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ABSTRACT 

 

Futsal (the five-a-side indoor version of associated football) requires players to 

perform on a reduced (usually indoor) pitch size (40 x 20 m) and during two x 20-minute 

periods (with time stopping at every dead ball and unlimited substitutions) a substantive 

number of repeated high intensity multiplanar movements such as sudden acceleration and 

deceleration, rapid changes of direction, tackling and kicking. At elite levels, the 

combination of these high physical demands alongside exposure to contacts and stress and 

anxiety caused by the congested match calendar might place futsal players at high risk of 

injury. In fact, futsal has been suggested as one of the top 10 most injury prone sports, all of 

this despite the substantive effort made by the scientific community and physical trainer 

practitioners to reduce their number and severity. The inefficacy of the preventive measures 

applied might be caused, in part, by the limitations present in the literature which hinder: 

a) the accurate estimation of the most frequent futsal-related injuries; b) the identification 

of team sport athletes at high risk of injury; and c) the identification of the factors and their 

interactions that play a main role on the adoption of altered movement patterns during 

dynamic actions. 

Therefore, and based on these limitations, the main objectives of the current doctoral 

thesis were: 1) to describe injury incidence, characteristics and burden in futsal; 2) to 

examine the criterion-related validity of five kinematic measures of frontal plane knee 

alignment and hip and knee motion in the sagittal plane using a 2D video analysis and a 

3D motion analysis system during bilateral drop landings through a contemporary 

statistical approach; 3) to analyze and compare the individual and combined ability of 

several measures obtained from different questionnaires and field-based tests to 

prospectively predict lower extremity soft-tissue injuries after having applied supervised 

Machine Learning techniques; and 4) to analyze the relationships between several 

parameters of neuromuscular performance with dynamic postural control using a Bayesian 



Network Classifiers based analysis. To achieve these objectives, a systematic literature 

review and meta-analysis, a prospective epidemiological study, a validation study and two 

multivariable prediction model studies were conducted. 

The main findings of the studies one and two report that male and female futsal 

players are exposed to a substantial risk of sustaining injuries, especially during matches. 

In particular, and in both sexes, lower extremity injuries are, by far, the most frequent. 

Although the most common injury mechanism reported was by non-contact, it should be 

highlighted that a remarkable number of injuries (around 30%) were caused by a contact 

mechanism. For females, the injuries with the highest injury burden were those that 

occurred at the knee (31.9 days loss per 1000 hours of futsal exposure), followed by 

quadriceps (15.3 days loss per 1000 hours of futsal exposure) and hamstring (14.4 days loss 

per 1000 hours of futsal exposure) strains. On the other hand, the results of study three 

confirm that the knee medial displacement (standardized TEEST = 0.53 [small], r = 0.88 

[moderate to high], kappa statistic = 0.72 [high]) and knee flexion range of motion 

(standardized TEEST = 0.56 [small], r = 0.87 [moderate to high], kappa statistic = 0.74 [high]) 

measures calculated during a bilateral drop vertical landing and using a cost-effective, 

technically undemanding and portable 2D video analysis procedure might be considered 

as valid and feasible alternatives to their respective 3D criterion to quantify knee kinematics 

and to detect futsal players who demonstrated aberrant movement patterns in the frontal 

and sagittal planes, respectively. Study four demonstrated that lower extremity soft-tissue 

injuries can be predicted with moderate accuracy through a combination of easy to employ 

field-based tests in elite futsal players using machine learning techniques. The best 

performing model, which was built with just four ROM measures, reported an area under 

the curve score of 0.767 with true positive and negative rates of 85.1% and 62.1% 

respectively. Finally, the Bayesian network built in study five showed that dynamic 

postural control has strong relationship with the abilities to flex the hip, knee and ankle, 

and with the control of the core structures during static but mainly dynamic tasks. 



  

Overall, both the results and methodology used in the present doctoral thesis might 

be used by coaches, physical trainers and clinicians to improve the decision-making process 

to reduce the number and impact of injuries in futsal. 

Key words: futsal, injury, prevention, soft-tissue injury, learning algorithm, data mining, 

dynamic balance, core stability, neuromuscular performance, range of motion, field-based 

test. 





  

RESUMEN 

 

El fútbol sala (versión para cinco jugadores del fútbol) requiere que los jugadores 

realicen, en un campo de tamaño reducido (generalmente en interiores) (40 x 20 m) y 

durante dos períodos de 20 minutos (con tiempo detenido cada vez que se para el balón y 

con sustituciones ilimitadas), un gran número de movimientos repetidos de alta intensidad 

tales como aceleraciones y desaceleraciones repentinas, cambios rápidos de dirección, 

entradas y golpeos. A nivel de élite, la combinación de estas altas demandas físicas, junto 

con la exposición a los contactos, el estrés y la ansiedad causados por el calendario 

congestionado de partidos podría situar a los jugadores de fútbol sala en un alto riesgo de 

lesión. De hecho, el fútbol sala ha sido descrito como uno de los diez deportes con mayor 

riesgo lesivo para sus jugadores. Todo esto a pesar del gran esfuerzo realizado por la 

comunidad científica y los preparadores físicos para reducir el número y gravedad de estas 

lesiones. La ineficacia de las medidas preventivas aplicadas podría deberse, en parte, a las 

limitaciones presentes en la literatura científica que dificultan: a) la estimación precisa de 

las lesiones, más frecuente en el fútbol sala; b) la identificación de atletas de deportes de 

equipo con alto riesgo de lesiones; c) la identificación de los factores y sus interacciones que 

juegan un papel principal en la adopción de patrones de movimiento alterados durante las 

acciones dinámicas. 

Por lo tanto, y en base a estas limitaciones, los objetivos principales de la presente 

tesis doctoral fueron: 1) describir la incidencia, las características y las consecuencias 

(entendidas en días perdidos sin entrenar y jugar por lesión por cada 1000 horas de 

exposición a la práctica deportiva) de las lesiones en el fútbol sala; 2) examinar la validez 

de criterio de cinco medidas cinemáticas de la alineación de la rodilla en el plano frontal y 

el movimiento de la cadera y la rodilla en el plano sagital utilizando un análisis de video 

2D y un sistema de análisis de movimiento 3D durante los aterrizajes tras caída bilateral 

desde cajón a través de un enfoque estadístico contemporáneo; 3) analizar y comparar la 



capacidad individual y combinada de varias medidas obtenidas de diferentes cuestionarios 

y pruebas de campo para predecir prospectivamente las lesiones de tejido blando de las 

extremidades inferiores después de haber aplicado técnicas supervisadas de Aprendizaje 

Automático; y 4) analizar las relaciones entre varios parámetros del rendimiento 

neuromuscular con el control postural dinámico utilizando un análisis basado en 

clasificadores de Redes Bayesianas. Para lograr estos objetivos, se realizó una revisión 

sistemática de la literatura y un meta-análisis, un estudio epidemiológico prospectivo, un 

estudio de validación y dos estudios de modelos de predicción multivariantes. 

Los principales hallazgos de los estudios uno y dos informan que los jugadores de 

fútbol sala masculinos y femeninos están expuestos a un gran riesgo de sufrir lesiones, 

especialmente durante los partidos. En particular, y en ambos sexos, las lesiones de las 

extremidades inferiores son, con diferencia, las más frecuentes. Aunque el mecanismo de 

lesión más común fue por no contacto, debe destacarse que un número remarcable de 

lesiones (alrededor del 30%) fueron causadas por un mecanismo de contacto. Para las 

mujeres, las lesiones con las mayores consecuencias fueron las de rodilla (pérdida de 31.9 

días por 1000 horas de exposición al fútbol sala), seguidas de cuádriceps (pérdida de 15.3 

días por 1000 horas de exposición al fútbol sala) e isquiosurales (14.4 días de pérdida por 

1000 horas de exposición al fútbol sala). Por otro lado, los resultados del estudio tres 

confirman que el desplazamiento medial de la rodilla (Error típico estimado estandarizado 

= 0.53 [pequeño], r = 0.88 [moderado a alto], estadística kappa = 0.72 [alto]) y rango de 

movimiento de flexión de rodilla ( Error típico estimado estandarizado = 0.56 [pequeño], r 

= 0.87 [moderado a alto], estadística kappa = 0.74 [alto]) calculados durante un aterrizaje 

vertical tras caída bilateral desde cajón y el uso de un procedimiento de análisis de video 

2D económico, técnicamente poco exigente y portátil podrían ser consideradas alternativas 

válidas y factibles a sus respectivos criterios 3D para cuantificar la cinemática de la rodilla 

y detectar jugadores de fútbol sala con patrones de movimiento alterados en los planos 

frontal y sagital, respectivamente. El estudio cuatro demostró que las lesiones de tejido 

blando de las extremidades inferiores se pueden predecir con una precisión moderada a 



  

través de una combinación de pruebas de campo fáciles de emplear en jugadores de fútbol 

sala de élite a través de técnicas de Aprendizaje Automático. El modelo que mejor resultado 

mostró, construido con solo cuatro medidas de Rango de Movilidad Articular, reportó un 

área bajo la curva de 0.767 con tasas de verdaderos positivos y negativos de 85.1% y 62.1% 

respectivamente. Finalmente, la red bayesiana construida en el estudio cinco mostró que el 

control postural dinámico tiene una fuerte relación con las habilidades para flexionar la 

cadera, la rodilla y el tobillo, y con el control de las estructuras del tronco durante tareas 

estáticas, pero sobre todo dinámicas. 

En general, tanto los resultados como la metodología utilizada en la presente tesis 

doctoral pueden ser utilizados por entrenadores, preparadores físicos y médicos para 

mejorar el proceso de toma de decisiones, y así, reducir el número y el impacto de las 

lesiones en el fútbol sala. 

Palabras Clave: fútbol sala, lesión, prevención, lesión del tejido blando, algoritmos de 

aprendizaje, minería de datos, equilibrio dinámico, estabilidad del tronco, rendimiento 

neuromuscular, rango de movimiento, test de campo.  



  



  

ABBREVIATIONS 

 

2D: Two-dimensional  

3D: Three-dimensional 

Abd: Abduction 

ACL: Anterior Cruciate ligament 

Add: Adduction 

AKDF: Ankle dorsiflexion 

AKDFKE: Ankle dorsi-flexion with the knee extended 

AKDFKF: Ankle dorsi-flexion with the knee flexed 

AP: Unstable sitting while performing anterior-posterior displacements with feedback 

AUC: Area under the receiver operating characteristic curve  

BF: Bayesian factor  

BIL: Bilateral ratio 

Bila: Bilateral 

BN: Bayesian Network Classifiers 

CAIT: Cumberland ankle instability tool  

CD: Unstable sitting while performing circular displacements with feedback 

CI: Confidence interval 

CON: Concentric 



CS: Core stability 

CS-CD: Core stability circular  

CS-ML: Core stability medial-lateral 

DAGs: Directed acyclic graphs  

DOM: Dominant leg 

DS: Data set  

DVJ: Bilateral drop vertical jump  

ECC: Eccentric 

FIFA: Fédération Internationale de Football Association 

FFPA: Frontal plane projection angle of the knee  

FP: False positive 

h: Hours 

H0: Null hypothesis 

H1= Alternative hypothesis 

HABD: Hip abduction at 90º of hip flexion 

HE: Hip extension 

HER: Hip external rotation 

HF: Hip flexion 

HFKE: Hip flexion with the knee extended 

HFKF: Hip flexion with the knee flexed 



  

HFKF: Hip flexion with the knee flexed 

HIR: Hip internal rotation 

ICC: Intraclass correlation coefficient  

ISOK: Isokinetic 

ISOM: Isometric 

K: Kappa  

KASR: Knee-to-ankle separation ratio  

KE: Knee extensors 

KF: Knee flexion 

KMD: Knee medial displacement 

KNN: k-Nearest Neighbour  

KSD: Knee separation distance 

LE-ST: Lower extremity non-contact soft tissue 

ML: Unstable sitting while performing medial-lateral displacements with feedback 

NC: National cup 

NF: No feedback. 

NF: Unstable sitting without feedback 

NL: National League 

NONDOM: non-dominant leg 

NOS: Newcastle Ottawa Scale  



NT: National team 

PT: Peak torque 

R: Recall 

r: Validity correlation  

ROM: Range of motion 

SD: Standard deviation  

SMO: Support Vector Machines  

STROBE: Strengthening the reporting of observational studies in epidemiology  

TEEST: Typical error of the estimate 

TN: True negative 

TP: True positive 

U: Under 

UEFA: Union of European football associations  

Uni: Unilateral 

WC: World Cup 

WF: Unstable sitting with feedback 
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CHAPTER 1 

General Introduction 

 

1.1. Introduction 

Futsal is the official name for the five-a-side indoor version of associated football (i.e. 

one goalkeeper and four outfield players) that is sanctioned by soccer's international 

governing body Fédération Internationale de Football Association (FIFA). It is played 

worldwide with more than 12 million players all over the world1,2. 

Futsal requires players to perform on a reduced (usually indoor) pitch size (40 x 20 

m) and during two x 20-minute periods (with time stopping at every dead ball and 

unlimited substitutions) a substantive number of repeated high intensity multiplanar 

movements such as sudden acceleration and deceleration, rapid changes of direction, 

tackling and kicking2–5. At elite levels, the combination of these repeated high intensity 

movements that are performed during training and match play alongside current congested 

training and competitive calendars and exposure to contacts might place futsal players at 

high risk of injury. In fact, futsal has been suggested as one of the top 10 most injury prone 

sports6. 

These high injury rates might impact team and individual performances7–10 and could 

have significant physical, psychological and financial short and long-term consequences for 

an individual player and their sport organizations11–13. Consequently, a fundamental task 

for futsal practitioners is the design, implementation and monitoring preventive and risk 

mitigation strategies that allow to reduce the number and severity of injuries. 

In this sense, van Mechelen, Hlobil & Kemper14 proposed a model for injury 

prevention in 1992 that involved four steps (figure 1.1). This classical injury prevention 
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model was expanded by Finch in 200615 and later by van Tiggelen, Wickes, Stevens, Roosen 

& Witvrouw in 200816, resulting in a final model that comprises of seven steps (figure 1.2).  

 

Figure 1.1. The four-step “sequence of 

prevention” described by van Mechelen et al.14 

According to the seven-step injury prevention model, the fundamental first step 

must be establishing the extent of the injury problem, that is to say, the epidemiology for a 

determined sport population regarding what are the most common and burdensome 

injuries, as well as how (traumatic or overuse) and when (matches or training sessions) they 

usually occur. Recent studies have highlighted the importance of taking contextual 

determinants into account (as they play an important role in behaviour) when described 

this first step of the sequence of prevention because they may provide a more 

comprehensive view of the injury problem17.  



  Epidemiology and prediction models of injuries in elite futsal 

 

 53 

 

Figure 1.2. Sequence of the injury prevention model described 

by van Mechelen et al.14 and later expanded by Finch15 and then 

by van Tiggelen et al.16 

Once the incidence and severity of injuries has been thoroughly analysed, the second 

step proposed in the model is to establish the aetiology and mechanisms of these injuries. 
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To better address this second step, the use of a complex system approach has been 

suggested which considers the multifactorial and complex nature of sport-related injuries18. 

This novel approach rests on analysing the injury mechanism (i.e. the acute or chronic 

[when repeated several times in a relatively short period of time] event or pattern that led 

to damage one or more body structures) and then identifying interactions (i.e. non-lineal 

relationships) within a web of determinants (i.e. potential predictors or risk factors) and 

clarifying how these interactions contribute to the emergence of specific injuries (e.g. soft 

tissue injuries) (figure 1.3). Likewise, it also may allow seeking regularities (repeated 

patterns) that enable the identification of risk profiles for an athlete or group. This 

knowledge forms the basis for developing screening models to prospectively identify 

athletes at high (or low) risk of injury. 

 

Figure 1.3. Graphical description of the complex model for sports injury 

prediction described by Bittencourt et al.18. The group of variables at the 

bottom makes up the web of determinants (i.e. previously known as risk 

factors [e.g. dynamic knee valgus, fatigue]), which is composed of contributing 

units with different weights. Variables circled by darker lines have more 
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interactions than variables circled by lighter lines and exert a greater influence 

on the outcome (injury). Dotted lines represent a weak interaction and thick 

lines represent a strong interaction between variables. Arrows indicate the 

relationship between the observable regularities, which captures the 

risk/protective profile, and the emerging outcome (i.e. high or low risk of 

injury). 

The third step consists of designing and implementing tailored preventive measures 

(based on information identified in the second step) that allow to correct potentially 

hazardous movement patterns or regularities (e.g. excessive dynamic valgus at the knee 

joint during landing manoeuvres) in athletes and minimizing the impact of certain 

contextual factors (e.g. poor communication skills among teamwork members [doctors, 

physical trainers, coaches, managers], coach leadership style) that may be increasing the 

injury risk at individual and / or collective levels. 

The fourth step of the model would consist of evaluating the effectiveness of the 

preventive measures implemented by repeating the first step. In this step, Finch15 adds two 

additional actions to the sequence to assist in the translation of research into injury 

prevention practice: a) the need to include a description of the intervention context 

(personal, environmental, societal and sports delivery factors) to inform implementation 

strategies (step 5) and b) the evaluation of the implementation process of preventive 

measures via “real-world”, as opposed to solely scientific analytics (step 6). Later, van 

Tiggelen et al.16 incorporated an additional step that enabled the inclusion of external 

factors with a significant effect on the outcome of a prevention intervention. This expansion 

of van Mechelen's model leads to a more global model in which the compliance level and 

risk-taking behaviour of the individual and the assessment of efficiency of the stakeholders 

have a key influence on the preventive measure.  
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1.2. Epidemiology of injuries in elite futsal 

As outlined in the just mentioned seven-step injury prevention model (figure 1.2), 

before implementing any preventive measure, the first step is to describe the magnitude of 

the problem and its severity and characteristics14–16. The problem ‘injury’ has been typically 

measured by epidemiological measures and quantified in prospective epidemiological 

studies. In each sport, prevalence, incidence, severity, injury profiles, time loss and costs 

should all been well-described and stratified by age, sex, participation level, experience, etc. 

Such information will assist in identifying injury patterns and athletes at increased risk. 

Understanding the impact of injury on athlete availability, perceived performance and 

probability of sustaining a future injury before preventive and risk mitigation strategies are 

embedded into team programs will ensure that realistic expectations exist among 

stakeholders19. Accordingly, the objective of this section is to summarize the body of the 

knowledge available in the scientific literature regarding the epidemiology of injuries in 

elite futsal.  

Despite being one of the most played sport in several countries, a limited number of 

prospective epidemiological studies have been published investigating injuries sustained 

by elite futsal players (mainly during match play)6,20–23 (table 1.1). These studies have 

reported incidence rates for male players ranging from 1.6 to 208.6 injuries per 1000 hours 

of match play, most of them affecting the lower extremity with contusions of the lower leg 

and ankle sprains being the most frequently diagnosed types of injury6,20–24. For female 

players, only two studies21,22 have reported incidence data, with values ranging from 6.7 to 

86.6 injuries per 1000 hours of exposure and being ankle sprains and ligament ruptures the 

most observed injuries. However, the relatively small number of players included in most 

of these epidemiological studies alongside disparity in injury definitions and data collection 

procedures make inter-study comparisons difficult and may have clouded the current 

understanding of the incidence and characteristics of futsal-related injuries.



 

 

Table 1.1. Main characteristics of the prospective epidemiological studies that have investigated injuries sustained by elite futsal 

players 

Reference Study 

Duration 

Nº Teams 
Injury definition 

Incidence (per 1000 hours of exposure) 

Country / Tournament (Players) Overall Training Match 

Hamid et al. 

Malaysia NL - 2010 
1 season 

32 

(238 males and 

230 females) 

Injury was defined as any physical 

complaint sustained by a player 

that results from football match or 

football training, irrespective of the 

need for medical attention or time 

loss from football activities 

-  - 91.5  

Angoorani et al. 

Iran NL – 2011-12 
1 season 

3  

(38 males and 

17 females) 

Injury was defined as any physical 

complaint sustained by a futsal 

player that results from a futsal 

match or career related training 

sessions, irrespective of the need 

for medical attention or time loss 

from futsal activities  

2.2 1.6 6.3 

Álvarez-Medina 2 seasons 
1 

(24 males) 

Injury sustained by a player during 

a training session or competition 
19.7 - 

- 

 



 

  

Spain NL – 2004-05 & 

2011-12 

which resulted in a player being 

unable to take a full part in future 

futsal training or match play 

Junge & Dvorak 

WC – 2004/2005/2008 

1 

tournament 

16 

(224 males) 

An injury was defined as any 

physical complaint during a match 

which received medical attention 

from the team physician, 

regardless of the consequences 

with respect to absence from match 

or training 

- - 195.6 

Ribeiro & Costa 

Brazil NC - 2004 

1 

tournament 

10 

(180 males) 

An injury was defined as any 

commitment occurred during a 

game, regardless its consequences 

related to the subsequent removal 

from the games or training 

- - 208.6 

WC: World Cup; NL: National League; NC: National Cup. 
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Furthermore, none of the studies that have provided epidemiological data of futsal-

related injuries in male and female players have calculated the injury burden (the product 

of severity [consequences] and incidence [likelihood]) and/or built a risk matrix. A risk 

matrix is a graph of injury severity plotted against injury incidence with criteria 

incorporated into the graph for evaluating the level of risk, usually by dividing the graph 

into some risk areas using descriptive or quantified incidence, severity and risk evaluation 

categories25 (figure1.4).  

 

Figure 1.4. Quantitative risk matrix in UEFA Champions League 

football (based on data from the UEFA Elite Club Injury Study), 

illustrating the relationship between the severity (consequence) 

and incidence (likelihood). For each injury type, severity is shown 
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as the average number of days lost from training and competition 

(log scale), while incidence is shown as the number of injuries per 

1000 hours of total exposure (match and training combined) for 

each injury type. Figure adapted from Bahr, Clarsen & Ekstrand26. 

Therefore, a study that reviews and employs a meta-analytical approach to the 

currently available epidemiological data to identify the incidence and severity of futsal 

injuries, separately by sex, as well as when (matches or training sessions) and where 

(anatomical location) they occur is warranted. Likewise, there is a clear need for more 

prospective epidemiological studies that inform about injury incidence, characteristics and 

burden in futsal players. This knowledge would lead coaches, physical trainers and 

physiotherapists to design and implement specific measures to prevent or reduce the risk 

of sustaining the most prevalent and burdensome futsal-related injuries. 

 

1.3. Injury prediction in elite futsal 

The effective design and posterior implementation of preventive and risk mitigation 

strategies in a sport context require firstly the successful assessment (in terms of validity 

and reliability) of potential factors or determinants that may alter the likelihood that an 

injury will be sustained, secondly the development of robust screening models to quantify 

injury risk and finally, the identification of risk profiles (regularities) that enable to 

understand why an athlete has been classified as having high or low risk of injury. These 

three actions have been suggested as the most challenging issues in modern sport27.  

Several biomechanical, neuromuscular, psychological and contextual factors have 

been suggested as potential determinants for the occurrence of injuries in intermittent team 

sports (table 1.2). Among them, the adoption of aberrant lower extremity movement 

patterns during the execution of high intensity weight-bearing dynamic tasks (e.g.: cutting 

and landing) such as an excessive dynamic valgus motion at the knee (a multi-joint and 
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multiplane movement pattern comprised of varying degrees of hip adduction and internal 

rotation and knee abduction and external rotation joint kinematics) and limited hip and 

knee flexion ranges of motion (ROM) have been identified as primary and modifiable risk 

factors for knee injuries (mainly ligament injuries). These injuries are common among futsal 

players and therefore the pre-participation assessment of hip and knee joints kinematics 

during dynamic tasks might help categorize players at high risk. 

Table 1.2. Potential injury risk factors 

Context-related Neuromuscular Psychological Biomechanical 

Previous injury28–33 

Sex34–39 

Age31,32,40 

Playing position22,41–43 

Fatigue20,44–46 

 

Flexibility32,47,48 

Deficit in muscle 

strength33,47,49,50 

Strength 

imbalances33,47,49,50 

Core stability29,30,51 

Sleep quality29,30 

Physical/emotional 

exahaustion52,53 

Sports 

devaluation52,53 

Reduce sense of 

accomplishment52,53 

Anthropometric 

factors32,54 

Misalignment55,56 

Joint laxity or 

instabiltity57,58 

 

1.3.1. Assessment of hip and knee joints kinematics during bilateral drop-jump landings 

Three-dimensional (3D) motion analysis systems have been considered as the 

criterion measurement (gold standard) to assess lower extremity joints kinematics during 

potentially high-risk tasks related to knee injuries (mainly ACL) due to their high levels of 

accuracy and reliability59–63. However, the use of 3D motion analysis systems is often 

restricted to research settings and not used in clinical environments or for pre-participation 

screening because of their high cost, lack of portability, time constraints and the need for 

sophisticated instruments and qualified technicians61,64. Consequently, cost-effective, 

technically undemanding and portable alternative measurements to 3D motion analysis are 

needed. A low-cost, portable and readily available alternative to screen lower extremity 
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joints kinematics might be the two-dimensional (2D) video analysis procedures where 

standard cameras are used to capture performance of dynamic tasks which are then 

imported into user-friendly software packages (e.g.: Kinovea, Quintic, ImageJ and 

DartfishTM). Some studies have examined the criterion-related validity (mainly through 

correlation coefficients) of certain measures of frontal plane knee alignment (i.e.: frontal 

plane projection angle of the knee [FPPA]61,64–69, knee-to-ankle separation ratio [KASR]67,68 

and knee medial displacement [KMD]70) during dynamic tasks (mainly single leg squats 

and drop landings) that have been operationally designed to identify athletes with 

excessive dynamic knee valgus motion using two-dimensional (2D) video analysis 

procedures and 3D motion analysis systems simultaneously. In particular, these measures 

of frontal plane knee alignment obtained through the use of 2D video analysis procedures 

have reported correlations with their respective 3D criterion measures ranging from r = 0.20 

to 0.96 (table 1.3).  

Table 1.3. Criterion-related validity scores (correlations) of frontal plane knee alignment 

measures obtained using 2D video analysis procedures  

Study Task Participants FPPA KASR KMD 

Gwynne & Curran65 Single leg squat 18 0.78 - - 

Herrington et al.66 Single leg squat 15 0.79 - - 

Mclean et al.61 

Side jump 

10 

0.80 - - 

Side step 0.76 - - 

Shuttle run 0.20 - - 

Mizner et al.67 Drop vertical jump 36 0.38 0.50 - 

Ortiz et al.68 Drop vertical jump 16 0.95* 0.96* - 

Sorenson et al.69 Single leg drop landing 31 0.87 - - 

Willson et al.64 Single leg squat 40 0.48 - - 

Myer et al.70 Drop vertical jump 100 - - 0.87 
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FPPA: Frontal plane projection angle; KASR: Knee to ankle separation ratio; KMD: Knee 

medial displacement.  

However, correlation coefficients do not indicate whether both measures or methods 

(e.g.: 3D motion analysis systems and 2D video analysis procedures) can be used 

interchangeably and thus whether the same cut-off scores can be used to detect the expected 

diagnosis (e.g.: the presence [or absence] of aberrant lower extremity movement patters 

during dynamic tasks). More contemporary statistical methods, such as the calculation of 

the estimation equation and typical error of the estimate (TEEST) have not been taken into 

consideration when assessing criterion-related validity of the previously mentioned 

measures of frontal plane knee alignment. Likewise, the criterion-related validity of other 

ROM measures in the sagittal plane, such as hip and knee flexion ROM, has received very 

little attention.  

Therefore, there is a clear need for studies that examine the criterion-related validity 

of the measures of frontal plane knee alignment and sagittal plane movement all recorded 

simultaneously using a 2D video analysis procedure and a 3D motion analysis system 

during dynamic tasks and applying a contemporary statistical approach. 

 

1.3.3. Prediction models 

Despite the substantive efforts made by the scientific community and sport 

practitioners, lower extremity non-contact soft tissue (muscle, tendon and ligament) (LE-

ST) injuries are very common events in intermittent team sports such as soccer71, futsal72, 

rugby73, bat (i.e. cricket and softball) and stick (i.e. field hockey and lacrosse) sports74. One 

of the main reasons that has been suggested to explain why LE-ST injury rates are still high 

is that none of the currently available screening models (based on potential risk factors), 

designed to identify athletes at high risk of suffering a LE-ST injury, have adequate 

predictive properties (i.e. accuracy, sensitivity and specificity)27.  
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Perhaps the lack of available valid screening models to predict LE-ST injuries could 

be attributed to the use of statistical techniques (e.g.: traditional logistic regression) that 

have not been specifically designed to deal with class imbalance problems, such as the LE-

ST injury phenomenon, in which the number of injured players (minority class) 

prospectively reported is always much lower than the non-injured players (majority 

class)75–78. Thus, in many scenarios including LE-ST injury, traditional screening models are 

often biased (for many reasons) towards the majority class (known as the “negative” class) 

and therefore there is a higher misclassification rate for the minority class instances (called 

the “positive” examples). Other issue with the current body of the literature is that the 

external validity of the screening models available may be limited because they are built 

and validated using the same date set (i.e. cohort of athletes). Apart from resulting in overly 

optimistic models´ performance scores, this evaluation approach does not indicate the true 

ability of the models to predict injuries in different data sets or cohort of athletes, which 

may be very low and consequently, not acceptable for injury prediction purposes. This 

appears to be supported by the fact that the injury predictors identified by some prospective 

studies have not been replicated by others using similar designs and assessment 

methodologies but with different samples of athletes28,31,32,40,47,49,79–81. These limitations have 

led some researchers to suggest that injury prediction may be a waste of time and 

resources27. 

In Machine Learning and Data Mining environments, some methodologies (e.g.: pre-

processing, cost-sensitive learning and ensemble techniques) have been specially designed 

to deal with complex (i.e. non-lineal interactions among features or factors), multifactorial 

and class imbalanced scenarios75–78. These contemporary methodologies along with the use 

of resampling methods to assess models´ predictive power (i.e. cross-validation, bootstrap 

and leave-one-out) may overcome the limitations inherent to the current body of 

knowledge and enable the ability to build robust, interpretable and generalizable models 

to predict LE-ST injuries. In fact, recent studies have used these contemporary 
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methodologies and resampling methods as alternatives to the traditional logistic regression 

techniques to predict injuries in elite team sport athletes82. Unlike previous studies that used 

traditional logistic regression techniques to build prediction models47,81,83–88, most of these 

recent studies29,30,89–93, although not all50,94, have reported promising results (area under the 

receiver operator characteristics [AUC] scores > 0.700) to predict injuries.  

However, one of the main limitations of most of these models built by the application 

of modern Machine Learning techniques lies in the fact that their use seems to be restricted 

to research settings (and not to applied environments) because sophisticated and expensive 

instruments (e.g.: isokinetic dynamometers, force platforms and GPS devices), qualified 

technicians and time-consuming testing procedures are required to collect such data. To the 

authors´ knowledge, there is only one study that has built a robust screening model using 

Machine Learning techniques (extreme gradient boosting algorithms) with data from field-

based tests. Rommers et al.95 built a model to predict injury in elite youth soccer players 

based on preseason anthropometric (stature, weight and sitting height) and motor 

coordination and physical fitness (strength, flexibility, speed, agility and endurance) 

measures obtained through field-based tests and reported an AUC score of 0.850.  

If Machine Learning techniques could build “user friendly” models with adequate 

predictive properties and exclusively using data obtained from questionnaires and / or cost-

effective, technically undemanding and time-efficient field-based tests, then injury 

prediction would not be a waste of time and resource in applied settings. In case these 

techniques provided a trustworthy positive response, coaches, physical trainers and 

medical practitioners may know whether any of the currently available questionnaires and 

field-based tests to predict injuries itself works and a hierarchical rank could be developed 

based on their individual predictive ability of those that showed reasonably high AUC, TP 

and TN scores. Furthermore, this knowledge might be used to analyze the cost-benefit 

(balance between the time required to assess a single player and the predictive ability of the 

measures recorded) of including measures in the screening sessions for injury prediction. 
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1.3.3. Identification of injury risk profiles 

The identification of risk profiles (regularities) that enable to understand why an 

athlete has been classified as having high or low risk of injury is a vital previous step to 

develop tailored injury prevention and risk mitigation strategies. 

The Y-Balance test is widely used to assess dynamic postural control96 and it is 

usually included as part of an injury risk battery in both clinical and sporting contexts 

because poor performance and bilateral asymmetries may be considered as valid predictors 

for identifying athletes at high risk of non-contact lower extremity injuries (mainly knee 

and ankle injuries)57,58,97–99. 

The Y-Balance test involves maintaining single-legged balance whilst simultaneously 

reaching as far as possible with the contralateral leg in three directions (anterior, 

posterolateral and posteromedial). Potentially, the execution of this test might require, 

among others, adequate levels of hip and knee strength, power, trunk or core stability, 

coordination and lower extremity ranges of motion (ROM). With the aim of improving the 

design of training interventions, some studies have explored the individual contribution of 

certain measures of knee strength100–102, hip strength102–104, lower extremity power105, core 

stability102,105 and lower extremity ROMs102–106 on Y-Balance test performance using linear 

regression models in different cohorts of athletes. However, these studies have reported 

conflicting results that might not permit clinicians, physiotherapists and physical trainers 

to make general training recommendations. 

The use of contemporary statistical techniques, such as Bayesian Networks 

Classifiers (BNs) (also referred to as causal networks or belief networks) to provide 

evidence of relationships of dependency and conditional independence between different 

measures or variables107 may overcome the current limitations of the scientific literature and 

shed light to better understand why an athlete has reached poor performance scores and / 

or showed bilateral asymmetries that place them in a prone situation to sustain an injury. 
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1.4. Lines of action of the thesis 

Due to everything previously mentioned, it is needed to reduce the number of 

injuries in futsal. Several limitations are presented in the literature regarding the injury 

problem and they need to be resolved. Therefore, the aim of the present doctoral thesis 

focuses on establishing the extent of the injury problem (in terms of incidence, severity and 

burden) in futsal players (studies 1 and 2), improving the current understanding regarding 

the aetiology and mechanisms of injury through the development of robust screening 

models for injury prediction (studies 3 and 4) and the identification of hazardous movement 

patterns (risk profiles) (study 5) through the use of a range of contemporary Machine 

Learning techniques. The main findings of the current thesis will help coaches, physical 

trainers and medical practitioners in the decision-making process for injury prevention. 
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CHAPTER 2 

Research Objectives and Hypothesis 

 

2.1. General Objectives 

Based on the limitations of the scientific literature described in the previous chapter, 

the general objectives of the present doctoral thesis were: a) to establish the extent of the 

futsal injury problem, b) to develop novel “user friendly” prediction models to accurately 

identify professional futsal players at high or low risk of soft-tissue injury and c) to deepen 

the knowledge of the complex relationships among neuromuscular factors and to describe 

their contributions on the likelihood that futsal players adopt movement patterns during 

dynamic tasks that potentially might increase the risk of injury.  

Five different studies were conducted to address these objectives. The first two 

studies focussed on the first step of the model for injury prevention, as both aimed at 

describing the magnitude, severity and characteristics of the injury problem in futsal 

through a meta-analysis and a three-year prospective epidemiology design, respectively. 

The third study examined the criterion-related validity of measures of knee and hip 

alignment (frontal plane) and motion (sagittal plane) recorded simultaneously using a field-

based 2D video analysis and a laboratory-based 3D motion analysis system (gold standard) 

during bilateral drop landing applying a contemporary statistical approach. The fourth 

study used machine learning based techniques to develop screening models to identify 

futsal players at high or low risk of injury. The last study explored the complex (non-linear) 

interactions among several neuromuscular performance parameters and quantified their 

individual and combined contributions on players´ likelihood of having poor or good 

dynamic postural control values through Bayesian Networks Classifiers.  
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The titles of the five studies are the following: 

- Study 1: Epidemiology of injuries in professional futsal injuries: a systematic 

review and meta-analysis.  

- Study 2: Injury incidence, characteristics and burden among female sub-elite futsal 

players: A prospective study with three-year follow-up. 

- Study 3: Criterion-related validity of 2-Dimensional kinematic of knee and hip 

measures during bilateral drop-jump landings.  

- Study 4: A field-based approach to determine soft tissue injury risk in elite futsal 

using novel machine learning techniques. 

- Study 5: A Bayesian Network approach to study the relationships between several 

neuromuscular performance measures and dynamic postural control in futsal 

players. 

 

2.2. Specific objectives 

 The specific objectives have been organized depending on the five studies of this 

doctoral thesis. 

Study 1:  

1. To conduct a systematic review and meta-analysis quantifying the incidence of 

injuries in male and female futsal players.  

2. To determine the overall effects regarding match and training injuries, injuries 

sustained during national leagues (clubs) and international tournaments (national 

teams), location, type and severity of injuries separately for males and females. 
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Study 2:  

3. To analyse the injury incidence, characteristics and burden among sub-elite female 

futsal players during three consecutive seasons. 

Study 3:  

4. To examine the criterion-related validity of three measures of frontal plane knee 

alignment using a 2D video analysis and a 3D motion analysis system during 

bilateral drop landing and applying a contemporary statistical approach in elite 

futsal players.  

5. To examine the criterion-related validity of two measures of sagittal plane hip and 

knee flexion ranges of motion using a 2D video analysis and a 3D motion analysis 

system during bilateral drop landing and applying a contemporary statistical 

approach in elite futsal players.  

Study 4:  

6. To analyze and compare the individual and combined ability of several personal, 

psychological, self-perceived chronic ankle instability and neuromuscular 

performance measures obtained from different questionnaires and field-based tests 

to prospectively predict LE-ST injuries after having applied supervised Machine 

Learning techniques in elite male and female futsal players. 

Study 5:  

7. To analyse the relationships between several parameters of neuromuscular 

performance with dynamic postural control using a Bayesian Network Classifiers 

based analysis. 
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2.3. Research hypotheses 

The following hypothesis were established in the five studies of this doctoral thesis.  

Study 1:  

- Although no studies have been found comparing injury incidence between male 

and female futsal players, based on the results of prospective studies conducted in 

soccer players41,108, the incidence of male futsal players will most likely be higher 

than the incidence of injuries in female futsal players.  

- The well-documented sex-related anatomical109, musculoskeletal110 and hormonal111 

differences (among other factors) will generate that male and female futsal players 

show differences in injury characteristics. 

- Based on previous epidemiological studies conducted in futsal6,20–23 and recently 

published meta-analyses on injuries in other intermittent team sports such as 

soccer71 and rugby73, the incidence of match injuries will most likely be higher than 

the incidence of injuries in training, independently of the sex. 

- According to the literature6,20–23, the incidence during international tournaments 

will be most likely higher than the incidence during national tournament.  

Study 2:  

- Similar to what have been documented in males6,23, injury incidence rates in female 

futsal players will be high in comparisons with other popular women´s sports such 

as bat (i.e. cricket and softball) and stick (i.e. field hockey and lacrosse) sports74 and 

football112. 

- In line with the literature21,22, lower extremity injuries and particularly ankle sprains 

and ligament ruptures will be the most frequently diagnosed injuries.  
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- The substantive number of high intensity collisions and contact situations that 

usually occur during futsal play3,4 will contribute to that fact that most injuries 

happen in contact situations. 

Study 3:  

- Considering that previous studies have reported moderate correlation validity 

scores between certain measures of frontal plane knee alignment obtained through 

the use of 2D video analysis procedures with their respective 3D criterion 

measures61,64–69, it was hypothesized that frontal plane projection angle of the knee, 

knee-to-ankle separation ratio and knee medial displacement will also show 

acceptable typical error of the estimate scores and Kappa statistic values, whereby 

both kinematic methodologies may be used interchangeably. 

- Based on the results reported by the only one study has analysed the correlation 

validity of lower extremity kinematic measures obtained simultaneously through 

2D video analysis procedures and 3D motion analysis systems in planes other than 

the frontal plane during dynamic tasks70, the hypothesis of this study is that 2D 

sagittal plane hip and knee measures will show acceptable validity scores when 

compared with their respective gold-standard measures.  

