ESTUDIO DEL RIESGO HIGIÉNICO POR INHALACIÓN DE PRODUCTOS QUÍMICOS

Tutor: Temístocles Quintanilla Icardo

Alumno: Germán Anaya Orbis

Fecha de entrega: 01/09/2015
Contenido

1. Resumen ... 4
2. Introducción .. 5
3. Justificación .. 6
4. Objetivos .. 7
5. Explicación del método utilizado para la evaluación de agentes químicos 8
5.1. Introducción .. 8
5.2. Evaluación de la exposición según la norma UNE-EN689:1996 .. 9
5.3. Método de evaluación del riesgo por exposición inhalatoria de agentes químicos. Metodología simplificada .. 13
6. Modelo “COSHH Essentials” .. 15
6.1. Cálculo de las variables del modelo COSHH ... 16
6.1.1. Variable 1: Peligrosidad según frases R ... 16
6.1.2. Variable 2: Tendencia a pasar al ambiente .. 17
6.1.3. Variable 3: Cantidad de sustancia utilizada ... 19
6.1.4. Acciones a tomar .. 20
6.1.5. Medidas de control ... 23
7. Modelo basado en el INRS ... 24
7.1. Determinación del riesgo potencial .. 26
7.1.1. Clase de peligro ... 26
7.1.2. Clase de exposición potencial ... 28
7.2. Clase de riesgo potencial y puntuación ... 30
7.3. Determinación de la volatilidad o pulverulencia ... 31
7.4. Determinación del procedimiento de trabajo ... 33
7.5. Determinación de la protección colectiva .. 34
7.6. Corrección en función del VLA .. 35
7.7. Calculo de la puntuación del riesgo por inhalación ... 35
8. Datos identificativos del taller mecánico .. 37
8.1. Datos de identificación .. 37
8.2. Descripción de las instalaciones ... 38
8.3. Descripción y funcionamiento de la cabina de pintura .. 39
8.4. Elementos químicos utilizados en la cabina de pintura .. 43
8.5. Equipos de protección individual utilizados en cabina de pintura.. 45
8.6. Mantenimiento de cabina de pintura ... 48
9. Aplicación del método COSSH ... 49
 9.1. Peligrosidad según frases R ... 49
 9.2. Calculo de la volatilidad ... 51
 9.3. Cantidad de sustancia utilizada ... 52
 9.4. Acciones a tomar ... 52
 9.5. Conclusiones del modelo simplificado de COSHH ... 54
10. Aplicación del método basado en el INRS ... 55
 10.1. Clase de peligro ... 55
 10.2. Clase de exposición potencial ... 57
 10.3. Clase de riesgo potencial y puntuación ... 58
 10.4. Determinación de la volatilidad .. 59
 10.5. Determinación del procedimiento de trabajo ... 59
 10.6. Determinación de la protección colectiva ... 59
 10.7. Corrección en función del VLA .. 60
 10.8. Calculo de la puntuación del riesgo por inhalación .. 60
 10.9. Conclusiones del modelo simplificado del INRS ... 62
11. Medidas preventivas ... 63
12. Comparación de los métodos utilizados ... 65
13. Conclusiones .. 68
14. Referencias bibliográficas .. 70

Anexo I
Anexo II
Autorización del tutor
1. Resumen

El presente trabajo de fin de Máster que he realizado, es un estudio de los contaminantes químicos referentes a un puesto de trabajo de pintor, en una cabina de pintura de un taller mecánico de vehículos.

Tiene por objeto evaluar los riesgos químicos por inhalación y exposición dérmica producidos por agentes químicos durante el proceso de pintado de automóviles así como determinar la suficiencia de las protecciones colectivas e individuales ya implementadas, todo ello acorde a la normativa vigente expuesta en el presente Trabajo de fin de Máster.

La redacción de este estudio de riesgos químicos y la realización del informe pertinente, han sido realizadas mediante mi periodo de prácticas en la empresa Prevención de Riesgos Laborales de Castilla La Mancha.
2. Introducción

Las condiciones de los centros de trabajo es un factor que en los últimos años está siendo vigilado de manera más exhaustiva, para evitar la posibilidad de que estas produzcan enfermedades profesionales.

La evaluación del puesto de trabajo de pintor de cabina de pintura, tiene que realizarse desde un punto de vista más minucioso, debido a que la persona que esté en el puesto de trabajo, estará en contacto con sustancias químicas, que pueden ocasionar enfermedades profesionales a corto o a largo plazo según la toxicidad de los contaminantes y el tiempo de exposición del trabajador.

Existen varias formas de evaluar los riesgos químicos por inhalación y exposición dérmica producidos por agentes químicos. Se pueden efectuar medidas directas o bien, utilizar las características de los productos químicos que se utilicen o se encuentren en la zona de trabajo.

En el presente trabajo, he utilizado las hojas de características de los productos que se encuentran en la zona de pintura y los factores “R” de dichos productos. Con estos datos y siguiendo la NTP-750 principalmente, y las diferentes NTP y Reales Decretos que nombraré en apartados posteriores, he realizado la evaluación de los riesgos que supone la exposición inhalatoria y dérmica del puesto de trabajo.
3. Justificación

En el R.D. 374/2001 de 6 de abril sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo, específicamente en el artículo 3.5, nos habla de la necesidad de la evaluación de los agentes químicos incluyendo las mediciones de las concentraciones cuantitativamente. Pero en el mismo apartado nos dice que estas mediciones no serán necesarias en el caso en que el empresario pueda demostrar claramente por otros métodos de evaluación, que se ha logrado una prevención y protección de conformidad con el artículo 3.1 del mismo Real Decreto.

El presente trabajo de fin de Máster tiene como finalidad estudiar los riesgos higiénicos de un taller mecánico. Más concretamente la exposición inhalatoria y a agentes químicos, del puesto de trabajo de pintor en un taller mecánico de vehículos.

La omisión de realizar la evaluación de los riesgos higiénicos por inhalación de sustancias químicas, y la omisión de tomar las medidas preventivas pertinentes, tanto colectivas como individuales, en caso que fueran necesarias, puede dar lugar a la aparición de enfermedades profesionales.

La prevención de los riesgos higiénicos, nunca tiene un coste superior a los costes que supondrían la aparición de enfermedades profesionales en los trabajadores.

A pesar de lo nombrado anteriormente (costes económicos inferiores realizando las correctas medidas preventivas), lo que se debe es velar por la salud de los trabajadores, y en ningún caso se han de realizar trabajos cuando exista el más mínimo riesgo para el operario de la cabina de pintura.
4. Objetivos

El estudio que he realizado sobre los riesgos químicos del trabajo en una cabina de pintura viene determinado por una serie de objetivos:

- Determinar el grado de estudio del riesgo de exposición a sustancias químicas en los operarios en el área de chapa y pintura en el taller de vehículos.

- Valorar el diseño de las instalaciones del taller mecánico de reparación de vehículos, y en particular, las medidas de protección colectiva frente a la exposición a las sustancias químicas.

- Analizar los procedimientos de trabajo en el uso de sustancias químicas en las tareas del proceso de pintura.

- Determinar la gestión en la puesta en conformidad y en el mantenimiento de las cabinas de pintura.

- Valorar el nivel de protección de los operarios en el uso de los EPI’s frente a las sustancias químicas.

- Documentar el registro de enfermedades profesionales a consecuencia de las condiciones de trabajo en los talleres mecánicos.
5. Explicación del método utilizado para la evaluación de agentes químicos

5.1. Introducción

Tal como establece el artículo 3.5 del Real Decreto 374/2001, la evaluación de la exposición por inhalación debe hacerse, con carácter general, por medición de las concentraciones ambientales de dichos agentes químicos. Ello implica un proceso de cierta complejidad técnica que incluye:

- La estrategia de muestreo: número de muestras, duración de cada una, ubicación, momento del muestreo, número de trabajadores a muestrear, número de jornadas y periodicidad del muestreo.

- La toma de muestras: elección de la instrumentación y parámetros de muestreo adecuados.

- El análisis químico de las muestras.

- El tratamiento de los datos y comparación con los criterios de valoración.

- Las conclusiones sobre el riesgo por exposición al agente químico.

El Reglamento de los Servicios de Prevención remite a la utilización de criterios de carácter técnico para la evaluación de riesgos, tales como normas UNE u otros de reconocido prestigio. En este tema en concreto, ha sido y es de referencia la norma UNE-EN 689:1996, que expone un sistema general de evaluación, y en sus anexos, varias alternativas acerca de la estrategia de muestreo.
5.2. Evaluación de la exposición según la norma UNE-EN689:1996

La NTP-406 describe con detalle el contenido de la norma, en lo que se refiere al sistema general de evaluación. Este sistema comprende la identificación de los agentes químicos, de los factores determinantes de la exposición (tareas, ciclos, tipo de operación, medidas de prevención, etc.) y de las interacciones entre ambos. La evaluación puede abordarse a tres niveles de profundidad:

- Estimación inicial.
- Estudio básico.
- Estudio detallado.

Solamente el estudio detallado es el que comprende una evaluación cuantitativa de la exposición con mediciones personales estadísticamente representativas. La norma UNE-EN 689:1995 indica distintos procedimientos para llevar a cabo estas mediciones y su tratamiento estadístico, a fin de obtener la probabilidad de que se supere el valor límite.

El estudio básico puede o no incluir mediciones de la concentración, pero normalmente éstas no poseen representatividad estadística. Se restringe a la obtención de datos cuantitativos en la situación más desfavorable (cuya aceptabilidad implica también la aceptabilidad del riesgo higiénico), extrapolaciones en el tiempo a partir de mediciones anteriores, mediciones de los parámetros de funcionamiento de los sistemas de control de la exposición y medidas dentro de la jornada sin que se asegure su representatividad.

La estimación inicial consiste en recopilar la máxima información acerca de las variables condicionantes de la exposición (peligrosidad intrínseca y condiciones de trabajo), de forma que pueda discriminarse una situación de riesgo acceptable, a juicio del técnico. Este riesgo equivale al riesgo leve mencionado en el RD 374/2001.
Si bien es razonable iniciar el proceso de evaluación con un análisis cualitativo, en muchas ocasiones no es posible alcanzar conclusiones sobre la aceptabilidad del riesgo y es necesario realizar un estudio detallado. La capacidad o no de alcanzar conclusiones a través de una valoración cualitativa es función de:

- El nivel de información disponible sobre la exposición: cuanto mayor es éste, menor es la incertidumbre asociada al juicio cualitativo sobre la exposición. Podría incluirse también aquí la capacidad o experiencia del técnico que realiza la evaluación.

- La cercanía al valor límite de exposición, determinado a su vez por:
 - El nivel de dicho límite: en igualdad de condiciones, se alcanzará antes la concentración correspondiente a valores límite bajos, por lo que, en igualdad de condiciones, presenta mayor incertidumbre la evaluación cualitativa de las sustancias con valor límite muy bajo.
 - Las cantidades presentes o manipuladas.
 - Las medidas preventivas adoptadas, siendo estas dos últimas características las que determinan la mayor o menor presencia del agente en el medio ambiente.

En la figura 1 se muestra el proceso metodológico para la evaluación del riesgo por exposición inhalatoria a agentes químicos. Las líneas punteadas que parten de la respuesta negativa a la existencia de riesgo leve, después de la estimación inicial, y de la respuesta negativa a la aceptabilidad del riesgo, después del estudio básico, indican un camino alternativo a la evaluación que consiste en considerar directamente la adopción de medidas preventivas, después de lo cual debe reiniciarse la evaluación. Aunque se procede de esta manera, es necesario destacar el interés preventivo de disponer de mediciones ambientales de la concentración. Constituyen una valiosa información para la mejora continua de las condiciones de trabajo, y para los estudios epidemiológicos para determinar la etiología de las enfermedades profesionales y fijar nuevos valores límite de exposición. La nomenclatura
adoptada en este diagrama es la de la norma UNE-EN 689:1996, para las etapas 1 (estimación de la exposición), 2 (estudio básico) y 3 (evaluación detallada).
[ESTUDIO DEL RIESGO HIGIÉNICO POR INHALACIÓN DE PRODUCTOS QUÍMICOS]

0. IDENTIFICAR LA PRESENCIA DE AGENTES QUÍMICOS (A.O)

Recogida de información cualitativa sobre:

- Peligrosidad de los A.O. (LISTADO)
- Condiciones de trabajo

Criterio del higienista

MODELOS SIMPLIFICADOS

1. ESTIMACIÓN INICIAL DE LA EXPOSICIÓN

¿Es posible concluir que el riesgo es leve?

SÍ

Recogida de información cuantitativa sobre:

- La concentración ambiental:
 - Medición en las condiciones más desfavorables
 - Medición junto a los focos
 - Mediciones "rápidas"
 - Extrapolaciones de evaluaciones anteriores

- Las medidas preventivas ya implementadas:
 - Medición de los parámetros característicos de funcionamiento del sistema
 (Por ejemplo: en extracciones localizadas, las presiones, velocidad de captura en el foco, caudal)

2. ESTUDIO BÁSICO

¿Es aceptable el riesgo?

SÍ

EXPOSICIÓN ACEPTABLE

Revisión sujeta a la reevaluación de riesgos, que según RD 39/1997, se hará cuando:
- Cambien las condiciones.
- Se incorpore un trabajador especialmente sensible.
- Se observen daños a la salud de los trabajadores o deficiencias preventivas.
- Por pacto entre empresa y trabajadores.

EXPOSICIÓN INCiertA

Programa de mediciones periódicas para:
- Controlar que no se exceda el VL
- Controlar la tendencia
- Obtener más datos y actuar la concentración media

3. EVALUACIÓN DETALLADA

NO

EXPOSICIÓN INACEPTABLE

MEDIDAS PREVENTIVAS:
Priorización, planificación, implantación y verificación de su eficacia (art. 15 LPRL)
5.3. Método de evaluación del riesgo por exposición inhalatoria de agentes químicos. Metodología simplificada

La metodología de evaluación del riesgo de accidente químico que seguidamente se expone está basada en las NTP-935 NTP-936 y NTP-937. Estas NTP van encaminadas a facilitar a las empresas con presencia de Agentes Químicos Peligrosos (AQP), sean o no industria química, y especialmente a las pequeñas y medianas empresas, la tarea de identificar los peligros y evaluar los riesgos asociados a la utilización de los citados productos, a fin de poder realizar una correcta y objetiva planificación preventiva a partir de los resultados obtenidos con su aplicación.

