proposed to fit
practical functions. This is, the neural network is not trained to predict the correct
category of the input data but to estimate a value among a specific range (x =
[xmin, xmax], where xmin, xmax ∈ R). The training of the network is carried out
through a supervised learning, i.e., the learning process assumes the availability of a
labelled set of training data made up of Ntrain input—output examples. This work
proposes the use of this type of neural networks to estimate the position (x, y) of the
robot within an specific area or room.

Figures 5.2, 5.3 and 5.4 show the way the proposed machine learning tools are
used throughout this work to solve the mapping and subsequent localization tasks.
In these diagrams, im is the panoramic image; (x, y) are the coordinates where a
specific image was captured; ~d is the global-appearance descriptor calculated for a
specific image; k is the number of categories; ci is the i-th category; Ntrain is the
total number of images used for training; imtest, (xtest, ytest) and ~dtest are the image,
coordinates and descriptor calculated for a test image; p(ci) is the likelihood that the
input ~dtest belongs to the category ci; (xi,yi) are the coordinates of the position within
the environment which correspond to the i-th image; and (xest,yest) are the coordinates
which have been estimated for a test image.
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Figure 5.2: Diagram of the clustering tool used throughout this work to solve the mapping
task. This tool groups the visual description data in k clusters regarding their similitude. Every
descriptor is then associated to a specific cluster (C1, C2, ..., or Ck).
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Figure 5.3: Diagram of the classification tool used throughout this work to solve the mapping
task. This tool learns to classify global-appearance descriptors departing from the training data
(descriptor dataset) and their labeling information. Once the classifier is trained, it is expected
to correctly classify a new descriptor from a new test image captured.
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Figure 5.4: Diagram of the data fitting neural network tool used throughout this work to
solve the mapping task. Similar to the classifiers, in this case, coordinates are introduced to the
network instead of labels. Once the tool is trained, it is expected to estimate the coordinates
which correspond to the test image.

The learning process of the machine learning tools is carried out by using a visual
dataset, which consists in Ntrain holistic descriptors that were calculated from Ntrain
panoramic images obtained along the environment. In clustering (fig. 5.2), visual
description information is introduced and the algorithm groups the information in k
categories by considering the similitude between descriptors. As for the classifier tool
(fig. 5.3), a training phase is previously performed, that is, a set of training data items
(visual descriptors and their correct categories) are introduced and the configuration
parameters are tuned according to those values. After that, the classification task can
be performed when a new input descriptor is presented. Alike to the classifiers, the
data fitting network (see fig. 5.4) needs a training step. Nevertheless, in this case the
target data are not categories but they are real values within a range.

5.3 Holistic Descriptors Based on Deep Learning Tools

As showed by several authors and also in previous chapters of the present thesis,
global-appearance description has been proposed to solve the localization task due to
the advantages these methods present, such as they permit straightforward localiza-
tion algorithms. The first global-appearance descriptors used in computer vision were
descriptors based on hand-crafted methods. They are basically based on calculations
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of gradients and orientation of the different pixels that compose the image. To cite
one example of use in mobile robotics, Su et al. [266] used a holistic descriptor to
reduce pose search space with the aim to solve the kidnapped robot problem in indoor
environments under different conditions. Among the wide range of global-appearance
description methods, the present thesis has studied the use of FS, HOG and gist. Addi-
tionally, based on previously showed results (see chapter 4), HOG and gist have proved
to present interesting results for localization tasks.

Nonetheless, in recent years, the emergence of deep learning techniques has
boosted the use of descriptors based on these methods. For instance, Naseer et al. [197]
propose a localization method based on global appearance (by using histograms of
oriented gradient descriptors and features of deep convolutional neural networks) to
solve the localization problem and keep in parallel hypotheses of possible trajectories.
This work studies the use of convolutional neural networks (CNN) and the use of
automatic encoders to solve the localization task. The idea is to obtain vectors that
characterize images using some deep learning techniques. On the one hand, these
methods can be very interesting as their use can focus on specific types of images (such
as indoor environments in our case) and therefore provide more efficient descriptors.
On the other hand, these methods involve pre-training which usually involves a large
data processing and a remarkable time.

Focusing on the use of CNNs, these networks have been widely proposed to
carry out classification/categorization tasks. In this sense, (1) a set of images correctly
labelled is collected and introduced into the network to tackle the learning process and
after that, (2) the network is properly available to face the classification (test image
as input and the CNN outputs the most likely label option). The CNNs are composed
by several hidden layers whose parameters and weights are tuned through the training
iterations. CNN is explained with more detail in chapter 6. In the present chapter,
some hidden layers outputs are used to obtain holistic descriptors. This idea have
already been proposed by some authors such as Mancini et al. [170], who use them
to carry out place categorization with the Naïve Bayes classifier. Similar to that work,
the work presented in the chapter 4 also proposes the use of CNN-based descriptors
to create hierarchical visual models for mobile robot localization. The present work
addresses an exhaustive evaluation of the layer of the same network with the aim to
obtain more efficient holistic descriptors for localization.

The CNN architecture that was used is places [318], which was trained with
around 2.5 million images to categorize 205 possible kinds of scenes. It should mention
that neither the previous chapter nor the present work tackle a re-training, but the
CNN is used with the parameters learned originally. The network, which is based on
the caffe CNN, basically consists in (1) an input layer, (2) several intermediate hidden
layers and (3) an output layer. Within the intermediate layers, the first phase consists
in (2.1) layers for featuring learning (whose layers incorporate several filters and the
output generated are used as input for the next layer) and (2.2) layers for classification
(whose layers are fully-connected and they generate vectors that provide information
for classification). The intermediate layers carry out operations over the input data
with the aim to learn the specific characteristics of those data. The convolution layers
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apply several filters over the input images and each one activates certain characteristics
and the pooling layers simplify the outputs, since they tackle a non-lineal downsam-
pling. These layers are repeated along the network and each layer learns different
characteristics.

In the present work, we have evaluated the output information from three fully-
connected layers (fc6, fc7 and fc8) whose output size are 4096 × 1, 4096 × 1 and
205 × 1 respectively. In addition, we have obtained two descriptors from the output
of 2D convolutional layers (conv4 and conv5). These layers apply several sliding con-
volutional filters to the input with the aim of activating certain characteristics of the
image.Therefore, the output of these layers is a set of images that are the input image
after being filtered. Last, a descriptor of these layers is basically obtained by selecting
an image from the output dataset and arranging the matrix data into a single vector.
Since the size of the output images is 13× 13, the size of the descriptor is 169× 1.

As for the use of autoencoders, the aim of these neural networks is to re-
construct the output through compressing the input into a latent-space representa-
tion [109]. They are designed to copy perfectly the input data. The model learns to
prioritize which aspects of the input should be copied. Traditionally, autoencoders have
been proposed for dimensionality reduction or for feature learning [90]. This kind of
neural networks are composed by a hidden internal layer that produces a latent repre-
sentation h. Basically, the network consists in two parts: in the first one, an encoding
is tackled (h = f(x)) and in the second part, a decoding or reconstruction (r = g(h))
with the objective g(f(x)) = x (see fig. 5.5).

Encoder
(𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

h=f(x)

Decoder
(𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

r=g(h)
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Representation
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Figure 5.5: Autoencoder architecture design and extraction of features departing from the latent
representation.

Regarding the use of this deep learning tool for dimensionality reduction, it has
provided reconstructions with an error rate fewer than using other techniques such
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as PCA [104]. Moreover, by means of dimensionality reduction, information retrieval
has also obtained substantial benefits. With the use of autoencoders and its related
dimensionality reduction, searching becomes more efficient. For example, Pfeiffer et
al. [218] present a study about learning-to-rank and query refinement approaches for
information retrieval in the pharmacogenomic domain. Zhu et al. [321] propose using
autoencoder for feature learning on the 2D images with the aim to carry out 3D shape
retrieval. Moreover, some works can be found in the state of the art concerning the
use of autoencoders for mobile robotics. Sergeant et al. [247] address a navigation
task by using a deep autoencoder to learn from a dataset sensor input how to navigate.
Wang et al. [294] propose an autoencoder for fusion and extraction of multiple visual
features from different sensors with the aim of carrying out motion planner based on
deep reinforcement learning. Gao and Zhang in [84] use autoencoders to detect loops
for visual Simultaneous Localization And Mapping (SLAM).

5.4 Hierarchical Localization Based on Machine Learning

The use of holistic descriptors to solve the mapping and localization tasks has been
widely proposed during the last years. For instance, Faessler et al. [72] present a
vision-based quadrotor system to map a dense three-dimensional area. Korrapati and
Mezouar [132] propose the use of omnidirectional images through global-appearance
descriptors to build topological maps and also a loop closure detection method.

In the previous chapter (see chapter 4), we proposed a method to build hier-
archical maps through a combination of clustering methods and holistic descriptors.
The results obtained proved that the proposed approach is a feasible alternative to
build robust compact maps. In the present chapter, the map is structured into two
layers. First, the low-level layer is composed of a set of descriptors, each one corre-
sponding to an image in the original training dataset. Second, the set of descriptors
D = {~d1, ~d2, ..., ~dNtrain} is divided into nc groups by using a labelling method, where
each group of descriptors is expected to contain information from zones which are
visually distinctive. Once the labelling process has been carried out, each zone of the
high-level map is represented by a representative descriptor. Hence, a set of represen-
tatives is obtained R = {~r1, ~r2, ..., ~rnc}, where ~ri is the representative obtained for
the i-th group, and this set is the high-level map. Therefore, the localization process
is solved hierarchically after building the maps. This process basically consists in the
following steps:

1. The robot captures a test image (imtest) from an unknown position.

2. It calculates the holistic descriptor of the image (~dtest).

3. This descriptor is compared with the representative descriptors from the high-
level map (~r1, ..., ~rnc) and a zone is selected as the most likely one (ci).

4. The most similar descriptor is selected (~dci,k) and the position of imtest is es-
timated as the position of the robot from which the image whose descriptor is
~dci,k was captured.
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5.4.1 Classifiers for Localization in the High-Level Map
The present work proposes an alternative hierarchical localization method based on the
use of classifiers to estimate the position in the high-level layer (rough localization step).
This process consists in introducing the holistic descriptor into a classifier that outputs
the corresponding capturing zone. The use of this tool is expected to provide some
advantages in comparison to the method presented previously, which basically consists
in finding the nearest neighbour among the representatives in the high-level map. The
proposed localization method is not only expected to be more robust against changes
of illumination, but it is also expected to provide a more advantageous success selecting
the correct area within the high-level map despite visual aliasing. Additionally, the use
of classifiers is suitable for the cases when the data size is large. For instance, Rahimi
and Recht [225] propose the use of local features and machine learning tools to face
regression and classification tasks with large scale data and they have obtained results
that are competitive with state-of-the-art algorithms in accuracy, training time, and
evaluation time. The use of the classifier is included in the step (3) of the hierarchical
localization process. In this step, the descriptor ~dtest is fed into a classifier, which
retrieves the most likely area. The proposed process is depicted in fig. 5.6. and it
consists in the following steps:

1. The robot captures a test image (imtest) from an unknown position.

2. It calculates the holistic descriptor of the image (~dtest).

3. The descriptor obtained is fed into a classifier, which retrieves the most likely
area.

4. After the classification, the descriptor is compared with the descriptors of the
low-level map that are included in the selected area and the position of the robot
is estimated as the position that corresponds to the most similar descriptor from
the selected area.

5.4.2 Solving the Fine Localization Problem Using Function
Approximation through a Data Fitting Neural Network

This work also proposes the use of neural networks to solve the fine localization step.
The proposed neural network is trained with the aim to overcome the issues carried
by the use of visual data as unique source of information, which are mainly the visual
aliasing and the resolution in localization due to the distance between consecutive
acquisition points in the training dataset. This data fitting neural network is trained
with the aim to approximate the coordinates (x,y) of the test image. The network is
trained with a set of visual descriptors from a training dataset, along with a coordinates
(x,y) in the floor plane from which each training image was captured.

Therefore, a data fitting Neural Network can be used to solve the fine local-
ization as a function approximation problem. Before the localization task, the model
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Figure 5.6: Hierarchical localization diagram. A classifier is previously trained. To start the
localization process, a new image imtest is captured and its holistic descriptor ~dtest is obtained.
First, the rough localization is solved through a classifier to retrieve the most likely zone ci within
the map. Second, the fine localization is solved by calculating the distances between ~dtest and
the descriptors contained in the retrieved zone ci (stored in the vector ~qt). The most similar
descriptor ~dci,k, which corresponds to the position J of the vector ~qt, is retained. Finally, the
position of imtest is estimated as the coordinates where imci,k was captured. (xest, yest) are the
retrieved coordinates.

construction is carried out. This process consists in training a net for each area by
using the descriptors included in that area and the (x, y) coordinates from which each
image was captured. After training the nc networks, the complete localization process
is addressed through the following steps:

1. The robot captures a test image (imtest) from an unknown position.

2. It calculates the holistic descriptor of the image (~dtest).

3. The descriptor obtained is fed into a classifier, which retrieves the most likely
area.
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4. After the classification, the descriptor ~dtest is fed into the previously trained
neural network corresponding to the zone retrieved in the previous step.

The outputs of this network are the predicted coordinates of the test image (see
fig. 5.7) which are an estimation of the position of the robot. Again (also explained
in sec. 5.2), in order to retrieve the position by neural networks, a training must be
carried out before using this tool. Additionally, data augmentation is applied over the
visual dataset with the aim to improve the training process. Through this technique,
the machine learning tools are supplied by Neffects times the total number of training
images (Ntrain_augmented = Ntrain × Neffects), where Neffects is the number of
effects applied over the original images dataset.
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Figure 5.7: Hierarchical localization diagram. A classifier and data fitting neural networks
have been previously trained. To start the localization process, a new image imtest is captured
and its holistic descriptor ~dtest is obtained. First, the rough localization is solved through a
classifier to predict the most likely zone ci within the map. Second, the fine localization is solved
through the data fitting neural network which was trained with the descriptors contained in the
retrieved zone ci. Finally, the position of imtest is estimated as the most likely position within
the previously selected zone. (xgt, ygt) and (xest, yest) are respectively the coordinates obtained
from the ground truth and estimated.
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5.5 Experiments

Continuing the experiments carried out in chapter 4, the experiments proposed in the
present chapter also used the COLD DB [222]. This dataset was chosen because it
includes several handicaps that make the experiments proper to analyse the perfor-
mance of the algorithm under real-operation conditions. There are dynamic changes
in the environment such as in the position of furniture and objects or people walking,
there is blur effect over some images due to the movement of the camera and also, a
high degree of visual aliasing can be perceived in the images. Furthermore, among the
three available datasets, Freiburg present features more challenging regarding the visual
localization task, since the environment presents a large amount of windows (which
complicates the solution of the problem) and the route carried out is the longest. Again,
three test datasets with different illumination conditions are used (cloudy, sunny and
night datasets) with 2596, 2231 and 2876 images respectively. Last, the experiments
have been tackled in a computer with a CPU Intel Core i7-7700 R© at 3,6 GHz and
through Matlab R© programming.

5.5.1 Hierarchical Localization with Machine Learning
5.5.1.1 Experiment 1: Rough localization

This subsection shows the experiments related with the rough localization in a hierar-
chical localization model. The first experiment evaluates the performance of the three
classifiers to carry out the selection of the corresponding area within the environment.
The three classifiers are (a) Naïve Bayes, (b) a classifier based on a shallow neural
network that is trained to recognize categories and (c) the SVM (Support-Vector Ma-
chine) classifier. These classifiers are trained to solve the category retrieval by means of
global-appearance description information obtained from the training dataset. Those
descriptors are put into the classifier along with the labels, which indicate the corre-
sponding category for every descriptor.

Concerning the labelling of the training data, two alternatives have been con-
sidered. In the first part of the experiment, a manual labelling of the data is carried
out, in which the labels correspond to the number of the room where each image was
captured, so these labels are integers in the range [1, 9], since the Freiburg dataset con-
tains 9 rooms. The second part of this experiment evaluates the use of an automatic
labelling instead of using the labelling provided by the dataset. This is, using an AI tool
to determine the corresponding group of each image contained in the training dataset.
We propose to use spectral clustering as AI tool, because it has already provided good
solutions among other clustering frameworks in previous works. Due to the fact that
spectral clustering groups the data according to their visual similitude, we consider that
this automatically labelling can be a more practical solution.

The three holistic descriptors used to train the classifiers are gist, HOG and a
descriptor obtained from the layer ‘fc7’ of the CNN places (this descriptor is named
CNN-fc7 throughout the present chapter). Therefore, as fig. 5.8 shows, every classifier
is firstly trained with the set of training descriptors and the labels. After that, the
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classifier is ready to receive new descriptors (from the test datasets) and calculate the
correct label. Moreover, in order to evaluate the use of these tools under changes of
illumination conditions, this experiment is also carried out by using test datasets with
different illumination conditions.
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Figure 5.8: Experiment 1 diagram. First, the training is carried out: The holistic descriptors of
the training data (with Ntrain descriptors) and the corresponding labels (indicating the cluster
or area ci) are used to train the selected classifier. Once the training is done, the classifier is
ready to solve the area estimation. The process starts with a new image (imtest), whose holistic
descriptor (~dtest) is calculated and introduced in the classifier. Finally, it returns a likelihood
vector where p(ci) is the probability that ~dtest belongs to the cluster/area ci (i = 1, ..., k, being
k the total number of clusters/areas). The most likely option is chosen as the most probably
cluster/area where the test image imtest was captured.

To evaluate the relative performance of each method, the hit ratio of every
configuration (classifier + description method) is collected, i.e. the percentage of
success of the classifier, using as input the test data. Table 5.1 shows the results
obtained for the three illumination conditions. According to this table, the shallow
neural network and the SVM classifier work successfully with the cloudy test images,
since both provide hit ratios around 98% when gist or CNN-fc7 are used to describe
the visual information. On the other hand, the Naïve Bayes Classifier returns the
worst solutions and the HOG description proves not to be valid in combination with
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Table 5.1: Experiment 1 results. Accuracy of the classifiers studied. Hit ratio and average
computing time of the rough localization process under three illumination conditions.

Classifier Descriptor Average time (s) Hit ratio test (%)
Cloudy Night Sunny

Naïve Bayes gist 0.17 86.74 75.66 70.10
Naïve Bayes CNN-fc7 0.51 86.13 77.78 62.39
Naïve Bayes HOG 0.05 4.24 4.10 9.86
Neural Network gist 0.05 98.57 83.55 82.61
Neural Network CNN-fc7 0.02 97.42 93.25 76.20
Neural Network HOG 0.02 4.97 4.35 6.77
SVM gist 0.09 98.61 84.63 85.03
SVM CNN-fc7 0.15 98.50 94.09 82.03
SVM HOG 0.05 7.24 5.29 5.92
Nearest Neighbour gist 0.06 80.89 70.58 70.10
Nearest Neighbour CNN-fc7 0.01 78.23 76.95 53.65
Nearest Neighbour HOG 0.02 14.07 11.27 19.77

these tools. The optimal configuration is obtained with SVM+gist, which produces
98.61% accuracy. The confusion matrix obtained for this configuration with the cloudy
test images is shown in fig. 5.9. This figure shows that the correct predictions are
higher than 96% in all the areas of the environment. The worst case is produced in
the 2-person office 2. In this case, there are 5 false positives, 4 with the corridor
and 1 with the 1-person office, which are not critical since these false positives are
produced with adjacent rooms and visually similar. Therefore, for future experiments,
only the combinations shallow neural network or SVM along with gist or CNN-fc7 will
be considered.

Concerning how the different illumination conditions affect the rough localiza-
tion, we can observe that the hit ratio decreases for most of the areas. This effect
was expected and was also noticed in the work presented previously (see chapter 4).
Despite this deterioration, the results do not differ substantially from the obtained with
the cloudy test images. Hence, we can conclude that the classifiers present robust-
ness to carry out the rough localization task even when substantial changes of lighting
conditions occur.

In order to compare different rough localization methods, the three last rows
of table 5.1 also show the hit ratios obtained through using the nearest neighbour
method search, since this was the method considered in the previous chapter. In this
case, the high-level mapping consists in obtaining one representative descriptor per area
(as the average descriptor of the training images contained in this area). The rough
localization consists in calculating the distance between each test descriptor and the
representatives and retrieving the room whose representative is the nearest neighbour.
The method based on the nearest neighbour provides faster results than the classifiers.
Notwithstanding that, the best option (using gist as holistic descriptor) provides hit
ratios that are substantially lower than those provided by the shallow neural network
and SVM classifiers.
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Figure 5.9: Confusion matrix of the classifier SVM along with the gist descriptor to estimate
the area of the images in the cloudy test dataset.

Once proved the utility of the classifiers to tackle the rough localization task and
robustness against illumination changes, the second part of this experiment evaluates
the labelling of the training data. So far, the previous experiments have been developed
considering a manual labelling of the dataset. This way, the training of the classifier has
consisted basically in introducing the visual description of the images and its related
label. Nevertheless, as explained before, using spectral clustering for automatic labelling
can be a more feasible solution. Basically, the steps to label the information are the
following. First, the holistic descriptors of the training images are calculated. Second,
these descriptors are introduced into the spectral clustering algorithm and a number
of clusters nc is manually selected. This tool outputs a vector of labels that specifies
the cluster to which each descriptor belongs (more information regarding the spectral
clustering process can be found in section 4.3). Once the vector of labels is available,
the steps to train the classifier are the same than in the first part of the experiment
(fig. 5.8). Therefore, the high-level mapping process is the following.

1. Global-appearance descriptors are obtained from the training images.
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2. This visual information is firstly used to obtain automatically the labels, using
spectral clustering (nc number of clusters).

3. The global-appearance descriptors together with the calculated labels are used
to train the classifier.

For this purpose, spectral clustering with nc = 2, ..., 13 clusters are considered,
the holistic descriptor gist is used to obtain the visual information (to obtain the labels
as well as to train the classifiers) and the classifiers SVM and shallow neural network are
used. Furthermore, the nearest neighbour method is also used as a reference method to
compare the performance of the classifiers with the results obtained in previous works.
The results of this experiment are shown in fig. 5.10, 5.11 and 5.12.
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Figure 5.10: Experiment 1. Results for rough localization using automatic labeling. Hit ratio
for the test images versus number of clusters. The localization step is carried out by means of
the SVM classifier.

Both classifiers (SVM and shallow neural network) work better than the nearest
neighbour method independently on the illumination conditions. The use of classifiers
with cloudy test images provides hit ratios that are always around 100%. Among the
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Figure 5.11: Experiment 1. Results for rough localization using automatic labeling. Hit ratio
for the test images versus number of clusters. The localization step is carried out by means of a
shallow neural network classifier.

three methods studied to evaluate the use of automatic labelling under dark illumina-
tion conditions (night dataset), the best results are achieved with the neural network
classifier and the best results under sunny illumination conditions (sunny dataset) are
achieved with the SVM classifier.

Concerning the comparison between labelling methods, the hit ratio is improved
by using automatic labelling in comparison to the results obtained by manual labelling
(see table 5.1). The hit ratios reached with neural network classifier and manual la-
belling (80.89, 70.58 and 70.10% for cloudy, night and sunny test datasets respectively)
are lower than the obtained with the automatic labelling considering 9 clusters (99.65,
89.29 and 86.96% for cloudy, night and sunny test datasets respectively). Also, the
same comparison using the SVM classifier outputs better results by using automatic
labelling, for example, the hit ratio improves from 98.61, 84.63 and 85.03% to 100,
89.19 and 85.21% respectively with the three illumination conditions. Only when the
number of clusters is higher than 10 and the test images are under sunny illumination
conditions, the neural network classifier produces hit results lower than 80%. Therefore,
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Figure 5.12: Experiment 1. Results for rough localization using automatic labeling. Hit ratio
for the test images versus number of clusters. The localization step is carried out by means of
the nearest neighbour method.

through the present experiment, we conclude that the combination of spectral clus-
tering and a classifier improves considerably the rough localization step and performs
more robustly against changes of illumination.

5.5.1.2 Experiment 2: Fine localization

Subsection 5.5.1.1 has shown the utility of some classifiers to solve the rough localiza-
tion step considering either manual or automatic data labelling. The present subsection
goes one step ahead and tries to solve the fine localization. This fine localization con-
sists basically in estimating the position within the selected area (predicted in the rough
localization step). These experiments also consider changes of the illumination condi-
tions and the labels to train the classifiers, as in the previous section, are obtained either
manually or automatically. The experiments developed in this subsection are proposed
departing from the assumption that the proper room/area is always correctly estimated
in the previous (rough) localization step. Hence, we focus on the performance of the
methods proposed for fine localization.
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Two alternatives are considered to carry out the fine localization step: either
(a) through an image retrieval approach, by calculating the nearest neighbour or (b)
through the use of a data fitting neural network. Regarding the first option, the
algorithm basically consists in comparing the descriptor of the test image (~dtest) with
those descriptors in the training dataset that belong to the previously selected area.
Afterwards, the most similar descriptor (nearest neighbour) is retrieved, and the point
where the associated training image was captured is considered as the current position
of the robot. This process is shown in the fig. 5.6. Regarding he use of the neural
network, the process is shown through the fig. 5.7 and it consists of the following steps:

1. Before carrying out the steps related to the neural networks training, a data
augmentation is performed with the aim to provide the neural network more
information during the training. The data augmentation proposed consists in
applying random rotation, darkness/brightness additions, blur effects, noise ad-
dition and/or reflection to the original images.

2. Two neural networks per area/room are fit. The first neural network of each room
is trained to estimate the x coordinate, given the descriptor of a test image. To
do it, the training is carried out with the descriptors of the training images that
belong to this specific area, using as labels the coordinate x of their capture
points.

3. The second network is trained equally, but using the coordinate y.

4. Once the data fitting neural networks are available, the fine localization can
be solved: the descriptor of the test image (~dtest) is introduced into the neu-
ral networks of the area/room retrieved in the rough localization step, and the
coordinates (x and y respectively) are estimated.

To evaluate the performance of the two methods proposed, the average localiza-
tion error has been evaluated for each configuration (localization method + description
method), this is, the average error obtained by using test datasets whose images were
captured during different illumination conditions (sunny days and at night). The av-
erage computing time (from calculating the holistic descriptor until estimating the
capturing position) is also collected. Table 5.2 shows the results obtained.

Table 5.2: Experiment 2 results. Accuracy of the methods studied to solve the fine localization.
Average localization error and average computing time considering test images captured under
three illumination conditions.

Method Descriptor Average time
(ms)

Average accuracy (m)
Cloudy Night Sunny

Nearest Neighbour gist 89.64 1.82 1.83 2.18
Nearest Neighbour CNN-fc7 30.30 1.82 1.82 2.31
Neural Network gist 57.34 1.86 1.91 1.98
Neural Network CNN-fc7 23.55 1.90 1.95 1.98
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Concerning this table, the computing time for the data fitting neural network
option is faster, with time values of 57.34 and 23.55 ms whereas, in the case of the
nearest neighbour method, the average time is 86.64 and 30.30 ms. Regarding the
localization error, the table shows that the fine localization method based on image
retrieval outputs lightly better results than the alternative using data fitting neural
networks with the exception of the results with sunny test images. Nonetheless, a more
detailed analysis of the results provided by these methods leads to deeper conclusions.
Table 5.3 shows the data collected for the fine localization by using nearest neighbour
and data fitting neural networks, but in this case, it shows in detail the information
per each area. Hence, this table shows that the average error with the neural network
is low in areas 1, 3, 5, 6, 7 and 8. They present an error between 2.16 and 4.96 cm.
Areas 2, 4 and 9 present worse results. The same drawbacks are presented when the
nearest neighbour method is used. These results are due to the fact that the areas 2
(corridor) and 4 (kitchen) are the largest rooms, thus, their training and subsequent
pose estimation can be more challenging. Despite these issues, this analysis permits
finding out that the use of data fitting neural networks can be a profitable tool to
estimate the position of the robot within a non-large and well delimited environment.
In general, the results obtained are lightly more accurate than the obtained through
the nearest neighbour process, because the estimation with data fitting neural network
does not present the limitation of resolution given by the distance between consecutive
images in the training set.

Table 5.3: Results for fine localization using nearest neighbour and data fitting neural network
with gist descriptor. The average errors are collected separately for each area.

Area
Error through

nearest neighbour
(cm)

Error through
neural network

(cm)
1 5.22 4.96
2 417.17 430.08
3 4.19 2.16
4 167.54 168.40
5 4.11 3.61
6 5.23 3.72
7 5.11 3.15
8 4.09 3.18
9 6.20 4.67

Additionally, a comparison between manual and automatic labelling is also car-
ried out. The figures 5.13 and 5.14 show the average error and time results of the fine
localization by using nearest neighbour and data fitting neural network respectively.
Both methods depart from automatic labelling and they also use the gist descriptor.
From this graphs, it is shown that the nearest neighbour method performs better than
the data fitting neural network. Regarding the computing time, both options provide
similar values and they decrease as the number of clusters does, as expected. Finally,
to compare the labelling options, the spectral clustering is configured with a number
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of clusters nc = 9, since the labelling provided by manual labelling defines 9 cate-
gories regarding the 9 rooms which compose the dataset. Through this comparison,
automatic labelling proves to behave better than the manual option. For instance,
comparing the fine localization with manual labelling and nearest neighbour method
(see table 5.2; with gist descriptor) with the automatic labelling (nc = 9 clusters)
and nearest neighbour method (see fig.5.13), the average error results obtained for the
second option (6.6; 32.5 and 62.5 cm respectively for the three illumination conditions)
improves substantially the results obtained for the manual labelling option (182; 183
and 218 cm respectively).
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Figure 5.13: Experiment 2. Results for fine localization using automatic labeling. Average error
(cm) and average computing time (ms) versus number of clusters. The localization is carried out
by means of the nearest neighbour method.

5.5.1.3 Experiment 3: Complete hierarchical localization

Subsubsection 5.5.1.1 and 5.5.1.2 have shown respectively the utility of some classifiers
to solve the rough localization step and two suitable methods to carry out the fine
localization step. The present experiment proposes the join of both items with the aim
to solve the complete hierarchical localization (rough and fine localization), since this
localization method has proved to be an efficient alternative. Hence, after selecting
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Figure 5.14: Experiment 2. Results for fine localization using automatic labeling. Average error
(cm) and average computing time (ms) versus number of clusters. The localization is carried out
by means of data fitting neural networks.

the area (by using classifiers), the position within the selected area is estimated. The
experiment also evaluates changes of the lighting conditions and uses spectral clustering
to obtain the labels of the training data (automatic labelling). Two alternatives are
considered to carry out the fine localization step: either (a) through an image retrieval
approach, by calculating the nearest neighbour or (b) through the use of a data fitting
neural network.

To evaluate the performance of the proposed methods, the average localization
error and the computing time have been calculated by using the three test datasets of
Freiburg. The proposed hierarchical localization process has been evaluated by using
the SVM classifier in the rough step and the gist descriptors, because the previous
experiments have proved that this configuration works efficiently. The results obtained
are showed in fig. 5.15 and 5.16. From them, we can analyse that the computing time
increases as the number of cluster does, since the rough step (use of classifiers) requires
more computing time than the fine step. Moreover, the nearest neighbour option is
lightly faster. The average time values are between 115 and 748 ms whereas, in the
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case of the neural network, the average time goes from 177 to 956 ms. Nonetheless,
these results would be good enough to carry out a localization task online. Concerning
the localization error, the figures show that the hierarchical localization method based
on image retrieval for fine localization outputs better results than the alternative using
data fitting neural network. However, the results obtained through data fitting neural
network provide accurate values that are also valid enough to carry out the localization
task. For instance, in the case of cloudy test data, the localization error takes values
around 13 cm, which is quite low considering that the distance between images is
around 20 cm. The results for nc = 8 clusters provide high error values. This is due to
the fact that the clustering algorithm was not able to find a compact representation of
the environment. Regarding how the change of illumination conditions affect the issue,
both test datasets introduce a localization error higher. This behaviour was noticed in
previous works and thus, expected to appear in the present experiments. Nevertheless,
this increment is smoother with the data fitting neural network option.
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Figure 5.15: Experiment 3. Results for complete hierarchical localization using automatic
labelling. Average error (cm) and average computing time (ms) versus number of clusters. The
localization step is carried out by means of the nearest neighbour method.

Last, a comparison between hierarchical localization methods is established. On
the one hand, the methods proposed in this work (rough step with classifiers and fine
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Figure 5.16: Experiment 3. Results for complete hierarchical localization using automatic
labelling. Average error (cm) and average computing time (ms) versus number of clusters. The
localization step is carried out by means of data fitting neural networks.

step with image retrieval). On the other hand, the method proposed in chapter 4
by using a representative per area obtained through spectral clustering in the rough
step and image retrieval in the fine step. Fig. 5.17 shows the localization results
(average localization error and computing time) versus the number of areas (clusters).
This shows that the classifier introduces a more efficient alternative regarding the
localization error at the expense of a higher computing time. Furthermore, fig. 5.18
shows the results obtained when the test dataset is composed of images captured at
night (dark illumination conditions). Both methods are affected by this illumination
condition, but the method based on classifiers presents a major robustness.

5.5.2 Localization Using Deep Learning based Holistic
Descriptors

The localization task proposed along this experiment consists in an image retrieval
problem. This is, obtaining the image from the training dataset that presents the
highest similitude in relation to the new captured (test) image. Therefore, with the aim
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Figure 5.17: Comparison of hierarchical localization methods. Solving the rough localization
by calculating the nearest neighbour to the representatives obtained by spectral clustering and
through the SVM classifier. Average localization error and average computing time.

to carry out the proposed image retrieval task, a mapping process is previously carried
out, i.e., visual data is captured from the environment. After obtaining the NTrain
images from different positions, holistic descriptors are calculated. The mapping task
should be tackled before starting the localization. Last, the localization task is solved
through the following steps:

• The robot captures a new image from an unknown position (imtest).

• For that test image, the corresponding descriptor is calculated (~dtest).

• Once the descriptor is available, the robot calculates the (cosine) distance (since
this distance has presented the best solution in previous works to calculate simil-
itude distance using global-appearance descriptors) between the test descriptor
(~dtest) and each descriptor from the visual model (~dj , where j = 1, .., NTrain).

• A vector of cosine distances is obtained as ~ht = {ht1, ..., htNTrain} where htj =
dist{~dtest, ~dj}.

• The node that presents the minimum distance(dnnt |t = argminjhtj) corresponds
to the estimated position of the robot.
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Figure 5.18: Comparison of hierarchical localization methods under dark illumination condi-
tions. Solving the rough localization by calculating the nearest neighbour to the representatives
obtained by spectral clustering and through the SVM classifier. Average localization error and
average computing time.

The present experiment focuses on testing the goodness of the proposed holis-
tic descriptor method based on deep learning techniques for localization. This HOG
and gist descriptors are also used for this purpose with the aim to compare the re-
sults obtained by using deep-learning or hand-crafted descriptors. The experiments
were carried out with the Freiburg training and cloudytest datasets. Nevertheless, no
illumination changes have been considered. This lack of illumination changes is due
to the fact that this work is focused on studying the goodness of the descriptors for
localization task, however, as possible future work, we could tackle an extension to
consider the illumination changes effects.

The evaluation of description methods is based on two parameters. First, the
average localization error, which measures the Euclidean distance between the real
position (provided by the ground truth dataset) where the test image was captured and
the position estimated by the localization algorithm. Second, the average computing
time, which is analysed by means of two values, (a) the computing time to calculate
the descriptor and (b) the computing time to estimate the position of the test image.

The results obtained through the use of hand-crafted descriptors (HOG and
gist) and the descriptors based on deep learning (autoencoders and CNNs) are shown
respectively in the tables 5.4, 5.5 and 5.6. These tables show the size of the descriptor,
the average localization error in cm, the average computing time to calculate the
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descriptor and the average computing time to estimate the position of the test images
(both in ms).

Concerning the results achieved by using descriptors based on analytic methods
(see table 5.4), in the HOG case, the localization error does not decrease significantly
as the size increases; the calculation time to calculate the descriptor is also barely
constant, but the time to estimate the pose increases as the size of the descriptor
increases. From these results we can conclude that the descriptor whose size is 64 is
considered the best option, since this configuration has a relatively good accuracy and
the minimum calculation time. In the case of the gist descriptor, the localization
error decreases by millimeters as the descriptor size increases, but the time to calculate
the descriptors and the time to to estimate the pose increases significantly as the size
increases. We establish the descriptor with minimum size as the best option.

As for the descriptors obtained through the use of autoencoders (see table 5.5),
the outputs obtained for both cases (autoenc-Frib and autoenc-SUN) whose size of
hidden representation (number of neurons) is 10 show the worst localization error
results. In the case of autoenc-Frib, the descriptors obtained from autoencoder with
NHiddenSize = 50−500 output relatively good results (localization error between 7,04
and 7,45 cm), but only for the autoenc-SUN with NHiddenSize = 500 the results are
similar. As for the computing times, the time to calculate the descriptor and the time
to estimate the pose are directly proportional to the length of the descriptor. For
example, in the case of NHiddenSize = 500, with autoenc-Frib and autoenco-SUN,
the average time are 1.166 s and 1.125 s respectively. Hence, we conclude that for
autoenc-Frib, the best configuration is reached through the autoencoder based on 100
neurons, because the localization error is the minimum and the computing time is the
third lowest. For autoenc-SUN, despite the configuration with NHiddenSize = 500
presents the worst time values, it is selected as the best since the rest of configurations
studied do not provide suitable solutions to solve the localization task.

Last, for the CNN-based descriptors (see table 5.6), all the different layers
evaluated present good results. The convolutional 2D layers ’conv4’ and ’conv5’ (from
the feature learning stage) achieve an accuracy of around 5 cm. This behaviour is
reasonable since the aim of the first layers in a CNN is to obtain global character-
istic information from the images and the further CNN layers (fully connected) are
focused on optimizing the desired task. The use of the layers ’conv4’ and ’conv5’ to
obtain holistic descriptors was scarce in mobile robotics based on visual information
until the presented work and it is shown that they are able to provide very optimal
solutions. Concerning the computation time to calculate the holistic descriptors, none
of the studied layers need high values. Moreover, as it was expected, the further the
corresponding layer is, the higher the time is. Again, the computing time to estimate
the pose is directly proportional to the size of the descriptor. Among the convolutional
2D layers, the localization algorithm, based on the descriptor based on ’conv5’ needs
less time than using ’conv4’. Consequently, ’conv5’ is selected as the best layer to
calculate holistic descriptors by means of using CNNs.
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Table 5.4: Results obtained through the use of holistic descriptors based on hand-crafted meth-
ods (HOG and gist) to solve visual localization.

Descriptor Size Error loc. (cm) Time comp.
descriptor (ms)

Time pose
est. (ms)

HOG 64 16.34± 0.78 44.64 0.38
128 16.23± 0.73 45.27 0.51
256 16.22± 0.69 45.33 2.48
512 16.17± 0.69 46.52 4.75

gist 128 5.19± 0.18 10.30 0.45
256 5.11± 0.17 11.98 2.19
512 5.09± 0.16 21.21 4.17
1024 5.08± 0.16 40.07 10.72

Table 5.5: Results obtained through the use of holistc descriptors based on autoencoders
(autoenc-Frib and autoenc-SUN) to solve visual localization.

Descriptor Size Error loc. (cm) Time comp.
descriptor (ms)

Time pose
est. (ms)

autoenc-Frib 10 599.83± 3.83 49.79 0.25
50 8.61± 2.29 138.64 0.44
100 7.04± 0.85 249.55 0.59
200 7.45± 0.23 473.59 0.93
500 7.22± 0.19 1166.49 4.54

autoenc-SUN 10 362.73± 22.77 54.99 0.28
50 520.85± 29.66 138.61 0.43
100 916.16± 31.58 252.39 0.59
200 327.25± 21.39 477.48 0.90
500 5.31± 0.34 1125.06 4.66

Table 5.6: Results obtained through the use of holistc descriptors based on places CNN (layers
‘conv4’, ‘conv5’, ‘fc6’, ‘fc7’ and ‘fc8’) to solve visual localization.

Layer Size Error loc. (cm) Time comp.
descriptor (ms)

Time pose
est. (ms)

conv4 169 5.03± 0.02 6.64 1.62
conv5 169 5.09± 0.17 6.66 0.63
fc6 4096 5.14± 0.18 7.42 34.38
fc7 4096 16.71± 0.84 8.58 33.22
fc8 205 24.22± 6.44 8.88 0.72

5.5.3 Profound Study of Different CNN Layers to Obtain
Robust Holistic Descriptors

Due to the results collected in the last experiment, the present subsection presents
an extension regarding the use of different CNN layers to obtain holistic descriptors.
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Those descriptors are evaluated to tackle the batch localization task and they are
also evaluated against visual effects that may affect the accuracy of the proposed
algorithm. Five experiments have been developed according to this topic. This batch
of experiments were developed with the Saarbrücken dataset with the aim to confirm
the results regardless the environment. Fig. 5.19 shows that the tendency of the
descriptors obtained in Saarbrücken is similar than the obtained previously with the
Freiburg dataset (see tables 5.4 and 5.6).
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Figure 5.19: Average localization error through solving the batch localization in the Saarbrücken
environment.

The first experiment extends the evaluation of layers in the places CNN. In
the previous subsection, we evaluated the layers conv4, conv5, fc6, fc7 and fc8. In
this experiment we have also evaluated conv1, conv2 and conv3. Additionally, we have
also tested the descriptors with images obtained under different illumination conditions.

As we can observe in 5.20, all the convolutional layers provide competent results
to carry out the localization task when no illumination changes are presented. Never-
theless, if we take the illumination changes into consideration, a worsen is noticed for
most of the layers. For this case, conv2, conv3 and fc6 are the most robust. On the
other hand, considering the computing time to estimate the position, we can observe
that the first layers provide faster solutions, since the information is extracted from
these layers in early stages and the dimension of the descriptors is lower and this leads
to a faster computation.

As for the second experiment, different layers from different pre-trained
CNNs were evaluated. Apart from places, AlexNet and GoogleNet are also analyzed
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Table 5.7: Layers studied for the pre-trained CNNs and size of the descriptors generated.

CNN Layer
Size of

descriptor

AlexNet

conv1 3025
conv2 729
conv3 169
conv4 169
conv5 169

GoogleNet

conv2-3x3 3136
inception_3a-1x1 784
inception_3b-1x1 784
inception_4a-1x1 196
inception_4b-1x1 196
inception_4c-1x1 196
inception_4d-1x1 196
inception_4e-1x1 196

to obtain holistic descriptors. The layers proposed for these networks and the size of
the descriptor obtained are showed in the table 5.7. From each layer studied, a holistic
descriptor was obtained and used to carry out the localization under three illumination
conditions. The obtained results are showed in the table 5.8. To summarize, the best
solutions obtained for each CNN are shown in the fig. 5.21.

From these results, we can conclude that AlexNet and GoogleNet are also an
alternative to obtain holistic descriptors, despite they were initially trained to classify
objects. The three networks are similarly affected by illumination changes and the
fastest solution among the three networks is presented with places using the layer
conv2.

Concerning the robustness of the proposed holistic descriptors, experiments 3
and 4 carry out an evaluation about this problem. Experiment 3 evaluates the noise,
occlusion and blur effects when the HOG, conv2,places and conv4,AlexNet descriptors
are used to solve the localization task. On the other hand, experiment 4 evaluates
how the rotation affects the localization. To tackle both experiments, each effect
is applied over each test image from the cloudy test dataset. After that, the holistic
descriptor is obtained and the batch localization algorithm is carried out.

The fig. 5.22 shows the results obtained by applying visual effects and random
rotations. From fig. 5.22(a), we conclude that noise is the effect that more affects
the localization independently the holistic descriptor used. As for the random rotation
(see fig. 5.22(b)), the descriptors obtained from the fully connected layers are more
robust than the descriptors from convolutional layers. HOG is the descriptor that is
more affected by the noise effect but it behaves equally with and without rotation, this
is due to the fact that the descriptor is calculated to be invariant against orientation.

164



5.6. Conclusion

Therefore, we conclude that the descriptors obtained from CNNs are not suitable when
rotations should be considered, but they are more efficient when the system is prone
to present noise.

Last, the fifth experiment carried out was about varying the type of input
image to obtain holistic descriptors. Since the present experiment, we always have
considered panoramic images with grayscale color because the proposed hand-crafted
holistic descriptors work with this arrangement. Nevertheless, the use of other image
arrangements can be also appropriate. For example, the process carried out to obtain
a global-appearance descriptor from layers of AlexNet is the following. First, an RGB
omnidirectional image is captured; then, this image is converted to grayscale and
transformed to panoramic. After that, the resultant image is adapted to the input
of the pre-trained network, that is, the image is replicated 3 times (from grayscale to
RGB) and resized to the proper size of the input layer (in this case, 227×227×3). This
process is addressed since the objective is to compare the holistic descriptors obtained
from HOG or gist with the layers of the CNNs, but it is also inefficient since abrupt
resizing is tackled and color information is lost unnecessarily. Therefore, the aim of this
experiment is to evaluate if other input images, which are less inefficient, can provide
holistic descriptors suitable to solve the visual localization task.