Study 4:  

- Accepting that the sport-related injury may be defined as a multifactorial and 

complex phenomenon18, no group of personal, psychological, self-perceived 

chronic ankle instability and neuromuscular performance measures itself will 

allow Machine Learning techniques to build models with an acceptable predictive 

ability from an injury risk standpoint. 

- Contrarily to what has been just stated, the combination of all measures obtained 

from three different field-based tests and five questionnaires in the same database 
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will allow building robust models to prospectively identify elite futsal players at 

high risk of sustaining an injury. 

Study 5:  

- As it has been exhibited in other fields of knowledge (i.e. Computer Sciences and 

Environmental Sciences), the Bayesian Network classifiers will be robust 

techniques that allow to explain graphically and probabilistically the complex 

relationship between modifiable measures of neuromuscular performance and the 

dynamic postural control using the same variables for both, the dominant and the 

non-dominant lower extremities. 
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CHAPTER 3 

Study 1 

 

Epidemiology of injuries in elite male and female futsal: a systematic review and meta-

analysis 

Iñaki Ruiz-Pérez, Alejandro López-Valenciano, José L.L. Elvira, Alberto García-Gómez, Mark De 

Ste Croix, Francisco Ayala 

3.1. Abstract 

Objective: The main purpose of this study was to conduct a systematic review and meta-

analysis quantifying the incidence of injuries in futsal players.  

Method: A systematic search was conducted using various databases (MEDLINE, PubMed, 

Web of Science, Scopus and Google Scholar) and subsequently 6 studies (14 cohorts) were 

selected that prospectively reported the incidence of injuries in futsal. Two reviewers 

independently extracted data and assessed trial quality using the Strengthening the 

Reporting of Observational Studies in Epidemiology statement and Newcastle Ottawa 

Scale. Separate meta-analyses for male and female players were conducted using a Poisson 

random-effect regression model approach.  

Results: The overall and match incidence rates in elite male futsal players were 6.8 (95% CI 

= 0.0 - 15.2) and 44.9 (95% CI = 17.2 - 72.6) injuries/1000 hours of exposure. For females, an 

overall, training and match incidence rates of 5.3 (95% CI = 3.5 - 7), 5.1 (95% CI = 2.7 - 7.6) 

and 10.3 (95% CI = 0.6 - 20.1) injuries/1000 hours of exposure were reported. In males, match 

incidence rate in International tournaments was 8.5 times higher than in national leagues 

(77.2 [95% CI = 60.0 - 94.5] vs 9.1 [95% CI = 0.0 - 19.3] for international tournaments and 

national leagues, respectively). Due to the lack of injury incidence data available for both 
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sexes, it was not possible to conduct other sub-analyses (e.g.: location, type and severity of 

injuries). 

Conclusions: Elite male and female futsal players are exposed to a substantial risk of 

sustaining injuries, especially during matches. 

Keywords: Injury incidence, sports injury, injury prevention, five-a-side football, risk of 

injury 
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3.2. Introduction 

Futsal is the official name for the 5-a-side indoor version of associated football (i.e. 1 

goalkeeper and 4 outfield players) that is sanctioned by soccer's international governing 

body Fédération Internationale de Football Association (FIFA). Futsal is played worldwide with 

more than 12 million players all over the world1,2. During the game of futsal, players are 

exposed to regular collisions and repeated high-intensity physical demands such as sudden 

accelerations and decelerations, rapid changes of direction, tackling and kicking3,4. Similar 

to that which has been observed in other intermittent team sports (e.g. football 71, rugby 73 

and basketball 113), at top levels, the combination of these heavy physical demands, the 

frequent exposure to collisions and contacts along with the current congested calendars and 

the high levels of performance-related psychological stress may place futsal players at 

substantial risk of injury. In fact, it has been suggested that futsal is among the top ten 

injury-prone sports6.  

Therefore, and given the potential short and long-term negative effects that injuries 

may elicit on player´ well-being114,115, team success8,116 and club´ financial performance117, 

the design and implementation of effective preventive measures in daily futsal training 

sessions should be considered a fundamental task for coaches and sport science specialists. 

However, before implementing any injury prevention measure it is essential to know the 

injury profile of futsal, in terms of incidence, severity and location of the most common 

injuries14–16. Furthermore, it is likely that the well-documented sex-related anatomical109, 

musculoskeletal110 and hormonal111 differences, (among other factors) may contribute to 

sex-specific differences in injury incidences and characteristics. Consequently, the study of 

the injury profile in futsal should be conducted separately for male and female players. 

Currently, the available prospective epidemiological studies that report injury 

incidence data have shown incidence rates that range from 0.9 to 195.6 and from 6.7 to 86.6 

injuries per 1000 hours of male and female players exposure, respectively. However, the 

relatively small number of players included in most of these epidemiological studies 
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alongside disparity in injury definitions and data collection procedures make inter-study 

comparisons difficult and may have clouded our understanding of the incidence, severity 

and location of futsal-related injuries. Therefore, a study that reviews and employs a meta-

analytical approach to the currently available epidemiological data to identify the incidence 

and severity of futsal injuries, separately by sex, as well as when (matches or training 

sessions) and where (anatomical location) they occur is warranted. This knowledge could 

lead coaches and sport science specialists to priorities the application of sex-specific 

measures to prevent or reduce the risk of sustaining such injuries.  

Therefore, the main purpose of this study was to conduct a systematic review and 

meta-analysis quantifying the incidence of injuries in male and female futsal players. When 

possible, sub-analyses separately by sex were carried out to determine the overall effects 

regarding match and training injuries, injuries sustained during national leagues (clubs) 

and international tournaments (national teams), location, type and severity of injuries. 

 

3.3. Methods 

To conduct this study (PROSPERO ID: 153544), guidelines for reporting meta-

analysis of observational studies in epidemiology (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses [PRISMA] guidelines) were followed118. The PRISMA checklist 

is presented in appendix 3.1.   

3.3.1. Study Selection  

Eligibility criteria were established and agreed upon by all authors based on the 

concept of population, intervention/indicator, comparator/control and outcome (PICO)119 

(for more information please see appendix 3.2).  

Thus, to be included in this systematic review and meta-analysis studies had to fulfil 

the following criteria:  
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(1) Injury must be defined in terms of time loss (i.e.: injury that results in a player being 

unable to take full part in future futsal training or match play)120,121.  

(2) Participants had to be elite or sub-elite futsal players (i.e.: players who belong to 

teams engaged in first or second national futsal leagues or play international senior 

competitions)42,122–124. 

(3) The study had to be a full-text article published in a peer-reviewed journal before 

November 2019.  

(4) Eligible studies must report either incidence rate or prevalence among the surveyed 

players or provide sufficient data from which these figures could be calculated 

through standardized equations.  

Studies using injury definitions other than time loss were excluded. Literature 

reviews, abstracts, editorial commentaries and letters to the editor were also excluded. 

Finally, some authors were contacted to provide missing data or to clarify if data were 

duplicated in other publications. Incomplete data, or data from an already included study, 

were excluded.  

3.3.2. Search strategy 

A systematic computerized search was conducted up to 31st October 2019 in the 

databases MEDLINE, PubMed, Web of Science and Scopus. In addition, a complementary 

search of the reference lists of included articles and a Google Scholar search were also 

performed. This was done using backward citation tracking (to manually search the 

reference list of a journal article), and forward citation tracking (scanning a list of articles 

that had cited a given paper since it was published)125. Citations were tracked using Google 

Scholar to make sure that studies were not missed inadvertently. When additional studies 

that met the inclusion criteria were identified, they were included in the final pool of 

studies. Relevant keywords were used to construct Boolean search strategies, including 

terms such as futsal, injury, injuries and epidemiology. 
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Two reviewers independently (IR-P and AL-V) selected studies for inclusion in a 

two-step process. First, studies were screened based on title and abstract. In a second stage, 

full-text studies were reviewed to identify those studies that met the eligibility criteria. A 

study was excluded immediately once it failed to meet a single inclusion criterion. 

Disagreements were resolved through consensus or by consulting a third reviewer (FA). 

3.3.3. Data extraction 

A codebook was produced to standardize the coding of each study in order to 

maximize the highest objectivity and each study was codified by two different reviewers. 

The moderator variables of the eligible studies were coded and grouped into three 

categories: 1) General study descriptors (authors, year of publication and study design); 2) 

Study population (sample size, sex and level of play); 3) epidemiological data (injury 

[including it mains characteristics according to Fuller et al.120] and exposure data). If 

applicable, the authors of included studies were contacted to provide clarifications or access 

to raw data. Operational definitions used in this study are shown in appendix 3.3. Appendix 

3.4 also displays the moderator variables coded separately by category.  

3.3.4. Quality assessment 

As suggested by Von Elm et al.126 the quality of each of the studies included was 

assessed using the full version of the “Strengthening the Reporting of Observational Studies 

in Epidemiology” (STROBE) scale. Three categories for quality assessment were established 

arbitrarily: high: the study fulfilled more than 80% criteria stated in STROBE; moderate: 50–

80% of STROBE criteria were fulfilled; low: if less than 50% criteria could be achieved127. 

Furthermore, to assess risk of bias of external validity quality, an adapted version of 

the Newcastle Ottawa Scale (NOS) for cohort studies was used. The NOS was adapted to 

fit the purpose of this review, as undertaken in previous publications71,128–130. Thus, two of 

the eight items were deleted. Item 2 was excluded because a selection of the non-exposed 

cohort was irrelevant as long as the total study population was exposed to futsal play and 
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item 5 (comparability of cohorts on the basis of the design or analysis) was excluded 

because it was linked to item 2. Two new items were added to the original scale (items 1 

and 3). Therefore, the criteria adopted to assess risk of bias were: 1) description or type of 

futsal players, 2) definition of injury, 3) representativeness of the exposed cohort, 4) 

ascertainment of exposure, 5) demonstration that the outcome of interest was not present 

at the start of study, 6) assessment of outcome, 7) whether follow-up was long enough for 

outcomes to occur, 8) adequacy of follow-up of cohorts. An article could be awarded a 

maximum of one star for each item if appropriate methods had been clearly reported. Thus, 

a total of eight stars could be given to an article. The higher the number of stars given to an 

article the lower the risk of bias and studies scoring at least 6 stars were classified as high 

quality studies131. 

The data extraction and quality assessment (including risk of bias of external 

validity) were carried out by two reviewers (AL-V and IR-P). For the quantitative 

moderator variables intraclass correlation coefficients (ICC3,1) were calculated, while for the 

qualitative moderator variables Cohen’s k coefficients were applied. On average, the ICC 

was 0.95 (range: 0.9–1.0) and the k coefficient was 0.97 (range: 0.94–1.0), Inconsistencies 

between the two coders were resolved by consensus, and when these were due to ambiguity 

in the coding book, this was corrected. As before, any disagreement was resolved by mutual 

consent in consultation with a third reviewer (FA).  

3.3.5. Statistical analysis 

Injury incidence rates per 1000 hours of player exposures were extracted from the 

included studies. If injury incidence rates were not specifically reported, they were, if 

possible, calculated from the available raw data using the following formulas:  

Incidence = 1000 × (∑injuries/∑exposure hours) 

Incidence = n° of injuries / (n° of matches × 5 players × match duration*) × 1000  

* Match duration, using the factor 0.67, based on standard 40 min match play 
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Separate injury incidence meta-analyses were performed for male and female futsal 

players. Similar to previous meta-analysis on epidemiology of injuries in sports71,132, data 

were modelled by a random effects Poisson regression model, as previously described133. 

The response variable in each meta-analysis was the number of observed injuries, offset by 

the log of the number of exposure hours. A random effects term was included to account 

for the correlation arising from using multiple rows of data from the same study. Factors of 

interest were included as random effects. A weighting factor used was: study exposure time 

(hours) / mean study exposure time (hours). For injury incidence data, the overall estimated 

means for each random effect factor were obtained from the model and then back-

transformed to give incidence rates, along with 95% CIs (CIs that showed negative values 

were adjusted to 0 for better interpretability). A forest plot was also constructed for each 

meta-analysis. Heterogeneity was evaluated using the I2 statistic, which represents the 

percentage of total variation across all studies due to between-study heterogeneity134.  

Sub-analyses separately by sex were carried out when there were at least three 

incidence rates (cohorts) coming from a minimum of two different studies and the sum of 

the number of players involved was higher than 30 players to determine the pooled effects 

regarding overall, match and training injuries, injuries sustained during national leagues 

(clubs) and international tournaments (national teams), location (lower extremity, trunk, 

upper extremity, head and neck), type (fractures and bone stress, joint [non-bone] and 

ligament, muscle and tendon, contusions, laceration and skin lesion, central/peripheral 

nervous system and undefined/other) and severity (slight/minimal [1–3 days], minor/mild 

[4–7 days], moderate [8–28 days], major/severe [>28 days]) of injuries. All statistical analyses 

were performed using the statistical software package R V.2.4.1 (The R Foundation for 

Statistical Computing) and the ‘metafor’ package135. 

Comparisons between factors were then made using a spreadsheet for combining 

effect statistics136, whereby the incidence rate ratio (and its associated confidence limits) 

were assessed against predetermined thresholds. An incidence rate ratio of 0.91 represented 



  Epidemiology and prediction models of injuries in elite futsal 

  

87 

a substantially lower injury risk, while an incidence rate ratio of 1.10 indicated a 

substantially higher injury risk137. An effect was deemed unclear if its confidence interval 

overlapped the thresholds for substantiveness; that is, if the effect could be substantial in 

both a positive and negative sense. Otherwise the effect was clear and deemed to have the 

magnitude of the largest observed likelihood value. This was qualified with a probabilistic 

term using the following scale: <0.5%, most unlikely; 0.5–5 %, very unlikely; 5–25%, 

unlikely; 25–75%, possible; 75–95%, likely; 95–99.5%, very likely; >99.5%, most likely136,138.  

 

3.4. Results  

3.4.1. Study selection 

Of the 479 studies found via our electronic and manual searching of the databases, 

finally six6,20–23,128 were included in this systematic review and meta-analysis (11 cohorts). 

Details of exclusion and reason for exclusion are provided in figure 3.1.  

The studies were carried out between 2010 and 2019 and comprised male6,20–23 and 

female21,22,128 futsal players from both International tournaments6,23 and national futsal 

leagues in different countries (Spain20,128, Iran21 and Malaysia22). A summary of included 

studies is presented in table 3.1.  

3.4.2. Quality assessment of the studies selected 

With regard to the reporting quality of the studies selected in this systematic review 

and meta-analysis, five out of the six studies achieved STROBE scores that were categorized 

as high (1823, 196,21,22 and 20128 points out of the 22-maximum achievable) while only one 

study20 demonstrated a STROBE score that was categorized as low (13 points). Regarding 

the assessment of the risk of bias of external validity quality, all the studies selected 

obtained seven out of eight stars in the NOS scale, with the exception of the study 

conducted by Álvarez-Medina et al.20 which was awarded only 5 stars. A detailed 
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description of the results obtained in each study from the STROBE and NOS scales is 

presented in appendixes 3.5 and 3.6, respectively. 

 

 

Figure 3.1. Flow chart of the selection of studies for the meta-analysis. 



  

 

Table 3.1. Characteristics of the studies included in this systematic review and meta-analysis 

Reference 
Study  

Duration 

(weeks)  

Nº 

Teams 
Exposure (hours) Injuries Incidence 

STROBE 

reporting 

quality 

NOS  

External 

validity Country / Tournament (Players) Overall Training  Match  Overall Training Match Overall Training  Match 

Ruiz-Pérez et al.128 ╋ a ♀ 

Spain NL – 2015-16 
36  

1 

(14) 
1506.7 1413.3 93.3 8 0 8  

5.3 

(1.6 - 9.0) 

5.7 

(1.7 - 9.6) 

0.0 

(0.0 - 0.0) 

19 

(High) 

7 

(High) 

Ruiz-Pérez et al.128 ╋ b ♀ 

Spain NL – 2016-17 
36 

1 

(14) 
1328.8 1222.1  106.7 12 11 1 

9.0  

(3.9 - 14.1) 

9.0  

(3.7 - 

14.3) 

9.4  

(0.0 - 27.7) 

19 

(High) 

7 

(High) 

Ruiz-Pérez et al. 128 ╋ c ♀ 

Spain NL – 2017-18 
36 

1 

(13) 
1610.7  1500.7 110 10 9 1 

6.2 

(2.4 - 10.0) 

6.0  

(2.1 - 9.9) 

9.1 

(0.0 - 26.9) 

19 

(High) 

7 

(High) 

Hamid et al.22 ╋ a ♂ 

Malaysia NL – 2010 
24 

16 

(238) 
- - 466.7 - - 11 - - 

23.6  

(9.6 - 37.5) 

19 

(High) 

7 

(High) 

Hamid et al.22 ╋ b ♀ 

Malaysia NL – 2010 
24 

16 

(230) 
- - 473.3 - - 14 - - 

29.6  

(14.1 - 45.0) 

19 

(High) 

7 

(High) 

Angoorani et al.21 ╋ a ♀ 

Iran NT – 2011-12 
76 

1 

(17) 
6714.6 5787.8 930.2 28 18 10 

4.2  

(2.6 - 5.7) 

3.1  

(1.7 - 4.6) 

10.7  

(4.1 - 14.4) 

19 

(High) 

7 

(High) 

Angoorani et al.21 ╋ b ♂ 

Iran NT – 2011-12 
76 

1 

(15) 
8888.9 8108.1 819.7 8 3 5 

0.9  

(0.3 - 1.5) 

0.4  

(0.0 - 0.8) 

6.1  

(0.7 - 11.4) 

19 

(High) 

7 

(High) 

Angoorani et al.21 ╋ c ♂ 

Iran NT – 2011-12 
76 

1 

(23) 
8695.6 7262.6 1436.8 18 13 5 

2.1  

(1.1 - 3.0) 

1.8  

(0.8 - 2.8) 

3.5  

(0.4 - 6.5) 

19 

(High) 

7 

(High) 

Álvarez-Medina et al.20 ╋ a ♂ 

Spain NL – 2004-05 
40 

1 

(12) 
5477 - - 108 - - 

19.7  

(16.0 - 23.4) 
- - 

13 

(Moderate) 

5 

(Low) 



 

 

Álvarez-Medina et al.20 ╋ b ♂ 

Spain NL – 2011-12 
40 

1 

(12) 
4931  - - 26 - - 

5.3  

(3.2 - 7.3) 
- - 

13 

(Moderate) 

5 

(Low) 

Junge & Dvorak6 a ♂ 

Guatemala / WC – 2000 
2  

16 

(224) 
- - 220 - - 17 - - 

77.2  

(40.4 - 113.9) 

19 

(High) 

7 

(High) 

Junge & Dvorak6 b ♂ 

Chinese Taipei / WC – 2004 
2 

16 

(224) 
- - 266.7  - - 18 - - 

67.5  

(36.3 - 98.7 

19 

(High) 

7 

(High) 

Junge & Dvorak6 c ♂ 

Brazil / WC – 2008 
3 

20 

(280) 
- - 356.7  - - 32 - - 

89.9  

(58.8 - 121.0) 

19 

(High) 

7 

(High) 

Ribeiro & Costa23 ♂ 

Brazil U20 NC - 2004 
1 

10 

(180) 
- - 153.4 - - 11 - - 

71.7  

(29.3 - 114.1) 

18 

(High) 

7 

(High) 

╋ Study was implemented according to the 2006 consensus statement for epidemiological studies in soccer 

(a);(b);(c): indicate different cohorts in the same study 

♀: indicates that it is female cohort  

*: study duration expressed in number of weeks 

NT: national team; WC: world cup; NC: national cup; NL: national league 

U: under 
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Figure 3.2. Overall (a) and match (b) injury incidence in male players with 95% confidence 

intervals. 
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Figure 3.3. Overall (a), match (b) and training (c) injury incidences in female players with 

95% confidence intervals. 
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There were non-significant sex-related differences in the overall incidence rates 

(with a probability of 44.8%). However, males showed a statistically significant 4.3 times 

higher match injury incidence rate than females futsal players (with a probability of 92.3%). 

3.4.3.2. Injury characteristics 

3.4.3.2.1. National leagues vs. international tournaments 

For males, two studies6,23 provided match injury incidence data during futsal 

international tournaments (three World Cups [Guatemala 2000, China Taipei 2004 and 

Brazil 2008] and one national cup [Brazil 2004]) and other two studies20,21 reported 

epidemiological information regarding injuries sustained during futsal match play in 

different national leagues. Consequently, the seven cohorts that showed match injury 

incidence rates in male futsal players were grouped into two categories: a) national leagues 

(three cohorts) and b) international tournaments (four cohorts). Match incidence rates in 

international tournaments were 8.5 times likely higher (statistically significant with a 

probability of 93.5%) than in national leagues (77.2 [95% CI = 60.0 - 94.5] vs 9.1 [95% CI = 0.0 

– 2.39] for international tournaments and national leagues, respectively) (figure 3.4). 

Unlike males, no studies were found that reported injury incidence rates for females 

in international futsal tournaments and hence, this sub-analysis could not be carried out. 
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Figure 3.4. Match incidence during male international (a) and national (b) tournaments 

forest plot with 95% confidence intervals. 

 

3.4.3.2.2. Location, type and severity of injury 

Although some studies provided epidemiological data regarding the location, type 

and severity of the injuries occurred during futsal6,22,23, only Ruiz-Pérez et al.128 and 

Angoorani et al.21 reported incidence rates for these three time loss injury characteristics 

separately for each of the four cohorts of female futsal players and two cohorts of male 

futsal players, respectively. As a consequence, sub-analysis for these moderator variables 

could not be carried out.  



  Epidemiology and prediction models of injuries in elite futsal 

  

95 

3.5. Discussion 

The main findings of this systematic review and meta-analysis suggest that both male 

and female elite futsal players have a substantial risk of sustaining an injury. In particular, 

and for males, the results show pooled overall and match incidence rates of 6.8 and 44.9 

injuries per 1000 hours of exposure. These overall and match injury incidence rates are in 

line with the injury incidences reported in other elite team sports such as football (8.1 

[overall] and 36 [match] injuries per 1000 hours of exposure)71, rugby (from 68 to 81 injuries 

per 1000 hours of match play exposure)73,139 and handball (6.5 [overall] and 22.2 [match] 

injuries per 1000 hours of exposure to match play)140. The current study also demonstrated 

that female players pooled overall, match and training incidence rates were 5.3, 5.1 and 10.3 

injuries per 1000 hours of exposure, respectively. These results are also similar to the 

incidence rates documented for elite female football (from 5.5 to 9.4, from 3.1 to 4.6 and 

from 16.1 to 22.7 injuries per 1000 hours of exposure to overall, training and match 

play)24,41,141–144, hockey (3.8 [overall], 2.7 [training] and 9.8 [match] injuries per 1000 hours of 

exposure]) and basketball players (4.7 injuries per 1000 hours of overall exposure to 

basketball play)145. 

Although the results of the current meta-analysis indicate that male futsal players 

exhibit a higher match injury incidence rate than their counterpart female players (44.9 

[males] vs. 10.3 [females] per 1000 hours of exposure), when the incidence rates reported 

by the two prospective epidemiological studies carried out in men´s international 

tournaments (national teams)6,23 were removed from the random model (as the pooled 

match injury incidence rate obtained for females did not included data from individual 

epidemiological studies conducted during international tournaments), these documented 

sex-related differences became non-significant from a sport injury risk standpoint (see 

method) (9.1 vs. 10.3 injuries per 1000 hours of male and female players exposure to futsal 

match play, respectively). These findings are not in agreement with the results reported by 

previous studies comparing injury incidence rates between male and female professional 
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football players24,41. These studies have attributed the presence of sex-related differences in 

injury risk to the higher number of contact injuries sustained by male football players and 

that may be due to the higher intensity and number of contact situations that have been 

observed in male football24,41. Perhaps, and unlike football, the reduced (usually indoor) 

pitch size (40 x 20 m) and the unlimited possibility to substitute the players during the game 

may guarantee that most of the physical actions are performed at a very high intensity, 

making collisions with other players and tackling to keep possession of or to win the ball 

situations that are very repeatedly observed during matches, independently of the sex of 

the players. In fact, futsal has been considered one of the most demanding team sports 

(higher than football, basketball and handball) due to its average heart rate (around 90% of 

maximum heart rate) and work to rest ratio of 1:1, with a locomotor activities changing 

every 3.3 seconds with short recovery time intervals (20-30 s) between the high intensity 

bout sequences (3-4 bouts)3,146,147. 

Other relevant findings of the present study are related with the fact that, for females, 

and similar to what has been found in other team sports (e.g. football and handball), match 

injury incidence (10.3 injuries per 1000 hours of exposure) was significantly higher (almost 

twice) than the injury rate obtained for training sessions (5.3 injuries per 1000 hours of 

exposure). Although for males, the epidemiological data available regarding injury 

incidence during futsal training was insufficient to conduct a meta-analysis, the results of 

the sole study that provided both match and training incidences in elite male futsal suggest 

that, and similar to females, most of the injuries occur during matches21. Previous studies 

have attributed these differences in injury incidence rates between match and training to 

several factors, including the higher physical demands on players during matches in 

comparison with training sessions, the number of contacts and collisions during matches, 

and fatigue generated during the course of the match46,148. Therefore, coaches and sports 

science specialists, when possible, should include in the training session tasks that 

reproduce the worst-case scenarios (in terms of physical demands) of futsal match play so 
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that players can be better prepared for competitive match play, which potentially may 

reduce the risk of injury.  

The results of this study also highlight that for male futsal players, the incidence rate 

during international tournament matches (77.2 [95% IC = 59.9 - 94.5] injuries per 1000 hours 

of exposure) was 8.5 times higher than during national league matches (9.1 injuries per 1000 

hours of exposure). Similar findings were found by López-Valenciano et al.71 in professional 

football players, so that during International tournaments, the match injury incidence rate 

was significantly higher than its counterpart calculated during national leagues (41.1 vs. 

32.3 injuries per 1000 hours of match exposure). The higher density of matches played, 

fatigue levels and the mental stress and anxiety generated in the players have been 

suggested as contributing factors for this increase in the number of injuries sustained 

during international tournament matches149–152. Consequently, during international 

tournaments the application of effective post-match recovery strategies might help players 

to alleviate some of the major fatigue-related physical and psychological impairments and 

this may lead them to a better state to re-perform and to reduce the risk of injury. 

Although the epidemiological data available up to date do not allow us to conduct 

sub-analyses regarding the location, type and severity of the injuries that occur as a 

consequence of futsal play, the few studies that have provided data in this regard6,21,23,128 

demonstrate that, in both sexes, lower extremity injuries are, by far, the most frequent. 

Although the most common injury mechanism reported was by non-contact, it should be 

highlighted that a remarkable number of injuries (around 30%) were caused by a contact 

mechanism. As mentioned before, the substantive number of high intensity phases 

observed in elite players during the course of futsal play5,153 might contribute to generate 

several contusions and tackling situations and partially explain the fact that contact injuries 

are more frequent than in other team sports such as football41,71 and basketball154 in which 

the number of high intensity phases may be lower5,155–157. However, more studies examining 

physical demands (number of accelerations and decelerations, changes of direction, 
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distance covered at high speed running, etc.) of futsal play are needed to look at potential 

injury mechanisms. Likewise, epidemiological studies also show that the thigh, knee and 

ankle seem to be the anatomical region of the lower extremity where injuries occurred 

significantly more in male and female players. In addition, the most common types of injury 

grouping were ligament (ankle and knee sprains) and muscle/tendon (hamstring, 

adductors and quadriceps muscle strains) injuries. Fortunately, most of the futsal-related 

injuries usually have a slight/minimal (1-3 day) or minor/mild severity (4-7 days) and hence, 

the injury burden seems generally low, but more studies are needed to explore injury 

burden in futsal-related injuries. Therefore, and for both male and female futsal players, 

medical and fitness team staff should focus their attention on designing, implementing and 

then evaluating preventative measures that target the most common knee and ankle 

ligament and thigh muscle and tendon injuries. 

 

3.6. Limitations 

Although this novel study was conducted following the international guidelines for 

systematic reviews and meta-analyses, some limitations should be acknowledged. One of 

the main limitations of this study was the reduced number of studies that were finally 

included (n = 6) and that together with the limited sample sizes (< 30 players) present in 

some of their cohorts may have resulted in a high degree of inconsistency in the injury 

estimates. However, it should be highlighted that the number of studies and cohorts 

included in this study was similar than the ones included in previous meta-analyses on 

sport-related injury incidence73,158,159. Another source of inconsistency may have also been 

the variations in injury definitions and lack of uniform data collection methods found 

among studies. Other factor that may have also contributed to the high degree of 

inconsistency could be the differences existing among the national leagues in terms of 

numbers of matches and in-season breaks, periods of fixed match congestion and level of 

professionalism. Due to lack of suitable data, sub-analyses regarding location, type and 
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severity of the injuries sustained during futsal play could not be conducted. Therefore, more 

studies are needed reporting the number of injuries sustained in futsal training sessions 

and matches separately for males and females, and also the location, type and severity of 

such injuries per 1000 hours of exposure following standardized injury definitions and data 

collection procedures. Injury burden (the product of severity and incidence26) should also 

be reported in future epidemiological studies to help interpret injury data from a novel risk 

management standpoint. 

 

3.7. Conclusions 

Elite male and female futsal players are exposed to a substantial risk of sustaining 

injuries, especially during matches. No sex-related differences were found in the overall 

futsal injury incidence. For males, this risk of injury during futsal match play is eight times 

higher during international tournaments than in national leagues. Due to the lack of injury 

incidence data available for both sexes, future studies are warranted reporting the number 

of injuries sustained in futsal training sessions and matches separately, and also the 

location, type and severity of such injuries per 1000 hours of exposure using standardized 

injury definitions and data collection procedures.



 

 

3.8. Appendixes 

Appendix 3.1. PRISMA checklist  

Section/topic # Checklist item  
Reported 

on page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both 79 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data 

sources; study eligibility criteria, participants, and interventions; study appraisal and 

synthesis methods; results; limitations; conclusions and implications of key findings; 

systematic review registration number 

79 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known 81 

Objectives  4 Provide an explicit statement of questions being addressed with reference to 

participants, interventions, comparisons, outcomes, and study design (PICOS) 

82 

METHODS   

Protocol and 

registration  

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), 

and, if available, provide registration information including registration number 

83 



  

 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report 

characteristics (e.g., years considered, language, publication status) used as criteria for 

eligibility, giving rationale 

83 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with 

study authors to identify additional studies) in the search and date last searched 

83 

Search  8 Present full electronic search strategy for at least one database, including any limits 

used, such that it could be repeated 

83 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic 

review, and, if applicable, included in the meta-analysis) 

82 

Data collection 

process  

10 Describe method of data extraction from reports (e.g., piloted forms, independently, in 

duplicate) and any processes for obtaining and confirming data from investigators 

84 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) 

and any assumptions and simplifications made 

84 

Risk of bias in 

individual studies  

12 Describe methods used for assessing risk of bias of individual studies (including 

specification of whether this was done at the study or outcome level), and how this 

information is to be used in any data synthesis 

84 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means) 85 



 

 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, 

including measures of consistency (e.g., I2) for each meta-analysis 

86 

Risk of bias across 

studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., 

publication bias, selective reporting within studies) 

84 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-

regression), if done, indicating which were pre-specified 

86 

RESULTS     

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, 

with reasons for exclusions at each stage, ideally with a flow diagram 

87 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, 

PICOS, follow-up period) and provide the citations 

89 

Risk of bias within 

studies  

19 Present data on risk of bias of each study and, if available, any outcome level 

assessment (see item 12) 

87 

Results of individual 

studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple 

summary data for each intervention group (b) effect estimates and confidence 

intervals, ideally with a forest plot 

91 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and 91 



  

 

measures of consistency 

Risk of bias across 

studies  

22 Present results of any assessment of risk of bias across studies (see Item 15) 89 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, 

meta-regression [see Item 16]) 

93 

DISCUSSION     

Summary of 

evidence  

24 Summarize the main findings including the strength of evidence for each main 

outcome; consider their relevance to key groups (e.g., healthcare providers, users, and 

policy makers) 

95 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level 

(e.g., incomplete retrieval of identified research, reporting bias) 

98 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and 

implications for future research 

99 

FUNDING     

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply 

of data); role of funders for the systematic review 

- 



 

 

Appendix 3.2. Inclusion/exclusion criteria for futsal literature search 

 Inclusion criterion Exclusion criterion Rationale for this criterion 

Publication 

type 

Peer-reviewed original 

research articles only 

Non-peer-reviewed articles, 

newspapers, opinion pieces, 

systematic reviews and meta-

analysis, editorials, commentaries 

and letters to the editor 

Conference proceedings/abstracts 

For reasons of practicality, it was deemed 

acceptable to include only studies 

published in peer-reviewed journals 

Language 
English, Spanish and 

Portuguese language 
Non-English, Spanish or Portuguese 

For reasons of practicality, it was deemed 

acceptable to include only studies 

published in English, Spanish or 

Portuguese 

Study 

design 

Descriptive 

epidemiological studies 

Anecdotal studies. 

Case studies or expert opinion 

 

Based on the evidence hierarchy as a 

guide, ONLY study designs ranked at 

least as ‘good’ were included in this 

systematic review and meta-analysis. This 

was to ensure high methodological rigour 

and offer reasonable empirical support for 

the incidence and aetiology of injuries 



  

 

among males and females who play elite 

futsal 

Age 

Male and female futsal 

players > 16 years 

participating in a 

competitive league 

(matches or training) OR 

international 

tournament 

Ages <18 years, age unspecified 

studies 

Players aged >18 years were considered as 

appropriate. The injury profile of players 

aged >18 years is important given that 

they participate in elite competition. 

Studies that reported injuries for players 

<18 years and >18 years and have data for 

age groups, but presented separately, 

were included 

Playing 

level 

Elite and sub-elite 

players 
Amateur 

The physical demands of futsal game may 

vary across different playing levels and 

this may led develop different injury 

patters 

Sport Futsal Any sport other than futsal 

Inclusion of sports with different 

regulations and physical demands can 

results in different injury incidence and 

characteristic 



 

 

Injury 

definition 

Time loss injuries (injury 

that results in a player 

being unable to take full 

part in future football 

training or match play) 

Other definitions different than time 

loss injuries 

Different injury definitions (i.e. decrease 

in the performance due physical 

complaints, needed of going to the 

hospital to be considered an injury) may 

result in different incidence rates 

Main 

outcomes 

Injury incidence rates 

per 1000 hours of player 

exposures 

Descriptive epidemiological studies 

that do not include exposure time 

For reasons of practicality, it was deemed 

acceptable to include only studies that 

included exposure time in order to make 

inter-studies comparisons 
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Appendix 3.3. Operational definitions used to include studies in the meta-analysis. 

Term Definition 

Injury 

Any physical complaint sustained by a player that results from a 

futsal match or futsal training, irrespective of the need for medical 

attention or time loss from futsal activities 

Time loss injury 
Injury that results in a player being unable to take a full part in 

future futsal training or match play 

Recurrent injury 

An injury of the same type and at the same site as an index injury 

and which occurs after a player’s return to full participation from 

the index injury 

Injury severity 

The number of days that have elapsed from the date of injury to the 

date of the player’s return to full participation in team training and 

availability for match selection. Injuries are grouped as:  

▪ Slight / Minimal Absence (1-3 days) 

▪ Minor / Mild Absence (4-7 days) 

▪ Moderate Absence (8-28 days) 

▪ Major / Severe Absence (>28 days) 

Match exposure Play between teams from different clubs 

Training exposure 

Team-based and individual physical activities under the control or 

guidance of the team’s coaching or fitness staff that are aimed at 

maintaining or improving players’ futsal skills or physical 

condition 

Overuse injury 
An injury caused by repeated microtrauma without a single, 

identifiable event responsible for the injury 

Traumatic injury Injury with sudden onset and known cause 

Injury location ▪ Head and neck (Head/face; Neck/cervical spine) 
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▪ Upper limbs (Shoulder/clavicula; Upper arm; Elbow; Forearm; 

Wrist; Hand/finger/thumb) 

▪ Trunk (Sternum/ribs/upper back; Abdomen; Lower 

back/pelvis/sacrum) 

▪ Lower limbs (Hip/groin; Thigh; Knee; Lower leg/Achilles 

tendon; Ankle; Foot/toe) 

Type of injury 

• Fractures and bone stress 

• Joint (non-bone) and ligament (Dislocation/subluxation; 

Sprain/ligament injury; Lesion of meniscus or cartilage) 

• Muscle and tendon (Muscle rupture/tear/strain/cramps; Tendon 

injury/rupture/tendinosis/bursitis) 

• Contusions (Haematoma/contusion/bruise) 

• Laceration and skin lesion (Abrasion; Laceration) 

• Central/peripheral nervous system (Concussion [with or 

without loss of consciousness]; Nerve injury) 

• Other (Dental injuries; Other injuries) 

Injury incidence 
Number of injuries per 1000 player hours ([Σ injuries/Σ exposure 

hours] ×1000) 
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Appendix 3.4. Moderator variables codded 

General study descriptors 

▪ Authors 

▪ Year of the study 

▪ Country / Tournament 

▪ Sampling time (number of seasons) 

Description of the study population 

▪ Sample size 

▪ Number of teams 

▪ Age 

▪ Level of play (club or national team) 

Epidemiological descriptors 

▪ Injury definition 

▪ Number of injuries (total, match and training) 

▪ Exposure time (total, match and training) 

▪ Incidence (total, match and training) 

▪ Injury burden or days lost per injury 

▪ Injury location  

▪ Type of injury 

▪ Severity of injury 

▪ Recurrence 

▪ Injury mechanism (traumatic or overuse) 

▪ Quality of the study (abbreviated STROBE scale) 

▪ Risk of bias (adapted NOS scale) 



 

 

Appendix 3.5. Description of the 22 of STROBE Statement—checklist of items that should be included in reports of observational studies 

Item 
Item 

number 

Ruiz-Pérez 

et al.128 

Ribeiro & 

Costa23  

Hamid et 

al.22  

Junge & 

Dvorak6  

Angoorani 

et al.21  

Álvarez-

Medina et al.20 

Title and abstract 1 Yes Yes No Yes Yes No 

Introduction        

▪ Background / rationale 2 Yes Yes Yes Yes Yes Yes 

▪ Objectives 3 Yes Yes Yes Yes Yes Yes 

Methods        

▪ Study design 4 Yes Yes Yes Yes Yes Yes 

▪ Setting 5 Yes Yes Yes Yes Yes Yes 

▪ Participants 6 Yes Yes Yes Yes Yes Yes 

▪ Variables 7 Yes Yes Yes Yes Yes Yes 

▪ Data sources / measurement 8 Yes Yes Yes Yes Yes Yes 

▪ Bias 9 No No No No No No 

▪ Study size 10 No No No No No No 

▪ Quantitative variables 11 Yes Yes Yes Yes Yes Yes 

▪ Statistical methods 12 Yes Yes Yes Yes Yes Yes 

Results        

▪ Participants 13 Yes Yes Yes Yes Yes Yes 



  

 

▪ Descriptive data 14 Yes Yes Yes Yes Yes Yes 

▪ Outcome data 15 Yes Yes Yes Yes Yes Yes 

▪ Main results 16 Yes No Yes Yes No No 

▪ Other analyses 17 Yes Yes Yes Yes Yes No 

Discussion        

▪ Key results 18 Yes Yes Yes Yes Yes Yes 

▪ Limitations 19 Yes No Yes No Yes No 

▪ Interpretation 20 Yes Yes Yes Yes Yes No 

▪ Generalizability 21 Yes Yes Yes Yes Yes No 

Other information        

▪ Funding 22 Yes Yes Yes Yes Yes No 

TOTAL SCORE  20 18 19 19 19 13 

Qualitative interpretation  High High High High High Moderate 
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Appendix 3.6. Risk of bias assessment of the studies (Newcastle Ottawa scale) 

Study 
Criteria for assessing risk of bias 

Total 
1 2 3 4 5 6 7 8 

Ruiz-Pérez et al.128 * * * * *  * * 7 

Ribeiro & Costa23  * * * * *  * * 7 

Hamid et al.22  * * * * *  * * 7 

Junge & Dvorak6  * * * * *  * * 7 

Angoorani et al.21  * * * * *  * * 7 

Álvarez-Medina et al.20  *  * *   * * 5 

Criteria for assessing risk of bias: 1) description or type of futsal players, 2) definition of 

injury, 3) representativeness of the exposed cohort, 4) ascertainment of exposure, 5) 

demonstration that outcome of interest was not present at start of study, 6) assessment of 

outcome, 7) was follow-up long enough for outcomes to occur and 8) adequacy of follow-

up of cohorts. 