Esta metodología se centra en el daño esperado y no en el daño máximo, e incorpora y desarrolla la experiencia de aplicación de metodologías simplificadas basadas en la estimación de la probabilidad de materialización de la situación de peligro que se analiza, la frecuencia de exposición a la misma y las consecuencias normalmente esperadas en el supuesto de que llegara a materializarse.

La metodología que se propone permitirá categorizar la magnitud de los riesgos existentes y, en consecuencia, jerarquizar racionalmente su prioridad de corrección. La información que aporta este método es orientativa, siendo su objetivo facilitar la priorización de las actuaciones preventivas con criterios objetivos y, consecuentemente, facilitar la planificación preventiva.

Los modelos simplificados de evaluación del riesgo por exposición a agentes químicos (riesgo higiénico) se utilizan para obtener una estimación inicial del riesgo y, en determinadas situaciones, permiten discriminar una situación aceptable de una situación no aceptable desde el punto de vista higiénico. También muestran su utilidad al evidenciar situaciones claras de riesgo, para las cuales pueden tomarse medidas preventivas sin necesidad de pasar a evaluar el
riesgo de forma más exhaustiva, evitando costes innecesarios. Después de la adopción de dichas medidas preventivas se reiniciaría el proceso de evaluación.

Estos modelos constituyen un apoyo para el higienista al permitir combinar las variables determinantes de la exposición de forma sistemática y facilitar la toma de decisiones respecto a la aceptabilidad o no de la exposición. Integran todas (o algunas, según el modelo) de las siguientes variables, asignándoles índices semi-cuantitativos:

- Peligrosidad intrínseca de los agentes químicos
- Frecuencia de la exposición
- Duración de la exposición
- Cantidad de agente químico utilizado o presente
- Características físicas del agente
- Forma de uso
- Tipo de medida de control existente

La respuesta es una categorización en distintos niveles de riesgo, que determinan si el riesgo es o no aceptable y, en ocasiones, el tipo de medidas preventivas a aplicar. Entre los modelos publicados actualmente destacan dos: el del HSE británico y el del INRS francés. El primero comprende la etapa de estimación del riesgo (potencial), mientras que el segundo incorpora además, una segunda etapa que denominan propiamente "evaluación simplificada".
6. **Modelo “COSHH Essentials”**

La normativa legal para la prevención del riesgo por exposición a agentes químicos en el Reino Unido se denomina COSHH (COntrol of Substances Hazardousto Health). La metodología simplificada para prestar apoyo a pequeños y medianos empresarios y también a técnicos de prevención en el cumplimiento de esta normativa, se denomina COSHH Essentials, fue elaborada por el Health and Safety Executive y es la que se expone a continuación.

Se trata de una metodología para determinar la medida de control adecuada a la operación que se está evaluando, y no propiamente para determinar el nivel de riesgo existente. Este es su punto más fuerte, puesto que proporciona soluciones de índole práctica en forma de numerosas "fichas de control". Por otra parte, su aplicación es extremadamente sencilla, incluso para los usuarios no técnicos.

En lo sucesivo se asumirá que los niveles de control que se obtienen en este método (y que remiten a las fichas de control según el tipo de operación) corresponden a niveles de riesgo. Serán niveles de riesgo "potencial", puesto que no intervienen las medidas de control existentes como variable de entrada del método.

En la figura 2 se muestra el procedimiento para la categorización del riesgo en 4 grupos, que se basa en la consideración de tres variables de la operación a evaluar. Las variables relativas a la volatilidad o pulverulencia (tendencia a pasar al ambiente) y a la cantidad utilizada, indican el nivel de exposición potencial que puede existir. Ello, combinado con la peligrosidad de los agentes conduce a la categorización en cuatro niveles de riesgo potencial. Nótese que tampoco se incluye la variable tiempo de exposición, puesto que el modelo proporciona un diagnóstico inicial de la situación desde el punto de vista higiénico en términos de riesgo potencial y no una evaluación del riesgo propiamente dicha.
6.1. Cálculo de las variables del modelo COSHH

Para llevar a cabo el modelo “COSHH Essentials”, he calculado las diferentes variables expuestas en la fórmula correspondiente a la figura 2 mostrada anteriormente. El método para calcular las diferentes variables lo expongo a continuación.

6.1.1. Variable 1: Peligrosidad según frases R

La peligrosidad intrínseca de las sustancias (tabla 1), se clasifica en cinco categorías, A, B, C, D y E en función de las frases R que deben figurar en la etiqueta del producto y en su correspondiente hoja de datos de seguridad. Ante la existencia de frases R que condujeran a distinto nivel de peligrosidad, se tomará el mayor de ellos.

Además, algunas sustancias pueden presentar riesgos por contacto con la piel o las mucosas externas (tabla 2). Este modelo se ocupa únicamente del riesgo por inhalación, pero mediante la tabla 2 permite identificar el riesgo por contacto dérmico sin proseguir con su evaluación.
6.1.2. Variable 2: Tendencia a pasar al ambiente

La tendencia a pasar al ambiente se clasifica en alta, media y baja y se mide, en el caso de líquidos, por su volatilidad y la temperatura de trabajo (figura 3), que definen la capacidad de evaporación del agente, y en el de sólidos, por su tendencia a formar polvo (tabla 3).

Naturalmente, en el caso de agentes en estado gaseoso, se asignará siempre una volatilidad alta.

Tabla 1: Agentes químicos peligrosos por inhalación
Figura 3: Niveles de volatilidad de los líquidos

Tabla 3: Tendencia de los sólidos a formar polvo

<table>
<thead>
<tr>
<th>Baja</th>
<th>Media</th>
<th>Alta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustancias en forma de granza (pellets) que no tienen tendencia a romperse. No se aprecia polvo durante su manipulación. Ejemplos: grana de PVC, escamas, pepitas, lentejas de sosa, etc.</td>
<td>Sólidos granulares o cristalinos. Se produce polvo durante su manipulación, que se deposita rápidamente, pudiéndose observar sobre las superficies adyacentes. Ejemplo: polvo de detergente, etc.</td>
<td>Polvos finos y de baja densidad. Cuando se emplean se observa que se producen nubes de polvo que permanecen en suspensión durante varios minutos. Ejemplos: cemento, negro de humo, yeso, etc.</td>
</tr>
</tbody>
</table>
6.1.3. Variable 3: Cantidad de sustancia utilizada

La cantidad de sustancia empleada se clasifica cualitativamente en pequeña, mediana o grande según lo indicado en la tabla 4.

<table>
<thead>
<tr>
<th>Cantidad de sustancia</th>
<th>Cantidad empleada por operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeña</td>
<td>Gramos o mililitros</td>
</tr>
<tr>
<td>Mediana</td>
<td>Kilogramos o litros</td>
</tr>
<tr>
<td>Grande</td>
<td>Toneladas o metros cúbicos</td>
</tr>
</tbody>
</table>

Tabla 4: Cantidad de sustancia empleada

Una vez se ha recogido la información sobre las tres variables descritas (la categoría de peligrosidad, la tendencia a pasar al ambiente y la cantidad de sustancia empleada), la tabla 5 indica el nivel de riesgo potencial. Se han considerado cuatro niveles, a cada uno de los cuales corresponde una estrategia preventiva que se describe a continuación. Independientemente del nivel de riesgo, será de aplicación el artículo 4 del RD 374/2001 sobre los principios generales de prevención.
6.1.4. Acciones a tomar

Las acciones a tomar después de categorizar el riesgo se ajustarán en función del nivel del mismo, siguiendo las directrices indicadas para cada uno.

- **Nivel de riesgo 1:**

 Normalmente, en estas situaciones el control de la exposición podrá lograrse mediante el empleo de ventilación general.

 Puede asumirse que este nivel de riesgo corresponde al riesgo leve, en el sentido del Real Decreto 374/2001, cuestión que se formula en la primera pregunta del diagrama de la figura 1 para discriminar una situación de riesgo leve de todas las demás.

 En la Guía Técnica del RD 374/2001, se da un criterio en función de la peligrosidad de los agentes químicos para determinar si el riesgo es leve. El modelo COSHH Essentials va algo más allá, e incorpora la cantidad utilizada o manipulada y la tendencia a pasar al ambiente del agente químico, para obtener un juicio sobre la misma cuestión. Es de destacar que si se expresa el riesgo leve en función de la cantidad (tal y como se menciona en el artículo 3.3 del RD 374/2001), de la tabla 5 se deduce que cuando la cantidad de agente químico utilizada o manipulada es baja, el riesgo siempre es leve para agentes del nivel de peligrosidad A y B, y para agentes de nivel de peligrosidad C, lo es cuando estos manifiestan poca tendencia a pasar al ambiente (tabla 6). Nunca nos encontramos en una situación de riesgo leve con agentes de nivel de peligrosidad D o E.

- **Nivel de riesgo 2:**

 En las situaciones de este tipo habrá que recurrir a medidas específicas de prevención para el control del riesgo (artículo 5 del RD 374/2001). El tipo de instalación más habitual para controlar la exposición a agentes químicos es la extracción localizada, para cuyo diseño y
construcción es necesario, en general, recurrir a suministradores especializados. Es importante elegir el suministrador atendiendo a la experiencia demostrada en este tipo de instalaciones, así como especificar con claridad que el objetivo de la instalación es conseguir que en los puestos de trabajo la concentración de las sustancias químicas se encuentre tan por debajo del valor límite como sea posible.

• **Nivel de riesgo 3:**

 En las situaciones de este tipo habrá que acudir al empleo de confinamiento o de sistemas cerrados mediante los cuales no exista la posibilidad de que la sustancia química pase a la atmósfera durante las operaciones ordinarias. Siempre que sea posible, el proceso deberá mantenerse a una presión inferior a la atmósferica a fin de dificultar el escape de las sustancias.

 En los niveles de riesgo 2 y 3, una vez implantadas las instalaciones de control adecuadas, o corregidas las existentes para adaptarlas al diseño y funcionamiento apropiados, se procederá a la evaluación cuantitativa de la exposición. Cuando se sospeche que las exposiciones son claramente inferiores a los valores límite, la confirmación de este resultado puede abordarse con procedimientos de evaluación cuantitativos, no necesariamente exhaustivos (el "estudio básico" de la norma UNE-EN 689:1996 puede resultar adecuado). De los resultados de dicho estudio se deducirá la necesidad o no de medidas preventivas adicionales y de un programa de mediciones periódicas de la exposición. En todo caso, será preceptivo verificar periódicamente los parámetros de funcionamiento de las instalaciones de control, para garantizar la continuidad de su eficacia a lo largo del tiempo.

• **Nivel de riesgo 4:**

 Las situaciones de este tipo son aquéllas en las que, o bien se utilizan sustancias extremadamente tóxicas o bien se emplean sustancias de toxicidad moderada en grandes cantidades y éstas pueden ser fácilmente liberadas a la atmósfera. Hay que determinar si se
emplean sustancias cancerígenas y/o mutágenas reguladas por el RD 665/1997 y sus dos modificaciones. En estos casos es imprescindible adoptar medidas específicamente diseñadas para el proceso en cuestión recurriendo al asesoramiento de un experto. Este nivel de riesgo requiere la evaluación cuantitativa de la exposición, así como extremar la frecuencia de la verificación periódica de la eficacia de las instalaciones de control.

<table>
<thead>
<tr>
<th>Grado de peligrosidad</th>
<th>Volatilidad / Pulverulencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantidad usada</td>
</tr>
<tr>
<td></td>
<td>Baja volatilidad o pulverulencia</td>
</tr>
<tr>
<td>A</td>
<td>Pequeña</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
</tr>
<tr>
<td>B</td>
<td>Pequeña</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
</tr>
<tr>
<td>C</td>
<td>Pequeña</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
</tr>
<tr>
<td>D</td>
<td>Pequeña</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
</tr>
<tr>
<td>E</td>
<td>En todas las situaciones con sustancias de este grado de peligrosidad, se considerará que el nivel de riesgo es 4.</td>
</tr>
</tbody>
</table>

Tabla 5: Determinación del nivel de riesgo

<table>
<thead>
<tr>
<th>Nivel de peligrosidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Irritantes de la piel o los ojos y los que no tengan asignadas frases R de los otros grupos, para: cualquier pulverulencia o volatilidad</td>
</tr>
</tbody>
</table>

Tabla 6: Riesgo leve cuando la cantidad de agente químico utilizada por operación es pequeña
6.1.5. Medidas de control

Tal y como se ha comentado anteriormente, el modelo COSHH Essentials ofrece soluciones específicas para el control de la exposición según el nivel de riesgo obtenido y la operación concreta en la que se usa el agente (llenado de sacos, pesado, mezclado, desengrasado de metales, etc), o el proceso de trabajo (reparación de vehículos, industria del caucho, trabajo de la madera, servicios y comercio, fundiciones y panaderías). En cada proceso se distinguen distintas tareas, cada una con una ficha específica de control. Esto permite salvar, en estos casos, la limitación del método para ser aplicado con agentes que no disponen de frases R asignadas.
7. Modelo basado en el INRS

En los últimos años se ha extendido el uso de metodologías simplificadas para evaluar el riesgo de exposición por inhalación a agentes químicos sin recurrir a costosas mediciones ambientales. Esto es posible porque el RD 374/2001 establece una excepción para las mediciones cuando el empresario sea capaz de demostrar claramente por otros medios de evaluación que se ha logrado una adecuada prevención y protección. Por lo tanto, si de la aplicación de un método simplificado se concluye que el riesgo es bajo, se podría decir que no serían necesarias tales mediciones. Por otra parte, en la etapa de “Estimación inicial” de la norma UNE-EN 689 también tienen cabida dichos métodos, ya que esta primera etapa de la norma contempla la evaluación de la situación de riesgo en base al análisis de una serie de variables que afectan a la concentración ambiental y otras relacionadas con el trabajador.