Fig. 5.23 shows the average localization error obtained for each of the four
arrangement evaluated (grayscale/color, panoramic/omnidirectional) by using the best
layers and channels of the three studied CNNs. On the whole, we can conclude from
this figure that color information provides a similar or lightly worsening. Furthermore,
the descriptors obtained from omnidirectional images also perform efficient results.
The localization error increases substantially for the places CNN, but this increment is
lightly for AlexNet and GoogleNet.

From the point of view of the computing time, fig. 5.24 shows the results ob-
tained by using the layer conv4 from AlexNet. By and large, when the input image has
color information, the time increases. On the other hand, this figure shows that the
results concerned the use of grayscale panoramic images is slightly faster than using
omnidirectional images. Nonetheless, this graph only shows the computing time mea-
sured since the time when the test image is ready to be used for obtaining the holistic
descriptor. Hence, the time to carry out previous pre-treatments are not measured. For
example, the time to convert an omnidirectional image to panoramic and the subse-
quent resizig (to present the same size than the required by the CNN) lasts an average
around 2-3 seconds. From this experiment, the conclusion reached is that using om-
nidirectional images to obtain directly holistic descriptors can results suitable by using
pre-trained CNNs such as AlexNet or GoogleNet. Due to the fact that the average
localization error keeps the competent results and there is a considerable decrease of
the computing time required to tackle the whole localization process.

5.6 Conclusion

In this chapter, we present novel localization methods based on the use of omnidi-
rectional images with machine learning tools. This chapter has focused on two main
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contributions: the use of machine learning tools to implement more efficient hierarchi-
cal localization approaches; and the study of deep learning based methods to extract
holistic descriptors with the aim to improve the visual localization task.

Concerning the use of machine learning tools to enhance the hierarchical
localization, this chapter presents a study about the use of classifiers to solve the rough
localization and a regression fit neural network to solve the fine localization step. Both
methods are based on using holistic description information. The experiments were
carried out with an indoor dataset that contains omnidirectional images. These images
present dynamic changes and blur effects and there are also different datasets within
the same environment but captured under different illumination conditions (during
cloudy days, during sunny days and at night). This work shows that most of the
machine learning techniques proposed provide good localization results departing from
a compact model. The classifiers have been validated as an efficient tool to perform the
rough localization. SVM and shallow neural network classifiers together with holisitc
descriptors (gist and CNN-fc7) provide high hit ratio to retrieve the corresponding room
or area. Additionally, a data fitting neural network was proposed for the fine localization
step. Although it does not improve significantly the results obtained by the image
retrieval option, it actually works relatively well and robustly for most of the cases.
The key to obtain better results would consist in either optimising the training step in
the most challenging areas or finding a global-appearance descriptor that suits better
the training of the network. Moreover, these techniques (classifiers and data fitting
neural network) present robustness against changes of illumination. As for the labelling
of the training data for the rough localization step, the localization results are improved
in comparison to the ones with are based on the information provided by the ground
truth (manual labelling). The last experiment regarding this topic is a comparison
between hierarchical localization methods. Whereas the hierarchical localization based
on classifiers provides more accurate localization results, the hierarchical localization
based on representatives obtained from spectral clustering works faster.

Regarding the study about deep learning based holistic descriptors, the
present chapter focuses on evaluating the goodness of the proposed methods to carry
out the localization (non hierarchical without changes of illumination) task. These
novel methods are compared between them and also with hand-crafted holistic de-
scriptors based on analytic methods. Therefore, five global-appearance descriptors
have been evaluated: two based on hand-crafted methods (HOG and gist), two based
on autoencoders and one based on different CNN layers. The size of each descriptor is
varied by adjusting some parameters (such as the number of bins in HOG or the size of
the hidden representation of the autocoders) or selecting a different layer in the case
of CNN. The localization error, the computing time to calculate the descriptor and the
computing time to estimate the position of the robot have been used as parameters
to measure the efficiency of these descriptors. Fig. 5.25 shows the results obtained
for the best configuration of each evaluated descriptor. From the results, we conclude
that the minimum localization error is achieved by the CNN-based descriptor option,
but the gist descriptor and the autoenc-SUN descriptors show results similarly good.
The CNN-based descriptor also presents the best option in terms of computing time
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to calculate the descriptor. Nevertheless, in terms of time to estimate the pose of the
robot, HOG is the fastest.

As for the use of autoencoders, using an autoencoder trained with images that
belong to the environment of work allows a localizaiton algorithm with good-enough
accuracy results. The general autoencoder trained with general images from different
environments also works acceptably in the case of high size of hidden representation,
but this leads to high computing times. Therefore, its use as tool to obtain holistic
descriptors for panoramic images would be valid and the advantage of this method is
that the autoencoder is trained just once, then the tool is suitable independently the
environment.

Concerning the use of holistic descriptors based on CNN, the present chapter
has proved that the convolutional 2D layers from the first part of the architecture
perform very interesting descriptors despite they are not fully connected layers, which
are the layers proposed typically in previous works. These descriptors have produced
the optimal localization solutions among all the methods evaluated: size of descriptor
relatively small, which leads to fast times to estimate the position; low computing
time to calculate the descriptor; and very accurate localization (around 5 cm for a
test dataset with visual information every 4 cm over a training dataset with visual
information every 20/40 cm).

Furthermore, an extension of the experiments has showed that other pre-trained
CNNs can be also used to obtain reliable global-appearance descriptors independently
the original purpose of the notwork. This descriptors have proved to be more robust
against visual effects (such as blur or occlusions) than the hand-crafted methods like
HOG. Nevertheless, CNN-based descriptors are not robust against rotational changes.
In this way, considerable problems appear when convolutional layers are used. In this
case, if the localization task must take into consideration rotation, fully connected
layers are more suitable, since the descriptors obtained from those layers are robuster
and keep a competent enough average localization error. Last, this extension has also
proved that omnidirectional images can be used directly to obtain holistic descriptors.
In this way, the localization error is lighly affected, but the whole process is substantially
faster.

5.7 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• S. Cebollada, L. Payá, A. Peidró, L.M. Jiménez, O. Reinoso. Estudio de descrip-
tores holísticos basados en métodos analíticos y técnicas de deep learning para
localización con robots móviles. In Libro de Actas de las Jornadas Nacionales de
Robótica 2019. Ed. CEA ISBN:978-84-09-12133-5 - pp. 1-8 [42]
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– This paper proposes the use of different deep learning tools to obtain holistic
descriptors. These techniques are evaluated under different configurations
with the aim to obtain the most successful localization accuracy. This
work proposes the use of convolutional 2D layer to obtain global-appearance
descriptors. This layers are present in the first layer of the CNN architecture
and its use has been scarcely proposed. On the other hand, autoencoders
are presented as a possible tool to create global-appearance descriptors to
optimize the information provided from panoramic visual images.

• S. Cebollada, L. Payá, D. Valiente, X. Jiang, O. Reinoso. An evaluation between
global appearance descriptors based on analytic methods and Deep Learning tech-
niques for localization in Autonomous Mobile Robots. In 2019 16th International
Conference on Informatics in Control, Automation and Robotics, volume 2, pages
284-291, 2019. Ed. INSTICC ISBN:978-989-758-380-3 ISSN:2184-2809 [237]

– This paper presents an evaluation between different holistic descriptors to
carry out the localization task. The unique information source used to solve
this issue is an omnidirectional camera. The visual localization task is solved
by means of a image retrieval problem. The global-appearance descriptors
are obtained by using deep learning and they are compared between them
and also with hand-crafted methods.

• S. Cebollada, V. Román, L. Payá, M. Flores, L.M. Jiménez, O. Reinoso. Uso de
técnicas de machine learning para realizar mapping en robótica móvil. In Actas
de las XL Jornadas de automática, pages 686-693. Ed. CEA-IFAC ISBN:978-84-
9749-716-9 [46]

– This paper presents a study about different classifiers based on machine
learning to carry out the mapping and localization tasks. These classifiers
are proposed to solve the rough localization task within a hierarchical visual
model. After estimating the correct area, the fine localization is solved by
means of an image retrieval problem. Holistic descriptors obtained from
omnidirectional images is used in this work.
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Experimento 2
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Figure 5.20: (a) Average localization error and (b) average computing time to carry out the
batch localization through using holistic descriptors obtained from different layers of the places
CNN.
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Table 5.8: Localization results using AlexNet and GoogleNet to obtain holistic descriptors.
Average localization error (cm), average computing time to calculate the descriptor and average
computing time to estimate the pose.

CNN Layer Illum.
cond.

Avg. loc.
error (cm)

Comp.
time
descriptor
(ms)

Comp.
time
est. pose
(ms)

A
le
xN

et

conv1
Cloudy 6.87 + 0.55 37.06 24.81
Night 89.88 + 311.65 38.16 25.45
Sunny 133.79 + 482.02 44.42 31.18

conv2
Cloudy 6.70 + 0.52 80.53 3.80
Night 47.57 + 124.38 192.85 9.55
Sunny 84.85 + 382.29 101.63 5.07

conv3
Cloudy 6.72 + 0.52 117.92 1.30
Night 33.69 + 14.06 144.99 1.75
Sunny 135.15 + 568.18 134.08 1.65

conv4
Cloudy 6.69 + 0.52 141.15 1.29
Night 37.39 + 31.59 156.18 1.45
Sunny 69.03 + 278.04 146.37 1.34

conv5
Cloudy 6.73 + 0.53 155.23 1.25
Night 91.39 + 428.48 181.76 1.78
Sunny 70.24 + 273.79 239.46 2.34

G
oo

gl
eN

et

conv2-3x3
Cloudy 6.72 + 0.52 364.70 25.69
Night 42.84 + 68.89 411.18 29.26
Sunny 94.21 + 330.58 412.52 30.90

inception_3a-1x1
Cloudy 6.68 + 0.52 379.34 3.94
Night 39.89 + 73.35 429.55 4.86
Sunny 62.11 + 176.05 424.88 4.76

inception_3b-1x1
Cloudy 6.62 + 0.50 415.54 3.78
Night 34.05 + 19.03 444.17 4.17
Sunny 69.33 + 380.54 494.77 4.94

inception_4a-1x1
Cloudy 6.75 + 0.52 489.85 1.38
Night 81.78 + 420.44 536.61 1.44
Sunny 64.24 + 270.90 504.90 1.44

inception_4b-1x1
Cloudy 6.70 + 0.52 502.94 1.36
Night 53.95 + 155.64 570.13 1.52
Sunny 91.93 + 430.71 503.60 1.35

inception_4c-1x1
Cloudy 6.79 + 0.53 528.95 1.34
Night 42.86 + 53.75 625.20 1.56
Sunny 65.39 + 253.96 529.26 1.34

inception_4d-1x1
Cloudy 6.71 + 0.53 570.26 1.38
Night 41.35 + 72.66 644.48 1.59
Sunny 51.99 + 144.04 559.64 1.36

inception_4e-1x1
Cloudy 6.80 + 0.54 608.35 1.36
Night 51.59 + 95.07 688.28 1.64
Sunny 112.96 + 561.73 598.00 1.34
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Experiment 2
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Figure 5.21: (a) Average localization error and (b) average computing time to carry out the
batch localization through using holistic descriptors obtained from different layers of the pre-
trained places, AlexNet and GoogleNet CNNs. This figure shows the best result obtained for
each network.
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Experiment 3
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Figure 5.22: Average localization error when the batch localization is carried out with (a) test
images with noise, occlusions, blur effects and (b) with/without random rotations.
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Experiment 5
Average loc. error - Image input
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Figure 5.23: Experiment 5. Average localization error when the batch localization is carried out
with grayscale panoramic, color panoramic, grayscale omnidirectional and color omnidirectional
images.
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Figure 5.24: Experiment 5. Average compting time when the batch localization is carried out
with descriptors obtained from AlexNet by using grayscale panoramic, color panoramic, grayscale
omnidirectional and color omnidirectional images.
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6
Transfer Learning, Networks

Creation and Training by Modifying
Layers

6.1 Introduction

Continuing the present research line, this chapter focuses on the use of holistic de-
scriptors to tackle the localization task. Regarding the map creation, we have demon-
strated in previous chapters that arranging the information hierarchically is an efficient
alternative to tackle the localization task. These chapters proved the effectiveness of
hierarchical maps to solve the localization problem departing from global-appearance
descriptors obtained from omnidirectional images. Furthermore, this localization task
has also been tested successfully under changes of illumination.

As presented in chapter 5, during the past few years, many contributions have
proposed the use of artificial intelligence techniques to address computer vision and
robotics problems. For instance, regarding machine learning tools, Gonzalez et al. [88]
use machine learning to detect different levels of slippage for robotic missions in Mars;
Dymczyk et al. [70] present the use of a boosted classifier to classify landmark ob-
servations and carry out the localization task in a more robust fashion. Meattini et
al. [176] propose a human-robot interface system based on electromyography sensors
and through merging pattern recognition and factorization techniques, the robot learns
the optimal hand configuration for grasping.

The present chapter focuses on the use of deep learning tools for mobile robotics
applications. This way, a pre-trained convolutional neural network is developed to ad-
dress the room retrieval task. This CNN is trained wit omnidirectional images obtained
from the Freiburg (indoor) environment. This work also proposes using the trained CNN
to carry out a novel hierarchical localization method. This localization method used
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holistic descriptors extracted from intermediate layers with the aim of carrying out a
fine localization, i.e., retrieving the position where the image was captured within the
retrieved room. The robot estimates its position within the selected room/s through
an image retrieval algorithm by comparing the obtained global-appearance descriptor
with the visual model contained in the retrieved room.

6.1.1 Deep Learning Tools
Deep learning is a subfield of machine learning that has gained much interest recently,
due to the improvements in processing systems. This technique basically consists in
learning directly from a data set and their expected outputs (or correct labeling) by
using layers of increasingly meaningful representations [52]. A number of recent works
use such techniques in the field of robotics. For instance, Lenz et al. [149] propose
a deep learning approach to solve the problem of detecting robotic grasps in a scene
which contains objects; Levine et al. [151] trained a convolutional neural network for
robotic grasping from monocular images through learning a hand-eye coordination;
Shvets et al. [251] use deep learning segmentation to distinguish between different
surgical instruments regarding Robot-Assisted Surgery. As for mobile robotics, Zhu et
al. [320] propose deep reinforcement learning to address target-driven visual navigation.

These methods try to construct automatically high level data models through
using matrix data and architectures that allow linear, non-linear, multiple and iterative
transformations [20]. The idea is to train the architecture to reach a model that is
capable of creating representations which best define the inputs. Many deep learning
tools have been applied in a variety of fields such as computer vision [32], speech
recognition [142] or audio-visual recognition [3] and they have proved to perform state-
of-the-art results for many tasks.

Therefore, the present chapter is based on the use of deep learning to solve
computer vision and robotics tasks. Specially, this work solves the visual localization
problem by using convolutional neural networks (CNNs). This tool has been success-
fully used to solve computer vision applications such as face recognition [296], object
detection [83] or and self-driving car to efficiently extract patterns and structural in-
formation from input images [51]. A wide review can be found in the work presented
by Voulodimos et al. in [289].

As it is explained in [289], CNNs are inspired by the human visual system. They
consist of local connections between neurons hierarchically organized that successively
process and transform the image. Basically, CNNs are composed by three types of
layers: convolutional layers, pooling layers and fully connected layers. Every layer
transforms the input and generates an output according to the parameters established.
This process is tackled throughout several layers until reaching the last layer, which
is a fully connected layer that usually outputs a 1D feature vector. There are very
well known CNNs whose architectures have been used as starting point to develop new
computer vision tasks. For instance, AlexNet [136], which consists of eight layers (five
convolutional layers and three fully connected layers) with a final 1000-way softmax
and it is trained to classify into 1000 object categories, such as keyboard, pencil, and
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a variety of animals. Another example is GoogLeNet [268], which presents 22 layers
and it is also trained for object classification. Nevertheless, this network uses 12 times
fewer parameters than AlexNet. A wide review of the more outstanding CNNs can be
found in [206].

Regarding the use of CNNs to solve mobile robotics tasks, there are many works
that have proved success by using this technique. For instance, Sinha et al. [257]
propose a CNN to process data from a monocular camera and tackle an accurate
robot re-localization in GPS-denied indoor and outdoor environments. Wozniak et
al. [303] use a transfer learning technique to retrain a CNN to classify places among 16
rooms, in which the images are acquired by a humanoid robot. More recently, Chaves
et al. [49] propose a CNN to build a semantic map. Concretely, they use the network
to detect objects in images and after that, the results are placed within a geometric
map of the environment.

The existing pre-trained networks were trained on images from many different
classes, which may not include appropriate categories for specific application. There
are other options that permit reusing existing CNNs for applications which are differ-
ent from the application the CNN was trained for. The transfer learning technique
basically consists in the process of retraining a pre-trained network to adapt it to a new
task with a new set of images, that is, reusing the architecture, weights and parameters
of a CNN which already works properly as starting point to obtain a new CNN with
a different purpose. The main idea is to get profit of most of the intermediate layers,
because their parameters have been tuned with a great number of images and contain
useful information. The problem, then, is reduced to change the final layers (in order
to re-adapt them to the new task proposed). Once the “new” network architecture is
established, the training process starts through using the new input data. The com-
ponents needed for transfer learning are: pre-trained network layers, training data, and
algorithm options. This technique can save a huge amount of time for training and
may lead to better results than creating a new network from scratch. This idea has
been used by many authors. For example, Han et al. [97] use CNN transfer learning to-
gether with data augmentation and obtain good solutions despite the small size of the
datasets used to address image classification. Also, as previously mentioned, Wozniak
et al. [303] use the transfer learning technique to retrain the VGG-F network and re-
train it to classify places among 16 rooms with images acquired by a humanoid robot.
Mahendran et al. [169] propose a pose estimation problem with a CNN regression
framework.

Furthermore, many authors have proposed the use of intermediate layers to ex-
tract holistic descriptors. In this way, once the network is properly available to face
the desired task, the intermediate layers perform vector description that can be used
to characterize the input data. This idea has already been used by some authors such
as Arroyo et al. [8], who use a CNN that automatically learns to generate descriptors
which are robust against changes of seasons in order to carry out a topological local-
ization. Wozniak et al. [303] also use the feature extracted by the fc6 layer to train
a linear SVM (Support Vector Machine) classifier. Mancini et al. [170] use this visual
information to carry out place categorization with a Naïve Bayes classifier. Payá et
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al. [213] propose CNN-based descriptors to create hierarchical visual models for mo-
bile robot localization. Moreover, in chapter 5, we tackle an exhaustive evaluation of
holistic descriptors obtained from different layers of pre-trained CNNs to address the
localization task in indoor environments and we also compare the obtained results with
the results through using global-appearance descriptors based on analytic methods.

In summary, CNNs are a very popular tool to develop optimal solutions in mobile
robotics since they significantly improve traditional machine learning tools along with
computer vision. However, CNN present the downside of the training process, since
these networks have to deal with a large number of parameters to learn properly and a
high number of training samples is usually necessary. Additionally, over-fitting problems
are common to happen, unless a varied and representative set of training data is
available. To solve this issue, techniques such as stochastic pooling, dropout or data
augmentation can be conducted.

Therefore, the aim of the present chapter is to create a CNN that is able to
distinguish between different rooms from an indoor environment in order to estimate
correctly in which room the robot currently is. Like in previous chapters, the unique
source of information used to carry out mapping and localization is the set of images
obtained by an omnidirectional vision sensor installed on the mobile robot within an
indoor environment under real-operation conditions. Our main contributions in this
work are summarized as follows.

1. We present a study about the use of a CNN classifier to retrieve the room where
an input image was obtained.

2. We evaluate the use of different intermediate convolutional layers from the
trained CNN to obtain holistic descriptors and use them to address the local-
ization task.

3. We study the use of the proposed deep learning approach to solve the localization
in different environments.

4. We propose an algorithm that considers the likelihood information provided by
the CNN with the aim to strengthen the localization task.

5. We propose CNNs based on omnidirectional images for room retrieval and for
position retrieval.

The remainder of the paper is structured as follows: Section 6.2 outlines the
deep learning tool used along this chapter. After that, section 6.3 explains the use
of the convolutional neural network to carry out the localization task and section 6.4
presents all the experiments which were tackled to test the validity of the proposed
methods to solve the localization. Last, section 6.5 outlines the conclusions reached.
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6.2 The Convolutional Neural Network

As mentioned in sec. 6.1, the aim of this work is to carry out the hierarchical localization
task in indoor environments by using CNNs. To solve this task, only omnidirectional
visual information is used. In this kind of environments, some adverse effects may
occur which negatively affect the images captured, such as blur effect dynamic changes
within the environments due to either furniture changes or occlusions caused by people
walking. Additionally, the changes of illumination are very common in mobile robotics
tasks, since the illumination conditions may vary depending on the moment of the day
or the weather conditions. Hence, the method developed must be robust against these
issues. Furthermore, the goodness of the localization method depends directly on the
accuracy and the computing time, this is, the method must be capable of estimating
the current position of the robot with the maximum possible accuracy and in the
minimum amount of time.

To address these requirements, we propose using a CNN with the aim of solving
the visual localization through hierarchical maps. This idea has been proposed in works
such as [213] and also in chapter 5. Nevertheless, these previous works used pre-trained
CNNs to calculate holistic descriptors. In this case, CNN are firstly re-trained with the
images obtained from the environment and after that, the resultant CNN is used for
room retrieval (classification task) as well as for desrcriptor extraction. Basically, it
consists in developing a CNN that is able to solve the following tasks:

1. Estimating the room in which the robot captured the image.

2. Providing a global-appearance descriptor from an intermediate layer.

3. Using this information, to estimate the position of the robot within the estimated
room more accurately.

This process will be explained in detail in section 6.3. Therefore, a CNN classifi-
cation should be developed to estimate the room in the environment.This tool basically
consists of classifying the given classes or categories of input data (in this case, im-
ages). Labels (also known as targets) represent the categories of the environment.
Before using this tool for classification, the model requires training with a wide variety
of input data (xtrain) and their corresponding labels (ytrain), thus the model carries
out an approximation of a mapping function from input variables to discrete output
variables until achieving a well tuning configuration. Then, the CNN is ready to receive
new data (xtest) and estimate their categories (yestimated).

Throughout this section, the CNN developed is presented in detail. The remain-
der of this section is structured as follows. Subsection 6.2.1 presents the dataset used
to train the CNN, subsection 6.2.2 outlines the architecture and training method used
to create the network. Last, subsection 6.2.3 details the data augmentation conducted
to train the CNN.
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6.2.1 The Dataset
Once again, the set of images used to carry out this work is the Freiburg dataset,
obtained from the COLD dataset [222]. These images have been used both to train
the CNN and to carry out the experiments. The majority of the experiments de-
veloped in this chapter were addressed with the panoramic version of the originally
omnidirectional images, then, before using them, a conversion from omnidirectional to
panoramic images is tackled, since the present work aims at establishing a continuation
from the previous works. For example, one of the aims of this work is to compare the
global-appearance descriptors obtained from the CNN with the hand-crafted description
methods that depart from panoramic images. Furthermore, the design of a CNN based
on panoramic images constitutes an interesting option, because this type of networks
are commonly based on conventional images, hence, this CNN can be used for future
similar works based also on panoramic images. Nonetheless, section 6.4 also presents
experiments which are based on omnidirectional images with the aim of confirming
the suitability of the CNNs to obtain characteristic information from omnidirectional
images.

Like in previous chapters, the dataset obtained under cloudy illumination condi-
tions is used as training dataset and it is downsampled to obtaining a dataset with an
average distance of around 20 cm between consecutive images. The resultant dataset
(training dataset) is used to train the CNN and it is also considered to establish the
visual model for later localization. Additionally, three test datasets are again proposed:
cloudy, sunny ad night datasets. Apart from using the Freiburg dataset, some extra
evaluations are carried out with the Saarbrücken dataset, which is also contained in the
COLD dataset. This dataset is used to evaluate the effectiveness of using the Freiburg
CNN to obtain holistic descriptors in different environments. The training and test
datasets are obtained in the same way: downsampling the cloudy dataset to obtain the
training dataset and storing the discarded images to obtain the cloudy test dataset.

6.2.2 The Architecture and Training
Building and training a network from scratch can achieve reasonably good results, but
it requires a lot of effort: experience with network architectures, a huge amount of
training data and a considerable computing time. Using a pre-trained network such
as AlexNet or GoogLeNet for transfer learning eases considerately the starting point.
This is an interesting technique that can save a lot of training time and even get
better results from creating a new network from scratch. It basically involves reusing
the architecture and parameters of a CNN as a starting point to build a new CNN
for a different purpose. Notwithstanding that, transfer learning works only if no early
layers need to be modified, because the downstream architecture and parameters are no
longer valid. Otherwise, transfer learning can not be used and training the parameters
of the network from scratch is necessary. In this case, we use the AlexNet architecture
(whose input size is 227× 227× 3 ) and it must be resized to 120× 512× 3, hence,
the downstream and parameters are no longer valid.

Creating a complete network architecture is complex, so instead of trying to
build an architecture from scratch, the present work proposes to use the AlexNet
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architecture and follow a process similar to transfer learning (starting with pre-existing
architectures) , but starting from scratch with the parameter setting.

We propose the use of AlexNet as CNN architecture to carry out the training
task to develop our classification network because this architecture has been success-
fully used in previous works to develop new classification tasks (such as [97]) and its
simplicity permits fast training. In this case, the last three layers need to be replaced
to adapt the network to the desired classification task. These layers are: fully convo-
lutional layer (fc8), softmax layer and classification layer. These layers are replaced
to carry out the desired classification (classification into one of the 9 rooms that be-
long to the Freiburg environment). Additionally, since the input layer of AlexNet was
configured to receive 227× 227 images and our panoramic datasets are composed by
128×512 images, the input layer is also replaced. Resizing the input panoramic images
would avoid starting from scratch the training, but the resizing would be quite abrupt
for this type of images and it would affect the resolution of the image. Additionally, a
CNN based on panoramic images constitutes an interesting option.

After these changes of the original CNN, the network is ready to be trained
with the training set of panoramic images. We trained the CNN off-line on NVIDIA
GEFORCE GTX 1080TI R©GPU system. The training time was around 4 hours. After
every 30 epochs, the performance of the partially trained network was evaluated by
using the data for validation. The first training departs from the modified version of
AlexNet. Once the first training is finished, the network obtained is used as departing
network in the following training with a modification of the training parameters, i.e.,
for transfer learning. The idea is to conserve the architecture but to continue the
tuning of the parameters involved in the intermediate layers. The fig. 6.1 shows the
architecture used throughout this work.

6.2.3 Data Augmentation
A large training dataset is crucial for the performance of the deep learning model.
Nevertheless, sometimes, the training dataset available is smaller than required and
then, the deep model can not be properly trained to reach the desired solution. In
order to solve this issue, the data augmentation technique has been proposed as a
method to improve the performance of the model by augmenting the number of training
instances and preventing overfitting. Data augmentation basically consists in creating
new ‘data’ by applying different effects over the original images. Some authors have
already used data augmentation to solve their deep learning tasks. For example, Guo
and Gould [93] used data augmentation to improve a CNN training to solve a object
detection task, Ding et al. [63] proposed three data augmentation methods to carry out
a SAR target recognition in order to make the CNN robust against target translation,
speckle variation in different observations, and pose missing. Salamon and Bello [241]
propose audio data augmentation for overcoming the problem of environmental sound
data scarcity and then create a CNN to classify these data. Moreover, Perez and Wang
present in [217] a work about the effectiveness of the data augmentation to solve the
classification by means of deep learning.
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Figure 6.1: The CNN architecture created from the AlexNet architecture. The input layer is
replaced to receive images with a size of [128 × 512 × 3] and the last three layers (fc8, softmax
and the output classification layer) are also replaced to adapt the network to the proposed task,
the room retrieval task.

Regarding the present work, the data augmentation proposed consists in ap-
plying visual effects over the original images from the training dataset. The effects
applied are those that can actually occur when images are captured in real operating
conditions:

• Rotation: A random rotation between 10 and 350 degrees is applied over the
omnidirectional image, which implies a horizontal shift of the panoramic image.
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• Reflection: The panoramic image is horizontally reflected.

• Brightness: The low intensity values are re-adjusted (increased) in order to
create a new image brighter than the original one.

• Darkness: The high intensity values are re-adjusted (decreased) in order to
create a new image darker than the original one. No image is applied brightness
and darkness effects at the same time.

• Gaussian noise: White Gaussian noise is added to the image.

• Occlusion: This effect simulates the cases when some parts of the picture are
hidden either by some parts of the sensor setup, or some event (such as a person
who is in front of an object). This effect is applied by introducing geometrical
gray objects over random parts of the image.

• Blur effect: This effect occurs when the image is captured while the camera is
moving (the image is blurred).

The fig. 6.2 shows some examples of the effects applied over a training image.
The first image is the original one, obtained directly from the original training dataset,
the rest of the images are the original but with a visual effect over it. Departing
from the original training dataset, which contains 519 images, the data augmentation
is applied and either none, one, or more than one effects are simultaneously applied
(except for the bright and dark effects, which are never applied at the same time over
an image). Hence, the total number of training images is enlarged to 49824 images.

6.3 Localization Using Deep Learning

6.3.1 Visual Description Methods. Batch Localization as an
Image Retrieval Problem

As it was already said in previous chapters, due to the emergence of the deep learning
techniques, some authors have proposed during the last few years CNNs to generate
holistic descriptors with the activations of the intermediate layers. This method was
proposed in detail in previous chapters (chapter 4 and chapter 5) to create hierarchical
visual models. In those chapters, the original pre-trained CNN is only used with the
purpose of obtaining global-appearance descriptors from the input images.

Concerning the way to address the localization task, the present work proposes
a batch localization method by using the trained CNN to calculate global-appearance
descriptors from the intermediate layers. The process is as follows: given a dataset
of training images (imi(x, y) ∈ RNx×Ny , i = 1, ..., NTrain), a description method
based on deep learning or hand-crafted methods is used to obtain the set of training
descriptors, Dtrain = {~d1, ~d2, ..., ~dNtrain} where each descriptor is ~di ∈ Rl×1 and
corresponds to the image imi. These descriptors can be considered as a straightforward
model of the environment. After that, given a test image imtest, the holistic descriptor
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Example of data augmentation. (a) Original image captured within the Freiburg
environment. One effect is applied over each image: (b) blur effect, (c) random rotation, (d)
reflection, (e) darkness, (f) brightness, (g) Gaussian noise, (h) occlusion.

is calculated (~dtest) and the batch localization is solved as an image retrieval problem.
Fig. 6.3 shows the diagram regarding the batch localization process.

In previous chapters, the holistic description methods HOG and gist were used
successfully to solve the mapping and localization tasks by means of panoramic images.
Hence, in order to establish a comparison between analytic and deep-learning-based
methods, before calculating the proposed descriptors, a conversion from omnidirectional
to panoramic images is carried out. Also, a new strategy has been recently proposed by
works such as [170] to obtain holistic descriptors from pre-trained CNNs. To sum up,
this chapter proposes a comparison between holistic descriptors obtained from different
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layers of the CNN developed and also presents a comparison with analytic methods
(gist and HOG) and descriptors obtained from layers of a well-known CNN (AlexNet).
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Figure 6.3: Batch localization diagram. The test image imtest is compared with the descriptors
obtained from the training model D = {~d1, ~d2, ..., ~dNTrain}. The most similar descriptor ~dk is
retained and the position of the test image is estimated as the position where most similar image
was captured.

6.3.2 Using a CNN to Learn a Model of the Environment,
Room Retrieval and Image Description

The chapter 5 has shown the advantages of using a CNN to obtain holistic descriptors
of the input image from intermediate layers. Their use can improve the results obtained
for localization. Therefore, the present chapter goes one step ahead and proposes to
use the CNN as a hierarchical model with the aim of:

1. Addressing the rough localization as a room retrieval problem (high-level layer)
departing from the test image.

2. Using the likelihood information to optimize the rough step.

3. Obtaining holistic descriptors from the input images.

The descriptors of the training images will form the low-level layer, and they allow to
solve a fine localization as an image retrieval problem, with the holistic descriptors of
the test images (also obtained from the CNN).

As for the process to obtain the global-appearance descriptors by using the CNN,
this is as follows.

1. The CNN is trained with the images from the training dataset (including data
augmentation).
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Table 6.1: Size of each descriptor obtained from the different layers of the CNN.

Layer Size of descriptor
conv4 180
conv5 180
fc6 4096
fc7 4096
fc8 9

2. Once the CNN is trained, a test image imtest is introduced into the CNN.

3. The holistic descriptors are obtained from different layers.

Fig. 6.4 shows the process to obtain the holistic descriptors from the CNN.
On the one hand, concerning the descriptors extracted from the output of the conv4,
and conv5 (2D convolutional) layers, they are calculated by selecting a channel from
the layer and arranging the generated data (matrix) in a single column (vector). To
establish the optimal channel per convolutional layer, previous experiments are carried
out and afterwards, the same channel is used for all the experiments developed. On
the other hand, in the case of fc6, fc7 and f8 (fully connected) layers, the output is
directly the vector used as descriptor. Table 6.1 summarizes the size of each descriptor
calculated from the CNN.

Regarding the hierarchical localization, the method analyzed in chapter 4 con-
sists basically in calculating the nearest neighbor method in two layers. Hence, for the
high-level layer, the visual descriptors are grouped according to their similitude and a
representative descriptor R = {~r1, ~r2, ..., ~rng} is obtained for each group, where ng
is the number of groups. Afterwards, in order to solve the localization task, a new
image is obtained imtest and its holistic descriptor is calculated ~dtest. This descriptor
is compared with all the representatives R and the most similar representative ~rk is
retained (rough localization step); after that, a new comparison is carried out between
~dtest and the descriptors contained in the group k, Dk = {~dk,1, ~dk,2, ..., ~dk,Nk} and,
last, the position of the image imtest is estimated as the position where the most
similar image in the k-th group was captured (fine localization step).

Therefore, despite using the CNN to only extract global-appearance descriptors
and addressing the batch localization, this tool can be also used as a hierarchical
localization method. In this way, due to the fact that the CNN is trained as a classifier
to retrieve the room within the whole environment, this can be proposed to address
the rough localization, i.e., to retrieve the position in the high-level layer.

To sum up, the idea is to build a deep learning tool that, apart from retrieving
the room where the image was captured, is also able to provide a global-appearance
descriptor that characterizes the image better than the analytic methods proposed in
the state of the art.
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Figure 6.4: Diagram that shows the extraction of the global-appearance descriptor from the
intermediate layers of the CNN. The architecture is inherited from AlexNet and the network was
trained to retrieve the room within the Freiburg dataset.

Once the CNN is properly trained to classify, it will be capable of solving the
rough localization step. Regarding the use of the CNN to solve the fine localization
step (the room retrieval), this chapter proposes to use the intermediate layers conv4,
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conv5, fc6, fc7 and fc8 of the re-trained CNN to obtain global-appearance descriptors
and to use them to estimate the position within a room where an image was captured.

Overall, the hierarchical localization is carried out as the diagram in fig. 6.5
shows. First (rough localization step), a test image imtest is introduced into the
CNN and the most likely room ci in which the image was captured is estimated from
the information in the output layers. At the same time, the CNN is also capable
of providing holistic descriptors (~dtest,conv4 ,

~dtest,conv5 ,
~dtest,fc6 ,

~dtest,fc7 or ~dtest,fc8)
from intermediate layers. Subsequently, after estimating the room, a more accurate
localization is conducted (fine localization step). Is this stage, one of the descriptors
~dtest is compared with the descriptors Dci = {~dci,1, ~dci,2, ..., ~dci,Ni} from the training
dataset which belong to the retrieved room ci and the most similar descriptor ~dci,k is
retained. Finally, the position where the test image was captured is estimated as the
coordinates where imci,k was captured.

6.4 Experiments

This section presents in detail the experiments carried out in the present chapter con-
cerning the training of the CNN for room retrieval and also its use to carry the lo-
calization task in indoor environments. The set of experiments were all tackled in
Matlab R© with a PC which is equipped with a CPU Intel Core i7-7700 R© at 3.6 GHz.
Furthermore, the training of the CNN was tackled with the help of a GPU NVIDIA
GEFORCE GTX 1080TI R©. The remainder of this section is structured as follows.
Subsection 6.4.1 introduces the development, training and performance of the CNN;
subsection 6.4.2 shows the use of this tool to extract global-appearance descriptors to
tackle the batch localization task; and subsection 6.4.3 presents the use of the CNN
to carry out a hierarchical localization task.

6.4.1 Experiment 1. Development, Training and Evaluation of
the CNN in a Room Retrieval Task

Developing a complete network architecture from scratch can be a complex process
and the training could result unsuccessful. Therefore, we propose using a common
architecture already developed by experts which has been tested in several previous
works. The present chapter proposes the AlexNet architecture as starting point to
develop a model of the environment. The choice of this network is due to the successful
performance showed by other authors regarding its use for transfer learning such as [97].
As it was explained in subsection 6.2.2, in order to adapt the input and the output to
the task desired (size of the panoramic images and classification among the 9 rooms
of the Freiburg environment), a replacement of layers is tackled. Fig. 6.1 shows the
final architecture. Consequently, the training process is as follows.

1. The CNN architecture is obtained from the AlexNet CNN and a layer replacement
is tackled.
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Figure 6.5: Hierarchical localization diagram. The test image imtest is introduced into the
CNN. The most likely room is retrieved ci and the holistic descriptor ~dtest is obtained from one
of the layers. A nearest neighbor search is done with the descriptors from the training dataset
included in the retrieved room and the most similar descriptor (imci,k) is retained. The position
of imtest is estimated as the position where imci,k was captured.

2. The training data (set of images with labeling) is augmented by a data augmen-
tation technique.

3. The training options are adjusted according to the training specifications.

4. Re-trainings of the network are conducted by adapting the training options to
produce a more accurate CNN until the network is able to achieve a 97% of cor-
rect estimations by using validation data (data contained in the training dataset
that are exclusively used during the process to check the amount of correct
estimations with the current parameters established in each layer).
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After training properly the CNN, its accuracy (acc%) is measured as acc% =
(Nok/Ntest) × 100, where Nok is the number of images that have been correctly
retrieved and Ntest is the number of images that compose the test dataset evaluated.
The test datasets (cloudy, night and sunny) are used to evaluate the accuracy of the
CNN. Through this evaluation, the final accuracy values obtained were 98,71%, 96,52%
and 92,87% respectively. Therefore, from the results obtained, the conclusion is that
the CNN is properly trained to retrieve the input image into the room where it was
captured. Figures 6.6, 6.7 and 6.8 show the confusion matrices obtained by introducing
the cloudy, night and sunny test datasets into the network. From these figures, we
can analyze that the few wrong classifications are produced with wrong rooms that are
adjacent and visually similar to the correct one. For example, in cloudy, in the case
of the images that belong to the 2-persons office 2 and were wrongly retrieved, the
mistaken room was the contiguous and similar 1-person office room. Furthermore, more
mistakes can be noticed when the evaluated images were captured under changes of
illumination (night and sunny). For instance, under dark illumination conditions (night
dataset), the stair area is wrongly predicted 47 times, 15 and 29 times are corridor and
bathroom respectively, that are rooms adjacent and similar. Nonetheless, the printer
area is wrongly retrieved 3 times. Regarding the results with the sunny illumination
conditions, the wrong classifications between the 2-person office 2 and 1-person office
room is increased.

Moreover, fig. 6.9 shows two bar charts concerning the likelihood behavior of
the CNN when the estimations are correct or wrong. That is, they show the average
likelihood of the evaluated images to belong to the room retrieved (the best option), the
likelihood to belong to second best option and so forth. This information is calculated
by the final layer of the CNN. As it is observed in fig. 6.9 (a), when the rooms of the
images are correctly estimated, the correct option presents an average likelihood near
to the 100% and the second best option presents an average likelihood of 1,09%. In
contrast, the fig. 6.9 (b) shows these average percentages when the retrieved room is
not correct. In this case, a considerably lower likelihood for the best option (74,24%)
and a higher likelihood for the second best option (22,5%) is observed. Hence, from
this information, the conclusion reached is that the likelihoods calculated by the CNN
for a test image can be helpful to decide whether the classification was correct or wrong
and also, which other rooms should be considered apart from the best option retrieved.

6.4.2 Experiment 2. Use of the CNN to Obtain Holistic
Descriptors for Batch Localization

This experiment introduces an evaluation of the performance of the global-appearance
descriptors obtained from different intermediate layers of the CNN to address the batch
localization task. The idea, as explained in subsection 6.3.1 and shows the fig. 6.4,
consists in introducing an image into the CNN and obtaining the holistic descriptor from
the layers conv4, conv5, fc6, fc7 and fc8. First, these description methods are used
to build the visual model by calculating the holistic descriptor for each image contained
in the training dataset (D = {~d1, ~d2, ..., ~dNtrain}). After that, the localization is solved
by using an image retrieval algorithm, that is, a test image is captured (imtest), its
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Figure 6.6: Confusion matrix obtained obtained after solving the first step of the hierarchical
localization (room retrieval) with all the cloud test images.

global-appearance descriptor (~dtest) is obtained from a layer of the CNN; then, the
descriptor is compared with all the descriptors contained in the training model D and
the most similar descriptor ~dk is retained. Last, the position of the captured image
imtest is estimated as the position where imk was captured.

In this experiment, the cloudy test dataset is used to measure the effectiveness
of the proposed description methods. Furthermore, the night and sunny datasets are
used to evaluate the robustness of these descriptions against changes of illumination.
Fig. 6.10 presents the results obtained by solving the batch localization with the test
images. These results were obtained by using the holistic descriptors obtained from
the CNN and also by classical description methods (HOG and gist). Fig. 6.10 shows
the average localization error and also the average computing time. Regarding the
localization error, this was calculated as the average Euclidean distance between the
position estimated and the position provided by the ground truth of the dataset. As
for the average computing time, this value measures the time required to carry out
the whole process: from calculating the holistic descriptor of the test image until its
position is estimated.

First, analyzing the localization without taking the changes of illumination into
consideration (i.e. using the cloudy test dataset), the experiments show that the de-
scriptor obtained from the layer conv4 presents the minimum error (5,07 cm), followed
by the descriptors from the layers conv5 and fc6 (5,09 cm for both cases). As for
the computing time, the fastest option is also achieved with the conv4 layer (6,7 ms),
since the holistic descriptor obtained from this layer has a relatively small size (180
components) and the data obtained for this layer are calculated in an early stage of
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Figure 6.7: Confusion matrix obtained after solving the first step of the hierarchical localization
(room retrieval) with all the night test images.

the CNN architecture. Comparing the holistic descriptors obtained from the CNN with
the classic descriptors, the conclusion is that the descriptors obtained with the CNN
improve the localization task both considering accuracy and computing time.

Regarding the results obtained with changes of illumination (using night and
sunny datasets), as noticed in previous chapters, this effect worsens the localization
task. In all the cases, the average localization error increases in comparison to the values
obtained when no changes of illumination are considered. Overall, sunny illumination
conditions affect more negatively the localization method proposed. Moreover, conv5
and fc8 are the layers of the CNN whose holistic descriptors are more affected. The
most robust descriptors against changes of illumination are those generated by the
layers fc6 and fc7. For instance, as for the holistic descriptor obtained from the
fc6 layer, the fig. 6.10 shows that the average localization error increases from 5,09
cm (without changes of illumination) to 28,80 and 38,94 cm (with night and sunny
illumination conditions respectively). Notwithstanding that, the descriptor provided by
the layers fc6 and fc7 perform substantially more accurately than the classical analytic
methods under changes of lighting conditions.

Generally speaking, either layers conv4, conv5, fc6 or fc7 can result suitable to
carry out the batch localization task task. If no changes of illumination are expected,
the descriptors ~dconv4 and ~dconv5 are appropriate, since they work relatively fast (9.07
ms and 10.7 ms respectively). On the contrary, the descriptors ~dfc6 and ~dfc7 are
suitable if there are changes of illumination at the expense of a lightly higher computing
time. The descriptor obtained from the layer fc8 works relatively fast (19.34 ms),
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Figure 6.8: Confusion matrix obtained after solving the first step of the hierarchical localization
(room retrieval) with all the sunny test images.

but the localization errors obtained are substantially worse comparing to the rest of
descriptors evaluated.