*Star(s) awarded for each criterion 
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CHAPTER 4 

Study 2 

 

Injury incidence, characteristics and burden among female sub-elite futsal players: A 

prospective study with three-year follow-up 

Iñaki Ruiz-Pérez, Alejandro López-Valenciano, Alejandro Jiménez-Loaisa, José L.L. Elvira, Mark 

De Ste Croix, Francisco Ayala 

4.1. Abstract 

Objective: The main purpose of the current study was to analyze the injury incidence, 

characteristics and burden among sub-elite female futsal players.  

Method: Individual exposure to match play and training, injury incidence and 

characteristics (player position, injury mechanism, type of injuries, severity of injuries, 

recurrent versus new injuries, season variation of injury pattern) in a female futsal team 

were prospectively recorded for three consecutive seasons (2015-2018). Incidences were 

calculated per 1000 hours of exposure.  

Results: A total of 30 injuries were reported during the three seasons within a total exposure 

of 4446.1 hours. The overall, match and training incidence of injuries were 6.7, 6.4 and 6.8 

injuries/1000 hours of exposure, respectively. Most injuries had a non-contact mechanism 

(93%), with the lower extremity being the most frequently injured anatomical region (5.62 

injuries/1000 hours of exposure). The most common type of injury was muscle/tendon (4.9 

injuries/1000 hours of exposure) followed by joint (non-bone) and ligament (1.3 

injuries/1000 hours of exposure). The injuries with the highest injury burden were those 

that occurred at the knee (31.9 days loss/1000 hours exposure), followed by quadriceps (15.3 

day loss/1000 hours) and hamstring (14.4 day loss/1000 hours) strains. The first few weeks 

of competition after pre-season and soon after the Christmas break were the time points 
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when most injuries occurred. These data indicate that sub-elite female futsal players are 

exposed to a substantial risk of sustaining an injury.  

Conclusions: To reduce overall injury burden, efforts should be directed toward the design, 

implementation and assessment of preventative measures that target the most common 

diagnoses, namely, muscle/tendon and ligament injuries. 

Key words: Epidemiology, injury surveillance, muscle/tendon injuries, injury patterns, 

prevention. 
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4.2. Introduction 

Futsal, the five-a-side version of associated football, is played worldwide with more 

than one million registered players all over the world160–162. Futsal requires players to 

perform on a reduced (usually indoor) pitch size (40 x 20 m) and during two x 20 min 

periods (with time stopping at every dead ball and unlimited substitutions) a high number 

of repeated high intensity multiplanar movements such as sudden acceleration and 

deceleration, rapid changes of direction, tackling and kicking2,3,5. At top levels, the 

combination of these repeated high intensity movements that are performed during 

training and match play alongside current congested training and competitive calendars 

and exposure to contacts might place futsal players at high risk of injury. However, prior 

to implementing injury prevention programmes into everyday futsal training routines, it is 

essential to establish the extent of the problem in terms of the incidence and characteristics 

of injuries16,163. 

Despite being one of the most played sport in several countries, a limited number of 

prospective epidemiological studies have been published investigating injuries sustained 

by elite futsal players (mainly during match play)6,20–23. These studies have reported 

incidence rates for male players ranging from 3.5 to 89.9 injuries per 1000 h of match play, 

most of them affecting the lower extremity with contusions of the lower leg and ankle 

sprains the most frequently diagnosed types of injury6,20–24. However, it should be noted 

that among these epidemiological studies, only two21,22 have reported incidence data of 

female futsal players. Angoorani et al.21 showed an incidence rate in female players of 10.7 

injuries per 1000 h of match play during camps with the Iran national team (18 months of 

follow-up), whereas Hamid et al.22 found an incidence rate of 19.7 injuries per 1000 h of 

match play during the Malaysian national futsal league. In both studies, ankle sprains and 

ligament ruptures were the most observed injuries, similar to what has been observed in 

other team sports such as football41, handball164 and rugby165. It is likely that the anatomical, 

hormonal and neuromuscular sex-related differences (among other factors) may contribute 
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to sex-specific differences in injury incidence. Furthermore, only Angoorani et al.21 

provided injury incidence rates during training in male and female futsal players, reporting 

an incidence of 1.8 and 3.1 injuries per 1000 h of exposure, respectively. As the training 

volume166 and the number of hours of high intensity training167 have been significantly 

correlated with an increased risk of sustaining non-contact injuries in team sports (mainly 

attributed to an acute and/or cumulative fatigue state), knowing the injury incidence rates 

during futsal training may help coaches and physical trainers to identify if the training load 

and content allows players to recover fully from match demands. None of the studies that 

have provided epidemiological data of futsal-related injuries in male and female players 

have calculated the injury burden (the product of severity [consequences] and incidence 

[likelihood]) and/or built a risk matrix. A risk matrix is a graph of injury severity plotted 

against injury incidence with criteria incorporated into the graph for evaluating the level of 

risk, usually by dividing the graph into some risk areas using descriptive or quantified 

incidence, severity and risk evaluation categories25. 

Consequently, there is a clear need for more prospective epidemiological studies that 

inform about injury incidence and burden in female futsal players. Identifying the most 

common and burdensome futsal-related injuries, as well as how (traumatic or overuse) and 

when (matches or training sessions) they usually occur would lead coaches, physical 

trainers and physiotherapists to prioritize the application of specific measures to prevent 

or reduce the risk of sustaining such injuries. Therefore, the main purpose of the current 

study was to analyze the injury incidence, characteristics and burden among sub-elite 

female futsal players during three consecutive seasons. 
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4.3. Methods 

4.3.1. Participants 

All female sub-elite futsal players from the same team that were playing in the 

Spanish second division were prospectively followed during three consecutive seasons 

(2015/16, 2016/17 and 2017/18) which covered the period between September and May. 

Twenty-two different female futsal players participated in this study. However, as some 

players remained in the team for more than one season, the total number of player seasons 

was 39 (2015/16: 14 players followed, 2017/17: 13 players followed, 2017/18: 12 players 

followed). All players had more than 5 years of futsal experience. The team finished all 

three seasons in the top 10 of the league (4st, 6st and 9st). All players were verbally informed 

about the study procedures and provided written informed consent. For players younger 

than 18 years old (n = 3), written informed consent was also obtained from their parent or 

legal guardian. Players who left the team during the season (e.g. due to transfer) were 

included in the analysis according to their time on the team. The experimental procedures 

used in this study were in accordance with the Declaration of Helsinki and were approved 

by the University Office for Research Ethics (Órgano evaluador de proyectos, Universidad 

Miguel Hernández de Elche) (DPS.FAR.02.14). 

4.3.2. Data collection 

The study design and data collection followed both the consensus on definitions and 

data collection procedures for studies of football injuries outlined by the Union of European 

Football Associations (UEFA)121 and the consensus document for football injury 

surveillance studies120. An injury was defined as any physical complaint sustained by a 

player that resulted from a futsal match or futsal training and where the player was unable 

to participate in a match or training sessions on the day after the injury (time-loss injury)120. 

The day on which an injury occurred was day 0 and was not counted when determining 

the severity of an injury. If a player had to stop training or participating in a match because 
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of injury on 1 day but could participate the next day, the time loss was recorded as zero 

days.  

The club’s medical staff (which remained the same for all three seasons), diagnosed, 

treated and recorded all time-loss injuries on a standardised injury report form that was 

sent to the study group each month. Specifically, the team was supported by one certified 

medical doctor, one physical trainer and one physiotherapist. The doctor was the member 

of the medical staff who assessed and diagnosed injured players through the use of clinical 

judgements (e.g.: physical examination, posture and gait inspection, inspection and 

palpation of muscle bellies, etc.). Diagnostic imaging techniques (e.g.: echography, 

magnetic resonance imaging and ultrasound imaging) were also applied when it was 

needed. Although early treatment actions were delivered as soon as possible when a player 

sustained an injury during training or competition, the initial assessment and diagnosis 

were often carried out within 12 hours to 4 days post-injury as some signs of injury may 

arise a few hours or days later168. The physiotherapist administered the therapeutic 

exercises during the first stages of the rehabilitation process. The physical trainer was 

responsible for introducing injured players to the drills and skills that would be required 

to return to full participation in training and to be available for match selection. A futsal 

player was considered injured until the medical staff (upon agreement) allowed full 

participation in training and they were eligible for match play.  

For all injuries that satisfied the inclusion criteria (time-loss injury), team medical 

staff provided the following details to investigators: date of injury, moment (training or 

competition), player position (goalkeeper or field player [lastwoman, wing or pivot]), injury 

mechanism (traumatic [contact or non-contact] or overuse), injury location, type of injury 

(the specific injury diagnosis was also recorded), extremity of the injury (dominant/non 

dominant), injury severity based on lay off time (0 days [when a player could not participate 

fully on the day of an injury but was available for full participation the next day], minimal 

[1-3 days], mild [4-7 days], moderate [8-28 days], severe [>28 days] and career ending 
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injury), whether it was a recurrence or new injury and total time taken to resume full 

training and competition. Illnesses and any physical or mental complaint that did not result 

from a futsal match or training were excluded. Individual player exposure time in training 

and matches (friendly and competitive) were recorded daily in minutes by the physical 

trainer. 

The operational definitions adopted by this study have been widely followed by both 

football and futsal epidemiological studies6,22,24,41,169 and they are displayed in Appendix 4.1. 

Those players who were already injured when the follow up process started 

(September 2015) were included in this study once medical staff agreed return to training 

and availability for match selection. Those individuals who were still injured at the end of 

the study period were included in the statistical analyses, and the estimated duration of the 

recovery period was established after discussion with the respective medical staff. As a 

medical history based on information from the player may be confounded by recall bias, 

previous injuries of those players who were recruited to the team after the study started 

were not included unless an accurate and detailed description of them were provided in 

the form of a report or standard form and signed by either a certified medical doctor or a 

former physiotherapist. 

Demographic information such as stature, body mass, and age were collected during 

the last week of the preseason period (which was before the start of the season). 

4.3.3. Data analysis  

Descriptive data are presented as a mean with the corresponding standard deviation 

(SD), proportions (%), incidence rates and 95% confidence intervals (CI). The overall injury 

incidence, match injury incidence, and training injury incidence were the number of injuries 

divided by 1000 player-hours in total, match, and training, respectively. For incidence rates, 

95% CIs were calculated as the incidence ±1.96 times the square root of the number of 

injuries divided by the number of participants. The injury burden was calculated as the 
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number of lay-off days/1000 h26. Player overall hours were calculated by adding match and 

training hours. Player match hours were calculated by multiplying total number of matches 

in the season per five players per match duration (40 minutes with stopped clock)/60, and 

player training hours were calculated by adding individual training hours (warm up of the 

matches was not included). All of the analyses were performed using the PASW statistical 

package, version 18.0 (SPSS Inc., Chicago, IL, USA), with p < 0.05 considered statistically 

significant. A post-hoc power analysis was conducted using the software package, G* 

Power 3.1.2170,171. The sample size of 39 was used for the statistical power analyses. The 

alpha level used for this analysis was p < 0.05. The post-hoc analyses revealed the statistical 

power for this study was 0.74. It could be concluded that the given sample size was large 

enough to detect significant effects. 

The spreadsheet designed by Hopkins136 for combining effect statistics was used to 

make clinically (qualitative) inference for paired-comparisons between incidence rates. In 

particular, the incidence rate ratio (and its associated confidence limits) was assessed 

against predetermined thresholds. Thus, an incidence rate ratio of 0.91 represented a 

substantially lower injury risk, while an incidence rate ratio of 1.10 indicated a substantially 

higher injury risk137. An effect was considered unclear if its confidence interval overlapped 

the thresholds just mentioned; in other words, if the effect could be substantial in both a 

positive and negative sense. Otherwise the effect was clear and deemed to have the 

magnitude of the largest observed likelihood value. The following scale was used to qualify 

with a probabilistic term the magnitude of the observed effect: <0.5 %, most unlikely; 0.5–5 

%, very unlikely; 5–25%, unlikely; 25–75 %, possible; 75–95 %, likely; 95–99.5 %, very likely; 

>99.5 %, most likely136. 

4.3.4. Study quality assessment  

The quality of the study was assessed using the “Strengthening the Reporting of 

Observational Studies in Epidemiology” (STROBE)126 and the risk of bias of external 

validity quality, using an adapted version of the Newcastle Ottawa Scale (NOS)130,172. The 
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study fulfils all the criteria of the STROBE scale except the items 9, 10 and 22 (Appendix 

4.2). Regarding the NOS adapted scale just item 6 was not fulfilled (Appendix 4.3). Thus, 

the reporting and external validity quality of the present study could be considered as high 

according to the qualitative descriptors proposed by von Elm et al.126 and Wells et al.173 

respectively. 

 

4.4. Results 

During the three seasons, four players dropped out due to transfers to another club 

or they were released by the club but their injury data were included based on their time at 

the club. The average duration of each season was 34.3 ± 2.1 weeks with 31 ± 2.7 matches 

per season and 3.3 ± 1.3 trainings sessions per week. Player and team characteristics are 

presented in table 4.1. 

4.4.1. Overall, match and training incidence 

A total of 30 injuries were reported in 15 different players during the three seasons 

(2 match injuries and 28 training injuries) within a total exposure time of 4446.1 h (310 h of 

match exposure and 4136.1 h of training exposure), which is equivalent to an overall 

incidence rate of 6.75 injuries per 1000 hours of exposure (95% CI = 6.47 to 7.02). One of the 

injuries was not taken into account due to the player having to retire from sport because of 

the injury. The match injury rate was similar (no statistically [p > 0.05] and clinically 

irrelevant [very likely trivial] differences) to the training injury rate (6.45, 95% CI = 6.38 to 

6.52 vs 6.77, 95% CI = 6.50 to 7.04 /1000 h) and 38% (15/39) of players sustained at least one 

injury during the three seasons. Players sustained 0.77 injuries per season on average, which 

is equivalent to 10 injuries per season for a squad of 13 players. 

The injury incidence and characteristics of the injuries during the three seasons are 

shown in table 4.2. 
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Table 4.1. Players and team characteristics and exposure time 

 Season 
Total Mean 

15/16 16/17 17/18 

Team size 14 (14) 13 (12) 12 (9) 39 (35) 13 ± 1 

Players characteristics      

- Age (years) 23.8 ± 2.9 24.2 ± 4.1 24.2 ± 4.8 - 24.1 ± 3.9 

- Height (cm) 165 ± 5.0 165 ± 4.0 165 ± 4.0 - 165 ± 4.0 

- Body mass (kg) 60.4 ± 5.1 62.3 ± 7.4 61.9 ± 7.4 - 61.5 ± 6.6 

- Weeks of follow-up 32 35 36 103 34.3 ± 2.1 

Exposure      

- Total (h) 1506.7 1328.78 1610.7 4446.1 1482.1 ± 142.6 

- Training (h) 1413.3 1222.1 1500.7 4136.1 1378.8 ± 142.5 

- Match (h) 93.3 106.7 110 310 103.3 ± 8.8 

- Matches/week 0.88 0.91 0.92 - 0.90 

- Match exposure ratio 0.06 0.08 0.07 - 0.07 

- Days of absence due 

to the injury 

234 144 51 429 143 ± 91.5 

h: hours; Values are mean ± SD. 



 

 

Table 4.2. Injury incidence 

 Season 15/16 Season 16/17 Season 17/18  Total 

Injuries 
Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

- Overall 8 5.3  

(4.9-5.7) 

155.3 12 9.03  

(8.5-9.5) 

108.4 10 9.1  

(8.9-9.2) 

31.7 30 6.7 

 (6.5-7.0) 

96.5 

- Training 8  

(100) 

5.7  

(5.3-6.1) 

165.6 11  

(91.7) 

9.0 

 (8.5-9.5) 

108.0 9  

(90) 

6.00  

(5.5-6.5) 

30.0 28  

(93.3) 

6.8  

(6.5-7.0) 

99.4 

- Match 0  

(0) 

0 0 1  

(8.3) 

9.4 

 (9.2-.5) 

112.5 1  

(10) 

6.2  

(5.7-6.7) 

54.5 2  

(6.7) 

6.4  

(6.4-6.5) 

58.1 

Mechanism             

- Traumatic training 5 

 (62.5) 

3.32  

(3.0-3.6) 

145.4 8  

(66.7) 

6.0  

(5.6-6.4) 

87.3 7  

(70) 

4.3  

(3.9-4.8) 

16.1 20  

(66.7) 

4.50  

(4.3-4.7) 

82.1 

- Traumatic match 0 

 (0) 

0 0 1  

(8.3) 

  1  

(10) 

  2  

(6.7) 

  

- Overuse training 3  

(37.5) 

1.99  

(1.7-2.2) 

10 4  

(33.3) 

3.0  

(2.7-3.3) 

21.1 3 (30) 1.9  

(1.6-2.1) 

15.5 10  

(33.3) 

2.2  

(2.1-2.4) 

14.4 

Circumstance             

- Contact 0 

 (0) 

0 0 0 0 0 2  

(20) 

1.24  

(1.0-1.5) 

5.6 2 

 (6.7) 

0.45  

(0.4-0.5) 

2 

- Non-Contact 8  

(100) 

5.31  

(4.9-5.7) 

155.3 12  

(100) 

9.03 

 (8.5-9.5) 

108.4 8  

(80) 

4.97  

(4.5-5.4) 

26.1 28 

 (93.3) 

6.30  

(6.0-6.6) 

 

94.5 



 

 

Recurrence             

-    No 8 (100) 5.3  

(4.9-5.7) 

155.3 9  

(75) 

6.0  

(5.6-6.4) 

82.0 8  

(80) 

5.0  

(4.5-5.4) 

25.5 25 

 (83.3) 

5.6  

(5.4-5.9) 

86.4 

-    Yes 0 

 (0) 

0 0 3  

(25) 

2.3  

(2.0-2.5) 

26.3 2 

 (20) 

1.24  

(1.0-1.5) 

6.2 5  

(16.7) 

1.1  

(1.0-1.2) 

10.1 

-    Early 0  

(0) 

0 0 1 

 (33.3) 

0.7  

(0.6-0.9) 

12.0 0  

(0) 

0 0.0 1  

(20) 

0.2  

(0.2-0.3) 

3.6 

-    Late 0  

(0) 

0 0 2  

(66.7) 

1.5  

(1.3-1.7) 

14.3 1  

(50) 

0.6 

 (0.5-0.8) 

1.9 3  

(60) 

0.7 

 (0.6-0.8) 

4.9 

-    Delayed 0 

 (0) 

0 0 0 0 0 1 

 (50) 

0.6  

(0.5-0.8) 

4.3 1 

 (20) 

0.2  

(0.2-0.3) 

1.6 

Severity             

-    0 days 0  

(0) 

0 0 0  

(0) 

0 0 0  

(0) 

0 0 0 

 (0) 

0 0 

-    Minimal (1-3 days) 1 

 (12.5) 

0.7 

 (0.5-0.8) 

2.0 2  

(16.7) 

1.5  

(1.3-1.7) 

4.5 5 

 (50) 

3.1 

 (2.7-3.5) 

6.8 8 

 (26.7) 

1.8 

 (1.7-2.0) 

4.5 

-    Mild (4-7 days) 2  

(25) 

1.3  

(1.1-1.5) 

8.0 2  

(16.7) 

1.5  

(1.3-1.7) 

9.0 4  

(40) 

2.5 

 (2.2-2.8) 

13.0 8 

 (26.7) 

1.8 

 (1.7-1.9) 

10.1 

-    Moderate (8-28 days) 4  

(50) 

2.6 

 (2.4-2.9) 

51.1 7 

 (58.3) 

5.3 

 (4.9-5.7) 

94.8 6  

(60) 

0.6 

 (0.5-0.8) 

11.8 12  

(40) 

2.7 

 (2.5-2.9) 

49.9 

-    Severe (>28 days) 1 

 (12.5) 

0.7  

(0.5-0.8) 

94.2 0 

 (0) 

0 0 0  

(0) 

0 0 1  

(3.3) 

0.2  

(0.2-0.3) 

31.9 

-    Career ending 0  

(0) 

0 0 1  

(8.3) 

0.7  

(0.6-0.9) 

- 0 

 (0) 

0 0 1 

 (3.3) 

0.2  

(0.2-0.3) 

- 

Position             

- Goalkeeper 2  

(25) 

1.3  

(0.4-2.2) 

16.6 2 

 (16.7) 

1.5  

(0.1-2.9) 

7.5 0 

 (0) 

0 0 4  

(13.3) 

0.9 

 (0.3-1.5) 

7.9 

- Lastwoman 4  

(50) 

2.6  

(1.7-3.6) 

40.5 7  

(58.3) 

5.3  

(4.0-6.6) 

77.5 4  

(40) 

2.5 

 (1.5-3.5) 

11.2 15  

(50) 

3.4  

(2.7-4.0) 

40.9 

- Wing 0  0 0 3  2.3  23.3 6  3.73  20.5 9  2.02  14.4 



 

 

(0) (25) (1.6-2.9) (60) (2.52-4.93) (30) (1.57-2.48) 

- Pivot 2  

(25) 

1.3  

(0.4-2.0) 

98.2 0  

(0) 

0 0 0 

 (0) 

0 0 2  

(6.7) 

0.4  

(0.0-0.8) 

33.3 
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4.4.2. Injury characteristics 

4.4.2.1. Player position 

Lastwomen (3.37, 95% CI = 2.74 to 4.01 /1000 h) incidence rate was most likely higher 

(100% likelihood) than wings (2.02, 95% CI = 1.57 to 2.48 /1000 h), goalkeepers (0.90, 95% CI 

= 0.34 to 1.46 /1000 h) and pivots (0.45, 95% CI = 0.05 to 0.85 /1000 h). Wings had a very likely 

higher incidence rate (96.6% likelihood) than goalkeepers and most likely higher (100% 

likelihood) than pivots. Finally, goalkeepers had a likely higher incidence rate (76.6% 

likelihood) than pivots. 

4.4.2.2. Injury mechanism 

Two out of three injuries were due to trauma and one out of three injuries was due 

to overuse. The incidence rate of traumatic injuries was most likely higher (100% likelihood) 

than overuse injuries (4.5, 95% CI = 4.27 to 4.72 vs 2.25, 95% CI = 2.09 to 2.41 /1000 h). Most 

injuries were caused by non-contact situations (93%), with only 7% of injuries occurring 

during contact situations. 

4.4.2.3. Injury location 

Table 4.3 shows the injury location and type of injury per season. Lower extremity 

injuries (5.62 per 1000 hours of exposure, 95% CI = 5.37 to 5.87) were the most frequently 

injured location, followed by upper limb injuries (0.67 per 1000 hours of exposure, 95% CI 

= 0.59 to 0.76), and then trunk injuries (0.45 per 1000 hours of exposure, 95% CI = 0.38 to 

0.52). No head and neck injuries were reported. The lower extremity region predominantly 

injured was the thigh (3.37 per 1000 hours of exposure, 95% CI = 3.18 to 3.57), followed by 

the ankle (0.90 per 1000 hours of exposure, 95% CI = 0.8 to 1.0), with the knee, hip/groin and 

lower leg/Achilles tendon regions demonstrating the same incidence rate (0.45 per 1000 

hours of exposure, 95% CI = 0.38 to 0.52). No foot/toe injuries were reported. In terms of 

paired-comparisons, thigh injuries occurred more frequently (100% likelihood) than 

injuries in other lower extremity regions. Ankle injury rates were most likely higher (100% 
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likelihood) than knee, hip/groin and lower leg/Achilles tendon injuries. There were no 

meaningful differences between the remaining paired combinations. 

4.4.2.4. Type of injures  

The mean incidence of injury type grouping is presented per 1000 hours of exposure 

with 95% CIs. Most injuries were diagnosed as muscle/tendon injuries (4.95, 4.71 to 5.18), 

followed by joint (non-bone) and ligament (1.35, 1.23 to 1.47), and fractures and bone stress 

and contusions with the same injury incidence (0.22, 0.17 to 0.28). No central/peripheral 

nervous system injuries and skin lesions were recorded. The most common injury types 

were hamstring muscle injuries (1.80 per 1000 hours of exposure, 95% CI = 0.66 to 1.94), 

followed by quadriceps muscle injuries (1.57 per 1000 hours of exposure, 95% CI = 1.44 to 

1.71), ankle sprains (0.90 per 1000 hours of exposure, 95% CI = 0.8 to 1.0) and anterior 

cruciate ligament tears (0.45 per 1000 hours of exposure, 95% CI = 0.38 to 0.52). 

Muscle/tendon injury incidence rates were most likely higher than other types of injury 

rates (100% likelihood). Likewise, joint (non-bone) and ligament incidence rate were most 

likely higher (100% likelihood) than fractures, bone stress and contusions. 
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Table 4.3. Injury characteristics and incidence according location and type of injury  

 
Season 15/16 Season 16/17 Season 17/18 Total 

Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

Number 

(%) 

Incidence 

(95%CI) 

Injury 

Burden 

Injury location             

Upper limbs 

- Overall 1 (12.5) 0.7 

(0.5-0.8) 

14.6 0 (0) 0 0 2 (20) 1.2 

(1.0-1.5) 

2.5 3 (10) 0.7 

(0.6-0.8) 

5.8 

- Shoulder/clavicula 0 (0) 0 0 0 (0) 0 0 1 (10) 0.6 

(0.5-0.8) 

0.6 1 (3.3) 0.2 

(0.2-0.3) 

0.2 

- Hand/finger/thumb  1 (12.5) 0.66 

(0.5-0.8) 

14.6 0 (0) 0 0 1 (10) 0.6 

(0.5-0.8) 

1.9 2 (6.7) 0.4 

(0.4-0.5) 

5.6 

Trunk 

- Overall 1 (12.5) 0.7 

(0.5-0.8) 

2.0 0 (0) 0 0 1 (10) 0.6 

(0.5-0.8) 

2.5 2 (6.7) 0.4 

(0.4-0.5) 

0.7 

- Lower back/pelvis/sacrum 1 (12.5) 0.7 

(0.5-0.8) 

2.0 0 (0) 0 0 1 (10) 0.6 

(0.5-0.8) 

2.5 2 (6.7) 0.4 

(0.4-0.5) 

0.7 

Lower limbs 

- Overall 6 (75) 4.0 

 (3.6-4.3) 

138.7 12 (100) 9.0  

(8.5-9.5) 

108.4 7 (70) 4.3  

(3.9-4.8) 

26.7 25 (83.3) 5.6  

(5.4-5.9) 

90.0 

- Hip/groin/adductor 0 (0) 0 0 1 (8.3) 0.75 

(0.60-0.90) 

16.6 1 (10) 0.6 

(0.5-0.8) 

2.5 2 (6.7) 0.4 

(0.4-0.5) 

5.8 

- Thigh 3 (37.5) 1.99 

(1.7-2.2) 

22.6 7 (58.3) 5.27 

(4.9-5.7) 

48.9 5 (50) 3.1 

(2.7-3.5) 

20.5 15 (50) 3.4 

(3.2-3.6) 

29.7 

- Hamstrings 
1 (12.5) 

0.7 

 (0.5-0.8) 
10.0 5 (41.7) 

3.8 

 (3.4-4.1) 
33.1 2 (20) 

1.2  

(1.0-1.5) 
3.1 8 (26.7) 

1.8 

 (1.7-1.9) 
14.4 

- Quadriceps 
2 (25) 

1.3 

 (1.1-1.5) 
12.6 2 (16.7) 

1.5  

(1.3-1.7) 
15.8 3 (30) 

1.9  

(1.6-2.1) 
17.4 7 (23.3) 

1.6 

(1.4-1.7) 
15.3 

- Knee 
1 (12.5) 

0.66 

 (0.52-0.80) 
94.2 1 (8.3) 

0.75 

 (0.60-0.90) 
0 0 (0) 0.0 0 2 (6.7) 

0.45  

(0.38-0.52) 
31.9 



 

 

 

- Lower leg/Achilles tendon 
1 (12.5) 

0.7  

(0.5-0.8) 
4.0 1 (8.3) 

0.7  

(0.6-0.9) 
9.0 0 (0) 0.0 0 2 (6.7) 

0.45  

(0.4-0.5) 
4.0 

- Ankle  
1 (12.5) 

0.7  

(0.5-0.8) 
17.9 2 (16.7) 

1.5  

(1.3-1.7) 
33.9 1 (10) 

0.6  

(0.5-0.8) 
3.7 4 (13.3) 

0.9 

(0.8-1.0) 
17.5 

Injury type             

Fracture and bone stress             

- Overall 0 0 0 0 0 0 1 (10) 0.6 

(0.5-0.8) 

1.9 1 (3.3) 0.2 

(0.2-0.3) 

0.7 

- Fracture 0 0 0 0 0 0 1 (10) 0.6 

(0.5-0.8) 

1.9 1 (3.3) 0.2 

(0.2-0.3) 

0.7 

Joint (non-bone) and ligament             

- Overall 3 (37.5) 1.99 

(1.7-2.2) 

126.8 2 (16.7) 1.51 

(1.3-1.7) 

21.1 1 (10) 0.6 

(0.5-0.8) 

0.6 6 (20) 1.3 

(1.2-1.5) 

49.5 

- Sprain/Ligament injury 3 (37.5) 2.0 

(1.7-2.2) 

126.8 2 (16.7) 1.51 

(1.3-1.7) 

21.1 1 (10) 0.6 

(0.5-0.8) 

0.6 6 (20) 1.3 

(1.2-1.5) 

49.5 

Muscle and tendon             

- Overall 5 (62.5) 3.3 

(3.0-3.6) 

28.5 10 (83.3) 7.5 

(7.0-8.0) 

87.3 7 (70) 4.35 

(3.9-4.8) 

25.5 22 (73.4) 4.9 

(4.7-5.2) 

45.0 

- Muscle rupture / tear / 

strain /cramps 

4 (50) 2.6 

(2.4-2.9) 

24.6 9 (75) 6.8 

(6.3-7.2) 

74.5 7 (70) 4.3 

(3.9-4.8) 

25.5 20 (66.7) 4.5 

(4.3-4.7) 

39.8 

- Tendon injury /rupture / 

tendinosis / bursitis 

1 (12.5) 0.7 

(0.5-0.8) 

4 1 (8.3) 0.7 

(0.6-0.9) 

12.8 0 0 0 2 (6.7) 0.4 

(0.4-0.5) 

5.2 

CI: Confidence interval. 
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4.4.2.5. Severity of injuries 

Concerning the severity of injuries, moderate injuries (2.70 per 1000 hours of 

exposure, 95% CI = 2.52 to 2.87) were the most usual injuries, followed by minimal and mild 

injuries (1.80 per 1000 hours of exposure, 95% CI = 1.66 to 1.94), and finally severe and career 

ending injuries (0.22 per 1000 hours of exposure, 95% CI = 0.17 to 0.28). No 0 days injuries 

were recorded. 

Comparisons between each severity level showed that the moderate injury incidence 

rates were most likely higher (100% likelihood) than other severities. Minimal and mild 

injury incidence rates were most likely higher (100% likelihood) than severe and career 

ending injuries.  

The recorded overall time-loss injuries was 429 days, so overall injury burden during 

the three seasons was 96.5 days loss/1000 hours exposure (58.1 in matches and 99.4 in 

trainings). Figure 4.1 shows a quantitative risk matrix illustrating the relationship between 

the severity and incidence of the most common reported injuries For each injury type, 

severity is shown as the average number of days lost (log scale), while incidence is shown 

as the number of injuries per 1000 hours of total exposure for each injury type. The shading 

illustrates relative importance of each of the injury types; the darker the colour, the greater 

the injury burden, and the greater the priority should be given to prevention. Furthermore, 

lastwomen and pivots showed the highest injury burden (40.9 and 33.3 days loss/1000 hours 

exposure) compared to goalkeepers and wings (7.9 and 14.4 days loss/1000 hours exposure). 

On the other hand, muscle/tendon injuries and joint (non-bone) and ligament injuries 

showed similar injury burden (44.98 and 49.48 days loss/1000 hours exposure) although 

their overall incidence was significantly different. Regarding injury location, the knee 

showed a significantly higher injury burden (31.9 days loss/1000 hours exposure) compared 

to the rest of the lower extremity muscle groups (ankle: 17.5; quadriceps: 15.3; hamstring: 

14.4; hip/groin: 5.8 and lower leg/Achilles tendon: 4.0).
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Figure 4.1. Quantitative risk matrix of injuries, illustrating the relationship between 

the severity (consequence) and incidence (likelihood) of the most common injuries. 

4.4.2.6. Recurrent injuries 

The incidence rate of new injuries (5.62 per 1000 hours of exposure, 95% CI = 5.37 to 

5.87) was most likely higher (100% likelihood) than recurrent injuries incidence rate (1.12 

per 1000 hours of exposure, 95% CI = 1.01 to 1.24). One-fifth of the overall injuries were 

recurrent injuries; of these, 20% of injuries were classified as “early recurrence” (within 0-2 

months); 60% of injuries were classified as “late recurrence” (2-12 months); and 20% of 

injuries were classified as “delayed recurrence” (>12 months)120. The most common 

recurrent injury was quadriceps and hamstring strains. Regarding injury burden, new 

injuries had a significantly higher injury burden compared to recurrent injuries (86.4 vs 1.1 

days lost/1000 hours exposure). 
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4.4.2.7. Season variation of injury pattern 

Figure 4.2 illustrates monthly distribution of injuries, both overall, during training 

and match over the three seasons. The highest incidence of injuries was observed in October 

(1.35 per 1000 hours of exposure, 95% CI = 1.23 to 1.47). Training and match number of 

injuries follow a similar trend, in which the risk of injuries was higher in the early stages of 

the season and post winter/Christmas break.   

 

Figure 4.2. Distribution of total injury incidence. 

 

4.5. Discussion 

The overall, training and match incidence rates reported in the current study were 

comparable to those found in the only study (to the authors´ knowledge) that has provided 

three incidence rates separately in a cohort of 17 female futsal players21 (4.7, 3.1 and 10.7 

injuries per 1000 h of exposure to overall, training and match play, respectively). 

Conversely, the match injury incidence reported in the current study (6.4 injuries per 1000 
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h of match play) is lower than that reported by Hamid et al.22 in the Malaysian female futsal 

league (29.6 injuries per 1000 h of exposure to match play). An explanation of this 

discrepancy may be attributed to the more congested competitive calendar in the study 

carried out by Hamid et al.22 compared to our study. Thus, while in their study the 

Malaysian league had a duration of approximately 22 weeks (1st July until 28th November) 

with a break in August (because of fasting during Ramadan) and one or two matches per 

week, the three seasons (2015-2018) of the Spanish second division analyzed in the current 

study lasted eight months (average of 34.3 ± 2.1 weeks) with two breaks periods of 2-3 

weeks (at Christmas and Easter) with one match played per week (usually at the weekend 

days). This hypothesis may be supported by evidence from prospective epidemiological 

studies carried out in elite male futsal players6,23 and football players174,175 during 

international tournaments (i.e. World cups) which have shown higher incidence rates in 

comparison with those conducted during national league futsal20,22 and football176,177. This is 

likely due to the higher match demands during international tournaments with relatively 

shorter recovery times between matches. These tournaments also tend to occur at the end 

of long competitive league seasons where accumulated fatigue may also be a factor in the 

higher incidence rates.  

Unlike data from other team sports (regardless of the sex of the players) [i.e. 

football37,178, basketball38, netball39] where match injury incidence is always notably higher 

(almost ten times) than the injury rate obtained for training sessions, in our study both 

incidence rates were similar. The latest trends in strength and conditioning for team sports 

have suggested that training session design (i.e. work-load, intensity, duration), when 

possible, should mimic match demands so that players are better prepared for what they 

face during matches179. Perhaps, the training sessions designed by the team staff might have 

included a large number of repeated high-intensity actions (e.g. accelerations and 

decelerations, changes of direction) in order to replicate the evolving nature of the futsal 

game. However, an excessive training load and/or an insufficient recovery of previous 

efforts might have forced players to perform some of these highly demanding training 
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sessions under suboptimal states of readiness and this could have potentially increased the 

risk of injuries (mainly muscle-tendon and ligament injuries)180. To determine whether or 

not futsal players are in an optimal state of readiness for the stress that will be a priori 

elicited by training, it is advisable to monitor daily training load (internal and external) and 

strain, wellbeing and recovery status from previous efforts and also include regular 

physical performance tests as a component of the training program181,182. This information 

might help coaches and physical trainers to constantly re-adjust the design of the training 

sessions throughout the season so that the physical and psychological demands that will be 

imposed on the players do not negatively affect their optimal readiness to re-perform. 

When exploring differences in playing position on incidence rates our data from the 

goalkeepers and outfield player’s differed from the findings previously reported by Hamid 

et al.22 Their study, also in female futsal players, showed a higher incidence rate in 

goalkeepers but we found outfield players showed higher incidence and higher amount of 

days off per injury than goalkeepers. Our findings are similar to that which has been 

reported in other team sports such as handball183 and football42,43. It is difficult to prescribe 

a reason for the discrepancy between the findings of Hamid et al.22 and our current study. 

However, it might be due to the fact that outfield players need to perform a larger number 

of repeated high intensity multiplanar movements that occur every few seconds4, which 

may place outfield players at a higher risk of injury than goalkeepers.  

Previous studies have indicated that a large percentage of injuries in male futsal 

players6,23 are caused by contact trauma, however the current study demonstrates that most 

injuries sustained by female players are due to non-contact trauma (>90%). Our results are 

in agreement with the study of Angoorani’s et al.21 and might be partly attributed to the fact 

that both studies included training injury incidence data, something that other studies have 

failed to do. Furthermore, the higher number of high intensity phases observed in elite male 

players during the course of futsal play5,153 might contribute to generate more tackling 

situations and partially explain the fact that males suffer more contact injuries than females. 
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With respect to the location of futsal-related injuries, and similar to previous studies 

in male6,20,23 and female futsal players21,22, lower extremity injuries were, by far, the most 

frequent injuries (83.3% of all the injuries recorded). The thigh (50% of all the injuries 

recorded) was the anatomical region of the lower extremity where injuries occurred 

significantly more followed by the knee (6.7% of all the injuries recorded) and ankle (6.7% 

of all the injuries recorded). Furthermore, the most common type of injury grouping was 

muscle/tendon injuries followed by joint (non-bone) and ligament injuries. As futsal is a 

fast-paced game relying mostly on the lower extremity for ball control, involving sprinting 

and frequent changes in direction such observations were anticipated. In football, it has 

been demonstrated that player match availability has a strong correlation (r > 0.85) with 

team success (i.e. ranking position, games won, goals scored, total points)8,116,153. If this 

statement also holds for futsal, then injury prevention measures should focus not just on 

reduction of the incidence of the most frequent injuries but also on reduction of the injuries 

with the highest burden (e.g. those injuries that keep players out of training and match play 

the longest)26. According to the results found in this study, knee and thigh injuries are those 

with the highest injury burden with 31.9 and 29.7 days of absence per 1000 player hours, 

respectively. In particular, medical and fitness staff should implement measures mainly 

aimed (but not solely) at reducing the number and severity of anterior cruciate ligament 

(ACL) and hamstring and quadriceps muscle injuries. It should be noted that one player 

from the team had to retire from futsal due to an ACL rupture, which was not included in 

the injury burden calculation as the number of days lost were not defined. This reinforces 

the need to deliver targeted interventions aimed at reducing this devasting and relatively 

frequent (two cases in the three seasons recorded in our study for a single team) type of 

injury in female athletes. It should be also highlighted that the overall (31.7 days) and 

training (30 days) injury burdens of the last season analyzed (2017/18) were significantly 

lower than those obtained for the two previous seasons (overall = 155.3 [2015/16] and 108.4 

[2016/17] days; training = 165.6 [2015/16] and 108.0 [2016/17] days). Perhaps, the fact that 

during the three seasons that were object of study the club kept the same medical staff and 
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head coach may have been a factor that may explain in part this circumstance. In this sense, 

and similar to what was found in previous studies184,185, the potential and gradual 

improvement in the quality of the internal communication not only within the members of 

the medical staff but also between the medical staff and the coach that might have occurred 

throughout the three consecutive seasons may have had a positive impact on the players´ 

availability for futsal play in the last season. In fact, according to Ekstrand, et al.184, the 

measures designed to reduce the injury burden in elite teams should not only address the 

traditionally proposed modifiable injury risk factors [e.g. eccentric strength deficits49,81,186, 

poor neuromuscular control187,188, altered muscle architecture32,80,187, player load and match 

frequency189,190 but also some new external factors such as job security and club stability and 

players adherence and coach’s compliance to the injury prevention programs applied. The 

inclusion of updated and evidence-based advancements in factors related to injury 

management (including diagnosis techniques, treatment approaches and monitoring tools) 

might also have a positive impact on the injury burden. 