Este tipo de métodos son útiles para realizar un diagnóstico inicial de la situación de riesgo químico, siendo posible analizar la evaluación cuando el riesgo sea bajo.

En el resto de los casos habrá que adoptar medidas correctoras o realizar una evaluación detallada, a veces con mediciones ambientales. Además, aportan como ventaja que el análisis de los factores de riesgo se puede realizar de una forma sistemática, lo que aumenta la posibilidad de que distintas personas lleguen a la misma conclusión.

La evaluación simplificada del riesgo por inhalación de agentes químicos que se propone se realiza a partir de las siguientes variables:

- Riesgo potencial.
- Propiedades físico-químicas (la volatilidad o la pulverulencia, según el estado físico).
- Procedimiento de trabajo.
- Medios de protección colectiva (ventilación).
• Un factor de corrección (FCVLA), cuando el valor límite ambiental (VLA) del agente químico sea muy pequeño, inferior a 0,1 mg/m³.

Para cada variable se establecen unas clases y una puntuación asociada a cada clase. La puntuación del riesgo se hace a partir de la puntuación obtenida para estas cuatro variables y el factor de corrección que sea aplicable.

El esquema a seguir se encuentra en la figura 4.

![Figura 4: Esquema para la evaluación simplificada del riesgo por inhalación](image)

El método original del INRS considera el peligro del agente químico, en lugar del riesgo potencial, porque la cantidad y la frecuencia ya se tienen en cuenta en un proceso previo que denominan jerarquización. Sin embargo, dado que en este procedimiento se aborda únicamente la evaluación del riesgo por inhalación se ha convenido emplear, para determinar el riesgo por inhalación, la variable riesgo potencial que engloba el peligro, la cantidad absoluta y la frecuencia de utilización.

Además, se ha introducido un factor de corrección en función del VLA, que no se utilizaba en el procedimiento del INRS, para los agentes químicos que tienen un VLA muy
bajo, inferior a 0,1 mg/m3, ya que en estos casos es fácil que se llegue a alcanzar en el ambiente una concentración próxima al valor de referencia, aunque su tendencia a pasar al ambiente sea baja, pudiéndose subestimar el riesgo.

Con independencia de aquellas situaciones en las que la legislación indica cuándo, cómo y dónde deben efectuarse mediciones ambientales para determinar la exposición, como ocurre con el amianto, existen una serie de casos en los que el procedimiento aquí descrito no es aplicable, tal es el caso de medicamentos y productos de descomposición térmica. Este hecho puede ocurrir, por ejemplo, en el tratamiento térmico de plásticos (indicado, para algunos casos, con las notas “l” y “m” en el documento Límites de exposición profesional para agentes químicos en España); cuando se puedan formar nitrosaminas, porque existan productos precursores (indicados con la nota “f”) y agentes nitrosantes; cuando se puedan formar hidrocarburos policíclicos aromáticos; cuando se pueda formar fosgeno a partir de hidrocarburos clorados, etc.

7.1. **Determinación del riesgo potencial**

Como se ha adelantado, el cálculo del riesgo potencial se hace a partir del peligro, la cantidad absoluta de agente químico y la frecuencia de utilización, según se indica en la figura 1. Este esquema es similar al utilizado por el INRS para la jerarquización de riesgos, con la diferencia de que aquí las cantidades que se utilizan son absolutas. El motivo de que se utilice la cantidad absoluta en lugar de la relativa es porque no se pretende jerarquizar el riesgo potencial, sino obtener una estimación semicuantitativa.

7.1.1. **Clase de peligro**

Las clases de peligro se establecen siguiendo los criterios de la tabla 7. Para asignar una clase de peligro a un agente químico es necesario conocer sus frases R o H. Cuando un producto, sustancia o mezcla, no tiene asignadas frases R o H, la atribución a una clase de
peligro u otra se puede hacer a partir de los VLA expresados en mg/m³, dando preferencia a los valores límite de larga duración frente a los de corta duración.

En el caso de que tampoco tenga asignado ningún tipo de VLA:

- Si se trata de una sustancia, se le asigna la clase de peligro 1.

- Si se trata de una mezcla o preparado comercial, se le asigna la clase de peligro 1.

- Si son mezclas no comerciales que vayan a ser empleadas en la misma empresa en otros procesos, se utilizarán las frases R o H de los componentes. Para no sobreestimar el riesgo se deben tener en cuenta las concentraciones de los componentes, tal y como se hace para las mezclas comerciales.

Para los materiales o productos comercializados no sujetos a la normativa de etiquetado, como son la madera, aleaciones, electrodos, etc., la clase de peligro se establece en función del agente químico emitido por el proceso. De esta forma, la clase de peligro se atribuye a partir de la última columna de la tabla 7.
7.1.2. Clase de exposición potencial

Se determina a partir de las clases de cantidad (tabla 8) y de frecuencia (tabla 9), según se indica en la tabla 10.

Tabla 7: Clases de peligro en función de las frases R o H, los valores límite ambientales y los materiales y procesos
Tabla 8: Clases de cantidad en función de las cantidades por día.

Tabla 9: Clases de frecuencia de utilización

Tabla 10: Determinación de las clases de exposición potencial.
7.2. Clase de riesgo potencial y puntuación

A partir de las clases de peligro y de exposición potencial se determina la clase de riesgo potencial siguiendo el criterio de la tabla 11. Una vez establecida la clase de riesgo potencial, ésta se puntúa de acuerdo con la tabla 12.

![Tabla 11: Clases de riesgo potencial](image1)

![Tabla 12: Puntuación para cada clase de riesgo potencial](image2)
7.3. Determinación de la volatilidad o pulverulencia

La tendencia del agente químico a pasar al ambiente se establece en función del estado físico. Para los sólidos se establecen tres clases de pulverulencia, según los criterios de la tabla 13.

Para los líquidos existen tres clases de volatilidad, en función de la temperatura de ebullición y la temperatura de utilización del agente químico siguiendo lo indicado. En caso de duda se debe optar por la categoría superior, para tomar la opción más desfavorable.

Si el proceso se desarrolla a distintas temperaturas, para calcular la volatilidad debe usarse la temperatura más alta.

A los gases, a los humos y a los líquidos o sólidos en suspensión líquida que se utilicen en operaciones de pulverización (spraying) se les atribuye siempre clase 3.

Existen algunos agentes químicos que tienen una presión de vapor lo suficientemente grande como para poder estar presentes en el ambiente en forma de materia particulada y en forma de vapor simultáneamente, contribuyendo con cada una de ellas de forma significativa a la exposición. Estos compuestos están señalados con la nota “FIV” en el documento Límites de exposición profesional para agentes químicos en España. En estos casos, la aplicación de éste o cualquier otro método simplificado puede subestimar el riesgo. Esto es frecuente en la aplicación de plaguicidas y, en general, en operaciones de pulverización (spraying) o en las que intervienen cambios de temperatura que puedan afectar al estado físico del agente en cuestión.
En estos casos, se calcula la volatilidad del compuesto como un sólido, es decir, teniendo en cuenta la pulverulencia, y como un líquido, utilizando en este caso la presión de vapor a la temperatura de trabajo, en lugar de la temperatura de ebullición y la temperatura de trabajo, y se considera la más alta de las dos. En la tabla 14 se muestra como asignar la clase de volatilidad en función de la presión de vapor, P_v.

Tabla 13: Determinación de la clase de pulverulencia para los materiales sólidos

<table>
<thead>
<tr>
<th>Descripción del material sólido</th>
<th>Clase de pulverulencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material en forma de polvo fino, formación de polvo que queda en suspensión en la manipulación (p.e. azúcar en polvo, harina, cemento, yeso...)</td>
<td>3</td>
</tr>
<tr>
<td>Material en forma de polvo en grano (1-2 mm). El polvo sedimeata rápido en la manipulación (p.e. azúcar consistente cristalizada)</td>
<td>2</td>
</tr>
<tr>
<td>Material en pastillas, granulado, esquemas (varios mm o 1-2 cm) sin apenas emisión de polvo en la manipulación</td>
<td>1</td>
</tr>
</tbody>
</table>

Figura 4: Establecimiento de las clases de volatilidad para líquidos
7.4. Determinación del procedimiento de trabajo

Otro de los parámetros que hay que considerar en la evaluación es el procedimiento de utilización del agente químico.

En la figura 5 se dan algunos ejemplos de estos sistemas, el criterio para asignar la clase de procedimiento y su correspondiente puntuación.

Figura 5: Determinación de la clase de procedimiento y puntuación para cada clase.
7.5. Determinación de la protección colectiva

En función de la protección colectiva utilizada se establecen cinco clases que se puntúan de acuerdo con lo indicado en la figura 6.

![Figura 6: Determinación de las clases de protección colectiva y puntuación para cada clase](image-url)
7.6. **Corrección en función del VLA**

Según se ha indicado anteriormente, el procedimiento aplicado como se ha descrito hasta aquí, puede subestimar el riesgo cuando se aplica a sustancias que tienen un valor límite muy bajo, ya que es fácil que se llegue a alcanzar en el ambiente una concentración próxima al valor de referencia, aunque su tendencia a pasar al ambiente sea baja.

Por este motivo se hace necesario aplicar un factor de corrección, FC, en función de la magnitud del VLA, en mg/m³. En la tabla 15, se dan los valores de estos FCVLA, en el caso de que el compuesto tenga VLA. Si el compuesto no tiene VLA, se considerará que el FCVLA es 1.

![Tabla 15: Factores de corrección en función del VLA](image)

7.7. **Calcular la puntuación del riesgo por inhalación**

Una vez que se han determinado las clases de riesgo potencial, de volatilidad, de procedimiento y de protección colectiva y que se han puntuado de acuerdo a los criterios anteriormente indicados, se calcula la puntuación del riesgo por inhalación (Pinh) aplicando la siguiente fórmula:
$$P_{inh} = P_{riesgo\ pot} \cdot P_{volutilidad} \cdot P_{procedimiento} \cdot P_{protec.\ colec.} \cdot FC_{VLA}$$

Con esa puntuación se caracteriza el riesgo utilizando la tabla 16.

En el caso de riesgo moderado, se puede optar por implantar las medidas de control adecuadas, o corregir las existentes, y volver a aplicar este procedimiento para ver si se ha logrado reducir el riesgo o, continuar la evaluación de acuerdo con la Norma UNE-EN 689, con la etapa de “Estudio Básico”, para decidir si son necesarias medidas adicionales y mediciones periódicas. De cualquier forma, habrá que comprobar periódicamente el buen funcionamiento de las medidas de control.

<table>
<thead>
<tr>
<th>Puntuación del riesgo por inhalación</th>
<th>Prioridad de acción</th>
<th>Caracterización del riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1.000</td>
<td>1</td>
<td>Riesgo probablemente muy elevado (medidas correct roras inmediatas)</td>
</tr>
<tr>
<td>> 100 y ≤ 1.000</td>
<td>2</td>
<td>Riesgo moderado. Necesita probablemente medidas correctoras y/o una evaluación más detallada (mediciones)</td>
</tr>
<tr>
<td>≤ 100</td>
<td>3</td>
<td>Riesgo a priori bajo (sin necesidad de modificaciones)</td>
</tr>
</tbody>
</table>

Tabla 16: Caracterización del riesgo por inhalación
8. Datos identificativos del taller mecánico

8.1. Datos de identificación

El presente estudio higiénico que voy a presentar lo he realizado a través de la empresa en la que he hecho las prácticas, “Prevención de Riesgos Laborales Castilla La Mancha”. Los datos de la empresa que voy a nombrar a continuación son totalmente ficticios para proteger los datos del cliente original, lo cual no es objeto del presente trabajo de fin de máster.

<table>
<thead>
<tr>
<th>EMPRESA:</th>
<th>TALLERES, S.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMICILIO SOCIAL:</td>
<td>POLIGONO SEPES, 8</td>
</tr>
<tr>
<td>LOCALIDAD:</td>
<td>CUENCA</td>
</tr>
<tr>
<td>C.P.:</td>
<td>16001</td>
</tr>
<tr>
<td>C.I.F.:</td>
<td>B-52525252</td>
</tr>
<tr>
<td>MUTUA DE AT Y EP:</td>
<td>MUTUA UNIVERSAL</td>
</tr>
<tr>
<td>ACTIVIDAD:</td>
<td>TALLER DE MECÁNICA Y PINTURA</td>
</tr>
<tr>
<td>TELÉFONO:</td>
<td>969 222 222</td>
</tr>
</tbody>
</table>
8.2. Descripción de las instalaciones

Las instalaciones de la empresa están ubicadas en el polígono Sepes de Cuenca, y dentro de la empresa se diferencian cuatro zonas de trabajo:

- **Zona de mecánica:** Esta zona es donde se trabajan las reparaciones y cambio de neumáticos. Aquí también encontramos la zona de maquinarias específicas como son el torno, la máquina de equilibrado, la planificadora, etc.

- **Zona administrativa:** Aquí es donde se efectúan todos los trámites y papeleos. Tiene dos entradas, una desde el taller mecánico y otra directamente desde la calle.

- **Zona de chapa y pintura:** Esta situada en la parte trasera de la nave y consta del taller de chapa y de la cabina de pintura. En esta zona se encuentra la zona del compresor.

- **Zona de almacén y recambios:** Es una zona bastante amplia, ya que estamos hablando de un taller de vehículos industriales y los recambios son bastante grandes.

Cabe señalar que la empresa tiene también un pequeño espacio para la exposición y venta de vehículos y una zona de aparcamiento en la parte trasera de la nave.

Las instalaciones tienen un total de 3457m² sin contar con el parking privado donde se colocan los vehículos reparados hasta su recogida que tiene 1120 m². Todo el espacio está distribuido de la siguiente manera.

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Superficie [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficinas</td>
<td>234</td>
</tr>
<tr>
<td>Taller</td>
<td>1912</td>
</tr>
<tr>
<td>Almacén y recambios</td>
<td>775</td>
</tr>
<tr>
<td>Chapa y pintura</td>
<td>340</td>
</tr>
<tr>
<td>Exposición y venta</td>
<td>196</td>
</tr>
</tbody>
</table>
En el trabajo de Fin de Máster que he realizado, me he centrado expresamente en los riesgos higiénicos de la zona de chapa y pintura. Más concretamente en la evaluación de riesgos por exposición inhalatoria de agentes químicos en la zona nombrada anteriormente.