After evaluating the use of the CNN to generate holistic descriptors, this work
also aims to evaluate the use of this CNN to address the localization with images that
were captured from a different environment. The idea is to check whether the CNN
developed and trained with images from a specific environment can be generalized.
That is, that the CNN generates robust holistic descriptors for images captured in
other environments different from the one used for training. Hence, a short experiment
is tackled, in this case, using the images from the Saarbrücken environment as test
images. Again, average localization error and average computing time are collected for
different description methods: four different layers of the Freiburg CNN proposed in
this work, the gist descriptor and a descriptor based on the layers conv4 and fc6 of the
original AlexNet network (without training nor replacing layers). The table 6.2 shows
the results for localization with the Saarbrücken dataset by using the proposed holistic
descriptors. As it is shown, most of the descriptors based on the Freiburg CNN are still
relatively accurate. To illustrate one example, the performance of ~dconv4 (Freib-CNN)
is similar to ~dgist and ~dfc6 (AlexNet), but the calculation time is lower. Therefore, we
conclude that obtaining holistic descriptors from the trained CNN is a relatively good
method and it is generalizable to other environments different from the one which is
used for training.
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Figure 6.9: Average likelihood provided by the CNN. That is, average likelihood that the room
retrieved is correct. This information is provided by the classification layer of the CNN. The
graphs show the average likelihood when the classification is (a) correct or (b) wrong according
to the ground truth of the test datasets.
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Figure 6.10: Visual localization solved by means of image retrieval considering different holistic
descriptors: CNN based descriptors (conv4, conv5, fc6, fc7 and fc8) and classic descriptors (gist
and HOG). The efficiency is measured through the average localization error (cm) and also the
average computing time (ms) required to calculate and estimate the position where the images
were captured.

Table 6.2: Batch localization solved by means of image retrieval in Saarbrücken. The global-
appearance descriptors used are obtained either from the Freiburg CNN, which was trained in
this work (conv4, conv5, fc6 and fc7), from the AlexNet (conv4 and fc6), or by using the gist
descriptor. The efficiency is measured through the average localization error (cm) and also the
average computing time (ms) required to calculate and estimate the position where the images
were captured.

Descriptor Avg. error (cm) Avg. computing
time (ms)

conv4 (Freib-CNN) 7.33± 0.29 11.07
conv5 (Freib-CNN) 15.82± 0.30 12.14
fc6 (Freib-CNN) 7.49± 0.31 58.61
fc7 (Freib-CNN) 7.67± 0.34 61.15
conv4 (AlexNet) 7.79± 0.36 11.28
fc6 (AlexNet) 7.28± 0.28 56.87
gist 7.28± 0.59 460.6

6.4.3 Experiment 3. Use of the CNN to Tackle Hierarchical
Localization

In the previous experiment, different holistic descriptors were evaluated to address the
batch localization task. The present subsection focuses on evaluating the complete
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use of the neural network to tackle the localization task hierarchically. In this way, the
CNN is not only used to obtain holistic descriptors, but it is also used to retrieve the
most probable room within the environment where the test image was captured. As it
was explained in subsection 6.3.2, the hierarchical localization task proposed consists
in: first (rough localization step), the test image is introduced to the CNN and it
retrieves the most likely room where the image was captured by the robot. Second, a
holistic descriptor is obtained from one of the layers of the CNN and this information is
used to carry out the fine localization step by conducting an image retrieval algorithm
by using the holistic descriptor of the test image and the holistic descriptors of the
training images that belong to the retrieved room.

With the aim of comparing this localization method with the method proposed
in the subsection 6.4.2, the evaluation is the same, i.e., the average localization error
and the average computing time are obtained to tackle the hierarchical localization
process. Moreover, this method is also compared with the hierarchical localization
method proposed in chapter 4 with the descriptors gist and HOG and a clustering
approach.

Fig. 6.11 presents the results obtained through the hierarchical localization pro-
posed in the present chapter. In general, the descriptors based on CNN perform better
than the descriptors based on hand-crafted methods. Comparing the descriptors based
on CNN layers and the analytic ones, the localization error with CNN-based descriptors
is considerably lower. This improvement is noticed independently of the illumination
condition. Furthermore, the computing time required to solve the localization is also
lower using the descriptors based on CNN.

If we compare the results obtained by applying batch localization and hierarchical
localization, the second method introduces a lightly higher localization error. This is
given in all the descriptors evaluated and is due to failures produced in the rough
localization step (CNN does not retrieve the correct room the 100% of the times).
However, if we focus on the results obtained by using the descriptors ~dfc6 and ~dfc7 ,
they both present a robust behavior, since their results keep the localization error
obtained through batch localization and at the same time, the computing time is
substantially reduced. This behavior is kept for the three illumination conditions.

Concerning the localization error increment produced by the CNN wrong clas-
sifications, we checked that the CNN was properly trained, since it retrieves the room
successfully the 98% of the cases. Additionally, observing the graphs from the fig. 6.9,
extra information from the output layer of the CNN can be used to improve this method.
These graphs show a considerably different behavior of the likelihoods when the CNN
succeeds or fails. When the correct rooms is retrieved, the most probable room presents
an average likelihood around 98% and the rest of options are under the 2%, whereas
when the CNN retrieves a wrong room, the most probable room presents an average
likelihood of 74,24% and the following two most likely options are substantially over
2%.

Therefore, departing from this analysis, the present chapter also proposes a novel
hierarchical localization method based on the CNN to solve the rough localization step
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Figure 6.11: Hierarchical localization results based on CNN. The rough step is solved by re-
trieving the most likely room with the CNN. The fine step is solved by means of an image retrieval
algorithm within the retrieved room by using holistic descriptors (horizontal axis). The efficiency
is measured through the average localization error (cm) and also the average computing time
required to calculate and estimate the position where the images were captured (ms).

but considering a threshold value to decide how many rooms are considered in the fine
localization step. The whole method consists in the following steps. First, the test
image is introduced into the CNN. The classification layer outputs 9 likelihoods. If the
likelihood of the most probable room is higher than the threshold 1, th1, this room
is retrieved; otherwise, all the rooms whose likelihood is higher than the threshold 2,
th2 are retrieved. Afterwards, the fine localization is carried out again through image
retrieval by comparing the holistic descriptor of the test image (obtained from a layer
of the CNN) with the set of training descriptors contained in the retrieved rooms.

Therefore, through this new method, the hierarchical localization is carried out
with all the test images and the results are presented in fig. 6.12. For this experiment,
only conv4, conv5, fc6 and fc7 were evaluated, since fc8 has proved in previous
experiments not to be suitable to generate a holistic descriptor that characterizes the
images. The thresholds values were tuned and the best configuration was th1 = 0.8
and th2 = 0.1. In this figure we can observe that for all the cases, the average
computing time increases with respect to fig. 6.11. This increase was expected, since
this method leads to consider more instances in the fine localization step. Regarding the
descriptors generated from the layers fc6 and fc7, which were the cases that had a lower
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computing time in hierarchical localization, their related computing time is increased
from 20.84 and 11.23 to 27 and 27.1 ms respectively. Nevertheless, the localization
process is still substantially faster than the obtained with the batch localization method
based on image retrieval (fig. 6.10), because this method takes respectively an average
computing time of 47.55 ms and 49.26 ms .

Regarding the localization error, most of the cases are improved. For example,
in the case of the global-appearance descriptor ~dfc6 , the average localization error
is reduced by using the hierarchical localization with thresholds: from 5.23; 32.09
and 51.71 cm to 5.13; 25.53 and 38.10 cm respectively for the cloudy, night and
sunny conditions. Thus, we conclude that this novel method proposed to address
the hierarchical localization task with thresholds is a competitive option regarding
localization error and computing time.

0

5

10

15

20

25

30

35

40

45

A
vg

. c
om

p.
 ti

m
e 

(m
s)

Hierarchical localization with threshold

35.7 ms

17.3 ms

27 ms 27.1 ms

conv4 conv5 fc6 fc7

Layers of the CNN

0

10

20

30

40

50

60

A
vg

. l
oc

. e
rr

or
 (

cm
)

cloudy night sunny avg. comp. time

Figure 6.12: Hierarchical localization results. The rough step is solved by retrieving a number
of rooms with the CNN. If the likelihood of the most probable room is not higher than an specified
threshold th1, all the rooms whose likelihood is higher than another specific threshold th2 are
considered for the fine localization step. As it was conducted in previous hierarchical localization
methods, the fine step is solved by means of image retrieval through using CNN based global-
appearance descriptors.

6.5 Conclusion

In this chapter, a novel localization methods based on the use of deep learning tool
and omnidirectional images is presented. The tool developed is a convolutional neural
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network trained for room retrieval. In this way, once the CNN has properly trained,
the network receives a panoramic image as input and it retrieves the most likely room
where the image was captured. Furthermore, this neural network is not only used to
estimate rooms, but also to obtain global-appearance descriptors from its intermedi-
ate layers to characterize the information of the input image. Therefore, the present
chapter evaluates the use of this tool to solve the localization task by means of three
different methods: a batch localization (through image retrieval), a hierarchical local-
ization based on different levels of accuracy and a hierarchical localization method with
thresholds to decide which rooms are used in the fine localization stage.

A dataset of omnidirectional images captured in an indoor environment was used
for training the CNN and also to tackle the localization experiments. These images
were transformed to panoramic with the aim of comparing the results with previous
methods based on classic holistic description methods. Moreover, this dataset also
contain images captured under different illumination conditions. Hence, the robustness
of the proposed against changes of illumination was also addressed.

Furthermore, a data augmentation technique is proposed to supply a larger
visual dataset to train more robustly the CNN. This technique is also used to add
adverse visual effects to the dataset used to test the accuracy of the CNN developed.
Regarding the CNN design, the network inherits the architecture from AlexNet and
changes the initial and the final set of layers. Then, it is re-trained with the panoramic
images obtained from the dataset.

The studies tackled in the present chapter are the following:

• The CNN classifier developed have been validated as a tool to perform the rough
step of a hierarchical localization process. Additionally, the behavior of the classi-
fication layer provides information that can be useful to detect wrong estimations.

• The global-appearance descriptors obtained from the intermediate layers conv4,
conv5, fc6 and fc7 are more suitable to solve the localization task than the
hand-crafted descriptors gist and HOG. Additionally, fc6 and fc7 produce holistic
descriptors which prove to be quite robust against changes of illumination. Also,
the descriptors obtained from the CNN are also suitable to solve visual localization
in other different environments, but they do not improve substantially the results
output by a descriptor obtained from other pre-trained CNNs such as AlexNet.

• The hierarchical localization based on the proposed CNN produces more efficient
results regarding localization error and computing time than hierarchical meth-
ods based on classical descriptors and image retrieval. Additionally, considering
the likelihood information provided by the classification layer of the CNN, the
proposed method produces competent localization solutions.

Throughout fig. 6.13 we can obtain an overview of the localization performed
overall along the Freiburg environment by using the three proposed methods based
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on CNN and using the holistic descriptor generated by the layer fc6. These figures
show the bird’s eye view of the ground truth of the (cloudy) test images and the
estimated position. Fig. 6.13(a) shows the estimation by using batch localization,
fig. 6.13(b) shows the estimation using hierarchical localization and fig. 6.13(c) shows
the estimation when thresholds are applied to the hierarchical localization method.
Furthermore, fig. 6.14 shows (a) the average localization error and (b) the average
computing time required for each method to solve the localization task. The conclusion
reached from these images is that hierarchical localization based on CNN keeps the
precision of batch localization, but this method is substantially faster. The use of
thresholds is useful to keep a good accuracy.

Future works will focus on developing a regression convolutional neural network
that is able to estimate directly the position where the input images were captured.

6.6 Publications Related to this Chapter

The main results presented in this chapter are related to the following publications:

• S. Cebollada, L. Payá, M. Flores, V. Román, A. Peidró, O. Reinoso. A Deep
Learning Tool to Solve Localization in Mobile Autonomous Robotics. In 2020
17th International Conference on Informatics in Control, Automation and Robotics. [43]

– This paper proposes a deep learning tool to carry out the visual localiza-
tion task for mobile autonomous robotics. A convolutional neural network
(CNN) is trained with the aim of estimating the room where an image has
been captured, within an indoor environment. This CNN is not only used
as tool to solve a room estimation, but it is also used to obtain global-
appearance descriptors of the input image from its intermediate layers. The
localization task is addressed in two different ways: globally, as an image
retrieval problem and hierarchically. Throughout this paper, the localization
methods are evaluated with a visual set of omnidirectional images captured
in indoor environments. The obtained results show that the proposed deep
learning tool is an efficient solution to address visual localization tasks.
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Figure 6.13: Comparison between poses estimation in the Freiburg cloudy test dataset by means
of the different localization methods proposed in the present work: (a) Batch localization, (b)
hierarchical localization and (c) hierarchical localization with thresholds. Both the ground truth
and the estimated position of the test images are shown. These examples are based on the holistic
descriptor generated by the layer fc6 of the Freiburg CNN.
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Figure 6.14: Comparison between localization methods: (a) average localization error and (b)
average computing time are presented for the three methods proposed using the holistic descriptor
generated by the layer fc6 of the Freiburg CNN.
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7 Conclusions and Future Work

After presenting in detail all the research work conducted under the framework of
the present thesis, this final chapter summarizes the main contributions of this work.
Furthermore, section 8.2 introduces possible extensions and future work which can be
carried out from the research lines presented in this thesis.

7.1 Contributions

This thesis has presented a robust localization method to move through underfloor
voids with depth data, a hierarchical model to carry out the localization in indoor
environments by using omnidirectional visual information, a localization approach based
on omnidirectional images and machine learning tools, and a novel convolutional neural
network based on omnidirectional information which leads to competent localization
methods. The analysis of the studies has consisted in evaluating the effectiveness of
the proposed methods by measuring the average localization error and the average
computing time. These analyses were all developed through the use of simulation
tools: Matlab R© and C++. The main accomplishments and contributions of this thesis
are summarized as follows.

Chapter 3

• It has been demonstrated that the proposed algorithm that uses point cloud
information to estimate the registration between poses present noticeable im-
provements in comparison with previous proposed methods. The experiments
showed that this algorithm works successfully in environments where the charac-
terization using regular algorithms is difficult. Additionally, the method proposed

203



Chapter 7. Conclusions and Future Work

is capable of finding accurate enough results without using any kind of visual
information provided by the camera. The results show that this algorithm per-
forms successfully for the majority of the cases considering localization error and
computing time.

• It has been presented an algorithm to solve the cases in which the alignment
between consecutive poses within the environment is not successful. The results
showed that this approach is able to align correctly in the majority of the cases.
Hence, the use of this approach introduce a notorious utility to address the
localization task when keeping all the visited poses (knowing the exact path)
plays a crucial role. Although this method leads to extra computing time, scarcely
no pose information is lost throughout the whole localization process.

• The proposed approaches are based on a validation parameter. This parameter
determines whether the pose estimation was successful or not. Hence, this work
presented a tuning of this parameter with the aim of establishing a trustworthy
threshold. From the obtained results, the conclusion reached is that the algorithm
works properly in a given range of values. Nevertheless, the exact value should
be determined according to the requirements of the user.

• It has been also proposed a visual approach to carry out the localization task
despite the environments present a difficult visual characterization. The proposed
approach is not robust enough to carry out the localization with the accuracy
presented with depth data. Notwithstanding that, this approach is beneficial to
improve the depth-data-based method.

Chapter 4

• It has been presented two methods to compact topological maps. The vi-
sual models are built with holistic descriptors based on omnidirectional images,
which were captured from different positions within the environment. The ap-
proaches proposed are based on clustering algorithms: spectral clustering and
self-organizing maps. It has demonstrated that these methods are suitable to
reduce drastically the visual information from the original model.

• It has been also shown that the compression method proposed performs more
efficiently than a direct downsampling of the database. A straightforward down-
sampling can produce faster models, but the resultant models are not able to
keep such amount of visual information as the proposed clustering methods do.

• It has been demonstrated that the compressed models can be used to address the
localization task by using global-appearance descriptors. The results showed that
the accuracy obtained as well as the computing time required to address the task
are inversely proportional to the compaction rate. That is, the more is the model
compressed, the less accurate is the localization and the less computing time is
necessary (the faster is the estimation pose solved). Additionally, the approach
proposed is validated for topological maps as well as for grid-based maps. Beside
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this, the localization method is also capable of addressing the localization task
when more than one environment is taken into consideration.

• A hierarchical method was proposed to carry out the localization departing from
visual compressed models based on holistic descriptors. This proposed approach
improves the results obtained regarding accuracy as well as computing time. On
the whole, the proposed method is able to reach results as accurate as the batch
localization method but saving considerable amount of time.

• The change of illumination conditions was evaluated and the results showed that
despite the accuracy of the localization methods proposed is negatively affected,
they are able to keep accurate localization results. On the other hand, the
sunny illumination condition affected more negatively the performance of the
approaches than the dark illumination (images captured at night).

Chapter 5

• It has been demonstrated that classifiers and the fit neural networks are useful
machine learning tools to solve respectively the rough and fine localization tasks
in a hierarchical framework. Both tools are fed with holistic descriptors that were
obtained from the omnidiretional images by classic global-appearance methods
and by deep learning tools.

• Regarding the classifiers, the room retrieval was improved by using labeling ob-
tained from clustering methods rather than using the labeling provided by the
ground truth.

• Data fitting networks were not able to improve considerably the fine localization
step in some rooms within the indoor environment. Nevertheless, this study
concluded that a more suitable training optimization would result crucial to solve
the localization in challenging areas. Besides this, the fine localization method
based on neural networks would not present the accuracy limitation presented by
the image retrieval method.

• It has been presented two deep learning tools to obtain holistic descriptors from
the omnidirectional visual data. Through a batch localization approach, the
two methods, along with classic global-appearance description methods, were
evaluated. It has been demonstrated that the CNN-based description methods
provide the minimum localization error. Additionally, autoencoders also provide
an efficient solution. Concerning this second tool, they are not only suitable to
describe information related to a specific environment, but they also are capable
of training a generic network that is able to obtain trustworthy descriptors re-
gardless the environment. Despite this methods are relatively fast, they do not
improve the speed presented by HOG description.

• It has been demonstrated that competent holistic descriptors can be obtained
from early layers of the CNNs, since these layers are focused on extracting the
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features of the images. Therefore, the obtained descriptors lead to produce
accurate localization performance and at the same time, the computing time is
the lowest among the description methods studied.

Chapter 6

• It has been presented a localization method based on the creation and training
of a CNN that is capable of carrying out a competent localization task.

• It has demonstrated that the CNN developed is able to perform successfully the
rough step of a hierarchical localization process. Furthermore, the classification
layer provide likelihood information which can be used to reinforce the rough
localization decision.

• It has been proved that data augmentation is a suitable technique to expand the
original dataset with the aim of carrying out the training of a CNN from scratch
with the aim of carrying out a room retrieval task.

• It has been demonstrated the robustness of the holistic descriptors obtained
from the intermediate layers of the trained CNN. These descriptors perform more
suitably the localization task than hand-crafted description methods.

• The hierarchical localization method based on CNN has performed successful
localization results. Likelihood information has provided robustness in the room
retrieval process (rough localization step), which has led to provide a localization
method faster than the batch localization approach and more accurate than the
previously proposed hierarchical localization methods.

7.2 Future Work

The following list proposes some future research works that can be stemmed from the
research lines and results conducted throughout the present thesis.

• Developing a more reliable and quicker characterization of the depth in-
formation. It seems that developing a characterization method would play an
important role in the localization task under challenging visual environments.
This method should be able to provide relevant information from the depth
data which allows trustworthy and fast algorithms. By means of deep learning
techniques, global-appearance description methods could be applied to the en-
vironment with the aim of obtaining relevant characterization from the visual
data, the depth data or a mixture of both. This characterization could perform
faster algorithms with similar or even better accuracy than the currently proposed
methods.
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7.2. Future Work

• Developing a visual SLAM algorithm based on the hierarchical methods
proposed. The proposed methods to carry out the localization with omnidi-
rectional images have been validated. Therefore, a SLAM approach can be
developed based on the studied methods. The aim of this approach is to de-
velop a system as autonomous as possible. We propose a incremental clustering
approach which is able to tackle the compression task of the visual data as the
robot is moving throughout the environment.

• Optimization of the data fitting neural network. Concerning the neural
network presented in chapter 5 to estimate the position of the robot within a
retrieved room, a future research line would be optimizing the training process.
This neural network has provided competent results in the majority of the rooms,
but it has presented unsuccessful results in some areas such as the corridor.
However, in the future, an exhaustive study of the hyperparameters will be carried
out with the aim of optimizing the training process. Additionally, a clustering
process can be addressed for those rooms whose size make the position estimation
more challenging.

• Deep study of the autoencoder tools. The present thesis presented a short
study related to the use of an autoencoder neural network to calculate global-
appearance descriptors. Nevertheless, in the future, a deep study of this neural
network can be addressed. The following studies can be proposed.

– Use of omnidirectional images to train the autoencoder.
– Use RGB images instead of gray-scale.
– Study of key hyperparameters which can optimize the network such as the

number and type of hidden layers and filters or the dimension of the latent
representation.

– Use of different types of autoencoders such as denoising autoencoders or
variational autoencoders. Concerning the denoising autoencoder, this is
desiged to be capable of transforming noisy data into clean ones. Hence,
several visual effects can be tested to perform the autoencoder. For exam-
ple, images with different illumination or with rotation.

• Evaluation of newer network architectures. The CNN developed in chapter 6
departed from the AlexNet. Nevertheless, this network was created in 2012.
Hence, in future works, newer architectures will be considered as starting point
to build our neural network. This way, better results may be acquired in lower
time.

• Developing a CNN that outputs the position of the robot. Carrying on the
work presented in chapter 6, the next step will be to use the CNN developed to
carry out a transfer learning with the aim of solving a regression task. In this case,
the regression task will consist in estimating directly the position (x, y) of the
robot within the environment. This way, several issues should be conducted. For
example, training one CNN with two outputs (x and y) or training one CNN to
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output the x coordinate and another for the y. Also, using networks for different
rooms or a one single network to estimate the position in the whole environment.

• Deep study of CNNs based on omnidirectional images. Short studies have
been already conducted concerning this topic. A CNN was re-trained by using
omnidirectional images with the aim of solving a room retrieval task. Hence, in
the future, an evaluation of the holistic descriptors obtained from intermediate
layers can be tackled. This description method can perform successful localiza-
tion results, since they can provide accurate and fast localization approaches.
Furthermore, the step to transform omnidirectional to panoramic will lead to
save computing time, since the CNN will be trained directly with omnidirectional
images. Moreover, this study will also attempt to build a regression CNN which
can estimate the capturing position within the environment.

• Use of Siamese neural networks. In this thesis, the main idea consisted in
obtaining an appropriate holistic descriptor and also an appropriate measure of
distance which performed successfully the similarity between images. In this
way, deep learning tools such as CNN were proved to perform successful holistic
descriptors. In this line, Siamese networks are a similar version of the CNN. How-
ever, they are fed with two images and the output provides a value of similarity
between them. Hence, by using Siamese neural network, the model will directly
output the similitude between images. Therefore, this machine learning tool is
proposed to be used in two ways.

– By training the Siamese network with pair of images, it will learn to out-
put an appearance similitude value which can be indirectly proportional to
the image capturing distance or a similitude value which can be indirectly
proportional to the rotational distance.

– This network can be trained with pair of images which were captured at the
same position but with different illumination conditions. Once the network
is trained, a holistic descriptor can be obtained from intermediate layers.
Thus, the obtained descriptor will be desired to be robust against changes
of illumination.
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8 Conclusiones y Trabajos Futuros

Tras presentar en detalle todo el trabajo de investigación realizado en el marco de la
presente tesis, este capítulo final resume las principales aportaciones de este trabajo.
Además, el apartado 8.2 introduce posibles ampliaciones y trabajos futuros que se
pueden realizar a partir de las líneas de investigación presentadas en esta tesis.

8.1 Contribuciones

Esta tesis ha presentado un método de localización robusto para moverse a través de los
subsuelos de los edificios utilizando información de profundidad, un modelo jerárquico
para llevar a cabo la localización en entornos de interior mediante información visual
omnidireccional, un método de localización basado en imágenes omnidireccionales y
herramientas de aprendizaje máquina, y una red neuronal convolucional basada en
información omnidireccional la cual es propuesta como solución eficiente para realizar
métodos de localización. El análisis de los estudios ha consistido en evaluar la eficiencia
de los métodos propuestos mediante la medición del error de localización medio y el
tiempo de computo medio. Estos análisis fueron desarrollados mediante herramientas
de simulación: Matlab R© y C++. Los principales logros y aportes de esta tesis se
resumen a continuación.

Capítulo 3

• Se ha demostrado que el algoritmo propuesto que utiliza la información de la
nube de puntos para estimar el registro entre poses presenta mejoras notables en
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comparación con los métodos propuestos anteriormente. Los experimentos de-
mostraron que este algoritmo funciona con éxito en entornos donde la caracteri-
zación utilizando algoritmos estándares es difícil. Además, el método propuesto
es capaz de encontrar resultados suficientemente precisos sin utilizar ningún tipo
de información visual proporcionada por la cámara. Los resultados muestran que
este algoritmo funciona con éxito en la mayoría de los casos considerando el error
de localización y el tiempo de cálculo.

• Se ha presentado un algoritmo para resolver los casos en los que la alineación entre
poses consecutivas dentro del entorno no es exitosa. Los resultados mostraron
que este enfoque puede resolver correctamente la mayoría de los casos. Por
lo tanto, el uso de este enfoque introduce una utilidad notoria para abordar la
tarea de localización cuando es crucial mantener información de todas las poses
visitadas (conocer la ruta exacta). Aunque este método conlleva un tiempo de
cálculo extra, apenas se pierde información de pose durante todo el proceso de
localización.

• Los métodos propuestos se basan en un parámetro de validación. Este parámetro
determina si la estimación de pose fue exitosa o no. Por ello, este trabajo presentó
una puesta a punto de este parámetro con el objetivo de establecer un umbral
confiable. De los resultados obtenidos se llega a la conclusión de que el algoritmo
funciona correctamente en un rango de valores determinado. Sin embargo, el
valor exacto debe determinarse de acuerdo con los requisitos del usuario.

• También se ha propuesto un enfoque visual para realizar la tarea de localización a
pesar de que los entornos presentan una caracterización visual difícil. El enfoque
propuesto no es lo suficientemente robusto para llevar a cabo la localización con
la precisión presentada con los datos de profundidad. Sin embargo, este enfoque
es beneficioso para mejorar el método basado en datos de profundidad.

Capítulo 4

• Se han presentado dos métodos para compactar mapas topológicos. Los modelos
visuales se construyen con descriptores holísticos basados en imágenes omnidirec-
cionales, que fueron capturadas desde diferentes posiciones dentro del entorno.
Los enfoques propuestos se basan en algoritmos de agrupamiento: agrupamiento
espectral y mapas auto-organizados. Se ha demostrado que estos métodos son
adecuados para reducir drásticamente la información visual del modelo original.

• También se ha demostrado que el método de compresión propuesto funciona
de manera más eficiente que una reducción directa de la base de datos. Una
reducción de resolución sencilla puede producir modelos de manera más rápida,
pero los modelos resultantes no pueden mantener tanta información visual como
lo hacen los métodos de agrupación propuestos.
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• Se ha demostrado que los modelos comprimidos se pueden utilizar para abordar
la tarea de localización mediante el uso de descriptores de apariencia global. Los
resultados mostraron que la precisión obtenida, así como el tiempo de cálculo
requerido para abordar la tarea, son inversamente proporcionales a la tasa de
compactación. Es decir, cuanto más comprimido está el modelo, menos precisa
es la localización y menos tiempo de cálculo es necesario (más rápido se resuelve
la pose de estimación). Además, el enfoque propuesto está validado tanto para
mapas topológicos como para mapas basados en rejilla. Además de esto, el
método de localización también es capaz de abordar la tarea de localización
cuando se tiene en cuenta más de un entorno.

• Se propuso un método jerárquico para realizar la localización a partir de modelos
visuales comprimidos basados en descriptores holísticos. Este enfoque propuesto
mejora los resultados obtenidos en cuanto a precisión y tiempo de cálculo. En
general, el método propuesto puede alcanzar resultados tan precisos como el
método de localización estándar, pero ahorrando una cantidad considerable de
tiempo.

• Se evaluó el cambio de condiciones de iluminación y los resultados mostraron
que a pesar de que la precisión de los métodos de localización propuestos se
ve afectada negativamente, son capaces de mantener resultados de localización
precisos. Por otro lado, la condición de iluminación soleada afectó más nega-
tivamente al rendimiento de los métodos propuestos que la iluminación oscura
(imágenes capturadas de noche).

Capítulo 5

• Se ha demostrado que los clasificadores y las redes neuronales de ajuste son her-
ramientas de aprendizaje máquina útiles para resolver las tareas de localización
grosera y fina, respectivamente, en un marco jerárquico. Ambas herramientas se
alimentan con descriptores holísticos que se obtuvieron de las imágenes omni-
direccionales mediante métodos clásicos de apariencia global y herramientas de
aprendizaje profundo.

• Con respecto a los clasificadores, la recuperación de la sala se mejoró utilizando
el etiquetado obtenido de los métodos de agrupamiento en lugar de utilizar el
etiquetado proporcionado por el ‘ground truth’.

• Las redes neuronales de ajuste de datos no pudieron mejorar considerablemente
la localización fina en algunas habitaciones dentro del entorno interior. Sin
embargo, este estudio concluyó que una optimización del entrenamiento más
adecuada resultaría crucial para resolver la localización en áreas más difíciles.
Además de esto, el método de localización fina basado en redes neuronales no
presentaría la limitación de precisión que presenta el método de recuperación de
imágenes.
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• Se han presentado dos herramientas de aprendizaje profundo para obtener de-
scriptores holísticos a partir de los datos visuales omnidireccionales. Mediante
un enfoque de localización estándar se evaluaron los dos métodos, junto con
los métodos clásicos de descripción de apariencia global. Se ha demostrado que
los métodos de descripción basados en CNN proporcionan el mínimo error de
localización. Además, los ‘autoencoders’ también proporcionan una solución efi-
ciente. En cuanto a esta segunda herramienta, no solo son aptos para describir
información relacionada con un entorno específico, sino que también son capaces
de entrenar una red genérica que sea capaz de obtener descriptores fiables inde-
pendientemente del entorno. A pesar de que estos métodos son relativamente
rápidos, no mejoran la velocidad presentada por el descriptor HOG.

• Se ha demostrado que se pueden obtener descriptores holísticos competentes
a partir de las primeras capas de las CNN, ya que estas capas se centran en
extraer las características de las imágenes. Por lo tanto, los descriptores obtenidos
conducen a producir un rendimiento de localización preciso y, al mismo tiempo,
el tiempo de cálculo es el más bajo entre los métodos de descripción estudiados.

Capítulo 6

• Se ha presentado un método de localización basado en la creación y entre-
namiento de una CNN que sea capaz de realizar una tarea de localización com-
petente.

• Se ha demostrado que la CNN desarrollada es capaz de realizar con éxito la
localización grosera dentro de un proceso de localización jerárquica. Además,
la capa de clasificación proporciona información de probabilidad que se puede
utilizar para reforzar la decisión de localización grosera.

• Se ha demostrado que el aumento de datos es una técnica adecuada para ampliar
el conjunto de datos original con el objetivo de llevar a cabo el entrenamiento de
una CNN desde cero con el objetivo establecido de recuperación de habitaciones.

• Se ha demostrado la robustez de los descriptores holísticos obtenidos de las capas
intermedias de la CNN entrenada. Estos descriptores realizan mejor la tarea de
localización que los métodos de descripción analíticos.

• El método de localización jerárquica basado en CNN ha obtenido resultados
de localización satisfactorios. La información de probabilidad ha proporcionado
solidez en el proceso de recuperación de la sala (localización grosera), lo que ha
llevado a proporcionar un método de localización más rápido que el enfoque de
localización estándar y más preciso que los métodos de localización jerárquica
previamente propuestos.
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8.2 Trabajos Futuros

La siguiente lista propone algunos trabajos de investigación futuros que se pueden
derivar de las líneas de investigación y resultados realizados a lo largo de la presente
tesis.

• Desarrollar una caracterización más robusta y rápida de la información de
profundidad. Parece que desarrollar un método de caracterización jugaría un
papel importante en la tarea de localización en entornos visuales desafiantes. Este
método debería poder proporcionar información relevante a partir de los datos
de profundidad que permitan algoritmos fiables y rápidos. Mediante técnicas de
aprendizaje profundo, se podrían aplicar métodos de descripción de apariencia
global al entorno con el objetivo de obtener una caracterización relevante a partir
de los datos visuales, los datos de profundidad o una mezcla de ambos. Esta
caracterización podría realizar algoritmos más rápidos con una precisión similar
o incluso mejor que los métodos actualmente propuestos.

• Desarrollo de un algoritmo SLAM visual basado en los métodos jerárquicos
propuestos. En la presente tesis se han validado los métodos propuestos para
realizar la localización con imágenes omnidireccionales. Por lo tanto, se puede
desarrollar un enfoque SLAM basado en los métodos estudiados. El objetivo de
este enfoque es desarrollar un sistema lo más autónomo posible. Proponemos un
enfoque de agrupamiento incremental que puede abordar la tarea de compresión
de los datos visuales a medida que el robot se mueve por el entorno.

• Optimización de la red neuronal de ajuste de datos. Con respecto a la red
neuronal presentada en la presente tesis para estimar la posición del robot den-
tro de una sala recuperada, una línea de investigación futura sería optimizar el
proceso de entrenamiento. Esta red neuronal ha proporcionado resultados com-
petentes en la mayoría de las salas, pero ha presentado resultados infructuosos
en algunas áreas como el pasillo. No obstante, en el futuro se realizará un estu-
dio exhaustivo de los hiperparámetros con el objetivo de optimizar el proceso de
aprendizaje. Además, se puede abordar un proceso de agrupación en clústeres
para aquellas salas cuyo tamaño produzca una estimación de la posición más
difícil.

• Estudio profundo de las herramientas de autoencoder. La presente tesis
presentó un breve estudio relacionado con el uso de una red neuronal de autoen-
coder para calcular descriptores de apariencia global. No obstante, en el futuro,
se puede abordar un estudio en profundidad de esta red neuronal. Se pueden
proponer los siguientes estudios.

– Uso de imágenes omnidireccionales para entrenar el autoencoder.
– Utilizar imágenes RGB en lugar de escala de grises.
– Estudio de hiperparámetros clave que pueden optimizar la red como el

número y tipo de capas y filtros ocultos o la dimensión de la representación
latente.
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– Uso de diferentes tipos de autoencoders, como autoencoders de eliminación
de ruido o autoencoders de variación. En cuanto al autoencoders de elim-
inación de ruido, está diseñado para que sea capaz de transformar datos
ruidosos en limpios. Por lo tanto, se pueden probar varios efectos visuales
para realizar el autoencoders. Por ejemplo, imágenes con diferente ilumi-
nación o con rotación.

• Evaluación de arquitecturas de red más novedosas. La CNN desarrollada
en la presente tesis se generaron a partir de AlexNet. Sin embargo, esta red fue
creada en 2012. Por lo tanto, en trabajos futuros, se considerarán arquitecturas
más nuevas como punto de partida para construir nuestra red neuronal. De esta
forma, se pueden obtener mejores resultados en menos tiempo.

• Desarrollar una CNN que obtenga la posición del robot. Continuando con
el trabajo presentado en la presente tesis, el siguiente paso será utilizar la CNN
desarrollada para llevar a cabo un ‘transfer learning’ con el objetivo de resolver
una tarea de regresión. En este caso, la tarea de regresión consistirá en estimar
directamente la posición (x, y) del robot dentro del entorno. De esta manera,
se deben realizar varias cuestiones. Por ejemplo, entrenando una CNN con dos
salidas o entrenando una CNN para generar la coordenada x y otra para y.
Además, utilizar redes para diferentes habitaciones o una única red para estimar
la posición en todo el entorno.

• Estudio profundo de las CNN basado en imágenes omnidireccionales. Ya
se han realizado estudios breves sobre este tema. Una CNN fue reentrenada me-
diante el uso de imágenes omnidireccionales con el objetivo de resolver una tarea
de recuperación de habitaciones. Por lo tanto, en el futuro, se puede abordar
una evaluación de los descriptores holísticos obtenidos de las capas intermedias.
Este método de descripción puede producir resultados de localización exitosos,
ya que pueden proporcionar enfoques de localización precisos y rápidos. Además,
el paso de transformar la imagen omnidireccional a panorámica se podría ahorrar,
ya que la CNN sería entrenada directamente con imágenes omnidireccionales. Lo
cual implicaría un ahorro en el tiempo de computación. Además, este estudio
también intentará construir una CNN de regresión que pueda estimar la posición
de captura dentro del entorno.

• Uso de redes neuronales siamesas. En esta tesis, la idea principal consistió
en obtener un descriptor holístico apropiado y también una medida apropiada
de distancia que realizó con éxito la similitud entre imágenes. De esta manera,
se demostró que las herramientas de aprendizaje profundo como CNN realizan
descriptores holísticos exitosos. En esta línea, las redes siamesas son una versión
similar de la CNN. Sin embargo, se alimentan con dos imágenes y la salida aporta
un valor de similitud entre ellas. Por lo tanto, al usar la red neuronal siamesa,
el modelo generará directamente la similitud entre imágenes. Por tanto, esta
herramienta de aprendizaje automático se propone para cumplir dos objetivos.

– Mediante el entrenamiento de la red siamesa con un par de imágenes, apren-
derá a generar un valor de similitud de apariencia que puede ser indirec-
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tamente proporcional a la distancia de captura de la imagen o un valor
de similitud que puede ser indirectamente proporcional a la distancia de
rotación.

– Esta red se puede entrenar con un par de imágenes que fueron capturadas
en la misma posición, pero con diferentes condiciones de iluminación. Una
vez que se entrena la red, se puede obtener un descriptor holístico de las
capas intermedias. Por tanto, se deseará que el descriptor obtenido sea
robusto frente a los cambios de iluminación.
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Abstract

This paper presents a novel robotic system that applies spray foam insula-
tion in underfloor voids in order to improve the energy efficiency of build-
ings. The work focuses on solving the mapping and localization problems
in such environments, since they are a key factor in the autonomy of the
robot. Solving these tasks in underfloor voids is especially challenging be-
cause the terrain is extremely uneven due to the presence of stones, bricks
and sand. Within these environments, the robot should be able to local-
ize itself and apply the insulation foam to the underside of the floor. The
robot is equipped with a 2D laser sensor which permits building point
clouds from several positions of the underfloor environment. The local-
ization process is solved by estimating the position of the robot with re-
spect to previously known positions. For this purpose, the alignment be-
tween point clouds is calculated. This paper describes two algorithms to
robustly obtain the alignment between two positions. The proposed al-
gorithms are tested with a set of point clouds captured with a laser scan
in several environments under real working conditions. The results show
that the localization problem can be solved in such challenging underfloor
voids by using depth information.

Keywords: Autonomous Mobile Robot, Localization, Point Cloud
Alignment
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1. Introduction1

There are many buildings in Europe and around the world which have2

voids between floor and foundations due to building methods. This kind3

of uninsulated suspended timber floors can be a key factor in heat loss as4

some studies show [1] [2]. This includes conductive heat loss to the ground5

and also infiltration of cold air through the underfloor environment and6

wooden flooring. Taking this fact into account, the energy efficiency of7

such existing buildings could be improved by means of under-floor insu-8

lation. The process to insulate under the floor usually consists in remov-9

ing the carpet and floorboards, applying rigid panels or rolls of insulation10

and finally, putting everything back together. It causes a large amount11

of disturbance to the building occupants since often, they must vacate12

the premises during the installation. To make this process less disruptive13

and faster, a robotic vehicle can be used. This robotic vehicle should be14

able to access to voids, to move autonomously and to apply foam insu-15

lation. An autonomous mobile robot that could manoeuvre around the16

void and apply insulation where needed should be chosen. Within this17

group, we can distinguish three main types: wheeled, legged and aerial18

robots. When choosing one of these three types, two main requirements19

must be considered. First, an umbilical hose must be attached to the robot20

to transmit power and supply the robot with the foam insulation. To meet21

these requirements, the hose would weigh around 3.5 kg per linear me-22

ter [3]. Second, a spray nozzle must be mounted on the robot to eject the23

foam onto the underside of the floor. During this process, it will exert a24

pressure on the robot. Therefore, the robot must remain stable. For these25

reasons neither the legged nor the aerial robots (that also create too much26

dust and disturbance) would operate correctly. Thus, a wheeled or tracked27

platform is used in this work.28

Q-bot has developed a novel robot to carry out the insulation task.29

The robot, shown in fig. 1, is composed of 4 small wheels (each one is30

individually driven by a motor and a gearbox with a peak power of 65 W),31

a front horizontal laser and an actuated camera-laser system (3D scanner).32

Furthermore, it has a spray nozzle which ejects insulation foam. Further33

information about the robot specifications can be found in [3] and also on34

the vendor website (http://www.q-bot.co). Initially, the insulation task35

2
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has been developed through teleoperated assistance, what means that the36

robot vehicle is driven by an expert human operator [4].37

Spray gun 
on rotating 
platform

Pivoting 
rear axle

Camera 
and laser 
on rotating 
turret

Figure 1: Bird eye’s view of the robot and main components.

When a mobile robot is used to tackle this task, it is necessary that38

the robot move through the environment in order to apply the foam in-39

sulation on the required areas. When teleoperated assistance is used, the40

human operator recognizes and interprets the environment and takes the41

decisions about the movement of the robot and the task. However, despite42

the successful use of teleoperated robots, the use of autonomous robots43

would improve performance and speed while reducing cost. They would44

be able to complete the task without the continuous supervision of spe-45

cialized workers.46

If an autonomous development is desired, many issues appear and47

they must be addressed accurately. First, accessing to the environment48

can be carried out by making an access hatch and putting the robot into49

the underfloor environment. Once the robot is inside, a number of chal-50

lenges must be overcome. The main problems come up because the terrain51

tends to be extremely uneven, as stones, bricks fragments or sand are often52

present. This way, the robot has to move through irregular 3D paths, con-53

sidering also the presence of unknown obstacles. Two sample images of54

such typical underfloor environments are presented in figure 2. The robot55

must tackle the insulation task in this type of challenging and previously56

unknown environments.57
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Figure 2: Images of typical underfloor environments where the registration is difficult
due to their characteristics.