As expected, new injury rates were higher than recurrent injury incidence rates (5.6 

vs. 1.1 injuries per 1000 h). However, the recurrent rate identified in the present study may 

be considered high. It was found that 20% of recurrent injuries (mainly lower extremity 

muscle and tendon injuries) occurred within 2 months after return to play. This may be 

regarded as a sign of premature return to train/play and incomplete or inadequate 

rehabilitation. The lack of and evidence-based criteria for a safe return to train/play may 

have resulted in letting injured players return to play sooner than recommended. This may 

have been due to the desire to let them play in important matches or to let them play with 

ongoing minor symptoms, and this might be two primary reasons behind the high recurrent 

injury incidence rate. Future studies should extend our current knowledge further in 

relation to the improvement of the decision-making process for a safe return to train/play 

by developing learning algorithms or artificial intelligence-based models that allow the 

identification of when a player is successfully rehabilitated before returning to train/play. 
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Furthermore, medical and fitness team staff should allow players enough time for 

rehabilitation before return to train/play.  

Regarding the moment when most injuries took place, the findings indicates that 

there are two periods when they are more likely to occur, October and January-February. 

The higher amount of injuries during October may be explained by the fact that within the 

pre-season period the training loads are much higher than during the competitive period190 

and accumulating fatigue may increase the injury risk during the first weeks of competition. 

Petersen et al.191 reported a higher incidence in the two months after the winter break 

(January-February) which is consistent with the results of the present study. 

 

4.6. Limitations 

Despite being one of the first prospective studies that has analyzed the incidence 

rates and characteristics of futsal related injuries in female players, some limitations must 

be considered. The sample size of players and injuries is small, and results should be 

cautiously interpreted (especially the incidence rates reported for specific and less frequent 

injuries). The analysis of only one team limits the external validity of the results. 

Consequently, it is unknown if female players from other teams in which there could be a 

higher (or lower) medical staff-to-player ratio or access to other staff (such as strength and 

conditioning coaches, psychologists and nutritionists) may show similar injury incidence 

rates and characteristics than those reported in the current study. Even though all female 

players had sub-elite status, most of them had jobs besides futsal that could alter their risk 

of injury and recovery time, for example, by preventing them from training or taking full 

advantage of medical treatment. Therefore, future studies are needed in order to analyze if 

elite female futsal players on full-time (professional) contracts may show different injury 

incidence rates, characteristics and burden. 
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4.7. Conclusions 

Sub-elite female futsal players (particularly outfield players) are exposed to a 

substantial risk of sustaining injuries. Most injuries had a non-contact mechanism, with the 

lower extremity the most frequently injured anatomical region. Knee (anterior cruciate 

ligament tears) and thigh (hamstring and quadriceps muscle strains) injuries are those with 

the highest injury burden. Special attention should be given to the first weeks of 

competition after pre-season and soon after the Christmas break as incidence rates peak 

during this period in female futsal players. Medical and fitness team staff should focus their 

attention on designing, implementing and then evaluating preventative measures that 

target the most common diagnoses, namely, ligament and muscle/tendon injuries 

highlighted in this study, as well as making sure that return to train/play criteria are in place 

in order to reduce the injury burden within female sub-elite futsal players. 
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4.7. Appendixes 

Appendix 4.1. Definitions used to include studies 

Term Definition 

Injury  

Any physical complaint sustained by a player that results from a 

futsal match or futsal training, irrespective of the need for medical 

attention or time loss from futsal activities 

Time loss injury 
Injury that results in a player being unable to take a full part in 

future futsal training or match play 

Recurrent injury 

An injury of the same type and at the same site as an index injury 

and which occurs after a player’s return to full participation from 

the index injury 

Injury severity 

The number of days that have elapsed from the date of injury to 

the date of the player’s return to full participation in team training 

and availability for match selection. Injuries are grouped as:  

Slight / Minimal Absence (1-3 days) 

Minor / Mild Absence (4-7 days) 

Moderate Absence (8-28 days) 

Major / Severe Absence (>28 days) 

Match exposure Play between teams from different clubs. 

Training 

exposure 

Team-based and individual physical activities under the control or 

guidance of the team’s coaching or fitness staff that are aimed at 

maintaining or improving players’ futsal skills or physical 

condition 

Overuse injury  
An injury caused by repeated microtrauma without a single, 

identifiable event responsible for the injury. 

Traumatic injury Injury with sudden onset and known cause 

Injury location ▪ Head and neck (Head/face; Neck/cervical spine) 
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▪ Upper limbs (Shoulder/clavicula; Upper arm; Elbow; Forearm; 

Wrist; Hand/finger/thumb) 

▪ Trunk (Sternum/ribs/upper back; Abdomen; Lower 

back/pelvis/sacrum) 

▪ Lower limbs (Hip/groin; Thigh; Knee; Lower leg/Achilles 

tendon; Ankle; Foot/toe) 

Type of injury 

grouping 

• Fractures and bone stress 

• Joint (non-bone) and ligament [Dislocation/subluxation; 

Sprain/ligament injury; Lesion of meniscus or cartilage] 

• Muscle and tendon [Muscle rupture/tear/strain/cramps; 

Tendon injury/rupture/tendinosis/bursitis] 

• Contusions [Haematoma/contusion/bruise] 

• Laceration and skin lesion [Abrasion; Laceration] 

• Central/peripheral nervous system [Concussion (with or 

without loss of consciousness); Nerve injury] 

• Other [Dental injuries; Other injuries] 

Injury incidence 
Number of injuries per 1000 player hours ((Σ injuries/Σ exposure 

hours) ×1000) 
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Appendix 4.2. Description of the 22 of STROBE Statement—checklist of items that 

should be included in reports of observational studies 

Section/topic 
Item 

No 
Checklist item 

 

Title and 

abstract 

1 (a) Indicate the study’s design with Title and abstract 

1 a commonly used term in the title or the abstract 

✓ 

  (b) Provide in the abstract an informative and 

balanced summary of what was done and what was 

found 

 

Introduction  

Background / 

rationale 

2 Explain the scientific background and rationale for the 

investigation being reported 

✓ 

Objectives 3 State specific objectives, including any prespecified 

hypotheses 

✓ 

Methods    

Study design 4 Present key elements of study design early in the 

paper 

✓ 

Setting 5 Describe the setting, locations, and relevant dates, 

including periods of recruitment, exposure, follow-

up, and data collection 

✓ 

Participants 6 (a) Cohort study—Give the eligibility criteria, and the 

sources and methods of selection of participants. 

Describe methods of follow-up 

Case-control study—Give the eligibility criteria, and the 

sources and methods of case ascertainment and 

control selection. Give the rationale for the choice of 

cases and controls 

✓ 
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Cross-sectional study—Give the eligibility criteria, and 

the sources and methods of selection of participants 

  (b) Cohort study—For matched studies, give 

matching criteria and number of exposed and 

unexposed 

Case-control study—For matched studies, give 

matching criteria and the number of controls per case 

 

Variables 7 Clearly define all outcomes, exposures, predictors, 

potential confounders, and effect modifiers. Give 

diagnostic criteria, if applicable 

✓ 

Data sources/ 

measurement 

8 For each variable of interest, give sources of data and 

details of methods of assessment (measurement) 

Describe comparability of assessment methods if 

there is more than one group 

✓ 

Bias 9 Describe any efforts to address potential sources of 

bias 

 

Study size 10 Explain how the study size was arrived at  

Quantitative 

variables 

11 Explain how quantitative variables were handled in 

the analyses. If applicable, describe which groupings 

were chosen and why 

✓ 

Statistical 

methods 

12 (a) Describe all statistical methods, including those 

used to control for confounding 

✓ 

  (b) Describe any methods used to examine subgroups 

and interactions 

 

  (c) Explain how missing data were addressed  

  (d) Cohort study—If applicable, explain how loss to 

follow-up was addressed 
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Case-control study—If applicable, explain how 

matching of cases and controls was addressed 

Cross-sectional study—If applicable, describe analytical 

methods taking account of sampling strategy 

  (e) Describe any sensitivity analyses 

Results    

Participants 13 (a) Report numbers of individuals at each stage of 

study—eg numbers potentially eligible, examined for 

eligibility, confirmed eligible, included in the study, 

completing follow-up, and analysed 

✓ 

  (b) Give reasons for non-participation at each stage  

  (c) Consider use of a flow diagram  

Descriptive data 14 (a) Give characteristics of study participants (e.g. 

demographic, clinical, social) and information on 

exposures and potential confounders 

✓ 

  (b) Indicate number of participants with missing data 

for each variable of interest 

 

  (c) Cohort study—Summarise follow-up time (e.g., 

average and total amount) 

 

Outcome data 15 Cohort study—Report numbers of outcome events or 

summary measures over time 

✓ 

  Case-control study—Report numbers in each exposure 

category, or summary measures of exposure 

 

  Cross-sectional study—Report numbers of outcome 

events or summary measures 

 

Main results 16 (a) Give unadjusted estimates and, if applicable, 

confounder-adjusted estimates and their precision 

✓ 
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(e.g, 95% confidence interval). Make clear which 

confounders were adjusted for and why they were 

included 

  (b) Report category boundaries when continuous 

variables were categorized 

 

  (c) If relevant, consider translating estimates of 

relative risk into absolute risk for a meaningful time 

period 

 

Other analyses 17 Report other analyses done—e.g. analyses of 

subgroups and interactions, and sensitivity analyses 

✓ 

Discussion    

Key results 18 Summarize key results with reference to study 

objectives 

✓ 

Limitations 19 Discuss limitations of the study, taking into account 

sources of potential bias or imprecision 

Discuss both direction and magnitude of any potential 

bias 

✓ 

Interpretation 20 Give a cautious overall interpretation of results 

considering objectives, limitations, multiplicity of 

analyses, results from similar studies, and other 

relevant evidence 

✓ 

Generalisability 21 Discuss the generalizability (external validity) of the 

study results 

✓ 

 

 

Other information  
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Funding 22 Give the source of funding and the role of the funders 

for the present study and, if applicable, for the original 

study on which the present article is based 

 

 

  



Chapter 4: Study 2 

148  

Appendix 4.3. Description of the 8 criteria designed to assess risk of bias of external 

validity quality in the studies. This instrument is an adapted version of the Newcastle 

Ottawa Scale (NOS) for cohort studies. 

 

Criterion Description of criteria  

1. Description or 

type of football 

players. 

There are several types of football players (amateur vs. 

professional, males vs. females). Without the description 

regarding to the type of football players it is impossible to 

conclude which population the incidence rates refer to. 

Studies that reported a description of the football players 

or informed the type of football players receive a star for 

this criterion. Studies conducted in football tournaments 

(which may determine the type of football players; e.g., 

World cup tournaments) and which describe the race 

characteristics receive a star for this criterion as well. 

Studies that did not describe the characteristics or the type 

of football players, and studies conducted in football 

tournaments that did not describe the characteristics of the 

tournament did not receive a star for this criterion. 

✓ 

2. Definition of 

football-related 

injury. 

Studies that aimed to investigate football-related injuries 

should present a definition of an injury informing what 

was considered as an injury in the study. Studies that 

present a definition of time-loss injury received a star for 

this criterion. 

✓ 

3. Representativeness 

of the exposed 

cohort. 

(a) Truly representative of the average football players in 

the community*; (b) somewhat representative of the 

average football players in the community*; (c) selected 

✓ 



  Epidemiology and prediction models of injuries in elite futsal 

 

149 

group of users; (d) no description of the derivation of the 

cohort. 

4. Ascertainment of 

exposure. 

(a) Secure record*; (b) structured interview*; (c) written 

self-report; (d) no description 

✓ 

5. Demonstration 

that outcome of 

interest was not 

present at start of 

study. 

(a) Yes*; (b) no. Studies that described that all football 

players included were injury-free at baseline received a star 

for this criterion. 

✓ 

6. Assessment of 

outcome. 

(a) Independent blind assessment*; (b) record linkage*; (c) 

self-report; (d) no description. 

✓ 

7. Was follow-up 

long enough for 

outcomes to occur 

risk factors. 

(a) Yes*; (b) no. Studies that carried out a follow-up period 

of at least 12 weeks received a star for this criterion. 

✓ 

8. Adequacy of 

follow-up of 

cohorts 

(a) Complete follow-up of all subjects accounted for*; (b) 

subjects lost to follow-up unlikely to introduce bias (up to 

20 % loss) or description provided of those lost*; (c) follow-

up rate <80% and no description of those lost; (d) no 

statement. A loss to follow-up greater than 20 % may 

increase the risk of bias in prospective studies (Fewtrell et 

al., 2008). 

✓ 

T: The articles could be awarded a maximum of one star for each item. A total of 8 

stars could be given for the articles. 

* Articles with this alternative received a star for this criterion. 
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CHAPTER 5 

Study 3 

 

Criterion-related validity of 2-Dimensional kinematic of knee and hip measures during 

bilateral drop-jump landings 

Iñaki Ruiz-Pérez, José LL Elvira, Gregory D. Myer, Mark De Ste Croix, Francisco Ayala 

5.1. Abstract 

Objective: Three-dimensional (3D) motion capture systems have been used to identify 

athletes in high risk of injury, but due to their cost, lack of portability and qualified 

technicians, an alternative is needed, such as two-dimensional (2D) systems. The purpose 

of this study was to examine the criterion-related validity of three measures of frontal plane 

knee alignment (Frontal plane projection angle [FPPA], knee-to-ankle separation ratio 

[KASR] and knee medial displacement [KMD]) and two sagittal plane measures (hip and 

knee flexion ranges of motion [ROMs]), recorded simultaneously using a 2D video analysis 

procedure and a 3D motion analysis system.  

Method: Twenty-nine male futsal players had frontal and sagittal plane kinematics 

assessed while performing bilateral drop vertical jumps (DVJ). The criterion-related 

validity of the frontal and sagittal plane kinematic measures obtained using the 2D video 

analysis procedure and 3D motion system was determined through the estimation 

equation, typical error of the estimate (TEEST) and validity correlation (r). Kappa correlations 

were also calculated to determine the agreement between the 2D and 3D kinematic 

approaches.  

Results: The results showed poor validity for the FPPA measure (standardized TEEST = 1.34 

[large], r = 0.60) and moderate validity for KASR (standardized TEEST = 0.88 [moderate], r = 

0.77), KMD (standardized TEEST = 0.53 [small], r = 0.88), hip flexion ROM (standardized 
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TEEST = 0.62 [moderate], r = 0.85) and knee flexion ROM (standardized TEEST = 0.56 [small], 

r = 0.87) measures. However, only the KMD and knee flexion ROM measures showed high 

levels of agreement (kappa > 0.7). 

Results: Therefore, the KMD and knee flexion ROM measures calculated during a bilateral 

DVJ and using a 2D video analysis procedure might be considered as valid and feasible 

alternatives to their respective 3D criterion to quantify knee kinematics and to detect futsal 

players who demonstrated aberrant movement patterns in the frontal and sagittal planes, 

respectively. 

Keywords: Dynamic knee valgus, injury, screening, motion analysis 
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5.2. Introduction 

Knee injuries are common among individuals participating in team sports (e.g.: 

football192, futsal6, basketball193 and rugby194). In most cases, knee injuries (including anterior 

cruciate ligament [ACL] tears) occur in athletes by non-contact mechanisms195–198. Although 

non-contact knee injuries are considered multifactorial in nature18, aberrant lower extremity 

movement patterns during the execution of high intensity weight-bearing dynamic tasks 

(e.g.: cutting and landing) such as an excessive dynamic valgus motion at the knee (a multi-

joint and multiplane movement pattern comprised of varying degrees of hip adduction and 

internal rotation and knee abduction and external rotation joint kinematics199) and limited 

hip and knee flexion ranges of motion (ROM) have been identified as primary and 

modifiable risk factors62,200–206. Therefore, pre-participation assessment of hip and knee joints 

kinematics during dynamic tasks might aid in the identification of athletes who adopt 

aberrant movement patterns associated with an increased risk of knee injuries207. 

Three-dimensional (3D) motion analysis systems have been considered as the 

criterion measurement (gold standard) to assess lower extremity joints kinematics during 

potentially high-risk tasks related to knee injuries (mainly ACL) due to their high levels of 

accuracy and reliability59–64. However, the use of 3D motion analysis systems is often 

restricted to research settings and not used in clinical environments or for pre-participation 

screening because of their high cost, lack of portability, time constraints and the need for 

sophisticated instruments and qualified technicians61,64. Consequently, cost-effective, 

technically undemanding and portable alternative measurements to 3D motion analysis are 

needed. A low-cost, portable and readily available alternative to screen lower extremity 

joints kinematics might be the two-dimensional (2D) video analysis procedures where 

standard cameras are used to capture performance of dynamic tasks which are then 

imported into user-friendly software packages (e.g.: Kinovea, Quintic, ImageJ and 

DartfishTM) that perform kinematic analysis in a plane perpendicular to the camera lens208. 

However, the criterion-related validity of their measures must be determined before these 
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2D video analysis procedures can be used as an objective and feasible alternative to the 3D 

motion analysis systems to quantify lower extremity joints kinematics and to identify 

athletes who adopt potentially hazardous movement patterns during dynamic tasks209. 

Some studies have examined the criterion-related validity (mainly through 

correlation coefficients) of certain measures of frontal plane knee alignment (i.e.: frontal 

plane projection angle of the knee [FPPA]61,64–69, knee-to-ankle separation ratio [KASR]67,68 

and knee medial displacement [KMD]70) during dynamic tasks (mainly single leg squats 

and drop landings) that have been operationally designed to identify athletes with 

excessive dynamic knee valgus motion using 2D video analysis procedures and 3D motion 

analysis systems simultaneously. In particular, these measures of frontal plane knee 

alignment obtained through the use of 2D video analysis procedures have reported 

correlations with their respective 3D criterion measures ranging from r = 0.24 to 0.96. 

However, Hopkins209 stated that the use of the correlation coefficients as the unique 

statistical outcome of validity only provides information regarding how well the observed 

value retains the true rank order of subjects and hence it does not indicate whether both 

measures or methods (e.g.: 3D motion analysis systems and 2D video analysis procedures) 

can be used interchangeably and thus whether the same cut-off scores can be used to detect 

the expected diagnosis (e.g.: the presence [or absence] of aberrant lower extremity 

movement patters during dynamic tasks). More contemporary statistical methods, such as 

the calculation of the estimation equation and typical error of the estimate (TEEST) have not 

been taken into consideration. Determination of criterion-related validity of the previously 

mentioned measures of frontal plane knee alignment (FFPA, KASR and KMD) using 

contemporary statistical measures may be important for clinicians and strength and 

conditioning specialists because it can be used a) to assess an athlete and to predict his/her 

criterion value to get an accurate diagnosis (normal or aberrant frontal plane knee 

alignment) using the cut-off scores established for the criterion test (3D motion analysis 
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system), b) to compare the validity of different measures or assessment methodologies and 

c) to determine the sample size for validity and cross-sectional studies209. 

On the other hand, only Myer et al.70 have analyzed the criterion-related validity of 

lower extremity kinematic measures obtained simultaneously through 2D video analysis 

procedures and 3D motion analysis systems in planes other than the frontal plane and that 

had been previously associated with an increase in knee injury risk. In particular, Myer et 

al.70 examined the criterion-related validity of knee flexion ROM in the sagittal plane during 

a bilateral drop jump showing an r score of 0.95. To the authors´ knowledge, the criterion-

related validity of other ROM measures in the sagittal plane, such as hip flexion ROM, has 

not been explored.   

Therefore, the purpose of this study was to examine the criterion-related validity of 

three measures of frontal plane knee alignment (FPPA, KASR and KMD) and two measures 

of sagittal plane movement (hip and knee flexion ROMs) recorded simultaneously using a 

2D video analysis procedure and a 3D motion analysis system during a bilateral drop 

landing and applying a contemporary statistical approach in elite futsal players. 

 

5.3. Methods 

5.3.1. Participants 

A total of 29 elite male futsal players (years = 23.2 ± 4.2 y, body mass = 73.8 ± 6.9 kg 

and stature = 1.76 ± 0.7 m) from four different teams (13 players belonging to two clubs 

engaged in the First [top] National Spanish Futsal division and 16 players from two clubs 

engaged in the Second National Spanish Futsal division) completed this study. Futsal is a 

variant of football (soccer) played on a hard court, smaller than a football pitch and mainly 

indoors. To be included, all players had to be free of pain and injury at the time of testing 

(self-reported). Before any participation, experimental procedures and potential risks were 

fully explained to the players in verbal and written form, and written informed consent was 
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obtained from all of them. An Institutional Research Ethics committee approved the study 

protocol prior to data collection (DPS.FAR.02.14) conforming to the recommendations of 

the Declaration of Helsinki. 

5.3.2. Procedure 

Prior to testing, each athlete performed the standardized dynamic warm-up 

designed by Taylor, Sheppard, Lee, & Plummer.210 The overall duration of the entire warm-

up was approximately 20 min. After the warm-up, a 3-5 min rest was given for rehydrating 

and drying their sweat. Then, each player practiced the experimental task (bilateral drop 

vertical jump [DVJ]) three to five times. After the practice trials, players were prepared for 

data collection. Thus, the anthropometric measures required by the ViconTM (Vicon Motion 

Systems Inc., Denver, CO, USA) Plug in Gait Full Body model were first taken then 35 

reflective markers were placed on the skin with double-sided adhesive tape on each 

player´s anatomic landmarks according to the model´s instructions211. 2D and 3D data were 

captured simultaneously while players completed each trial of the experimental task in a 

laboratory setting. The same two experienced sport scientists were always responsible for 

placing reflective markers uniformly. Futsal players were examined wearing sports shorts 

and low ankle socks. Players were allowed their preferred futsal shoes to prevent any pain 

at landing that could alter their landing mechanics. 

5.3.3. Bilateral drop vertical jump 

A DVJ was performed according to Onate et al.212 Briefly, players stood with feet 

shoulder-width apart on a 40 cm high box. They were instructed to lean forward and drop 

from the box as vertically as possible. Players were required to land with both feet 

simultaneously on a force platform (90x60 cm) that was located 20 cm in front of the box 

(with the purpose of serving as a reference object for the 2D video analysis system and to 

defined the landing phase of each DVJ for the 3D motion analysis system), then 

immediately perform a maximal vertical jump, finally landing back on the force platform. 

Each player performed three successful maximal DVJs, starting from a standing position 
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with at least 30 s of recovery between jumps. Players were asked to jump as high as possible. 

Players were allowed to use the arms and were able to choose the amplitude and speed of 

the countermovement needed to achieve the maximum high during the jump. A failed trial 

was defined when the players (1) could not maintain a bilateral landing position, (2) landed 

farther than the platform, or (3) jumped up from the platform. Players took a sufficient rest 

period between the trials to avoid the effects of fatigue. Each successful maximal DVJ trial 

was considered as a unit of analysis. 

5.3.4. Instrumentation  

A motion capture system with seven T10 cameras (Vicon MX; Oxford Metrics Group, 

Oxford UK) sampling at 200 Hz and a Kistler 9287 force platform embedded into the floor 

(Kistler, Winterthur, Switzerland), sampling at 1000 Hz, were used to simultaneously 

collect 3D kinematic and kinetic variables during the first landing of the three DVJs. 

Two commercially available HD cameras (DMC-FZ 200 Lumix) sampling at a 

frequency of 200 Hz were also used to capture players´ performance during the DVJs. The 

cameras were placed at a distance of 4 m from the player and at the height of 1 m, one 

perpendicular to the frontal plane and the other perpendicular to the sagittal plane.  

5.3.5. Data reduction 

5.3.5.1. 3D data  

A static calibration trial was completed before each data collection session started in 

order to determine the anatomic segment coordinate systems. Marker trajectories were 

identified with Vicon Nexus v1.8 software and kinematic data (i.e. hip, knee and ankle joint 

angles in the sagittal, frontal and transverse planes) were obtained using Plug in Gait Full 

Body model. A double 2nd order Butterworth filter with a cutoff frequency of 6 Hz was 

used to filter marker coordinates. 

The measures of frontal plane knee alignment FPPA and KASR were calculated 

relative to the laboratory or global coordinate system at the time of maximum knee flexion 
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during the first landing immediately after stepping off from the box and following the 

methodology described by Minzer et al.67 The frontal plane KMD measure and the sagittal 

plane hip and knee flexion ROMs were also calculated relative to the global coordinate 

system and from the hip and knee flexion at initial contact with the ground to the maximum 

knee flexion angle during the landing phase in their respective planes. Similar to previous 

studies, the landing phase of each DVJ was defined as the period when the unfiltered 

ground-reaction force exceeded 20 N213. Maximum knee flexion angle was defined as the 

maximum angle between the thigh and shank segments during the ground contact phase. 

5.4.5.2. 2D data 

The digital videos recorded by the HD cameras from each DVJ trial were uploaded 

into Kinovea 0.8.25 software for conversion to still images. Kinovea software allows to 

calculate all measures of frontal plane knee alignment and sagittal plane hip and knee 

flexion ROMs. The same investigator with extensive experience of using the software 

calculated all measures. Intra-rater reliability of the 2D kinematic measures calculated by 

this investigator was analyzed in a previous pilot study and all of them showed high ICC 

scores (>0.85). For the 2D video analysis, initial contact of the first landing phase was 

defined as the first frame in which ground contact was observed while maximum knee 

flexion angle was defined as the frame before the player started to knee extension in order 

to perform the maximum vertical jump. For the variables measured in distance in the frontal 

plane, the images were calibrated using the width of the platform (90 cm). Previous studies 

used reflective markers on bony landmarks (including joints center) to guide the calculation 

of the 2D measures of frontal plane knee alignment64–66,68,69. However, markers can often 

slide on the skin during the execution of high intensity weight-bearing dynamic tasks. On 

the contrary, 3D systems calculate the center of the joints and the error in the motion 

analysis associated with movement of the markers is lower. Consequently, and with the 

aim of improving the agreement of the 2D kinematic measures with their respective 3D 
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criterion, no markers were used over bony landmarks to guide the calculation of the 2D 

frontal plane measurements. 

FPPA was calculated for the left leg with the videos of the frontal camera. To measure 

the FPPA, the investigator first created a femoral segment by placing a straight line that 

bisected the thigh outline, terminating at the investigator’s estimation of the bisection of the 

femoral epicondyles. Similar to Mizner et al.67, the epicondyle estimation was made from 

available visual landmarks such as the outline of shadowing of the patella, muscular shape 

outline of the quadriceps and the thickness of the leg’s outline in the area of the knee joint. 

The shank segment began at the termination of the thigh segment and bisected the borders 

of the lower leg terminating at the estimated position of the ankle's lateral malleolus. The 

ankle malleolus position was made from available visual landmarks such as shoe position, 

bony outlines or shadows of the bones of the leg and the thickness of the leg outline in the 

area of the ankle joint. The angle formed by these two segments was then measured and 

used for analysis (figure 5.1.a). A measurement of 0° represents a neutral position of the 

knee in the frontal plane; whereas negative values represent a 2D knee valgus angle, and 

positive values represent a 2D knee varus angle. 

KASR was calculated following the procedure described by Mizner et al.67. Thus, this 

measure was determined from the frontal view, by drawing a horizontal line between the 

visual estimation of the centres of the knee (knee separation distance) and another 

horizontal line between the estimation of the centres of the ankles. The length of each line 

was measured and the ratio between the length of the knee line and the length of the ankle 

line was finally recorded (figure 5.1.b). A value of 1 represents an alignment of the knees 

directly on the ankles. A value less than 1 will occur when the centres of the knees are closer 

than the centres of the ankles, which have been suggested that represent 2D knee valgus. A 

value greater than 1.0 represented that knees were lateral to ankles, which have been 

suggested that represent 2D knee varus. 
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KMD was quantified as the displacement (in centimeters) of the visually estimated 

centre of the left knee during two different times of the landing phase214. First measurement 

was during the initial contact phase (d1) and the second when the player reached maximal 

peak knee flexion during the ground contact phase (d2) (figure 5.1.c). Thus, the KMD was 

expressed as the displacement measure between the 2 marked knee alignments (d2 – d1). 

Negative and positive values denoted 2D valgus and varus alignments, respectively.  

 

Figure 5.1. Frontal view 2D analysis. 

The sagittal plane camera was used to capture and quantify hip and knee flexion 

ROMs of the left leg, which were calculated in the first video frame in which ground contact 

was observed and maximum knee flexion. Hip flexion angle was defined as the angle 

formed by a straight line joining the medial part of the thigh originating in the lateral 

femoral epicondyle marker and the straight line joining the estimated hip rotation axis with 

the projection of the spine in neutral position (figure 5.2). Knee flexion angle was considered 

the angle formed by the straight lines of the thigh, as previously described, and leg 

segments, joining the lateral femoral epicondyle and the lateral malleolus marker (figure 

5.2). 
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Figure 5.2. Lateral view 2D analysis. 

5.3.6. Statistical analysis 

The distribution of raw data sets was checked using the Kolmogorov–Smirnov test 

and demonstrated that all data had a normal distribution (p > 0.05). Descriptive statistics 

including means and standard deviations (SDs) were calculated for each measure.  

The criterion-related validity of each measure was determined through an estimation 

equation, TEEST and validity correlation (Pearson coefficient) using the method previously 

descried by Hopkins209. The estimation equation was calculated as the equation generated 

by plotting and after fitting a straight line to 3D data against 2D data (y = slope · X + 

intercept). The TEEST was calculated as the mean typical error of the difference between the 

3D and 2D data reported by the players. To interpret the TEEST values, Hopkins209 suggests 

calculating the standardized TEEST (TEEST/SD of the criterion test [3D motion analysis]) and 

then using the following arbitrary values: <0.2 trivial, 0.2 to 0.6 small, >0.6 to 1.2 moderate, 

>1.2 to 2.0 large, and >2.0 very large. Validity correlation was expressed through Pearson 

correlation coefficients (r) between the 3D data and the 2D data. Magnitudes of correlations 

were assessed using the following scale of thresholds: <0.80 low, 0.80 to 0.90 moderate, and 

>0.90 high209. 
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The assessing agreement (systematic bias and random error) between the 3D and 2D 

measures was calculated using the statistical methods described by Bland and Altman215. 

Heteroscedasticity was checked by analyzing the degree of correlation between the 

residuals and predictive values209. 

Additionally, the measures of frontal plane knee alignment were dichotomized to 

indicate a positive or negative score for each player based on the presence of dynamic knee 

valgus or varus using the cut-off scores previously described. Although limited hip and 

knee flexion ROMs in the sagittal plane have been associated with an increased risk of knee 

injury204,216 no specific cutoff scores have been defined yet (from the authors´ knowledge). 

Consequently, in the absence of robust cut-off scores for identifying athletes at high risk of 

knee injury, the average hip flexion and knee flexion ROM scores reported for injured 

players by prospective studies aimed at investigating the relationship between selected 

sagittal plane hip and knee kinematic and the risk of ACL injury70,204, alongside the authors´ 

extensive experience in screening athletes, were used to finally define the following cutoff 

score to indicate a high or low risk of loading the knee joint: <50 (high risk) and >50º (low 

risk) for both hip and knee flexion ROM measures. After reducing the data to a nominal 

variable (positive = dynamic knee valgus or high risk of loading the knee; negative = 

dynamic knee varus or low risk of loading the knee), Kappa (k) correlations were calculated 

to determine the agreement between the two techniques (3D motion analysis and 2D video 

analysis) of kinematic analysis. Magnitudes of k correlations were assessed using the 

following scale of thresholds: <0.20 poor; 0.20-0,40 fair, 0,41-0,60 moderate, 0.61- 0.80 high 

and 0.81-1.00 very high217. 

Data were analyzed using SPSS for Windows, Version 20.0 (SPSS Inc., Chicago, IL, 

USA) and Microsoft Excel spreadsheet. 
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5.4. Results 

Mean values for each of the 2D and 3D outcome measures are presented in Table 

5.1. Validity measures are presented in figures 5.3 to 5.7 for frontal plane knee and sagittal 

plane lower extremity joints alignment variables. Whereas poor validity scores were found 

for the measure of frontal plane knee alignment FPPA (standardized TEEST = 1.34 [large] and 

r = 0.60 [low]), moderate validity scores were found for KASR (standardized TEEST = 0.84 

[moderate] and r = 0.77 [low]) and KMD (standardized TEEST = 0.53 [small] and r = 0.88 

[moderate]) measures. Likewise, moderate validity scores were obtained for the measures 

of hip flexion (standardized TEEST = 0.62 [moderate] and r = 0.85 [moderate]) and knee 

flexion (standardized TEEST = 0.56 [small] and r = 0.87 [moderate]) ROMs. 

Table 5.1. Mean values for 3D and 2D variables during 

bilateral drop vertical jumps (DVJ)   

Measures 3D (mean ± SD) 2D (mean ± SD) 

Frontal plane knee alignment 

FPPA (º) 1.1 ± 16.6 10.1 ± 16.7 

KASR 1.42 ± 0.35 1.24 ± 0.31 

KMD (cm) -6.7 ± 3.4 1.1 ± 4.5 

Sagittal plane lower extremity joints alignment 

HF ROM (º) 54.1 ± 16.1 63.6 ± 18.7 

KF ROM (º) 72.3 ± 13.9 67.1 ± 11.9 

2D: two-dimensional; 3D: three-dimensional; SD: 

standard deviation; FPPA: frontal plane projection angle; 

KASR: knee-to-ankle separation ratio; KMD: knee medial 

displacement; HF: hip flexion; KF: knee flexion; ROM: 

range of motion. 
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Figure 5.3. Validity measures of the frontal view variable FPPA. 

 

Figure 5.4. Validity measures of the frontal view variable KASR. 
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 Figure 5.5. Validity measures of the frontal view variable KMD. 

 

Figure 5.6. Validity measures of lateral view variable: HF ROM. 
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Figure 5.7. Validity measures of lateral view variable KF ROM. 

 

Bland-Altman plots (figures 5.8 to 5.13) confirmed that all measures of frontal plane 

knee alignment (FPPA = 9.0 ± 14.9º, KASR = -0.12 ± 0.22, KMD = -0.7 ± 2.71 cm) and sagittal 

plane hip and knee flexion ROMs (hip flexion ROM = 9.4 ± 10.5º, knee flexion ROM = -5.3 ± 

6.9º) showed systematic bias (p < 0.05) between 3D motion analysis and 2D video analysis. 

Furthermore, no statistically significant associations between predictive and residual scores 

were found for all paired kinematic measures.  
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Figure 5.8. Bland and Altman plots showing individual differences 

between 2D and 3D system FPPA values plotted against the mean. 

 

Figure 5.9. Bland and Altman plots showing individual differences 

between 2D and 3D system KASR values plotted against the mean. 
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Figure 5.10. Bland and Altman plots showing individual differences 

between 2D and 3D system KMD values plotted against the mean. 

 

Figure 5.11. Bland and Altman plots showing 1individual differences 

between 2D and 3D system HF ROM values plotted against the mean. 
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Figure 5.12. Bland and Altman plots showing 1individual differences 

between 2D and 3D system KF ROM values plotted against the mean. 

Table 5.2 demonstrates the Kappa agreement among measures. Only the KMD and 

knee flexion ROM measures showed high levels of agreement (k > 0.7, p < 0.05). 

Table 5.2. Kappa correlations 

 FPPA KASR KMD HF ROM KF ROM 

FPPA 0.327*     

KASR  0.424*    

KMD   0.719*   

HF ROM    0.528*  

KF ROM     0.742* 

FPPA: frontal plane projection angle; KASR: knee-to-ankle separation 

ratio; KMD: knee medial displacement; HF: hip flexion; KF: knee 

flexion; ROM: range of motion. *: p < 0.05. 
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5.5. Discussion  

The main findings of the current study report that the measure of frontal plane knee 

alignment FPPA calculated during a bilateral DVJ and using a 2D video analysis procedure 

presented poor criterion-related validity (standardized TEEST = 1.34 [large], r = 0.60 [low] 

and k = 0.327 [poor]) with respect to its counterpart criterion measure, which was registered 

simultaneously through a 3D motion analysis system. These findings were similar to those 

reported in previous studies68,69, although not all67, using only the Pearson coefficient 

(validity correlation) as an indicator of validity and a DVJ as the experimental task. For 

example, Ortiz et al.68 found Pearson correlation values of r = 0.39 and 0.57 between the 

FPPA scores obtained concurrently through a 2D video analysis procedure and a 3D motion 

analysis system, for the dominant and non-dominant legs respectively. A plausible 

explanation for the poor validity scores found for the FPPA obtained using 2D video 

analysis procedures might be based on the fact that this measure is a combination of frontal 

and transverse plane motions of the hip and knee and this may lead to a perspective error 

as standard cameras have the limitation (among others) of only recording uniplanar 

imagines placed transversally to their lens. Furthermore, the hip and knee multiplanar 

movements executed during the DVJ may have made the visual identification of the 

anatomical landmarks and the subsequent process of drawing lines (bisectors) that are 

needed to determine the angulation of both segments difficult, which may have also led to 

an increase in the measurement error. The results of the present study also reported that 

the 2D video analysis system showed statistically significant overestimations of the FPPA 

scores when they were compared with their 3D criterion measures (mean systematic bias = 

9 ± 14.9º; effect size = 0.54 [small]). Ortiz et al.68 also found that the 2D video analysis 

techniques overestimate the true values (defined by the 3D motion analysis system) of the 

FPPA kinematic measure by approximately 7º, which is comparable to the 9º reported in 

the current study. 
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In the scientific literature, some studies have examined the criterion-related validity 

of the FPPA measure obtained simultaneously using 2D and 3D systems during functional 

tasks (such as running218, single leg squat64–66,69 and lateral side step61 that are less complex 

than DVJs. These studies demonstrate slightly higher Pearson correlation scores between 

the 3D and 2D analysis for the FPPA than those found when DVJ tasks were used. Gwynne 

& Curran65 and Herrington et al.66 reported correlation values of r = 0.78 and 0.79 between 

the 3D and 2D systems and for the FPPA measure recorded at 60º and 45º of knee flexion 

while participants adopted a single leg squat testing position. However, the clinical 

relevance of these 2D FPPA measures obtained during simple and slow functional tasks 

might be lower than the FPPA measures obtained during explosive dynamic tasks, such as 

landings and cutting maneuvers, in which the mechanism of knee overload (high knee 

abduction moment) might be more accurately reflected219,220. 