8.3. Descripción y funcionamiento de la cabina de pintura

La cabina de pintura está situada en la parte posterior del taller mecánico. Esta aislada de la zona de taller. La situación de la misma lo podemos observar en los planos adjuntados en el Anexo I.
A continuación voy a hacer una breve explicación del método de trabajo llevado a cabo en la zona de la cabina de pintura.

ANTES DE PINTAR

1.- Lavar el automóvil anteriormente preparado e introducirlo en la Cabina-Horno. Encender las luces y poner en funcionamiento el ventilador de impulsión.

2.- Cubrir con papel protector y cinta adhesiva las partes que no se vayan a pintar. Recomendamos no usar periódicos, revistas u otros artículos similares.

3.- Proteger las ruedas; eliminación del barro, polvo...

4.- Desconectar la conducción de los rociadores limpiaparabrisas, pues en caso de cocción a 80º el vapor expulsado podría dañar el acabado.

5.- Repasar el coche con paños antipolvo y la zona a pintar con paños antisilicona.
6.- Elevar los automóviles con neumáticos sin cámaras, ya que en el enfriamiento se podrían deformar.

7.- Quitar el tapón del depósito de combustible, y si fuera a gas butano, desconectar y sacar la bombona. Comprobar que no queden en el interior botellas de aerosoles, extintores, desodorantes...

8.- Instalar un reductor de presión con filtro de la mejor calidad en el exterior.

9.- Vestir prendas de nylon para evitar la introducción de polvo, usando asimismo gorro para preservar la caída de cabello.

PREPARACION

1.- Seleccionar la pintura.

2.- Utilizar siempre un filtro de 2.000 mallas, filtrando el esmalte dos veces. Para los esmaltes metalizados, usar filtros de 5.000 mallas.

3.- Controlar la viscosidad según las recomendaciones de los fabricantes.

PRE-PINTADO

1.- Utilizar una pistola con boquilla de 1,2 y a presión no superior a 4 kg/cm2

2.- Controlar la posición de la trampilla de by-pass en el generador: debe estar abierta.

3.- Encender el quemador y regular el índice del termostato a 20º si la temperatura ambiente fuese inferior.

4.- Mojar abundantemente el suelo de la cabina si es de obra.
PINTADO

1.- Dar la primera mano de pintura con 1 ó 2 segundos de viscosidad superior.

2.- Diluir la pintura para la segunda y tercera mano.

3.- Esperar el tiempo necesario entre manos para evitar el corrugamiento.

4.- Poner el selector en 'Pintado'.

5.- Conectar el motor del grupo generador en caso de tener depuradora conectada previamente al generador, de lo contrario no arranca.

6.- Con la cabina en marcha, conectar el generador, que se pondrá en funcionamiento, o no, dependiendo de la temperatura seleccionada en el termostato digital de control.

7.- Conectar la iluminación. La máquina está lista para trabajar en la fase de Pintado. Al terminar de pintar, desconectar todos los elementos, incluida la iluminación.

FASE DE SECADO

1.- Colocar el selector de trabajo en la posición de secado. Esto hace que module la compuerta de aire para reducir el caudal y aumentar la temperatura.

2.- Establecer el tiempo de secado deseado en el temporizador, teniendo en cuenta que la cabina tardará 8/10 minutos en ponerse a temperatura. Conectar el quemador.

3.- Transcurrido el tiempo seleccionado, el generador y el ventilador se paran automáticamente.
8.4. Elementos químicos utilizados en la cabina de pintura

Los productos químicos utilizados en la cabina de pintura los presento a continuación con las características de cada uno de ellos para llevar a cabo la evaluación de riesgo por inhalación de dichos productos.

<table>
<thead>
<tr>
<th>Elemento Químico</th>
<th>Punto de ebullición</th>
<th>Frases R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyd Accelerator</td>
<td>135°C</td>
<td>R10, R20/21, R38, R42/43</td>
</tr>
<tr>
<td>Epoxi Activator</td>
<td>117°C</td>
<td>R10, R20/21/22, R37/38, R41</td>
</tr>
<tr>
<td>Alkyd Activator</td>
<td>135°C</td>
<td>R10, R20/21, R38, R42/43</td>
</tr>
<tr>
<td>High Build Activator</td>
<td>125°C</td>
<td>R10, R20, R36, R42/43, R66</td>
</tr>
<tr>
<td>Activator P72</td>
<td>117°C</td>
<td>R10, R20/21, R38, R41, R43, R52/53</td>
</tr>
<tr>
<td>Product Name</td>
<td>Point of Boiling</td>
<td>Frases R</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>One-Step Activator</td>
<td>125°C</td>
<td>R10, R20, R37, R42/43, R66</td>
</tr>
<tr>
<td>Alkyd Drier</td>
<td>180°C</td>
<td>R10, R38, R43, R51/53</td>
</tr>
<tr>
<td>Catalyst P207</td>
<td>106°C</td>
<td>R10, R20/21, R37/38, R41, R52/53</td>
</tr>
<tr>
<td>PUR Activator Fast</td>
<td>125°C</td>
<td>R10, R20, R37, R42/43, R52/53, R66</td>
</tr>
<tr>
<td>PUR MS Activator</td>
<td>125°C</td>
<td>R10, R20, R37, R42/43, R51/53, R66</td>
</tr>
</tbody>
</table>

Para calcular el grado de peligrosidad, el jefe de taller me ha proporcionado las fichas de caracterización de todos los elementos y productos químicos que se utilizan en la cabina de pintura. Los datos relevantes a las fichas de seguridad, como podemos observar, están referidos a las frases R y al punto de ebullición de cada uno de los productos utilizados en este puesto de trabajo.
8.5. Equipos de protección individual utilizados en cabina de pintura

La cabina de pintura es el elemento principal de protección colectiva con el que cuentan los operarios de este puesto de trabajo. A pesar de esto, es necesario que los trabajadores lleven a cabo unas medidas extra de protección, los equipos de protección individual.

En este apartado voy a describir los equipos de protección individual con los que cuentan los trabajadores que desarrollan sus labores en la cabina de pintura, los cuales se basan principalmente en evitar el contacto de los productos químicos con la piel, y el paso de estos a las vías respiratorias.

- Protección ocular: evita las salpicaduras accidentales a los ojos del operario que esté pintando algún elemento del vehículo. Pueden ser gafas simples o máscaras que cubran la totalidad de la superficie facial.
• Mono de trabajo: evita el contacto de los productos químicos con la piel del trabajador. Suelen estar realizados en material aislante para impedir que los productos atraviesen el material.

• Guantes: Protección del contacto de los productos químicos con la piel de las manos en este caso.
- Mascarilla: Protege al trabajador del paso de los productos químicos a las vías respiratorias

- Botas de seguridad: protege al trabajador de la posible caída de algún elemento que se esté manipulando. En este caso las botas también protegen las posibles caídas del trabajador al pisar algún material que pudiera existir en el suelo de la cabina, ya que tienen un material antideslizante en la suela de la misma.
8.6. Mantenimiento de cabina de pintura

A continuación voy a mostrar algunas pautas recomendadas por los fabricantes de cabinas de pinturas para llevar un buen mantenimiento de estas y así mantener la seguridad de las mismas y prolongar también su vida útil.

- **SIEMPRE**: Mantener limpias las paredes y las rejas del suelo para evitar la disminución de luz y la posibilidad de desprendimiento de polvo. Asegurarse de que en la cabina haya la adecuada sobrepresión, sustituyendo los filtros secos cuando estén sucios.

- **CADA SEMANA**: Limpiar y soplar con aire comprimido el prefiltraje del generador, realizar el soplado desde interior del filtro hacia fuera.

- **CADA TRES MESES**: Controlar la tensión de las correas de transmisión y el filtro de gasoil.

- **CADA SEIS MESES**: Controlar los cojinetes del ventilador e inspeccionar la salida de humos del quemador.

- **CADA AÑO**: Repetir las operaciones previstas semestralmente, limpiar internamente el intercambiador de calor, especialmente la cámara de combustión y tubos de humos, sustituir las gomas de las puertas, cambiar los filtros del techo.

- **Realizar un análisis de combustión y regular el CO2, así como la presión del aire de combustión.** Esta operación deberá ser realizada por una empresa especializada.
9. Aplicación del método COSSH

9.1. Peligrosidad según frases R

En la cabina de pintura se utilizan diez productos químicos diferentes, cada uno de ellos con sus distintas características. En este caso, todos los productos utilizados tienen más de una frase R, por lo que el grado de peligrosidad de cada producto (clasificado en cinco categorías: A, B, C, D, E), será el que conlleve mayor grado de peligrosidad.

La categoría de cada frase R se realiza por medio de la tabla 1 del apartado 6.1.1 del presente proyecto y las expongo a continuación:

<table>
<thead>
<tr>
<th>Alkyd Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epoxi Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkyd Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Build Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>
Activador P72

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20/21</th>
<th>R38</th>
<th>R41</th>
<th>R43</th>
<th>R52/53</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

One-Step Activator

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20</th>
<th>R37</th>
<th>R42/43</th>
<th>R66</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Alkyd Drier

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R38</th>
<th>R43</th>
<th>R51/53</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Catalyst P207

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20/21</th>
<th>R37/38</th>
<th>R41</th>
<th>R52/53</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

PUR Activator Fast

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20</th>
<th>R37</th>
<th>R42/43</th>
<th>R52/53</th>
<th>R66</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

PUR MS Activator

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20</th>
<th>R37</th>
<th>R42/43</th>
<th>R51/53</th>
<th>R66</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
9.2. Calculo de la volatilidad

La volatilidad es la tendencia a pasar al ambiente de los productos químicos. En nuestro caso, al ser químicos en estado líquido, se calcula la volatilidad de cada uno de los productos nombrados anteriormente a partir de la temperatura de ebullición de cada uno de ellos y de la temperatura de trabajo. A partir de los datos adquiridos calculamos los niveles de volatilidad siguientes.

<table>
<thead>
<tr>
<th>PRODUCTO QUÍMICO</th>
<th>VOLATILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyd Accelerator</td>
<td>Media</td>
</tr>
<tr>
<td>Epoxi Activator</td>
<td>Media</td>
</tr>
<tr>
<td>Alkyd Activator</td>
<td>Media</td>
</tr>
<tr>
<td>High Build Activator</td>
<td>Media</td>
</tr>
<tr>
<td>Activator P72</td>
<td>Media</td>
</tr>
<tr>
<td>One-Step Activator</td>
<td>Media</td>
</tr>
<tr>
<td>Alkyd Drier</td>
<td>Baja</td>
</tr>
<tr>
<td>Catalyst P207</td>
<td>Media</td>
</tr>
<tr>
<td>PUR Activator Fast</td>
<td>Media</td>
</tr>
<tr>
<td>PUR MS Activator</td>
<td>Media</td>
</tr>
</tbody>
</table>
9.3. Cantidad de sustancia utilizada

El trabajo en una cabina de pintura no consiste en meter un coche en la cabina y utilizar todos los productos nombrados en apartados anteriores para llegar a un resultado final de un coche pintado. Por lo general en una cabina de pintura la mayor parte de los trabajos realizados, son reparación y pintado de piezas sueltas de algún vehículo (faldones, parachoques, capós, etc).

La cantidad utilizada de cada producto en la cabina de pintura puede ir desde una cantidad pequeña (gramos o mililitros) en el caso de pintar piezas sueltas, hasta una cantidad mediana (kilogramos o litros) en el caso de tratarse de numerosas piezas o de un vehículo completo.

Por estos motivos, en la variable de cantidad de sustancia utilizada, voy a utilizar la variable más restrictiva, que en este caso es la cantidad mediana.

9.4. Acciones a tomar

Con la tabla nombrada anteriormente y con los parámetros calculados anteriormente, podemos observar que tenemos varios productos químicos con un grado de peligrosidad E, por lo que el nivel de riesgo de estos productos, es un riesgo potencial 4.

Mientras que en los Niveles de Riesgo Potencial 1, 2 y 3 podemos concluir el proceso adoptando medidas como ventilación general, extracción localizada y confinamiento respectivamente; el Nivel de Riesgo Potencial 4 requiere la evaluación de la exposición teniendo en cuenta no solo los riesgos potenciales sino también las medidas preventivas ya implantadas.
La tabla mostrada a continuación contiene todos los productos químicos utilizados en la cabina de pintura y el nivel de riesgo asociado a las variables calculadas en los puntos anteriores.

<table>
<thead>
<tr>
<th>PRODUCTO QUÍMICO</th>
<th>NIVEL DE RIESGO POTENCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyd Accelerator</td>
<td>4</td>
</tr>
<tr>
<td>Epoxi Activator</td>
<td>3</td>
</tr>
<tr>
<td>Alkyd Activator</td>
<td>4</td>
</tr>
<tr>
<td>High Build Activator</td>
<td>4</td>
</tr>
<tr>
<td>Activator P72</td>
<td>2</td>
</tr>
<tr>
<td>One-Step Activator</td>
<td>4</td>
</tr>
<tr>
<td>Alkyd Drier</td>
<td>1</td>
</tr>
<tr>
<td>Catalyst P207</td>
<td>3</td>
</tr>
<tr>
<td>PUR Activator Fast</td>
<td>4</td>
</tr>
<tr>
<td>PUR MS Activator</td>
<td>4</td>
</tr>
</tbody>
</table>
9.5. Conclusiones del modelo simplificado de COSHH

Como podemos observar existen notables diferencias entre los distintos productos utilizados en la cabina de pintura del taller mecánico. El nivel de riesgo 1 corresponde a un riesgo leve, el cual, teóricamente, con una ventilación general de la zona de trabajo, no existiría ningún peligro para el trabajador. Como las tareas realizadas en el puesto de trabajo de pintor (en las que se utilizan estos productos) se realizan en la cabina de pintura, el “Alkyd Drier” que es en este caso el que tiene un nivel potencial de riesgo 1 no conllevaría riesgos para el operario.