To address autonomously this task, firstly, the robot must be capable58

of mapping the environment with enough accuracy and reliability in or-59

der to recognize the zones where insulation is required and, at the same60

time, be able to estimate accurately its position within the map. This pro-61

cess is known as Simultaneous Localization And Mapping (SLAM). In order62

to tackle the mapping and localization, it is necessary to use one or more63

sensors to obtain some information from the environments. On the one64

hand, the SLAM task has been traditionally addressed using range sen-65

sors, such as laser, which measure the distance to the surroundings and66

usually lead to models that show occupied and non-occupied zones [5]67

[6]. On the other hand, vision systems can also be used for this purpose68

and much research is being carried out on mapping and localization using69

cameras [7] [8]. Visual approaches try to build a map of the environment70

using sets of features obtained from different points of view. Many re-71

searchers have addressed successfully the SLAM task in controlled envi-72

ronments through these vision systems such as Davison et al. [9] who use73
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a single camera. Nevertheless, it is necessary to highlight the difficulty74

of the underfloor environments. The presence of elements such as dust,75

sand, poor illumination or shadows makes the mapping and localization76

process extremely complex.77

The extreme unevenness of the floor is an additional issue to be taken78

into account (see fig. 2). Owing to it, the movement of the robot is not79

plane at all and it can be considered a 6 DoF (Degrees of Freedom) move-80

ment. Considering all these features and challenges, both a laser and a81

vision system are chosen to accurately build a map of the environment82

and installed on the robotic platform.83

Using these sensors, the mapping and localization are carried out fol-84

lowing the next process. First, from a specific pose (position and orienta-85

tion) of the environment, a scanning process is performed. During it, the86

sensors capture information on 360 deg. around the robot. The result is87

a 3D local map which consists of a point cloud that combines both depth88

and color information. Once the local map has been built from a specific89

pose, the robot will move a relatively long distance to a new, unknown90

pose. To estimate this new pose, the environment will be scanned again91

and a new local map (point cloud) will be built. The translation and ro-92

tation from the first to the second pose can be estimated by comparing93

these two local maps. After repeating this process from several poses, the94

set of local maps will compose a complete description of the environment95

(global map). This global map can be used not only to estimate the posi-96

tion of the robot while it moves, but also to determine the physical proper-97

ties of the underfloor environment in order to control the spray gun and,98

after the insulation step, in order to validate if all the areas are correctly99

covered with foam.100

Taking these facts into account, obtaining a robust and exact global101

map is very important. With this objective, having an accurate knowl-102

edge of the pose where each local map was captured is crucial. This is103

why this work focuses on this problem: estimating the current pose of104

the robot with respect to the previous one. The problem will be solved105

by comparing the point clouds obtained from both poses using a registra-106

tion approach, whose result is a transformation matrix that contains the107

rotation and traslation experienced by the robot from the first to the sec-108

ond pose. No information on odometry will be used because the extreme109

unevenness of the floor introduces a severe error on it (owing to shifting,110

slipping and orientation changes). This way, the global map is expected to111
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be robust against these phenomena.112

Therefore, in this paper we present a procedure designed to solve the113

alignment between two consecutive locations and to build a global map of114

the environment so that the robot can autonomously develop the insula-115

tion task in this kind of environments. In this regard, the work is based116

on the autonomous surveying robot architecture introduced in [4]. In this117

previous work, a system was proposed for selecting the next best position118

for performing a 3D scan. Multiple scans were aligned using the Itera-119

tive Closest Point (ICP) algorithm and merged together into a global map120

model. However, this system depends on a correct functioning of the ICP121

algorithm which is prone to fail or converge to a local minimum due to the122

complexities of the underfloor environments. Consequently, we present123

an algorithm that solves the registration in such environments. Therefore,124

the two main contributions of this paper are a novel method to improve125

the results of the ICP algorithm and a system for making the global map-126

ping process more robust to alignment failures.127

The remainder of the paper is structured as follows: Section 2 out-128

lines some previous related works. After that, Section 3 shows the acqui-129

sition system which was used in the experiments. Next, section 4 presents130

the method proposed to obtain the alignment between poses, while sec-131

tion 5 introduces the algorithm to solve wrong alignment cases. Section132

6 presents the experimental results and the discussions about the results.133

Finally, section 7 outlines the conclusions and future research lines.134

2. State of the art135

Some authors have made use of mobile robots in tasks related to con-136

struction, such as inspection and maintenance. As an example, Yu et137

al. [10] present a semiautomated inspection system to detect concrete cracks138

in tunnels, based on image processing. Also, Tseng et al. [11] propose some139

strategies to inspect pavement for maintenance and rehabilitation activi-140

ties, using a mobile robot. They develop some algorithms to control the141

motion of the surveying robot, including the use of computer vision, and142

use a virtual environment to test them. However, none of these proposals143

require a map of the environment.144

Tan et al. [12] study the relationship between the mobile robot and the145

environment, analyzing how inclusive the environment is for the robot.146
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They also establish a taxonomy to classify the robot-environment interac-147

tion. In our application, the environment cannot be changed to favor the148

robot inclusiveness and the environment imposes a negative impact on the149

robot (which is unintentional but very robot-unfriendly), since it is full of150

dirt and construction debris. This way, the floor is very uneven and there-151

fore the movement of the robot is not contained in a plane. Also, some152

parts of the environment will change substantially as the robot sprays the153

foam insulation because it will cover some areas. Robust algorithms must154

be implemented to overcome such difficult situations.155

Hamledari et al. [13] also use computer vision in construction, with156

the goal of detecting components in under-construction indoor partitions,157

such as studs, insulation and electrical outlets. This task requires image158

processing algorithms capable of coping with changing viewpoints, highly159

cluttered scenes, occlusions, diverse lighting conditions and the achro-160

matic characteristics of some objects. In the case presented here, not only161

should elements be detected, but also the robot should recognize features162

and localize itself in a transitory environment due to the fact that the un-163

derside of the floor is being insulated. Hence, the task is much more com-164

plex.165

With regard to the mapping and localization process, many authors166

have used only visual features to solve the alignment problem. This method167

consists in detecting keypoints in images which have been obtained from168

different poses. Next, each keypoint is associated a set of values (descrip-169

tor) that characterizes it and distinguishes it from the others keypoints.170

Through the descriptors, a set of matches between keypoints from differ-171

ent poses are obtained and therefore, a matrix transformation can be cal-172

culated. SIFT [14], SURF [15] and BRISK [16] are three popular extraction173

and description algorithms. However, these approaches based on visual174

keypoints present many drawbacks in underfloor environments, such as175

their sensitivity to changes of lighting conditions. These environments176

may be completely dark and the light is only provided by light sources177

installed either on the robot and/or in a specific position of the environ-178

ment. Hence, the shadows will generate inaccuracies both in the keypoints179

detected and in their descriptors.180

Considering the disadvantages of a purely visual approach, another181

possibility consists in using the depth data obtained from laser scanners.182

These devices can capture point clouds from specific poses of the environ-183

ment. Iterative Closest Point (ICP) [17] is the most used method to solve184
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the registration between two point clouds. Many variations of this method185

have been proposed, such as the one presented in [18], where plane-plane186

matches are considered instead of point-point, or [19], where SVD (Sin-187

gular Value Decomposition) is used to calculate the transformation matrix.188

Jost and Hügli use a heuristic approach to find closest points and hence189

reduce the complexity and accelerate the process [20].190

Additionally, there are some authors who use both visual and depth191

data to estimate the position of the robot and follow the process shown192

in fig. 3. Initially, the following information is available: one image and193

one point cloud obtained from the pose 1 and one image and point cloud194

obtained from pose 2. The process starts working with the visual infor-195

mation. The keypoints are extracted from both images, described and196

matched. Then, inconsistent correspondences are rejected (normally by197

RANSAC [21]) and an initial transformation matrix is obtained. This ma-198

trix gives a coarse alignment and is used subsequently as initial matrix for199

the ICP algorithm. This algorithm is run with the two point clouds and,200

as a result, a fine alignment and a more accurate transformation matrix is201

obtained. This approach has been used by a number of authors. Endres202

et al. [22] used either SURF, SIFT or ORB for Pairwise Feature Matching.203

Henry et al. [23] also used SIFT. However, instead of ICP point-to-point,204

they used ICP point-to-plane. More recently, dos Santos et al. [24] use vi-205

sual information (SIFT) for the coarse alignment. However, instead of ICP206

they use SLIC (Simple Linear Iterative Clustering) in the fine alignment.207

Low [25] presented an alternative method that estimates the transla-208

tion and rotation by accumulating the point-to-plane constraints of all the209

correspondences in a matrix. Similar to it, a modified version of ICP based210

on weighting the points has arisen. Once the salient points are detected,211

some extra information is used to apply a weighting value. This way, each212

point would have more or less importance according to its weight. The213

use of salient points and additional information in order to assist the reg-214

istration process gives more reliability and robustness even in situations215

where the geometry information is not enough. Cappelletto et al. [26] use216

the color information to weight through computing the distances between217

the matched points in the ICP algorithm. Also, Xie et al. [27] use the spa-218

tial distances of the SIFT descriptor to balance the errors during the error219

minimization process. For more information, an extensive comparison220

about the presented methods can be found in [28].221

8

Draf
t v

ers
ion



FINE	ALIGNMENT

COARSE	ALIGNMENT

Keypoints
Extraction

INPUT
(clouds/images)

Descriptors
computing Matching

Rejecting
wrong

correspondences

Matrix
estimation

Cloud	1

Cloud	2

ICP Optimization
(Loop Closure) Tfine

INPUT
(Global	map)

Tcoar

Figure 3: Schematic overview of the usual localization approach.

The up to now developed algorithms work quite well under many stan-222

dard circumstances and some of them can provide accurate results in real223

time. Nevertheless, they are prone to fail in environments like the target224

one due to the lack of light, little color variety and the unstructured ge-225

ometry. On the one hand, the high uncertainty of the robot position due to226

the irregularities of the terrain, as well as the irregular and unstructured227

appearance of the environment make the obtained keypoints untrustwor-228

thy for the estimation of the transformation matrix between consecutive229

poses. On the other hand, the characteristics of these environments (with230

elements on the floor whose position can change as the robot moves) and231

the upper planes information (whose shape will change after insulation)232

make that the classical depth registration methods do not present good re-233

sults. Therefore, this paper introduces a robust procedure which permits234

building a global map of the environment for the insulation task and its235

subsequent inspection.236

3. Data acquisition system237

The data acquisition system is composed of a 2D laser sensor and a238

monocular camera. They are attached to a turret that rotates around its239

vertical axis, which is perpendicular to the basis of the robot. The laser240

is mounted to scan in a vertical plane, which changes as the turret ro-241

tates. This system acquires complete 360 degrees information from the242

environment around the robot. Therefore, from a specific pose, the robot243

9



can capture a complete scan of the environment and a set of RGB images244

(see figure 4 (a)). The complete system is described in this section. First,245

subsection 3.1 describes the reference systems. After that, subsection 3.2246

describes the image acquisition process and the process to assembly the247

3D point cloud. At last, subsection 3.3 explains how color information is248

added to the point cloud.249

3.1. Reference frames250

Three reference frames are used in this work: the robot, laser and cam-251

era reference frames. First, fig. 4 (a) shows the robot reference frame. XR252

is the vertical axis and YR,ZR are the axes which define the plane of move-253

ment of the robot. Second, fig. 4 (b) shows the camera reference system,254

whose axes are XC ,YC ,ZC . Finally, fig. 5 shows the laser reference system255

{XL,YL,ZL}. Both the laser and camera frames rotate around their X axes.256

The laser provides a set of distance readings ρi measured at different an-257

gles θi . These readings can be expressed as 3D points in the laser frame258

q
[l]
i ∈R

3 = [ρi cosθi ρi sinθi 0]T and they can be transformed to the robot259

frame by:260

q
[f ]
i,j = RφjTLq

[l]
i,j (1)

where TL ∈ SE3 is the transformation that relates the calibrated position261

of the laser in the robot frame and Rφj ∈ SO3 is the rotation matrix that262

expresses that the turret has rotated an angle φj . We should note that, for263

simplicity of notation, the conversion between 3D-vectors and the corre-264

sponding homogeneous 4D-vectors has been omitted.265

3.2. Data acquisition266

During a complete acquisition process, the robot is steady at a specific267

pose ~ps and both camera and laser capture data while the turret spins a268

complete revolution around the vertical axis. This way, these data contain269

environment information on 360 degrees around the robot. On the one270

hand, about the camera, each image K is acquired from the position corre-271

sponding to the pose s of the robot and is defined in a set as Ks,r ∈RNx×Ny ,272

where Nx ×Ny is the resolution of the image (in this case 1448× 1928 pix-273

els) and r defines the orientation of the turret. In this work, 36 images are274

captured from each pose, r=0,1,2,...,35, with a change of orientation equal275

to 10 degrees between consecutive values of r (fig. 4 (b)) .276
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Figure 4: (a) Sensors of the robot and robot reference frame. (b) Schematic overview of
the camera reference frame and the image acquisition process.

On the other hand, the laser system performs several scans during this277

process. Each scan covers a vertical plane (fig. 5(a)) in which the resolu-278

tion is equal to 0.36 deg. (angle between two consecutive beams). This279

vertical scan covers 240 deg., but only 120 deg. (the central ones) are280

used. Also, the motor which spins the turret has 2400 steps. Hence, the281

minimum angle between two consecutive scan planes is equal to 0.15 deg.282

(fig. 5(b)). Therefore, a point cloud formed by around 800.000 points is283

created from each pose ~ps. We name this cloud Poriginal,s.284

3.3. Adding color to the point cloud285

The color of the corresponding pixels in the images is associated to286

each point by:287

c{i,j},k = Ik(π(HcalTcamRφjq
[f ]
i,j )) (2)

where Rφj ∈ SO3 is the rotation matrix corresponding to the turret at the288

angle φk at which the image was acquired. Tcam ∈ SE3 is the transforma-289

tion corresponding to the calibrated camera pose in the robot frame. Hcal290

is the calibrated camera matrix and u = π(x) is a function which performs291

the dehomogenization of x ∈ R3 = (x,y,z) in order to obtain u = (x/z,y/z).292
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Figure 5: Schematic overview of the laser system. The laser reference frame rotates
around the xL axis. (a) shows one laser scan and (b) is a bird eye’s view of the scan
planes during a complete acquisition process.

Ik : Ω → N
3 is the subpixel mapping between the image space domain293

Ω ⊂R
2 and the color values corresponding to the rectified image K .294

The color information is essential once the foam insulation has been295

sprayed, to check that the necessary areas have been correctly covered.296

This is why it is added to the cloud. However, the color information is297
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not used during the localization process as it does not contain distinctive298

information in underfloor environments, because of their low variety of299

colors.300

4. Alignment between consecutive poses301

Many of the algorithms which use ICP for registration present a good302

balance between accuracy and computing time. However, their main prob-303

lem is the necessity of a relatively accurate initial estimation to converge304

to the global optimum instead to a local minimum. The high similarity of305

the data acquired in the environments of this work exacerbates this prob-306

lem. In addition, the poses obtained through the odometry are not reliable307

due to the characteristics of the terrain. Therefore, this information could308

not be used neither as initial estimation nor as ground truth information.309

In order to solve the registration task, two possibilities have been com-310

monly used. The first option uses the visual information for the coarse311

alignment step and the point clouds in the refinement step (see fig. 3).312

First, this family of registration methods extracts keypoints from the vi-313

sual information. Second, a descriptor is computed for each keypoint.314

This value is computed through neighborhood information and the result315

is a vector that characterizes the keypoint and makes it possible to dis-316

tinguish it from other keypoints. Third, the keypoints from one image are317

matched with the keypoints from another image captured from a different318

robot pose. Fourth, alignments between different images are established.319

Normally, there are some matches which are erroneous, hence, a rejector320

step can be applied (a common method is RANSAC). Fifth, after establish-321

ing robust correspondences between keypoints, the transformation matrix322

is computed and it is used as initial matrix for the refinement step (ICP323

algorithm), which provides a more accurate matrix.324

In the second choice, the depth information is used in the coarse align-325

ment. The keypoints are extracted from the scenes and their 3D positions326

are calculated using the laser information. After that, the descriptors are327

computed using depth information and a matching is carried out. Then,328

like in the first case, a rejector step is tackled and a coarse transforma-329

tion matrix is computed through the correspondences between keypoints.330

Finally, through ICP, a more accurate matrix is obtained.331

Despite all the possibilities that the visual information can provide,332

this is not very useful in the proposed environment. The underfloor voids333
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are small spaces where there is not much light. Walls are composed by334

bricks which do not contain characteristic information. The underside335

of the floor presents the same problem because it is usually composed of336

some beams which are identical and evenly distributed. Therefore, the337

visual information is not reliable and should be avoided during the align-338

ment process. Consequently, a version of the second option is developed339

and it is fully explained in the next subsections. The initial data are two340

point clouds captured from two poses s and s-1 (Poriginal,s and Poriginal,s−1).341

The objective is obtaining the transformation matrix (relative position and342

orientation) between these two poses, using a registration approach with343

the two point clouds. The proposed algorithm consists of three main steps:344

• Points selection345

• Registration346

• Validation347

In the following subsections, the three parts will be explained.348

4.1. Points selection349

The original point clouds are composed of a large amount of points.350

This is due to the fact that the insulation task requires accurate infor-351

mation. If the ICP algorithm used all this information, the computing352

time would be exceedingly high. Also, the information collected from the353

top and bottom planes, especially the wooden beams in the upper part354

of the environment, would be harmful as it would lead to confusion. As355

pointed out before, these beams are almost equal and equidistant, hence,356

many points might be erroneously considered as correctly matched. Con-357

sequently, an erroneous alignment could be accepted as successful because358

of the large amount of matched points (section 4.3 will formalize the cri-359

teria to consider an alignment as correct or incorrect). Fig. 6 shows the360

result of the alignment process of two complete point clouds captured in361

a sample environment (fig. 2). This case is clearly unsuccessful and this362

kind of environments is very prone to present such wrong results due to363

the geometry of the top and bottom planes. This is why we propose re-364

moving this information before the registration process in this work.365

Therefore, taking the previous premises into account, a process is car-366

ried out to select some of the points of the original cloud. This process con-367

sists of two steps. First, a homogeneous filtering is carried out to reduce368

considerably the number of points. Second, a segmentation is performed369
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to select only the points situated in the planes which are the most helpful370

to reach a successful registration. Some functions of the Point Cloud Li-371

brary (PCL) [29] are used for these purposes. More details on both steps372

are given in the next two paragraphs.373

First, the homogeneous filtering is carried out following the diagram374

shown in fig. 7. Initially, a VoxelGrid filter is used. It consists in creating375

a 3D voxel grid (in this case, a 1 x 1 x 1 cm cube) over the point clouds.376

Afterwards, the points within each cube are approximated with their cen-377

troid. Finally, a random sampling filter is applied, which randomly selects378

a number of points of the resulting cloud and discards the rest. The more379

points are removed, the faster is this step and also the following ones.380

However, removing too many points can be counter-productive because381

the subsequent ICP algorithm might not work well. This way, despite the382

random filtering, the structure should be kept up. After several tests, the383

reached conclusion is that maintaining the 30% of the points is the op-384

timal value in order to balance speed and reliability. From this step, a385

downsampled cloud is obtained for each pose of the robot (Pdownsampled,s386

and Pdownsampled,s−1).387

Second, the objective of the segmentation consists in removing those388

points that belong to the the top and bottom planes. To tackle this step,389

the point cloud obtained after step 1 is clustered into planes. The planes390

whose normal vector is parallel to the X axis are considered as the top391

and the bottom ones and the rest are considered as walls. The algorithm392

removes the top and bottom planes, discards the points that belong to393

them and keeps the rest. To consider the presence of beams in the top394

planes and remove their information, once the planes that are situated395

over the robot have been detected, the one with the lowest height is ex-396

tracted and all the information in and above it is removed. As a result,397

lighter clouds are obtained (Pf iltered,s and Pf iltered,s−1). These are the clouds398

which will be used in the subsequent registration process. Fig. 8 shows the399

whole process with an original point cloud. Fig. 8(a) is Poriginal,s, fig. 8(b)400

is Pdownsampled,s and fig. 8(c) is Pf iltered,s.401

To sum up, the process starts with the original point clouds (Poriginal),402

obtained from the data acquisition, which contain more than 800.000 points.403

Then, the downsampled point clouds (Pdownsampled) are obtained after ap-404

plying VoxelGrid and random sampling filters. Finally, the filtered point405

clouds (Pf iltered) are obtained through segmentation and removal of the406

top and bottom planes. These clouds will be used for the registration step407
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Figure 6: Results of a sample registration process, using two point clouds captured from
different poses in a sample environment. The alignment is unsuccessful.

(subsection 4.2).408

4.2. Registration409

The next step consists in carrying out a registration process between410

the two filtered clouds (Pf iltered,s and Pf iltered,s−1). The results of this pro-411

cess are: (a) the transformation matrix (Ts,s−1) that relates both poses; (b)412

the number of matched points (Ns,s−1) and (c) the EFSs,s−1 (Euclidean Fit-413

ness Score) defined in eq. 3.414

EFSs,s−1 =
Ns,s−1∑
j=1

dist(P ests (j), Ps(j))
2 (3)

where dist(P ests (j), Ps(j)) is the Euclidean distance between the j-th matched415

point of the clouds P ests and Ps. P ests = Ts,s−1 × Ps−1.416

Classical ICP algorithms may present wrong results as far as the detec-417

tion of the relative orientations between poses is concerned. This is due418

to the fact that the algorithm may converge to a local minimum when the419

target environment presents some symmetry. The sub-soil environments420

modeled in this work are very prone to present this problem as they have421
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Figure 7: Filtering stages.

two main directions in the horizontal plane (those perpendicular to the422

walls) and the walls may be erroneously matched with their opposite ones.423

Since the odometry information is not trustworthy, it can not be used424

to have an initial estimation to apply the ICP algorithm. To overcome this425

issue, the next four initial conditions are considered: no traslation and426

four rotations (0, 90, 180 and 270 degrees) around the vertical axis. After427

that, the classical ICP algorithm is run four times in parallel (one for each428

of the four initial estimations).429

Among the four alignments carried out, the one that maximizes eq. 4430

is considered the optimal one.431

max{αN k
s,s−1 + β

1

EFSks,s−1

} (4)

Where α and β are two weighting values which were tuned empirically432
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(a) (b)

(c)

Figure 8: Points selection process. (a) Original cloud. (b) Downsampled cloud after Vox-
elGrid and random filtering. (c) Resulting cloud after removing top and bottom planes.

according to the characteristics of the environment and k is an index that433

defines the initial orientation (k = 0,90,180,270).434

The process to select the best alignment between the two consecutive435

poses is shown in fig. 9. In conclusion, in this step, four initial versions of436

the cloud Pf iltered,s are considered and aligned with Pf iltered,s−1 using ICP,437

and the transformation matrix Ts,s−1 of the optimal alignment is retained.438

4.3. Validation439

The previous step provides the optimal alignment matrix Ts,s−1 once440

the four possibilities have been evaluated. However, this does not ensure441

that the alignment is correct. Therefore, the algorithm should include a442

validation step.443

In order to validate this alignment matrix, the downsampled point444

clouds (Pdownsampled) are considered (subsection 4.1). In the previous sub-445

section, Pf iltered have been used due to the fact that removing the top and446
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Pfiltered,s

R(0	deg) R(90	deg) R(180	deg) R(270	deg)

ICP ICP ICP ICP

a = argmax
'

(𝛼𝑁+,+-.' + 𝛽
1

𝐸𝐹𝑆+,+-.' )

Pfiltered,s-1

𝑇+,+-. = 𝑇+,+-.7

T0s,s-1 T90s,s-1 T180s,s-1 T270s,s-1

P0filtered,s P90filtered,s P180filtered,s P270filtered,s

EFS0s,s-1 EFS90s,s-1 EFS180s,s-1 EFS270s,s-1
N0

s,s-1 N90
s,s-1 N180

s,s-1 N270
s,s-1

Figure 9: Algorithm diagram. Firstly, the cloud s is rotated 4 times with 0, 90, 180 and
270 degrees. Each resulting cloud is compared with the cloud s-1 using ICP. Through
the EFS (Euclidean Fitness Score) values and the number of matched points, the optimal
transformation matrix is chosen.

the bottom planes was beneficial for the registration process. However, in447

order to check if this process was really successful, this information must448

be taken into account. Otherwise, failures along the x axis could not be449

detected.450

For the validation purpose, three parameters are considered:451

• the EFS.452

• the ratio of correspondences over the number of points in Pdownsampled,s453
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(eq. 5).454

• the ratio of correspondences over the number of points in Pdownsampled,s−1455

(eq. 6).456

rs =
Ns,s−1

Npoints(s)
(5)

rs−1 =
Ns,s−1

Npoints(s−1)
(6)

where Npoints(s) and Npoints(s−1) are the number of points in the downsam-457

pled point clouds Pdownsampled,s and Pdownsampled,s−1 respectively. Ns,s−1 is458

the number of correspondences between Pf iltered,s and Pf iltered,s−1.459

Using only one of these two ratios may seem enough to validate the460

result. However, although one percentage might be high enough to sat-461

isfy the validation threshold, the other percentage might not reach that462

threshold, and consequently, the alignment should be rejected.463

Therefore, given the equation:464 [
ηrs +λrs−1 +µ

1
EFS

> V alidationth

]
(7)

where η, λ and µ are weighting values and V alidationth is the established465

threshold. If the sum of the left side is higher than the established thresh-466

old (V alidationth), then the alignment between the two point clouds will467

be considered successful and accepted. Otherwise, the alignment will be468

considered unsuccessful and rejected.469

It should be emphasized that even if the registration between Pf iltered,s470

and Pf iltered,s−1 is not correct, the inverse registration (registration between471

Pf iltered,s−1 and Pf iltered,s) may be correct. Therefore, in an unsuccessful472

validation case, the inverse registration will be carried out and validated473

in order to know if it satisfies eq. 7.474

In conclusion, through this third step, the alignment matrix Ts,s−1 ob-475

tained after the step 2 is validated. Two possibilities may happen:476

1. Equation 7 is satisfied. In this case we can consider that a successful477

alignment has been carried out between the current pose and the478

previous one. The matrix Ts,s−1 will be considered correct.479

20

Draf
t v

ers
ion



2. Equation 7 is not satisfied. In this case, the alignment matrix Ts,s−1480

should not be accepted as valid. This situation must be taken into481

account because the current pose ~ps cannot be estimated with re-482

spect to the previous one ~ps−1. The matrix Ts,s−1 will be considered483

incorrect.484

5. Algorithm to Locate Lost Poses485

Despite the robustness of the proposed alignment algorithm, the pre-486

liminary experiments showed that a number of unsuccessful cases could487

appear when trying to estimate the current pose with respect to the pre-488

vious one. Typically, these cases tend to appear either when the distance489

between the two poses is relatively high or when there is a big difference490

between the captured environments (i.e. the robot has entered in a differ-491

ent room). Therefore, it is necessary to develop an algorithm to estimate492

the pose of the robot when the registration with the previous pose was not493

successful. Not only must this algorithm try to align poses which were494

not well aligned, but it also has to locate poses which did not meet the495

validation condition.496

After the alignment step (which was explained in the previous sec-497

tion), with the aim of obtaining the alignment matrix between Pf iltered,s498

and Pf iltered,s−1, three different cases are taken into account (see algorithm499

1):500

1. The alignment between Pf iltered,s and Pf iltered,s−1 is correct (the align-501

ment matrix Ts,s−1 obtained from the alignment algorithm is consid-502

ered valid) and the previous pose (~ps−1) is correctly located. A pose503

is considered well located when its position is well known through a504

successful alignment between that pose and the previous one, which505

position is also known.506

2. The alignment between Pf iltered,s and Pf iltered,s−1 is not valid (the507

alignment matrix Ts,s−1 obtained from the alignment algorithm is not508

correct because eq. 7 is not met.).509

3. The alignment between Pf iltered,s and Pf iltered,s−1 is correct (i.e. the510

alignment matrix Ts,s−1 is considered valid), but the location of the511

previous pose (~ps−1) is not considered valid.512
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About the first possibility, if the alignment between the two consecu-513

tive poses is considered valid and the previous pose (~ps−1) is correctly lo-514

cated, then the current pose ~ps will be estimated through the matrix Ts,s−1.515

Hence, the pose ~ps will be considered as correctly located.516

As for the second possibility, the alignment between the two consecu-517

tive poses is considered wrong. In this case, a near pose would be searched518

in order to obtain a good alignment (see algorithm 2). For this purpose,519

despite the fact that Ts,s−1 is not correct, this matrix is used to make a520

rough estimation of the pose ~ps with respect to ~ps−1. Afterwards, the dis-521

tances between the pose ~ps and the previous ones (~pn where n = 0, ..., s − 2522

are known) are calculated by using:523

ds,n =
√

(xs − xn)2 + (ys − yn)2 ; n = 0, ..., s − 2 (8)

where (xs, ys) and (xn, yn) are the Cartesian coordinates of the poses ~ps and524

~pn within the map. Once the distances are calculated, the previous poses525

are sorted according to the distance and then, the registration between the526

cloud Pf iltered,s and the closest pose’s cloud is attempted. The registration527

step is repeated with the following closest poses’ clouds while the regis-528

tration is unsuccessful.529

At this time, two situations can occur. The first one happens when a530

good alignment with a pose ~pn is obtained. In this case, the alignment531

problem would be successfully solved for the pose ~ps. The transformation532

matrix would be stored and the pose ~ps would be located in the map. The533

second situation occurs when a successful alignment is reached with any534

previous pose. In this case, ~ps would be saved in a list of poses which are535

pending to be located. The poses which are in the pending list will not536

be considered in subsequent registration attempts because their location537

is not well known.538

Finally, as far as the third possibility is concerned, if the alignment539

between the two consecutive poses is considered valid but the previous540

pose (~ps−1) is not correctly located (i.e. it is in the pending list), then,541

the registration of Pf iltered,s will be tackled with the closest clouds until a542

good alignment is obtained. If ~ps is successfully aligned with any of the543

well located poses, the transformation matrix will be stored and the pose544

~ps will be included in the map. Moreover, ~ps−1 will be removed from the545

pending list and it will be considered correctly located too (see algorithm546

3).547
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The algorithm includes a final step, which is always carried out when548

a pose has been successfully aligned. After locating the new pose, the549

algorithm tries to align it with each pose which is on the pending list.550

Although this step increases the computing time, it is very interesting be-551

cause the amount of poses which are not located yet could be reduced.552

Hence, more information about the map and the robot movement could553

be obtained.554

Algorithm 1 Online algorithm

1: if Registration(Pf iltered,s, Pf iltered,s−1) OK then
2: if ~ps−1 Located then
3: Store(Ts,s−1)
4: Locate(~ps)
5: else
6: Case B
7: end if
8: else
9: Case A

10: end if

6. Experiments and Results555

This section presents the experiments that have been carried out in556

order to show that the proposed algorithms solve the registration problem557

in environments that present a challenge for characterization.558

The algorithms were run in a PC with two CPU Quad-Core Intel Xeon559

(®) at 2,8 GHz. In order to develop the experiments, some sets of laser560

measurements were taken by the robot from different poses of several en-561

vironments and one point cloud per pose was assembled. So, there is a562

point cloud associated to each pose of the robot within the environment563

(Ps is the point cloud in the pose ~ps). As mentioned above, the charac-564

teristics of the terrain do not permit obtaining accurate enough odometry565

measurements. Consequently, the quality of the computed alignment will566

be measured through confidence values which indicate the quality of the567

estimated transformation matrix. Therefore, an alignment matrix (T) will568

be considered either correct or rejected through the criteria presented in569

subsection 4.3.570
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Algorithm 2 Case A

1: Ts,s−1 is not accurate.
2: pcorrect: Array of located poses.
3: v: Array of correct poses. Sorted by distance.
4: dk: Array of distances between ~ps and the rest of correct poses ~pi .
5: P estf iltered,s = Ts,s−1 × Pf iltered,s−1

6: for i=0; (i < s − 1); i++ do
7: dk(i) =

√
(xests − xi)2 + (yests − yi)2

8: end for
9: v = sort{pcorrect,dk}

10: for j=0; {j < (Nposes − 2) and Registration(Pf iltered,s, Pf iltered,v(j)) is

WRONG } ; j++ do
11: if Registration(Pf iltered,s, Pf iltered,v(j)) OK then
12: Store(Ts,v(j))
13: Locate(~ps)
14: END CASE A
15: end if
16: end for
17: Listpending ← ~ps
18: END CASE A
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Algorithm 3 Case B

1: ~ps−1 is not accurate.
2: Ts,s−1 is accurate.
3: pcorrect: Array of located poses.
4: v: Array of correct poses. Sorted by distance.
5: dk: Array of distances between ~ps and the rest of correct poses ~pi .
6: P estf iltered,s = Ts,s−1 × P,f iltered,s−1

7: for i=0; (i < s − 1); i++ do
8: dk(i) =

√
(xestf iltered,s − xf iltered,i−)2 + (yestf iltered,s − yf iltered,i)2

9: end for
10: v = sort{pcorrect,dk}
11: for j=0; {j < (Nposes − 2) and Registration(Pf iltered,s, Pf iltered,v(j)) is

WRONG } ; j++ do
12: if Registration(Pf iltered,s, Pf iltered,v(j)) OK then
13: Store(Ts,v(j))
14: Locate(~ps)
15: Locate(~ps−1)
16: Listpending 8 ~ps
17: END CASE B
18: end if
19: end for
20: Listpending ← ~ps
21: END CASE B
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First, the environment and datasets are described in subsection 6.1.571

After that 3 different experiments have been carried out to validate the572

algorithms. Sections 6.2, 6.3 and 6.4 describe them and present the results.573

6.1. Dataset574

A dataset captured by ourselves is considered to carry out the experi-575

ments. Six different underfloor environments are used to collect the data.576

Within each environment, the robot followed a trajectory and captured577

data from a number of poses. Table 1 shows the number of poses consid-578

ered in each environment. A point cloud is stored for each pose. Fig. 10579

shows the appearance of some of the environments. Environment 1 and 2580

are relatively small (the average distance between captures is less than 10581

cm) and well structured. Environment 3 is larger and composed of several582

rooms. This way, consecutive point clouds may differ considerably thus it583

is expected to be more challenging. Environment 4 has a simpler structure584

comparing to the previous environments, but it is the one that presents a585

higher distance between consecutive poses. At last, 5 and 6 correspond to586

the same environment but prior to and after applying foam insulation to587

the underside of the floor.588

Environment 1 2 3 4 5 6
Number of poses 4 9 10 10 21 21

Table 1: Number of poses in each environment

Environment	2 Environment	4 Environment	6

Figure 10: Some examples of images extracted from different environments which have
been used to develop the experiments.

Three experiments are carried out in order to check the validity of589

the presented algorithms. The first experiment consists in evaluating the590
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method to align consecutive poses (algorithm presented in section 4). The591

second experiment focuses on the alignment of poses which were not suc-592

cessfully registered with the previous one (explained in section 5). Finally,593

an experiment is proposed to tune the validation threshold of the eq. 7.594

6.2. Experiment 1. Alignment between consecutive poses through the proposed595

registration algorithm.596

The first experiment, which consists in a registration between consecu-597

tive poses, is developed through the alignment algorithm presented in the598

section 4. Due to the fact that the number of correspondences depends599

on the characteristics of the point cloud (shape, number of points after600

downsampling, etc.), the percentage of correspondences is calculated as is601

detailed in section 4 (eq. 5 and 6). After each experiment, the computing602

time to complete the registration was also collected.603

Fig. 11 and 12 show the next results for each pair of consecutive poses604

(~ps−1, ~ps) in the six environments: the percentage of correspondences rs605

and rs−1 (eq. 5 and 6) and the EFS value (eq. 3) divided over the number of606

correspondences (Ns,s−1). Also, table 2 shows the average computing time607

and the average number of correspondences for each environment.608

As explained in subsection 4.3, an alignment is considered valid when609

equation 7 is accomplished. According to it, a high number of correspon-610

dences and low values of EFS denote good alignments. Taking it into ac-611

count, an analysis of figures 11 and 12 permits knowing which registra-612

tions are successful and which are not.613

These figures show that all the alignments were successful in environ-614

ment 1 and 2, since all the correspondences are around the same values615

and they are relatively high. There is no alignment whose values rs−1, rs616

and EFS/Ns,s−1 are substantially worse than the others, so none of the617

alignments should be rejected. In the environment 3, the percentage of618

matched points between the poses 6 and 7 and also between 7 and 8 are619

much lower than those of the rest of alignments and, at the same time, the620

EFS values are substantially higher. This would indicate that the align-621

ment between these point clouds was not successful and hence these align-622

ments should be rejected. In the environment 4, the alignments between623

P5−P6 and between P8−P9 present a percentage of correspondences which624

is slightly lower than in the others. Since this difference is relatively low,625

these alignments should be considered valid. The two last registrations in626

the environment 5 (P18 − P19 and P19 − P20) have respectively an average of627
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Figure 11: Results of experiment 1. Percentage of matched points and EFS divided by
number of correspondences in the environment (a) 1 , (b) 2 and (c) 3.

16% and 25% of correspondences, which are considerably lower than the628

rest of registrations (around 40% of correspondences), while the EFS val-629

ues for these alignments are also higher. This way, these two cases should630

be categorized as unsuccessful. In the environment 6, similar issues can631

be found in P10 − P11 and P19 − P20.632

Therefore, through the results shown above, we conclude that the num-633

ber of correspondences between consecutive point clouds along with the634

Euclidean Fitness Score are capable of validating the results.635

Finally, in this experiment, the computing time of the alignment be-636

tween point clouds was also measured. Table 2 shows the average compu-637

tation time and the average number of correspondences for each environ-638

ment. The algorithm is able to solve the problem in few seconds.639
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Figure 12: Results of experiment 1. Percentage of matched points and EFS divided by the
number of correspondences in the environment (a) 4 , (b) 5 and (c) 6.

6.3. Experiment 2. Alignment between poses that have not been successfully640

aligned with the previous one.641

The second experiment assesses the algorithm presented in the sec-642

tion 5. The results of the experiment 1 show that, although the alignment643

works quite well in the majority of the cases, there are some poses which644
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Environment Average Time (ms) Average N. correspondences
1 4224 10411
2 3639 13332
3 4184 10855
4 4934 16577
5 5955 14466
6 5284 14732

Table 2: Experiment 1. Average computing time of the registration process in the six
environments.

were not well aligned. To solve this problem, the algorithm which tries645

to align poses with other poses apart from the previous one is run. This646

experiment has been tested in the environments 5 and 6.647

The figures 13 and 14 show two sample point cloud alignments through648

the transformation matrices computed in experiment 1 and in experiment649

2. The figure 13 shows point clouds from the environment 5 and the figure650

14 shows point clouds from the environment 6. First, about environment651

5, the alignment calculated in experiment 1 between the poses 18 and652

19 was unsuccessful (fig. 13(a)). However, the experiment 2 provides a653

successful alignment with the pose 11 (fig. 13(b)). Second, in the case of654

environment 6, the experiment 1 was not able to calculate a correct align-655

ment between the poses 10 and 11 (fig 14(a)). This way, the experiment656

2 was run and, as a result, the pose 11 was successfully aligned with the657

pose 13 (fig. 14(b)). In this case, the alignment was carried out following658

this process. First, the point cloud in the pose 11 was obtained and the al-659

gorithm 1 was run. The registration between 10 and 11 was unsuccessful.660

Therefore, the algorithm 2 was run. The previous poses (from ~p0 to ~p9)661

were sorted according to the distance to the pose 11 (~p11 was calculated662

as T11,10 × ~p10, where T11,10 was a coarse alignment matrix). After trying663

to align unsuccessfully the pose 11 with all the previous ones, this pose664

was stored on the pending list. Second, a new pose (12) was obtained and665

successfully aligned with 11 using the algorithm 1. However, as 11 was on666

the pending list, the Case B (algorithm 3) was run. The pose 12 was not667

successfully registered with any of the previous poses (0,1....,10). Hence,668

it was also stored on the pending list. Again, a new pose (13) was obtained669

and was correctly registered with (12). After that, the algorithm 3 was670

run. The pose 13 was successfully registered with the pose 10. Therefore,671
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both the pose 13 and 12 were successfully located and 12 was removed672

from the pending list. Finally, as mentioned in section 5, after localiz-673

ing a new pose, the algorithm run a final step in order to try to localize674

poses which still were in the pending list. The registration between 13675

and 11 was successfully carried out, hence, 11 was successfully located as676

~p11 = T11,13 × ~p13.677

Fig. 15 shows the computing time of the alignment process. This time678

takes reasonably low values in case that the pose is successfully aligned679

with the previous one (experiment 1) and it increases substantially when680

the experiment 2 has to be run to achieve a correct alignment.681

Therefore, the algorithm that aligns consecutive poses permits getting682

correct alignment results in many cases. However, despite using this algo-683

rithm, there is a low number of cases that still do not present valid align-684

ments. For this reason, an algorithm to align non-consecutive poses has685

been developed and tested. This algorithm not only tries to align incorrect686

poses with previous ones, but also, in cases in which the alignment with687

previous poses is unsuccessful, a pending list is managed in order to align688

the pose with future ones.689

(a) (b)

Figure 13: (a) Wrong alignment between poses 18 and 19 in the environment 5. (b)
Correct alignment of the pose 19 with the pose 11 in the environment 5 after using the
case A (algorithm 2 of the novel registration algorithm.)

6.4. Experiment 3. Tuning the validation threshold690

The results of the experiment 1 showed that the percentage of corre-691

spondences (rs and rs−1) and the EFS take different values depending on692
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(a) (b)

Figure 14: (a) Wrong alignment between poses 10 and 11 in the environment 6. (b)
Correct alignment of the pose 11 with the pose 13 in the environment 6 after using the
case B (algorithm 3 of the novel registration algorithm.)

the environment (fig. 11 and 12). This is because the characteristics of693

the point clouds depend on some factors such as the size of the environ-694

ment, the elements that compose it and how structured it is. It leads us695

to the conclusion that the validation threshold (eq. 7) cannot be global. If696

we tried to establish the same threshold for all the environments, most of697

the registrations would be categorized wrongly; either because successful698

alignments would be considered as unsuccessful, or even because incor-699

rect alignments could be accepted as correct. This last case is specially700

dangerous and it should be categorically avoided.701

In order to solve this issue, the next process is followed. Initially, the702

first registration (between the poses ~p0 and ~p1) is carried out and the align-703

ment results are obtained. The average value of the two percentages of704

correspondences (rs and rs−1) is obtained and the result is multiplied by a705

coefficient γ . The result will be considered as the threshold (eq. 7) for this706

environment. Afterwards, the following registrations in the environment707

will be accepted as correct if eq. 7 is met.708

It should be pointed out that this threshold will only work well if the709

first registration was correct. Otherwise, the error will be spread in the710

following registrations. In order to avoid that, the translation and rotation711

of the robot between the poses ~p0 and ~p1 should be small. This permits712

tuning the parameters, taking the diversity of the environments into ac-713

count. Additionally, the value of γ should be chosen by the user. In this714
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Figure 15: Computing time of experiment 2. (a) Environment 5. (b) Environment 6.
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experiment, different values of γ are considered to test the influence of715

this parameter on the results of validation. Environments 3, 4, 5 and 6716

are used to tune this parameter, as they are the most challenging ones.717

Additionally, a mixture between environments 5 and 6 is considered in718

order to add more complexity and taking advantage of the fact that the719

environments 5 and 6 are the same but the top plane.720

Three values for the coefficient γ are tested (0.6, 0.7 and 0.8). For each721

registration within an environment, four possible cases can occur. First,722

the registration between poses is detected as correct when in fact it is cor-723

rect (True positive). Second, the registration is detected as incorrect when724

it is in fact incorrect (True negative). Third, the registration is detected as725

incorrect when it is actually correct (False negative). Last, the registration726

is detected as correct when it is actually incorrect (False positive).727

Therefore, for each value of γ , two graphs are depicted. The first one728

shows in each environment how many registrations have been detected729

as True positive, True negative, False negative or False positive. The second730

graph shows how many decisions were right (True positive or True nega-731

tive) and how many decisions failed (False negative or False positive). The732

results obtained are showed in fig. 16.733

Using the transformation matrices calculated in experiment 1, and vi-734

sually analyzing the results, the following registrations proved to be un-735

successful:736

• Environment 3: p1 − p2 and p7 − p8.737

• Environment 4: All registrations were correct.738

• Environment 5: All registrations were correct.739

• Environment 6: p10 − p11 and p19 − p20.740

• Environment mix. 5-6: p2 − p3.741

These results permit making a deep analysis of fig. 16. First, when742

γ = 0.8 (see figure 16 (a) and (b)), in the environment 3, the two wrong743

registrations were detected as incorrect and one registration was rejected744

when actually it was successfully aligned. In the environment 4, all the745

poses were detected as correct. In environment 5, four poses were de-746

tected as wrongly aligned when actually they were correct. In 6, the two747

wrongly aligned poses were detected as incorrect. Last, in the mixture en-748

vironment, the incorrect registration was also detected. As a result (see749

fig. 16 (b)), the validation algorithm failed once in the environment 3750

and four times in 5. Second, when γ = 0.7 (see figure 16 (c) and (d)), in751
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Figure 16: Experiment 3. True positive, true negative, false negative and false positive
registrations when the coefficient γ is (a) 0.8, (c) 0.7 and (e) 0.6. Number of times when
the result of the algorithm is right and the number of failures when γ is (b) 0.8, (d) 0.7
and (f) 0.6 .

the environment 3, the two wrongly aligned registrations were detected752

as incorrect and one registration was rejected when actually it was suc-753

cessfully aligned. In the environment 4, all the poses were detected as754
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correct. In environment 5, one pose was detected as wrong aligned when755

actually it was successfully aligned. In 6, the two poses wrongly aligned756

were detected as incorrect. Last, in the mixture environment, the incorrect757

registration was detected. Consequently, (see fig. 16(d)), the validation al-758

gorithm failed once in the environment 3 and once in 5. Finally, when759

γ = 0.6 (see figure 16 (e) and (f)), in the environment 3, the two registra-760

tions wrong aligned were detected as incorrect and one registration was761

rejected when actually it was successfully aligned. In the environment762

4, all the poses where detected as correct. In environment 5, all the poses763

where detected as correct. In 6, the two wrong aligned poses were detected764

as incorrect. Last, in the mixture environment, the incorrect registration765

was detected. Thus, when γ = 0.6 (see fig. 16(f)), the validation algorithm766

failed only once, in the environment 3.767

None of the three coefficients produced the False positive case (regis-768

tration detected as successful when actually it was unsuccessful). This is769

very important because that situation must be strongly avoided. For a co-770

efficient γ = 0.8, the threshold is too tough and thus, in many cases, good771

alignments are rejected. When γ = 0.6, the calculated threshold seems to772

be correct more often, but 0.7 ensures not to detect wrong alignments as773

correct. In conclusion, γ must be tuned in the range 0.6 to 0.7 by the users774

according to their needs.775

7. Conclusion776

This paper proposes two novel methods to solve the registration task777

between poses in underfloor environments which present challenging fea-778

tures for traditional methods. The first contribution is an algorithm that779

uses point cloud information captured by the robot from different poses.780

After obtaining the point clouds, they are downsampled and the informa-781

tion in the top and bottom planes is removed in order to obtain clouds782

with less points and more robust results. Finally, the transformation ma-783

trix is calculated. This algorithm works well in environments where the784

characterization using regular algorithms is difficult. Most of the current785

registration algorithms do not work well in this kind of environments due786

to the fact that they are not able to extract reliable features. Addition-787

ally, although the registration algorithms are commonly based on a coarse788

alignment (using visual information), a fine alignment (using depth infor-789

mation) and an optional optimization, the method proposed here is able790
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to find accurate enough results just using the depth information. The re-791

sults show that this algorithm works successfully for the majority of the792

cases and also lasts few seconds to reach the solution.793

Furthermore, as the second contribution, a novel algorithm is proposed794

to solve the cases in which the alignment between consecutive poses was795

not possible. This algorithm tries to align the poses which were not well796

aligned with other poses within the environment. The results show that797

this method successfully aligns the majority of cases. Hence, this can be798

useful for online localization processes where it is desirable to ensure that799

no information is lost in order to determine the exact path followed by800

the robot within the environment. Although extra computing time is re-801

quired, almost no pose information is lost and an accurate global map can802

be created.803

The percentage of correspondences along with the EFS value permit804

calculating a validation value. The third contribution consists in tuning805

this validation threshold and testing its influence on the accuracy of the806

validation process. Good results were obtained when γ = 0.7 and γ = 0.6807

and we conclude that the users should choose a value within this range808

according to their needs. When this coefficient is closer to 0.6, the valida-809

tion step tends to be right in the majority of cases. If it is closer to 0.7, the810

validation step reduces the chance of detecting unsuccessful alignments811

as correct.812

The results presented in this paper show the robustness and effective-813

ness of the proposed methods and their ability to cope with such challeng-814

ing underfloor environments. The team are now working on improving815

the robustness of these algorithms by enhancing some steps. For instance,816

to optimize the points selection step through a more restrictive selection817

which provides a more reliable characterization of the environment and818

reduces the computing time. Additionally, to reduce the number of un-819

successful cases through the improvement of the registration step and to820

cut down the time to find a good alignment between two poses. Finally,821

to establish a validation step which provides a global reliable value for a822

variety of environments.823
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Abstract: This paper presents an extended study about the compression of topological models of
indoor environments. The performance of two clustering methods is tested in order to know their
utility both to build a model of the environment and to solve the localization task. Omnidirectional
images are used to create the compact model, as well as to estimate the robot position within
the environment. These images are characterized through global appearance descriptors, since
they constitute a straightforward mechanism to build a compact model and estimate the robot
position. To evaluate the goodness of the proposed clustering algorithms, several datasets are
considered. They are composed of either panoramic or omnidirectional images captured in several
environments, under real operating conditions. The results confirm that compression of visual
information contributes to a more efficient localization process through saving computation time and
keeping a relatively good accuracy.