Regarding the two other measures of frontal plane knee alignment (KASR and 

KMD), the results of this study showed that there were moderate criterion-related validity 

scores between the 2D and 3D systems for both kinematic measures. In particular, the KMD 

was the measure of frontal plane knee alignment that exhibited the highest criterion-related 

validity scores (standardized TEEST = 0.53 [small], r = 0.88 [moderate] and k = 0.72 [high]). A 

reason that might partially explain why the KMD showed the highest validity scores in 

comparison with the other two measures of frontal plane knee alignment could be based 

on the fact that the calculation process using 2D video analysis is easier. Thus, and in order 

to calculate the KMD, clinicians and strength and conditioning specialists only need to 

visually identify an anatomic landmark (centre of the knee) and quantified the 

displacement (in centimeters and through the use of the tool facilitated for the software for 

such aim) during two different times of the landing phase. Contrarily, the quantification of 

the KASR requires the identification of more anatomic landmarks (centres of the knee and 

ankle) while the FPPA measure needs not only the identification of anatomic landmarks 

but to visually create a femoral and shank segments by placing straight lines that bisected 

the thigh and the borders of the lower leg, respectively. Similar Pearson correlation values 
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between the 2D and 3D systems were found by Myer et al. (2010) for the KMD measure (r 

= 0.87). However, Ortiz et al. (2016) showed slightly higher validity scores than the ones 

found in the current study for the KASR (r = 0.96) and KMD (r = 0.94) measures. A factor 

that may be behind this difference could be that Ortiz et al. (2016) analyzed the correlation 

validity between 2D and 3D systems using the average of the four DVJ trials carried out per 

participant, while in the current study each DVJ trial was considered a unit of analysis 

(instance) and this may have potentially increased the variability of the results acquired. In 

the present study, each DVJ was considered as an independent unit of analysis in an 

attempt to accurately reflect the common practices that occur in most clinical and sports 

settings. In these settings, both clinicians and strength and condition specialists are often 

forced to assess a large number of patients and athletes from different biomechanical and 

neuromuscular parameters in a short period of time. Consequently, employing more than 

30 minutes in analyzing only the frontal plane knee alignment of each athlete in 3 to 5 

different DVJs using a 2D video analysis procedure might not be a plausible option. 

Although the findings of the present study also report the presence of systematic shifts 

between the scores of both systems and for the KASR (systematic bias = -0.12 ± 0.22; effect 

size = 0.37 [small]) and KMD measures (systematic bias = 0.7 ± 2.2 cm; effect size = 0.22 

[small]), their magnitudes may be considered as small according to the cutoffs described by 

Cohen221. However, and unlike to what happened to the KMD measure, the measurement 

error of the 2D KASR, although small and homoscedastic, was big enough to generate 

numerous disagreements between both systems (Kappa correlation = 0.42) in the 

participants´ diagnoses of showing knee valgus or varus during the DVJs and hence, a 

clinically different cut-off score should be established for this 2D measure. 

On the other hand, the findings of this study also showed moderate validity scores 

for the hip (standardized TEEST = 0.62 [moderate] and r = 0.85 [moderate]) and knee 

(standardized TEEST = 0.56 [small], r = 0.87 [moderate]) flexion ROM measures obtained 

during a bilateral DVJ and using a 2D video analysis technique and with respect to their 

counterpart criterion measures registered simultaneously through a 3D motion analysis 
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system. Slightly higher correlational results were reported by Myer et al.70 and for knee 

flexion ROM (r = 0.95). As the current study has been the first (to the best of the authors´ 

knowledge) to explore the criterion-related validity of the sagittal plane hip flexion ROM 

measure, comparisons with previously published works were not possible. Similar to that 

found for the measures of frontal plane knee alignment, the presence of systematic bias was 

also reported in these two measures of sagittal plane hip (systematic bias = 9.4 ± 10.5º; effect 

size = 0.60 [moderate]) and knee (systematic bias = -5.3 ± 6.9º; effect size = -0.38 [small]) 

flexion ROMs. Only the knee flexion ROM measure showed clinically acceptable Kappa 

agreement scores between the 2D and 3D systems (k = 0.74). Consequently, as the systematic 

error was homoscedastic (similar in magnitude for the higher and lower scores), different 

cut-off scores seem to be needed for the hip flexion ROM measure obtained using a 2D 

video analysis procedure to detect altered or abnormal hip movement patters in the sagittal 

plane. 

 

5.6. Limitations 

This study is not without limitations. First, the criterion-related validity of the 2D 

measures was only examined in uninjured futsal players and further studies are required 

to identify if these or different validity scores would occur in other cohorts of athletes with 

and without knee injuries. Second, all kinematic measures were recorded during a DVJ and 

hence, the validity scores cannot be generalizable to other dynamic tasks. Third, only the 

FPPA for the right leg was calculated. While this was appropriate for the purpose of this 

study, it may be recommended that future studies assess both legs because an asymmetry 

in knee abduction angle between sides was found to be a predictor of ACL injury status60. 
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5.7. Conclusions 

The main findings of the current study indicate that, unlike FPPA, the KASR but 

preferable KMD measures calculated during a bilateral DVJ task and using a 2D video 

analysis procedure might be considered as valid and feasible alternatives to their respective 

3D criterion for quantifying the frontal plane knee alignment of asymptomatic futsal 

players. Likewise, the results of this study also support the use of 2D video analysis 

procedures to quantify the hip and knee flexion ROM during the landing phase of a DVJ. 

However, different cut-off values need to be established in order to detect altered or 

abnormal frontal plane knee alignment and sagittal plane movement patters from the KASR 

and hip flexion ROM measures calculated using 2D videos analysis procedures, 

respectively.   
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A field-based approach to determine soft tissue injury risk in elite futsal using novel 

machine learning techniques 

Iñaki Ruiz-Pérez, Alejandro López-Valenciano, Sergio Hernández-Sánchez, José M. Puerta-

Callejón, Mark De Ste Croix, Francisco Ayala 

6.1. Abstract 

Objective: Lower extremity non-contact soft tissue (LE-ST) injuries are prevalent in elite 

futsal. The purpose of this study was to analyze and compare the individual and combined 

ability of several measures obtained from questionnaires and field-based tests to 

prospectively predict LE-ST injuries after having applied a range of supervised Machine 

Learning techniques.  

Method: One hundred and thirty-nine elite futsal players underwent a pre-season 

screening evaluation that included individual characteristics; measures related to sleep 

quality, athlete burnout, psychological characteristics related to sport performance and self-

reported perception of chronic ankle instability. A number of neuromuscular performance 

measures obtained through three field-based tests (isometric hip strength, dynamic 

postural control [Y-Balance] and lower extremity joints range of motion [ROM-Sport 

battery]) were also recorded. Injury incidence was monitored over one competitive season.  

Results: There were 25 LE-ST injuries. Only those groups of measures from two of the field-

based tests (ROM-Sport battery and Y-Balance), as independent data sets, were able to build 

robust models (area under the receiver operating characteristic curve [AUC] score ≥ 0.7) to 

identify elite futsal players at risk of sustaining a LE-ST injury. Unlike the measures 

obtained from the five questionnaires selected, the neuromuscular performance measures 
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did build robust prediction models (AUC score ≥ 0.7). The inclusion in the same data set of 

the measures recorded from all the questionnaires and field-based tests did not result in 

models with significantly higher performance scores.  

Conclusions: The models developed might help coaches, physical trainers and medical 

practitioners in the decision-making process for injury prevention in futsal.  

Key words: Injury prevention, modeling, screening, decision-making, algorithm, decision 

tree
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6.2. Introduction  

Despite the substantive efforts made by the scientific community and sport 

practitioners, lower extremity non-contact soft tissue (muscle, tendon and ligament) (LE-

ST) injuries are very common events in intermittent team sports such as soccer71, futsal72, 

rugby73, bat (i.e. cricket and softball) and stick (i.e. field hockey and lacrosse) sports74. One 

of the main reasons that has been suggested to explain why LE-ST injury rates are still high 

is that none of the currently available screening models (based on potential risk factors), 

designed to identify athletes at high risk of suffering a LE-ST injury, have adequate 

predictive properties (i.e. accuracy, sensitivity and specificity)27.  

Perhaps the lack of available valid screening models to predict LE-ST injuries could 

be attributed to the use of statistical techniques (e.g.: traditional logistic regression) that 

have not been specifically designed to deal with class imbalance problems, such as the LE-

ST injury phenomenon, in which the number of injured players (minority class) 

prospectively reported is always much lower than the non-injured players (majority 

class)75–78. Thus, in many scenarios including LE-ST injury, traditional screening models are 

often biased (for many reasons) towards the majority class (known as the “negative” class) 

and therefore there is a higher misclassification rate for the minority class instances (called 

the “positive” examples). Other issue with the current body of the literature is that the 

external validity of the screening models available may be limited because they are built 

and validated using the same date set (i.e. cohort of athletes). Apart from resulting in overly 

optimistic models´ performance scores, this evaluation approach does not indicate the true 

ability of the models to predict injuries in different data sets or cohort of athletes, which 

may be very low and consequently, not acceptable for injury prediction purposes. This 

appears to be supported by the fact that the injury predictors identified by some prospective 

studies have not been replicated by others using similar designs and assessment 

methodologies but with different samples of athletes28,31,32,40,47,49,79–81. These limitations have 
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led some researchers to suggest that injury prediction may be a waste of time and 

resources27. 

In Machine Learning and Data Mining environments, some methodologies (e.g.: pre-

processing, cost-sensitive learning and ensemble techniques) have been specially designed 

to deal with complex (i.e. non-lineal interactions among features or factors), multifactorial 

and class imbalanced scenarios75–78. These contemporary methodologies along with the use 

of resampling methods to assess models´ predictive power (i.e., cross-validation, bootstrap 

and leave-one-out) may overcome the limitations inherent to the current body of 

knowledge and enable the ability to build robust, interpretable and generalizable models 

to predict LE-ST injuries. In fact, recent studies have used these contemporary 

methodologies and resampling methods as alternatives to the traditional logistic regression 

techniques to predict injuries in elite team sport athletes82. Unlike previous studies that used 

traditional logistic regression techniques to build prediction models47,81,83–88, most of these 

recent studies29,30,89–93, although not all50,94, have reported promising results (area under the 

receiver operator characteristics [AUC] scores > 0.700) to predict injuries.  

However, one of the main limitations of most of these models built by the application 

of modern Machine Learning techniques lies in the fact that their use seems to be restricted 

to research settings (and not to applied environments) because sophisticated and expensive 

instruments (e.g.: isokinetic dynamometers, force platforms and GPS devices), qualified 

technicians and time-consuming testing procedures are required to collect such data. To the 

authors´ knowledge, there is only one study that has built a robust screening model using 

Machine Learning techniques (extreme gradient boosting algorithms) with data from field-

based tests. Rommers et al.95 built a model to predict injury in elite youth soccer players 

based on preseason anthropometric (stature, weight and sitting height) and motor 

coordination and physical fitness (strength, flexibility, speed, agility and endurance) 

measures obtained through field-based tests and reported an AUC score of 0.850.  
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If Machine Learning techniques could build “user friendly” models with adequate 

predictive properties and exclusively using data obtained from questionnaires and / or cost-

effective, technically undemanding and time-efficient field-based tests, then injury 

prediction would not be a waste of time and resource in applied settings. In case these 

techniques provided a trustworthy positive response, coaches, physical trainers and 

medical practitioners may know whether any of the currently available questionnaires and 

field-based tests to predict injuries itself works and a hierarchical rank could be developed 

based on their individual predictive ability of those that showed reasonably high AUC, TP 

and TN scores. Furthermore, this knowledge might be used to analyze the cost-benefit 

(balance between the time required to assess a single player and the predictive ability of the 

measures recorded) of including measures in the screening sessions for injury prediction. 

Therefore, the main purpose of this study was to analyze and compare the individual 

and combined ability of several measures obtained from different questionnaires and field-

based tests to prospectively predict LE-ST injuries after having applied supervise Machine 

Learning techniques in elite male and female futsal players. 

 

6.3. Method 

To conduct this study, guidelines for reporting prediction model and validation 

studies in Health Research (Transparent Reporting of a multivariable prediction model for 

Individual Prognosis or Diagnosis [the TRIPOD statement]) were followed222. The TRIPOD 

checklist is presented in Appendix 6.1. 

6.3.1. Participants 

A convenience sample of 139 (72 [age: 22.5 ± 5.2 y, stature: 1.75 ± 0.7 m, body mass: 

72.9 ± 6.9 kg] males and 67 [age: 22.4 ± 5.5 y, stature: 1.64 ± 0.5 m, body mass: 59.4 ± 5.1 kg] 

females) elite futsal players from 12 different teams (56 players [24 males and 32 females] 

from six club engaged in the First [top] National Spanish Futsal division and 83 players [48 
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males and 35 females] from six clubs engaged in the Second National Futsal division) 

completed this study. Elite futsal players were selected in this study because a recent 

published meta-analysis on injury epidemiology reported that this sport present high 

incidence rates of injuries (5.3 injuries per 1000 hours of players exposure)72 and hence, 

urgent preventive measures are needed.  

To be included in this study, all players had to be free of pain at the time of the study 

and currently involved in futsal-related activities. Players were excluded if: a) they reported 

the presence of orthopedic problems that prevented the proper execution of one or more of 

the neuromuscular performance tests or (b) were transferred to another club and were not 

available for follow up testing at the end of 9-months. Only first injuries were used for any 

player sustaining multiple LE-ST injuries. The study was conducted at the end of the pre-

season phase in 2015 (39 players from four teams), 2016 (44 players from four teams), 2017 

(30 players from three teams) and 2018 (26 players from two teams) (September). Before 

any participation, experimental procedures and potential risks were fully explained to the 

players and coaches in verbal and written form and written informed consent was obtained 

from players. An Institutional Research Ethics committee approved the study protocol prior 

to data collection (DPS.FAR.01.14) conforming to the recommendations of the Declaration 

of Frontera. 

6.3.2. Study design 

A prospective cohort design was used to address the purpose of this study. In 

particular, all LE-ST injuries accounted for within the 9 months following the initial testing 

session (in-season phase) were prospectively collected for all players. 

Players underwent a pre-season evaluation of a number of personal, psychological, 

self-perceived chronic ankle instability and neuromuscular performance measurements, 

most of them considered potential sport-related injury risk factors. In each futsal team, the 

testing session was conducted at the end of the pre-season phase or beginning (within the 

first three weeks) of the in-season phase of the year. The testing session was divided into 
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three different parts. The first part of the testing session was used to obtain information 

related to the participants’ personal or individual characteristics. The second part was 

designed to assess psychological measures related to sleep quality, athlete burnout and 

psychological characteristics related to sport performance. The subjective perception of 

each player regarding his/her chronic ankle joints instability was also recorded in this 

second part. Finally, the third part of the session was used to assess a number of 

neuromuscular performance measures through three field-based tests. Each of the four 

testers who took part in this study had more than six years of experience in athletes´ 

screening assessment. 

6.3.3. Personal or individual measures 

The ad hoc questionnaire designed by Olmedilla, Laguna, & Redondo223 was used to 

record personal or individual measures that have been defined as potential non-modifiable 

risk factors for sport injuries. In this questionnaire sport-related background (player 

position [goalkeeper or outfield player], current level of play [First or Second division], 

dominant leg [defined as the playerʼs kicking leg]) and demographic (sex, age, body mass 

and stature) measures were recorded. In addition, the presence within the last season (yes 

or no) of LE-ST injuries with total time taken to resume full training and competition > 8 

days were also recorded (self-reported). 

Appendix 6.2 displays a description of the personal risk factor recorded. 

6.3.4. Psychological risk factors 

Sleep quality, athlete burnout and psychological characteristics related to sport 

performance measures were measured through three validated and widely used Likert 

scales. The Spanish version of the Karolinska Sleep Diary224 was used to measure the sleep 

quality of players. The Spanish version of the Athlete Burnout Questionnaire225 was used to 

assess the three different dimensions that comprise athlete burnout: (a) physical/emotional 

exhaustion, (b) reduced sense of accomplishment and (c) sport devaluation. The Spanish 
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version of the Psychological Characteristics Related to Sport Performance Questionnaire 

designed by Gimeno, Buceta & Pérez-Llanta226 was used to assess five different factors: (a) 

stress control, (b) influence of sport evaluation, (c) motivation, (d) mental skills and (e) 

group / team cohesion.  

Appendix 6.3 displays a description of the psychological risk factor recorded. 

6.3.5. Self-perceived chronic ankle instability 

The subjective perception of chronic ankle instability was measured using the 

Cumberland Ankle Instability Tool (CAIT). The CAIT has been shown to be a simple, 

reliable, and valid questionnaire for discriminating and measuring the severity of 

functional ankle instability227. The final score was discretized into three categories of 

severity following the thresholds suggested by De Noronha et al.99: severe instability (< 22 

points), moderate instability (from 22 to 27 points) and minor or no instability (> 27 points). 

6.3.6. Neuromuscular risk factors 

Prior to the neuromuscular risk factor assessment, all participants performed the 

dynamic warm-up designed by Taylor et al.210. The overall duration of the entire warm-up 

was approximately 15–20 min. The assessment of the neuromuscular risk factors was 

carried out 3–5 min after the dynamic warm-up. 

Neuromuscular capability was determined from two different performance field-

based tests: 1) isometric hip abduction and adduction strength test228 and 2) Y-Balance test 

(dynamic postural control)229. The ROM-Sport field-based battery was also carried out to 

assess players´ lower extremity joints range of motion230. 

For a matter of space, the testing maneuvers are not described below, and the reader 

is to refer to their original sources. Furthermore, appendixes 6.4 to 6.6 display a description 

of the three field-based testing maneuvers carried and the measures recorded from each of 

them. 
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The order of the tests was consistent for all participants and was established with the 

intention of minimizing any possible negative influence among variables. A 5-min rest 

interval was given between consecutive testing maneuvers. 

6.3.7. Injury Surveillance 

For the purpose of this study, an injury was defined as any non-contact, soft tissue 

(muscle, tendon and ligament) injury sustained by a player during a training session or 

competition which resulted in a player being unable to take a full part in future football 

training or match play231. 

These injuries were confirmed by team doctors. Players were considered injured until 

the club medical staff (medical doctor or physiotherapist) allowed for full participation in 

training and availability for match selection. Only thigh muscle (hamstrings, quadriceps 

and adductors) and knee and ankle ligament injuries were considered for the analysis as 

these injuries are more likely to be preventable and influenced by the investigated 

variables.  

The team medical staff of each club recorded LE-ST injuries on an injury form that 

was sent to the study group each month. For all LE-ST injuries that satisfied the inclusion 

criteria, team medical staff provided the following details to investigators: thigh muscle 

(hamstrings, quadriceps and adductors), knee or ankle ligament, leg injured 

(dominant/nondominant), injury severity based on lay-off time from futsal [slight/minimal 

(0–3 d), mild (4–7 d), moderate (8–28 d), and severe (>28 d)], date of injury, moment 

(training or match), whether it was a recurrence (defined as a soft tissue injury that occurred 

in the same extremity and during the same season as the initial injury) and total time taken 

to resume full training and competition. At the conclusion of the 9-month follow-up period, 

all data from the individual clubs were collated into a central database, and discrepancies 

were identified and followed up at the different clubs to be resolved. Some discrepancies 

among medical staff teams were found to diagnose minimal LE-ST injuries and to record 

their total time lost. To resolve these inconsistencies in the injury surveillance process (risk 
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of misclassification of the players), only ST-LE injuries showing a time lost of >8 d (moderate 

to severe) were selected for the subsequent statistical analysis. 

6.3.8. Statistical analysis  

After having completed an exhaustive data cleaning process (detected outliers were 

removed using boxplots [16 cases] and missing data [2.3%] were replaced by the mean 

value of the corresponding variable according to the sex [male or female] of the players) we 

had an imbalanced (showing an imbalance ratio of 0.22) and a high-dimensional data set 

comprising of 72 male and 67 female futsal players (instances) and 66 potential risk factors 

(features). 

Previous studies have documented that the discretization of continuous variables 

may be an effective measure to improve the performance of some classifiers232. Therefore, 

and before the data processing stage was carried out, continuous variables were discretized 

using the unsupervised discretization algorithm available in Weka repository, selecting the 

option “optimize the number of equal-width bins” (a maximum of 10 bins were allowed 

per variable) through a leave-one-out cross validation technique. 

Afterward, eleven data sets were built. In particular, five data sets were built using 

the personal (data set [DS] 1 – personal variables), psychological (DS 2 – sleep quality, DS 3 

– athlete burnout and DS 4 – psychological characteristics related to sport performance) and 

self-perceived (DS 5 – player´s self-perceived chronic ankle joint stability) measures 

recorded from each of the five questionnaires selected in this study. Likewise, three data 

sets were also built using the data from each of the three field-based tests carried out (DS 6 

– ROM-Sport battery, DS 7 – isometric hip abduction and adduction strength test and DS 8 

– Y-Balance test). Finally, three extra data sets were built, one that grouped all the measures 

obtained from the questionnaires (DS 9 – questionnaire-based personal, psychological and 

self-perceived measures), another one that included all the neuromuscular performance 

measures recorded from the field-based tests (DS 10 – neuromuscular performance 

measures from field-based tests) and finally one that contained all personal, psychological, 
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self-perceived chronic ankle instability and neuromuscular performance measures (DS 11 – 

global).  

Due to the fact that this study addressed a class imbalance problem, the taxonomy 

for external (resampling techniques), internal (ensemble techniques) and cost-sensitive 

methods for learning with imbalanced data sets proposed by Galar et al.76 and Lopez et al.78 

was applied in each data set. Furthermore, this taxonomy was implemented with the 

approach recently proposed by Elkarami et al.233 because of the good results (in term of 

predictive performances) showed to handle imbalanced data sets. 

Four classifiers based on different paradigms, namely decision trees with C4.5234 and 

ADTree235, Support Vector Machines with SMO236 and the well-known k-Nearest Neighbor 

(KNN)237 as an Instance-Based Learning approach were selected to be used in the 

resampling, ensemble and cost-sensitive learning methodologies as base classifiers. The 

configuration of each base classifier was optimized through the use of the metaclassifier 

MultiSearch (it performs a search of an arbitrary number of parameters of a classifier and 

chooses the best pair found for the actual filtering and training) with the AUC score as 

evaluation criterion for evaluate classifier performance) (C4.5: confidence factor [from 0.05 

to 0.75], ADTree: number of interactions [from 5 to 50], SMO: complexity [from 1 to 10] and 

ridge [from -10 to 5], KNN: number of neighbors [from 1 to 5]).  

A description of the resampling, ensemble and cost-sensitive learning algorithms 

selected in this study has been written in the appendix 6.7 

Due to the high dimensionality of the DS 10 - neuromuscular measures from field-

based tests (47 variables) and DS 11 - Global (66 variables), before running the algorithms 

included in the taxonomy just described, a feature selection process was carried out in order 

to help base classifiers to reduce the feature space and eliminate irrelevant, weakly relevant 

and/or redundant features. In particular, we used the metaclassifier “attribute selected 

classifier” available in Weka´s repository to address this issue. In this sense, we selected as 

attribute evaluator the classify subset evaluator filter238 because it extracts features from the 
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data without any learning involved, which avoids any risk of overfitting the models and 

the GreedyStepwise as search technique (It performs a conservative greedy forward search 

through the space of attribute subsets). 

To evaluate the performance of the algorithms, the fivefold stratified cross-validation 

technique was used239. That is, we split the data set into five stratified folds maintaining the 

class distribution, each one containing 20% of the patterns of the data set. For each fold, the 

algorithm was trained with the examples contained in the remaining folds (111 or 112 

instances) and then tested with the current fold (n = 27 or 28 instances). This value is set up 

with the aim of having enough positive class instances in the different folds, hence avoiding 

additional problems in the data distribution. Because K-fold cross validation is based on 

random splitting of the data, there is also variation in the K-fold validation estimates240,241. 

Therefore, the fivefold stratified cross validation was repeated a hundred times and results 

were averaged over the runs to obtain a more reliable estimate for the generalization ability. 

The AUC was used as a measure of a classifier´s performance for evaluating which 

models showed high (0.90–1.00), moderate (0.70-0.90 low (0.50-0.70) and fail (<50) scores242. 

Only those algorithms whose performance scores (AUC) were higher than 0.70 were 

considered as acceptable for the purposes of this study and included in the intra and inter 

dataset comparisons analyses. Furthermore, two extra measures from the confusion matrix 

were also used as evaluation criteria: (a) TP rate = TP / (TP + FN) also called sensitivity or 

recall, is the proportion of actual positives that are predicted to be positive, and (b) TN rate 

= TN / (TN + FP) or specificity, that is, the proportion of actual negatives that are predicted 

to be negative. In imbalanced domains, when the AUC has reached a high score (> 0.70), 

the classification performance may not be as perfect as the AUC value reflects because 

plenty of “trash” negative samples exist in the dataset. These trash negative samples may 

raise the AUC value, but a few other negative samples remain mixed with the positive 

samples, which are difficult to distinguish. These few remaining negative samples may 

diminish performance, including precision and recall, while very slightly influencing the 
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AUC score. Consequently, Zou et al.243 suggest to employ the F-score together with the AUC 

as a classification measurement for imbalanced problems. The F-score is a trade-off between 

precision [P = TP / (TP + FP)] and recall (R). 

In order to compare the performance of the algorithms ran in each data set (intra data 

set comparisons) and whose AUC scores were > 0.70, the F score was selected as criterion 

measure. These comparisons were conducted using separate Bayesian inference analyses. 

The Bayesian factor (BF10) was used to quantify the relative degree of evidence for 

supporting the null hypothesis (H0 = no differences across algorithms´ performance scores) 

or alternative hypothesis (H1 = presence of differences across algorithms’ performance 

scores244,245). The BF10 was interpreted using the evidence categories suggested by Lee & 

Wagenmakers246: < 
1

100
 = extreme evidence for H0, from 

1

100
 to < 

1

30
 = very strong evidence for 

H0, from 
1

30
 to < 

1

10
= strong evidence for H0, from 

1

10
 to < 

1

3
 = moderate evidence for H0, from 

1

3
 to <1 anecdotical evidence for H0, from 1 to 3 = anecdotical evidence for H1, from >3 to 10 

= moderate evidence for H1, from >10 to 30 = strong evidence for H1, from > 30 to 100 = very 

strong evidence for H1, > 100 extreme evidence for H1. In those data sets in which (at least) 

a strong evidence for rejecting H0 was found (BF10 >10), a post hoc procedure was carried 

out to identify the best performing model. In the cases in which either there would not be a 

strong evidence for rejecting H0 or a group of algorithms showed the highest F-score results 

(without any relevant difference [BF10 < 10] among then), the best-performing algorithm for 

this dataset would be the one that showed the highest F-scores. 

 Finally, the best performing algorithm of each of the data sets were compared (inter 

dataset comparisons) using the same statistical approach in order to know which 

questionnaire, field-based test or combination showed the best ability to predict moderate 

LE-ST injuries in elite male and female futsal players.   
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6.4. Results 

6.4.1. Soft-tissue lower extremity injuries epidemiology 

There were 31 (16 in males and 15 in females) soft tissue injuries over the follow-up 

period, 17 (54.8%) of which corresponded to thigh muscles (seven hamstrings, four 

quadriceps and six adductors) injuries, eight (25.8%) to knee ligament and six (19.3%) to 

ankle ligament. Injury distribution between the legs was 74.1% dominant leg and 25.9% 

nondominant leg. A total of 13 injures occurred during training and 18 during competition. 

In terms of severity, most injures were categorized as moderate (n = 23), whereas only eight 

cases were considered severe injuries (five anterior cruciate ligament injuries). Five players 

sustained multiple soft tissue non-contact lower extremity injuries during the observation 

period, so their first injury was used as the index injury in the analyses. Consequently, 25 

soft-tissue injuries were finally used to develop the prediction models. 

6.4.2. Prediction models for soft tissue lower extremity injuries 

6.4.2.1. Intra data set comparisons 

As displayed in the appendixes 6.8 to 6.18, only four (DS 6 – lower extremity joint 

ranges of motion, DS 8 – dynamic postural control, DS 10 – neuromuscular performance 

measures from field-based tests and DS 11 – Global) out of 11 data sets resulted in the ability 

of the classification algorithms to build prediction models for LE-ST injuries with AUC 

scores ≥ 0.7. 

 For the DS 6 - lower extremity joint ranges of motion, a total of 23 learning 

algorithms showed AUC scores ≥ 0.7. The Bayesian inference analysis carried out with these 

23 algorithms (Bayesian ANOVA) reported the presence of relevant differences (BF10 > 100 

[extreme evidence for supporting H1]) among their prediction performance scores. The 

subsequent post hoc analysis identified a sub-group of four algorithms whose F-scores were 

similar among them (F-scores ranging from 0.422 to 0.450) and also statistically higher (BF10 

>10) than the rest. Among these four algorithms, the one that showed the highest F-score 
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was the CS-Classifier technique with ADTree as base classifier (table 1). In particular, this 

model generated by the CS-Classifier technique with ADTree as base classifier was 

comprised for just an ADTree decision tree whose size or total number of nodes was 88 and 

its number of leaves or predictor nodes was 59 (figure 1). 

 Table 6.1. Features selected (displayed for order of 

importance) after having applied the classify subset evaluator 

filter to the data sets (DS) 10 and 11 

Neuromuscular measures from field-based tests (DS – 10) 

ROM-HFKE [dominant leg] 

ROM-AKDFKE [dominant leg] 

ROM- AKDFKF [dominant leg] 

ROM-BIL- HABD 

Global (DS – 11) 

ROM-HFKE [dominant leg] 

ROM-AKDFKE [dominant leg] 

ROM- AKDFKF [dominant leg] 

ROM-BIL- HABD 

Self-perceived chronic ankle instability [non-dominant leg] 

History of lower extremity soft tissue injury last season 

ROM: range of motion; HFKE: hip flexion with the knee 

extended; HABD: hip abduction at 90º of hip flexion; AKDFKE: 

ankle dorsi-flexion with the knee extended; AKDFKF: ankle 

dorsi-flexion with the knee flexed; BIL: bilateral ratio. 
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Figure 6.1. Graphical representation of the first classifier of the DS 6 (lower extremity joint 

ranges of motion). Prediction nodes are represented by ellipses and splitter nodes by 

rectangles. Each splitter node is associated with a real valued number indicating the rule 

condition, meaning: If the feature represented by the node satisfies the condition value, the 

prediction path will go through the left child node; otherwise, the path will go through the 

right child node. The numbers before the feature names in the prediction nodes indicate 

the order in which the different base rules were discovered. This ordering can to some 

extent indicate the relative importance of the base rules. The final classification score 
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produced by the tree is found by summing the values from all the prediction nodes reached 

by the instance, with the root node being the precondition of the classifier. If the summed 

score is greater than zero, the instance is classified as true (low risk of LE-ST injury). 

For its part, the DS 8 – dynamic postural control only allowed to the class-balanced 

ensemble CS-UBAG with C4.5 as base classifier building a model with AUC scores ≥ 0.7 

(AUC = 0.701 ± 0.112). In this sense, this model is comprised for 100 different C4.5 decision 

trees (figure 2 shows an example of one of these C4.5 decision trees, the rest can be got upon 

request to the authors). 

Figure 6.2. Graphical representation of the first classifier of the DS 8 (dynamic postural 

control). The arrows show the single pathway (transverse to the tree) through the classifier 
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that should be followed according to participant´s scores in order to achieve a dichotomic 

output (high [Yes] or low [No]) risk of LE-ST injury. 

 The feature selection process carried out in the DS 10 – neuromuscular measures 

from field-based tests identified a subset of four ROM measures as the most relevant 

(considering the individual predictive ability of each feature along with the degree of 

redundancy among them) on which was subsequently applied the taxonomy of learning 

algorithms described in the method section. Thus, a total of 66 algorithms built (using this 

subset of features) prediction models with AUC scores ≥ 0.7. The Bayesian analysis 

conducted with these 66 algorithms documented the existence of relevant differences (with 

an extreme degree of evidence [BF10 > 100]) among their predictive ability scores. The 

subsequent post hoc analysis reported that a group of three algorithms showed similar F-

scores among them (ranging from 0.458 to 0.474) but significantly higher than the rest. 

Therefore, the selection of the best performing algorithm of this DS 10 was based on the 

highest F-score. Thus, the algorithm CS-UBAG with SMO as base classifier was the one that 

showed the highest F-score (0.474 ± 0.111) and hence, it was selected for the inter data set 

comparisons. Figure 6.3 displays an example of the 100 predictors than this prediction 

model is comprised (the rest can be got upon request to the authors). 
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Figure 6.3. Description of the first classifier of the DS 10 (field-based tests). 

The DS 11, that comprised of the 66 personal (n = 8), psychological (n = 9), self-

perceived chronic ankle instability (n = 2) and neuromuscular performance (47) features 

was reduced to a subset of six features by the feature selection metaclassifier selected, from 

which four were ROM measures, one was a self-perceived chronic ankle instability measure 

and the last one belonged to the group of personal measures (table 2). This sub-set of 

features allowed 59 algorithms building prediction models showing AUC scores ≥ 0.7. 

Finally, and it is showed in the table 1, the Bayesian inference and the subsequent post hoc 
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analyses identified the class-balanced ensemble CS-UBAG with C4.5 as base classifier as the 

best-performing algorithm (AUC = 0.749 ±0.105, TP rate = 75.5% ±23.6, TN rate = 62.7 ±11.5, 

F-score = 0.436 ±0.122). An example of the 100 C4.5 decision trees that comprised this model 

is presented in figure 6.4. 

 

Figure 6.4. Graphical representation of the first classifier of the DS 11 

(global). The arrows show the single pathway (transverse to the tree) 

through the classifier that should be followed according to participant´s 

scores in order to achieve a dichotomic output (high [Yes] or low [No]) 

risk of LE-ST injury. 
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Table 6.2. Best-performing sub-set of algorithms for those data sets (DS) that allowed 

building prediction models with AUC scores ≥0.7. Highlighted in bold are the 

algorithms selected in each DS for the posterior inter-group comparative analysis 

Technique 

Performance measures 

AUC TP rate (%) TN rate (%) F-score 

 Lower extremity joint ranges of motion (DS – 6) 

ADTree 0.754 ±0.122 35.8 ±21.6  93.4 ±6.3 0.433 ±0.195 

ROS [ADTree] 0.745 ±0.126 46.1 ±23.5 87.4 ±8.3 0.442 ±0.188 

CS-Classifier [ADTree] 0.757 ±0.124 44.7 ±23.2 89.1 ±8.4 0.450 ±0.184 

CS-UBAG [ADTree] 0.737 ±0.106 48.3 ±21.5 83.0 ±8.1 0.422 ±0.161 

 Dynamic postural control (DS – 8) 

CS-UBAG [C4.5] 0.701 ±0.114 64.9 ±21.1 63.3 ±10.4 0.388 ±0.109 

 Neuromuscular measures from field-based tests (DS – 10) 

CS-OBAG [SMO] 0.760 ±0.103 83.3 ±22.9 62.9 ±10.0 0.469 ±0.115 

CS-UBAG [C4.5] 0.748 ±0.089 87.6 ±20.3 57.2 ±10.7 0.458 ±0.100 

CS-UBAG [SMO] 0.767 ±0.096 85.1 ±21.4 62.1 ±9.8 0.474 ±0.111 

 Global (DS – 11) 

OBAG [SMO] 0.742 ±0.125 51.3 ±25.5 79.5 ±9.6 0.410 ±0.179 

UBAG [SMO] 0.737 ±0.121 54.7 ±25.6 76.3 ±10.2 0.410 ±0.171 

CS-OBAG [C4.5] 0.751 ±0.107 60.9 ±28.2 73.2 ±10.6 0.418 ±0.163 

CS-OBAG [SMO] 0.747 ±0.121 65.1 ±27.9 70.1 ±11.3 0.423 ±0.151 

CS-UBAG [C4.5] 0.749 ±0.105 75.5 ±23.6 62.7 ±11.5 0.436 ±0.122 

CS-UBAG [ADTree] 0.741 ±0.119 62 ±27.3 72 ±10.4 0.419 ±0.161 

CS-UBAG [SMO] 0.747 ±0.116 70.8 ±26.1 66.5 ±10.9 0.433 ±0.137 

CS-UBAG [IBK] 0.722 ±0.124 71.8 ±23.9 61.6 ±12.3 0.413 ±0.122 

CS-SBAG [C4.5] 0.755 ±0.115 55.7 ±28.2 76.2 ±11 0.409 ±0.175 

CS-SBAG [SMO] 0.750 ±0.121 58.4 ±27.2 74.7 ±11.1 0.416 ±0.164 
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AUC: area under the ROC curve; TP rate: true positive rate; TN rate: true negative rate. 

6.4.2.2. Inter data set comparisons 

The inter data set comparison analysis carried out with the best-performing 

algorithms of the DS 6 (CS-Classifier [ADTree]), 8 (CS-UBAG [C4.5]), 10 (CS-UBAG [SMO]) 

and 11 (CS-UBAG [C4.5]) showed that the algorithm of the DS 8 obtained significantly 

lower F-scores than the other three algorithms (BF10 > 100). However, there were no 

statistically differences among the algorithms from the DS 6, 10 and 11. Among these three 

algorithms, the one from the DS 10 demonstrated the highest F-score and was considered 

as the “winning model” (table 6.1). As stated before, models from DS 8, 10 and 11 are 

comprised by 100 classifiers. In term of practical applications, each classifier has a vote or 

decision (yes [high risk of LE-ST injury] or no [lower risk of LE-ST injury]), and the final 

decision regarding whether or not a player might suffer an injury is based on the 

combination of the votes of each individual classifier to each class (yes or no). 

 

6.5. Discussion 

The main findings of this study indicate that only those groups of measures from two 

of the field-based tests (ROM-Sport battery [AUC = 0.751 ± 0.124] and Y-Balance [AUC = 

0.701 ± 0.114]), as independent data sets, can build robust models (AUC ≥ 0.7) to identify 

elite futsal players at risk of sustaining a LE-ST injury. One of the possible reasons why only 

the lower extremity ROM and dynamic postural control measures can separately build 

robust prediction models may be related to the fact that they play a significant role in the 

hazardous lower extremity movement patterns performed by futsal players. In particular 

the execution of numerous weight-bearing high intensity locomotive actions (e.g.: cutting, 

landing and sprinting) that may produce excessive dynamic valgus at the knee with limited 

hip and knee flexion ROMs, which have been identified as primary and modifiable LE-ST 

injury patterns100,101,103,106,247,248. The fact that the best-performing model built with the ROM 
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data set (DS 6) showed a significantly higher prediction performance (and also less decision 

trees [1 vs. 100]) than its counterpart model built with the dynamic postural control data set 

(DS 7) (F-score = 0.450 vs. 0.388) may be due to the fact that the scores obtained thorough 

the Y-Balance test are widely influenced by hip and knee flexion and the ankle dorsiflexion 

ROM measures in the sagittal plane and to less extend by dynamic core stability (in the 

frontal plane) and isokinetic knee flexion strength measures249. Thus, the dynamic postural 

control measures obtained from the Y-Balance test might have allowed the construction of 

a model with an acceptable prediction ability mainly due to the influence of whole lower 

limb posterior kinetic chain ROMs in the distances reached. This hypothesis may also be 

supported by the fact that the feature selection process carried out in the data set in which 

all the neuromuscular performance measures were grouped (DS 10) and also in the data set 

that contained all the measures recorded in this study (DS 11) did not consider any of the 

dynamic postural control measures in contrast to the hip flexion and ankle dorsiflexion 

ROM measures that were considered LE-ST injury predictors. 

Previous studies have explored the individual predictive ability of some (but not 

many) field-based tests (e.g.: Y-Balance58, leg squat83, side plank84 and drop jump70,250) to 

identify athletes from intermittent team sports at high risk of LE-ST injury using traditional 

logistic regression techniques. Most of these studies have reported models exhibiting high 

sensitivity values (TN rates) but very low specificity values (TP rates) and hence, cannot be 

used for injury prediction. For example, O´Connor et al.83 examined whether a standardized 

visual assessment of squatting technique and core stability can predict lower extremity 

injuries in a large sample of collegiate Gaelic players (n = 627). The logistic regression-based 

model generated revealed that while the TP rate was moderate to high (76%) the TN rate 

was low (44%). This circumstance reflects one of the main limitations inherent in traditional 

regression techniques, that is to say, they do not deal well with imbalanced data sets (their 

models usually are biased toward the majority class [true negative rates] to optimize the 

percentage of well-classified instances)76. Furthermore, the validation technique applied to 

the models generated in these studies may not be exigent enough to ensure that the 
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phenomenon of over-fitting was minimized as the models were validated using the data 

from the population with whom the prediction equations were generated27,251. 

Due to their high cost (approximately 250€ per unit) currently available GPS systems 

may not be considered as accessible tools for most practitioners that work in applied sport 

settings, however, it should be noted that prediction models to identify team sport athletes 

(mainly soccer and rugby players) at risk of sustaining a LE-ST injury based exclusively on 

external training workload measures and built using learning algorithms are available89,93,94. 