Por otro lado están los productos que tienen niveles de riesgo potencial de 2 y 3. En este caso el Real Decreto nos dice que tiene que existir un sistema de extracción localizada en el caso de nivel 2, y un sistema de confinamiento o sistema cerrado en el caso de nivel de riesgo 3. En la evaluación que he realizado, al tratarse de una cabina de pintura, como he nombrado anteriormente, esta tiene un sistema de extracción localizado con numerosos filtros y aparte es un espacio cerrado y confinado. De esta manera no existe posibilidad de que cualquier producto químico pase a la atmósfera en el momento de su utilización. En el caso de que se sospechara de algún mal funcionamiento de los sistemas que proporciona la cabina de pintura, habría que realizar un estudio cuantitativo para comprobar perfectamente que el trabajador está fuera de peligro a la hora de realizar su trabajo.

En las situaciones en las que el nivel de riesgo potencial es 4, tenemos que tomar medidas y realizar un estudio cuantitativo para llevar a cabo las soluciones oportunas para reducir la emisión de los contaminantes a la atmósfera y la posible intoxicación de los operarios por los compuestos cancerígenos o múgatenos que puedan contener los diferentes productos químicos.
10. Aplicación del método basado en el INRS

10.1. Clase de peligro

En primer lugar tenemos que clasificar la clase de peligro de cada uno de los productos según viene indicado en la tabla que he presentado en el punto 7.1.1. Así la clasificación de cada uno de los elementos las presente en las siguientes tablas

<table>
<thead>
<tr>
<th>Alkyd Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epoxi Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkyd Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Build Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activator P72</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
One-Step Activator

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20</th>
<th>R37</th>
<th>R42/43</th>
<th>R66</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Alkyd Drier

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R38</th>
<th>R43</th>
<th>R51/53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Catalyst P207

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20/21</th>
<th>R37/38</th>
<th>R41</th>
<th>R52/53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PUR Activator Fast

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20</th>
<th>R37</th>
<th>R42/43</th>
<th>R52/53</th>
<th>R66</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PUR MS Activator

<table>
<thead>
<tr>
<th></th>
<th>R10</th>
<th>R20</th>
<th>R37</th>
<th>R42/43</th>
<th>R51/53</th>
<th>R66</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
10.2. Clase de exposición potencial

Se determina en función de la cantidad utilizada y de la frecuencia de utilización a partir de la tabla 4 del punto 7.1.2.

Supongo que la cantidad mínima utilizada de todos los productos está entre 100 ml y 10 l de cantidad. La frecuencia de utilización de cada producto en la cabina de pintura es de entre 7 y 15 días al mes.

Con estos datos queda una exposición potencial de nivel 2.
10.3. Clase de riesgo potencial y puntuación

El riesgo potencial y la puntuación de cada uno de los productos utilizados en la cabina de pintura se calculan a partir de la clase de exposición potencial que hemos calculado en el apartado anterior, y a partir de la clase de peligro calculada en el apartado 10.1. Así queda la clase de riesgo potencial y la puntuación de cada uno de ellos de la siguiente manera.

<table>
<thead>
<tr>
<th>PRODUCTO QUÍMICO</th>
<th>CLASE DE PELIGRO</th>
<th>CLASE DE EXPOSICIÓN POTENCIAL</th>
<th>CLASE DE RIESGO</th>
<th>PUNTUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyd Accelerator</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Epoxi Activator</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Alkyd Activator</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>High Build Activator</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Activator P72</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>One-Step Activator</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Alkyd Drier</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Catalyst P207</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>PUR Activator Fast</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>PUR MS Activator</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>100</td>
</tr>
</tbody>
</table>
10.4. Determinación de la volatilidad

La volatilidad es la tendencia del producto químico a pasar al ambiente. Todos los productos que estoy estudiando para la cabina de pintura están en estado líquido, por lo que la volatilidad se calcula a partir de la temperatura de ebullición y comparando esta con una tabla.

Todos los elementos utilizados tienen una volatilidad media excepto el “Alkyd Drier” que tiene una volatilidad baja.

10.5. Determinación del procedimiento de trabajo

Uno de los parámetros con una importancia muy relevante que hay que estudiar a la hora de hacer un estudio cualitativo del entorno de trabajo es la determinación del procedimiento de trabajo. En este caso, es un procedimiento de tipo dispersivo, según la tabla que he recogido en puntos anteriores, ya que en la cabina de pintura se trabaja con pistolas de aire a presión para pintar las diferentes partes de los vehículos.

10.6. Determinación de la protección colectiva

Todos los parámetros que estoy estudiando tienen asociado un factor de corrección para calcular posteriormente una fórmula y ver si cumplen las diferentes medidas de la cabina de pintura. En este método también es necesario obtener información de las protecciones colectivas que se utilizan en este puesto de trabajo, ya que estas son una parte muy importante en la prevención de inhalación de estos contaminantes.

En el caso de la cabina de pintura, como podemos observar en las tablas de puntos anteriores se trata de una protección de clase 2, ya que es una cabina cerrada y ventilada.
10.7. Corrección en función del VLA

Como se ha explicado en este método, no hay que subestimar las sustancias químicas que tienen un valor límite muy bajo, ya que es fácil que se alcance dicha concentración en un ambiente cerrado. Por este motivo a la fórmula que considerare posteriormente, se le ha de aplicar un factor de corrección FC-VLA. En el caso de la cabina de pintura consideraremos un FC-VLA de 1, ya que los compuestos de los que estoy realizando el estudio carecen de VLA

10.8. Calculo de la puntuación del riesgo por inhalación

Una vez que se han determinado las clases de riesgo potencial, de volatilidad, de procedimiento y de protección colectiva y que se han puntuado de acuerdo a los criterios anteriormente indicados, se calcula la puntuación del riesgo por inhalación (Pinh) aplicando la siguiente fórmula:
ESTUDIO DEL RIESGO HIGIENICO POR INHALACIÓN DE PRODUCTOS QUÍMICOS

\[P_{\text{inh}} = P_{\text{riesgo pot}} \cdot P_{\text{volatilidad}} \cdot P_{\text{procedimiento}} \cdot P_{\text{protec. colec.}} \cdot FC_{\text{VLA}} \]

<table>
<thead>
<tr>
<th>PRODUCTO QUÍMICO</th>
<th>PUNTUACIÓN DE RIESGO POTENCIAL</th>
<th>VOLATILIDAD</th>
<th>PROCEDIMIENTO DE TRABAJO</th>
<th>PROTECCIÓN COLECTIVA</th>
<th>FACTOR DE CORRECCIÓN VLA</th>
<th>PUNTUACIÓN DEL RIESGO POR INHALACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyd Accelerator</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Epoxi Activator</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Alkyd Activator</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>High Build Activator</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Activator P72</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>One-Step Activator</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Alkyd Drier</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Catalyst P207</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>PUR Activator Fast</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>PUR MS Activator</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>
10.9. Conclusiones del modelo simplificado del INRS

Como podemos observar en el método del INRS el valor máximo de puntuación que obtenemos no sobrepasa los 100 puntos por lo que estaríamos dentro de un riesgo de prioridad en la acción 3, en el cual a priori no habría que realizar modificaciones en las instalaciones ni en los métodos de trabajo de los operarios en la cabina de pintura.

No obstante, siete de los diez productos que estoy estudiando en la cabina de pintura, estarían en el límite de ser un riesgo moderado. En estos casos no cabría descartar tener que realizar un estudio más meticuloso de carácter cuantitativo de los productos químicos utilizados en el puesto de trabajo.

Como este modelo tiene claramente definidas las variables para llegar a un nivel de riesgo concreto, a la hora de cambiar o modificar las medidas preventivas o los equipos de protección se puede hacer más hincapié en las variables que nos han salido más desfavorables. Por ejemplo el cambio de productos con otras frases R menos perjudiciales, utilizar los productos en menor cantidad y con menor frecuencia, etc.
11. Medidas preventivas

A la hora de realizar el trabajo en la cabina de pintura hay que tener en cuenta una serie de factores o de “buenas conductas” del trabajador para realizar las operaciones de la manera más segura posible y sin que exista posibilidad alguna, o intentar minimizar al máximo los riesgos que puedan surgir a la hora de realizar el trabajo. Para realizar esto expongo aquí una serie de medidas preventivas que cualquier trabajador que este o que realice alguna operación en esta zona, tenga claro la manera de actuar y de realizar el trabajo con el mínimo riesgo posible:

- Se ha de mantener la cabina de pintura recogida y limpia en todo momento para evitar caídas y choques con objetos inmóviles que estén por el medio de la cabina de pintura.

- Todos los trabajadores deberán tener los equipos de protección individual que he nombrado en los apartados anteriores, y deberán usarlos en todo momento para su seguridad.

- Manejar los productos químicos con cuidado, y si se han de realizar mezclas, realizarlas dentro de la cabina de pintura para evitar exposiciones y para evitar el paso de estas al medio ambiente.

- El mantenimiento de la cabina de pintura deberá ser optimo, y realizarse cuando lo marca el fabricante o cuando se sospeche o se observe algún fallo en el funcionamiento de la misma.

- Evitar exposiciones prolongadas a los agentes químicos, realizando paradas o rotaciones de los trabajadores si la cantidad de trabajo es muy elevada.
• Se debe sustituir los productos químicos más perjudiciales por otros con un nivel de riesgo potencial menor cumpliendo así con lo establecido en el R.D 374/2001.

• Mantener los productos químicos en una zona alejada y aislada de la cabina de pintura y de la zona de trabajo de los demás trabajadores del taller en un recinto independiente cumpliendo con el R.D. 379/2001.

• Se han de realizar controles periódicos de las velocidades de aspiración de la cabina de pintura, de manera que se garantice su adecuado funcionamiento (por lo menos una vez al año). También se ha de realizar un mantenimiento preventivo según las indicaciones del fabricante donde se establecen los tiempos de sustitución de las diferentes partes de la cabina como por ejemplo los filtros.

Las medidas propuestas son específicamente para la zona de trabajo de la cabina de pintura. Cabe señalar que la ubicación de la cabina de pintura está en un taller de vehículos donde se realizan reparaciones de todo tipo, por lo que existen numerosos riesgos que en este trabajo no he nombrado, ya que me he centrado en los riesgos higiénicos de esta zona, y los demás riesgos del taller no son objeto de este informe.
12. Comparación de los métodos utilizados

La evaluación y el informe que he realizado de la cabina de pintura está hecha, como he explicado anteriormente, por dos métodos simplificados. Los dos métodos están realizados por medio de toma de datos en el taller de todos los productos químicos utilizados en la cabina de pintura, de sus frases “R” y de las características necesarias para llevar los diferentes estudios a cabo, como por ejemplo el punto de ebullición de los productos.

El primer estudio está realizado por el modelo COSHH Essentials. La primera toma de contacto con el método se encuentra en la NTP-750. Esta nota técnica fue posteriormente sustituida por las notas técnicas 935 y 936, las cuales ampliaban ligeramente la efectividad de las mismas. Este estudio se basa principalmente en el estudio de las frases “R”, del peligro que suponen, de la cantidad de sustancia utilizada y de la volatilidad que presentan los productos químicos para pasar al ambiente.

El segundo estudio realizado está basado en el método simplificado del INRS. En este caso la toma de contacto con este método la encontramos en la NTP-937. Esta nota técnica está complementada por las otras dos nombradas anteriormente del modelo COSHH Essentials (935 y 936). El estudio es muy parecido al mostrado en el modelo COSHH, pero presenta otras variables que también hay que tener en cuenta a la hora de realizar un estudio cualitativo. Estas variables son la determinación del procedimiento, la determinación de la clase de protección colectiva y un factor de corrección en función del VLA.

Entre los métodos, aunque se pueden complementar, existen varias diferencias que se han de tener en cuenta para entender e interpretar los resultados obtenidos.
En el caso del COSHH, en cuanto existe un compuesto, que tenga una frase “R” dentro del grupo “E”, ya se considera que esta sustancia o producto químico está dentro de los clasificados como riesgo de nivel 4, el más restrictivo de todos los niveles de este método. Sin embargo en el método del INRS, si tienes alguna frase “R” de las más perjudiciales, esto no significa que haya que realizar un estudio cuantitativo de las cantidades de sustancia química a la hora de realizar el trabajo, ya que tiene en cuenta otros parámetros como la forma de trabajar con este, o la zona donde se realizan estos trabajos de pintura.

El modelo simplificado del INRS lo que hace es tener en cuenta los medios de protección colectiva, ya que al estar trabajando con productos perjudiciales para la salud y para el medio ambiente, han de existir las instalaciones pertinentes, y se ha de realizar un mantenimiento de todas las instalaciones para proporcionar una mayor seguridad en el trabajo.

Por los motivos expuestos anteriormente el modelo COSHH Essentials es el más restrictivo de los dos, ya que has de contar con la opinión de un experto o técnico especializado en el tema de los agentes químicos siempre que tengas una frase “R” de nivel “E”.

A la vista de los resultados obtenidos, Por el método INRS no sería necesario realizar ningún cambio, ni realizar un estudio cuantitativo para ver el alcance de los compuestos. No obstante, hay ciertos compuestos que están en el límite de ser un riesgo bajo a ser un riesgo medio. Así debería existir un mantenimiento periódico de las instalaciones, y cada cierto tiempo revisar los niveles de contaminantes del ambiente.

Una de las principales medidas que propongo para cualquiera de los dos modelos, es intentar, en la medida de lo posible, cambiar los productos más perjudiciales utilizados en la
cabina de pintura. Hoy en día existe una gran oferta de productos con las mismas características que queremos obtener, y con un nivel de riesgo potencial más bajo. Por lo que esta sería la principal medida a adoptar.
13. Conclusiones

En mi opinión, el artículo 3.5 del Real Decreto 374/2001 de 6 de abril sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo, tiene una gran importancia a nivel de las pequeñas y medianas empresas.

Evidentemente, el artículo nombrado anteriormente no exime al empresario de realizar los estudios pertinentes en cuestión de riesgos por inhalación de productos químicos, pero facilita las medidas y los recursos para llevar a cabo un estudio cualitativo sobre la peligrosidad en los puestos de trabajo en que se usen los productos contaminantes para el trabajador y para el medio ambiente.