Keywords: mapping; localization; clustering; omnidirectional images; global appearance descriptors

1. Introduction

The presence of mobile robots in many kinds of environments has increased substantially during
the past few years. Robots need a high degree of autonomy to develop their tasks. In the case of
autonomous mobile robots, this means that they must be able to localize themselves and to navigate
through environments that are a priori unknown. Hence, the robot will have to carry out the mapping
task, which consists of obtaining information from the environment and creating a model. Once this
task is done, the robot will be able to address the localization task, i.e., estimating its position within
the environment with respect to a specific reference system.

Vision sensors have been widely used for mapping, navigation, and localization purposes.
According to the number of cameras and the field of view, different configurations have been proposed.
Some authors (such as Okuyama et al. [1]) have used monocular configurations. Others proposed
stereo cameras by using binocular (such as Yong-Guo et al. [2] or Gwinner et al. [3]) or even trinocular
systems (such as Jia et al. [4]).

Despite stereo cameras permitting measuring depth from the images, these systems present a
limitation related to their field of view. In order to obtain complete information from the environment,
several images must be captured. In this respect, omnidirectional cameras constitute a good alternative.
They can provide a big amount of information with a field of view of 360 deg. around them, and their
cost is relatively low in comparison with other kinds of sensors. Furthermore, omnidirectional vision

Appl. Sci. 2019, 9, 377; doi:10.3390/app9030377 www.mdpi.com/journal/applsci
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systems present further advantages. For instance, the features in the images are more stable (because
they stay longer as the robot moves), and they permit estimating both the position and the orientation of
the robot. Omnidirectional cameras have been successfully used by different authors for mapping and
localization [5–9]. A wide study was carried out by Payá et al. [10], who introduced a state-of-the-art
of the most relevant mapping and localization algorithms developed with omnidirectional visual
information. An example of a mobile robot that has an omnidirectional camera mounted on it is shown
in Figure 1a, and an example of an omnidirectional image is shown in Figure 1b.

(a) (b)

Figure 1. (a) Example of a robot Pioneer P3-AT R© equipped with an omnidirectional vision system
and a laser range finder. In this work, only the omnidirectional camera is used. (b) Example of an
omnidirectional image captured from one office.

In the related literature, two main frameworks have been proposed in order to carry out the
mapping task: the metric maps, which represent the environment with geometric accuracy; and the
topological maps, which describe the environment as a graph containing a set of locations with the
related links among them. Regarding the second option, some authors have proposed to arrange the
information in the map hierarchically, into a set of layers. The way a robot solves the localization task
efficiently in hierarchical maps is as follows: first, a rough, but fast localization is carried out using
the high-level layers; second, a fine localization is tackled in a local area using the low-level layers.
Therefore, in order to address the mapping and localization issue, hierarchical maps constitute an
efficient alternative (like the works [11–13] show).

Visual mapping and localization have been solved mainly by using two main approaches to extract
the most relevant information from scenes; either by detection, description, and tracking of some
relevant landmarks or working with global appearance algorithms, i.e., building a unique descriptor
per image. On the one hand, the methods based on local features consist of extracting some outstanding
points from each scene and creating a descriptor for each point, using the information around it
(Figure 2a). The most popular description methods used for this purpose are SIFT (Scale-Invariant
Feature Transform) [14] and SURF (Speeded-Up Robust Features) [15]. More recently, descriptors such
as BRIEF (Binary Robust Independent Elementary Features) [16] or ORB (Oriented FAST and Rotated
BRIEF) [17] have been proposed, trying to overcome some drawbacks such as the computational time
and invariance against rotation. These descriptors have become very popular in visual mapping and
localization, and many authors have proposed methods that use them, such as Angeli et al., who
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employed SIFT [18], or Murillo et al., who used SURF [8]. Nonetheless, these methods present some
disadvantages. For instance, to obtain reliable landmarks, the environments must be rich in details.
Furthermore, keypoints’ detection is not always robust against changes in the environments (e.g.,
changes of lighting conditions), and sometimes, the description is not totally invariant to changes in the
robot position. Moreover, these approaches might be computationally complex; hence, in those cases,
it would not be possible to build models in real time. On the other hand, the methods based on the
global appearance of scenes consist of treating each image as a whole. Each image is represented by a
unique descriptor, which contains information about its global appearance (Figure 2b). These methods
lead to simpler mapping and localization algorithms, due to the fact that each scene is described by only
one descriptor. Hence, mapping and localization can be carried out by just storing and comparing the
descriptors pairwise. Besides, they could be more robust in dynamic and unstructured environments.
However, as drawbacks, these methods present a lack of metric information (they are commonly
employed to build topological maps). Visual aliasing also might have a negative impact on the
mapping and localization tasks, due to the fact that indoor environments are prone to present repetitive
visual structures. Additionally, modelling large environments would require a big amount of images,
and this can introduce serious issues when these techniques have to be used in real-time applications.
Therefore, global appearance is an intuitive alternative to solve the mapping and localization problem,
but its robustness against these issues must be tested. Many authors have addressed mapping and
localization using global appearance descriptors (Figure 2b). For instance, Menegatti et al. [19] used
the Fourier signature in order to build a visual memory of a relatively small environment from a set
of panoramic images. Liu et al. [20] proposed a descriptor based on colour features and geometric
information. Through this descriptor, a topological map can be built. Payá et al. [21] proposed a
mapping method from global appearance and solved the localization in a probabilistic fashion, using
a Monte Carlo approach. Furthermore, they developed a comparative analysis of some description
methods. Rituerto et al. [22] proposed the use of the descriptor gist [23,24] to create topological maps
from omnidirectional images. More recently, Berenguer et al. [6] proposed the Radon transform [25] as
the global appearance descriptor of omnidirectional images and a hierarchical localization method.
Through this method, first, a rough localization is obtained; after that, a local topological map of a
region is created and used to refine the localization of the robot.

In light of the previous information, in the present paper, the use of hierarchical models is
proposed to solve the localization task efficiently. In this sense, compression methods are used as a
solution to generate the high-level layers of the hierarchical model. Some authors have used clustering
algorithms to carry out the compression task. For instance, Zivkovic et al. [26] used spectral clustering
to obtain higher level models, which improved the efficiency of the path-planning. Grudic and
Mulligan [27] built topological maps through the use of an unsupervised learning algorithm, which
worked with spectral clustering. Valgren et al. [28] tackled an on-line topological mapping through the
use of incremental spectral clustering. Štimec et al. [29] used an unsupervised clustering based on the
multiple eigenspaces algorithm to carry out topological mapping hierarchically using omnidirectional
images. More recently, Shi et al. [30] proposed the use of a differential clustering method to improve
the compression of telemetry data.

We propose a method to build hierarchical maps through a combination of clustering methods
and global appearance descriptors. We compare the performance of spectral and self-organizing
maps’ clustering. In addition, an exhaustive experimental evaluation is carried out to assess the
performance of the method in mapping and localization tasks, and we evaluate the influence of the
most relevant parameters in the results. This is an interesting problem in the field of mobile robotics
because, as pointed out before, global appearance descriptors are a straightforward way of describing
visual information, but they contain no metric information, comparing to local-features’ descriptors.
Additionally, no deep study to assess the performance of global-appearance descriptors in hierarchical
mapping can be found in the literature. The experiments show that the proposal that we present is a
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feasible alternative to build robust compact maps, despite the phenomenon of visual aliasing, which is
present in the sets of images that we have used in the experiments.

"⃗#

(a)

(b)

"⃗$

"⃗%

…

Figure 2. Two main methods to extract the most relevant information from the images for mapping and
localization purposes. (a) Detection, description, and tracking of some relevant landmarks along a set of
scenes. (b) Building a unique descriptor per image that contains information on its global appearance.

The present paper continues and extends the study presented in [31], which is a comparative
evaluation in which the performance of some descriptors was assessed to create compact
models and estimate the position of the robot. The contributions of the present paper are
the following: (a) a new method to compact the visual model is proposed; (b) the trade-off
compactness-accuracy-computational cost is addressed, and the performance of the compact models is
compared to raw models (with no compaction); (c) a comparison between compression through direct
methods and compression through clustering methods to solve the localization task is evaluated; and
(d) new indoor environments with different topologies are included in the experimental section.

The remainder of the paper is structured as follows: Section 2 outlines the global appearance
descriptors that will be tested throughout the paper. After that, Section 3 shows the clustering
approaches used to compress the models. Next, Section 4 presents the method to obtain the localization
within the compact models. Section 5 presents the experimental results of clustering and localization
and also the discussions about the results. Finally, Section 6 outlines the conclusions and future
research lines.

2. Global Appearance Descriptors

As mentioned in the previous section, global appearance descriptors constitute an interesting
alternative for mapping and localization. In this work, the robot moves along the floor plane, and it
captures images using a hyperbolic mirror, which is mounted over a camera along the vertical axis.
This section details three methods to describe the global appearance of a set of panoramic scenes
IM = {im1, im2, ..., imN} where imj ∈ RMx×My . After using each description method, a descriptor for
each image is calculated; thus, the database is composed of a set of descriptors, D = { #»

d1,
#»

d2, ...,
#  »

dN}
where each descriptor is

#»

dj ∈ Cl×1 and corresponds to the image imj.
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The remainder of the section presents the global appearance techniques used throughout the
paper and the homomorphic filter, which is used as a pre-treatment for the images.

2.1. Fourier Signature Descriptor

The Fourier signature descriptor was firstly used by Menegatti et al. [19] to create an image-based
memory for robot navigation. Payá et al. [21] studied the computational cost and the error in
localization by using Fourier Signature (FS) and proposed a Monte Carlo approach to solve the
localization problem in indoor environments.

This description method is based on the use of the Discrete Fourier Transform (DFT).
After calculating the FS of a panoramic image, a new complex matrix is obtained IM(u, v). It can
be decomposed into two real matrices, one containing the magnitudes and the other the arguments.
The steps to obtain a global appearance descriptor from a panoramic image through the Fourier
Signature (FS) are: First, departing from the intensity matrix of the original image, the DFT of each
row is calculated. The result is a complex matrix with the same size as the original image (IM(u, v) ∈
CNx×Ny ). Second, only the k1 first columns of this matrix are retained since the main information is in
the low frequency components. Third, the resultant matrix (IM(u, v) ∈ CNx×k1) is decomposed into
the magnitudes and arguments matrices. The matrix of magnitudes (A(u, y) ∈ RNx×k1) is invariant
against changes of the robot orientation in the movement plane if the image is panoramic. In the last
step, the global appearance descriptor is obtained by arranging the k1 columns of the magnitudes
matrix in one single column (

#»

d ∈ RNx ·k1×1).

2.2. Histogram of Oriented Gradients Descriptor

The Histogram of Oriented Gradients (HOG) is a description method used in computer vision to
detect objects. This descriptor is remarkable due to the fact that it is easy to build, leads to successful
results in detection tasks, and also requires a low computational cost. It is built from the orientation
of the gradient in localized parts of the panoramic image. The development consists of dividing the
image into small regions (k2 horizontal cells in this work) and compiling a histogram with b bins for
the pixels, which are included inside each cell using their gradient orientation. The combination of
this information provides the desired descriptor (

#»

d ∈ Rb·k2×1). This method has been used by some
authors such as Mekonnen et al. [32] to develop a person detection tool, or Dong et al. [33], who
proposed an HOG-based multi-stage approach for object detection and pose recognition in the field
of service robots. This method was firstly used in mobile robotics by Dalal and Triggs [34] to solve
people detection task. Zhu et al. [35] presented an improved version with respect to computational
time and efficiency to detect people.

The HOG version proposed in this work is described in detail in [36].

2.3. Gist Descriptor

The gistdescription was introduced by Oliva et al. [37], and it has been commonly used to
recognize scenes. Since then, several versions can be found, which work with different features from
the images, such as colour, texture, orientation, etc. [38]. Some researchers have used gist in mobile
robotics. For instance, Chang et al. [39] used this global appearance descriptor for localization and
navigation. Murillo et al. [40] also used the gist descriptor to solve the localization problem, but in this
case, the gist descriptor was a reduced version obtained with Principal Components Analysis (PCA).

The version we use throughout this paper is described in [36] and works with the orientation
information obtained through a set of Gabor filters. From the panoramic image, m different resolution
levels are obtained. Then, nmasks orientation filters are applied over each level. Finally, the pixels
of every image are grouped into k3 horizontal blocks, and the information is arranged in a vector
(

#»

d ∈ Rnmasks ·m·k3×1).
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2.4. Homomorphic Filter

In order to solve the localization task, typical situations may happen such as lighting variations
and changes in the position of some objects (chairs, tables, open doors, etc.). Hence, descriptors must
be robust against these circumstances.

Fernandez et al. [41] showed that some pre-treatments could improve the localization accuracy
in indoor environments with different lighting levels. Among the studied techniques, the use of the
homomorphic filter [42] can be highlighted. The homomorphic filter permits filtering the luminance
and reflectance components from an image separately.

The use of this filter has proven to provide especially good results when it is used in combination
with the HOG descriptor [31], whereas in the FS and gist cases, the results were similar to or worse
than without this pre-treatment filter. Hence, in the present paper, the following configurations will be
used throughout the experiments: FS without filter, HOG with filter, and gist without filter.

3. Clustering Methods to Compact the Visual Information

In this section, the creation of topological models and how to compact them will be addressed.
Subsequently, these models will be utilized to solve the localization problem. Only visual information
and global appearance descriptors will be used in both tasks. This way, the problem will be addressed
through the next two steps.

1. Learning: creating a map of the environment and compacting it. A set of omnidirectional
images is captured from different positions, and a global appearance descriptor for each image
is calculated. After that, a clustering method is used to determine the structure and compact
the model.

2. Validation: Once the map is built, the robot obtains a new image from an unknown position,
calculates the descriptor, and compares it with the set of descriptors obtained in the learning step.
Through this comparison, the robot must be able to estimate its position.

Focusing on the learning step, the robot moves around the environment and captures some images
from different positions to cover the whole environment. This way, a set of omnidirectional images
is collected I = {im1, im2, ..., imN} where imj ∈ RNx×Ny . After that, a global appearance descriptor is
calculated for each image; hence, a set of descriptors is obtained D = { #»

d1,
#»

d2, ...,
#  »

dN} where
#»

dj ∈ Cl×1.
This set of descriptors can be considered as a straightforward model of the environments [43,44],

as some previous works do. However, in this mapping strategy, important problems appear when the
environment has considerable dimensions. The larger the environment is, the more images have to be
captured to model it completely. This leads to the requirement of more computational time and also
more memory space in order to process and collect the information related to each captured image and
to solve the subsequent localization problem. This way, the model should be compacted in such a way
that it retains most of the visual information and permits solving the localization problem efficiently.

In this work, we propose a clustering approach to compact the model, with the objective of
creating a two-layer hierarchical structure. The low-level layer is composed of a set of descriptors and,
to obtain the high-level layer, this set will be compacted via clustering. Each cluster is characterized by
the common attributes of the instances that form that group. This way, the dataset D = { #»

d1,
#»

d2, ...,
#  »

dN}
is divided into nc clusters C = {C1, C2, ..., Cnc} under the conditions:

Ci 6= ∅, i = 1, ..., nc
m⋃

i=0

Ci = D

Ci
⋂

Cj = ∅, i 6= j, i, j = 1, ..., nc.

(1)
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After this, each cluster is reduced to a unique representative descriptor, which is obtained in this
work as the average of all the descriptors that compose that cluster. A set of representatives is obtained
R = { #»r1, #»r2, ..., #  »rnc}, and therefore, the model is compacted. This set of representatives composes the
high-level layer.

Figure 3 shows how a sample map is compacted. Figure 3a shows the positions where panoramic
images were captured to cover the whole environment. The result of the clustering process is presented
in Figure 3b, and then, one representative per cluster is obtained (Figure 3c). The representative
descriptor is obtained as the average descriptor among those grouped in the same cluster. Additionally,
the position of this representative descriptor is calculated as the average position of the capture points
of the images included in the same cluster. These positions are calculated just as a ground truth to test
the performance of the compact map in a localization process, but they are not used either to build the
map, nor to localize the robot. Only visual information is used with these aims. Different clustering
methods will be analysed. These methods will only use visual information, and ideally, the objective is
to group images captured from near positions despite visual aliasing. To evaluate the correctness of
the approach, the geometrical compactness of the clusters and their utility to solve the localization task
will be tested in Section 5.

Regarding the clustering process to compact the visual models, two methods are studied: spectral
clustering and self-organizing maps.
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Figure 3. Example of an indoor map and a compression of the information. (a) Positions where
the images were captured. (b) Result of the clustering process. (c) Each cluster is reduced to
one representative.

3.1. Spectral Clustering Algorithm

Spectral clustering algorithms [45] have proven to be suitable to process highly-dimensional data.
In this work, a spectral normalized clustering algorithm is used as was introduced by Ng et al. [46].
This algorithm has been already used for mapping along with local features extracted from the
scenes [29,47].

In our work, the algorithm departs from the set of global appearance descriptors D =

{ #»

d1,
#»

d2, ...
#  »

dN} obtained from the images collected in the environment, and the parameter nc is the
desired number of clusters. Initially, the similitude between descriptors is calculated. This parameter

is calculated for each pair of descriptors; hence, a matrix of similitudes S is obtained as Sij = e−
| #»di−

#»

dj |2

2σ2

where σ is a parameter that controls the rapidity of the reduction of the similitude when the distance
between

#»

di and
#»

dj increases. The steps to carry out the clustering are the following:
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1. Calculation of the normalized Laplacian matrix:

L = I − D−1/2SD1/2 (2)

where Dis a diagonal matrix Di = ∑N
j=1 Sij.

2. Calculation of the nc main eigenvectors of L, { # »u1, # »u2, ..., #   »unc}. Arranging these vectors by columns,
the matrix U ∈ RN×nc is obtained.

3. Normalization of the matrix U to obtain the matrix T ∈ RN×nc .
4. Extraction of vector #»yi ∈ Rnc from the ith row of the matrix T. i = 1, ..., N.
5. Clustering of the #»yi vectors by using a simple clustering algorithm (such as k-means or hierarchical

clustering). Through this, the clusters A1, A2, ..., Anc are obtained.
6. Obtaining the clusters with the original data as C1, C2, ..., Cnc where Ci =

#»

dj | #»yj ∈ Ai.

If the number of instances N or the dimension l is high, the computation of the nc eigenvectors
(third step) will be computationally expensive. To solve this issue, Luxburg [45] proposed cancelling
some components of the similitude matrix. This way, in the matrix S, only the components Sij so that j
is among the t nearest neighbours of i are retained. After this, the nc first eigenvectors of the Laplacian
matrix L are calculated by using the Lanczos/Arnoldi factorization [48].

Finally, for each cluster, a representative is obtained as the average visual descriptor of the set of
descriptors that compose that cluster.

Spectral clustering may result in being more efficient than traditional methods such as k-means
or hierarchical clustering in large environments due to the fact that spectral clustering considers the
mutual similitude between the instances.

3.2. Cluster with a Self-Organizing Map Neural Network

As a second alternative, Self-Organizing Maps (SOM) have been chosen to carry out the clustering
evaluation in this work. This algorithm was introduced by Kohonen [49], and it is an effective option
to carry out a mapping distribution when the data present a high dimensionality [50]. This algorithm
has been commonly used for clustering or reducing the dimensionality of data. Therefore, in this
work, the input data are the set of global appearance descriptors calculated with one of the methods
described in Section 2. The size of the neural network map (WSOM × HSOM = nc) is chosen. After the
training step, the data will be grouped into nc different clusters.

Self-organizing maps automatically learn to classify input vectors according to their similarity
and topology in the input space. They differ from competitive layers in that neighbouring neurons in
the SOM learn to recognize neighbouring sections of the input space. Thus, self-organizing maps learn
both the distribution (as the competitive layers do) and topology of the input vectors with which they
are trained. The neurons can be arranged in a grid, hexagonal, or random topology. The self-organizing
map network identifies a wining neuron i∗ using the same procedure as employed by the competitive
layer, but instead of updating only the winning neuron, all neurons within a certain neighbourhood
Ni∗(d) of the winning neuron are updated.

4. Using the Compact Topological Maps to Localize the Robot

At this point, the robot is provided with a model of the environment, which, in this case, is a
hierarchical map. From it, the robot firstly uses the high-level layer to carry out a rough localization,
and secondly, a fine localization is tackled through the use of the low-level layer. The visual localization
problem has been solved by many authors through local features by using probabilistic approaches
such as particle filters or Monte Carlo localization [51,52]. Nevertheless, the works developed with
global appearance descriptors are scarce. Hence, this paper presents a comparison of this kind of
descriptor to estimate hierarchically the position of the robot within a hierarchical map in a specific time
instant. In order to test the accuracy of the localization method proposed in this work, the coordinates
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where the images were captured within the environment are known (ground truth). Nevertheless, they
are not used to estimate the position of the robot since, as mentioned before, the presented method only
considers visual information. This decision permits studying the feasibility of visual sensors as the only
source of information to create a compact topological map and, more concisely, of global appearance
descriptors. Therefore, not using the position information in the mapping and localization algorithms
permits isolating the effect of the main parameters of these descriptors and knowing the performance
of this kind of information. The remainder of this section is structured as follows: Section 4.1 outlines
the types of distances that have been used to calculate how different the global appearance descriptors
are. Section 4.2 explains the localization step within maps that have not been compacted previously,
i.e., no clustering has been carried out (the full information about the environment is provided). Finally,
Section 4.3 explains the localization task within hierarchical topological maps.

4.1. Distance Measures between Descriptors

In order to know how similar two panoramic images are through their global appearance
descriptors, some distance measurements have been used. This way, a comparison can be carried out
by calculating the distance between the descriptors of two images captured from different positions
of the environment. The lower the distance between those images is, the more similar they are. This
kind of distance is used in the localization step. We consider two descriptors #»a ∈ Rl×1 and

#»

b ∈ Rl×1,
where ai and bi are the ith components of #»a and

#»

b with i = 1, ..., l. The distances used in this work are:

• Euclidean distance: This a particular case of the the weighted metric distance and is defined as:

disteuclidean(
#»a ,

#»

b ) =

√√√√ l

∑
i=1

(ai − bi)2 (3)

• Cosine distance: Departing from a similitude metric, which is defined as the scalar product
between two vectors, the distance is defined as:

distcosine(
#»a ,

#»

b ) = 1− simcosine(
#»a ,

#»

b )

simcosine(
#»a ,

#»

b ) =
#»a T · #»

b

| #»a || #»b |
(4)

• Correlation distance: Again, departing from a similitude metric, which is defined as a normalized
version of the scalar product between two vectors, the distance is defined as:

distcorrelation(
#»a ,

#»

b ) = 1− simcorrelation(
#»a ,

#»

b )

simcorrelation(
#»a ,

#»

b ) =
( #»a − a)T(

#»

b − b)
√
( #»a − a)T( #»a − a)

√
(

#»

b − b)T(
#»

b − b)

(5)

where:

a =
1
l

l

∑
i=1

ai; b =
1
l

l

∑
i=1

bi (6)

Previous research works [21,36] have evaluated the relation between the distance between the
global appearance descriptors and the geometrical distance between capture points. These works show
that even if the robot moves a short distance, the descriptor changes. Therefore, global appearance
descriptors can be used to detect even small movements.
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4.2. Resolution of the Localization Problem in a Model That Has Not Been Compacted

In this case, the map is composed of a straightforward set of descriptors (i.e., this set has not been
treated to create a hierarchical map through any clustering process). Once this straightforward map is
available, the localization process starts:

1. The robot captures a new image at time instant t from an unknown position (imt).

2. It calculates the global appearance descriptor of the captured image
#»

dt.
3. The distances between this new descriptor and the set of descriptors in the map are obtained.

The comparison between descriptors is carried out through one of the distance metrics presented
in Section 4.1.

4. A distance vector lt = {lt1, ..., ltN} is obtained where ltj = dist{ #»

dt,
#»

dj} according to any
distance measure.

5. Considering the position of the robot as the position of the closest neighbour within the map (the
problem known as image retrieval [53]), the corresponding position of the robot is the position in
the map that minimizes the distance arg minj ltj. This way, the position (x, y) of the robot in the
instant t is estimated.

4.3. Resolution of the Localization Problem in a Compact Model

Image retrieval is an inefficient process due to the fact that the maps are usually composed by a
huge number of images and the descriptors have a high dimensionality. Therefore, the computational
cost could be a problem. In this case, clustering is used to compact the map. Additionally, indoor
environments may present visual aliasing. As explained in Section 3, after clustering, the map M

will be formed only by a set of clusters C = {C1, ..., Cnc}, where nc is the number of clusters. For
each cluster, a representative descriptor was calculated as the average of the descriptors in it and the
coordinates of those representatives as the average coordinates of the descriptors that compose that
cluster. Thus, a set of cluster representatives { #»r1, ..., #  »rnc} and the coordinates of each representative
{(x, y)r1 , ..., (x, y)rnc } are known (ground truth).

The localization in this hierarchical map is carried out as follows. (1) The robot captures a
new image imt from an unknown position (xt, yt), which must be estimated, and (2) the descriptor
corresponding to the new captured image is obtained (

#»

dt) by using any of the description algorithms
explained in Section 2 (FS, HOG, or gist). (3) The distance vector is obtained

#»

lt = {lt1, ..., ltnc} where
ltj = dist{ #»

dt, #»rj} is the distance (one of the three types explained in Section 4.1) between the descriptor
#»

dt and each representative #»rj . Finally, (4) the estimated position of the robot (xe, ye) is the position
associated with the nearest neighbour dnn

t |t = arg minj ltj.
The coordinates of the representatives are not used in the localization step. However, to

measure the goodness of the estimation, the geometric distance between (xt, yt) and the centre of
the corresponding cluster (obtained as the average position among the positions of the images that
belong to that cluster) is calculated: error =

√
(xe − xt)2 + (ye − yt)2. Furthermore, the required

computational cost to estimate the localization is calculated.

5. Experiments

5.1. Datasets

Two different types of datasets were used to develop the experiments; QuorumV, which contains
grid-distributed visual data, and the COsy Localization Database (COLD), which contains visual
information along a trajectory. On the one hand, Quorum V is a publicly-available dataset [54], which
consists of a set of omnidirectional images that have been captured in an indoor environment at Miguel
Hernandez University (Spain). The database includes 3 offices, a library, a meeting room, and a corridor.
It is composed by two datasets; the first one is a training dataset, and it is composed of 872 images,
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which were captured on a dense 40× 40 cm grid of points. As for the second dataset, the test dataset,
it is composed of 77 images, which were captured in different parts of the environment, in half-way
positions among the points of the training dataset, and including changes in the environment (e.g.,
people walking, position of furniture, etc.). Figure 4 shows the bird’s eye view of theQuorum V
database and the grid points captured by the robot for the training dataset.

On the other hand, COLD (COsy Localization Database) [55] (also publicly available) contains
several sets of images captured in three different indoor environments, which are located in three
different cities: Ljubliana (Slovenia), Saarbrücken, and Freiburg (Germany). This database contains
omnidirectional images captured while the robot traversed several paths within the environments
under real operating conditions (with people that appear and disappear from scenes, changes in
the furniture, etc.). In the present work, we use the two longest paths: Saarbrücken and Freiburg.
Both datasets include several rooms such as corridors, personal offices, printer areas, kitchens,
bathrooms, etc. In order to represent the same distance between images as the distance presented in
the Quorum V database, a downsampling is carried out to obtain an acquisition distance between
images of 40 cm approximately. Therefore, two training datasets are generated: Freiburgtraining and
Saarbruckentraining, with 519 and 566 images, respectively. Moreover, from the remaining images, test
datasets were created. Figure 5 shows the bird’s eye view of the environments and the path that the
robot traversed to obtain the images. To summarize, Table 1 shows the datasets used for this work and
the number of images that each of them contains.

Room 1:	Corridor.	

Room 2:	Office	A.

Room 3:	Office	B.	

Room 4:	Office	C.

Room 5:	Library.

Room 6:	Events room.	

Room 1:	Corridor.	

Room 2:	Office	A.

Room 3:	Office	B.	

Room 4:	Office	C.

Room 5:	Library.

Room 6:	Events room.	

Figure 4. Bird’s eye view of the Quorum V database.

Through evaluating these two types of datasets, an analysis of the localization in maps which
are completely different is tackled: the first kind of map (Quorum V) is a grid-based map, and the
second dataset (COLD) is a trajectory-based map. The Quorum V database presents a distance between
images of 40 cm approximately. This distance is considered reasonable for indoor applications. In this
case, the expected maximum error (when all the images are used for mapping) is around 28 cm (a case
in which the test image is in the middle of four images of the map, which compose a square of a side of
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40 cm). This is a reasonable accuracy to solve localization tasks, and additionally, the requirements of
memory to store the images of the map are not excessively high in large environments. Regarding the
downsampling that is carried out in COLD, this was done with the purpose of obtaining results that
can be directly compared with the ones obtained through the Quorum V database (whose minimum
available distance is 40 cm). Previous works [6] have shown that the distance between images has a
direct relation with the accuracy of localization when global appearance descriptors are used. Lower
distances tend to provide more accurate results. Therefore, if a specific application requires a lower
error, a more dense initial dataset of images should be used to obtain the map.
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Figure 5. Bird’s eye view of the COsy Localization Database (COLD). (a) Freiburg and (b) Saarbrücken
environment. Extracted from https://www.nada.kth.se/cas/COLD/.

Table 1. Datasets used to carry out the experiments.

Dataset Name Number
of Images

Number
of Rooms

QuorumV_training 872 6
QuorumV_test 77

Freiburg_training 519 9
Freiburg_test 52

Saarbrucken_training 566 8
Saarbrucken_test 57

5.2. Creating Compact Maps through Clustering

This section focuses on the evaluation of clustering methods to compact the information contained
in a set of global appearance descriptors. To carry out the experiments, two clustering methods were
studied for each environment, and three global appearance descriptors were considered. The first
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method (Method 1) consists of spectral clustering along with k-means as was explained in Section 3.1.
Other configurations were tested, such as to use of SOM instead of k-means to solve Step 5 of the
spectral clustering, but the results were quite similar; thus, only the spectral clustering along with
k-means to cluster the normalized matrix of the nc eigenvectors is shown. The second method
(Method 2) consists of the use of SOM, which was explained in Section 3.2. Therefore, for the two
proposed methods, several experiments were carried out to study the influence of the parameters of
the three global appearance descriptors. Table 2 summarizes the experiments developed.

Table 2. Summary of the parameters that have been varied to carry out the clustering experiments. FS,
Fourier Signature.

Parameter Values

Environment
Quorum V
Freiburg (COLD)
Saarbrücken (COLD)

Descriptor
FS
HOG
gist

Descriptor parameters

FS: k1 = 4, 8, 16, 32, 64, 128, 256
HOG: k2 = 2, 4, 16, 32, 64, 128
gist: k3 = 2, 4, 8, 16, 32, 64
gist: nmasks = 2, 4, 8, 16, 32, 64

Number of clusters
Quorum V: nc = 15, 25, 40, 60, 80, 100
Freiburg: nc = 10, 20, 30, 40, 50, 60, 70
Saarbrücken: nc = 10, 20, 30, 40, 50, 60, 70

The values k1, k2, and k3 define the length of each descriptor, but their meaning is not the same
(equal values of k1, k2, and k3 would not lead to the same descriptor size). Therefore, as our aim is
to study the correct tuning of these values to use each descriptor as efficiently as possible, we do not
apply the same values for all the descriptors in the experiments.

Once the compact map has been produced, it may be interesting to provide some measures
that permit quantifying the compactness of the map. In this context, the concept of the silhouette is
commonly used. Silhouette values point out the degree of similarity between the instances within the
same cluster and at the same time the dissimilarity with the instances that belong to other clusters. The
silhouette takes values in the range [−1, 1], and it provides information about how compact the clusters
are. Therefore, in order to quantify the goodness of each method, three parameters are considered:

a The average moment of inertia of the cluster.
b The average silhouette of the points.
c The average silhouette of the descriptors.

These values are collected after the clustering process. As for the moment of inertia, it measures
the compactness of the clusters (if the clusters group images captured from geometrically-close points)
and is calculated as:

M =
nc

∑
i=1

∑ni
j=1 dist((x, y)ri , (xj, yj))

2

ni
(7)

where dist((x, y)ri , (xj, yj)) is the Euclidean distance between the coordinates of the representative #»ri
and the position of the jth image that belongs to the cluster Ci, and ni is the number of images within
this cluster.

As for the silhouettes values, two types of silhouette are used: the average silhouette of points is
defined as:

Spoints =
∑N

w=1 sw

N
(8)
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N is the number of instances (images), and sw is the silhouette of each instance; it is calculated as:

sw =
bw − aw

max(aw, bw)
(9)

where aw is the average distance between the capture point of the instance
#»

d w and the capture points
of the other instances in the same cluster, and bw is the minimum average distance between the capture
point of the instance

#»

d w and the capture point of the instances in the other clusters.
Differently, the average silhouette of descriptors is traditionally obtained through:

Sdescr =
∑N

k=1 sk

N
(10)

where N is the total number of instances and sk is the silhouette of each instance. This value is
calculated as:

sk =
bk − ak

max(ak, bk)
(11)

where ak is the average distance between the descriptor
#»

d k and the descriptor of the rest of the entities
contained in the same cluster, and bk is the minimum average distance between

#»

d k and the instances
contained in the other clusters.

The silhouette of descriptors has been traditionally used to measure the compactness of the
clusters. However, it does not measure the geometrical compactness. This is why we introduce the
silhouette of points, which can provide more proper information since we are interested in knowing
whether the clusters have grouped images captured nearby.

5.2.1. Clustering in the Quorum V Environment

Figure 6 shows the results of the two clustering methods using FS as the descriptor depending
on the parameter k1. Figure 7 shows the results using HOG depending on the parameter k2. Figure 8
shows the results using gist depending on the parameter k3 and with nmasks = 16. These figures
present the graphs that determine the goodness of each configuration to carry out the mapping task
through clustering. The three figures show the moment of inertia and average silhouettes vs. the
number of clusters. In all cases, the range of the vertical axis is the same, for comparison purposes.
Furthermore, Figure 9 shows the computing time necessary to cluster the environment through the
two clustering methods.

Regarding the parameters used to measure the compactness of the maps, the lower the moment of
inertia and the higher the silhouettes are, the more compact the map is. Generally, Method 1 (spectral
clustering) produces the best results. Method 2 (SOM) does not improve these results. As for the use
of the global appearance descriptor with the spectral clustering method, FS is not capable of creating
reliable clusters. As for HOG, the moment of inertia and silhouettes depend considerably on the value
of k2. When k2 is low, the results are poor, but when k2 > 8, the moment of inertia, as well as the
silhouettes improve significantly. At last, regarding the gist descriptor, low values of k3 produce low
silhouettes and high moments of inertia, and high values of this parameter imply better results.

As for the computation time required to carry out the clustering through the two methods, the
SOM method presents the highest values. The computing time required for the clustering process
through the FS descriptor is the highest, whereas the time through HOG or gist is lower, and the fastest
one would be determined by the value of either k2 or k3.
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Figure 6. Results of the two clustering methods: average moment of inertia, average silhouette of
points, and average silhouette of descriptors vs. number of clusters, when using FS in the Quorum
V environment. SOM, Self-Organizing Maps.
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Figure 7. Results of the two clustering methods: average moment of inertia, average silhouette of
points, and average silhouette of descriptors vs. number of clusters, when using HOG in the Quorum
V environment.
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Figure 8. Results of the two clustering methods: average moment of inertia, average silhouette of
points, and average silhouette of descriptors vs. number of clusters, when using gist in the Quorum
V environment.

As expected, the more components the descriptor has, the more time is required. In Section 5.3,
the trade-off descriptor size-localization accuracy will be studied.

Therefore, in the case of HOG, a value of k2 = 32 or k2 = 64 could be a good choice to achieve
a compromise between compactness and computing time, and in the case of gist, an intermediate
value of k3 could be also a good choice for the same purpose. The FS descriptor presents, in general,
the worst results: the moment of inertia is higher, and the silhouettes are lower, in general. Hence, the
best clustering results are obtained through the use of the spectral clustering method and the use of
HOG (for a configuration of k2 = [32, 64]) or gist (for a configuration of k3 = [16, 32] and nmasks = 16)
as the global appearance descriptor. Figure 10 shows a bird’s eye view of the clusters obtained with
spectral clustering and gistwith k3 = 32 and nmasks = 16.

5.2.2. Clustering in COLD Environments

The previous results have shown that the use of FS for clustering is less suitable. Considering
this, only HOG and gist descriptors are analysed in the experiments with the COLD environment.
Figure 11 shows the results using HOG depending on the parameter k2 in the Freiburg environment.
Figure 12 shows the results of the clustering methods using gist depending on the parameter k3 and
with nmasks=16 in the Freiburg environment. In the same way, for the Saarbrücken environment,
Figure 13 shows the results using HOG, and Figure 14 shows the results with gist. Regarding the use of
HOG with the second method (using SOM), it was not able to solve the clustering task for k2 = [4, 16]
when nc > 60.
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Figure 9. Results of the two clustering methods: computing time vs. number of clusters, when using
FS, HOG, and gist descriptors in the Quorum V environment.

Again, spectral clustering is the best method, and in this case, gist presents better clustering
outcomes. Hence, through the experiments carried out in the environments of the COLD database, a
confirmation of the results obtained in Quorum V is reached (see Figure 15). Therefore, the proposed
method is generalizable despite the use of different types of models (linear or grid). As a conclusion,
the best option to carry out the compression of visual maps is reached when spectral clustering with
gist is applied.
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Figure 11. Results of the two clustering methods: average moment of inertia, average silhouette
of points, and average silhouette of descriptors vs. number of clusters, when using HOG in the
Freiburg environment.
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Figure 12. Results of the two clustering methods: average moment of inertia, average silhouette
of points, and average silhouette of descriptors vs. number of clusters, when using gist in the
Freiburg environment.
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Figure 13. Results of the two clustering methods: average moment of inertia, average silhouette
of points, and average silhouette of descriptors vs. number of clusters, when using HOG in the
Saarbrücken environment.
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Figure 14. Results of the two clustering methods: average moment of inertia, average silhouette
of points, and average silhouette of descriptors vs. number of clusters, when using gist in the
Saarbrücken environment.

5.3. Localization Using the Compact Maps

This section evaluates the performance of the compact maps to solve the localization problem.
The objective is to achieve a compactness that presents a balance between computing time and accuracy
of localization. To carry out the evaluation, among the mapping results, the spectral clustering
algorithm is selected with the gist descriptor (k3 = 32 and nmasks = 16). With this configuration, a map
per environment is built, using the training images. After that, the test images are used to solve the
localization problem. The previous subsection proved that the best option to build the compressed
map was through the use of the gist descriptor. Nevertheless, the three proposed global appearance
descriptors are proposed again to solve the localization task (because mapping and localization are
two independent processes, and the performance of the descriptors could be different in a localization
framework). For each test image, its descriptor is calculated (either by FS, HOG, or gist), and then, it is
compared with the cluster representatives of the compact map. Afterwards, the most similar cluster is
retained. Three distance measures are considered for this comparison: (1) the correlation distance, (2)
the cosine distance, and (3) the Euclidean distance. In order to carry out a realistic comparison, despite
the real position of the robot being provided by the database, only visual information will be used
to estimate the position of the robot. The metric information will be used only as ground truth, for
comparison purposes.
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Figure 15. Clusters obtained in the COLD environments through the use of Spectral clustering and gist
description. (a) Freiburg and (b) Saarbrücken environment.

5.3.1. Localization in the Quorum V Environment

Figure 16 shows the average localization error (cm) obtained when FS (first row), HOG (second
row), and gist (third row) are used, respectively, as the descriptor. Figure 17 presents the computational
time (s). In the case of HOG, the effect of homomorphic filtering adds a constant time of 0.02 s per test
image. Regarding the number of clusters, nc = 872 is considered since this value provides the case
in which the localization is solved without compacting the map. This value is used as a reference to
know the relative utility of the compacted map.
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Figure 16. Results of the localization process with FS, HOG, and gist used to describe the representatives
of the clusters and the test images: average localization error (cm) vs. number of clusters. Quorum
V environment.

The FS descriptor is not good for localization since the best choice (correlation distance) presents
errors between 650 cm and 800 cm depending on the number of clusters and the size of the descriptor.
HOG clearly improves the localization task. Except for the case k2 = 2, the average localization error
decreases as the number of clusters increases, and these values go from 500 cm when nc is low and
achieve values under 100 cm (when nc is high). As for the gist descriptor, it also produces relatively
good results, but they are not as good as those obtained through the use of HOG. The localization task
achieves the best results when the correlation distance is used.

Regarding the computation time, with the FS descriptor, as the number of clusters increases, the
computational time required for the localization task increases substantially. With HOG, the time is
much lower than FS, and it keeps constant independently of the number of clusters. This means that
the time to calculate the descriptor is higher than the time to compare it with the map. The computation
time required for gist is also worse than HOG. The time required by gist is around twice the time
with HOG.
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Figure 17. Results of the localization process with FS, HOG, and gist used to describe the representatives
of the clusters and the test images: average computing time vs. number of clusters. Quorum
V environment.

In general, as the number of clusters increases, the computation time required for the localization
task also increases, and the average localization error decreases. This is an expected behaviour due to
the fact that a high number of clusters means that the map is less compact and the information stays
in representatives of the clusters whose distance to the test image is lower. Hence, the more clusters,
the more comparisons with representatives must be carried out. This leads to a higher computation
time and lower average localization error distance. Thus, a balance between these behaviours must be
achieved. Therefore, in order to solve the localization in an environment whose properties are similar
to the Quorum V environment (grid-distributed data), the optimal values are reached through the use
of a HOG descriptor with k2 = [32, 64] and correlation distance.

5.3.2. Localization in the Freiburg Environment

As in the previous case (clustering task), with the aim of corroborating the results obtained in
Quorum V, an evaluation of the localization task is carried out in the COLD environments. These
environments present trajectory maps instead of grid maps. The two COLD environments present
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a similar configuration and also similar results. This way, only the results obtained in one of them
are shown. Freiburg is chosen because this environment presents more rooms and also is more
challenging due to the fact that the building presents many glass walls. Moreover, as Figure 16 shows,
since the FS descriptor has presented the worst results, this descriptor is discarded in subsequent
localization experiments. Furthermore, the Euclidean distance results are omitted in this section
because it presented the worst outcomes. Figure 18 shows the average localization error (cm) obtained
when HOG (first row) and gist (second row) are used respectively as the descriptor. The case of no
compaction is also considered (nc = 519).
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Figure 18. Results of the localization process with HOG and gist used to describe the representatives
of the clusters and the test images: average localization error (cm) vs. number of clusters.
Freiburg environment.