However, only the model reported by93 has shown AUC scores ≥ 0.7 after 16 weeks of data 

collection (AUC = 0.760). The predictive ability of the model built by Rossi et al.93 is very 

similar to the predictive ability shown in our best-performing prediction model built using 

only lower extremity ROM measures (AUC = 0.757). Nevertheless, our prediction model 

based on ROM measures has a higher external validity for practitioners in applied 

environments due to two main aspects. Firstly, the low cost of the materials needed to 

conduct the assessment maneuvers (inclinometer with a telescopic arm = 200€, lumbar 

protection support = 50€). Secondly, our model was developed and validated using ROM 

measures from 139 elite futsal players from 12 different teams, whereas Rossi et al.93 only 

assessed the external training workload of 26 elite soccer players all from the same team. 

Consequently, the model displayed by Rossi et al.93 can only be used by the medical and 

performance staff of the team in which the external workload measures were collected due 

(among other factors) to the high inter-team differences in training and competitive 

calendars, drills prescribed in training sessions and tactical systems adopted throughout 

match play.  

The results of this study also reported that the combination in the same data set (DS 

9) of all the measures obtained from the five questionnaires selected did not permit 

classification algorithms to build prediction models with acceptable performance scores 

(AUC scores ranged from 0.443 to 0.558). Previous studies have documented the existence 

of significant associations between some personal characteristics (e.g.: age31,32,40 and recent 
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history of injury28–31), psychological constructs (e.g.: physical/emotional exhaustion, reduce 

sense of accomplishment, sports devaluation52,53) and self-perceived chronic ankle 

instability227,252 measures and LE-ST injury. However, it may be possible that the magnitude 

of these associations between the questionnaire-based measures and LE-ST injury, neither 

individually nor collectively, are strong enough to build robust models with the aim of 

identifying elite futsal players at risk of LE-ST injury. On the contrary, the grouping in the 

same data set (DS 10) of all the neuromuscular performance measures obtained from the 

three field-based tests did permit prediction models to be built with moderate performance 

scores (AUC ≥ 0.7). The feature selection technique applied to this data set with the aim of 

reducing its dimensionality (46 features) through deleting redundant and not relevant 

measures (considered as noise) only selected four ROM measures, with whom the CS-

UBAG method with SMO as base classifier built a prediction model with AUC and F-scores 

of 0.767 and 0.474, respectively. This model reported the highest performance scores, 

together with the fact that only two hip and two ankle ROM measures are needed to run 

the screen in a single player making it appropriate for applied scenarios. Finally, the 

inclusion in the same data set (DS 11) of all the eight groups of measures obtained from the 

five questionnaires and three field-based tests did not result in models with significantly 

higher performance scores and hence, the null hypothesis was rejected.  

The prediction properties of the “model of best fit” of the current study were lower 

than that reported by the only other study that has used Machine Learning techniques to 

develop a screening model based on field-based measures (AUC = 0.767 vs 0.850, TP rate = 

85% vs. 85%, TN rate = 62% vs. 85%)95. One of the potential reasons that may explain this 

difference in models´ predictive performance in favor of Rommers et al.´s95 model can be 

attribute to its higher sample size (734 elite young soccer players vs. 139 elite adult futsal 

players) and the less rigorous resampling technique applied in its validation process (hold 

out with 20% of the sample [test data set] vs. 5-folds stratified cross validation). Although 

the predictive properties of our model are lower than Rommers et al.´s95 model (but they 

are acceptable for an injury prediction standpoint), it should be highlighted that only four 
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ROM measures and 5 minutes are needed to run the screen in a single player, unlike 

Rommers et al.´s95 model that requires 20 measures obtained from a questionnaire and five 

different field-based tests, which can take longer than 45 min to collect all of them in a single 

player. 

 

6.6. Limitations  

The current study has a number of limitations that must be acknowledged. The first 

potential limitation of the current study is the population used. The sport background of 

participants was elite futsal and the generalizability to other sport modalities and level of 

play cannot be ascertained. Although all the measures recorded during the screening 

session are purported as LE-ST injury risk factors, there are a number of other measures 

from different questionnaires and field-based tests not included in this study (due to time 

constraints) which have been associated with LE-ST injury (e.g.: back extensor [Biering-

Sørensen test253] and flexor [Flexion-Rotation trunk test254] endurance measures, bilateral 

leg strength asymmetries [hop test battery255], relative leg stiffness and reactive strength 

index256) and that may have improved the ability to predict LE-ST injuries in this cohort of 

athletes. Despite the fact that the number of both futsal players assessed (n = 139) and LE-

ST injuries recorded (n = 25) was large enough to build robust prediction models, the 

inclusion of more instances in the learning processes of the models may have improved 

their performance scores. In fact, simulations carried out in our laboratory using different 

percentages of the data set when creating training subsets (60, 70, 80 and 100% of the data 

available) showed that the learning curve did not show a plateau, hence, the inclusion of 

more instance in both the training and testing subsets may increase to some extent the 

models´ performance score. It should also be noted that the model is dependent on the 

predictors used in the training process, and hence, practitioners must follow the same 

assessment methodologies used in the current study to replicate the current results and to 

make it applicable in their populations. Finally, out of the 88 possible combinations of 
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measures that could have been analyzed with the data from the five questionnaires and 

three field-based tests, only three of them were explored, from both a time perspective and 

based on those that would be most interesting from a practitioner perspective. Therefore, it 

is unknown if other combinations of measures, different from the ones analyzed in this 

study, may have provided prediction models with higher AUC scores. 

 

6.7. Conclusions 

Current statistical methods used to predict injury risk are limited but newer 

techniques that utilize machine learning approaches can provide meaningful data when 

exploring specific injuries. The current study has identified a range of simple, quick and 

easy to employ field-based measures can have good predictive power in determining LE-

ST injuries in elite futsal players. Given that these field-based tests require little equipment 

and can be employed quickly by trained staff, they should be included as an essential 

component of the injury management strategy in elite futsal.    
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6.8. Appendixes 

Appendix 6.1. TRIPOD Checklist: Prediction Model Development and Validation 

Section/Topic 
Item 

Page 
Checklist Item 

Title and abstract  

Title 1 D-V Identify the study as developing and/or validating a multivariable 

prediction model, the target population, and the outcome to be 

predicted. 

183 

Abstract 2 D-V Provide a summary of objectives, study design, setting, participants, 

sample size, predictors, outcome, statistical analysis, results, and 

conclusions. 

183 

Introduction 

Background and  

objectives 

3a D-V Explain the medical context (including whether diagnostic or 

prognostic) and rationale for developing or validating the 

multivariable prediction model, including references to existing 

models 

185 

3b D-V Specify the objectives, including whether the study describes the 

development or validation of the model or both 

187 

Methods 

Source of data 4a D-V Describe the study design or source of data (e.g., randomized trial, 

cohort, or registry data), separately for the development and 

validation data sets, if applicable 

188 

4b D-V Specify the key study dates, including start of accrual; end of accrual; 

and, if applicable, end of follow-up 

189 

Participants 5a D-V Specify key elements of the study setting (e.g., primary care, 

secondary care, general population) including number and location 

of centres. 

187 

5b D-V Describe eligibility criteria for participants. 188 

5c D-V Give details of treatments received, if relevant. - 

Outcome 6a D-V Clearly define the outcome that is predicted by the prediction model, 

including how and when assessed. 

191 

6b D-V Report any actions to blind assessment of the outcome to be 

predicted. 
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Predictors 7a D-V Clearly define all predictors used in developing or validating the 

multivariable prediction model, including how and when they were 

measured. 

189 

7b D-V Report any actions to blind assessment of predictors for the outcome 

and other predictors. 

- 

Sample size 8 D-V Explain how the study size was arrived at. - 

Missing data 9 D-V Describe how missing data were handled (e.g., complete-case 

analysis, single imputation, multiple imputation) with details of any 

imputation method. 

192 

Statistical analysis 

methods 

10a D Describe how predictors were handled in the analyses. 192 

10b D Specify type of model, all model-building procedures (including 

any predictor selection), and method for internal validation. 

193 

10c V For validation, describe how the predictions were calculated. 193 

10d D-V Specify all measures used to assess model performance and, if 

relevant, to compare multiple models. 

193 

10e V Describe any model updating (e.g., recalibration) arising from the 

validation, if done. 

194 

Risk groups 11 D-V Provide details on how risk groups were created, if done. 193 

Development 

vs. validation 

12 V For validation, identify any differences from the development data in 

setting, eligibility criteria, outcome, and predictors. 

193 

Results 

Participants 13a D-V Describe the flow of participants through the study, including the 

number of participants with and without the outcome and, if 

applicable, a summary of the follow-up time. A diagram may be 

helpful. 

- 

13b D-V Describe the characteristics of the participants (basic demographics, 

clinical features, available predictors), including the number of 

participants with missing data for predictors and outcome. 

187 

13c V For validation, show a comparison with the development data of the 

distribution of important variables (demographics, predictors and 

outcome). 

- 

Model development 14a D Specify the number of participants and outcome events in each 

analysis. 

187 

14b D If done, report the unadjusted association between each candidate 189 
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predictor and outcome. 

Model specification 15a D Present the full prediction model to allow predictions for individuals 

(i.e., all regression coefficients, and model intercept or baseline 

survival at a given time point). 

193 

15b D Explain how to the use the prediction model. 202 

Model performance 16 D-V Report performance measures (with CIs) for the prediction model. appx. 

Model-updating 17 V If done, report the results from any model updating (i.e., model 

specification, model performance). 

8-10-

SInf 

Discussion 

Limitations 18 D-V Discuss any limitations of the study (such as non-representative 

sample, few events per predictor, missing data). 

210 

Interpretation 19a V For validation, discuss the results with reference to performance in 

the development data, and any other validation data. 

207 

19b D-V Give an overall interpretation of the results, considering objectives, 

limitations, results from similar studies, and other relevant evidence. 

207 

Implications 20 D-V Discuss the potential clinical use of the model and implications for 

future research. 

207 

Other information 

Supplementary 

information 

21 D-V Provide information about the availability of supplementary 

resources, such as study protocol, Web calculator, and data sets. 
appx. 

Funding 22 D-V Give the source of funding and the role of the funders for the present 

study. 
- 

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a 

validation of a prediction model are denoted by V, and items relating to both are denoted D-V. We recommend 

using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document. 
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Appendix 6.2. Description of the personal or individual injury risk factors recorded 

Name Labels 

Player position Goalkeeper or outfield player 

Current level of play 1st division or 2nd division 

Dominant leg Right, left or two-footed 

Sex Male or female 

Age 
Sub21, sub23, senior (23-30 y) or veteran (> 

30y) 

Body mass (kg) 
<50, 50-54.1, >54.1-58.2, >58.2-62.3, >62.3-66.4, 

>66.4-70.5 or >70.5 

Stature (cm) 
<148.5, 148.5-156.1, >156.1-163.7, >163.7-171.2, 

>171.2-178.8, >178.8-186.4 or >186.4 

History of lower extremity soft tissue 

injury last season 
Yes or no 

 

 

  



Chapter 6: Study 4 

 

210 

Appendix 6.3. Description of the psychological risk factors recorded 

Name Labels 

Sleep quality <2.46, 2.46-3.02, >3.02-3.58, >3.58-4.14 or >4.14 

Athlete Burnout 

a) Physical/emotional exhaustion <1.5, 1.5-1.8, >1.8-2.1, >2.1-2.4 or >2.4 

b) Reduced sense of accomplishment <2.1 or >2.1 

c) Sport devaluation 
<1.3, 1.3-1.6, >(1.6-1.9, >1.9-2.2, >2.2-2.5, >2.5-2.8, 

>2.8-3.1, >3.1-3.4, >3.4-3.7 or >3.7 

Psychological Characteristics Related to Sport Performance 

a) Stress control <30.8, 30.8-42.6, >42.6-54.4, >54.4-66.2 or >66.2 

b) Influence of sport evaluation 
<20.8, >20.8-23.6, >23.6-26.4, >26.4-29.2, >29.2-32, 

>32-34.8 or >34.8 

c) Mental skills <13, 13-15, >15-17, >17-19, >19-21, >21-23 or >23 

d) Motivation 
<13.1, 13.1-15.2, >15.2-17.3, >17.3-19.4, >19.4-21.5, 

>21.5-23.6, >23.6-25.7 or >25.7 

e) Team cohesion <17, 17-23 or >23 
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Appendix 6.4. Description of the measures obtained from the isometric hip abduction and adduction strength test 

Name 
Labels 

Dominant Leg Non-Dominant Leg 

PTISOM-HipAbd-Normalized 

<1.64, 1.64-1.89, >1.89-2.14, >2.14-

2.39, >2.39-2.63, >2.63-2.88 or 

>2.88 

<1.85, 1.85-2.17, >2.17-2.5, 

>2.5-2.83, >2.83-3.16, >3.16-

3.48 or >3.48 

PTISOM-HipAdd- Normalized 
<1.57, 1.57-1.84, >1.84-2.11, >2.11-

2.37, >2.37-2.63, >2.63-2.9 or >2.9 

<1.58, 1.58-1.86, >1.86-2.14, 

>2.14-2.42 or >2.42 

UnRatio-ISOM-HipAbd/HipAdd 

<0.74, 0.74-0.82, >0.82-0.91, >0.91-

0.99, >0.99-1.08, >1.08-1.17, >1.17-

1.25, >1.25-1.34, >1.34-1.42 or 

>1.42 

<0.69, 0.69-0.83, >0.83-0.97, 

>0.97-1.11, >1.11-1.24 or 

>1.24 

BilaRatio-PTISOM-HipAbd No Asymmetry or Asymmetry 

BilaRatio-PTISOM-HipAdd No Asymmetry or Asymmetry 

Bila: bilateral; Uni: unilateral; ISOM: isometric; PT: peak torque; Abd: abduction; Add: adduction. 
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Appendix 6.5. Description of the measures obtained from the Y-Balance test 

Name 
Labels 

Dominant Leg No Dominant Leg 

Y-Balance-Anterior 
<50.9, 50.9-55.7, >55.7-60.5, >60.55-

65.4, >65.4-70.2 or >70.2 

<51.3, 51.3-56.7, >56.7-62.2, >62.2-

67.7, >67.7-73.1 or >73.1 

Y-Balance-PosteroMedial 

<83.1, 83.1-88.7, >88.7-94.4, >94.4-

100.1, >100.1-105.8, >105.8-111.4 or 

>111.4 

<93.3, 93.3-97.6, >97.6-101.8, 

>101.8-106.1, >106.1-110.4 or 

>110.4 

Y-Balance-PosteroLateral 
<81.7, 81.7-91.4, >91.4-101.1, 

>101.1-110.7 or >110.7 

<89.2, 89.2-97.0, >97.0-104.9, 

>104.9-112.7 or >112.7 

BilaRatio-Y-Balance-Anterior No Asymmetry or Asymmetry 

BilaRatio-Y-Balance-PosteroMedial No Asymmetry or Asymmetry 

BilaRatio-Y-Balance-PosteroLateral No Asymmetry or Asymmetry 

Y-Balance-Composite 
<78.4, 78.4-85.9, >85.9-93.3 or 

>93.3 

<80.4, 80.4-84.1, >84.1-87.8, >87.8-91.5 

or >91.5 
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Appendix 6.6. Description of the measures obtained from the lower extremity range of motion assessment tests 

Name 

Labels 

Dominant Leg Non-Dominant Leg 

ROM-HFKF 
<117.5, 117.5-125, >125-132.5, >132.5-140, 

>140-147.5 or >147.5 

<118.2, 118.2-126.3, >126.3-134.5, >134.5-142.7, 

>142.7-150.8 or >150.8 

ROM-HFKE <63.7, 63.7-71.4, >71.4-79.1 or >79.1 <59, 59-68 or >68 

ROM-HE 
<0.1, 0.1-3.8, >3.8-7.7, >7.7-11.6, >11.6-15.5 

or >15.5 

<0.1, 0.1-4.2, >4.2-8.3, >8.3-12.4, >12.4-16.5, 

>16.5-20.6 or >20.6 

ROM-HABD 
<42.9, 42.9-48.8, >48.8-54.7, >54.7-60.6, 

>60.6-66.5, >66.5-72.4, >72.4-78.3 or >78.3 
<46.5, 46.5-67, >67-87.5 or >87.5 

ROM-HIR <35, 35-50, >50-65 or >65 <30.9, 30.9-36.8, >36.8-42.7 or >42.7 

ROM-HER 
<40.8, 40.8-50.6, >50.6-60.4, >60.4-70.2 or 

>70.2 
<42.8, 42.8-54.6, >54.6-66.4, >66.4-78.2 or >78.2 

ROM-KF 

<106.4, 106.4-112.8, >112.8-119.2, >119.2-

125.6, >125.6-132, >132-138.4, >138.4-

144.8 or >144.8 

<98.4, 98.4-105.7, >105.7-113.1, >113.1-120.5, 

>120.5-127.9, >127.9-135.2, >135.2-142.6 or 

>142.6 

ROM-AKDFKE <44.5 or >44.5 <24.4, 24.4-29.8, >29.8-35.2, >35.2-40.6 or >40.6 

ROM- AKDFKF 
<24.9, 24.9-27.8, >27.8-30.7, >30.7-33.6, 

>33.6-36.5, >36.5-39.4, >39.4-42.3 or >42.3 
<24, 24-27, >27-30, >30-33, >33-36, >36-39 or >39 

ROM-BIL- HFKF No Asymmetry or Asymmetry 

ROM-BIL- HFKE No Asymmetry or Asymmetry 

ROM-BIL- HE No Asymmetry or Asymmetry 

ROM-BIL- HABD No Asymmetry or Asymmetry 

ROM-BIL- HIR No Asymmetry or Asymmetry 

ROM-BIL- HER No Asymmetry or Asymmetry 

ROM-BIL- KF No Asymmetry or Asymmetry 

ROM-BIL- AKDFKE No Asymmetry or Asymmetry 

ROM-BIL- AKDFKF No Asymmetry or Asymmetry 

ROM: range of motion; HFKF: hip flexion with the knee flexed; HFKE: hip flexion with the knee extended; HE: Hip 

extension; HABD: hip abduction at 90º of hip flexion; HIR: hip internal rotation; HER: hip external rotation; KF: knee 

flexion; AKDFKE: ankle dorsi-flexion with the knee extended; AKDFKF: ankle dorsi-flexion with the knee flexed; BIL: 

bilateral ratio. 
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Appendix 6.7. Dascriptions’ of the resampling, ensemble and cost-sensitive algorithms 

applied to the base classifiers. 

With regard to the resampling techniques, four (two oversampling and two 

undersampling algorithms) of the most popular methodologies were selected, which are 

the synthetic minority oversampling technique (SMOTE)257, random oversampling (ROS), 

random undersampling (RUS) and Wilson’s edited nearest neighbor rule (ENN)258. In the 

four resampling techniques selected, a level of balance in the training data near the 40/60 

was attempted. In addition, the interpolations that are computed to generate new synthetic 

data are made considering the k-5-nearest neighbors of minority class instances using the 

Euclidean distance. 

Regarding ensemble learning algorithms, classic ensembles such as Bagging259, 

AdaBoost260 and AdaBoot.M1261 were included in this study. Furthermore, the algorithm 

families designed to deal with skewed class distributions in data sets were also included: 

Boosting-based and Bagging-based. The Boosting based ensembles that were considered in 

the current study were SMOTEBoost262 and RUSBoost263. Concerning Bagging based 

ensembles, it was included from the OverBagging group, OverBagging (which uses ROS)264, 

UnderBagging (which uses RUS)264 and SMOTEBagging264. The number of internal 

classifiers used within each ensemble learning algorithm was set 100 (always the same) base 

classifiers (C4.5, ADTree, SVM and KNN) by default. 

Concerning the cost-sensitive learning algorithms, two different algorithms were 

used, namely MetaCost265 and cost-sensitive classifier. Cost-sensitive learning solutions 

incorporating both the data (external) and algorithmic level (internal) approaches assume 

higher misclassification costs for samples in the minority class and seek to minimize the 

high cost errors. For the both cost-sensitive algorithms selected, the cox matrix set-up was 

to: 

c =  {
0 2
1 0

} where a false negative has a cost of 2 and false positive had a cost of 1. 
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The behavior of some specific combinations of class-balanced ensembles with cost-

sensitive base classifiers was also studied. Finally, the algorithm Random Forest266 in 

isolation and in combination with the resampling techniques was also explored due to its 

good results showed in previous studies267. 

For the sake of brevity and the lack of space, the code of the algorithms used in this 

study has not been written here. Instead, we have only specified the names and refer the 

reader to their original sources. Furthermore, all the classification algorithms used are 

available in Weka Data Mining software. 

  



Chapter 6: Study 4 

 

216 

Appendix 6.8. AUC results (mean and standard deviation) of the personal or individual characteristics data set 

(DS 1) for the five base classifiers in isolation and after applying in them the resampling, ensemble (Classic, 

Boosting-based, Bagging-based and Class-balanced ensembles) and cost-sensitive learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.475 ±0.091 0.579 ±0.117 0.494 ±0.016 0.504 ±0.126 0.492 ±0.111 

  Resampling Techniques 

SMOTE 0.474 ±0.134 0.561 ±0.123 0.488 ±0.096 0.487 ±0.120 0.522 ±0.113 

ROS 0.454 ±0.117 0.570 ±0.129 0.496 ±0.100 0.488 ±0.121 0.497 ±0.114 

RUS 0.495 ±0.103 0.565 ±0.131 0.505 ±0.109 0.517 ±0.129 0.490 ±0.124 

ENN 0.500 ±0.006 0.563 ±0.128 0.491 ±0.027 0.505 ±0.137 0.496 ±0.121 

  Classic Ensembles 

ADB1 0.435 ±0.117 0.472 ±0.115 0.501 ±0.101 0.476 ±0.135 - - 

M1 0.454 ±0.113 0.475 ±0.120 0.511 ±0.124 0.469 ±0.109 - - 

BAG 0.496 ±0.117  0.579 ±0.109 0.512 ±0.118 0.502 ±0.120 - - 

Decorate 0.422 ±0.124 0.501 ±0.120 0.494 ±0.016 0.433 ±0.113 - - 

  Boosting-based Ensembles 

SBO 0.483 ±0.121 0.513 ±0.122 0.509 ±0.129 0.482 ±0.118 - - 

RUSB 0.464 ±0.124 0.486 ±0.114 0.485 ±0.128 0.458 ±0.119 - - 

  Bagging-based Ensembles 

OBAG 0.492 ±0.112 0.573 ±0.107 0.554 ±0.116 0.483 ±0.111 - - 

UBAG 0.528 ±0.119 0.579 ±0.106 0.568 ±0.114 0.528 ±0.119 - - 

SBAG 0.533 ±0.112 0.583 ±0.105 0.551 ±0.116 0.524 ±0.112 - - 

  Cost-sensitive Classification 

MetaCost 0.499 ±0.013 0.560 ±0.117 0.485 ±0.036 0.508 ±0.135 - - 

CS-Classifier 0.480 ±0.060 0.574 ±0.122 0.474 ±0.061 0.505 ±0.125 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.521 ±0.111 0.574 ±0.107 0.564 ±0.116 0.485 ±0.113 - - 

CS-UBAG 0.538 ±0.112 0.581 ±0.108 0.578 ±0.114 0.528 ±0.121 - - 

CS-SBAG 0.545 ±0.109 0.584 ±0.104 0.551 ±0.116 0.523 ±0.113 - - 

 



  Epidemiology and prediction models of injuries in elite futsal 

 

217 

Appendix 6.9. AUC results (mean and standard deviation) of the sleep quality data set (DS 2) for the four base 

classifiers in isolation and after applying in them the resampling. ensemble (Classic, Boosting-based, Bagging-

based and Class-balanced ensembles) and cost-sensitive learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.500 ±0.000 0.458 ±0.123 0.500 ±0.000 0.461 ±0.124 0.454 ±0.122 

  Resampling Techniques 

SMOTE 0.410 ±0.127 0.409 ±0.131 0.451 ±0.092 0.409 ±0.130 0.407 ±0.131 

ROS 0.475 ±0.068 0.452 ±0.131 0.492 ±0.065 0.455 ±0.128 0.444 ±0.133 

RUS 0.491 ±0.044 0.459 ±0.132 0.490 ±0.074 0.460 ±0.134 0.458 ±0.134 

ENN 0.500 ±0.000 0.466 ±0.132 0.498 ±0.011 0.467 ±0.134 0.463 ±0.133 

  Classic Ensembles 

ADB1 0.452 ±0.111 0.458 ±0.123 0.473 ±0.088 0.458 ±0.122 - - 

M1 0.454 ±0.093 0.459 ±0.122 0.459 ±0.120 0.458 ±0.122 - - 

BAG 0.485 ±0.062 0.425 ±0.117 0.523 ±0.091 0.455 ±0.122 - - 

Decorate 0.497 ±0.032 0.433 ±0.126 0.500 ±0.000 0.451 ±0.124 - - 

  Boosting-based Ensembles 

SBO 0.421 ±0.126 0.421 ±0.126 0.444 ±0.106 0.422 ±0.128 - - 

RUSB 0.461 ±0.100 0.462 ±0.129 0.456 ±0.122 0.474 ±0.126 - - 

  Bagging-based Ensembles 

OBAG 0.415 ±0.119 0.407 ±0.120 0.411 ±0.118 0.416 ±0.120 - - 

UBAG 0.477 ±0.129 0.444 ±0.120 0.509 ±0.121 0.454 ±0.122 - - 

SBAG 0.378 ±0.119 0.376 ±0.117 0.413 ±0.117 0.375 ±0.118 - - 

  Cost-sensitive Classification 

MetaCost 0.500 ±0.000 0.503 ±0.106 0.498 ±0.012 0.576 ±0.122 - - 

CS-Classifier 0.500 ±0.000 0.458 ±0.122 0.484 ±0.030 0.461 ±0.124 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.415 ±0.118 0.407 ±0.120 0.426 ±0.118 0.416 ±0.118 - - 

CS-UBAG 0.431 ±0.125 0.438 ±0.121 0.431 ±0.121 0.433 ±0.121 - - 

CS-SBAG 0.370 ±0.117 0.374 ±0.118 0.365 ±0.115 0.373 ±0.118 - - 
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Appendix 6.10. AUC results (mean and standard deviation) of the Athlete Burnout data set (DS 3) for the four 

base classifiers in isolation and after applying in them the resampling. ensemble (Classic, Boosting-based, 

Bagging-based and Class-balanced ensembles) and cost-sensitive learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.500 ±0.000 0.558 ±0.127 0.495 ±0.024 0.642 ±0.117 0.633 ±0.121 

  Resampling Techniques 

SMOTE 0.543 ±0.122 0.537 ±0.126 0.511 ±0.102 0.614 ±0.114 0.598 ±0.114 

ROS 0.542 ±0.123 0.568 ±0.121 0.532 ±0.102 0.642 ±0.118 0.630 ±0.120 

RUS 0.494 ±0.044 0.558 ±0.123 0.525 ±0.097 0.604 ±0.121 0.592 ±0.127 

ENN 0.500 ±0.000 0.553 ±0.125 0.502 ±0.038 0.619 ±0.127 0.618 ±0.128 

  Classic Ensembles 

ADB1 0.577 ±0.125 0.617 ±0.126 0.523 ±0.099 0.627 ±0.127 - - 

M1 0.564 ±0.123 0.615 ±0.126 0.560 ±0.122 0.630 ±0.118 - - 

BAG 0.506 ±0.106 0.579 ±0.128 0.530 v0.118 0.636 ±0.120 - - 

Decorate 0.521 ±0.122 0.588 ±0.133 0.495 ±0.024 0.610 ±0.124 - - 

  Boosting-based Ensembles 

SBO 0.596 ±0.123 0.594 ±0.126 0.570 ±0.119 0.619 ±0.122 - - 

RUSB 0.591 ±0.122 0.612 ±0.126 0.572 ±0.122 0.624 ±0.121 - - 

  Bagging-based Ensembles 

OBAG 0.610 ±0.124 0.583 ±0.126 0.588 ±0.121 0.636 ±0.120 - - 

UBAG 0.562 ±0.133 0.577 ±0.125 0.568 ±0.119 0.617 ±0.123 - - 

SBAG 0.585 ±0.124 0.581 ±0.126 0.570 ±0.119 0.622 ±0.116 - - 

  Cost-sensitive Classification 

MetaCost 0.500 ±0.000 0.555 ±0.125 0.512 ±0.048 0.562 ±0.138 - - 

CS-Classifier 0.500 ±0.000 0.562 ±0.125 0.523 ±0.063 0.643 ±0.118 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.592 ±0.128 0.581 ±0.128 0.580 ±0.122 0.635 ±0.119 - - 

CS-UBAG 0.564 ±0.122 0.578 ±0.127 0.568 ±0.124 0.616 ±0.125 - - 

CS-SBAG 0.583 ±0.119 0.579 ±0.127 0.565 ±0.121 0.624 ±0.116 - - 
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Appendix 6.11. AUC results (mean and standard deviation) of the psychological characteristics related 

to sport performance data set (DS 4) for the four base classifiers in isolation and after applying in them 

the resampling. ensemble (Classic, Boosting-based, Bagging-based and Class-balanced ensembles) and 

cost-sensitive learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.500 ±0.000 0.435 ±0.122 0.492 ±0.015 0.457 ±0.105 0.379 ±0.101 

  Resampling Techniques 

SMOTE 0.458 ±0.126 0.471 ±0.135 0.490 ±0.102 0.448 ±0.116 0.417 ±0.126 

ROS 0.422 ±0.122 0.441 ±0.128 0.451 ±0.090 0.458 ±0.107 0.384 ±0.104 

RUS 0.494 ±0.050 0.448 ±0.132 0.450 ±0.102 0.474 ±0.126 0.408 ±0.120 

ENN 0.500 ±0.000 0.450 ±0.131 0.490 ±0.023 0.477 ±0.116 0.403 ±0.111 

  Classic Ensembles 

ADB1 0.419 ±0.121 0.458 ±0.114 0.463 ±0.103 0.487 ±0.105 - - 

M1 0.427 ±0.125 0.446 ±0.119 0.440 ±0.121 0.414 ±0.095 - - 

BAG 0.455 ±0.115 0.431 ±0.116 0.405 ±0.112 0.468 ±0.110 - - 

Decorate 0.487 ±0.137 0.467 ±0.121 0.492 ±0.015 0.383 ±0.120 - - 

  Boosting-based Ensembles 

SBO 0.451 ±0.126 0.449 ±0.123 0.452 ±0.128 0.467 ±0.122 - - 

RUSB 0.427 ±0.121 0.435 ±0.121 0.439 ±0.128 0.464 ±0.126 - - 

  Bagging-based Ensembles 

OBAG 0.417 ±0.109 0.434 ±0.117 0.440 ±0.121 0.456 ±0.113 - - 

UBAG 0.429 ±0.113 0.430 ±0.118 0.412 ±0.119 0.474 ±0.117 - - 

SBAG 0.436 ±0.115 0.457 ±0.119 0.459 ±0.120 0.445 ±0.115 - - 

  Cost-sensitive Classification 

MetaCost 0.500 ±0.000 0.417 ±0.118 0.480 ±0.029 0.465 ±0.105 - - 

CS-Classifier 0.500 ±0.000 0.433 ±0.121 0.463 ±0.047 0.457 ±0.105 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.426 ±0.109 0.436 ±0.118 0.434 ±0.121 0.456 ±0.113 - - 

CS-UBAG 0.437 ±0.115 0.427 ±0.117 0.427 ±0.120 0.471 ±0.115 - - 

CS-SBAG 0.447 ±0.118 0.456 ±0.120 0.448 ±0.120 0.443 ±0.116 - - 
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Appendix 6.12. AUC results (mean and standard deviation) of the self-perceived chronic ankle instability 

data set (DS 5) for the four base classifiers in isolation and after applying in them the resampling. 

ensemble (Classic, Boosting-based, Bagging-based and Class-balanced ensembles) and cost-sensitive 

learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.500 ±0.000 0.596 ±0.108 0.497 ±0.014 0.596 ±0.109 0.598 ±0.111 

  Resampling Techniques 

SMOTE 0.572 ±0.108 0.564 ±0.107 0.520 ±0.085 0.552 ±0.108 0.556 ±0.108 

ROS 0.551 ±0.100 0.597 ±0.115 0.532 ±0.079 0.592 ±0.118 0.596 ±0.118 

RUS 0.517 ±0.075 0.582 ±0.118 0.530 ±0.087 0.582 ±0.120 0.588 ±0.122 

ENN 0.500 ±0.000 0.590 ±0.116 0.500 ±0.019 0.589 ±0.120 0.589 ±0.120 

  Classic Ensembles 

ADB1 0.595 ±0.108 0.597 ±0.109 0.526 ±0.091 0.596 ±0.110 - - 

M1 0.599 ±0.113 0.595 ±0.109 0.605 ±0.115 0.595 ±0.108 - - 

BAG 0.583 ±0.111 0.600 ±0.112 0.543 ±0.085 0.597 ±0.112 - - 

Decorate 0.519 ±0.122 0.508 ±0.117 0.497 ±0.014 0.509 ±0.118 - - 

  Boosting-based Ensembles 

SBO 0.558 ±0.114 0.551 ±0.112 0.559 ±0.116 0.541 ±0.110 - - 

RUSB 0.584 ±0.111 0.593 ±0.113 0.579 ±0.123 0.590 ±0.114 - - 

  Bagging-based Ensembles 

OBAG 0.588 ±0.116 0.604 ±0.114 0.604 ±0.111 0.597 ±0.115 - - 

UBAG 0.612 ±0.118 0.599 ±0.113 0.595 ±0.123 0.594 ±0.112 - - 

SBAG 0.567 ±0.113 0.576 ±0.113 0.606 ±0.116 0.566 ±0.115 - - 

  Cost-sensitive Classification 

MetaCost 0.499 ±0.007 0.518 ±0.123 0.498 ±0.024 0.478 ±0.126 - - 

CS-Classifier 0.501 ±0.030 0.596 ±0.109 0.532 ±0.054 0.596 ±0.110 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.589 ±0.116 0.604 ±0.113 0.604 ±0.113 0.597 ±0.115 - - 

CS-UBAG 0.608 ±0.117 0.601 ±0.113 0.599 ±0.113 0.594 ±0.114 - - 

CS-SBAG 0.555 ±0.111 0.574 ±0.113 0.602 ±0.112 0.556 ±0.113 - - 
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Appendix 6.13. AUC results (mean and standard deviation) of the lower extremity joint ranges of motion 

data set (DS 6) for the five base classifiers in isolation and after applying in them the resampling, 

ensemble and cost-sensitive learning techniques selected 

Technique 

Base classifiers   

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.629 ±0.115 0.754 ±0.122 0.567 ±0.098 0.591 ±0.125 0.690  ±0.125 

  Resampling Techniques 

SMOTE 0.614 ±0.121 0.710 ±0.126 0.563 ±0.101 0.601 ±0.117 0.679 ±0.117 

ROS 0.620 ±0.115 0.745 ±0.126 0.567 ±0.097 0.592 ±0.120 0.710 ±0.111 

RUS 0.640 ±0.122 0.692 ±0.130 0.595 ±0.117 0.624 ±0.122 0.688 ±0.121 

ENN 0.602 ±0.113 0.695 ±0.130 0.561 ±0.102 0.601 ±0.126 0.674 ±0.125 

  Classic Ensembles 

ADB1 0.602 ±0.088 0.750 ±0.112 0.575 ±0.099 0.530 ±0.121 - - 

M1 0.614 ±0.092 0.726 ±0.121 0.575 ±0.099 0.556 ±0.115 - - 

BAG 0.742 ±0.105 0.755 ±0.110 0.677 ±0.111 0.609 ±0.115 - - 

Decorate 0.681 ±0.125 0.738 ±0.113 0.569 ±0.098 0.609 ±0.124 - - 

  Boosting-based Ensembles 

SBO 0.652 ±0.113 0.669 ±0.129 0.573 ±0.098 0.577 ±0.143 - - 

RUSB 0.672 ±0.113 0.675 ±0.128 0.616 ±0.104 0.628 ±0.126 - - 

  Bagging-based Ensembles  

OBAG 0.758 ±0.088 0.755 ±0.109 0.677 ±0.110 0.611 ±0.114 - - 

UBAG 0.758 ±0.088 0.735 ±0.107 0.685 ±0.107 0.652 ±0.108 - - 

SBAG 0.736 ±0.092 0.735 ±0.106 0.681 ±0.110 0.630 ±0.116 - - 

  Cost-sensitive Classification 

MetaCost 0.620 ±0.115 0.728 ±0.125 0.564 ±0.096 0.605 ±0.129 - - 

CS-Classifier 0.641 ±0.112 0.757 ±0.124 0.567 ±0.098 0.500 ±0.000 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.746 ±0.083 0.755 ±0.108 0.677 ±0.111 0.607 ±0.113 - - 

CS-UBAG 0.755 ±0.086 0.737 ±0.106 0.686 ±0.113 0.643 ±0.114 - - 

CS-SBAG 0.733 ±0.089 0.735 ±0.107 0.681 ±0.110 0.629 ±0.116 - - 

In bold are highlighted those learning techniques that built prediction models with AUC scores >0.7. 
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Appendix 6.14. AUC results (mean and standard deviation) of the isometric hip abduction and adduction 

strength data set (DS 7) for the five base classifiers in isolation and after applying in them the resampling, 

ensemble (Classic, Boosting-based, Bagging-based and Class-balanced ensembles) and cost-sensitive 

learning techniques selected 

Technique 

Base classifiers  

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.520 ±0.095 0.510 ±0.130 0.491 ±0.040 0.614 ±0.122 0.567 ±0.123 

  Resampling Techniques 

SMOTE 0.563 ±0.132 0.527 ±0.135 0.479 ±0.095 0.605 ±0.119 0.562 ±0.125 

ROS 0.534 ±0.117 0.522 ±0.139 0.495 ±0.104 0.621 ±0.122 0.566 ±0.123 

RUS 0.539 ±0.122 0.521 ±0.141 0.498 ±0.112 0.557 ±0.139 0.558 ±0.137 

ENN 0.507 ±0.096 0.512 ±0.133 0.493 ±0.055 0.591 ±0.134 0.556  ±0.130 

  Classic Ensembles 

ADB1 0.578 ±0.133 0.524 ±0.131 0.530 ±0.118 0.600 ±0.119 - - 

M1 0.569 ±0.131 0.531 ±0.132 0.524 ±0.120 0.563 ±0.122 - - 

BAG 0.501 ±0.116 0.531 ±0.128 0.496 ±0.121 0.635 ±0.124 - - 

Decorate 0.553 ±0.124 0.572 ±0.128 0.491 ±0.040 0.568 ±0.133 - - 

  Boosting-based Ensembles 

SBO 0.540 ±0.131 0.501 ±0.132 0.521 ±0.130 0.614 ±0.128 - - 

RUSB 0.542 ±0.134 0.533 ±0.133 0.524 ±0.131 0.568 ±0.136 - - 

  Bagging-based Ensembles  

OBAG 0.570 ±0.124 0.535 ±0.131 0.505 ±0.118 0.638 ±0.124 - - 

UBAG 0.538 ±0.135 0.543 ±0.129 0.501 ±0.117 0.608 ±0.132 - - 

SBAG 0.563 ±0.122 0.531 ±0.130 0.508 ±0.118 0.626 ±0.122 - - 

  Cost-sensitive Classification 

MetaCost 0.501 ±0.093 0.500 ±0.135 0.494 ±0.066 0.585 ±0.129 - - 

CS-Classifier 0.522 ±0.100 0.514 ±0.130 0.492 ±0.074 0.614 ±0.123 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.574 ±0.125 0.535 ±0.130 0.523 ±0.118 0.637 ±0.124 - - 

CS-UBAG 0.545 ±0.123 0.526 ±0.125 0.525 ±0.119 0.608 ±0.132 - - 

CS-SBAG 0.571 ±0.127 0.533 ±0.130 0.522 ±0.117 0.628 ±0.122 - - 
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Appendix 6.15. AUC results (mean and standard deviation) of the dynamic postural control data set (DS 

6) for the five base classifiers in isolation and after applying in them the resampling, ensemble and cost-

sensitive learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.606 ±0.127 0.644 ±0.119 0.527 ±0.091 0.587 ±0.132 0.564 ±0.133 