Tras la realización del estudio y del presente informe mostrado en este trabajo de fin de máster, se han recomendado al empresario una serie de medidas, que a priori no serían necesarias, ya que el riesgo obtenido por el método simplificado de INRS era bajo. Las medidas principales que hay que llevar a cabo es la sustitución de ciertos productos por otros menos contaminantes para el trabajador. Así la exposición sería mucho más baja y al tener una presencia del contaminante más baja, se podría aumentar el volumen de trabajo sin correr ningún riesgo.

Como el taller cuenta con una cabina de pintura, esta será el elemento principal de protección colectiva por lo que se ha de llevar el mantenimiento correctamente de las instalaciones. En el presente informe he añadido una serie de revisiones genéricas que el empresario debe llevar a cabo para un buen funcionamiento de la cabina de pintura en cuanto a funcionamiento y en cuanto a condiciones de seguridad.
Recomiendo notablemente que la vigilancia de la salud se lleve a cabo como mínimo para los trabajadores que desarrollen su trabajo con los productos sobre los que he realizado el estudio. Esto es así, porque si bien he concluido que no existe un riesgo para el trabajo de los mismos trabajadores, ha sido recopilando la información necesaria para hacerlo. Dicha información consta de los tiempos de trabajo, la cantidad de producto utilizado, etc. Estos parámetros no son algo fijo, como pueden ser las frases R de los productos, por lo que la vigilancia de la salud sería necesaria para vigilar que realmente los productos químicos no están siendo perjudiciales.

Como conclusión final, y desde mi punto de vista, los métodos simplificados para estudiar los riesgos por inhalación de agentes químicos, son recursos que los empresarios pueden utilizar para obtener una primera visión de los contaminantes que puedan existir en un puesto de trabajo específico sin tener la necesidad de realizar un estudio cuantitativo. Con esto no quiero decir que sea lo más efectivo. Es más, en cuanto exista cualquier indicio de mal funcionamiento de las protecciones colectivas o de las protecciones individuales, o se esté utilizando un producto con un nivel de riesgo elevado, en mi opinión, siempre se ha de realizar un estudio cuantitativo por un técnico experto en el tema, para evitar una posible contaminación, intoxicación, o reacción cualquiera que pueda sufrir un trabajador, ya que al fin y al cabo, el principal fin de la prevención, es la protección del trabajador.
14. **Referencias bibliográficas**

La evaluación se ha realizado utilizando como base, los siguientes criterios legales y técnicos de referencia:

- **RD 374/2001**: sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo.

- **UNE EN 689/1995**: Atmósferas en el lugar del trabajo. Directrices para la evaluación de la exposición por inhalación de agentes químicos para la comparación con los valores límite y la estrategia de medición.

- **Nota Técnica de Prevención 934**: Agentes químicos: metodología cualitativa y simplificada de evaluación del riesgo de accidente.

- **Nota Técnica de Prevención 935**: Agentes químicos: evaluación cualitativa y simplificada del riesgo por inhalación (I). Aspectos generales.

- **Nota Técnica de Prevención 936**: Agentes químicos: evaluación cualitativa y simplificada del riesgo por inhalación (II). Modelo COSHH Essentials.

- **Nota Técnica de Prevención 937**: Agentes químicos: evaluación cualitativa y simplificada del riesgo por inhalación (III). Método basado en el INRS.

- **RD 1215/1997**: por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización de los equipos de trabajo.

- **RD 486/1997**: por el que se establecen las disposiciones mínimas de seguridad y salud en los lugares de trabajo.

- **RD 773/1997**: sobre disposiciones mínimas de seguridad y salud relativas a la utilización por los trabajadores de los equipos de protección individual.
• Guía Técnica para la Evaluación y Prevención de los Riesgos presentes en los lugares de trabajo relacionados con Agentes Químicos (RD 374/2001), del INSHT.

• Riesgo Químico: sistemática para la Evaluación Higiénica, del INSHT.
ANEXO I

Planos
ANEXO 2

Equivalencia entre frases R y H, y consejos de prudencia
Regulación UE sobre productos químicos (II). Reglamento CLP: aspectos básicos

En la presente Nota Técnica de Prevención, continuación de la NTP 871, se resumen las características básicas y los aspectos más relevantes del Reglamento CLP en relación a la clasificación, etiquetado y envasado de sustancias y mezclas de sustancias químicas en el ámbito de la Unión Europea, con especial referencia a los aspectos relacionados con la salud y la seguridad de sus usuarios. Esta NTP y las 880 y 881 sustituyen a la NTP 635.

1. INTRODUCCIÓN

El Reglamento (CE) 1272/2008 CLP (Clasificación, Etiquetado y Envasado), que modifica al Reglamento (CE) 1907/2006 REACH, representa la adaptación en la UE del SGA, (Sistema Globalmente Armonizado, GHS en inglés) que es una regulación aprobada a nivel mundial (ver las NTP 726 y 727) que va siendo sometida a distintas actuaciones. Se exponen a continuación los aspectos más relevantes de este Reglamento en relación a la protección de la salud y seguridad de los usuarios de las sustancias químicas y sus mezclas.

2. ASPECTOS BÁSICOS

El Reglamento CLP establece un nuevo sistema de identificación del riesgo químico, unificándolo a nivel mundial y aproximándolo en algunos aspectos al que se viene usando a nivel internacional en el transporte de mercancías peligrosas. Ello implica, básicamente, lo siguiente:

- un nuevo sistema de clasificación de la peligrosidad de la sustancia y sus mezclas,
- el establecimiento de nuevas clases y categorías de peligro,
- el uso de unas palabras de advertencia que prefijan el nivel de peligrosidad de la sustancia o mezcla,
- la introducción de nuevos pictogramas y una modificación exclusivamente formal de los existentes, desapareciendo la cruz de San Andrés,
- la fijación de unas indicaciones de peligro (H), equivalentes, en parte, a las anteriores frases R y,
- la fijación de unos consejos de prudencia (P), que sustituyen a las anteriores frases S.

El reglamento CLP también detalla el contenido de la etiqueta y las características que deben cumplir el envase o envases, en sus múltiples posibilidades.

3. CLASES Y CATEGORÍAS DE PELIGRO

Las clases de peligro definen la naturaleza del peligro físico, para la salud humana o para el medio ambiente que representan las sustancias o sus mezclas. Ver la tabla 1. Se dividen en categorías (categorías de peligro) que especifican la gravedad de los peligros dentro de cada clase. La definición de cada una de estas clases, así como la clasificación en las distintas categorías, se exponen en las NTP 880 y 881.

4. PALABRAS DE ADVERTENCIA

Las palabras de advertencia indican el nivel relativo de gravedad de peligros para alertar al lector de la existencia de un peligro potencial. Deben figurar en la etiqueta y son:

- Peligro (Dgr; danger): asociada a las categorías más graves
- Atención (Wng; warning): asociada a las categorías menos graves

Estas palabras de advertencia sustituyen a las anteriores indicaciones de peligro (E, O, F, T, Xn, Xi y C). De esta forma, ya de entrada, se indica el nivel de peligro de la sustancia o mezcla identificada.

5. PICTOGRAMAS

Los pictogramas de peligro son composiciones gráficas que contienen un símbolo negro sobre un fondo blanco, con un marco rojo lo suficientemente ancho para ser claramente visible. Tienen forma de cuadrado apoyado en un vértice y sirven para transmitir la información específica sobre el peligro en cuestión. En la tabla 2 se presentan los pictogramas que deben figurar en la etiqueta según las categorías de peligro asociadas a cada sustancia o mezcla. Cada pictograma deberá cubrir al menos una quinceava parte de la superficie de la etiqueta armonizada y la superficie mínima en ningún caso será menor de 1 cm².

6. INDICACIONES DE PELIGRO

Las indicaciones de peligro son frases que, asignadas a una clase o categoría de peligro, describen la naturaleza de los peligros de una sustancia o mezcla peligrosa, incluyendo, cuando proceda, el grado de peligro. Las indicaciones de peligro (equivalentes a las anteriores frases R), llamadas H (de Hazard, peligro), se agrupan según
Notas Técnicas de Prevención

Peligros físicos

<table>
<thead>
<tr>
<th>Clases</th>
<th>Categorías</th>
<th>Peligros para la salud</th>
<th>Clases</th>
<th>Categorías</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosivos</td>
<td>7a</td>
<td>Toxicidad aguda</td>
<td>4</td>
<td>Peligroso para el medio-ambiente acuático</td>
</tr>
<tr>
<td>Inflamables</td>
<td>2</td>
<td>Corrosión/irritación cutánea</td>
<td>2</td>
<td>Peligroso para la capa de ozono</td>
</tr>
<tr>
<td>Líquidos</td>
<td>3</td>
<td>Lesiones oculares graves / irritación ocular</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sólidos</td>
<td>2</td>
<td>Sensibilización respiratoria y cutánea</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aerosoles</td>
<td>2</td>
<td>Mutagenicidad</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Combustibles</td>
<td>1</td>
<td>Explosivo</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Líquidos</td>
<td>3</td>
<td>Toxicidad para la reproducción y lactancia</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sólidos</td>
<td>3</td>
<td>Toxicidad específica – exposición única</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gases a presión</td>
<td>4</td>
<td>Toxicidad específica – exposiciones repetidas</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reacción espontánea</td>
<td>7</td>
<td>Peligro por aspiración</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1. Clases y categorías de peligro

<table>
<thead>
<tr>
<th>Pictograma</th>
<th>Referencia/descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHS01 Bomba explotando</td>
<td>GHS06 Calavera y tíbias cruzadas</td>
</tr>
<tr>
<td>GHS02 Llama</td>
<td>GHS07 Signo de exclamation</td>
</tr>
<tr>
<td>GHS03 Llama sobre un círculo</td>
<td>GHS08 Peligro para la salud</td>
</tr>
<tr>
<td>GHS04 Bombona de gas</td>
<td>GHS09 Medio ambiente</td>
</tr>
<tr>
<td>GHS05 Corrosión</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2. Pictogramas

peligros físicos (tabla 3), peligros para la salud humana (tabla 4) y peligros para el medio ambiente (tabla 5).

En el Reglamento CLP se han incluido, además, unas indicaciones de peligro “suplementarias” para cubrir ciertos tipos de peligros no contemplados en las indicaciones provenientes del SGA. Delante de la H correspondiente, llevan las siglas EU (tabla 6). También incluye unos elementos suplementarios o de información que deben figurar en las etiquetas de determinadas mezclas así como una regla particular para el etiquetado de productos fitosanitarios (tabla 7).

Finalmente, para algunas indicaciones de peligro se añaden letras al código de tres cifras, usándose los códigos adicionales que se presentan en tabla 8.

Si las clases de peligro a indicar son varias, en la etiqueta figurarán todas las indicaciones de peligro resultantes de la clasificación, salvo en caso de duplicación o solapamiento evidentes.

<table>
<thead>
<tr>
<th>Frase</th>
<th>Indicación de peligro</th>
</tr>
</thead>
<tbody>
<tr>
<td>H200</td>
<td>Explosivo inestable</td>
</tr>
<tr>
<td>H201</td>
<td>Explosivo; peligro de explosión en masa.</td>
</tr>
<tr>
<td>H202</td>
<td>Explosivo; grave peligro de proyección.</td>
</tr>
<tr>
<td>H203</td>
<td>Explosivo; peligro de incendio, de onda expansiva o de proyección.</td>
</tr>
<tr>
<td>H204</td>
<td>Peligro de incendio o de proyección.</td>
</tr>
<tr>
<td>H205</td>
<td>Peligro de explosión en masa en caso de incendio.</td>
</tr>
<tr>
<td>H220</td>
<td>Gas extremadamente inflamable.</td>
</tr>
<tr>
<td>H221</td>
<td>Gas inflamable.</td>
</tr>
<tr>
<td>H222</td>
<td>Aerosol extremadamente inflamable.</td>
</tr>
<tr>
<td>H223</td>
<td>Aerosol inflamable.</td>
</tr>
<tr>
<td>H224</td>
<td>Líquido y vapores extremadamente inflamables.</td>
</tr>
<tr>
<td>H225</td>
<td>Líquido y vapores muy inflamables.</td>
</tr>
<tr>
<td>H226</td>
<td>Líquidos y vapores inflamables.</td>
</tr>
<tr>
<td>H228</td>
<td>Sólido inflamable.</td>
</tr>
<tr>
<td>H240</td>
<td>Peligro de explosión en caso de calentamiento.</td>
</tr>
<tr>
<td>H241</td>
<td>Peligro de incendio o explosión en caso de calentamiento.</td>
</tr>
<tr>
<td>H242</td>
<td>Peligro de incendio en caso de calentamiento.</td>
</tr>
<tr>
<td>H250</td>
<td>Se inflama espontáneamente en contacto con el aire.</td>
</tr>
<tr>
<td>H251</td>
<td>Se calienta espontáneamente; puede inflamarse.</td>
</tr>
<tr>
<td>H252</td>
<td>Se calienta espontáneamente en grandes cantidades; puede inflamarse.</td>
</tr>
<tr>
<td>H260</td>
<td>En contacto con el agua desprende gases inflamables que pueden inflamarse espontáneamente.</td>
</tr>
<tr>
<td>H261</td>
<td>En contacto con el agua desprende gases inflamables.</td>
</tr>
<tr>
<td>H270</td>
<td>Puede provocar o agravar un incendio; comburente.</td>
</tr>
<tr>
<td>H271</td>
<td>Puede provocar un incendio o una explosión; muy comburente.</td>
</tr>
<tr>
<td>H272</td>
<td>Puede agravar un incendio; comburente.</td>
</tr>
<tr>
<td>H280</td>
<td>Contiene gas a presión; peligro de explosión en caso de calentamiento.</td>
</tr>
<tr>
<td>H281</td>
<td>Contiene un gas refrigerado; puede provocar quemaduras o lesiones crógenicas.</td>
</tr>
<tr>
<td>H290</td>
<td>Puede ser corrosivo para los metales.</td>
</tr>
</tbody>
</table>

Tabla 3. Indicaciones de peligros físicos
Tabla 4. Indicaciones de peligro para la salud humana