In this case, some differences are noticed between the results collected in the Quorum V
environment and the results in the Freiburg environment. When the number of clusters is low
(nc = [15, 25, 40]), the localization task presents a lower average localization error with gist. If this
number is higher than 40, the localization error is very similar for HOG and gist. Comparing the results
obtained with the two evaluated types of distances, no remarkable differences are found. Nevertheless,
a slight improvement can be noticed when the cosine distance is used. For instance, the average error
value when nc = 40 in HOG is lower with the cosine than with correlation.

Additionally, the value of k2 in HOG is very important. The average error varies significantly
according to it. Therefore, in order to solve the localization in an environment whose properties are
similar to Freiburg or Saarbrücken (information along a trajectory), the optimal values are reached
through the use of HOG descriptor with k2 = [16, 32] and cosine distance.

5.3.3. Localization When Several Maps Are Available

In some applications, several maps of some different environments are initially available. If the
robot has no information about the environment it is located in, first, it has to use the visual information
to select the correct environment. After that, the localization can be solved in the selected environment,
as presented in Section 4. Considering this, in this section, the ability to select the right environment
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is studied. In order to check the goodness of the descriptors for this purpose, the two COLD maps
built in Section 5.2.2 are considered. Additionally, a test dataset is created as a combination of images
from the Freiburg and Saarbrüken environments. A total of 60 test images compose the test dataset
(34 from Freiburg and 26 from Saarbrücken). In this experiment, only HOG and gist are tested again.
Furthermore, since the cosine distance presented the best solutions for COLD, only this kind of distance
is applied. Figure 19 shows the percentage of success in selecting the right environment for the two
descriptors.

By and large, the correct environment selection is almost always done. Many cases are given in
which 100% success is reached, whereas the worst cases do not present a success rate under 75%. If the
environment selection is carried out with HOG, results depend substantially on the chosen k2 value.
For instance, the worst cases are presented for k2 = 2, 4. However, for k2 = 32− 128, 100% success is
reached. Through the use of gist descriptor, 100% success is given independently of the number of
clusters or the k3 value.
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Figure 19. Percentage of success to detect the correct environment between Freiburg and Saarbrücken
with FS, HOG, and gist used to describe the representatives of the clusters and the test images:
percentage of success vs. number of clusters.

5.4. A Comparative Study of Localization with Straightforward and with Compact Maps

Compact maps obtained after clustering present an effective solution to carry out the localization
task in a high-level map, as shown in the previous experiments. This process requires capturing a high
number of images from the environment to map, prior to the clustering process. At this point, we
could ask the following question: is it necessary to capture this high number of images, or could we
create a compact model directly, capturing only a limited number of images from the environment?
In this section, this issue is studied. Two kinds of models are considered: (a) a compact model obtained
after clustering a high number of images and (b) a straightforward model obtained by just capturing
a limited number of views from the environment. Both kinds of models will be used to solve the
high-level localization task. The straightforward method we propose to retain representatives is
downsampling the databases: the COLD databases are downsampled, and only a certain number of
images are retained (one of every x images is retained).

The utility of this straightforward model will be compared with the utility of the optimal compact
model obtained in Section 5.2.2 with spectral clustering.

Therefore, two models are used as departing points to carry out the localization task: (Model 1)
departing from the representative instances obtained through the spectral clustering algorithm and
(Model 2) departing from the instances obtained through sampling the databases. Afterwards, the
localization task is studied in the Freiburg environment in the same way as was done in Section 5.3.2.
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Figure 20 compares the utility of the two models in localization tasks. The cosine distance is
selected to show these results, due to the fact that this distance presented good results in previous
localization experiments. The two best global appearance descriptors for localization (HOG and gist)
are shown.
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Figure 20. Results of the localization process in the Freiburg environment by using two types of models
to retain visual representatives. Average localization error (cm) vs. number of clusters. Model 1 uses
representatives obtained through spectral clustering, and Model 2 obtains the representatives through
sampling the dataset. The localization task has been carried out with HOG and gist, and the distances
are calculated through the cosine distance.

As can be seen, the localization error worsens when the straightforward map is used. When the
number of clusters is low, the model that has been obtained through spectral clustering presents the
best localization results. For example, independent of the descriptor, the average localization error is
less than 100 cm when nc > 20 for Model 1 and nc > 40 for Model 2. The average localization error is
lower for Model 2 only when the number of clusters is substantially high, nc > 80 (HOG case) and
nc > 70 (gist case). This outcome means that the proposed alternative to spectral clustering may only
be interesting when a low compactness is required. However, if the number of clusters is low (high
compactness), spectral clustering provides better results. Therefore, as a conclusion, this experiment
has proven that the use of straightforward methods to retain visual representatives is less efficient than
using spectral clustering methods. Spectral clustering is able to create compact models that provide
accurate localization results.

5.5. Discussion of the Results

This subsection includes a brief discussion related to the results obtained throughout the present
work. Regarding the use of methods to compress visual models, spectral clustering has proven to be,
in general, more efficient than the SOM clustering. Furthermore, the global appearance descriptor,
which presented better behaviour to carry out the clustering task, is gist. About the localization task,
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HOG presented generally the best outcomes independently of the type of map. The best results are
summarized in Figure 21. The best clustering results in Freiburg were obtained with gist (k3 = [32, 64]
and nmasks = 16) and using spectral clustering. Moreover, the best localization outcome in this
environment was obtained through the use of HOG (k2 = [16, 32]) with the cosine distance.
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Figure 21. Best results of the clustering and localization processes. (a) Clustering with gist and spectral
clustering: silhouette of points (left axis, solid lines) and computing time (right axis, dashed lines)
vs. number of clusters. (b) Localization with HOG and cosine distance: average localization error
(cm) (left axis, solid lines) and computing time (right axis, dashed lines) vs. the number of clusters.
Freiburg environment.

Furthermore, comparing the localization results obtained after compaction and through using
raw models, with no compaction (nc = 872, nc = 519, and nc = 566 respectively for Quorum, Freiburg,
and Saarbrücken), compact models have proven to be a successful tool to reduce computing time and
keep the localization accuracy (see Section 4).

Regarding the use of the global appearance descriptor to select the right map among several
options (Section 5.3.3), gist has proven to be the most efficient choice. Using this descriptor, 100% of
success was reached independently of the number of clusters and the value k3.

Finally, straightforward methods to compress the information can be discarded since they are not
capable of keeping more information about the environment than the proposed spectral clustering
method (Section 5.4). Despite that straightforward methods might be faster and easier, the localization
outcomes obtained departing from spectral clustering proved to be, in general terms, more accurate.

6. Conclusions and Future Works

This paper proposes two different methods to compact topological maps. With this aim, three
datasets from indoor environments were used. These datasets were composed by either panoramic
images or omnidirectional images that were transformed to panoramic. During the experiments,
with the objective of compacting the information, the number of instances was reduced to a value
in the interval from 10–100. That means a reduction of instances up to between 1.1% and 11.5%
of the original number. The proposed methods were (1) spectral clustering and (2) self-organizing
maps. Moreover, three global appearance descriptors were used since they presented a good solution
for environments whose data dimensionality was high. The work shows that it is possible to
reduce the visual information drastically from the original model. Among these combinations of
method-descriptor, spectral clustering along with the gist descriptor was proven to be the best choice
to compact the model.
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Once the original model is compacted, the resultant map can be used to solve the localization task.
Hence, an evaluation is carried out with the aim of measuring the goodness of the localization task
through the use of compact maps and global appearance descriptors. In this case, three descriptors
and two indoor environments are evaluated. Furthermore, a mixture between indoor environments
is created with the aim of evaluating whether it is possible, first, to detect the right environment
and, second, estimate the position of the instance. From this study, HOG is the description method
whose localization results were the best. Additionally, gist presented the most successful results in
order to select the correct environment of a test instance from a combined dataset. Finally, the use of
clustering methods to tackle the compression step has proven to be more efficient than carrying out a
downsampling of the images directly from the database.

The team is now working on how the localization task through compact maps is affected by
illumination changes. Additionally, other compacting methods will be studied in order to achieve the
Simultaneous Localization And Mapping task (SLAM).
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ABSTRACT In this paper, a hierarchical localization framework within indoor environments is proposed
and evaluated, considering severe variations of the illumination conditions. The only source of information
both to build a model of the environment and to solve the localization problem is a catadioptric vision
system, which is mounted on the mobile robot. The images captured by this system are processed globally
to obtain holistic descriptors. The position of the robot is estimated by comparing these descriptors with the
information contained in a topological visual model, which is previously created using a clustering approach
and is composed of a hierarchy of layers. Compacting the information via clustering proves to be an efficient
alternative to estimate the position of the robot hierarchically and with robustness. The proposed localization
strategy is tested with some sets of panoramic images, captured in large indoor environments under real
operating conditions, including illumination changes that change substantially the appearance of the scenes.
The results show a reasonable tradeoff computation time-accuracy when the localization is addressed in a
hierarchical way.

INDEX TERMS Localization, omnidirectional visual information, global appearance descriptors, clustering,
illumination changes.

I. INTRODUCTION
Nowadays, the use of omnidirectional vision sensors in
mobile robotics for solving mapping and localization has
considerably increased. They have been successfully used
by different authors for these purposes. For instance,
Valiente et al. [1] used the local features extracted from
omnidirectional images to generate a reliable visual odom-
etry to improve the Simultaneous Localization And Map-
ping (SLAM) task. Marinho et al. [2] used feature extractions
and machine learning techniques to solve localization using
omnidirectional images. Faessler et al. [3] present a vision-
based quadrotor system to map a dense three-dimensional
area online with the purpose of removing delay between the
quadrotor and external systems. Berenguer et al. [4] con-
sidered the global appearance of omnidirectional images to

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongqiang Zhao.

create local maps and to estimate the position of a robot
within these maps. This kind of images covers a field of
view of 360 deg around the robot. Hence, they offer a
huge amount of information from the surroundings of the
robot which permits both building rich maps and estimat-
ing the robot position. Working with images requires a step
to obtain functional, robust and relevant information from
them. Commonly, two methods to extract relevant informa-
tion have been considered in the related literature: either
detecting, describing and tracking some relevant landmarks
over the image (such as [5]–[7]) or creating a unique descrip-
tor per image which contains global information about it
(for instance, [8]–[10]). As for the second proposed method,
on the one hand, it usually leads to more direct localization
algorithms. Basically, they consist in a pairwise comparison
between descriptors. On the other hand, it presents a lack
of metric information. Therefore, this kind of descriptors are
usually used to build topological maps (such as [11]–[13]).
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2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019



S. Cebollada et al.: Hierarchical Localization in Topological Models Under Varying Illumination

In order to address the mapping and localization issue,
arranging the topological information hierarchically consti-
tutes an efficient alternative. This framework consists in
creating a map which is composed of several layers with a
hierarchical structure. The high-level ones present a relatively
compact amount of information, which permits a rough but
quick localization. The low-level layers have usually more
information and are used to refine the position. A good
example of this issue was developed by Stimec et al. [14],
who proposed an unsupervised hierarchical mapping method.
Garcia-Fidalgo and Ortiz [15] presented a review about the
main approaches considered to carry out topological mapping
and localization through visual information in the last years.
recently, da Silva et al. [16] propose a localization and nav-
igation approach for mobile robots using topological maps
and using CNN to obtain descriptors from omnidirectional
images.
Considering this information, the main objective of this

work consists in proposing an approach to solve the local-
ization problem using hierarchical models. Moreover, a com-
parative evaluation of some global descriptors is carried out to
know which one behaves more robustly against illumination
changes. The results obtained throughout this work permit
selecting the best global descriptor method and also tuning
correctly its parameters in order to obtain optimal results
(the maximum accuracy and the lowest computational time).
Additionally, the use of approaches based on deep learning
are also considered to describe the scenes globally. The aim
consists in evaluating which method solves more efficiently
the localization task under the conditions previously exposed.
An omnidirectional vision sensor [17] is the unique source

of information used to carry out mapping and localization in
this work. The images used in the experiments are obtained
from an indoor dataset (explained in IV-A.1) and they are
described through global appearance descriptors. The present
work continues and expands the research framework pre-
sented in [18], where an approach is proposed to build com-
pact topological models of the environment. The approach
consists in the use of clustering algorithms, which are non-
supervised techniques, along with holistic visual descriptors,
and both the correctness of the model and its utility to solve
the localization problem is assessed. An exhaustive evalua-
tion of different clustering methods was carried out in [18].
In that work, Spectral Clustering along with the holistic
descriptor gist was chosen as the configuration which best
tackled themapping task. Hence, in this work, the localization
algorithms are tested with the compact maps obtained with
this combination of methods (gist + spectral clustering).
These compact models are the basis of the present work,
whose main differences and contributions are: (a) solving the
localization problem hierarchically, with different degrees of
granularity, (b) making an exhaustive comparative evaluation
of the method and testing its robustness under severe illumi-
nation variations and (c) including in the evaluation a new
holistic description method, based on deep learning (obtained
through convolutional neural networks).

The remainder of the paper is structured as follows.
Section II outlines the global appearance descriptors used
along this work. After that, section III explains briefly the
clustering approach used to compress the information and
section IV presents the experiments carried out to test the
validity of the proposed methods to solve the localization
under changing lighting conditions. At last, the conclusions
are presented in section V.

II. THE GLOBAL APPEARANCE DESCRIPTOR
This section focuses on the methods used to describe the
global appearance of the set of images. Four methods are
evaluated in this paper: the Fourier Signature (FS), the His-
togram of Oriented Gradients (HOG), the gist of the scenes
and a global descriptor based on a Convolutional Neural
Network (CNN). In order to reduce the effect of changing
lighting conditions, the homomorphic filter [19] is applied
over the images before describing them with HOG, since pre-
vious works [20] concluded that this pre-filtering improves
the localization results when HOG is used.
The panoramic image im(x, y) ∈ RNx×Ny is the starting

point, hence, a conversion from omnidirectional to panoramic
must be carried out. After that, one of the four proposed
description methods is used to calculate the global appear-
ance descriptor vector d ∈ Rl×1. A deep description of FS,
HOG and gist methods can be found in [21]. As for the use
of CNN as global feature extractor, a wide explanation is
presented in [22].
Regarding the FS descriptor, it was firstly used by

Menegatti et al. [8]. This method calculates the discrete
Fourier Transform of each row of the panoramic image and
a complex matrix is obtained IM (u, v). The k1 first columns
are retained (compression effect) IM (u, v) ∈ CNx×k1 . Finally,
a decomposition is tackled to obtain just the magnitudes
information (the resulting matrix is invariant to robot ori-
entation changes) and the rows of the resultant matrix are
arranged to create a vector, obtaining the global appearance
descriptor d ∈ RNx ·k1×1.
As for the HOG descriptor, it was firstly used by Dalal and

Triggs [23] for a pedestrians detection task. The version used
in this work consists in splitting the panoramic image into
k2 horizontal cells and compiling a histogram of gradients
orientation per each cell with b bins per histogram [24]. The
set of histograms compose the final descriptor d ∈ Rb·k2×1.
With regard to the gist descriptor, Oliva and Torralba [25]

introduced this method, which has been widely used for
scenes recognition. Several versions can be found depend-
ing on the features of the image used. In this case, firstly,
m2 different resolution images are created from the origi-
nal panoramic one. Secondly, Gabor filters are applied over
the m2 images with m1 different orientations each. Thirdly,
the pixels of each image are grouped into k3 horizontal blocks
and finally, the obtained orientation information is grouped
to create a vector, which is the resultant descriptor d ∈
Rm1·m2·k3×1. This descriptor has already been used in mobile
robot localization. For instance, Murillo et al. [26] used

VOLUME 7, 2019 49581



S. Cebollada et al.: Hierarchical Localization in Topological Models Under Varying Illumination

FIGURE 1. CNN places architecture design based on the pre-trained ’Caffe’ model. Layers ’fc7’ and ’fc8’ are used in this work as a method to obtain
holistic descriptors from the original input image.

it with panoramic images for localization in urban regions
including loop closure detection.
Last, concerning the use of the CNN-based descriptor,

this method comes from the use of deep learning for clas-
sification, as Krizhevsky et al. [27] do. The neural network
tackles two steps. First, it carries out a learning process,
i.e., a set of images (which are already labeled) are col-
lected and introduced to the network. Second, once trained,
the network receives new images (also labeled) and tunes
its internal parameters to optimize the results. After that,
the network is available to face the classification task: a new
image is introduced and the CNN returns the most likely
label option. During the process of classification, descrip-
tors are obtained by the fully connected layers which are
within the neural network. These descriptors can be seen as
global appearance descriptors of the input image. Therefore,
they may be also used to carry out the localization task in
the same way as the previously proposed global appearance
descriptors. The neural network architecture that we use in
this work is places [28], which was trained with around
2.5 million images to categorize 205 possible kinds of scenes.
The fig. 1 shows the architecture of this CNN. To obtain holis-
tic descriptors from these layers, the networks is directly used
with the pre-training done by the creators, hence, a re-training
is not necessary. The CNN is used directly as it appears
in [29]. The descriptors extracted from this network corre-
spond to the ones calculated in the layers ’fc7’ and ’fc8’.
These descriptors contain respectively 4096 (d ∈ R4096×1)
and 205 (d ∈ R205×1) components. This kind of descriptor
has been used by other authors such as Mancini et al. [30],
who use them to carry out place categorization with the
Naïve Bayes classifier. As for mobile robot localization,
Payá et al. [22] proposed CNN-based descriptors to create
hierarchical visual models. In a different way, Xu et al. [31]
propose the use of a CNN which detects objects from the

images and establishes relationships between the detected
objects. Afterwards, the relationships established are used
to calculate similitude between images. Nevertheless, in our
work, CNNs are used just with the purpose of obtaining a
holistic descriptor per scene.

III. CLUSTERING THE VISUAL INFORMATION
This section outlines the clustering method used to compact
themodel. The clustering process departs from a set of images
I = {im1, ..., imn}. These images were captured from dif-
ferent positions within the environment to map. The image
capturing positions are known, but they are only used as
ground truth P = {(x1, y1), ..., (xn, yn)}. Then, a set of global
appearance descriptorsD = {d1, ..., dn} is calculated, one per
image (through one of the description methods explained in
section II). To create a compact model, a clustering process
will be carried out with the components of D.
Several studies about clustering have been carried out.

For instance, Theodoridis and Koutroumbas [32] developed
a wide study about clustering and von Luxburg [33] provided
a complete tutorial about the most common spectral clus-
tering methods. This kind of algorithms have proved to be
more effective than the traditional ones when the data size
is high. Furthermore, the Spectral Clustering developed by
Ng et al. [34] confirmed to be a good solution in these situa-
tions. This algorithm only considers the similitudes between

instances di and dj: Si,j = e−
|di−dj|

2

2σ2 , where σ is a parameter
which controls the rapidity of reduction of the similitude
when the distance between di and dj increases. The clustering
process is as follows:
1) Calculation of the normalized Laplacian matrix:

L = I − D−1/2SD1/2 (1)

where D is a diagonal matrix Di =
∑N

j=1 Sij.
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FIGURE 2. Block diagram regarding the steps to carry out the localization task through compact models.

2) Calculation of the nc main eigenvectors of L,
{u1, u2, ..., unc}. Arranging these vectors by columns,
the matrix U ∈ Rn×nc is obtained.

3) The matrix U is normalized to obtain the matrix
T ∈ Rn×nc .

4) Extraction of vector yi ∈ Rnc from the i-th row of the
matrix T . i = 1, ..., n.

5) The yi vectors are clustered by using a simple clus-
tering algorithm (k-means in this work). The clusters
A1,A2, ...,Anc are obtained.

6) Last, the clusters with the original data are obtained as
C1,C2, ...,Cnc where Ci = dj such that yj ∈ Ai.

After the clustering process, the representative of each
cluster is calculated as the average of the descriptors which
compose a specific cluster. The final result is a set of repre-
sentatives R = {r1, ..., rnc}, which constitutes the compressed
map (i.e. the high-level layer of the hierarchical map). It can
be used to carry out the localization task in a more efficient
way.

IV. LOCALIZATION UNDER CHANGING
LIGHTING CONDITIONS
In a previous work [20], among the traditional global appear-
ance descriptors, gist proved to be the most efficient to com-
pact the model in indoor environments. Now, a comparative
study of the proposed descriptors for localization under illu-
mination changes is tackled including also the description
method based on CNN.

A. LOCALIZATION THROUGH COMPACT MODELS
The localization step is carried out once the compressed
map is built. Hence, the starting point is a compact topo-
logical model, which consists of a set of nc representatives
{r1, ..., rnc} and the coordinates of each cluster {(x, y)1, ...,
(x, y)nc}, where nc is the number of clusters. Neverthe-
less, the coordinates are only used as ground truth to test
the accuracy. Only visual information is used during the
localization. It allows us to carry out a pure evaluation of
the visual description methods through avoiding the influ-
ence of other type of information. The accuracy is eval-
uated through the following error equation errorest,t =√
(xgt,t − xest,t )2 + (ygt,t − yest,t )2, where (xgt,t , ygt,t ) is the

pose provided by the ground truth and (xest,t , yest,t ) is the pose
estimated by the algorithm for the test image t .
The localization task is performed through the follow-

ing steps: first, it is assumed that the previous position of
the robot is unknown; second, the robot captures a new
image imt (an image from the test dataset which is differ-
ent from the images used to create the map) and describes
that image to obtain the descriptor dt ; third, the distance
between dt and each representative descriptor is calcu-
lated, obtaining a distances vector lt = {lt1, ..., ltnc} where
ltj = dist(dt , rj); fourth, the minimum value of lt indi-
cates the cluster which corresponds to the current position
of the robot. A block diagram about these steps is shown
in fig. 2.
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1) EXPERIMENTS
To carry out the experiments, the COLD (COsy Localization
Database) database is used [35]. This database is composed of
several sets of omnidirectional images captured with a cata-
dioptric vision system composed of a Videre Design MDCS2
camera and a hyperbolic mirror. The images were collected
under three different illumination conditions (cloudy days,
sunny days and at nights). The Freiburg and Saarbücken
datasets (images acquired at indoor laboratory environments
located in those cities) were used to develop the experiments
in this work. The images captured during cloudy weather are
used to build a compact model through spectral clustering
since they are the ones which are less affected by brightness,
reflections, dark areas and thus, they provide more informa-
tion. The sunny weather images and also the images captured
at night are used as test images to evaluate the localization
task under lighting changes.
Both datasets are composed of several rooms, such as corri-

dors, personal offices, printer areas, kitchens, bathrooms, etc.
The selected Freiburg dataset covers 9 different rooms and the
Saarbrücken dataset covers 8. This dataset includes different
changes in the environment such as people walking or posi-
tion of furniture and objects. The datasets contain also images
which do not provide much information due to the acquisition
position and blurry images. All these handicaps make these
datasets suitable to carry out experiments under real operating
conditions. From the original cloudy dataset, a downsam-
pling is carried out in order to obtain an acquisition distance
between images of 40 cm approximately. This downsamplig
is carried out because it is desirable to keep the model con-
figuration which was used in previous works ( [20] and [21]).
Hence, after downsampling, a training dataset composed
of 519 (in Freiburg) and 566 (in Saarbrücken) images are
considered. Furthermore, departing from the sunny and night
datasets, three test datasets are created. Those images were
selected randomly across the whole map. The table 1 sum-
marizes the sets created for the experiments. The fig. 3 shows
some examples of omnidirectional images in both environ-
ments under the proposed illumination conditions.

TABLE 1. Datasets created from the COLD database to carry out the
experiments.

As mentioned before, the localization experiment departs
from the compact model. Several compact maps have been
built, considering different numbers of clusters nc =

[10, 20, ..., 100,Nenv] where Nenv is the total number of
images which compose the model (519 in the Freiburg envi-
ronment and 566 in Saarbücken, table 1). It will enable us to

FIGURE 3. Some sample omnidirectional images belonging to the
Freiburg environment under (a) cloudy, (b) night and (c) sunny
illumination conditions and also images which belong to the Saarbrücken
environment under (d) cloudy and (e) night illumination conditions.

analyze the localization process considering different granu-
larities in the high-level layer of the map. The case nc = Nenv
provides information about the localization process when all
the images of the original model are considered (i.e., no com-
pression is performed and the localization is addressed as
an image retrieval problem). This way, it can be seen as a
reference to test the utility of the compact maps. To create the
clusters, gist was chosen since it has provided the best results
in previousworks [20] and its parameters are tuned to k3 = 32
and nmasks = 16. The fig. 4 shows examples of a sample
clustering experiment applied to the datasets, according to the
spectral clustering method. The images of these datasets are
under cloudy illumination conditions.
Once the compact map is available (i.e. the clusters’ repre-

sentatives have been calculated), the localization is estimated
as follows. Among the nc clusters, the node whose distance
presents the minimum value of lt is chosen as the one which
the captured image belongs to. Therefore, to estimate the
goodness of the localization task, the Euclidean distance
between the position where the test image was captured and
the position of the nearest neighbour is calculated. Addition-
ally, the computation time is measured since the scope is to
reach a balance between accuracy and computational time.
The experiments have been carried out in a PC with two CPU
Quad-Core Intel Xeon R© at 2,8 GHz and through Matlab R©

programming.
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FIGURE 4. Results of a sample clustering considering nc = 20 clusters
and gist descriptor with k3 = 32 and nmasks = 16. Some sample
panoramic images belonging to the (a) Freibug and (b) Saarbrücken
dataset under cloudy illumination conditions are shown.

To calculate the distance between descriptors, three
kinds of distances are considered: the correlation distance,
the cosine distance and the Euclidean distance. Also, three
illumination conditions are considered: the cloudy condition,
the night condition and the sunny condition. The dataset
under cloudy condition is the one used to create the compact
map (clustering and obtaining the representatives). Night
and sunny conditions are used to evaluate the localization
task under illumination changes. Fig. 5 shows the average
localization error (cm) vs. the number of clusters nc obtained
in the Freiburg environment when the test dataset was night
and fig. 6 when the test dataset was sunny; fig. 7 shows the
average localization error (cm) obtained in the Saarbrücken
environment when the test dataset was night. In all cases,
the localization error is expressed in cm, and the colorbar
that expresses this error has the same range, to facilitate a
comparative evaluation between figures.
In general, as the number of clusters increases, the aver-

age localization error tends to decrease. This behavior was
expected and was also remarked in previous works [20].
When there is a low number of clusters, the plots present
high error values, as expected. This is due to the fact that

TABLE 2. Computation time (sec) required to obtain the global
appearance descriptor (HOG and CNN) per each test image. Freiburg test
dataset under night conditions.

despite the matching between test images and representatives
has been successful, the representatives are too sparse among
them. Moreover, as for the illumination conditions, if we
compare the outputs obtained under night conditions and
the ones obtained under sunny conditions (see fig. 5 and
fig. 6), generally, sunny conditions have a more negative
impact upon the localization. For example, when using the
CNN descriptor layer ’fc7’, if nc = 10, the error under night
conditions is over 200 cm whereas under sunny conditions,
it is over 300 cm. If nc = 60, the error under night con-
ditions is under 100 cm and under sunny conditions, it is
over 200 cm.
Among the four studied global appearance descriptors,

FS is the one which presents worst localization results in
general. As for HOG, this descriptor presents relatively good
localization error results. For example, for night conditions
in the Freiburg environment (see fig. 5), when a correct
tuning of the k2 parameter is carried out and for more than
50 clusters, the localization error values are under 100 cm.
It can be considered a successful result considering the size of
the environment (table 1) and the granularity of the compact
map. Moreover, the best results are obtained when the cosine
distance is applied. In the case of the Saarbrücken environ-
ment, HOG presents slightly worse results than in Freiburg
(fig. 7). Gist presents also relatively good localization results
and they are not as influenced by the k3 parameter (number of
horizontal blocks) as the HOG results with k2. For instance,
in the gist results presented in the fig. 5, the error decreases
until the number of clusters is 40 and after that value, the aver-
age localization error keeps almost constant. For the gist
descriptor, the Euclidean distance presents the worst results
whereas the cosine and correlation distances are quite similar.
The CNN descriptor presents as good localization results as
usingHOG in Freiburg at night. Through the use of CNNwith
the layer ’fc7’, the localization error is lower than 100 cm
when nc > 30 (using either correlation or cosine distance).
Moreover, the results in the Saarbrücken environment are the
best. Nevertheless, under sunny conditions (see fig. 6), CNN
is more affected than HOG.
Among the two best descriptors which present best local-

ization outputs (HOG and CNN), a computation time evalua-
tion is obtained. With this aim, the time required to calculate
the global appearance descriptors is performed. Table 2 shows
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FIGURE 5. Results of the localization task when the night illumination conditions affect the Freiburg environment. Average localization error (cm) vs.
number of clusters and descriptor size. Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine and Euclidean) are
considered.

the average computational time (sec) to compute the global
appearance descriptor for the Freiburg_test_night dataset.
As for HOG, the obtained values keep almost constant

independently on the value of k2. Regarding the use of
the CNN descriptor, the related time values are higher
(around 0.4 sec).
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FIGURE 6. Results of the localization task when the sunny illumination conditions affect the Freiburg environment. Average localization error (cm) vs.
number of clusters and descriptor size. Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine and Euclidean) are
considered.

In conclusion, among the different global appearance
descriptors studied to solve the localization task in envi-
ronments which present changes of illumination, CNN will

be the optimal option. FS and gist localization values are
relatively worse. HOG presents better results in the Freiburg
environment, but in the Saarbrücken environment, results for
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FIGURE 7. Results of the localization task when the night illumination conditions affect the Saarbrücken environment. Average localization error (cm) vs.
number of clusters and descriptor size. Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine and Euclidean) are
considered.

HOG are poor, whereas CNN keeps being also good. Despite
the computing time is not as low as the HOG one, it is
not substantially higher than the HOG results. As for the

illumination changes, HOG is less affected by the sunny
conditions than the rest of descriptors. Regarding which
type of distance measure is better to calculate the distance
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FIGURE 8. Block diagram regarding the steps to carry out the hierarchical localization task through compact models.

between descriptors, both corrrelation and cosine present
similar outputs.

B. HIERARCHICAL LOCALIZATION
In subsection IV-A, the localization has been solved using
only the compact map (i.e., only the high level layer is used,
and the result is a coarse localization). It has allowed us to
analyze how different compression levels have an influence
on the localization error (i.e. the tradeoff map granularity -
localization accuracy).
In this subsection, we go one step beyond, and the local-

ization is addressed hierarchically. First, a coarse localization
is performed, as in subsection IV-A. Once the nearest cluster
has been retrieved, a second step is carried out to refine the
estimation.

Therefore, the hierarchical localization task consists of
the following processes: first, the robot describes the image
captured at time instant t (test image) imt → dt . After that,
the distances vector is again obtained lt = {lt1, ..., ltnc}.
Next, the most likely cluster is selected as the one which
presents the minimum value of lt . At this step, a new compar-
ison is carried out between the descriptor of the test image dt
and the descriptors of the images which belong to the chosen
cluster. From this step, a new distances vector is obtained
qt = {qt1, ..., qtmi} where mi is the number of images within
the selected cluster i. Finally, the minimum value of qt indi-
cates the most similar image and hence, it corresponds to the
current position of the robot with a higher accuracy. Fig. 8
shows the block diagram about these steps. It should be men-
tioned that more than one cluster may be selected. The higher
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FIGURE 9. Results of the complete hierarchical localization task when the night condition of
illumination is affecting the Freiburg environment. Average localization error (cm) vs. number
of clusters and descriptor size. Pre-selection of either (a) one (c = 1) or (b) two (c = 2) clusters
as the most likely options.
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FIGURE 10. Results of the complete hierarchical localization task when the sunny condition of illumination
is affecting the Freiburg environment. Average localization error (cm) vs. number of clusters and descriptor
size. Pre-selection of one cluster as the most likely option.

the number of selected clusters, the more comparisons with
images will be tackled.

1) EXPERIMENTS
As in the sub-subsection IV-A.1, the experiments were car-
ried out through the use of the COLD database with the same
characteristics previously commented. Again, the starting
point of the localization experiment is the compact model
through gist (k3 = 32 and nmasks = 16).
Since the Euclidean distance presented the worst local-

ization error results in the experiment 1, this distance is
discarded. Furthermore, neither FS nor gist descriptor related
results are shown in this experiment because, as was shown
in the previous subsection, those results are worse for
localization purposes. Therefore, to sum up, the hierarchical
localization is evaluated in the Freiburg and Saarbrücken
environments under two illumination conditions (night and
sunny) calculating two types of distances (correlation and
cosine) and using two kind of descriptors (HOG and CNN).
Fig. 9 shows the average localization error (cm) vs. the

number of clusters nc obtained in the Freiburg environment
when the test dataset was night and either one or two clusters
are selected to carry out the fine localization. Fig. 10 shows
the average localization error (cm) obtained in the Freiburg
environment results when the test dataset was sunny and one

cluster is selected for fine localization; fig. 11 shows the
average localization error (cm) vs. the number of clusters
nc obtained in the Saarbrücken environment when the test
dataset was night and one and two clusters are selected to
carry out the fine localization.
The evaluation of these results is carried out from three

points of view. Firstly, a comparison of the results obtained
through hierarchical localization against the localization
tackled in the subsection IV-A.1 is performed. In general,
the localization error obtained through hierarchical localiza-
tion clearly improves when the number of clusters is low (see
fig. 9, 10 and 11). However, when the number of clusters
increases, no improvements are noticed. This behaviour is
due to the fact that a low number of clusters implies a very
rough initial localization. This way, the second step really
permits refining this estimation. However if the number of
clusters is relatively high, the initial estimation is quite fine
and the improvement achieved in the second step is not
substantial. This allows us to conclude that the high-level
layer can be built with a high degree of compression and the
localization can be refined with the low-level layer, through
an efficient process.
Secondly, after proving that hierarchical localization

presents improvements when a high compression is carried
out, an analysis about how illumination conditions affect to
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FIGURE 11. Results of the complete hierarchical localization task when the night condition of
illumination is affecting the Saarbrücken environment. Average localization error(cm) vs.
number of clusters and descriptor size. Pre-selection of either (a) one (c = 1) or (b) two (c = 2)
clusters as the most likely options.
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TABLE 3. Summary of the minimum localization error values obtained through the two localization methods and the four descriptors evaluated
throughout this work.

hierarchical localization is tackled. Comparing the results
obtained when a hierarchical localization process is devel-
oped under night conditions (see fig. 9, c = 1) and sunny
conditions (see fig. 10); several conclusions can be extracted.
For a localization task carried out through the use of HOG
descriptor and correlation distance in Freiburg under night
conditions, the average localization error is between less than
50 and 250 cm, whereas, under sunny conditions, this value
is between 70 and 400 cm. This analysis can be extended
to the CNN descriptor, which is again highly affected by
the sunny conditions. Therefore, collecting results from both
experiments, the conclusion is that the sunny condition affects
to a greater extent the localization task.
Thirdly, an evaluation about varying the number of clusters

selected to carry out the fine localization is done. If we
compare the hierarchical localization results in Freiburg for
one selected cluster and the results for two selected clusters
(see fig. 9), a slight improvement is appreciated in the case
c = 2 when the number of clusters is low. This behavior
means that for few clusters, selecting the right one can be
more challenging. Hence, selecting more than one cluster
for fine localization may result beneficial when a huge com-
pression was carried out. For the Saarbrücken environment,
no improvements have been noticed between selecting one
and selecting two clusters (see fig.11). This lack of improve-
ment means that the instances are very well represented
even when there is a high level of compression and thus,
selecting more than one cluster does not provide a higher
probability to find the more accurate position of the test
image.

C. DISCUSSION OF RESULTS
The scope of these experiments is to evaluate the robust-
ness of global appearance descriptors to solve the localiza-
tion problem using hierarchical maps either (1) by using
a localization method which estimates the position through
compact models, or (2) by solving also a fine localization
step (hierarchical localization method). For the sake of com-
pleteness, the experimental section considers several meth-
ods to obtain the global appearance descriptors (FS, HOG,
gist and CNN), different configuration parameters of these
descriptors and also a variety of illumination conditions.
Regarding the localization method through compact models,

the average accuracy improves as less compression is tackled.
As for the hierarchical localization, this method produces
an efficient process to refine the localization in the low-
level layer. Nevertheless, this method only improves when
the number of clusters is low but no substantial differences
exist when the number of clusters is relatively high. Selecting
more than one cluster to carry out the fine localization is
only interesting when a huge compression is carried out,
otherwise, selecting only one cluster produces more efficient
results because its computing time is relatively low.
Concerning the global appearance descriptors, FS always

outputs the worst results and HOG usually leads to the best
solutions. We have found out that the CNN-based descrip-
tor also presents good results. Nevertheless, CNN is more
affected by the sunny illumination conditions than HOG is
and CNN also needs more computing time to calculate the
descriptor than HOG. In general, the sunny illumination con-
ditions affectmore negatively the performance of themethods
than the night conditions.

V. CONCLUSION
In this work, a study is carried out about the utility to solve
the localization task hierarchically in mobile robotics when
substantial illumination changes are present. This task is
tackled once a compact model of the environment is created.
Two indoor sets of 519 and 566 panoramic images have been
respectively used. A clustering approach through Spectral
Clustering with a number of clusters between 10 and the total
number of instances was considered. Therefore, a reduction
between 1.77% and 17.67% of information contained in the
initial set of images is considered. Additionally, we also
analyze the localization when no compression is done, as a
reference.
The work has shown that it is possible to keep a good

localization error departing from a compact model. The issue
is solved through the use of global appearance of panoramic
scenes. A comparative evaluation between four methods to
globally describe images has been carried out: FS, HOG,
gist and a CNN-based descriptor. The CNN-based descriptor
and cosine distance has been proved to be the best choice.
The table 3 summarizes the localization error obtained along
this work. Through this table, it is easy to conclude that the
CNN-based descriptor provides the best results to carry out
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the localization task for both localization methods although
HOG also presents good results when the localization is
addressed hierarchically.
This work has also shown the efficiency of this local-

ization framework under severe changes of illumination.
Moreover, it has proved that the test images under sunny
conditions affect more negatively the results than the night
conditions.
As for the use of hierarchical localization, it may result

interesting for high levels of compression and just selecting
one cluster as candidate may be enough for most cases.
Future works will include the study of other methods to

compress the models and the study of other disadvantageous
issues which may be presented in real operating conditions,
such as occlusions, changes of furniture, etc.
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A B S T R A C T

Nowadays, the field of mobile robotics has experienced an important evolution and these robots are more
commonly proposed to solve different tasks autonomously. The use of visual sensors has played an important
role in mobile robotics tasks during the past few years due to the advances in computer vision hardware
and algorithms. It is worth remarking the use of AI tools to solve a variety of problems in mobile robotics
based on the use of images either as the only source of information or combining them with other sensors
such as laser or GPS. The improvement of the autonomy of mobile robots has attracted the attention of the
scientific community. A considerable amount of works have been proposed over the past few years, leading
to an extensive variety of approaches. Building a robust model of the environment (mapping), estimating
the position within the model (localization) and controlling the movement of the robot from one place to
another (navigation) are important abilities that any mobile robot must have. Considering this, this review
focuses on analyzing these problems; how researchers have addressed them by means of AI tools and visual
information; and how these approaches have evolved in recent years. This topic is currently open and a large
number of works can be found in the related literature. Therefore, it can be of interest making an analysis
of the current state of the topic. From this review, we can conclude that AI has provided robust solutions to
some specific tasks in mobile robotics, such as information retrieval from scenes, mapping, localization and
exploration. However, it is worth continuing to develop this line of research to find more integral solutions to
the navigation problem so that mobile robots can increase their autonomy in large, complex and heterogeneous
environments.

1. Introduction

Over the past few years, the use of mobile robots has significantly
increased. Nowadays, they can be used for a wide range of applications
and they can be found in diverse kinds of environments, such as
industrial, household, educational and healthcare. Regarding mobile
autonomous robots, they must be able to navigate through an environ-
ment which is usually a priori unknown, while simultaneously tackle
the task they have been designed for. Hence, the robot must be capable
of building a model of the environment, estimating its current position
and orientation within the environment by using this model and also
navigating throughout the environment to arrive to the target points.

Mapping, localization and navigation are the classical problems in
mobile robotics. They have attracted a great attention and nowadays
continue being a prominent research area, since a robust solution to

✩ This work has been supported by the Generalitat Valenciana, Spain and the FSE, European Union, through the grant ACIF/2017/146 and the project
AICO/2019/031: ‘‘Creación de modelos jerárquicos y localización robusta de robots móviles en entornos sociales’’; and by the Spanish government through
the project DPI 2016-78361-R (AEI/FEDER, UE): ‘‘Creación de mapas mediante métodos de apariencia visual para la navegación de robots.’’.
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o.reinoso@umh.es (O. Reinoso).

these problems is fundamental to increase the autonomy of mobile
robots and subsequently expand their use for other applications.

To conduct the mobile robotics tasks, it is necessary to provide the
robot with relevant information about the environment. For this pur-
pose, robots are equipped with sensors that allow them to obtain such
information. Subsequently, the robots need to process the data captured
from the environment and transform them in useful information for
their tasks.

Concerning the mapping task, two main frameworks can be high-
lighted from the related literature: metric and topological maps. On the
one hand, the metric maps represent the environment with geometric
accuracy. On the other hand, the topological maps lead typically to a
graph representation, that is, the environment is described as a graph
that contain representative locations and links that connect them. As

https://doi.org/10.1016/j.eswa.2020.114195
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for the localization task, it tries to estimate the current position and
orientation of the robot using a model of the environment. In order
to carry out the localization task, the environment must be previously
modeled. Hence, in this way, firstly the robot carries out the mapping
task and after that, once the map is available, the localization can be
done. Nonetheless, the related literature has also studied a blend of
both tasks that can be developed at the same time. This concept is
known as Simultaneous Localization And Mapping (SLAM) and consists
in modeling the environment as the robot moves through it and, at the
same time, estimating its position and orientation.

Additionally to the mapping and localization tasks, there are other
tasks that are included within the mobile robotics challenges. The
navigation task includes the ability of the robot to determine its po-
sition within the map, to plan a path to reach a target position and
to send the necessary commands to the actuators to move the robot
while avoiding dynamic obstacles. Hence, the robot must be capable
of mapping the environment and interpreting the agents included in
it. The main objectives of the robot navigation consist in avoiding
collisions such as objects, walls, human beings, etc; and avoiding unsafe
places or conditions such as radioactive places, exposing to hazardous
places due to high temperatures or other environmentally dangerous
conditions. Reinoso and Payá (2020a) present a special issue about the
current frameworks in the mobile robots navigation field and a variety
of approaches related to this task.

Similar to the concept of SLAM, the mobile robotics field also con-
siders the combination of mapping and navigation. This combination
is known as exploration. The exploration task consists basically in
guiding a robot in such a way that it covers the environment with
its sensors (Stachniss & Burgard, 2003). Exploration approaches are
relevant to address surveillance or surface inspection mine sweeping,
among others.

Concerning the sensors provided to address the mobile robotics
tasks, this work focuses on the use of cameras. This type of sensors
have been widely used for these purposes. In this way, Reinoso and
Payá (2020b) present a special issue about some of the possibilities that
vision systems offer, focusing on the different configurations that can be
used and novel applications in fields of application, from mapping for
navigation of mobile robots to object recognition or scene reconstruc-
tion. Through this kind of sensors, the amount of information collected
may be enough to carry out most of the problems related to mobile
robotics. Moreover, these sensors present a relatively good relation
‘‘quantity of information - cost’’. However, these approaches present
downsides, such as their sensitivity to changes of lighting conditions.
For example, underfloor environments may be completely dark and
the illumination is only provided by light sources installed either on
the robot and/or in a specific position of the environment. Hence, the
shadows may generate inaccuracies (Cebollada, Payá, Juliá, Holloway,
& Reinoso, 2018; Parra, Cebollada, Payá, Holloway, & Reinoso, 2020).

According to the number of cameras and the field of view, different
configurations have been proposed. Some authors such as Okuyama,
Kawasaki, and Kroumov (2011) have used monocular configurations.
Others proposed stereo cameras by using binocular (such as Yong-
guo, Wei, and Guang-liang (2012) or Gwinner et al. (2016)) or even
trinocular systems such as Jia, Li, An, and Zhang (2003). In order
to obtain complete information from the environment, several images
must be captured. In this respect, omnidirectional cameras constitute a
good alternative. They can provide a big amount of information with a
field of view of 360 deg. around them and their cost is relatively low in
comparison with other kinds of sensors. Furthermore, omnidirectional
vision systems present further advantages. For instance, the features
in the images are more stable (because they stay longer as the robot
moves) and they permit estimating both the position and the orien-
tation of the robot. Omnidirectional cameras have been successfully
used by different authors for mapping and localization (Menegatti,
Pretto, Scarpa, & Pagello, 2006; Murillo, Guerrero, & Sagues, 2007;
Payá, Peidró, Amorós, Valiente, & Reinoso, 2018; Tardif, Pavlidis, &

Daniilidis, 2008; Valiente, Payá, Jiménez, Sebastián, & Reinoso, 2018).
A wide study was carried out by Payá, Gil, and Reinoso (2017), who in-
troduce a state of the art of the most relevant mapping and localization
algorithms developed with omnidirectional visual information.