  Resampling Techniques 

SMOTE 0.634 ±0.129 0.652 ±0.115 0.623 ±0.115 0.590 ±0.138 0.571 ±0.142 

ROS 0.590 ±0.123 0.640 ±0.119 0.607 ±0.117 0.564 ±0.132 0.560 ±0.141 

RUS 0.619 ±0.130 0.623 ±0.127 0.601 ±0.124 0.602 ±0.136 0.610 ±0.134 

ENN - - 0.638 ±0.128 0.533 ±0.097 0.579 ±0.143 0.575 ±0.138 

  Classic Ensembles 

ADB1 0.618 ±0.125 0.609 ±0.130 0.578 ±0.121 0.544 ±0.127 - - 

M1 0.633 ±0.125 0.674 ±0.130 0.606 ±0.121 0.564 ±0.124 - - 

BAG 0.624 ±0.123 0.675 ±0.118 0.582 ±0.127 0.591 ±0.135 - - 

Decorate 0.508 ±0.132 0.616 ±0.133 0.518 ±0.079 0.521 ±0.139 - - 

  Boosting-based Ensembles 

SBO 0.580 ±0.135 0.574 ±0.160 0.662 ±0.139 0.571 ±0.136 - - 

RUSB 0.594 ±0.125 0.605 ±0.132 0.600 ±0.134 0.591 ±0.136 - - 

  Bagging-based Ensembles  

OBAG 0.642 ±0.124 0.674 ±0.122 0.630 ±0.128 0.586 ±0.134 - - 

UBAG 0.677 ±0.115 0.677 ±0.119 0.641 ±0.129 0.619 ±0.137 - - 

SBAG 0.641 ±0.133 0.671 ±0.120 0.628 ±0.131 0.592 ±0.140 - - 

  Cost-sensitive Classification 

MetaCost 0.569 ±0.113 0.659 ±0.122 0.541 ±0.101 0.585 ±0.146 - - 

CS-Classifier 0.592 ±0.126 0.644 ±0.117 0.540 ±0.105 0.591 ±0.134 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.663 ±0.125 0.674 ±0.120 0.647 ±0.131 0.582 ±0.134 - - 

CS-UBAG 0.701 ±0.114 0.680 ±0.117 0.657 ±0.128 0.605 ±0.139 - - 

CS-SBAG 0.663 ±0.130 0.674 ±0.120 0.638 ±0.130 0.592 ±0.138 - - 

In bold are highlighted those learning techniques that built prediction models with AUC scores >0.7 
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Appendix 6.16. AUC results (mean and standard deviation) of the measures obtained through 

questionnaires data set (DS 6) for the five base classifiers in isolation and after applying in them the 

resampling, ensemble (Classic, Boosting-based, Bagging-based and Class-balanced ensembles) and cost-

sensitive learning techniques selected. 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.460 ±0.089 0.506 ±0.133 0.518 ±0.096 0.496 ±0.136 0.443 ±0.131 

  Resampling Techniques 

SMOTE 0.508 ±0.137 0.528 ±0.137 0.517 ±0.100 0.458 ±0.130 0.445 ±0.135 

ROS 0.451 ±0.113 0.510 ±0.133 0.527 ±0.100 0.485 ±0.134 0.446 ±0.124 

RUS 0.480 ±0.125 0.515 ±0.135 0.527 ±0.125 0.517 ±0.139 0.469 ±0.131 

ENN 0.474 ±0.093 0.505 ±0.131 0.518 ±0.102 0.498 ±0.140 0.467 ±0.131 

  Classic Ensembles 

ADB1 - - 0.505 ±0.105 0.524 ±0.113 0.489 ±0.126 - - 

M1 0.479 ±0.091 0.497 ±0.107 0.527 ±0.111 0.483 ±0.121 - - 

BAG 0.489 ±0.128 0.515 ±0.130 0.548 ±0.133 0.502 ±0.133 - - 

Decorate 0.468 ±0.135 0.494 ±0.138 0.530 ±0.099 0.455 ±0.138 - - 

  Boosting-based Ensembles 

SBO 0.504 ±0.112 0.506 ±0.122 - - 0.470 ±0.139 - - 

RUSB 0.495 ±0.115 0.508 ±0.104 0.530 ±0.127 0.518 ±0.134 - - 

  Bagging-based Ensembles 

OBAG 0.468 ±0.126 0.516 ±0.129 0.549 ±0.133 0.490 ±0.130 - - 

UBAG 0.509 ±0.134 0.529 ±0.128 0.558 ±0.136 0.519 ±0.133 - - 

SBAG 0.537 ±0.124 0.532 ±0.128 0.544 ±0.133 0.498 ±0.134 - - 

  Cost-sensitive Classification 

MetaCost 0.466 ±0.087 0.500 ±0.128 0.533 ±0.105 0.478 ±0.129 - - 

CS-Classifier 0.450 ±0.102 0.507 ±0.130 0.530 ±0.102 0.496 ±0.138 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.477 ±0.125 0.518 ±0.128 0.550 ±0.135 0.486 ±0.132 - - 

CS-UBAG 0.515 ±0.127 0.530 ±0.131 0.556 ±0.137 0.516 ±0.135 - - 

CS-SBAG 0.537 ±0.123 0.532 ±0.128 0.548 ±0.133 0.499 ±0.135 - - 
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Appendix 6.17. AUC results (mean and standard deviation) of the field-based tests of neuromuscular 

performance data set (DS 6) for the five base classifiers in isolation and after applying in them the 

resampling, ensemble and cost-sensitive learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.598 ±0.097 0.758 ±0.084 0.563 ±0.075 0.747 ±0.098 0.742 ±0.100 

  Resampling Techniques 

SMOTE 0.718 ±0.105 0.753 ±0.088 0.685 ±0.112 0.740 ±0.101 0.737 ±0.105 

ROS 0.704 ±0.110 0.760 ±0.090 0.685 ±0.126 0.749 ±0.101 0.745 ±0.100 

RUS 0.679 ±0.118 0.749 ±0.093 0.675 ±0.124 0.745 ±0.100 0.742 ±0.105 

ENN 0.584 ±0.098 0.756 ±0.091 0.559 ±0.075 0.747 ±0.102 0.738 ±0.105 

  Classic Ensembles 

ADB1 0.756 ±0.094 0.763 ±0.086 0.776 ±0.088 0.738 ±0.101 - - 

M1 0.759 ±0.086 0.751 ±0.093 0.757 ±0.091 0.748 ±0.101 - - 

BAG 0.727 ±0.088 0.763 ±0.087 0.661 ±0.127 0.756 ±0.094 - - 

Decorate 0.710 ±0.102 0.732 ±0.095 0.564 ±0.075 0.708 ±0.108 - - 

  Boosting-based Ensembles 

SBO 0.739 ±0.104 0.747 ±0.104 0.749 ±0.102 0.735 ±0.102 - - 

RUSB 0.751 ±0.091 0.759 ±0.089 0.758 ±0.089 0.745 ±0.097 - - 

  Bagging-based Ensembles  

OBAG 0.753 ±0.089 0.766 ±0.087 0.750 ±0.099 0.759 ±0.096 - - 

UBAG 0.747 ±0.084 0.755 ±0.087 0.752 ±0.094 0.758 ±0.092 - - 

SBAG 0.769 ±0.099 0.776 ±0.092 0.771 ±0.101 0.769 ±0.100 - - 

  Cost-sensitive Classification 

MetaCost 0.539 ±0.081 0.724 ±0.110 0.500 ±0.000 0.519 ±0.200 - - 

CS-Classifier 0.641 ±0.112 0.756 ±0.087 0.500 ±0.000 0.751 ±0.099 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.759 ±0.095 0.767 ±0.088 0.760 ±0.103 0.763 ±0.097 - - 

CS-UBAG 0.748 ±0.089 0.757 ±0.088 0.767 ±0.096 0.761 ±0.095 - - 

CS-SBAG 0.770 ±0.104 0.776 ±0.092 0.768 ±0.100 0.772 ±0.101 - - 

In bold are highlighted those learning techniques that built prediction models with AUC scores >0.7. 
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Appendix 6.18. AUC results (mean and standard deviation) of the global data set (DS 11) for the five base 

classifiers in isolation and after applying in them the resampling, ensemble (Classic, Boosting-based, 

Bagging-based and Class-balanced ensembles) and cost-sensitive learning techniques selected 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.642 ±0.124 0.741 ±0.119 0.568 ±0.086 0.704 ±0.131 0.713 ±0.135 

  Resampling Techniques 

SMOTE 0.709 ±0.130 0.738 ±0.121 0.651 ±0.128 0.700 ±0.129 0.711 ±0.139 

ROS 0.694 ±0.130 0.738 ±0.122 0.659 ±0.127 0.704 ±0.131 0.712  ±0.136 

RUS 0.663 ±0.131 0.720 ±0.126 0.645 ±0.129 0.698 ±0.120 0.708 ±0.137 

ENN 0.637 ±0.123 0.731 ±0.124 0.567 ±0.093 0.697 ±0.130 0.707 ±0.136 

  Classic Ensembles 

ADB1 0.746 ±0.124 0.769 ±0.131 0.722 ±0.138 0.691 ±0.135 - - 

M1 0.754  ±0.110 0.742 ±0.144 0.797 ±0.131 0.690 ±0.136 - - 

BAG 0.740  ±0.115  0.743 ±0.116 0.694 ±0.131 0.716 ±0.127 - - 

Decorate 0.709 ±0.127 0.720 ±0.124 0.569 ±0.087 0.676 ±0.141 - - 

  Boosting-based Ensembles 

SBO 0.715 ±0.138 0.749 ±0.061 0.740 ±0.102 0.707 ±0.132 - - 

RUSB 0.736 ±0.121 0.748 ±0.138 0.752 ±0.118 0.710 ±0.128 - - 

  Bagging-based Ensembles  

OBAG 0.744 ±0.112 0.741 ±0.116 0.742 ±0.125 0.720 ±0.126 - - 

UBAG 0.742 ±0.111 0.739 ±0.119 0.737 ±0.121 0.719 ±0.120 - - 

SBAG 0.751 ±0.118 0.745 ±0.119 0.750 ±0.124 0.724 ±0.125 - - 

  Cost-sensitive Classification 

MetaCost 0.572 ±0.120 0.698 ±0.134 0.500 ±0.000 0.604 ±0.147 - - 

CS-Classifier 0.685 ±0.129 0.739 ±0.124 0.500 ±0.000 0.706 ±0.128 - - 

  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.751 ±0.107 0.742 ±0.115 0.747 ±0.121 0.715 ±0.126 - - 

CS-UBAG 0.749 ±0.105 0.741 ±0.119 0.747 ±0.116 0.722 ±0.124 - - 

CS-SBAG 0.755 ±0.115 0.746 ±0.119 0.750 ±0.121 0.719 ±0.127 - - 

In bold are highlighted those learning techniques that built prediction models with AUC scores >0.7. 
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CHAPTER 7 

Study 5 

 

A Bayesian Network approach to study the relationships between several neuromuscular 

performance measures and dynamic postural control in futsal players 

Iñaki Ruiz-Pérez, Francisco Ayala, José Miguel Puerta, José L. L. Elvira, Mark De Ste Croix, 

Sergio Hernández-Sánchez, Francisco José Vera-García 

7.1. Abstract 

Objective: The purpose of this study was to analyse the relationship between several 

parameters of neuromuscular performance with dynamic postural control using a Bayesian 

Network Classifiers (BN) based analysis. 

Methods: The Y-Balance test (measure of dynamic postural control), isokinetic (concentric 

and eccentric) knee flexion and extension strength, isometric hip abduction and adduction 

strength, lower extremity joint range of motion (ROM) and core stability were assessed in 

44 elite male futsal players. A feature selection process was carried out before building a 

BN (using the Tabu search algorithm) for each leg. The BN models built were used to make 

belief updating processes to study the individual and concurrent contributions of the 

selected parameters of neuromuscular performance on dynamic postural control. 

Results: The BNs generated using the selected features by the algorithms correlation 

attribute evaluator and chi squared reported the highest evaluation criteria (area under the 

receiver operating characteristic curve [AUC]) for the dominant (AUC = 0.899) and non-

dominant (AUC = 0.879) legs, respectively.  

Conclusions: The BNs demonstrated that performance achieved in the Y-Balance test 

appears to be widely influenced by hip and knee flexion and ankle dorsiflexion ROM 
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measures in the sagittal plane, as well as by measures of static but mainly dynamic core 

stability in the frontal plane. Therefore, training interventions aimed at improving or 

maintaining dynamic postural control in elite male futsal players should include, among 

other things, exercises that produce ROM scores equal or higher than 127º of hip flexion, 

132.5º of knee flexion as well as 34º and 30.5º of ankle dorsiflexion with the knee flexed and 

extended, respectively. Likewise, these training interventions should also include exercises 

to maintain or improve both the static and dynamic (medial-lateral plane) core stability so 

that futsal players can achieve medial radial error values lower than 6.69 and 8.79 mm, 

respectively. 

Keywords: Y-Balance, injury, futsal, strength, core stability, performance, machine 

learning. 
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7.2. Introduction 

The Y-Balance is a reliable229,268, time efficient and portable (field-based) test widely 

used to assess dynamic postural control96. This test is usually included as part of an injury 

risk battery in both clinical and sporting contexts, primarily based on the fact that several 

studies57,58,97–99, although not all269,270, have reported that poor performance and bilateral 

asymmetries may be considered as valid predictors for identifying athletes at high risk of 

non-contact lower extremity injuries (mainly knee and ankle injuries). Thus, Butler et al.58 

found that collegiate football players were 3.5 times more likely to suffer a non-contact 

lower extremity injury when they reported Y-Balance normalized composite scores below 

89.6%. Similarly, Calvo-Gonel et al.98 reported that elite football players with bilateral 

asymmetries equal to or greater than 4 cm in the posteromedial direction of the Y-Balance 

test had a 3.86 greater probability of suffering a non-contact injury than those who did not. 

Furthermore, the Y-Balance test is sensitive enough to differentiate between different levels 

of competition247,271,272 and sporting populations273. Elite football players have demonstrated 

better Y-Balance scores than their non-elite peers271,272 and when compared with other 

sporting populations, footballers have performed better on either leg273. 

The Y-Balance test involves maintaining single-legged balance whilst simultaneously 

reaching as far as possible with the contralateral leg in three directions (anterior, 

posterolateral and posteromedial). Potentially, the execution of this test might require, 

among others, adequate levels of hip and knee strength, power, trunk or core stability, 

coordination and lower extremity ranges of motion (ROM). With the aim of improving the 

design of training interventions, some studies have explored the individual contribution of 

certain measures of knee strength100–102, hip strength102–104, lower extremity power105, core 

stability102 and lower extremity ROMs102,106 on Y-Balance test performance using linear 

regression models in different cohorts of athletes. However, these studies have reported 

conflicting results that might not permit clinicians, physiotherapists and physical trainers 

to make general training recommendations. For example, Booysen, Gradidge & Watson100 
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did not show any relationship between the isokinetic strength of the knee flexors and 

extensors and the Y-Balance test score in professional football players, whereas Lockie et 

al.101 did find a positive and statistically significant correlation (r = 0.50; p = 0.008) between 

the isokinetic strength of the knee extensors and the Y-Balance test performance in amateur 

team sport athletes. The conflicting results might be partially attributed to the different 

sport modalities and levels of competition (i.e. amateur vs. professional or elite) of the 

athletes recruited in each study. In particular, the differences in technical skills, specific 

movements, training load and physical capacities among sports and levels of competition 

may predispose participants to individual chronic musculoskeletal adaptations, thus 

influencing some neuromuscular measures and their subsequent impact on the Y-Balance 

test performance.Therefore, it may be necessary a sport-specific and level of competition-

based analysis of which neuromuscular parameters contribute to Y-Balance test 

performance in order to design effective dynamic postural control training interventions.  

Despite being one of the most popular sports worldwide1,160 and being ranked among 

the top ten non-contact lower extremity injury-prone sports6, an analysis of the influence of 

the main modifiable measures of neuromuscular performance (i.e. hip and knee strength, 

core stability, lower extremity ROMs) on Y-Balance test scores in futsal players has not been 

undertaken. In terms of sport performance, futsal players might be a target group for 

dynamic postural control training programmes since they are required to perform 

repetitively high intensity unilateral movements such as sudden acceleration and 

deceleration tasks, rapid changes of direction, kicking and tackling5,274.  

The existing literature has predominantly used traditional lineal regression analyses 

to explore statistical associations and to our knowledge no studies have used contemporary 

statistical techniques, such as Bayesian Networks Classifiers (BNs) (also referred to as 

causal networks or belief networks) to provide evidence of relationships of dependency and 

conditional independence between different measures or variables107. In contrast to 

traditional statistics, BNs not only provide statistical models describing the relationships 
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between variables from empirical data (as a way of representing uncertainty), but construct 

graphical probabilistic models (directed acyclic graphs) based on the underlying structure 

in which variables are represented by nodes and their relationships of dependency are 

symbolized by arrows or arcs275. Thus, the graphical representation of BNs captures the 

compositional structure of the relations and the general aspects of all probability 

distributions that factorize according to that structure276. Furthermore, BNs allow making 

inference or relevance analysis/reasoning in a natural manner and within a dynamic context 

to generate intercausal reasoning, that is to say, adding new evidence to the model in order 

to study the impact of the new relationships generated in the class variable. Therefore, the 

use of a BN based analysis to study the relationships of dependency and conditional 

independence between the main modifiable measures of neuromuscular performance and 

dynamic postural control and particularly the subsequent graph generated will help 

clinicians, physiotherapists and physical trainers to understand this complex phenomenon 

better. In addition, the BN model built could be used to make belief updating processes (by 

adding new evidence [the scores obtained by an athlete in the different neuromuscular 

performance tests]) in order to study the concurrent and individual contribution of the 

neuromuscular factors on the dynamic postural control of each futsal player and thus 

allowing the design of individualised training programs. 

Therefore, the main purpose of the current study was to analyse the relationships 

between several parameters of neuromuscular performance with dynamic postural control 

(measured through the Y-Balance test) using a BN based analysis in a cohort of elite futsal 

players. 

 

7.3. Methods 

7.3.1. Participants 
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A total of 44 elite male futsal players from four different teams (16 players from a 

club engaged in the First [top] National Spanish Futsal division and 28 players from three 

clubs engaged in the Second National Futsal division) completed this cross-sectional study 

(convenience sampling). To be included, all participants had to be free of pain at the time 

of the study and currently involved in futsal-related activities. Participants were excluded 

if they reported the presence of any lower extremity injury within the last month, a current 

upper respiratory tract infection, any bone or joint abnormalities, any uncorrected visual 

and vestibular problems and/or a concussion within the last three months100. The study was 

conducted at the end of the pre-season phase in 2015 and 2016 (September). Before any 

participation, experimental procedures and potential risks were fully explained to the 

participants in verbal and written form, and written informed consent was obtained from 

participants. An Institutional Research Ethics committee approved the study protocol prior 

to data collection (DPS.FAR.01.14), conforming to the recommendations of the Declaration 

of Helsinki. 

7.3.2. Testing procedure 

Prior to the neuromuscular testing, all participants performed a standardised 

dynamic warm-up designed by Taylor et al.210. Three to 5 min after the dynamic warm-up 

was carried out, participants completed five different neuromuscular assessments in the 

following order: 1) dynamic postural control; 2) isometric hip abduction and adduction 

strength; 3) lower extremity joint ROMs; 4) core stability; and 5) isokinetic knee flexion and 

extension strength. 

Dynamic postural control was measured using the Y-Balance test (Y-Balance Test, 

Move2Perform, Evansville, IN) (composite score) and followed the guidelines proposed by 

Shaffer et al.229. After having completed a 2 min practise of the testing procedure, players 

were allowed a maximum of five trials to obtain three successful trials for each reach 

direction (anterior, posteromedial and posterolateral). To obtain a global measure of the 

dynamic postural control performance, the greatest distance reached in each direction was 



  Epidemiology and prediction models of injuries in elite futsal 

235 

normalised (by dividing by leg length) and then averaged (by multiplying by 100) to 

establish a composite balance score. 

Isometric hip abduction and adduction peak torque of the dominant and non-

dominant leg were assessed using a portable handheld dynamometer (Nicholas Manual 

Muscle Tester, Lafayette Indiana Instruments) with the participant lying in a supine 

position on a plinth with legs extended, following the methods described by Thorborg et 

al.228. Participants performed two practice trials (50 and 80% of the self-perceived isometric 

maximal voluntary contraction) and then three 5s isometric maximal voluntary contraction 

trials for each hip movement. The best trial was used for the subsequent statistical analyses. 

Likewise, passive hip flexion with knee flexed and extended, extension, abduction, 

external and internal rotation; knee flexion; and ankle dorsiflexion with knee flexed and 

extended ROMs of the dominant and non-dominant leg were assessed following the 

methods previously described230. The best score for each test was used in the subsequent 

analyses. 

An unstable sitting protocol was used to assess participant’s core stability, 

determined as the ability to control trunk posture and motion while sitting, following the 

methods previously described by Barbado et al.277. Briefly, after a familiarization period (2 

min), participants performed different static and dynamic tasks while sitting on an unstable 

seat. All tasks were performed twice. The duration of each trial was 70s and the rest period 

between trials was 1 min. The mean radial error was used as a global measure to quantify 

the trunk/core performance during the trials.  

Finally, isokinetic concentric and eccentric torques during knee extension and flexion 

actions in both legs were determined (Biodex System-4, Biodex Corp., Shirley, NY, USA) 

following the methods employed by Ayala et al.278. In each of the three trials at each velocity 

(60º/s and 180º/s for concentric muscle actions and 30º/ and 60º/s for eccentric muscle 

actions), the peak torque was reported as the single highest torque value achieved. For each 

peak torque variable, the best of the three trials at each velocity was used for subsequent 
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statistical analysis. When a variation >5% was found in the peak torque values between the 

three trials, the mean of the two most closely related torque values was used for the 

subsequent statistical analyses. 

Appendix 7.1 summarizes the list of variables recorded from each assessment procedure 

(and it also shows the abbreviations that have been used within the manuscript). Each of 

the 6 testers who took part in this study conducted the same tests throughout all the testing 

sessions. All testers had more than 4 years of experience in using the neuromuscular 

assessments. 

7.3.3. Statistical analysis  

Prior to building the BN of each leg, all variables were discretized as this has been 

shown to be an effective measure to improve the performance of several BN and logistic 

regression techniques279. Thus, both class variables (Y-Balance composite score of the 

dominant and non-dominant legs) were discretized into two intervals (high risk and low 

risk of injury) according to the cut-off score of 89.6% reported by Butler et al.58, in which 

composite scores below 89.6% indicate that players are 3.5 times more likely to suffer a non-

contact lower extremity injury (100% of sensitivity and 71.7% of specificity). A statistician 

experienced in running BN analysis carried out the discretization of the continuous 

variables using a visual inspection of their histogram (in which each instance was colored 

[blue or red] according to their relationship to each interval of the class variable [high risk 

or low risk]) which allowed identification of a clear cut-off point. Thus, for the Y-Balance 

composite score of the dominant and non-dominant leg, six and eight variables were 

discretized into two intervals, respectively. For those variables in which a clear cut-off score 

was not visually identified, the unsupervised discretization algorithm available in the 

WEKA Data Mining software was applied using the equal frequency binning approach 

(three cut point intervals). Three intervals were selected in order to reflect taxonomy of low, 

moderate and high scores that might make the final models more comprehensible. 

Appendix 7.1 shows a description of all variables recorded to build the BNs. 
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In order to build the BN of each leg that allows the classification of futsal players into 

one of the two injury risk categories (low risk or moderate risk) previously defined 

according to their dynamic postural control scores, we used the well-known WEKA 

(Waikato Environment for Knowledge Analysis) Data Mining software. To build the BN 

the score + search approach was used280. Specifically, the Tabu search algorithm as a search 

engine281 coupled with the BDeu score282 was selected to build the structure of both BNs 

(dominant and non-dominant leg). This algorithm explores the search space starting from 

a network structure and adding, deleting, or reversing one arc at a time until the score can 

no longer be improved. Thus, the Tabu search algorithm is a modified hill climbing 

algorithm able to escape local optima by selecting a network that minimally decreases the 

score function. Neither expert knowledge nor prior knowledge of the system under study 

was taken into account in the model selection process in order to prevent the model from 

encoding the prior information instead of the information in the data. As the Tabu search 

is a stochastic algorithm, the final model was obtained by repeating the structure learning 

several times (in our case 1,000 times). A large number of network structures were explored 

(1,000 BNs) to reduce the impact of locally optimal (but globally suboptimal) network 

learning. The networks learned were averaged to obtain a more robust model. A conditional 

probability distribution was obtained for each node.  

The performance of the BNs was assessed using a 5-fold stratified cross validation 

technique. That is, we split the dataset into 5 folds, each one containing 20% of the patterns 

of the dataset. For each fold, the BN was trained with the examples contained in the 

remaining folds and then tested with the current fold. A wide range of performance 

measures can be obtained from the stratified cross validation technique. A well-known 

approach to unify these measures and to produce an evaluation criterion is to use the area 

under the Receiver Operating Characteristic Curve (AUC). In particular, the AUC 

corresponds to the probability of identifying which one of the two stimuli is noise and 

which one is signal plus noise correctly76. Thus, the AUC was used as a single measure of 

BNs´ performance.  
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However, and before learning the BNs, a feature selection process was carried out to 

reduce the dimensionality of the feature space and eliminate irrelevant, weakly relevant 

and/or redundant features. In other words, the aim of this pre-learning process was to find 

the minimal subset of attributes such that the resulting probability distribution of data 

classes is close to the original distribution obtained using all attributes and that they do not 

decrease the accuracy of the model significantly283. Feature selection algorithms are 

separated into three categories: a) the filters which extract features from the data without 

any learning involved, b) the wrappers that use learning techniques to evaluate which 

features are useful, and c) the embedded techniques which combine the feature selection step 

and the classifier construction284,285. A priori it is not possible to determine with certainty 

which category of the feature selection algorithms might be applied to address each 

problem more accurately. Thus, it has been suggested that an appropriate approach may 

be to analyze and compare the accuracy of the models built for a given classifier (in our case 

the Tabu search algorithm) to which different feature selection techniques have been 

previously applied and then select the best performing BN-based feature selection 

method286–288. Accordingly, the behavior of numerous feature selection algorithms coming 

from the filter and wrapper categories were analyzed and compared (using the 

metaclassifier “attribute selected classifier” available in Weka´s repository) in order to 

select the best performing BN to describe the relationships between the main measures of 

neuromuscular performance and dynamic postural control. For those filter algorithms in 

which a ranker search technique is required (e.g. chi squared attribute evaluator and 

correlation attribute evaluator techniques), it was set up to select the top-10 ranked features 

so that a comprehensible and straightforward model could be developed. Once the top-10 

ranked features were determined, the performance of these filter algorithms were assessed 

by using the top-10, 9, 8, 7 … and 2 features and then compared in order to find the minimal 

subset of features with the best performance. On the other hand, the search algorithms used 

for the wrapper algorithms were the Best First (backward direction) and Greedy Stepwise 

(backward direction) and as base classifier the following three classifier algorithms were 
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selected: Naïve Bayes, C4.5 and Support Vector Machine. The accuracy scores of all the 

possible combinations for the wrapper algorithms were compared and the best performing 

model was finally selected. 

The BNs were implemented using SAMIAM (Sensitivity Analysis Modeling 

Inference and More) software (2013) to obtain a graphical interface for manipulating the 

probabilistic network. 

Once the BNs were built, different configurations of variable's values where entered 

with the aim of studying different intercausal (interactions among different causes of the 

same effect) and causal (predictions from causes to effects) reasoning scenarios.   

 

7.4. Results  

Tables 7.1 and 7.2 show the accuracy scores obtained by the 11 feature selection 

algorithms used to build different dynamic postural control BNs (Y-Balance test composite 

score) for the dominant and non-dominant leg, respectively. For the dynamic postural 

control of the dominant leg, the feature selection algorithm “correlation attribute evaluator” 

(which evaluates the worth of an attribute by measuring the correlation [Pearson's] between 

it and the class) belonging to the filters category was the algorithm that built the BN with 

the highest accuracy score (AUC = 0.899). The dynamic postural control BN built for the 

non-dominant leg after the application (pre-processing) of the “chi squared” feature 

selection algorithm (that evaluates the worth of an attribute by computing the value of the 

chi-squared statistic with respect to the class), also belonged to the filters category, and had 

the highest AUC scores (0.879). Furthermore, these two feature selection algorithms used 

six and ten variables to build the dynamic postural control BNs that showed the highest 

performance for the dominant and non-dominant leg, respectively.  



 

 

Table 7.1. Comparisons among the accuracy scores obtained by all the BN-based feature selection methods for the dominant leg. In grey is highlighted 

the best performing BN 

Feature selection algorithm Search technique AUC Nº of features selected 
Description in ascending (from more to less 

important/relevant) order 

- - 0.865 31 Appendix 7.1  

Correlation-based feature subset evaluator Best First 0.858 5 
ISOK-PT-ECC-KF180, CS-NF, CS-ML, ROM-HFKF 

and ROM-KF 

Chi squared attribute evaluator Ranker 0.835 4 ROM-KF, ROM-HFKF, CS-ML and ROM-HE 

Classifier attribute evaluator (Naïve Bayes) Ranker 0.874 7 
ROM-KF, ROM-HFKF, CS-NF, ISOK-PT-ECC-KF180, 

ISOM-PT-Hip-Abd and CS-ML, CS-WF 

Classifier subset evaluator (Naïve Bayes) Best First 0.774 10 

ISOK-PT-CON-KF60, Stature, ISOK-PT-CON-KE180, 

ISOK-PT-ECC-KF60, ISOK-PTECC-KF180, ISOK-

PTECC-KE60, ISOM-PT-Hip-Abd, CS-ML, ROM-

HIR, ROM-HER, ROM-HE, ROM-KF, ROM-

AKDFKE and ROM-AKDFKF 

Consistency subset evaluator Best First 0.699 5 
ROM-HIR, ROM-HER, ROM-HE, ROM-KF and 

ROM-AKDFKF 

Correlation attribute evaluator Ranker 0.899 6 
ROM-KF, ROM-HFKF, CS-ML, Stature, CS-NF and 

CS-CD 

CV Attribute evaluator Ranker 0.697 7 

CS-ML, Dominant-leg, ISOK-PTECC-KF60, ROM-

AKDFKF, ISOK-PTECC-KF180, ISOK-PTCON-KE240 

and ISOK-PTECC-KE30 

Gain ratio attribute evaluator Ranker 0.865 6 
CS-ML, ROM-KF, ROM-HFKF, Stature, ROM-HE 

and CS-CD 
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Info gain attribute evaluator Ranker 0.874 6 
ROM-KF, CS-ML, ROM-HFKF, ROM-HE, CS-CD 

and ISOK-PTECC-KF180 

One R attribute evaluator Ranker 0.857 7 
ROM-KF, ROM-HFKF, CS-NF, ISOK-PTECC-KF180, 

CS-ML, ISOM-PT-Hip-Abd, CS-WF 

Wrapper subset evaluator (Naïve Bayes) Best First 0.851 9 
Stature, ISOM-PT-Hip-Abd, CS-NF, CS-ML, CS-AP, 

ROM-HFKF, ROM-HER, ROM-HE, ROM-KF 

BN: Bayesian Network Classifiers; AUC: area under the receiver operating characteristic curve; ISOK: isokinetic; KE: knee extensors; CON: concentric; ECC: 

eccentric; ISOM: isometric; PT: peak torque; Abd: abduction; ROM: range of motion; HFKF: hip flexion with the knee flexed; HE: Hip extension; HIR: hip internal 

rotation; HER: hip external rotation; KF: knee flexors; AKDFKE: ankle dorsi-flexion with the knee extended; AKDFKF: ankle dorsi-flexion with the knee flexed; CS: 

core stability; NF: unstable sitting without feedback; WF: unstable sitting with feedback; ML: unstable sitting while performing medial-lateral displacements with 

feedback; AP: unstable sitting while performing anterior-posterior displacements with feedback; CD: unstable sitting while performing circular displacements 

with feedback. 

 



 

 

Table 7.2. Comparisons among the accuracy scores obtained by all the BN-based feature selection methods for the non-dominant leg. In grey is 

highlighted the best performing BN 

Feature selection algorithm 
Search 

technique 
AUC 

Nº of features 

selected 
Description in ascending (from more to less important/relevant) order 

- - 0.821 31 Appendix 7.1  

Correlation-based feature subset evaluator Best First 0.817 8 
Dominant-leg, ISOM-Hip-Abd, CS-WF, CS-ML, ROM-HE, ROM-KF, ROM-AKDFKE 

and ROM-AKDFKF 

Chi squared attribute evaluator Ranker 0.879 10 
ROM-AKDFKE, ROM-AKDFKF, ROM-KF, ROM-HE, CS-ML, CS-CD, CS-WF, ROM-

HFKF, ISOK-ECC-KF180 and CS-NF 

Classifier attribute evaluator (Naïve Bayes) Ranker 0.809 10 
ROM-AKDFKF, ROM-KF, ROM-HE, ISOK-ECC-KF180, ROM-AKDFKE, ROM-HFKF, 

CS-WF, ISOK-ECC-KE30, ISOK-ECC-KE60 and CS-CD 

Classifier subset evaluator (Naïve Bayes) Best First 0.758 10 
ISOK-ECC-KF180, ISOK-ECC-KE60, ISOM-Hip-Add, CS-NF, CS-WF, CS-CD, ROM-

HE, ROM-KF, ROM-AKDFKE and ROM-AKDFKF 

Consistency subset evaluator Best First 0.828 5 ROM-HABD, ROM-HIR, ROM-HER, ROM-KF and ROM-AKDFKF 

Correlation attribute evaluator Ranker 0.853 9 
ROM-AKDFKE, ROM-AKDFKF, ROM-KF, CS-ML, ROM-HFKF, CS-WF, CS-NF, ISOM-

Hip-Add and Dominant-leg 

CV Attribute evaluator Ranker 0.700 9 
ROM-AKDFKE, Dominant-leg, ISOK-ECC-KF180, ISOK-ECC-KF60, ISOK-ECC-KE30, 

ISOK-CON-KE240, ISOK-ECC-KE60, ISOK-ECC-KF30 and ROM-AKDFKF 

Gain ratio attribute evaluator Ranker 0.853 10 
ROM-AKDFKE, ROM-AKDFKF, ROM-KF, CS-ML, ROM-HFKF, CS-WF, CS-NF, 

Dominant-leg, ISOM-Hip-Add and ROM-HE 



 

 

Info gain attribute evaluator Ranker 0.853 9 
ROM-AKDFKE, ROM-AKDFKF, ROM-KF, CS-ML, ROM-HE, CS-CD, ROM-HFKF, CS-

WF, ISOK-ECC-KF180 and CS-NF 

One R attribute evaluator Ranker 0.731 9 
ROM-AKDFKF, ROM-KF, ROM-HE, ISOK-ECC-KF180, ROM-AKDFKE, ISOK-ECC-

KE60, ISOK-ECC-KF60, ISOK-CON-KF240 and ISOK-CON-KF180 

Wrapper subset evaluator (Naïve Bayes) Best First 0.809 22 

ISOK-CON-KF60, Body-mass, ISOK-CON-KE180, ISOK-CON-KE240, ISOK-ECC-KF30, 

ISOK-ECC-KF60, ISOK-ECC-KF180, ISOK-ECC-KE30, ISOK-ECC-KE60, ISOM-Hip-

Abd, ISOM-Hip-Add, CS-NF, CS-ML, CS-AP, CS-CD, ROM-HFKF, ROM-HFKE, 

ROM-HABD, ROM-HE, ROM-KF, ROM-AKDFKE and ROM-AKDFKF 

BN: Bayesian Network Classifiers; AUC: area under the receiver operating characteristic curve; ISOK: isokinetic; KE: knee extensors; CON: concentric; ECC: eccentric; 

ISOM: isometric; PT: peak torque; Abd: abduction; ROM: range of motion; HFKF: hip flexion with the knee flexed; HE: Hip extension; HIR: hip internal rotation; HER: 

hip external rotation; KF: knee flexors; AKDFKE: ankle dorsi-flexion with the knee extended; AKDFKF: ankle dorsi-flexion with the knee flexed; CS: core stability; NF: 

unstable sitting without feedback; WF: unstable sitting with feedback; ML: unstable sitting while performing medial-lateral displacements with feedback; AP: unstable 

sitting while performing anterior-posterior displacements with feedback; CD: unstable sitting while performing circular displacements with feedback. 
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Figure 7.1 presents the directed acyclic graphs (DAGs) corresponding to the dynamic 

postural control BNs built for the dominant (figure 7.1a) and non-dominant leg (figure 

7.1b). In addition, both DAGs also show the a priori probability distributions (expressed in 

percentages), that is, without entering any observed value, for each of the two or three labels 

of the six and ten variables selected to build the dynamic postural control BNs. Thus, for 

the class variable of the dominant leg (Y-BALANCE_DOM), six child nodes or independent 

predictors were observed: knee flexion (ROM-KF_DOM) and hip flexion with knee flexed 

(ROM-HFKF_DOM) ROMs, core stability measures recorded while performing medial-

lateral (CS-ML) and circular (CS-CD) displacements with feedback, and also without 

displacement and nor feedback (CS-NF), and stature. Likewise, what can also be observed 

is the presence of connections between hip flexion ROM and the players´ stature (ROM-

KF_DOM → Stature) as well as between the measures of core stability assessed while 

performing medial-lateral (CS-ML) and circular (CS-CD) displacements (CS-ML → CS-CD). 

The DAG corresponding to the dynamic postural control BN of the non-dominant leg 

shows the presence of nine child nodes, corresponding to five ROM (ankle dorsiflexion with 

knee extended [ROM-AKDFKE_NODOM] and flexed [ROM-AKDFKE_NODOM], knee 

flexion [ROM-KF_NODOM] and hip extension [ROM-HE_NODOM] and flexion with knee 

flexed [ROM-HFKF_NODOM] ROMs), three core stability measured during both static 

(unstable sitting with [CS-WF] and without [CS-NF] feedback) and dynamic tasks (unstable 

sitting while performing medial-lateral displacements with feedback [CS-ML]) and one 

isokinetic strength (eccentric knee flexors peak torque [ISOK-ECC-KF180_NODOM]) 

measures. Likewise, a number of connections among variables were also displayed in the 

DAG for the dynamic postural control BN of the non-dominant leg (e.g.: CS-NF → ISOK-

ECC-KF180_NODOM, ROM-KF_NODOM → ROM-HFKF_NODOM). Another child node 

was observed, the measure of core stability assessed while performing circular 

displacements with feedback (CS-CD), that acts as descendent of another measure of core 

stability, in its case the one measured while performing medial-lateral displacements (CS-

ML). 
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Figure 7.1. Directed acyclic graphs corresponding to the dynamic postural control 

BNs built for the dominant leg (figure 7.1a) and non-dominant leg (figure 7.1b). The 

a priori probability distributions for each feature are given, where the likelihood for 

each feature’s label is expressed in percentage. 

 

The individual contribution of each label of the different variables finally selected on 

the probability of having the class variable (Y-Balance test composite score) in its low and 

moderate risk states is shown in table 7.3 for both the dominant and non-dominant legs. 

Knee flexion ROM (132.5º) and core stability assessed while performing medial-lateral 

displacements with feedback (8.79 mm) measures were the ones that presented the highest 

impact on the probability of having the class variable of the dominant leg in its low (84.34%) 

and moderate risk (95.01%) states, respectively. Hip extension (14.5º) and ankle 

dorsiflexion with knee extended (<30.5º) ROM measures were also the predictors with the 
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highest contribution to have the class variable of the non-dominant leg in its low (62.84%) 

and moderate risk (96.7%) states, respectively. 