<table>
<thead>
<tr>
<th>Frase</th>
<th>Indicación de peligro</th>
</tr>
</thead>
<tbody>
<tr>
<td>H300</td>
<td>Mortal en caso de ingestión</td>
</tr>
<tr>
<td>H301</td>
<td>Tóxico en caso de ingestión.</td>
</tr>
<tr>
<td>H302</td>
<td>Nocivo en caso de ingestión.</td>
</tr>
<tr>
<td>H304</td>
<td>Puede ser mortal en caso de ingestión y penetración en las vías respiratorias.</td>
</tr>
<tr>
<td>H310</td>
<td>Mortal en contacto con la piel.</td>
</tr>
<tr>
<td>H311</td>
<td>Tóxico en contacto con la piel.</td>
</tr>
<tr>
<td>H312</td>
<td>Nocivo en contacto con la piel.</td>
</tr>
<tr>
<td>H314</td>
<td>Provoca quemaduras graves en la piel y lesiones oculares graves.</td>
</tr>
<tr>
<td>H315</td>
<td>Provoca irritación cutánea.</td>
</tr>
<tr>
<td>H317</td>
<td>Puede provocar una reacción alérgica en la piel.</td>
</tr>
<tr>
<td>H318</td>
<td>Provoca lesiones oculares graves.</td>
</tr>
<tr>
<td>H319</td>
<td>Provoca irritación ocular grave.</td>
</tr>
<tr>
<td>H330</td>
<td>Mortal en caso de inhalación.</td>
</tr>
<tr>
<td>H331</td>
<td>Tóxico en caso de inhalación.</td>
</tr>
<tr>
<td>H332</td>
<td>Nocivo en caso de inhalación.</td>
</tr>
<tr>
<td>H334</td>
<td>Puede provocar síntomas de alergia o asma o dificultades respiratorias en caso de inhalación.</td>
</tr>
<tr>
<td>H335</td>
<td>Puede irritar las vías respiratorias.</td>
</tr>
<tr>
<td>H336</td>
<td>Puede provocar somnolencia o vértigo.</td>
</tr>
<tr>
<td>H340</td>
<td>Puede provocar defectos genéticos (1).</td>
</tr>
<tr>
<td>H341</td>
<td>Se sospecha que provoca defectos genéticos (1).</td>
</tr>
<tr>
<td>H350</td>
<td>Puede provocar cáncer (1).</td>
</tr>
<tr>
<td>H351</td>
<td>Se sospecha que provoca cáncer (1).</td>
</tr>
<tr>
<td>H360</td>
<td>Puede perjudicar la fertilidad o dañar al feto (1)(2).</td>
</tr>
<tr>
<td>H361</td>
<td>Se sospecha que perjudica la fertilidad o daña al feto (1)(2).</td>
</tr>
<tr>
<td>H362</td>
<td>Puede perjudicar a los niños alimentados con leche materna.</td>
</tr>
<tr>
<td>H370</td>
<td>Provoca daños en los órganos (1)(3).</td>
</tr>
<tr>
<td>H371</td>
<td>Puede provocar daños en los órganos (1)(3).</td>
</tr>
<tr>
<td>H372</td>
<td>Provoca daños en los órganos (3) tras exposiciones prolongadas o repetidas (1).</td>
</tr>
<tr>
<td>H373</td>
<td>Puede provocar daños en los órganos (3) tras exposiciones prolongadas o repetidas (1).</td>
</tr>
</tbody>
</table>

(1) Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía.
(2) Indíquese el efecto específico si se conoce.
(3) Indíquense todos los órganos afectados, si se conocen.

Tabla 5. Indicaciones de peligro para el medio ambiente

<table>
<thead>
<tr>
<th>Frase</th>
<th>Indicación de peligro</th>
</tr>
</thead>
<tbody>
<tr>
<td>H300</td>
<td>Peligroso para la capa de ozono.</td>
</tr>
<tr>
<td>H301</td>
<td>Corroso para las vías respiratorias.</td>
</tr>
<tr>
<td>H302</td>
<td>Provoca irritación ocular grave.</td>
</tr>
<tr>
<td>H303</td>
<td>Provoca síntomas de alergia o asma o dificultades respiratorias en caso de inhalación.</td>
</tr>
<tr>
<td>H304</td>
<td>Puede irritar las vías respiratorias.</td>
</tr>
<tr>
<td>H305</td>
<td>Puede provocar cáncer (1).</td>
</tr>
<tr>
<td>H306</td>
<td>Se sospecha que provoca cáncer (1).</td>
</tr>
<tr>
<td>H307</td>
<td>Puede perjudicar a los niños alimentados con leche materna.</td>
</tr>
<tr>
<td>H308</td>
<td>Provoca daños en los órganos (1)(3).</td>
</tr>
<tr>
<td>H309</td>
<td>Puede provocar daños en los órganos (1)(3).</td>
</tr>
<tr>
<td>H310</td>
<td>Provoca daños en los órganos (3) tras exposiciones prolongadas o repetidas (1).</td>
</tr>
<tr>
<td>H311</td>
<td>Puede provocar daños en los órganos (3) tras exposiciones prolongadas o repetidas (1).</td>
</tr>
</tbody>
</table>

Tabla 6. Información suplementaria sobre los peligros. Propiedades físicas y relacionadas con efectos sobre el medio ambiente

<table>
<thead>
<tr>
<th>Frase</th>
<th>Indicación de peligro</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUH 201/201A</td>
<td>Contiene plomo. No utilizar en objetos que los niños puedan masticar o chupar. Atención! Contiene plomo.</td>
</tr>
<tr>
<td>EUH 203</td>
<td>Contiene cromo (VI). Puede provocar una reacción alérgica.</td>
</tr>
<tr>
<td>EUH 204</td>
<td>Contiene isocianatos. Puede provocar una reacción alérgica.</td>
</tr>
<tr>
<td>EUH 205</td>
<td>Contiene componentes epoxídicos. Puede provocar una reacción alérgica.</td>
</tr>
<tr>
<td>EUH 206</td>
<td>¡Atención! No utilizar junto con otros productos. Puede desprender gases peligrosos (cloro).</td>
</tr>
<tr>
<td>EUH 207</td>
<td>¡Atención! Contiene cadmio. Durante su utilización se desprenderán vapores peligrosos. Ver la información facilitada por el fabricante. Seguir las instrucciones de seguridad.</td>
</tr>
<tr>
<td>EUH 208</td>
<td>Contiene nombre de la sustancia sensibilizante. Puede provocar una reacción alérgica.</td>
</tr>
<tr>
<td>EUH 210</td>
<td>Puede solicitarse la ficha de datos de seguridad.</td>
</tr>
</tbody>
</table>

* Para mezclas no destinadas al público en general y no clasificadas como peligrosas, pero que contienen:
• ≥0,1 % de una sustancia clasificada como sensibilizante o carcinogénica de categoría 2; o tóxica para la reproducción, o con efectos sobre la lactancia o a través de ella; o
• una sustancia en una concentración individual de ≥ 1 % en peso o ≥ 0,2 % en volumen (mezclas gaseosas) clasificada por otros peligros para la salud humana o el medio ambiente o para la que existan límites de exposición profesional de ámbito comunitario en el lugar de trabajo.

Tabla 7. Elementos suplementarios o información que deben figurar en las etiquetas de mezclas conteniendo algunas sustancias concretas y para fitosanitarios
Tabla 9. Equivalencia entre Frases R y Frases H

<table>
<thead>
<tr>
<th>Frase</th>
<th>Indicación de peligro</th>
</tr>
</thead>
<tbody>
<tr>
<td>H350I</td>
<td>Puede provocar cáncer por inhalación.</td>
</tr>
<tr>
<td>H360F</td>
<td>Puede perjudicar a la fertilidad.</td>
</tr>
<tr>
<td>H360D</td>
<td>Puede dañar al feto.</td>
</tr>
<tr>
<td>H361I</td>
<td>Se sospecha que perjudica a la fertilidad.</td>
</tr>
<tr>
<td>H361D</td>
<td>Se sospecha que dañan al feto.</td>
</tr>
<tr>
<td>H360FD</td>
<td>Puede perjudicar a la fertilidad. Se sospecha que dañan al feto.</td>
</tr>
<tr>
<td>H360DF</td>
<td>Puede dañar al feto. Se sospecha que perjudica a la fertilidad.</td>
</tr>
</tbody>
</table>

Tabla 8. Códigos adicionales de las indicaciones de peligro

7. EQUIVALENCIA ENTRE LAS INDICACIONES DE PELIGRO Y LAS FRASES R

En la tabla 9 se presentan las equivalencias existentes entre ambos tipos de indicaciones de peligro. Donde existen más dificultades es en las referentes a peligros de carácter físico, pues al haberse tomado en el CLP como referencia la reglamentación del transporte de mercancías peligrosas, la correlación no es posible en muchos casos.

<table>
<thead>
<tr>
<th>R1</th>
<th>Explosivo en estado seco.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>Riesgo de explosión por choque, fricción, fuego u otras fuentes de ignición.</td>
</tr>
<tr>
<td>R3</td>
<td>Alto riesgo de explosión por choque, fricción, fuego u otras fuentes de ignición.</td>
</tr>
<tr>
<td>R4</td>
<td>Forma compuestos metálicos explosivos muy sensibles.</td>
</tr>
<tr>
<td>R5</td>
<td>Peligro de explosión en caso de calentamiento.</td>
</tr>
<tr>
<td>R6</td>
<td>Peligro de explosión, en contacto o sin contacto con el aire.</td>
</tr>
<tr>
<td>R7</td>
<td>Puede provocar incendios.</td>
</tr>
<tr>
<td>R8</td>
<td>Peligro de fuego en contacto con materias combustibles (gas).</td>
</tr>
<tr>
<td>R9</td>
<td>Peligro de explosión al mezclar con materias combustibles.</td>
</tr>
<tr>
<td>R10</td>
<td>Inflamable.</td>
</tr>
<tr>
<td>R11</td>
<td>Fácilmente inflamable.</td>
</tr>
<tr>
<td>R12</td>
<td>Extremadamente inflamable (gas).</td>
</tr>
<tr>
<td>R13</td>
<td>Extremadamente inflamable (líquido).</td>
</tr>
<tr>
<td>R14</td>
<td>Reacciona violentamente con el agua.</td>
</tr>
<tr>
<td>R15</td>
<td>Reacciona con el agua liberando gases extremadamente inflamables.</td>
</tr>
<tr>
<td>R16</td>
<td>Puede expulsar en mezcla con sustancias comburentes.</td>
</tr>
<tr>
<td>R17</td>
<td>Se inflama espontáneamente en contacto con el aire.</td>
</tr>
<tr>
<td>R18</td>
<td>Al usarlo pueden formarse mezclas aire-vapor explosivas/inflamables.</td>
</tr>
<tr>
<td>R19</td>
<td>Puede formar peróxidos explosivos.</td>
</tr>
<tr>
<td>R20</td>
<td>Nocivo por inhalación.</td>
</tr>
<tr>
<td>R21</td>
<td>Nocivo en contacto con la piel.</td>
</tr>
<tr>
<td>R22</td>
<td>Nocivo por ingestión.</td>
</tr>
<tr>
<td>R23</td>
<td>Tóxico por inhalación.</td>
</tr>
<tr>
<td>R24</td>
<td>Tóxico en contacto con la piel.</td>
</tr>
<tr>
<td>R25</td>
<td>Tóxico por ingestión.</td>
</tr>
<tr>
<td>R26</td>
<td>Muy tóxico por inhalación.</td>
</tr>
<tr>
<td>R27</td>
<td>Muy tóxico en contacto con la piel.</td>
</tr>
<tr>
<td>R28</td>
<td>Muy tóxico por ingestión.</td>
</tr>
<tr>
<td>R29</td>
<td>En contacto con agua libera gases tóxicos.</td>
</tr>
<tr>
<td>R30</td>
<td>Puede inflamarse fácilmente al usuario.</td>
</tr>
<tr>
<td>R31</td>
<td>En contacto con ácidos libera gases tóxicos.</td>
</tr>
<tr>
<td>R32</td>
<td>En contacto con ácidos libera gases muy tóxicos.</td>
</tr>
<tr>
<td>R33</td>
<td>Peligro de efectos acumulativos.</td>
</tr>
<tr>
<td>R34</td>
<td>Provoca quemaduras.</td>
</tr>
<tr>
<td>R35</td>
<td>Provoca quemaduras graves.</td>
</tr>
<tr>
<td>R36</td>
<td>Irrita los ojos.</td>
</tr>
<tr>
<td>R37</td>
<td>Irrita las vías respiratorias.</td>
</tr>
<tr>
<td>R38</td>
<td>Irrita la piel.</td>
</tr>
<tr>
<td>R39</td>
<td>Peligro de efectos irreversibles muy graves. (*)</td>
</tr>
<tr>
<td>R40</td>
<td>Posibles efectos cancerígenos.</td>
</tr>
<tr>
<td>R41</td>
<td>Riesgo de lesiones oculares graves.</td>
</tr>
<tr>
<td>R42</td>
<td>Posibilidad de sensibilización por inhalación.</td>
</tr>
<tr>
<td>R43</td>
<td>Posibilidad de sensibilización en contacto con la piel.</td>
</tr>
<tr>
<td>R44</td>
<td>Riesgo de explosión al calentarlo en ambiente confinado.</td>
</tr>
<tr>
<td>R45</td>
<td>Puede causar cáncer.</td>
</tr>
<tr>
<td>R46</td>
<td>Puede causar alteraciones genéticas hereditarias.</td>
</tr>
<tr>
<td>R48</td>
<td>Riesgo de efectos graves para la salud en caso de exposición prolongada. (*)</td>
</tr>
<tr>
<td>R49</td>
<td>Puede causar cáncer por inhalación.</td>
</tr>
<tr>
<td>R50</td>
<td>Muy tóxico para los organismos acuáticos.</td>
</tr>
<tr>
<td>R51</td>
<td>Tóxico para los organismos acuáticos. (*)</td>
</tr>
<tr>
<td>R52</td>
<td>Nocivo para los organismos acuáticos. (*)</td>
</tr>
<tr>
<td>R53</td>
<td>Puede provocar a largo plazo efectos negativos en el medio ambiente acuático. H413</td>
</tr>
<tr>
<td>R54</td>
<td>Tóxico para la flora.</td>
</tr>
<tr>
<td>R55</td>
<td>Tóxico para la fauna.</td>
</tr>
<tr>
<td>R56</td>
<td>Tóxico para los organismos del suelo.</td>
</tr>
<tr>
<td>R57</td>
<td>Tóxico para las abejas.</td>
</tr>
<tr>
<td>R58</td>
<td>Puede provocar a largo plazo efectos negativos en el medio ambiente. NATC</td>
</tr>
<tr>
<td>R59</td>
<td>Peligroso para la capa de ozono.</td>
</tr>
<tr>
<td>R60</td>
<td>Puede perjudicar la fertilidad.</td>
</tr>
<tr>
<td>R61</td>
<td>Riesgo durante el embarazo de efectos adversos para el feto.</td>
</tr>
<tr>
<td>R62</td>
<td>Posible riesgo de perjudicar la fertilidad.</td>
</tr>
<tr>
<td>R63</td>
<td>Posible riesgo durante el embarazo de efectos adversos para el feto.</td>
</tr>
<tr>
<td>R64</td>
<td>Puede perjudicar a los niños alimentados con leche materna.</td>
</tr>
<tr>
<td>R65</td>
<td>Nocivo. Si se ingiere puede causar daño pulmonar.</td>
</tr>
<tr>
<td>R66</td>
<td>La exposición repetida puede provocar sequedad o formación de grietas en la piel. EUH066</td>
</tr>
<tr>
<td>R67</td>
<td>La inhalación de vapores puede provocar somnolencia y vértigo. H336</td>
</tr>
<tr>
<td>R68</td>
<td>Posibilidad de efectos irreversibles. (*)</td>
</tr>
<tr>
<td>R39/23</td>
<td>Peligro de efectos irreversibles muy graves y tóxico por inhalación. H370</td>
</tr>
</tbody>
</table>
8. CONSEJOS DE PRUDENCIA