With this aim, a wide range of approaches have emerged to process
the information obtained by the sensory systems. As a result, a variety
of methods have been proposed regarding sensory information and
processing techniques. Additionally, in recent years, several tools and
techniques based on artificial intelligence (AI) have proved their ability
to solve a variety of problems with a profound data treatment. The
use of these techniques has become very popular among the mobile
robotics works and it is worth studying their main applications to solve
mapping and localization. Within the AI field, Machine Learning (ML) is
a subfield whose algorithms attempt to improve automatically through
experience (Mitchell, 1997). More precisely, these algorithms build a
mathematical model based on sample data with the aim of carrying
out predictions or decisions without being explicitly programmed for
a specific purpose (Bishop, 2006). During the past few years, ML
has received considerable attention, since this technique is capable of
addressing a wide variety of complex problems accurately. There are
many machine learning algorithms and they depend on the approach
they use, the data type of the input, the data type of the output, and
the type of problem that they are designed to solve. On the other
hand, supervised learning algorithms consist on building a mathemat-
ical model to represent a set of data which contains the inputs and
also the desired outputs. By addressing iterative optimization of an
objective function, these algorithms learn a function that can be used to
predict outputs associated with new inputs (Mehryar, Rostamizadeh, &
Talwalkar, 2012). On the other hand, unsupervised learning algorithms
take a set of data that contains only inputs. These algorithms try to find
a structure in the training data such as grouping or clustering of data
points (Hinton, Sejnowski, & Poggio, 1999).

Currently, deep learning has become the dominant approach for
many works in the field of machine learning. Like ML, deep learning
algorithms build mathematical models based on sample data to carry
out predictions/decisions without being explicitly programmed for a
certain purpose using typically an architecture of multiple hidden
layers in an artificial neural network. These algorithms try to construct
automatically high level data models by using a matrix of initial data
and architectures that allow linear, non-linear, multiple and iterative
transformations (Bengio, Courville, & Vincent, 2013). These architec-
tures have been commonly applied during the past few years to fields
like computer vision, speech recognition, natural language processing,
social network filtering, machine translation, and bioinformatics among
others. Its use has proved to provide results comparable to and in some
cases surpassing human expert performance (Goodfellow, Bengio, &
Courville, 2016).

The fields of mobile robotics and computer vision have progressed
considerably during the past few years. Notwithstanding that, there are
still some issues that need to be addressed more robustly to enable
mobile robots to move and perform their tasks more autonomously in
complex environments, under real operation conditions (Payá et al.,
2017). Additionally, the continuous improvement in the capacity and
performance of computing devices has extended the use of different AI
methods. Therefore, it is worth knowing the contribution of AI to mo-
bile robotics and computer vision, and the research gaps, opportunities
and solutions which are contributing to the development of these fields.

Some researchers have presented reviews in the field of mobile
robotics. Parker (2000) develops a survey about the methods used to
solve tasks in distributed mobile robotics. Muhammad, Fofi, and Ainouz
(2009) introduce a review about SLAM methods that make use of visual
information. Garcia-Fidalgo and Ortiz (2015) focus on approaches to
solve the topological mapping problem. Also, Fuentes-Pacheco, Ruiz-
Ascencio, and Rendón-Mancha (2015) and Kuutti et al. (2018) present
a state of the art of the localization techniques for autonomous vehicle
applications. Finally, Payá et al. (2017) develop a review of mapping
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and localization techniques using omnidirectional vision. With respect
to these previous reviews, and considering the great development of
AI techniques and their use in mobile robotics, in the present work
we focus on the use of such techniques. We present the most relevant
AI tools in mobile robotics, how they can be used to extract relevant
information from the scenes and their application to solve specific
problems in mobile robotics.

To summarize, the aim of this review is to present the most relevant
works conducted in the field of mapping, localization, navigation,
SLAM and exploration by using AI, paying more attention to the
developments that are based on visual information. The remainder of
the paper is structured as follows. First, Section 2 presents the main
AI tools used in the robotics field. Then, Section 3 presents the main
methods to describe the information. After that, Section 4 shows the AI
techniques that have been proposed to solve the mobile robotics tasks
with visual data. Last, Section 5 presents a final discussion about the
existing approaches.

2. Artificial intelligence tools

This section depicts the concept of AI and the areas where this
science has been commonly applied in the field of robotics during
the last few years. Also, the most relevant techniques are outlined.
Section 2.1 defines some areas of use in the field of robotics; Section 2.2
presents a variety of applications that contribute to the autonomy of
mobile robots and Section 2.3 focuses on the problems of mapping and
localization and the AI tools used to address these problems.

2.1. Definition and areas of use

In the related literature, some definitions of AI can be found. For
instance, Schleichert (1970) defined AI as ‘‘the science of making
machines do things that would require intelligence if done by men’’.
Charniak, McDermott, and McDermott (1985) define AI as ‘‘the study
of mental faculties through the use of computational models’’. More
recently, according to Schalkoff (1990), AI is ‘‘a field of study that seeks
to explain and emulate intelligent behavior in terms of computational
process’’. If we focus on the use of AI to solve robotics tasks, we can
describe this science as a set of techniques that are applied in computer
programming to solve problems whose difficulty requires a certain
degree of intelligence. As for the birth of the AI, many researchers
consider that this happened during the Second World War, when the
scientist Alan Turing worked to crack the ‘Enigma’ code that was
used by German forces to send messages securely. Alan Turing and
his team created the Bombe machine, which was used to decipher
Enigma’s messages. Both Enigma and Bombe Machines are considered
the foundations for Artificial Intelligence (Ray, 2018).

Artificial Intelligence has been widely used in different areas. Ac-
cording to the type of manipulation, we can establish two categories.
First, the physical manipulation, which covers the fields of computer
vision, robotics and control systems. For example, Vyborny and Giger
(1994) have used successfully computer vision together with AI in
mammography to detect or to characterize abnormalities on digital
images. Thanks to it, Radiologists are able to detect anomalies better
and then, the errors in mammography interpretation are considerably
reduced. Another example of computer vision and AI is proposed by
Wachs, Kölsch, Stern, and Edan (2011), who propose a vision based
hand gesture recognition for human computer interaction based on an
artificial neural network, fuzzy logic, and genetic algorithms. Regarding
the use of Artificial Intelligence for Robotics, Singh and Parhi (2011)
propose a neural network to solve the path and time optimization
problem of mobile robots. The inputs to the proposed neural controller
consist of distances to the obstacles with respect to the position of the
robot and target angle. The output of the neural network is the steering
angle. De Momi and Ferrigno (2010) propose a backpropagation algo-
rithm in the healthcare field that is used to train the network. The goal

is to assist surgeons with a robotic system controlled by an intelligent
high-level controller (HLC) able to gather and integrate information
from the surgeon, from diagnostic images, and from an array of on-
field sensors. Last, regarding control systems, Wong, Tam, Li, and Vong
(2010) propose a novel modeling and optimization approach for steady
state and transient performance tune-up of an engine at idle speed.
In terms of electric control, a genetic algorithm and particle swarm
optimization are applied to obtain an optimal control unit setting au-
tomatically. Gadoue, Giaouris, and Finch (2009) present a comparison
between four different speed controller design strategies based on AI
techniques; two are based on tuning of conventional PI (Proportional–
Integral) controllers, the third makes use of a fuzzy logic controller and
the last is based on hybrid fuzzy sliding mode control theory.

Regarding the thinking manipulation, this branch covers fields
such as Natural Language Processing, Data Mining, Neural Networks,
Automatic Learning, and Pattern Recognition. There are also a sub-
stantial amount of works related to them. To cite some examples,
Kohavi and Quinlan (2002) present data mining tasks by using decision-
tree discovery for classification. Xing, Xie, and Yang (2015) propose a
learning-based framework for robust and automatic nucleus segmenta-
tion with shape preservation. Krittanawong, Zhang, Wang, Aydar, and
Kitai (2017) review the recent AI applications in cardiovascular clinical
care and discuss its potential role in facilitating precision cardiovascu-
lar medicine. Calderon-Cordova, Ramírez, Barros, Quezada-Sarmiento,
and Barba-Guamán (2016) conduct the design and development of
the system architecture to recognition of Electromyography signal pat-
terns by using Feedforward backpropagation Artificial Neural Network.
Minaei-Bidgoli, Kashy, Kortemeyer, and Punch (2003) introduce an
approach to classify students in order to predict their final grade based
on features extracted from logged big data in an education Web-based
system and they also propose the use of a genetic algorithm to learn an
appropriate weighting of the features.

2.2. Applications of AI

In Section 2.1, some definitions were introduced as well as some
examples of use in a variety of fields. This subsection focuses on the
main applications of AI which are closely related to mobile robotics
and that have been developed during the past few years.

2.2.1. Self-driving navigation
Self-driving navigation means that a vehicle is able to plan its path

and execute its plan without human intervention. This task is carried
out through the use of data captured from sensors aboard the vehicle
and sometimes through the use of remote navigation aids (Michelson,
2000). This application is quite common in vehicles such as cars and
lorries but also for other kinds of ground, underwater or aerial robots.
The interest in such applications has increased in recent years due
to the desire to develop a full self-driving vehicle with the main aim
of reducing the traffic accidents provoked by human beings. These
systems basically consist of a mobile platform that integrates a set of
sensors. The data collected by the sensors provide the perception of the
environment. This information can be processed through AI algorithms
with the aim of tackling the path-planning task to move through
the environment with minimal human intervention. The autonomous
navigation also takes into consideration tasks such as move-on-route,
obstacle detection and avoidance and leader/follower capabilities.

Regarding the use of AI for this application, a considerable number
of works have been developed in recent years. Li et al. (2017) introduce
a fully autonomous navigation system for a smart microvehicle with
a microscope-coupled CCD (Charge-Coupled Device) camera, an AI
planner, and a magnetic field generator. The AI planner is split into
three functional modules: a computer vision module for tracking the
microvehicle and detecting obstacles in its environment; a motion
planner to generate an optimal obstacle-free path between starting
point and destination; and a magnetic motion controller to manipulate
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the microvehicle movement along a predesigned path. Polvara, Sharma,
Wan, Manning, and Sutton (2018) propose collision detection and path
planning methods for autonomous Unmanned Surface Vehicles by using
artificial neural networks and evolutionary algorithms. Sharma, Liu,
Wang, and Zhang (2017) apply AI to secure wireless communications
of Connected Vehicles, which facilitates exchange of safety messages
for collision avoidance in self-driving cars. The AI system learns to
augment its ability to discern and recognize its surroundings. Badue
et al. (2019) carry out a survey about the state-of-the-art on self-driving
cars focusing on works published since the birth of the DARPA (Defense
Advanced Research Projects Agency) challenges. This survey focuses
on the perception systems and the decision-making systems based on
methods that make use of AI.

2.2.2. Face detection and recognition
Face Detection is the preliminary step for face recognition, and it

consists basically in detecting faces in the images. These tasks have
played an important role in robotics concerning problems such as
surveillance (Ahuja, Krishnan, Kiran, Dalin, & Sagar, 2018) and home
service robots (Jiang & Wang, 2017). According to Yang, Kriegman,
and Ahuja (2002), the solution to the face detection problem can be
divided in two steps:

1. Finding out whether there is any face in a given image or not.
2. If there is any face within the image, then, calculate where it is

located.

In the related literature, many works can be found in this field.
Romdhani, Torr, Scholkopf, and Blake (2001) propose a face detector
that is based on running an observation window at all possible positions
and using a Support Vector Machine (SVM) to determine whether a
face is contained within the window. Ahuja et al. (2018) propose Local
Binary Patterns (LBP) to detect the ROI (Region Of Interest) of the face
inside the image and Haar feature-based cascade classifiers for develop-
ing the face recognition. Nevertheless, the revolution in this task arrives
when Viola and Jones (2004) introduced a real-time face detector,
which is able to detect faces in real-time with high accuracy. This work
is based basically on three contributions. The first is the introduction
of a new image representation that allows quick computations. The
second contribution is a simple and efficient classifier built through the
AdaBoost learning algorithm to select a small number of critical visual
features from a very large set of potential features (Freund & Schapire,
1995). The third contribution is a method that combines classifiers in
cascade, allowing quickly background regions rejection and spending
more computation on promising face-like regions.

Face detection frameworks are commonly proposed to identify mul-
tiple appearances in smartphone cameras like Hadid, Heikkila, Silvén,
and Pietikainen (2007) explain. Nowadays, face detection is commonly
used in any kind of storing system or social networks. For instance,
Facebook, Google, etc. are using face detection in the images uploaded
in social networks (Rabbath, Sandhaus, & Boll, 2012).

Second, face recognition is defined by Jafri and Arabnia (2009) as
a system to verify the identity of a person among a set of identities
by using as input a face image and a database of face images of
known individuals . This task has attracted an enormous interest in
automatic processing of digital images in order to solve a variety of
applications such as biometric authentication or surveillance (Jain &
Li, 2011). Face recognition has been proposed during the past few
years as an identification system in the same way that fingerprint
and iris were proposed before. According to Abate, Nappi, Riccio,
and Sabatino (2007), face recognition systems fall into two categories:
verification and identification. As for face verification, it is a one-to-
one match that compares an image of a face, whose identity has to be
recovered, against a template face. On the other hand, concerning face
identification, it is a one-to-many problem that compares a candidate
face image against all the image templates that are contained in a face

database with the objective of determining the identity of the candidate
face.

The face recognition task has been used in a high number of
applications. For example, Kim (2005) proposes a security system that
carries out automatic recognition for verification between the picture
of the passport and the face of the individual; this work proposes a
clustering algorithm that creates adaptive clusters to the variations of
input patterns and it is applied to the extracted areas for the recogni-
tion. Regarding surveillance, CCTVs (Closed-circuit television) can be
used to look for someone. Wang, Bao, Ding, and Zhu (2017) use face
recognition in real-world surveillance. They propose a convolutional
neural network which is trained with a labeled dataset and subse-
quently proposed to recognize individuals from the campus surveillance
system.

2.2.3. Objects recognition and categorization
These tasks have played an important role in robotics concerning

building object-based representations of the environment and manip-
ulation of objects. Object recognition basically consists in detecting
an object instance and object categorization consists in classifying a
specific object (such as a cup of tea) (Loncomilla, Ruiz-del Solar, &
Martínez, 2016). For instance, Gao et al. (2018) propose an object
classification method using RGB-D data to train a Convolutional Neural
Network (CNN) with the objective of detecting and categorizing usual
objects in an autonomous vehicle environment such as other cars,
cyclists, pedestrians and trucks. Zhu et al. (2016) introduce a CNN to
detect and classify traffic signs. Furthermore, there are several works
that use this application to additionally carry out a pose estimation of
the objects detected. Kanezaki, Matsushita, and Nishida (2018) use a
CNN to categorize objects from multi-view images and estimating their
position. Wei, Xie, Wu, and Shen (2018) developed an end-to-end Mask-
CNN model that selects deep convolutional descriptors for fine-grained
object recognition. Zaki, Shafait, and Mian (2019) propose a multi-scale
feature representation based on a convolutional hypercube pyramid
(HP-CNN) that is able to carry out viewpoint invariant semantic object
and scene categorization.

2.2.4. Objects manipulation
A manipulation planning or object manipulation is a task related to

the motion planning, but the focus is not on the movement of the robot,
but on the objects to be manipulated. This task consists basically in
changing the position and/or the orientation of a specific object (or set
of objects), while avoiding collisions or breaking the object/s (Jiménez,
2012). The interest for this application has increased substantially over
the past few decades with the aim of replacing human workers in
challenging (due to the required accuracy) or hazardous tasks, specially
in industrial, health care and domestic environments (Smith et al.,
2012).

In the bibliography, many works about manipulations and planning
can be found which are sustained by AI tools. For instance, Boularias,
Bagnell, and Stentz (2015) introduce a robot system for grasping ob-
jects in dense clutter by using depth images. For this purpose, the robot
learns to manipulate the objects by trial and error through a decision-
making problem based on a reinforcement learning framework. Yang,
Li, Fermuller, and Aloimonos (2015) propose a system that learns ma-
nipulation action by processing videos from the internet by using two
CNNs, one for classifying the hand grasp type and the other for object
recognition. Matas, James, and Davison (2018) present a combination
of state-of-the-art deep reinforcement learning algorithms to solve the
problem of manipulating deformable objects.

2.3. Frameworks commonly proposed for mapping and localization

After presenting some definitions and the main applications of AI in
the robotics field, the present subsection introduces some of the most
popular AI tools used to address mapping and localization in mobile
robotics.
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2.3.1. Machine learning classifiers
Classification is a task that predicts the class or category which

an ‘object’ belongs to. The object is also known as pattern and it is
assumed to pertain to a unique class among a set of categories. Each
pattern is represented by a set of measurements known as features,
that must provide enough class-discriminatory information to predict
the category of the pattern with high probability (Theodoridis, 2015).
Usually, 𝑛 feature variables, 𝑥1,… , 𝑥𝑛, are selected and arranged in a
feature vector, 𝑥 ∈ R𝑛. The objective is to train a classifier whose
function (or set of functions) 𝑓 (𝑥) in R𝑛 is able to predict the class which
the pattern belongs to.

This technique has been widely used to solve a range of problems.
For example, Atkinson and Campos (2016) propose a feature-based
emotion recognition model by using a multi-class SVM with EEG-
based Brain–Computer interfaces. Narudin, Feizollah, Anuar, and Gani
(2016) use different machine learning classifiers to detect malware
in mobile phones using the anomaly-based approach. Concerning the
computer vision field, there are many works that use classifiers. For in-
stance, Korytkowski, Rutkowski, and Scherer (2016) introduce a fuzzy
classifier with local image features to carry out objects classification.
Zhang, Huang, Gong, Li, Zhao, Liu, et al. (2015) propose an automatic
defective apple detection method by using a weighted relevance vector
machine (RVM) classifier. Aguilar et al. (2017) propose a pedestrian
detector for UAVs (Unmanned Aerial Vehicles) based on a combination
of Haar-LBP features with Adaboost and using cascade classifiers with
Meanshift.

2.3.2. Clustering
Classifiers, as described in the previous subsection, is a supervised

technique, that is, it needs correctly labeled data to carry out the
training process. In this case, clustering is an unsupervised technique,
where class labeling of the training patterns is not available. Hence, the
main objective consists in finding out the organization of patterns into
clusters (groups). To organize specific data into clusters, a clustering
criterion or several clustering criteria must be established. Then, each
pattern is categorized in a group and each cluster is characterized by
the common attributes of the data that belong to it (Theodoridis &
Koutroumbas, 1999).

This AI tool has been commonly proposed in a wide range of prob-
lems related to robotics and computer vision. For example, Dhanachan-
dra, Manglem, and Chanu (2015) propose an image segmentation using
k-means clustering. Schroff, Kalenichenko, and Philbin (2015) propose
a clustering and face recognition approach based on a system that
directly learns a measure of face similarity. Fan, Zheng, Yan, and
Yang (2018) propose a progressive unsupervised learning method based
on pedestrian clustering and fine-tuning of a CNN to transfer pre-
trained deep representations to unseen domains. Wang, Pelillo, and
Siddiqi (2019) propose an improvement of 3D object recognition by
introducing a view clustering and pooling layer based on dominant sets.

2.3.3. Deep feedforward networks
Deep feedforward networks, also known as feedforward neural net-

works or multilayer perceptrons (MLPs), are deep learning models
whose objective is to approximate some function 𝑓 ∗. This network
defines a mapping 𝑦 = 𝑓 (𝑥;𝜙) where 𝑥 and 𝑦 are the input and
output (or target) data respectively. This network learns the value of
the parameters 𝜙 that best approximate the function 𝑓 (Goodfellow
et al., 2016). These models carry out a flow through the function 𝑓
evaluating from 𝑥 to the output 𝑦. Nevertheless, these models do not
provide feedback connections, that is, outputs of the model are not fed
back into the model itself. During training, the aim is to drive 𝑓 (𝑥)
to match 𝑓 ∗(𝑥): the training data are provided and 𝑓 ∗(𝑥) is evaluated
with those data. Moreover, a label 𝑦 is included with each example 𝑥
to achieve 𝑦 ≈ 𝑓 ∗(𝑥).

These networks present an extreme importance in machine learning,
since they are the basis of many applications. For example, many

object recognition approaches are based on this kind of models, such
as the work by Mostajabi, Yadollahpour, and Shakhnarovich (2015),
who propose a feed-forward architecture for semantic segmentation to
tackle a rich feature representation that is used for object recognition.

2.3.4. Autoencoders
An autoencoder is a neural network architecture composed basically

of an encoder and a decoder system whose aim is to find a com-
pressed representation of the given input data. The process consists
in finding a representation or code to carry out useful transformations
on the input data. Traditionally, autoencoders were proposed for di-
mensionality reduction or even for feature learning (Goodfellow et al.,
2016). Denoising autoencoders try to find a code that can convert
noisy data into clean ones. Moreover, autoencoders are also used
to perform colorization, feature-level arithmetic, detection, tracking,
and segmentation among others. As shown in Fig. 1, regarding the
encoder, it transforms the input data 𝑥 into a low-dimensional latent
representation ℎ = 𝑓 (𝑥). This latent representation is a vector of lower
dimension. The encoder learns to extract the most important features
of the input data. As for the decoder, it recovers the input data from
the latent representation, 𝑟 = 𝑔(ℎ) with the objective that 𝑔(𝑓 (𝑥)) = 𝑟,
being 𝑟 as close as possible to 𝑥. In general the encoder and decoder are
non-linear functions and the dimension of the latent representation ℎ is
considerably smaller than the input dimensions. Similar to other neural
networks, the autoencoder tries to minimize a loss function during
the training process. The loss function is established to measure how
dissimilar the input 𝑥 and the reconstructed input 𝑟 are. For example,
the Mean Squared Error (MSE) can be used for this purpose.

𝐿(𝑥, 𝑟) = 𝑀𝑆𝐸 = 1
𝑚

𝑖=𝑚
∑

𝑖=1
(𝑥𝑖 − 𝑟𝑖) (1)

where 𝑚 the number of components of the input and the output (𝑚 =
𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠).

Autoencoders have been a successful tool for dimensionality re-
duction and also for information retrieval. Regarding dimensionality
reduction, this tool has provided reconstructions with an error rate
lower than using other techniques such as PCA (Principal Components
Analysis) (Hinton and Salakhutdinov, 2006). Therefore, through the
improvement of lower-dimensional representations, other related tasks
have also been improved. First, in classification tasks, autoencoders
provide a model with less memory requirements and computing time
consumption (Ma, Wang, & Geng, 2016). Second, by means of di-
mensionality reduction, information retrieval can be carried out more
efficiently. With the use of autoencoders and its related dimensionality
reduction, exhaustive searching becomes more efficient. For example,
Pfeiffer, Broscheit, Gemulla, and Göschl (2018) present a study about
learning-to-rank and query refinement approaches for information re-
trieval in the pharmacogenomic domain. Zhu et al. (2016) propose
using an autoencoder for feature learning from 2D images with the aim
of carrying out 3D shape retrieval. Moreover, autoencoders have been
widely proposed to produce codifications that are low-dimensional and
binary. In this way, entries of a database can be stored in a hash
table and information retrieval can be carried out by returning all
the entries that have the same binary code as the query. To cite one
example of this approach, Carreira, Calado, Cardeira, and Oliveira
(2015) introduce a fast search in image databases with binary hashing,
where each high-dimensional, real-valued image is mapped with an
autoencoder onto a low-dimensional, binary vector and the search is
done in this binary space. Apart from these examples, many others can
be found in the related literature concerning the use of autoencoders
for mobile robotics. Sergeant, Sünderhauf, Milford, and Upcroft (2015)
address a navigation task by using a deep autoencoder which learns
how to navigate from the sensory data stored in a dataset. Wang,
Yang, Huang, Lin, and Tang (2018) propose an autoencoder for fusion
and extraction of multiple visual features from different sensors with
the aim of carrying out motion planning based on deep reinforcement
learning.
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Fig. 1. Autoencoder structure. An input 𝑥 is mapped to obtain a reconstruction 𝑟 by means of using a latent representation ℎ. 𝑓 is a function that encodes or maps 𝑥 to ℎ and 𝑔
is a function that decodes, that is, maps ℎ to 𝑟.

2.3.5. Convolutional neural networks
Convolutional Neural Networks, commonly known as CNNs, are

currently the most popular tool among the deep learning techniques,
since they have led to successful results in many practical applications.
They are a specialized kind of neural network for processing data that
present an already known topology. These networks are commonly
designed to receive images as input and they have different applications
such as classification or objects detection. This kind of networks are
based on the use of convolutions, which is a specialized kind of linear
mathematical operation (Goodfellow et al., 2016). That means, whereas
traditional neural networks use matrix multiplication with a separate
parameter that describes the interaction between inputs and outputs,
CNNs present sparse interactions, i.e., using specific and meaningful
features obtained from the input data. CNNs consist of local connections
between neurons and hierarchically organized transformations of the
data. Basically, CNNs are composed by three types of neural layers:
convolutional layers, pooling layers and fully connected layers. Every
layer transforms the input and generates an output according to the
parameters established. This process is tackled throughout several lay-
ers until reaching the last layer, which is a fully connected layer that
outputs a 1D feature vector, which provides the most likely prediction.

There are very well known CNNs whose architectures have been
used as starting point to develop new computer vision tasks. For
instance, AlexNet was introduced by Krizhevsky, Sutskever, and Hinton
(2012). This network consists of eight layers (five convolutional layers
and three fully connected layers) with a final 1000-way softmax and
three pooling layers. The input image has a size of 227 × 227 × 3
and the network was trained to identify objects in the input images.
It is able to identify 1000 object categories, such as keyboard, pencil,
and a variety of animals. Fig. 2 shows the architecture of this network.
GoogLeNet was proposed by Szegedy et al. (2015). This network has
22 layers, it is also trained for object classification but it uses 12 times
fewer parameters than AlexNet. A wide review of the most outstanding
CNNs can be found in Pak and Kim (2017). Moreover, Table 1 shows
a summary table of the most popular CNNs until the present date.

Additionally, there are other options that permit reusing robust
CNNs which have provided successful results, to solve different prob-
lems from the input images. On the one hand, the transfer learning
technique consists in the process of retraining a pre-trained network to
classify a new set of images, that is, reusing the architecture, weights
and parameters of a CNN which already works properly as starting
point to build a new CNN with a different purpose. The main idea is to
get profit of most of the intermediate layers, because their parameters
have been tuned with a large number of images. The problem, then,
is reduced to changing the final layers (in order to re-adapt them to
the new task proposed) and, perhaps, the initial layers (if the size of

the images does not match the size used previously). Once the ‘‘new’’
network architecture is established, the training process starts through
using the new labeled training data. Hence, this technique can save a
considerable amount of time for training and even output better results
than creating a new network from scratch. This idea has been used
by many authors. For example, Han, Liu, and Fan (2018) use CNN
transfer learning together with data augmentation in order to achieve
good solutions despite the small size of the datasets used. Also, as
mentioned previously, Wozniak, Afrisal, Esparza, and Kwolek (2018)
use the transfer learning technique to retrain the VGG-F network to
classify places among 16 rooms acquired by a humanoid robot. On the
other hand, many authors have also proposed the use of intermediate
layers to generate global-appearance descriptors of the input image. In
this sense, once the network is properly available to face the desired
task, the hidden layers perform vector description which can be used
to characterize the input data. This idea has been exploited by some
authors such as Arroyo, Alcantarilla, Bergasa, and Romera (2016), who
use a CNN that automatically learns to generate visual descriptors
which are robust against changes of seasons, in order to carry out
a robust topological localization. Wozniak et al. (2018) also use the
features extracted from the FC-6 layer to train a linear SVM (Singular
Vector Machine) classifier. Mancini, Bulò, Ricci, and Caputo (2017) use
this visual information to carry out place categorization with a Naïve
Bayes classifier.

Regarding the use of CNNs to solve robotics tasks through visual
information, there are many works that have provided successful results
by using this technique. For instance, Sinha, Patrikar, Dhekane, Pandey,
and Kothari (2018) propose a CNN to process data from a monocu-
lar camera and tackle an accurate robot relocalization in GPS-denied
indoor and outdoor environments. Payá et al. (2018) propose using
CNN-based descriptors to create hierarchical visual models for mobile
robot localization. More recently, Chaves, Ruiz-Sarmiento, Petkov, and
Gonzalez-Jimenez (2019) propose a CNN to build a semantic map.
Concretely, they use the network to detect objects in images and, after
that, the results are placed within a geometric map of the environment.
Xu, Chou, and Dong (2019) propose a multi-sensor-based indoor global
localization system integrating visual localization aided by CNN-based
image retrieval with a Monte Carlo probabilistic localization approach.

2.3.6. Regression neural networks
Apart from the main techniques based on deep learning showed

previously, there are other options that have been used by researchers.
Despite its use is less common to solve mobile robotics tasks, they have
also provided successful results.

Regression Neural Networks (R-CNN) are among these deep learn-
ing techniques. Deep neural networks are well known for classification
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Fig. 2. Architecture of the CNN AlexNet. Input images have a size of 227 × 227 × 3 and the output is able to classify objects into 1000 categories.

Table 1
Summary of the most popular CNNs developed during the past few years.

CNN Year Developed by No. of convolutional layers No. of parameters

LeNet 1998 LeCun, Bottou, Bengio, and Haffner (1998) 5 60,000
AlexNet 2012 Krizhevsky et al. (2012) 8 60 million
GoogLeNet 2014 Szegedy et al. (2015) (Google company) 22 4 million
VGG Net 2014 Simonyan and Zisserman (2014) 19 138 million
Inception 2015 Szegedy et al. (2015) 65 5 million
ResNet 2016 He, Zhang, Ren, and Sun (2016) 152 25.6 million
Xception 2017 Chollet (2017) 42 23 million

problems, where the goal is to predict a single discrete label of an
input vector. Nevertheless, the regression problem consists in obtain-
ing a continuous value instead. Therefore, this type of network has
commonly been proposed for continuous predictions such as forecast-
ing. Bilgili and Sahin (2010) propose an analysis of regression neural
network models to predict wind speed; and Kumar, Aggarwal, and
Sharma (2015) introduce a study about regression neural networks
to estimate the monthly average global solar radiation. These models
have also been proposed for other types of predictions such as medical
diagnoses. For instance, Kayaer and Yıldırım (2003) propose using
a general regression neural network to diagnose diabetes. Ferreira,
Amaral, Pires, Crisostomo, and Coimbra (2004) use a general regression
neural network to construct the base of an adaptive neuro-fuzzy system
and carry out a walking control of an autonomous biped robot. As for
mobile robotics, the related literature also presents different examples
of application. For example, Wang, Wang, and Zhuang (2007) use a
general regression neural network for approximating the functional
relationship between high-dimensional map features and states of the
robot. Rahman, Park, and Kim (2012) propose a location estimation
algorithm using generalized regression neural network and Wireless
Sensor Network (WSN). Dezfoulian, Wu, and Ahmad (2013) propose a
method to interpret the data from various types of 2-dimensional range
sensors and a regression neural network to perform the navigation task.

2.4. Recurrent neural networks

Recurrent Neural Networks (RNNs) are a kind of neural network
specialized in processing a sequence of values. This type of networks
share parameters in a different way. Each member of the output is a
function of the previous outputs and the connections between nodes
form a directed graph along a temporal sequence. RNNs can use their
internal state to process sequences of inputs and therefore they exhibit
temporal dynamic behavior. RNNs are flexible in their use of context
information, because they can learn what to store and what to ignore

and they can recognize sequential patterns in the presence of distortions
(Sak, Senior, & Beaufays, 2014). More detailed information about this
type of networks can be found in the work developed by Graves (2012).
An example of RNN is the Long short-term memory (LSTM), which
has feedback connections and can process entire sequences of data. For
instance, LSTM is commonly applicable to tasks such as unsegmented,
connected handwriting recognition, as Messina and Louradour (2015)
do to recognize lines of handwritten Chinese text, or speech recognition
such as Graves, Mohamed, and Hinton (2013) do. Additionally, this tool
has also been proposed to solve mobile robotics tasks. For example,
Otte, Weiss, Scherer, and Zell (2016) introduce an extension of Long
Short Term Memories (LSTMs) for ground robots based on vibration
data classification with the aim of carrying out recognition of the
ground reliably condition for mobile robot navigation. Rahmatizadeh,
Abolghasemi, Behal, and Bölöni (2016) carry out a deep learning
controller based on LSTM with the aim of learning manipulation tasks
for assistance robotics and wheelchair mobile robots. Otte et al. (2016)
propose an extension of LSTMs for classification of 14 different ground
types based on vibration data, since recognizing the condition of the
ground may be key in mobile robot navigation systems. Sun, Yan,
Mellado, Hanheide, and Duckett (2018) present a 3-DOF pedestrian
trajectory prediction approach for autonomous mobile robots by means
of range-finder sensors with an LSTM network.

2.5. Deep reinforcement learning

Reinforcement learning is a branch of machine learning that has
gained a lot of attention since it was proposed to play Atari games
(Mnih et al., 2013). In reinforcement learning, an autonomous agent re-
ceives information from the environment and takes actions to maximize
a notion of cumulative reward (Chollet, 2017). Deep reinforcement
learning consists in the use of deep learning and reinforcement learning
principles with the aim of creating efficient algorithms. This field of
research has been able to solve complex decision making tasks that
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were hard to solve by means of conventional methods. François-Lavet,
Henderson, Islam, Bellemare, and Pineau (2018) introduce this deep
learning model and focus on the aspects related to generalization and
how deep reinforcement learning can be used for practical applications.
Despite the related algorithms have been scarcely applied to solve real
situation tasks, the state of the art already presents some examples,
such as Lillicrap et al. (2015), who introduce a deep learning rein-
forcement algorithm that solves more than 20 simulated physics tasks,
including classic problems such as cartpole swing-up, dexterous manip-
ulation, legged locomotion and car driving. As for the mobile robotics
tasks, Zhang, Springenberg, Boedecker and Burgard (2017) propose
a successor-feature-based deep reinforcement learning algorithm that
can learn to transfer knowledge from previously mastered navigation
tasks to new problem instances. Tai, Paolo and Liu (2017) propose
a learning-based mapless motion planner based on an asynchronous
deep reinforcement learning method to estimate the target steering
commands with respect to the mobile robot coordinate frame. Zhu
et al. (2017) introduce a target-driven visual navigation system in
indoor scenes by using deep reinforcement learning with the aim of
improving the lack of capability of generalizing new goals and the data
inefficiency. Kahn, Villaflor, Ding, Abbeel, and Levine (2018) carry out
a self-supervised deep reinforcement learning for robot navigation to
improve the need to learn complex policies from the environment with
few samples. Their robotic system captures raw monocular images and
it is able to tackle the navigation task by means of learning by a fully
autonomous reinforcement learning.

3. Description of the visual information by using AI tools

Vision sensors have been widely used for mobile robotics purposes.
However, images are highly dimensional data and they also change
for several reasons apart from the movement of the robot, such as
change of illumination or position of some objects that constitute the
environment. Hence, the approaches that work with these data consist
commonly in extracting the most relevant and invariant information
from scenes. In this sense, two main approaches have been commonly
proposed; either by detection and description of local features, or
working with global-appearance extraction methods. On the one hand,
the methods based on local features consist in extracting some out-
standing points from each scene and creating a descriptor for each
point, using the information around it (Fig. 3(a)). On the other hand,
global-appearance description methods consist in building a unique
descriptor per image. Fig. 3 illustrates (a) local features extraction and
description and (b) global-appearance description.

In the literature, many examples can be found using local features
as well as global-appearance descriptors to solve mobile robotics tasks.
To cite some examples, concerning local features, Kunii, Kovacs, and
Hoshi (2017) propose a robust landmark tracking method for mobile
robot operation in natural environments, where ORB (Oriented FAST
and rotated BRIEF), CenSurE (Center Surround Extremas) are used
for feature extraction and SURF (Speeded-Up Robust Features), ORB,
FREAK (Fast Retina Keypoint) for feature description. Su et al. (2017)
propose a global localization approach with the capability of address-
ing the kidnapped robot problem, where the ORB local descriptor
is used to further improve localization accuracy. Regarding global-
appearance descriptors, Payá, Reinoso, Berenguer, and Úbeda (2016)
present a comparative analysis of some global-appearance descriptors
for mapping. Rituerto, Murillo, and Guerrero (2014) propose the use
of the gist (Oliva & Torralba, 2001) descriptor to build topological
maps departing from omnidirectional images. Murillo, Singh, Kosecká,
and Guerrero (2013) use a panoramic gist descriptor to address the
localization task in urban environments. More recently, Faessler et al.
(2016) present a vision-based quadrotor system to map a dense three-
dimensional area. Korrapati and Mezouar (2017) propose the use of
omnidirectional images through global appearance descriptors to build
topological maps and also a loop closure detection method. Both local

features and global-appearance descriptors have been commonly cal-
culated by means of analytical methods. Traditionally, initial works in
mobile robotics tried to extract and describe local features from the
scenes. Later, a number of works proposed using the information as
a whole, creating a holistic descriptor per scene. More recently, the
development of new AI techniques and the evolution of the computing
devices has made it possible to extract relevant information by means
of such AI techniques. Fig. 4 shows this evolution of methods to extract
relevant information from the scenes in mobile robotics, and includes a
number of relevant works that make use of each approach. In the next
subsections, some of the most popular methods are detailed.

3.1. Local features

Since the emergence of SIFT (Scale-Invariant Feature Transform)
(Lowe, 2004), local features have played an important role in image
matching, for example, to solve the image retrieval problem (Se, Lowe,
& Little, 2005; Zheng, Yang, & Tian, 2017). Nevertheless, local features
have not been used only for image retrieval, but they have also been
proposed as a powerful tool for other computer vision problems such as
wide baseline stereo matching or object detection. Typically, methods
based on local features comprise two main stages: extracting a set of
outstanding points, objects or regions from each scene and creating
a descriptor for each. That means that every feature is described by
means of a data vector, which is typically invariant against changes
in the position and orientation of the camera. Once the extraction and
description of the features has been addressed, they are usually tracked
and matched along a set of scenes.

A considerable amount of local features extraction and description
methods have been developed since the appearance of SIFT. Many
subsequent developments focused on reducing its computational re-
quirements or improving the invariability to other effects. For example,
SURF (Bay, Ess, Tuytelaars, & Van Gool, 2008) presents lower compu-
tational cost and higher robustness against image transformation and
BRIEF (Binary Robust Independent Elementary Features) is designed
to be used in real time at expense of a lower tolerance to image dis-
tortion and transformations (Calonder, Lepetit, Strecha, & Fua, 2010).
All these examples are known as traditional or hand-crafted features,
since they are based on the detection of visual structures such as
corners. A deep survey of these tools can be found in Payá et al.
(2017) and Mukherjee, Wu, and Wang (2015) carried out an exhaustive
comparative experimental study.

Concerning the development of local features based on AI tech-
niques, they are widely known as learned features and like hand-crafted
ones, the AI methods typically consist in either detecting or describing
local features, or even both (detecting and describing). Within the
learned local features, two main blocks can be established: features
based on machine learning and based on deep learning techniques.
As for the first block, FAST (Features From Accelerated Segment Test)
was one of the first successful methods and it is designed for high-
speed corners detection (Rosten & Drummond, 2006). Despite being
principally constructed for speed purposes, this method also proved to
outperform existing corner detectors. Later, simulated annealing was
proposed to optimize the parameters of the FAST detector to achieve
higher repeatability (Rosten, Porter, & Drummond, 2008). This work
shows that using machine learning produces significant improvements
in repeatability, speed and quality. Early attempts were based on
genetic algorithms. In this sense, Trujillo and Olague (2006) present
an approach for extracting automatically low-level features by applying
genetic programming. These authors introduce a Genetic Programming
implementation that is capable of discovering a modified version of a
feature operator which presents an improved performance. This work
also highlights the balance between genetic programming and domain
knowledge expertise to obtain results that improve hand-crafted solu-
tions. More recently, machine learning tools have been typically used
in feature detection to imitate and/or accelerate previously defined
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Fig. 3. Two main methods to extract the most relevant information from the images for mapping and localization purposes. (a) Detection, description and tracking of some relevant
landmarks along a set of scenes. (b) Building a unique descriptor per image that contains information on its global-appearance.

Fig. 4. Evolution of methods to extract relevant information from the scenes, with the purpose of solving problems in mobile robotics.

methods. Šochman and Matas (2009) propose a faster version of binary
decision algorithms by using a WaldBoost classifier . This classifier
learns to minimize the decision time of the classifier while guaranteeing
predefined precision. Holzer, Shotton, and Kohli (2012) address the
Interest Point (IP) detection as a regression problem by using machine
learning. A regression forest (RF) model learns to detect if there is
an IP in the center of a given image patch. Other researchers use
machine learning to reduce the size of the descriptor, such as Strecha,
Bronstein, Bronstein, and Fua (2011), who propose metric learning to
reduce the size of the descriptors by representing them as short binary
strings. In short, they map the descriptor vectors into the Hamming
space, which is used to compare the resulting representations. This way,
the size of the descriptors is reduced by representing them as short
binary strings. Simonyan and Zisserman (2014) develop a learned local
feature descriptor by using convex optimization. This work shows that
learning the pooling regions for the descriptor can be formulated as a
convex optimization problem. It also shows a descriptor dimensionality
reduction by using Mahalanobis matrix nuclear norm regularization.
Both formulations are based on discriminative large margin learning
constraints.

Regarding the learned features based on deep learning techniques,
they have been often used to improve rather than to replace hand-
crafted local features. For instance, they have been used to learn
covariant feature detectors invariant against viewpoint changes with-
out supervision. For example, Lenc and Vedaldi (2016) propose a
general machine learning formulation for covariant feature detectors.
Moreover, many other improvements can be done, such as includ-
ing explicitly modeling detection confidence, predicting multiple fea-
tures in a patch, or jointly training detectors and descriptors. Mishkin,
Radenovic, and Matas (2018) introduce a method for learning local
affine-covariant regions. The proposed affine shape estimator is trained
considering the loss function, descriptor type, geometric parametriza-
tion, etc. Furthermore, the training process does not require aligned
patches geometrically accurate.

Most of the related works are focused on feature descriptors, nev-
ertheless, more recently, there has been also an important progress
in the development of detectors. For example, Verdie, Yi, Fua, and
Lepetit (2015) use deep neural networks to learn a feature detector
robust against illumination changes. The process consists in firstly
identifying good keypoint candidates in multiple training images and
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secondly training a regressor to predict a score map whose maxima
are those points. Yi, Trulls, Lepetit and Fua (2016) propose an end-
to-end framework based on the use of a deep network architecture to
detect keypoints, estimate orientation and compute descriptors. These
authors also developed a work to train a CNN to estimate the canonical
orientation of a local feature given an image patch centered on the
feature point and extended it to several different description methods
(Yi, Verdie, Fua and Lepetit, 2016). They propose siamese networks
to avoid the task of finding a target orientation to learn. Furthermore,
they also propose a new activation function. Concerning CNNs to obtain
local features, its use has been widely proposed by several authors.
This technique is specially successful for large-scale image retrieval
applications. For instance, Noh, Araujo, Sim, and Han (2016) propose
a CNN-based local feature that is trained for instance-level recognition
tasks without the need of object and patch-level annotations and it
is suitable to replace hand-crafted descriptors. This framework can
be used in image retrieval problems, enabling more accurate feature
matching and geometric verification.

Nonetheless, despite the wide use of deep convolutional networks,
local viewpoint invariant features based on hand-crafted techniques
still play an important role in applications such as motion and image
retrieval. Recently, Lenc and Vedaldi (2018) have carried out a deep
evaluation of local feature detectors by evaluating a range of state-
of-the-art local feature detectors. Through this study, they concluded
that machine-learning-based detectors help to improve illumination
invariance, that traditional methods are still competitive and they
suggest also that a significant progress regarding deep-learning-based
detectors can be done.

3.2. Global-appearance description

The approach based on global-appearance or holistic descriptors
consists on working with the image as a whole, i.e., without extracting
any local information. For this type of approaches, each image is
represented by a unique descriptor that contains information on its
global appearance (Payá et al., 2017). Concerning mobile robotics, this
description method presents advantages in dynamic and poorly struc-
tured environments, where extracting stable local features may result
difficult. Additionally, due to the fact that each image is represented
by a unique descriptor, global-appearance descriptors lead to simpler
mapping and localization algorithms (Amorós, Payá, Marín, & Reinoso,
2018; Berenguer, Payá, Valiente, Peidró, & Reinoso, 2019; Cebollada,
Payá, Mayol and Reinoso, 2019; Cebollada, Payá, Román and Reinoso,
2019).