Table 7.3. Individual contribution of each level of the final 

variables selected on the probability of having the class 

variable (Y-Balance composite score) of the non-dominant 

leg in its low and moderate risk states. In grey are 

highlighted the labels of the variables that present the 

highest individual contribution of having the class variable 

in its low and moderate risk scores 

 Y-Balance (composite score) 

 Low risk Moderate risk 

 Dominant leg 

No instantiations 46.74 53.26 

ROM-KF (º)   

▪ <132.5 27.36 72.64 

▪ 132.5 84.34 15.66 

ROM-HFKF (º)   

▪ <127 14.67 85.33 

▪ 127 64.94 35.06 

CS-ML (CoP mm)   

▪ <8.79 58.04 41.96 

▪ 8.79 4.99 95.01 

Stature (cm)   

▪ <180 56.55 43.45 

▪ 180 23.27 76.73 

CS-NF (CoP mm)   

▪ <5.24 34.25 65.75 
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▪ 5.24 – 6.09 71.76 28.24 

▪ 6.09 34.25 65.75 

CS-CD (CoP mm)   

▪ <8.31 52.04 47.96 

▪ 8.31 – 9.81 62.74 37.26 

▪ 9.81 18.92 81.8 

 Non-dominant leg 

No instantiations 38.04 61.96 

ROM-AKDFKE (º)   

▪ <30.5 3.3 96.7 

▪ 30.5 54.42 45.58 

ROM-AKDFKF (º)   

▪ <34 18.23 81.77 

▪ 34 61.79 38.21 

ROM-KF (º)   

▪ <122 15.77 84.23 

▪ 122 57.74 42.26 

ROM-HE (º)   

▪ <9.5 31.8 68.11 

▪ 9.5 – 14.5 21.52 78.48 

▪ 14.5 62.84 37.16 

CS-ML (CoP mm)   

▪ <8.3 48.26 51.74 

▪ 8.3 11.43 88.57 

CS-CD (CoP mm)   

▪ <8.31 47.13 52.87 

▪ 8.31 – 9.81 42.6 57.4 
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▪ 9.81 24.25 75.75 

CS-WF (CoP mm)   

▪ <5 47.97 52.03 

▪ 5 25.56 74.44 

ROM-HFKF (º)   

▪ <130 25.61 74.39 

▪ 130 52.26 47.74 

ISOK-ECC-KF180 (Nm)   

▪ <96.85 20.95 79.05 

▪ 96.85 – 120.15 56.45 43.55 

▪ 120.15 35.45 64.55 

CS-NF (CoP mm)   

▪ <6.75 46.7 53.3 

▪ 6.75 17.7 82.3 

ISOK: isokinetic; KE: knee extensors; ECC: eccentric; ROM: 

range of motion; HFKF: hip flexion with the knee flexed; HE: 

Hip extension; KF: knee flexors; AKDFKE: ankle dorsi-flexion 

with the knee extended; AKDFKF: ankle dorsi-flexion with the 

knee flexed; CS: core stability; NF: unstable sitting without 

feedback; WF: unstable sitting with feedback; ML: unstable 

sitting while performing medial-lateral displacements with 

feedback; CD: unstable sitting while performing circular 

displacements with feedback. 

In table 7.4 it can be seen that by mean of a belief updating process which uses two 

different configurations (i.e.: the process by which new evidence is introduced in some 

target variables of the model), it was possible to achieve the maximal hypothetical 

probability (98.98%) that a futsal player will show a limited (moderate risk) dynamic 
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postural control performance of the dominant leg, which implies a “jump” of 

approximately 45 percentage points from the initial value shown within the studied 

population. Table 7.4 also displays how through three instantiations it is possible to achieve 

the maximal hypothetical probability that a player would have a dynamic postural control 

performance of the dominant leg that might be categorized as “low risk for lower-extremity 

injuries” (98.08%), with an increase of approximately 52 percentage points from the initial 

value. Similarly, table 7.5 presents another step-by-step belief updating process carried out 

to maximize both labels (low risk and moderate risk) of the class variable for the dynamic 

postural control model of the non-dominant leg. In particular, only two variables need to 

be observed (fixed) to achieve the greatest hypothetical probability (99.29%) that a player 

would have a limited dynamic postural control performance (moderate risk). However, the 

correct value must be entered for 5 variables to maximize the probability (98.65%) that a 

player would have a dynamic postural stability performance categorized as “low risk for 

lower-extremity injuries”, which suppose an increase of approximately 60 percentage 

points with respect to its initial probability (38.04%). For the belief updating process carried 

out in both BNs and shown in tables 7.4 and 7.5, an intercausal reasoning (when different 

causes of the same effect can interact) was applied. From each step, the variable and the 

state that induces the greatest increase in the likelihood of the class variable to show a low 

and moderate state were chosen. 
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Table 7.4. Step-by-step instantiations leading to maximization of the 

likelihood of having the class variable (Y-Balance) of the dominant leg 

in its low and moderate risk categories 

Step Instantiate variable Label Y-Balance  

   Moderate risk 

1 None  53.26% 

2 CS-ML 8.79 95.01% 

3 ROM-HFKF_DOM <127 98.98% 

   Low risk 

1 None  46.74% 

2 ROM-KF_DOM 132.5 84.34% 

3 ROM-HFKF_DOM 127 91.91% 

4 CS-NF 5.24 – 6.69 97.05% 

CS: core stability; ML: unstable sitting while performing medial-lateral 

displacements with feedback; ROM: range of motion; HFKF: hip flexion 

with the knee flexed; KF: knee flexors; DOM: dominant leg; NF: no 

feedback. 
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Table 7.5. Step-by-step instantiations leading to maximization of the likelihood 

of having the criterion variable (Y-Balance) of the non-dominant leg in its low 

and moderate risk states. 

Step Instantiate variable Label Y-Balance  

   Moderate risk 

1 None  61.96% 

2 ROM-AKDFKE_NONDOM <30.5 96.7% 

3 CS-ML 8.3 99.29% 

   Low risk 

1 None  38.04% 

2 ROM-HE_NODOM >14.5 63.84% 

3 ISOK-ECC-KF180_NODOM 96.85-120.15 81.54% 

4 ROM-AKDFKF_NONDOM 34 94.32% 

5 ROM-AKDFKE_NONDOM 30.5 97.03% 

6 ROM-KF_NONDOM 122 98.65% 

CS: core stability; ML: unstable sitting while performing medial-lateral 

displacements with feedback; ROM: range of motion; KF: knee flexors; AKDFKE: 

ankle dorsi-flexion with the knee extended; AKDFKF: ankle dorsi-flexion with the 

knee flexed; HE: hip extension; ISOK: isokinetic strength; ECC: eccentric; 

NONDOM: non-dominant leg. 

Finally, figures 7.2 (dominant leg) and 7.3 (non-dominant leg) show a top-down 

reasoning for the dynamic postural control BNs in which in both cases, the class variable 

(Y-Balance composite scores) was instantiated in their two labels in order to define / predict 

a profile. For the dynamic postural control BN of the dominant leg, figure 7.2 shows that 

when the class variable is instantiated at is maximum of “low risk” (figure 7.2a), three 

variables or father nodes show a clearly imbalanced distribution of probabilities in favor of 

one of their labels (ROM-HFKF_DOM, CS-ML and stature). In particular, a futsal player with 
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a dynamic postural control performance categorized as “low risk” is very likely to have a 

hip flexion with knee flexed ROM higher than 127º, a core stability score (measured while 

performing medial-lateral displacements) lower than 8.79 mm (mean radial error) and a 

stature shorter than 180 cm. Subsequently, figure 7.2b also shows that when the label “high 

risk” of the class variable is instantiated, only knee flexion ROM reported a clear imbalance 

in the distribution of probabilities between its two labels (in favour to the label “<132.5°”) 

and hence, a high-risk profile was not visually clear. Regarding the dynamic postural 

control BN of the non-dominant leg, figure 7.3 shows that when the class variable is 

instantiated in its “low risk” label (figure 7.3a), seven out of nine variables present a clearly 

imbalanced distribution orientated to one of their labels. Thus, there seems to be a low risk 

profile characterised by moderate to high ROM values for the ankle, knee and hip (flexion) 

joints alongside with a high core stability performance during static and dynamic tasks. 

Contrarily, when the moderate risk label was instantiated (figure 7.3b), it was not possible 

to find a clear profile 
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Figure 7.2. A top-down reasoning for the dynamic postural control BNs of the 

dominant leg in which the class variable (Y-Balance composite scores) was 

instantiated in their two labels: a) low risk and b) moderate risk. 
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Figure 7.3. A top-down reasoning for the dynamic postural control BNs of the non-

dominant leg in which the class variable (Y-Balance composite scores) was 

instantiated in their two labels: a) low risk and b) moderate risk.
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7.5. Discussion 

The BNs generated using the selected features by the algorithms correlation attribute 

evaluator and chi squared reported the highest evaluation criteria for the dominant (AUC 

= 0.899) and non-dominant (AUC = 0.879) legs, respectively. The ability of both BNs to 

classify the instances correctly into one of the two categories of the class variable (low risk 

vs. moderate risk) cannot be compared with the models developed (through regression 

logistic techniques) in previous studies because neither of them reported any measure of 

their global ability or accuracy. 

The BN built for the dynamic postural control of the dominant leg identified six 

independent predictors: knee flexion and hip flexion with the knee flexed ROMs, stature, 

and one static (with feedback) and two dynamic (assessed while performing medial-lateral 

and circular displacements with feedback) core stability measures. On the contrary, the 

feature selection-based BN of the dynamic postural control of the non-dominant leg shows 

nine father nodes or independent predictors for the distance reached in the Y-Balance test: 

five of them were ROMs (hip flexion and extension with knee flexed, knee flexion and ankle 

dorsiflexion with knee flexed and extended), three were static (with and without feedback) 

and dynamic (assessed while performing medial-lateral displacements) core stability 

measures and one was a measure of the isokinetic eccentric strength of the knee flexors. 

Therefore, the performance achieved in the Y-Balance test (independent of the leg) and 

consequently, the dynamic postural control, appears to be widely influenced by the hip and 

knee flexion and the ankle dorsiflexion ROM measures, all in the sagittal plane, as well as 

by measures of static but mainly dynamic core stability in the frontal plane. In particular, 

the highest label of the dynamic core stability measure (the higher the value the worse the 

core stability) recorded while performing medial-lateral displacements (8.9 mm) and the 

lowest label of the hip flexion with knee flexed ROM (<127°) were the two neuromuscular 

parameters that presented the largest individual contribution (an increase of 41.7 and 32.1 

percentage points, respectively) to the probability that the class variable of the dominant 

leg (Y-Balance composite score) would adopt its moderate risk category. For the non-
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dominant leg, the two measures that have the highest impact on the probability of having 

the class variable in its moderate risk category were the lowest label of the ankle 

dorsiflexion with knee extended ROM (<30.5°) and again, the highest label of the dynamic 

core stability measure recorded while performing medial-lateral displacements (8.3 mm). 

These results are in agreement with the findings reported by previous studies102,106,248 

which found that the hip and knee flexion and ankle dorsiflexion ROMs individually 

determined a meaningful proportion of the explained variance (R2) for the Y-Balance test 

(ranging from 5 to 30% of the composite score) in different cohorts of athletes. These 

findings may support the hypothesis that those athletes with limited hip and knee flexion 

and ankle dorsiflexion ROMs might show a sub-optimal dynamic postural control while 

performing explosive actions (i.e., kicking and changes of direction) due to a smaller 

anterior displacement of their center of mass, which may increase the likelihood of losing 

stability. 

Although core stability has been proposed as a crucial factor for Y-Balance test289, 

only López-Valenciano et al.102 have confirmed this link in professional female football 

players. In particular, this study found that the measure of core stability recorded while 

players were performing medial-lateral displacements on an unstable seat explained a large 

percentage (31.1%) of the performance achieved in the composite score of the Y-Balance test 

in female, but not in male professional football players. These sex-related differences found 

by López-Valenciano et al.102 in the identification of this variable as an independent 

predictor for the Y-Balance test performance, but not in the absolute distances reached 

(composite scores), may be partially attributed to the fact that female players reported better 

results (statistically significant) in the core stability measures (with the exception of the 

static stability measure with feedback [CS-WF]) in comparison with their counterpart male 

football players (e.g.: CS-NF: 6.1 mm [males] – 4.3 mm [females], CS-CD: 10.8 mm [males] 

– 9.2 mm [females]). These differences in the core stability results in favor of the female 

players might have allowed them to develop different neuromuscular strategies to control 

the trunk in the frontal plane more efficiently while performing functional unilateral 
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movements (e.g. changes of direction, kicking). Consequently, the individual contribution 

of the different measures of neuromuscular performance on dynamic postural control 

might have been modified, so core stability may have now adopted a more relevant role in 

such cohort of female players in contrast to other parameters (e.g. ROM). This hypothesis 

seems to be supported by the results reported in the current study, in which the scores 

obtained by the male futsal players in the core stability tasks were similar or even slightly 

better to those reported by López-Valenciano et al.102 for the female players, and both BNs 

also selected some of these measures as independent predictors for the dynamic postural 

control performance. 

Thanks to the fact that BNs have the ability to make simulations or instantiations 

when new evidence is introduced in the model, it was possible to carry out the study of the 

simplest step-by step combination of instanced variables (in term of the number of 

instantiations made) to maximize the probability for the class variable (composite score) to 

have its low and moderate category for the dominant (table 7.4) and non-dominant legs 

(table 7.5). The combination of poor dynamic core stability scores (medial-lateral 

displacement) (8.79 and 8.3 mm for the dominant and non-dominant leg, respectively) 

with limited hip flexion with knee flexed (dominant leg) (<127º) or ankle dorsiflexion with 

knee flexed (non-dominant leg) (<30.5º) ROM measures presented a strong probabilistic and 

negative relationship with dynamic postural control. On the contrary, the combination of 

high hip (>127º) and knee (>132.5 and 122º for the dominant and non-dominant leg, 

respectively) flexion and ankle dorsiflexion with knee flexed (>34º) and extended (>30.5º) 

ROM values seems to have presented the strongest probabilistic and positive impact on 

dynamic postural control.     

 

7.6. Limitations 

The current findings are limited to the participants’ sport background (elite futsal 

players) so the extrapolation to other sport cohorts should be made with a certain degree of 
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caution. Each sport modality and level of competition requires differences in technical 

skills, specific movements, training load and physical capacities, all of which predispose 

athletes to individual chronic musculo-skeletal adaptations, thus possibly developing 

different strategies for neuromuscular control and influencing subsequent Y-Balance test 

scores. 

 

7.7. Conclusions  

The BNs built (AUC = 0.899 and 0.879 for the dominant and non-dominant legs 

respectively) in the current study demonstrated that the dynamic postural control in elite 

male futsal players presents a strong relationship to the abilities to flex the hip, knee and 

ankle (dorsiflexion) joints in the sagittal plane and to control the core structures during 

static, but mainly during dynamic actions in the frontal plane. Therefore, training 

interventions aimed at improving or maintaining unilateral dynamic balance in 

professional male futsal players should include, among other things, exercises (i.e. 

stretching exercises for the major muscles of the posterior chain) that allow futsal players 

to achieve hip and knee flexion and ankle dorsiflexion with knee flexed and extended ROM 

scores equal or higher than 127º, 132.5º, 34º and 30.5º, respectively. Likewise, these training 

interventions should also include exercises to maintain or improve both the static (e.g. 

frontal, back and side planks) and dynamic medial-lateral (e.g. plank jacks and Russian 

twists, one-legged squats, lunges, airplane exercises) core stability so that futsal players can 

achieve medial radial error values lower than 6.69 and 8.79 mm, respectively. 

 

 

 

 

  

 



 

 

7.8. Appendixes 

Appendix 7.1. Description of the features recorded to build the Bayesian Networks. 

Name 
Labels 

Dominant leg Non-dominant leg 

Y-Balance (composite score) High risk (<89.6%) or Low risk (89.6%) 

Personal characteristics:   

1. Dominant leg Left or right 

2. Stature (cm) <180 or 180* <173.55, 173.55-179.35 or >179.35 

3. Body mass (kg) <70.1, 70.1-74.95 or >74.95 <70.1, 70.1-74.95 or >74.95 

Isometric hip abduction and adduction strength (N/kg):  

4. ISOM-Hip-Abd <2.73, 2.73-2.93 or >2.93 <2.55, 2.55-2.81 or >2.81 

5. ISOM-Hip-Abd <2.61, 2.61-3.27 or >3.27 <3 or 3* 

Lower extremity ranges of motion (º):  

6. ROM-HFKF <127 or 127* <130 or 130* 

7. ROM-HFKE <70.5, 70.5-79.5 or >79.5 <70.5, 70.5-81 or >81 

8. ROM-HAB <56, 56-63.5 or >63.5 <51.5, 51.5-60.5 or >60.5 

9. ROM-HIR <39.5, 39.5-44.5 or >44.5 <34.5, 34.5-44.5 or >44.5 

10. ROM-HER <51.5, 51.5-59.5 or >59.5 <49.5, 49.5-58 or >58 

11. ROM-HE <9, 9-14 or >14* <9.5, 9.5-14.5 or >14.5 



 

 

12. ROM-KF <132.5 or 132.5* <122 or 122* 

13. ROM-AKDFKE <31 or 31* <30.5 or 30.5* 

14. ROM-AKDFKF <32.5, 32.5-37.5 or >37.5 <34 or 34* 

Core stability (mm):   

15. CS-NF <5.24, 5.24-6.69 or >6.69 <6.75 or 6.75* 

16. CS-WF <3.66, 3.66-5.34 or >5.34 <5 or 5* 

17. CS-ML <8.79 or 8.79* <8.3 or 8.3 

18. CS-AP <6.88, 6.88-7.96 or >7.96 <6.88, 6.88-7.96 or >7.96 

19. CS-CD <8.31, 8.31-9.81 or >9.81 <8.31, 8.31-9.81 or >9.81 

Isokinetic knee flexion and extension strength (Nm):  

20. ISOK-CON-KF60 <98.95, 98.95-113.95 or >113.95 <92.45, 92.45-112 or >112 

21. ISOK-CON-KF180 <84.2, 84.2-106.05 or >106.05 <80.8, 80.8-106.65 or >106.65 

22. ISOK-CON-KF240 <82.65, 82.65-104 or >104 <80.35, 80.35-100.35 or >100.35 

23. ISOK-CON-KE60 <172.6, 172.6-220 or >220 <175.4, 175.4-204.15 or >204.15 

24. ISOK-CON-KE180 <124.85, 124.85-149.5 or >149.5 <127, 127-145.4 or >145.4 

25. ISOK-CON-KE240 <112, 112-142.65 or >142.65 <116.55, 116.55-134.05 >134.05 

26. ISOK-ECC-KF30 <98, 98-130.25 or >130.25 <97.45, 97.45-119.65 or >119.65 

27. ISOK-ECC-KF60 <79.95, 79.95-102.4 or >102.4 <101.3, 101.3-126.05 or >126.05 

28. ISOK-ECC-KF180 <103.4, 103.4-124.45 or >124.45 <96.85, 96.85-120.15 or >120.15 



 

 

29. ISOK-ECC-KE30 <218.9, 218.9-268.75 or >268.75 <222.45, 222.45-268.35 or >268.35 

30. ISOK-ECC-KE60 <217.75, 217.75-262.95 or >262.95 <223, 223-267.2 or >267.2 

31. ISOK-ECC-KE180 <191.75, 191.75-246.25 or >246.25 <188.95, 188.95-238.45 or >238.45 

*: discretization based on visual inspection; N: Newton; m: meter, º: degrees; cm: centimeter; kg: kilograms; ISOM: 

isometric; PT: peak torque; Abd: abduction; Add: adduction; ROM: range of motion; HFKF: hip flexion with the knee flexed; 

HFKE: hip flexion with the knee extended; HE: Hip extension; HABD: hip abduction at 90º of hip flexion; HIR: hip internal 

rotation; HER: hip external rotation; KF: knee flexors; AKDFKE: ankle dorsi-flexion with the knee extended; AKDFKF: ankle 

dorsi-flexion with the knee flexed; CS: core stability; NF: unstable sitting without feedback; WF: unstable sitting with 

feedback; ML: unstable sitting while performing medial-lateral displacements with feedback; AP: unstable sitting while 

performing anterior-posterior displacements with feedback; CD: unstable sitting while performing circular displacements 

with feedback; ISOK: isokinetic; KE: knee extensors; CON: concentric; ECC: eccentric. 
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CHAPTER 8 

Epilogue 

 

8.1. General conclusions   

 The studies included in this doctoral thesis: a) provide a deeper understanding of 

the injury incidence, characteristics and burden in futsal; b) confirm that the cost-effective, 

technically undemanding and portable 2D video analyses may be used as alternative to 

laboratory-based 3D motion analysis systems to quantify frontal plane knee alignment and 

hip and knee motion during drop vertical landings in male futsal players; c) present “user 

friendly” screening models to identify futsal players at high or low risk of non-contact lower 

extremity soft tissue injury by applying a novel Machine Learning approach; and d) 

improve the knowledge regarding the relationship between some neuromuscular 

performance measures and dynamic postural control through a Bayesian Network analysis.  

Overall, the main findings of the current doctoral thesis may help clinicians, coaches 

and sports science specialists in the decision-making process of injury prevention. 

The major contributions of the present doctoral thesis are listed below: 

Study 1:  

1. Professional futsal players are exposed to a substantial risk of sustaining injuries, 

especially during matches. 

2. Male players´ risk of sustaining injuries during international tournaments is 8.5 

times higher than during national tournaments. 

3. Male players´ risk of sustaining injuries during matches in national competitions is 

similar to the female players´ risk. 
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4. Future studies should focus on studying the injury incidence and characteristic of 

male and female elite players during both national leagues and international 

tournaments. 

Study 2: 

1. Female players´ risk of sustaining injuries during matches is similar to incidence 

during training sessions.  

2. Moderate injury incidence in female futsal players is most likely higher than other 

severities.  

3. The overall time loss injury was 96 days loss per 1000 hours of exposure.  

4. Outfield players showed higher incidence rate and amount of days off than 

goalkeepers. 

5. The most frequent injury location was lower extremity and specifically knee and 

ankle.  

Study 3:  

1. Knee medial displacement and knee flexion ROM measures calculated during a 

bilateral drop vertical jump and using a 2D video analysis procedure might be 

considered as valid and feasible alternatives to their respective 3D criterion to 

quantify knee kinematics and to detect futsal players who demonstrated aberrant 

movement patterns in the frontal and sagittal planes, respectively. 

2. New cut-off values need to be established to detect abnormal knee alignment and 

sagittal plane movements patterns using the 2D knee-to-ankle separation ratio and 

hip flexion range of motion. 

Study 4:  

1. Lower extremity soft-tissue injuries can be predicted with moderate accuracy 

through a combination of easy to employ field-based tests in elite futsal players 
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using machine learning techniques. The best performing model, which was built 

with just four ROM measures, reported an area under the curve score of 0.767 with 

true positive and negative rates of 85.1% and 62.1% respectively.  

2. The measures obtained through the ROM-Sport battery and Y-Balance test, as 

independent data sets, could be used to predict lower extremity soft-tissue injuries 

in elite futsal players as they reported area under the curve scores of 0.757 and 

0.701, true positive rate of 44.7% and 64.9%, true negative rate of 63.3 and 89.1%, 

respectively.  

3. Futsal elite players screening through field-based tests, that requires little 

equipment, can be used quickly with an almost inexpensive tools by trained staff 

and analysed just once during the preseason, should be included as an essential 

component of the injury prevention. 

Study 5:  

1. Dynamic postural control has strong relationship with the abilities to flex the hip, 

knee and ankle, and with the control of the core structures during static but mainly 

dynamic tasks.  

2. Training interventions focused on improving or maintaining unilateral dynamic 

balance should include exercises to stretch the major muscles of the posterior chain 

and to improve core stability during both static and dynamic tasks.  
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8.2. Thesis limitations and future research 

As something inherent in any research, this doctoral thesis presents several 

limitations. Most of them were addressed in each of the five studies (chapters 3, 4, 5, 6, 7). 

Additionally, this section presents some limitations that may be the starting point for new 

studies and research projects.  

1. To collect and analyse injury incidence of different futsal populations. This thesis has only 

analysed the epidemiology of injury in elite futsal players, which has allowed to 

know the main characteristics of the injuries and with that to establish prediction 

models on injuries with the highest burden. However, it could not be assured that 

these epidemiological data are the same in other age groups, levels of play and 

specially, in different team sports. Therefore, it is essential that future studies 

continue investigating injury incidence, characteristics and burden in futsal, 

focusing on female and young players. This knowledge will guide the development 

of prediction models according to the most burdensome injuries to each 

population. 

2. To analyse the criterion-related validity of 2D kinematic measures that may help to detect 

abnormal movement patterns during dynamic actions different to bilateral drop vertical 

landings. This thesis has only explored the validity of 2D measures of frontal plane 

knee alignment and sagittal plane motion during drop vertical landing. However, 

the study of the criterion-related validity of 2D kinematic measures using more 

specific, but complex, futsal actions such as changes of direction or cutting 

manoeuvres might allow to identify abnormal movement patterns in more 

ecologically valid situations. Therefore, studies focusing on the validity of 

kinematic measures obtained with 2D video analysis and during futsal-related 

dynamic actions are warranted to help in the decision-making process of injury 

prediction. 
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3. To evaluate the applicability of the prediction models developed in this doctoral thesis to 

different populations. Due to the intrinsic characteristics of futsal (i.e. type and 

location of injuries with higher incidence, associated risk factors, physical 

requirements, etc.) it is possible that the models developed in the study four might 

not be generalizable to other sport modalities and level of play. Therefore, future 

lines of work should build prediction models in other high-performance sports as 

well as in different age groups, levels of play and sex. In this case, two doctoral 

theses which are being developed in our research group are trying to replicate the 

current Machine Learning approach to develop robust prediction models in other 

sports in both sexes.  

4. To improve complex statistical approaches coming from machine learning and data mining 

environments used in this thesis. The screening models presented in study four still 

have some limitations, as having a model with good predictive accuracy is not 

enough if someone is interested in answering why an injury happened and what 

predictors are most closely associated with it. The base learning classifiers selected 

in this doctoral thesis cannot answer these questions, since they only allow to 

dichotomize the player. For example, someone might be interested in how much 

an injury likelihood will increase if hip abduction isometric strength imbalance 

between the player's legs increases or if there is a deficit in the ankle dorsiflexion 

range of motion, which could be estimated from statistical models such as Bayesian 

networks. Furthermore, the implementation of a SHAP type approach may provide 

a global overview of the most important features of a prediction model, which can 

also help to design preventive measures and risk mitigation strategies. 

5. To include more evidence-based risk factors in the prediction models in order to increase 

their ability to identify futsal players at high risk of LE-ST injury. Although all the 

measures recorded during the screening session are purported as LE-ST injury risk 

factors, there are a number of other measures from different questionnaires and 
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field-based tests not included in the study four (due to time constraints) which have 

been associated with LE-ST injury (e.g.: back extensor [Biering-Sørensen test253] and 

flexor [Flexion-Rotation trunk test254] endurance measures, bilateral leg strength 

asymmetries [hop test battery255], relative leg stiffness and reactive strength index 

256) and that may have improved the ability to predict LE-ST injuries in this cohort 

of athletes. 

6. To develop prevention protocols once high-risk players are identified. The injury 

prevention theory establishes that once the information about the problem (injury) 

and the main causes of injury are obtained, the next step is to propose preventive 

programs that ratify the data obtained and show the effectiveness of preventive 

strategies. Therefore, another limitation of this thesis, and future line of study, is 

the need to corroborate in a practical way the main results of the study four, 

establishing totally individualized preventive programs based on the identification 

of players with greater injury risk and the risk factors associated with each player. 

7. To study the relationships between neuromuscular performance measures and other 

complex movement skills with the aim of improving the design of training interventions. 

The study five has quantitatively described and graphically represented the 

relationships of dependency and conditional independence between the main 

modifiable measures of neuromuscular performance and dynamic postural control, 

which have improved the understanding of this complex phenomenon and may 

guide the design of tailored training interventions. The efficacy of training 

interventions to enhance other complex skills such as cutting and lineal sprinting 

will be improved if the same statistical approach used in the study four would be 

used to explore the concurrent and individual contribution of the main 

neuromuscular factors that may play a role to perform them with a low risk of 

injury. 
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CAPÍTULO 9 

Epílogo 

 

9.1. Conclusiones generales 

 Los estudios incluidos en esta tesis doctoral: a) aportan un mayor entendimiento en 

la incidencia de las lesiones, sus características y sus consecuencias (entendidas en días 

perdidos sin entrenar y jugar por lesión por cada 1000 horas de exposición a la práctica 

deportiva) en el fútbol sala; b) confirman que, los análisis de video 2D económicos, 

técnicamente poco exigentes y portátiles pueden usarse como alternativa a los sistemas de 

análisis de laboratorio de movimiento 3D para cuantificar la alineación de la rodilla en el 

plano frontal y el movimiento de la cadera y la rodilla durante aterrizajes verticales en 

jugadores masculinos de fútbol sala; c) presenta modelos de cribado "fáciles de usar" para 

identificar a los jugadores de fútbol sala con alto o bajo riesgo de lesiones de tejido blando 

de las extremidades inferiores en situaciones de no contacto mediante la aplicación de un 

nuevo enfoque de Aprendizaje Automático; y d) mejoran el conocimiento sobre la relación 

entre algunas medidas de rendimiento neuromuscular y el control postural dinámico a 

través de un análisis de redes bayesianas. 

En general, los principales hallazgos de la presente tesis doctoral pueden ayudar a 

los médicos, entrenadores y profesionales en ciencias del deporte en el proceso de toma de 

decisiones para la prevención de lesiones. 

A continuación, se enumeran las principales contribuciones de esta tesis doctoral: 

Estudio 1:  

1. Los jugadores profesionales de fútbol sala están expuestos a un gran riesgo de sufrir 

lesiones, especialmente durante los partidos. 
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2. El riesgo de los jugadores masculinos de sufrir lesiones durante los torneos 

internacionales es 8.5 veces mayor que durante los torneos nacionales. 

3. El riesgo de los jugadores masculinos de sufrir lesiones durante los partidos en las 

competiciones nacionales es similar al riesgo de las jugadoras. 

4. Futuros estudios deberían analizar la incidencia y características de las lesiones en 

jugadores de élite tanto masculinos como femeninos durante las ligas nacionales y 

los torneos internacionales. 

Estudio 2: 

1. El riesgo de las jugadoras de sufrir lesiones durante los partidos es similar a la 

incidencia durante las sesiones de entrenamiento. 

2. La incidencia de lesiones de gravedad moderada es probablemente más alta que la 

de lesiones de otra severidad en jugadoras de fútbol sala. 

3. La pérdida global de tiempo por lesión fue de 96 días por 1000 horas de exposición. 

4. Las jugadoras de campo mostraron una mayor tasa de incidencias y cantidad de 

días perdidos que las porteras. 

5. La localización de la lesión más frecuente fue en la extremidad inferior, 

específicamente la rodilla y el tobillo. 

Estudio 3:  

3. Las medidas de desplazamiento medial y el rango de movimiento de la flexión de 

la rodilla calculadas durante un salto vertical tras caída bilateral y el uso de un 

procedimiento de análisis de video 2D podrían considerarse como alternativas 

válidas y factibles a sus respectivas medidas criterio obtenidas a través de sistemas 

3D para cuantificar la cinemática de la rodilla y detectar jugadores de fútbol sala 

que realizan movimientos inadecuados y potencialmente lesivos. 
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4. Se deben establecer nuevos valores de corte para detectar patrones anormales de 

alineación de la rodilla y de movimientos del plano sagital, utilizando la ratio de 

separación de rodilla-tobillo y el rango de movimiento de flexión de cadera 

obtenidos a través del análisis de sistemas 2D. 

 

Estudio 4:  

1. Las lesiones de tejido blando de las extremidades inferiores se pueden predecir con 

precisión moderada mediante una combinación de pruebas de campo fáciles de 

emplear en jugadores de fútbol sala de élite a través de técnicas de Aprendizaje 

Automático. El modelo que mejores resultados aportó, que fue construido con solo 

cuatro medidas de rango de movimiento, reportó un área bajo la curva de 0.767 con 

una tasa de verdaderos positivos y negativos de 85.1% y 62.1% respectivamente. 

2. Las medidas obtenidas a través de la batería ROM-Sport y del test Y-Balance, como 

conjuntos de datos independientes, podrían usarse para predecir lesiones del tejido 

blando de extremidades inferiores en jugadores de fútbol sala de élite, ya que 

reportaron un área bajo la curva de 0.757 y 0.701, con una tasa de verdaderos 

positivos de 44.7% y 64.9%, y una tasa de verdaderos negativos de 63.3 y 89.1%, 

respectivamente. 

3. El cribado de jugadores de élite de fútbol sala a través de pruebas de campo, que 

requieren poco equipamiento, pueden llevarse a cabo rápidamente con 

herramientas económicas por parte de personal capacitado y siendo analizado 

solamente una vez durante la pretemporada, debería incluirse como un 

componente esencial de la prevención de lesiones. 

Estudio 5:  
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1. El control postural dinámico tiene una fuerte relación con habilidad para flexionar 

la cadera, la rodilla y el tobillo, con el control del tronco durante las tareas estáticas 

y sobre todo durante las tareas dinámicas. 

2. Las intervenciones de entrenamiento enfocadas en mejorar o mantener el equilibrio 

dinámico unilateral deben incluir ejercicios para estirar los principales músculos de 

la cadena posterior y mejorar la estabilidad del tronco durante las tareas estáticas y 

dinámicas. 
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9.2. Limitaciones de la tesis y líneas futuras de investigación. 

Como algo inherente a cualquier investigación, esta tesis doctoral presenta ciertas 

limitaciones. La mayoría de ellas han sido abordadas en los cinco estudios (capítulos 3, 4, 

5, 6 y 7). Adicionalmente, esta sección presenta algunas limitaciones que pueden ser el 

punto de partida para nuevos estudios y proyectos de investigación. 

1. Recoger y analizar la incidencia de lesiones en diferentes poblaciones de fútbol sala. Esta 

tesis solo ha analizado la epidemiología de las lesiones en jugadores de fútbol sala 

de élite, lo que ha permitido conocer las características principales de las lesiones y 

con eso establecer modelos de predicción sobre las lesiones con mayores 

consecuencias. Sin embargo, no se puede asegurar que estos datos epidemiológicos 

sean los mismos en otros grupos de edad, niveles de rendimiento y, especialmente, 

en diferentes deportes de equipo. Por lo tanto, es esencial que futuros estudios 

continúen investigando la incidencia, características y consecuencias de las 

lesiones, en el fútbol sala, centrándose en jugadores jóvenes. Este conocimiento 

permitirá el desarrollo de modelos de predicción de acuerdo con las lesiones más 

relevantes para cada población. 

2. Analizar la validez de criterio de las medidas cinemáticas 2D que pueden ayudar a detectar 

patrones de movimiento anormales durante acciones dinámicas diferentes a los aterrizajes 

verticales en caída bilateral tras salto desde cajón. Esta tesis solo ha explorado la validez 

de las medidas 2D de la alineación de la rodilla en el plano frontal y del movimiento 

en el plano sagital durante el aterrizaje tras salto desde cajón. Sin embargo, el 

estudio de la validez criterio de las medidas cinemáticas 2D utilizando acciones de 

fútbol sala más específicas pero complejas, como cambios de dirección o recortes, 

podría permitir identificar patrones de movimiento anormales en situaciones más 

ecológicas. Por lo tanto, los estudios centrados en la validez de las medidas 

cinemáticas obtenidas con el análisis de video 2D y durante las acciones dinámicas 
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relacionadas con el fútbol sala son necesarios para ayudar en el proceso de toma de 

decisiones en la predicción de lesiones. 

3. Evaluar la aplicabilidad de los modelos de predicción desarrollados en esta tesis doctoral en 

diferentes poblaciones. Debido a las características intrínsecas del fútbol sala (es decir, 

tipo y localización de las lesiones con mayor incidencia, factores de riesgo 

asociados, demandas físicas, etc.) es posible que los modelos desarrollados en el 

estudio cuatro no sean generalizables a otras modalidades deportivas y niveles de 

juego. Por lo tanto, líneas de trabajo futuras deben construir modelos de predicción 

en otros deportes de alto rendimiento, así como en diferentes grupos de edad, 

niveles de juego y sexo. En este caso, dos tesis doctorales que se están desarrollando 

en nuestro grupo de investigación están tratando de replicar el enfoque actual de 

Aprendizaje Automático para desarrollar modelos de predicción robustos en otros 

deportes y en ambos sexos. 

4. Mejorar los enfoques estadísticos complejos precedentes de entornos de Aprendizaje 

Automático y Minería de Datos utilizados en esta tesis. Los modelos de detección 

presentados en el estudio cuatro todavía tienen algunas limitaciones, ya que tener 

un modelo con buena precisión predictiva no es suficiente si alguien está interesado 

en responder al por qué ocurrió una lesión y qué predictores están más 

estrechamente asociados con ella. Los clasificadores de aprendizaje seleccionados 

en esta tesis doctoral no pueden responder estas preguntas, ya que solo permiten 

dicotomizar al jugador. Por ejemplo, alguien podría estar interesado en cuánto 

aumentará la probabilidad de una lesión si aumenta el desequilibrio de la fuerza 

isométrica de la abducción de cadera entre las piernas del jugador o si hay un déficit 

en el rango de movimiento de dorsiflexión del tobillo, que podría estimarse a partir 

de modelos estadísticos como las redes Bayesianas. Además, la implementación de 

un enfoque de tipo SHAP puede proporcionar una visión global de las 
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características más importantes de un modelo de predicción, que también puede 

ayudar a diseñar medidas preventivas y estrategias de mitigación de riesgos. 

5. Incluir más factores de riesgo en los modelos de predicción basados en evidencia para 

aumentar su capacidad de identificar jugadores de fútbol sala con alto riesgo de lesión de 

tejido blando en la extremidad inferior. Si bien todas las medidas registradas durante 

la sesión de evaluación se consideran factores de riesgo de lesiones de tejido blando 

en la extremidad inferior, existen otras medidas de diferentes cuestionarios y 

pruebas de campo que no se incluyen en el estudio cuatro (debido a limitaciones 

de tiempo) que se han asociado con estas lesiones (p. ej .: medidas de resistencia de 

extensores [test de Biering-Sørensen253] y flexores [prueba de flexo-rotación del 

tronco254] de tronco, asimetrías bilaterales de fuerza de las piernas [batería de test 

de salto255], rigidez relativa de la pierna e índice de fuerza reactiva256) y que pueden 

mejorar la capacidad de predecir lesiones de tejido blando de la extremidad inferior 

en esta cohorte de atletas. 

6. Desarrollar protocolos de prevención una vez identificados los jugadores en alto riesgo de 

sufrir una lesión. La teoría de prevención de lesiones establece que una vez que se 

obtiene la información sobre el problema (la lesión) y las causas principales de la 

lesión, el siguiente paso es proponer programas que ratifiquen los datos obtenidos 

y muestren la efectividad de las estrategias preventivas. Así pues, otra limitación 

de esta tesis y, por lo tanto, otra futura línea de estudio es la necesidad de 

corroborar de manera práctica los principales resultados del estudio cuatro, 

estableciendo programas preventivos totalmente individualizados basados en la 

identificación de jugadores con mayor riesgo de lesiones y los factores de riesgo 

asociados a cada jugador. 

7. Estudiar las relaciones entre las medidas de rendimiento neuromuscular y otras habilidades 

de movimiento complejas con el objetivo de mejorar el diseño de las intervenciones de 

entrenamiento. El estudio cinco ha descrito cuantitativamente y representado 



Capítulo 9: Epílogo  

 

280 

gráficamente las relaciones de dependencia e independencia condicional entre las 

principales medidas modificables del rendimiento neuromuscular y el control 

postural dinámico, mejorando la comprensión de este complejo fenómeno y que 

pueden guiar el diseño de intervenciones de entrenamiento personalizadas. La 

eficacia de las intervenciones de entrenamiento para mejorar otras habilidades 

complejas, como el recorte y la carrera lineal, mejorará si se utiliza el mismo 

enfoque estadístico utilizado en el estudio para explorar la contribución simultánea 

e individual de los principales factores neuromusculares que pueden desempeñar 

un papel importante para realizarlos con un bajo riesgo de lesiones.
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