A wide range of works have been proposed during the past few years
to develop holistic descriptors by using AI techniques. This method
is known by some authors as feature engineering and it tries to take
advantage of human prior knowledge to compensate the weaknesses
that may present the algorithms (Bengio et al., 2013). One of the main
objectives of developing methods to learn descriptors is to achieve
faster solutions to proposed AI problems. Furthermore, AI applications
have proved to be able to understand the environment that surrounds
the camera, thank to their capability of identifying interesting and
rejecting unprofitable information from the sensory data. Remarking
the global-appearance descriptors based on deep architectures, they are
usually effective to train robust models and introduce two advantages
in this topic: first, deep architectures promote the reuse of features and
second, they lead to more abstract features in higher layers that are
typically invariant to local changes. A profound review about a wide
range of unsupervised feature learning techniques can be found in the
work presented by Bengio et al. (2013).

Among the early techniques proposed, PCA was one of the first
alternatives that presented robustness. PCA basically performs a linear
transformation ℎ = 𝑓 (𝑥) = 𝑊 𝑇 𝑥 + 𝑏 of the input 𝑥 ∈ R𝑛 and the results
are 𝑑ℎ features that are the first components of the representation
ℎ (Kirby, 2000). Similar to PCA, Independent Component Analysis

(ICA) performs a linear analysis to obtain distinctive features based
on linear generative models with non-Gaussian independent variables.
Like sparse coding, ICA and its variants have also been used to ob-
tain nonlinear features such as in the works developed by Bell and
Sejnowski (1997), Jutten and Herault (1991) and Le, Zou, Yeung, and
Ng (2011).

Successful feature learning algorithms and related applications are
used in many works using a variety of approaches such as RBMs (Re-
stricted Boltzmann Machines). For example, Hinton, Osindero and Teh
(2006) propose a technique that consists in stacking pre-trained RBMs
into deep belief networks (DBN), where the top layer is interpreted as
an RBM and the lower layers as a directed sigmoid belief network.
This work has proved to give better digit classification than discrim-
inative learning algorithms. Salakhutdinov and Hinton (2009) propose
to combine RBM parameters into DBM (Deep Boltzmann Machines)
by halving the RBM weights to obtain the DBM weights and train it
by approximate maximum likelihood. This way, this work shows that
DBM learn good generative models and perform well on handwritten
digit and visual object recognition tasks. Larochelle, Bengio, Louradour,
and Lamblin (2009) carry out an empirical study about the use of
different RBM input unit distributions. This study confirms the hypoth-
esis that the greedy layer-wise unsupervised training strategy improves
the optimization by initializing weights in a region near a good local
minimum and it also brings better generalization of the input. Another
important perspective on global-appearance descriptors is based on the
manifold learning, a geometric notion whose premise is based on
the concentration of high-dimensional input space in the vicinity of
a manifold 𝑀 of lower dimensionality. The majority of the methods
based on this technique lead to a non-parametric approach based
on neighbor graphs. Belkin and Niyogi (2003) propose a geometrical
algorithm for representing the high-dimensional data that provides a
computationally efficient reduction of dimensionality. This reduction
has locality-preserving properties and a natural connection to cluster-
ing. Donoho and Grimes (2003) propose a Hessian-based locally linear
embedding method for recovering the underlying parametrization of
scattered data. Weinberger and Saul (2006) introduce an algorithm for
unsupervised learning of image manifolds by semidefinite program-
ming. The algorithm computes a low dimensional representation of
each image so that distances between nearby images are preserved. Ac-
celerating t-SNE using tree-based algorithms, author=van der Maaten,
L. (2014) proposes variants of the Barnes–Hut algorithm with the t-
SNE (t-distributed Stochastic Neighbor Embedding) algorithm to learn
embeddings of data sets with millions of objects. More recently, some
authors have proposed to use free energy functions, that is, without
explicit latent variables. For instance, Ngiam, Chen, Koh, and Ng (2011)
use a hybrid of Monte Carlo to train the free energy function. In brief,
they propose using deep feedforward neural networks to model the
energy landscapes that define probabilistic models. The lower layers of
the model adapt the training of the higher layers, and thereby this pro-
duces better generative models. By means of this method, all the layers
of the model are simultaneously and efficiently trained. Kingma and
Cun (2010) propose denoising score matching. Differentiating the loss
with respect to the model parameters is automated with an extended
version of a double-backpropagation algorithm.

Apart from the previously mentioned techniques, it is worth remark-
ing the use of deep neural networks, specially CNNs, to obtain holistic
descriptors, since a number studies have proved that these networks can
learn more transferable features for domain adaptation and produce
successful results in a wide range of scenarios and applications (Glorot,
Bordes, & Bengio, 2011; Yosinski, Clune, Bengio, & Lipson, 2014). For
instance, Donahue et al. (2014) propose the use of features extracted
from the activation of a deep convolutional network trained in a fully
supervised fashion on a large, fixed set of object recognition tasks and
use it for a completely different task. The works focuses on investigating
the semantic clustering of deep convolutional features with respect to
a variety of tasks such as scene recognition, domain adaptation, and
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fine-grained recognition. The study addresses an efficacy comparison
relying on various network levels to define a fixed feature. Yosinski
et al. (2014) carry out a deep study about how transferable features
are in deep neural networks. They conclude that features obtained from
the initial layers appear not to be specific to a particular dataset or task
and the features become more specific as the selected layer approaches
to the last one. Additionally, they conclude that initializing a network
with transferred features from almost any number of layers can produce
a boost to generalization. Long, Cao, Wang, and Jordan (2015) propose
a Deep Adaption Network (DAN) architecture that generalizes deep
CNNs to the domain adaptation scenario. The DAN architecture learns
transferable features and can scale linearly by unbiased estimate of
kernel embedding. Arandjelovic, Gronat, Torii, Pajdla, and Sivic (2016)
solve the image retrieval problem by developing a CNN and using
it to obtain global-appearance descriptors. This network incorporates
a new layer which is inspired by the ‘‘Vector of Locally Aggregated
Descriptors’’ (VLAD) image representation. VLAD is commonly used
in image retrieval tasks. Gordo, Almazán, Revaud, and Larlus (2016)
introduce a method that employs a region proposal network to learn
which regions should be pooled to form the final global descriptor. This
approach produces a global image representation in a single forward
pass. Most recently, Xu et al. (2019) propose a transfer learning method
based on a pre-trained model to transform general features into special
features, which are adapted to the desired task. The pre-trained model
of Faster R-CNN is used to extract the high dimensional convolution
features of images.

Another technique widely used in recent years within the deep
learning has been the use of autoencoders and variations of this
tool. As outlined in Section 2.3.4, in the autoencoder frameworks, the
starting point is a feature-extracting function in a specific parame-
terized closed form. This function, 𝑓 (𝑥), is the encoder and tackles
the straightforward computation of a feature vector from an input 𝑥
through ℎ = 𝑓 (𝑥). So, for each sample of the dataset 𝑋 = {𝑥1,… , 𝑥𝑁},
we define ℎ(𝑖) = 𝑓 (𝑥𝑖), where ℎ(𝑖) is the feature vector computed from
𝑥𝑖. For example, Vincent, Larochelle, Lajoie, Bengio, and Manzagol
(2010) propose a denoising autoencoder (trained to denoise corrupted
versions of the inputs) to obtain a robust global-appearance descriptor,
which is used successfully to solve classification problems. This work
shows that the denoising autoencoders are able to learn Gabor-like edge
detectors from natural image patches. The descriptor generated permits
performing classification task similar than using deep belief networks.
Coates, Ng, and Lee (2011) carried out a detailed analysis of the effect
of changes in the model setup (receptive field size, number of hidden
nodes, the step-size) and compare the extracted features (sparse autoen-
coders, sparse RBMs, K-means clustering, and Gaussian mixtures) with
a whitening process. They conclude that complex algorithms can have
greater representational power and simple but fast algorithms can be
highly competitive. Le (2013) trains a deep sparse autoencoder on a
large dataset of images to build high-level features. The experiments
show that this feature detector is robust against translation, scaling
and out-of-plane rotation. Gao and Zhang (2017) propose an approach
based on the Stacked Denoising Autoencoder (SDA) to detect loops
for a visual SLAM system. The descriptors are calculated by using
SDA over patches of the original images. This autoencoder can lead
to very complicated structures, since the learned features reflect the
inner patterns of the data, whereas traditional hand-crafted feature
descriptors are usually not able to show that.

Within this subsection, it is worth to mention the Bag of local
Features (BoF) method, which can be considered as a blended method
between local features and global-appearance descriptors. This method
comes from Bag of Words (BoW) representation, which basically con-
sists of a model for representing text data with machine learning
algorithms. The bag-of-words model is simple to understand and imple-
ment and has seen great success in problems such as language modeling
and document classification. Concerning BoF, many approaches have
been developed in computer vision during the last few decades (Csurka,

Dance, Fan, Willamowski, & Bray, 2004; Jurie & Triggs, 2005; Lazeb-
nik, Schmid, & Ponce, 2006; Zhang, Marszałek, Lazebnik, & Schmid,
2007). Bag of Features methods have been applied to image classifica-
tion, object detection, image retrieval, and even visual localization for
robots. BoF approaches consists basically in a characterization based
on the use of a collection of image local features to form a vector that
characterizes the input image. Despite the lack of structure or spatial
information, this image representation can be good enough for many
state-of-the-art applications. A detailed explanation of this technique
can be found in O’Hara and Draper (2011).

Like local features and global-appearance descriptors, many works
have proposed the use of AI techniques in bag-of-features frameworks.
In the majority of these works, AI (specially deep learning) is used to
replace previously hand-crafted features extraction methods in BoF. For
example, Gong, Wang, Guo, and Lazebnik (2014) introduce a multi-
scale orderless pooling (MOP-CNN), which extracts CNN activations for
local patches at multiple scale levels, performs orderless VLAD pooling
of these activations at each level separately, and concatenates the
result. The proposed method can be used as a generic feature for either
supervised or unsupervised recognition tasks. Ng, Yang, and Davis
(2015) present an approach for extracting convolutional features from
different layers of the networks OxfordNet and GoogLeNet, and adopt
VLAD encoding to encode features into a single vector for each image.
Mohedano et al. (2016) propose an image retrieval pipeline based on
encoding the convolutional features to obtain BoF by assigning each
local array of activations in a convolutional layer to a visual word.
Feng, Liu, and Wu (2017) propose CNNs for optimizing the feature
extraction to perform BoF for geographical scene classification. Cao,
Huang, and Shen (2017) build an effective BoF model using deep local
features. They show how to use the CNN as a combination of local
feature detector and extractor without the need of feeding multiple
image patches to the network. Khan et al. (2018) propose two strategies
to encode multi-scale information explicitly during the image encoding
stage. The aim of this approach is to recognize human actions. The
first approach is based on a multi-scale image representation with
scale encoded with respect to the image size. The second approach,
instead, encodes feature scale relative to the size of the bounding
box corresponding to the person instance. Scale coding of bag of
deep features is performed by applying the coding strategies to the
convolutional features from the pre-trained VGG-19 network. Brendel
and Bethge (2019) implement a variant of the ResNet-50 CNN that
classifies images by using BoF as input and compare their method with
other high-performance deep neural networks (VGG-16, ResNet-50 and
DenseNet-169) to carry out the classification task with the ImageNet
dataset.

From this section, the conclusions achieved are that the use of
techniques based on AI present some advantages: compared to other
description methods, they lead to semantic, objects and geometric
forms interpretation, and once trained, the model is easy and quick to
use and obtain the necessary descriptors. Nonetheless, these descrip-
tors are not based on a closed mathematical process and the method
to obtain such description is not known a priori; it depends on the
parameters configuration during the training process. Therefore, the
modeling will be sensitive to the specific training dataset and it is
expected to work well under similar environments, but it may lead to
less robust descriptors under different circumstances, what may limit
further results.

About the performance of AI and deep learning tools in the process
of extracting information from the scenes, as detailed in the previous
paragraph, it typically depends on a training process which requires a
high number of data vectors. Therefore, this process can be computa-
tionally expensive and require large computational resources and a long
period of time to learn how to extract significant data from the set of
training images. However, once the model has been trained, using this
model to extract information from new images (as the robot performs a
task) is a relatively fast process. Quantitative data about these processes
can be found in the works by Cebollada, Payá, Valiente, Jiang and
Reinoso (2019) and Cebollada et al. (2020).
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4. Mobile robotics tasks using vision and AI

This section presents a review of recent works related to the map-
ping, localization, navigation, SLAM and exploration tasks in robotics
using visual information and AI tools.

4.1. Map building

Mapping consists basically in creating a map, model or representa-
tion of the environment using the data provided by the sensors mounted
on the robot. Such models are useful to solve, subsequently, other
tasks, such as localization, path planning or navigation. These problems
can be solved by comparing the information provided by the sensors
of the robot with the model. Thrun (2002) presented an exhaustive
explanation to the robotic mapping concept. In the related literature,
two main frameworks have been proposed in order to carry out this
task: the metric maps, which represent the environment with geometric
accuracy; and the topological maps which describe the environment
as a graph containing a set of locations with the related links among
them. For example, Tanzmeister, Thomas, Wollherr, and Buss (2014)
propose an approach that estimates a uniform, low-level, grid-based
world model including dynamic and static objects. da Silva et al.
(2018) propose a localization and navigation approach for mobile
robots using topological maps and using a CNN to obtain descrip-
tors from omnidirectional images. Apart from these options, arranging
the information hierarchically constitutes an efficient alternative. This
framework consists in creating a map which is composed of several
layers with a hierarchical structure. The high-level layers contain a rela-
tively compact amount of information, which permits a rough but quick
localization. The low-level layers have usually more information and
are used to refine the position. Kuipers, Modayil, Beeson, MacMahon,
and Savelli (2004) propose a hierarchical hybrid map, which consists
in using a metrical approach to build local maps of small-scale space
and topological maps to represent the structure of large-scale space.
This approach is proposed to solve the SLAM task in an environment
with multiple nested large-scale loops. Cebollada, Payá, Mayol et al.
(2019) propose a study about clustering methods to carry out effi-
ciently the data compaction of metric and topological maps based on
omnidirectional images with the aim of building hierarchical maps.
They have also tested the robustness of the hierarchical maps proposed
under different illumination conditions to tackle the localization task
(Cebollada, Payá, Román et al., 2019).

Concerning mapping by using visual data, the models are commonly
created using either local or global features. Beyond these frameworks,
the use of AI with vision systems has contributed to the emergence
of new paradigms to create visual maps. Zivkovic, Bakker, and Krose
(2005) build a hierarchical model based on omnidirectional images.
The characterization of the data is done through local features (SIFT)
and to carry out the graph partitioning, and define the map hierarchy, a
cluster algorithm is proposed. Peretroukhin, Clement, and Kelly (2017)
propose the use of Bayesian Convolutional Neural Networks (BCNN)
to train and implement a sun detection model from a single RGB
image to incorporate global orientation information from the sun into a
visual odometry pipeline. They also propose an uncertainty associated
with each prediction by using a Monte Carlo dropout scheme. Clark,
Wang, Markham, Trigoni, and Wen (2017) carry out a mapping and
a posterior relocalization task by means of feeding an LSTM network
with holistic descriptors obtained from a CNN. The proposed model
estimates the current pose within an environment departing from short
sequences of monocular frames. Similarly to this work, concerning the
use of the CNNs to obtain global-appearance descriptors, many authors
have proposed this strategy. For instance, Iyer, Murthy, Gupta, Krishna,
and Paull (2018) propose a self-supervised visual odometry estimation.
The approach first obtains global-appearance descriptors from the fully
connected layer of the VGG-11 CNN. Second, an LSTM network is
used to regress pose transformations between monocular frame-pair

sequences. Kopitkov and Indelman (2018) propose an approach to
estimate the robot position via CNN holistic descriptors and using
neural networks to learn a generative viewpoint-dependent model of
CNN features given the robot pose and approximate this model by a
spatially-varying Gaussian distribution. Furthermore, once developed
the proposed model, it is utilized within a Bayesian framework for prob-
abilistic inference to solve the localization problem. Sarlin, Cadena,
Siegwart, and Dymczyk (2019) propose a hierarchical model using a
CNN. This network simultaneously extracts local features and global
descriptors that are used for accurate 6-DOF localization. Once the
model is built, the coarse localization is solved by using global retrieval
through a k-nearest neighbor algorithm and the holistic descriptors.
The fine localization is solved through evaluating matching points from
the local features.

Another widely developed strategy is the use of neural networks to
model a system that is capable of estimating the position directly from
the raw data. For example, Kuse, Jaiswal, and Shen (2017) propose a
deep residual network to model the environment representation. Naseer
and Burgard (2017) develop a model that allows a 6-DOF localization
using a regression neural network and a single monocular RGB image.
The resulting map size is constant with respect to the size of the
dataset and during the localization task, the time complexity is also
constant and independent of the dataset size. Walch et al. (2017)
introduce a CNN+LSTM model to estimate the pose in both indoor and
outdoor environments. Raw data are introduced to the network and
it is trained in such a way that the CNN layers learn suitable local
features and they are then used by the LSTM layers to improve the
pose estimation. In this way, the whole network learns to optimize
the localization task. Brahmbhatt, Gu, Kim, Hays, and Kautz (2018)
propose a mapping model based on a regression neural network, which
enables learning a data-driven map representation. Furthermore, the
proposed network can be updated with unlabeled data. Payá et al.
(2018) use a CNN to obtain holistic descriptors and create a hierarchical
visual model with that information. Sinha et al. (2018) also propose a
mapping and a subsequent localization task based on regression neural
networks. The proposed method first trains a CNN that takes RGB
images from a monocular camera as input and performs regression for
robot pose estimation. It then incorporates the relocalization output of
the CNN in an Extended Kalman Filter to tackle the localization task.
Moolan-Feroze, Karachalios, Nikolaidis, and Calway (2019) propose the
deployment of a model to map the environment that surrounds wind
turbines. For this purpose, a CNN is trained to extract an estimate of the
projection of the 3D skeleton representation departing from monocular
images. After that, the localization task is solved by means of a pose
graph optimization that uses the 3D representation outputs from the
CNN.

4.2. Localization

As denoted in 4.1, localization is the task that tries to estimate the
current position and orientation of the robot in the environment and to
carry out this, a model of the environment must be available prior to
start the localization. Filliat and Meyer (2003) presented an exhaustive
review about the state-of-the-art strategies to carry out the localization
in mobile robots. Regarding the use of vision systems together with
AI, a wide range of works have been proposed in recent years. For
example, Kendall, Grimes, and Cipolla (2015) present a robust and
real-time monocular 6-DOF relocalization system. The proposed system
trains a CNN to regress the 6-DOF camera pose from a single RGB image
in an end-to-end manner without additional graph optimization. Neto
(2015) proposes a topological localization system based on monocular
images, learning classifier systems and self-organizing maps (SOM).
The whole system carries out a localization task through detecting
and avoiding obstacles by means of both local and holistic features.
Meng et al. (2017) address the localization issue by using methods
based on Random Forests that directly estimate 3D positions with
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SIFT features as input. Li, Liu, Gui, Gu, and Hu (2018) introduce an
indoor localization approach using a dual-stream regression CNN by
introducing color data as well as depth data from monocular images.
This system is tested under night illumination conditions and also under
blur effects. As in mapping, there are also a wide range of works
proposed during the last few years that propose and evaluate the use
of intermediate layers from several CNNs to obtain local features or
holistic descriptors. For instance, Sünderhauf, Shirazi, Dayoub, Upcroft,
and Milford (2015) introduce a real-time place recognition algorithm
by using different layers from CNNs to carry out the localization in large
maps by integrating a variety of existing optimization techniques such
as semantic search space partitioning.

Cascianelli et al. (2017) propose a strategy for mapping and pos-
terior localization that relies on the use of a CNN to obtain local
features that are robust to appearance changes. Similar to this work,
Unicomb, Ranasinghe, Dantanarayana, and Dissanayake (2018) also
use a CNN to extract local features; in this case, they extract ground
plane edges and then estimate a 6-DOF position through an EKF (Ex-
tended Kalman Filter) algorithm. Moolan-Feroze and Calway (2018)
present a framework that uses CNNs to predict object feature points
that are out-of-view in the input image. These feature points are then
fed to estimate more robustly the pose of the robot in the environment.
Holliday and Dudek (2018) propose a combination of deep-learning-
based hierarchical object features and SIFT features. These points are
used to perform more robust localization tasks. Regression networks
have been extensively proposed to directly estimate the position within
the map. For example, Sommer, Kim, Kim, and Jo (2017) carry out
a 6-DOF localization with CNN by applying transfer learning over
pre-trained CNN Google’s Inception-V4. Xu et al. (2019) introduce
a multi-sensor-based indoor global localization system using visual
localization aided by CNN-based image retrieval with a Monte Carlo
probabilistic approach. Cebollada, Payá and Valiente et al. (2019)
propose the use of autoencoders and also a CNN to obtain holistic
descriptors from omnidirectional images and then use them to solve
the localization task in an indoor environment. Cattaneo et al. (2019)
develop a regression network, which learns to localize an RGB-D image
of a scene in a map built from LIDAR (Laser Imaging Detection and
Ranging) data. In a similar way, Weinzaepfel, Csurka, Cabon, and
Humenberger (2019) introduce a regression strategy based on CNN
for visual localization from a single RGB image that relies on densely
matching a set of objects of interest. Given a query image, the network
model detects the objects, segments them and finds a dense set of 2D–
2D matches between each detected object and its corresponding one in
the reference image. Given these 2D–2D matches, a Perspective-n-Point
problem is used to estimate the pose.

4.3. Navigation

The navigation task basically consists in solving the problem of
how the robot can get to other places from its current position (Levitt
& Lawton, 1990). That is, to perform a trajectory to reach a certain
place. This trajectory is calculated by a path-planning system, and
the robot is subsequently commanded by the control system (Barber,
Crespo, Gómez, Hernámdez, & Galli, 2018). During the past few years,
a wide number of works about navigation using visual sensors and AI
can be found in the related literature. Maier, Bennewitz, and Stachniss
(2011) propose a machine learning classifier to address the autonomous
navigation for a humanoid equipped with a monocular vision and a
sparse laser data system. The classifier proposed for visual information
is based on the hue and saturation values from the HSV color space with
the aim of being less sensitive to illumination changes. Additionally, a
classifier is also trained with texture-based information. The classifiers
learn to estimate from the images which parts of the surroundings of the
robot are traversable. The goal is to make the system as independent as
possible of the 3D scan data. Tapu, Mocanu, and Zaharia (2013) intro-
duce a visual navigation system based on HOG (Histogram of Oriented

Gradients) (Dalal & Triggs, 2005) and BoW for obstacle classification.
This approach basically consists in detecting objects from an image.
For each object, its related HOG descriptor is introduced into the BoW
retrieval framework. After that, an SVM classifier is applied to retrieve
which object is. Object detection plays a vital role to carry out the
navigation approach successfully. Giusti et al. (2015) presents a method
to autonomously navigate through a man-made trail in the mountain
for UAVs. This approach is based on a CNN classifier with the aim of
operating the main direction of the trail.

Yang et al. (2017) propose a two-stage CNN with intermediate
perception. The first stage CNN predicts the depth and surface normal
from images. The second CNN predicts a path from the depth and
normal maps using another CNN model. Smolyanskiy, Kamenev, Smith,
and Birchfield (2017) propose several deep learning tools to address the
autonomous navigation of Micro Aerial Vehicles (MAVs). A Recurrent
Neural Network is used to estimate the view orientation and lateral
offset of the MAV with respect to the trail center. In addition, another
network is used to estimate depth with the aim of carrying out low-level
obstacle detection. Puthussery et al. (2017) propose an autonomous
navigation approach that uses the Inception v3 CNN to classify the ob-
jects detected by the camera. This classification is included within the
Marker Detection Phase, which is done prior to the Robot Navigation
Phase. Richter and Roy (2017) introduce a navigation system based
on deep learning. On the one hand, they propose a fully connected
feedforward network to model collision probability. On the other hand,
they propose the use of an autoencoder to recognize when a query
image is novel and requires a priority treatment. This is due to the
fact that neural networks may not be efficient to provide accurate
estimations when queried input data are very different from training
data. Concerning the use of autoencoders for navigation, Mancini,
Costante, Valigi, and Ciarfuglia (2016) introduce an object detection
method that is able to detect obstacles at very long range and at a
very high speed without making motion assumptions. This method is
based on the use of an autoencoder which is trained with real and
synthetic images and performs depth predictions. Deepika and Variyar
(2017) propose a method which uses an autoencoder architecture
for pixel-wise semantic segmentation of the image followed by an
obstacle detection algorithm. The aim of this approach is to develop
a robust vision based autonomous navigation system for self-driving
cars. Walker, Graham, and Philippides (2017) propose this tool to build
a compressed representation of visual data. Images reconstructed from
the compressed representation retain enough information to be used
as a visual compass (an image is matched with another to recall a
movement direction).

Zhao et al. (2018) present a hybrid structure with a CNN and local
image features to achieve first-person vision pedestrian navigation.
They also developed a novel global pooling operator which improves
the results obtained by the CNN for real-time scene recognition. A
SIFT-based tracking algorithm is designed for movement calculation,
then the mixture of both threads perform a robust trajectory tracking.
Anderson, Wu, Teney, Bruce, Sünderhauf, Reid, et al. (2018) present a
reinforcement learning approach based on vision and natural language
in a large-scale environment. The aim of this work is to provide a
visually-grounded natural language navigation which is able to work
properly in real buildings. Hui, Bian, Zhao, and Tan (2018) propose
an autonomous navigation approach for UAVs in outdoor environ-
ments surrounded by transmission towers and power lines. This method
introduces the use of a CNN trained from end to end to address se-
mantic segmentation and detected the power lines. Mansouri, Karvelis,
Kanellakis, Kominiak, and Nikolakopoulos (2019) present a CNN to
address autonomous navigation of low-cost Micro Aerial Vehicle plat-
forms along dark underground mine environments. The proposed CNN
provides online heading rate commands for the MAV by utilizing the
image stream from the on-board camera, thus allowing the platform
to follow a collision-free path along the tunnel axis. Ma, Chen, and Liu
(2019) introduce a navigation system approach based on reinforcement
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learning. Moreover, they use a variational autoencoder to obtain visual
features from the input images, these features are put into the network
together with the target and motion information. Ruan, Ren, Zhu,
and Huang (2019) propose an approach for the navigation of mobile
robots in an unknown environment using deep reinforcement learning.
Through a dueling network architectures based on the double deep
q network (D3QN) algorithm, the robot learns the environment and
also models to navigate autonomously to the target destination with
an RGB-D camera only.

4.4. Simultaneous localization and mapping

Additionally to the mapping and the subsequent localization task,
the SLAM presents a blended alternative. This process consists in build-
ing continuously a map and updating it as the robot simultaneously
estimates its position within the model. Fuentes-Pacheco et al. (2015)
presented an exhaustive review about the state-of-the-art strategies to
carry out SLAM. The related literature shows that not many approaches
have been proposed to solve this task by using visual information and
AI tools. Apart from some of the examples commented in Sections 4.1
and 4.2 , which propose mapping or localization tasks with the aim of
developing subsequent SLAM, there are other examples that propose
complete SLAM systems. For instance, Wu and Qin (2011) propose
a SLAM algorithm based on omnidirectional images. This algorithm
uses incremental landmark appearance learning to provide posterior
probability distribution for estimating the robot pose under a particle
filtering framework. The major contribution of the work is to represent
the posterior estimation of the robot pose by incremental probabilistic
PCA, which can be incorporated into the particle filtering algorithm for
SLAM. Lu et al. (2015) propose a machine learning tool known as multi-
task point retrieval to develop a regression model based on 3D points
local features extracted from monocular images. Garg, BG, Carneiro,
and Reid (2016) carry out an unsupervised deep convolutional network
which behaves like an autoencoder, since it does not require annotated
ground-truth data. This network is trained with the aim of predicting
the depth map for the source image. During the training step, a pair
of images (source and target) are fed into the network. Schmidt,
Newcombe, and Fox (2017) introduce a CNN to produce robust local
features and then use them for dense correspondence estimation and
solve the SLAM task. An interesting work was developed by Gao and
Zhang (2017) in which they carry out a loop detection by training
an autoencoder that calculates local features from monocular images.
Tateno, Tombari, Laina, and Navab (2017) propose an approach which
consists in two CNNs based on monocular RGB images. The first net-
work is trained with the aim of predicting depth. CNN-predicted dense
depth maps are naturally fused together with depth measurements ob-
tained from direct monocular SLAM, based on a scheme that privileges
depth prediction in image locations. The second network is trained to
address semantic segmentation. Once the information is obtained from
the CNNs, this is fused with more data to address the SLAM task in a
highly accurate way. Mukasa, Xu, and Stenger (2017) introduce a SLAM
framework that integrates the geometrical measurements obtained from
a monocular vision system with depth information predicted by means
of a CNN. Tang, Ren, and Liu (2017) introduce the use of CNNs fed with
visual information and human voice commands with the aim of solving
the SLAM task with a mobile robot. Focusing on the visual information,
the raw data is fed into two CNNs, the first network is used to produce
accurate localization updates and the second is used to perform an
object recognition task. The recognized objects are used to reinforce
the mapping task. Zhang, Su and Zhu (2017) propose a loop closure
detection framework based on CNNs. In this way, the images are fed
into a pre-trained CNN model to extract holistic descriptors and, after
that, these descriptors are pre-processed with PCA.

More recently, Milz, Arbeiter, Witt, Abdallah, and Yogamani (2018)
explore the use of deep learning tools to enhance the visual SLAM. On
the one hand, they propose the use of CNN to carry out the depth

estimation. On the other hand, on the other hand, they propose the
use of CNNs to address an end-to-end approach for learning of feature
matching. This technique can learn diversity and distribution instead
of just picking the top high textured features. Zhong, Wang, Zhang,
and Wang (2018) address the SLAM and object detection by using a
Single Shot multi-box object Detector (SSD). The RGB-D information is
introduced to the SSD and it detects moving and static objects inside
the image. After this, the detected moving objects are eliminated and
the rest of the data are used to build a semantic map composed of all
the detected static objects in the mapping thread. Simultaneously, the
dynamic objects are used to update the tracking and local mapping
thread. Liang, Tie, Qi, and Bi (2018) propose a CNN based on 360
degrees panoramic images to carry out the visual navigation and SLAM
tasks in outdoor environments. Bloesch, Czarnowski, Clark, Leuteneg-
ger, and Davison (2018) present a compact but dense representation
of the scene geometry based on a deep autoencoder. This method is
suitable to solve a keyframe-based monocular dense SLAM task. Liu,
Mo, and Jiao (2019) propose a feature-based visual SLAM. They use a
CNN to obtain a more robust object location information. Lu and Lu
(2019) propose a SLAM approach that uses a regression CNN for pose
estimation without ground truth data.

4.5. Exploration

As stated by Burgard, Moors, Stachniss, and Schneider (2005) the
problem of exploring an environment belongs to the fundamental prob-
lems in mobile robotics and it consists basically in covering the whole
environment in a minimum amount of time. Hence, the robot must keep
track of the already visited areas. This task is a blend of the navigation
and mapping tasks, that is, the robot has to construct a global map in
order to plan their paths and to coordinate its actions. This problem
has been commonly solved by using a team of robots (Ferri, Munafò,
Tesei, Braca, Meyer, Pelekanakis, et al., 2017; Michel & McIsaac, 2012;
Pawgasame, 2016), since the use of multiple robots is often suggested
to have several advantages over single robot systems (Cao, Fukunaga,
Kahng, & Meng, 1995).

During the past few years, a wide number of works about explo-
ration have been proposed by using visual sensors and AI techniques.
For example, Krishnan and Krishna (2010) present a vision based
exploration algorithm that invokes semantic cues for constructing a
hybrid map. The approach proposes semantic labeling of the input
images through a probabilistic SVM classifier that runs over a BoWs.
The objective is to provide the robot with hybrid understanding of
its surroundings from the lower metric characterizations to higher
semantic recognition. Mukhija, Tourani, and Krishna (2012) proposes a
segmentation and classification method based on visual information to
support the laser to solve the obstacle avoidance task. The classification
is addressed with a Gaussian Mixture Models algorithm. Craye, Filliat,
and Goudou (2015) propose a method for incrementally learning a
mechanism of visual saliency. The proposed system is trained and
learns the visual aspect of salient elements within their context. The
RGB-D data are used to train a random forest classifier, which learns
to determine whether the area is salient or not. Tai and Liu (2016)
introduce a reinforcement learning method to address the exploration
task in a corridor environment. The learning model receives informa-
tion from a CNN fed with RGB-D data. The Q-network is used in the
robot controller.

More recently, Choudhury et al. (2017) propose an algorithm which
trains a policy to gather information to carry out a exploration task
with UAVs. When the distribution corresponds to a scene containing
ladders, the learned policy executes a helical motion around parts of the
observed. On the contrary, when the distribution corresponds to a scene
from a construction site, the learned policy executes a large sweeping
motion. The proposed algorithm is based on a classifier among other
tools. Liu et al. (2017) introduce an end-to-end learning model based
CNN that converts directly the raw visual data to steering commands.
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Table 2
Summary of works that use AI together with vision systems to solve mapping, localization, navigation,SLAM or exploration tasks.

Reference Task Type of image AI tool Input data

Zivkovic et al. (2005) 4.1 OmnidirectionalClustering Local features
Peretroukhin et al. (2017) 4.1 Stereo BCNN, Monte Carlo Local features
Clark et al. (2017) 4.1, 4.2Monocular CNN, LSTM Holistic descriptors
Kuse et al. (2017) 4.1 Monocular Regression CNN Raw images
Naseer and Burgard (2017) 4.1, 4.2Monocular Regression CNN Raw images
Walch et al. (2017) 4.1, 4.2Monocular CNN, LSTM Raw images
Iyer et al. (2018) 4.1 Monocular CNN, LSTM Holistic descriptors
Brahmbhatt et al. (2018) 4.1 Monocular Regression CNN Raw images
Sinha et al. (2018) 4.1, 4.2Monocular Regression CNN Raw images
Kopitkov and Indelman (2018) 4.1, 4.2Monocular CNN, Gaussian prametrization Holistic descriptors
Moolan-Feroze et al. (2019) 4.1, 4.2Monocular CNN Raw images
Sarlin et al. (2019) 4.1, 4.2Monocular k-nearest neighbors, CNN Local features, holistic descriptors
Kendall et al. (2015) 4.2 Monocular CNN Raw images
Neto (2015) 4.2 Monocular Classifier, Kohonen SOM Local features, holistic descriptors
Sünderhauf et al. (2015) 4.2 Monocular CNN Holistic descriptors
Li et al. (2018) 4.2 Monocular Regression CNN Raw images
Cascianelli et al. (2017) 4.1, 4.2Monocular CNN Local features
Sommer et al. (2017) 4.2 Monocular Regression CNN Raw images
Meng et al. (2017) 4.2 Monocular Random forests Local features
Unicomb et al. (2018) 4.2 Monocular CNN Local features
Moolan-Feroze and Calway (2018) 4.2 Monocular Recurrent neural network Local features
Holliday and Dudek (2018) 4.2 Monocular CNN Local features
Cattaneo et al. (2019) 4.2 Stereo Regression CNN Raw RGB-D data
Cebollada, Payá and Valiente et al. (2019) 4.2 Omnidirecional Autoencoder, CNN Holistic descriptors
Weinzaepfel et al. (2019) 4.2 Regression CNN Local features
Wu and Qin (2011) 4.4 OmnidirectionalIncremental landmark appearance learningRaw images
Lu et al. (2015) 4.4 Monocular Multi-task learning Local features
Garg et al. (2016) 4.4 Panoramic Autoencoder Raw images
Schmidt et al. (2017) 4.4 Monocular CNN Local features
Gao and Zhang (2017) 4.4 Monocular Autoencoder Local features
Tateno et al. (2017) 4.4 Monocular CNN Raw images
Mukasa et al. (2017) 4.4 Monocular CNN Raw images
Tang et al. (2017) 4.4 stereo CNN Raw images
Zhang, Su et al. (2017) 4.4 Monocular CNN Raw images
Milz et al. (2018) 4.4 Monocular CNN Raw images
Zhong et al. (2018) 4.4 Monocular SSD Raw RGB-D data
Liang et al. (2018) 4.3, 4.4Panoramic CNN Raw images
Bloesch et al. (2018) 4.4 Monocular Autoencoder Raw images
Liu et al. (2019) 4.4 Monocular CNN Local features
Lu and Lu (2019) 4.4 Monocular Recurrent CNN Raw images
Maier et al. (2011) 4.3 Monocular Classifier HSV and texture data
Tapu et al. (2013) 4.3 Monocular SVM classifier HOG and BoW
Giusti et al. (2015) 4.3 Monocular CNN Raw images
Mancini et al. (2016) 4.3 Monocular Autoencoder Raw images and Optical Flow
Deepika and Variyar (2017) 4.3 Monocular Autoencoder Raw images
Yang et al. (2017) 4.1, 4.3Monocular CNN Raw images
Smolyanskiy et al. (2017) 4.3 Monocular Recurrent neural network Raw images
Puthussery et al. (2017) 4.3 Monocular CNN Raw RGB-D data
Richter and Roy (2017) 4.3 Monocular CNN and autoencoder Raw images
Walker et al. (2017) 4.3 Panoramic Autoencoder Raw images
Anderson et al. (2018) 4.3 Monocular Reinforcement learning Raw images
Zhao et al. (2018) 4.3 Monocular CNN Raw images, local features
Hui et al. (2018) 4.3 Monocular CNN Raw images
Mansouri et al. (2019) 4.3 Monocular CNN Raw images
Ma et al. (2019) 4.3 Monocular Reinforcement learning, autoencoder Raw images
Ruan et al. (2019) 4.3 Monocular Deep reinforcement learning Raw RGB-D data
Krishnan and Krishna (2010) 4.5 Monocular SVM classifier BoW
Mukhija et al. (2012) 4.5 Monocular Gaussian mixture models classifier Raw images
Craye et al. (2015) 4.5 Monocular Random forest classifier Local features
Tai and Liu (2016) 4.5 Monocular Deep reinforcement learning, CNN Raw RGB-D data
Choudhury, Kapoor, Ranade, and Dey (2017)4.5 Monocular Classifier Local features
Liu et al. (2017) 4.5 Monocular CNN Raw images
Tai, Li and Liu (2017) 4.5 Monocular CNN Raw RGB-D data
Flaspohler, Roy, and Girdhar (2017) 4.5 Monocular Autoencoder Holistic descriptors
Wang et al. (2018) 4.5 Monocular Autoencoder and Classifier Holistic descriptors
Ly and Tsai (2019) 4.5 Monocular CNN Raw RGB-D data

Tai, Li et al. (2017) propose an exploration algorithm which uses
a hierarchical structure that fuses several CNN layers with decision-
making process. The system is trained by taking RGB-D information
as input and generates a sequence of main moving direction as output.
Flaspohler et al. (2017) present an autoencoder which encodes informa-
tion from visual data to carry out exploration with marine robots. Wang
et al. (2018) propose an optimal light intensity optimization method

to address efficiently the visual navigation. The proposed method is
mainly based on a regression model to automatically predict optimal
light intensity values for desired image quality when camera observa-
tion distances fluctuate. Nevertheless, a classification task is addressed
rather than a regression. The query image is classified according to five
levels of brightness. In this framework, simple features are extracted
using intensity histogram and utilized as primary features to describe
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the distribution of image intensity. After that, the primary features
are made more discriminative by an evolution process with stacked
autoencoders. The evaluation of brightness is solved by introducing
the holistic descriptor into a softmax classifier. Ly and Tsai (2019)
propose an autonomous exploration, reconstruction, and surveillance
of 3D Environments by using deep learning. They establish a gain
function for each issue. After that, they use CNNs to approximate the
corresponding gain function.

To conclude, Table 2 presents an outline of the approaches pre-
sented in the present section and their main characteristics: the type
of task (Sections Section 4.1, 4.2, 4.3, 4.4, or 4.5), the type of image,
the AI tool used and the kind of visual data employed (local features,
holistic descriptors or raw data).

5. Conclusions

Vision sensors constitute a robust alternative to capture the nec-
essary information to solve a variety of tasks in the field of mobile
robotics. Additionally, during the past few years, systems based on
AI have been used extensively to carry out the tasks more efficiently.
Consequently, the amount of works that use visual sensors and AI has
increased substantially and many approaches can be found to solve the
mapping, localization, navigation, SLAM and exploration tasks.

The present review presents a collection of the main proposals to
solve the mobile robotics tasks by means of visual information and AI
tools. To this end, this work started focusing on the AI tools which
are more commonly used together with vision systems. After that, the
review has focused on how visual information can be described and
handled by means of AI techniques. Two main options are available:
local features and methods based on holistic description. Finally, the
present work has focused on the study of the mapping, localization,
navigation, SLAM and exploration tasks in mobile robotics.

The huge amount of works regarding these topics show how vision
systems, AI techniques and mobile robotics are three very active re-
search areas and hence, the research on them is expected to continue
increasing during the following years. This work has shown that a great
variety of AI and deep learning tools can be used in mobile robotics
and computer vision. Such tools have provided good solutions to some
specific problems in these fields, such as the extraction and labeling
of relevant information from the scenes; the creation of models of
the environment and the estimation of the position and orientation
of the robot from raw data; and the exploration of initially unknown
environments. Good solutions to these problems have been proposed
in specific scenarios, depending on the motion abilities of the robot
and the characteristics of the surroundings (indoors–outdoors, aerial–
terrestrial–underwater, etc.). Notwithstanding that, there are still some
issues that need to be addressed more robustly to enable mobile robots
to move and perform their tasks more autonomously in complex,
heterogeneous and changing environments and circumstances, trying
to provide a complete and more integral solution to the SLAM and
navigation problems, and AI shows potential to address these chal-
lenges. In this sense, finding robust and fast solutions to overcome
current problems will help to improve the autonomy of mobile robots.
Therefore, their range of use will also increase. Nowadays, there are
some technologies which are closely related to AI and can be of interest
to researchers in the fields of mobile robotics and computer vision. As
detailed in the survey, one of the major issues of AI and deep learning is
the computationally expensive process to train the models with a large
number of samples. In this sense, some current technologies, such as
cloud computing, data science and big data provide robust tools and
approaches to address this issue, and therefore they may contribute
to a quicker development of AI techniques in mobile robotics (Allam
& Dhunny, 2019; Gill et al., 2019; Zhu & Zheng, 2018). Second, as
shown throughout the review, AI techniques are contributing to a major
autonomy of the mobile robots in a wider variety of environments and
circumstances. This increase of autonomy plays a crucial role in the

development of other relevant technologies to current society, such as
IoT (Internet of Things), smart cities and industry 5.0 (Chui, Lytras, &
Visvizi, 2018; Özdemir & Hekim, 2018; Singh, Rathore, & Park, 2020).

The following abbreviations are used in this manuscript:

AI Artificial intelligence
BCNN Bayesian Convolutional Neural Network
BoF Bag of Features
BoW Bag of Words
BRIEF Binary Robust Independent Elementary Features
CCD Charge-Coupled Device
CCTV Closed-Circuit Television
CenSurE Center Surround Extremas
CNN Convolutional Neural Network
D3QN Dueling Architecture based double deep Q Network
DAN Deep Adaption Network
DARPA Defense Advanced Research Projects Agency
DBM Deep Boltzmann Machines
DBN Deep Belief Networks
EEG Electroencephalography
EKF Extended Kalman Filter
FAST Features From Accelerated Segment Test
FREAK Fast Retina Keypoint
HLC High-level controller
HOG Histogram of Oriented Gradients
HP-CNN Hypercube Pyramid Convolutional Neural Network
PCA Principal Components Analysis
ICA Independent Component Analysis
IoT Internet of Things
IP Interest point
LBP Local Binary Pattern
LIDAR Laser Imaging Detection and Ranging
LSTM Long short-term memory
MAV Micro Aerial Vehicles
ML Machine Learning
MLP Multilayer Perceptrons
MOP-CNN Multi-Scale Orderless Pooling Convolutional Neural

Network
MSE Mean Squared Error
ORB Oriented FAST and rotated BRIEF
PI Proportional–integral
RBM Restricted Boltzmann Machines
RF Regression Forest
R-CNN Regression Convolutional Neural Network
RNN Recurrent Neural Network
ROI Region Of Interest
RVM Relevance Vector Machine
SDA Stacked Denoising Autoencoder
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization And Mapping
SOM Self-Organizing Maps
SSD Single Shot multi-box object Detector
SURF Speeded-Up Robust Features
SVM Support Vector Machine
t-SNE t-distributed Stochastic Neighbor Embedding
UAV Unmanned Aerial Vehicle
VLAD Vector of Locally Aggregated Descriptors
WSN Wireless Sensor Network
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