Los consejos de prudencia son frases que describen la medida o medidas recomendadas para minimizar o evitar los efectos adversos causados por la exposición a una sustancia o mezcla peligrosa durante su uso o eliminación.

Los consejos de prudencia (equivalentes a las anteriores frases S) se seleccionan de entre los establecidos, debiendo figurar en las etiquetas para cada clase de sustancia o mezcla peligrosa durante su uso o eliminación. Se agrupan en consejos de prudencia generales (tabla 10), de prevención (tabla 11), de respuesta (tabla 12) y de almacenamiento y eliminación (tabla 13).

En la etiqueta figurarán todos los consejos de pruden-

cia correspondientes, en principio con un máximo de 6, excepto aquellos que resulten claramente innecesarios, dados la sustancia, mezcla o el envase concretos de que se trate. En el caso de suministrarse al público en general, deberá constar un consejo de prudencia relativo a su eliminación, así como a la del envase. En los demás casos no será necesario tal consejo de prudencia cuando esté claro que la eliminación de la sustancia, la mezcla o el envase no presenta un peligro para la salud humana y para el medio ambiente.

Tabla 9. Equivalencia entre Frases R y Frases H

<table>
<thead>
<tr>
<th>Frase</th>
<th>Consejo de prudencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>P101</td>
<td>Si se necesita consejo médico, tener a mano el envase o la etiqueta.</td>
</tr>
<tr>
<td>P102</td>
<td>Mantener fuera del alcance de los niños.</td>
</tr>
<tr>
<td>P103</td>
<td>Leer la etiqueta antes del uso.</td>
</tr>
</tbody>
</table>

Tabla 10. Consejos de prudencia generales (para productos de consumo)

<table>
<thead>
<tr>
<th>Frase</th>
<th>Consejo de prudencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>P201</td>
<td>Pedir instrucciones especiales antes del uso.</td>
</tr>
<tr>
<td>P202</td>
<td>No manipular la sustancia antes de haber leído y comprendido todas las instrucciones de seguridad.</td>
</tr>
<tr>
<td>P210</td>
<td>Mantener alejado de fuentes de calor, chispas, llama abierta o superfi cies calientes (El fabricante o el proveedor especificarán las fuentes de ignición aplicables). No fumar.</td>
</tr>
<tr>
<td>P221</td>
<td>No pulverizar sobre una llama abierta u otra fuente de ignición.</td>
</tr>
<tr>
<td>P220</td>
<td>Mantener o almacenar alejado de la ropa o materiales combustibles. (El fabricante o el proveedor especificarán los materiales incompatibles)</td>
</tr>
<tr>
<td>P222</td>
<td>No dejar que entre en contacto con el aire.</td>
</tr>
<tr>
<td>P223</td>
<td>Mantener alejado de cualquier posible contacto con el agua, pues reacciona violentamente y puede provocar una llamada.</td>
</tr>
<tr>
<td>P230</td>
<td>Mantener humedecido con (El fabricante o el proveedor especificarán los materiales apropiados)</td>
</tr>
<tr>
<td>P231</td>
<td>Manipular en gas inerte.</td>
</tr>
<tr>
<td>P232</td>
<td>Proteger de la humedad.</td>
</tr>
<tr>
<td>P233</td>
<td>Mantener el recipiente herméticamente cerrado. (Si el producto es volátil y puede generar una atmósfera peligrosa)</td>
</tr>
<tr>
<td>P234</td>
<td>Conservar únicamente en el recipiente original.</td>
</tr>
<tr>
<td>P235</td>
<td>Mantener en lugar fresco.</td>
</tr>
<tr>
<td>P240</td>
<td>Conectar a tierra/enlace equipotencial del recipiente y del equipo de recepción. (Si el producto tiene sensibilidad electrostática o puede generar una atmósfera peligrosa)</td>
</tr>
<tr>
<td>P241</td>
<td>Utilizar un material eléctrico, de ventilación o de iluminación antideflagrante. (El fabricante o el proveedor especificarán otros equipos)</td>
</tr>
<tr>
<td>P242</td>
<td>Utilizar únicamente herramientas que no produzcan chispas.</td>
</tr>
<tr>
<td>P243</td>
<td>Tomar medidas de precaución contra descargas electrostáticas.</td>
</tr>
<tr>
<td>P244</td>
<td>Mantener las válvulas de reducción limpias de grasa y aceite.</td>
</tr>
<tr>
<td>P250</td>
<td>Evitar la abrasión/ el choque/ la fricción. (El fabricante o el proveedor especificarán lo que constituye un manejo descuidado)</td>
</tr>
<tr>
<td>P251</td>
<td>Recipiente a presión: no perforar ni quemar, aun después del uso.</td>
</tr>
</tbody>
</table>

Tabla 11. Consejos de prudencia de prevención (continúa)
Tabla 12. Consejos de prudencia de respuesta (continúa)

P260 No respirar el polvo/el humo/el gas/la niebla/los vapores/ el aerosol. (El fabricante o el proveedor especificarán las condiciones aplicables)

P261 Evitar respirar el polvo/el humo/el gas/la niebla/los vapores/ el aerosol. (El fabricante o el proveedor especificarán las condiciones aplicables)

P262 Evitar el contacto con los ojos, la piel o la ropa.

P263 Evitar el contacto durante el embarazo/la lactancia.

P264 Lavarse concienzudamente tras la manipulación. (El fabricante o el proveedor especificarán las partes del cuerpo que hay que lavar tras la manipulación)

P270 No comer, beber ni fumar durante su utilización.

P271 Utilizar únicamente en exteriores o en un lugar bien ventilado.

P272 Las prendas de trabajo contaminadas no podrán sacarse del lugar de trabajo.

P273 Evitar su liberación al medio ambiente. (Si no es éste su uso previsto)

P279 Llevar guantes/prendas/gafas/máscara de protección. (El fabricante o el proveedor especificarán el tipo de equipo)

P281 Utilizar el equipo de protección individual obligatorio.

P282 Llevar guantes que aísen del frío/gafas/máscara.

P283 Llevar prendas ignífugas/resistentes al fuego/resistentes a las llamas.

P284 Llevar equipo de protección respiratoria. (El fabricante o el proveedor especificarán el tipo de equipo)

P285 En caso de ventilación insuficiente, llevar equipo de protección respiratoria. (El fabricante o el proveedor especificarán el tipo de equipo)

P235+P410 Conserver en un lugar fresco. Proteger de la luz del sol.

P301* EN CASO DE INGESTIÓN: Llamar inmediatamente a un CENTRO DE INFORMACIÓN TOXICOLOGICA o a un médico.

P302* EN CASO DE INHALACIÓN: Utilizar el (fabricante o el proveedor especificarán los medios apropiados, si el agua hace que aumente el riesgo) para apagarlo.

P303* EN CASO DE CONTACTO CON LA PIEL: Absorber el vertido para que no dañe otros materiales

P304* EN CASO DE CONTACTO CON LOS OJOS: Eliminar todas las fuentes de ignición si no hay peligro en hacerlo.

P305* EN CASO DE CONTACTO CON LA ROPA: Lavar suavemente con agua y jabón abundantes.

P306* EN CASO DE CONTACTO CON LA PIEL: Aclarar cuidadosamente con agua durante varios minutos.

P307* EN CASO DE CONTACTO CON LOS OJOS: Agarrar el vertido.

P308* EN CASO DE EXPOSICIÓN MANIFIESTA O PRESUMIDA: Consultar a un médico.

P309* EN CASO DE EXPOSICIÓN O POSIBLE: Consultar a un médico.

P310 Llamar inmediatamente a un CENTRO DE INFORMACION TOXICOLOGICA o a un médico.

P311 Llamar a un CENTRO DE INFORMACION TOXICOLOGICA o a un médico.

P312 Llamar a un CENTRO DE INFORMACION TOXICOLOGICA o a un médico en caso de malestar.

P313 Consultar a un médico.

P314 Consultar a un médico en caso de malestar.

P315 Consultar a un médico inmediatamente.

P320 Se necesita urgentemente un tratamiento específico (ver Referencia a instrucciones de primeros auxilios en esta etiqueta).

P321 Se necesita un tratamiento específico (ver Referencia a instrucciones de primeros auxilios en esta etiqueta).

Frase Consejo de prudencia

P322 Se necesitan medidas específicas (ver Referencia a instrucciones de primeros auxilios en esta etiqueta).

P330 Enjuagarse la boca.

P331 NO provocar el vómito.

P332* En caso de irritación cutánea:

P333* En caso de irritación o erupción cutánea:

P334 Sumergir en agua fresca/aplicar compresas húmedas.

P335 Sacudir las partículas que se hayan depositado en la piel.

P336 Descongelar las partes heladas con agua tibia. No frota­rar la zona afectada.

P337* Si persiste la irritación ocular:

P338 Quitar las lentes de contacto, si le resulta fácil. Seguir aclarando.

P340 Transportar a la víctima al exterior y mantenerla en reposo en una posición favorable para respirar.

P341* Si respira con dificultad, transportar a la víctima al exterior y mantenerla en reposo en una posición favorable para respirar.

P342* En caso de síntomas respiratorios:

P343* En caso de síntomas respiratorios:

P344* En caso de síntomas respiratorios:

P345* En caso de síntomas respiratorios:

P346* En caso de síntomas respiratorios:

P347* En caso de síntomas respiratorios:

P348* En caso de síntomas respiratorios:

P349* En caso de síntomas respiratorios:

P350* En caso de síntomas respiratorios:

P351 Aclarar inmediatamente con agua/ducharse.

P352* En caso de corrección:

P353 Aclarar el polvo con agua/sacar el polvo.

P354* En caso de corrección:

P355* En caso de corrección:

P356* En caso de corrección:

P357* En caso de corrección:

P358* En caso de corrección:

P359* En caso de corrección:

P360 Evacuar el área.

P361* En caso de corrección:

P362 Quitar las prendas contaminadas y lavarlas antes de volver a usarlas.

P363 Lavar las prendas contaminadas antes de volver a usarlas.

P364+P365 En caso de corrección:

P365* En caso de corrección:

P366* En caso de corrección:

P367* En caso de corrección:

P368* En caso de corrección:

P369* En caso de corrección:

P370* En caso de corrección:

P371* En caso de corrección:

P372* En caso de corrección:

P373* En caso de corrección:

P374* En caso de corrección:

P375* En caso de corrección:

P376* En caso de corrección:

P377* En caso de corrección:

P378* En caso de corrección:

P379* En caso de corrección:

P380* En caso de corrección:

P381* En caso de corrección:

P382* En caso de corrección:

P383* En caso de corrección:

P384* En caso de corrección:

P385* En caso de corrección:

P386* En caso de corrección:

P387* En caso de corrección:

P388* En caso de corrección:

P389* En caso de corrección:

P390* En caso de corrección:

P391* En caso de corrección:

P392* En caso de corrección:

P393* En caso de corrección:

P394* En caso de corrección:

P395* En caso de corrección:

Tabla 11. Consejos de prudencia de prevención

Tabla 12. Consejos de prudencia de respuesta (continúa)
Tabla 12. Consejos de prudencia de respuesta

<table>
<thead>
<tr>
<th>Frase</th>
<th>Consejo de prudencia</th>
<th>P401</th>
<th>Almacenar (De conformidad con la normativa local, regional, nacional o internacional (específiquese)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P402</td>
<td>Almacenar en un lugar seco.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P403</td>
<td>Almacenar en un lugar bien ventilado. (Si el producto es volátil y puede generar una atmósfera peligrosa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P404</td>
<td>Almacenar en un recipiente cerrado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P405</td>
<td>Guardar bajo llave.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P406</td>
<td>Almacenar en un recipiente resistente a la corrosión (El fabricante o el proveedor especificarán otros materiales compatibles) con revestimiento interior resistente.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P407</td>
<td>Dejar una separación entre los bloques/los paños de carga.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P410</td>
<td>Proteger de la luz del sol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P411</td>
<td>Almacenar a temperaturas no superiores a (El fabricante o el proveedor especificarán la temperatura).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P412</td>
<td>No exponer a temperaturas superiores a 50 °C/122°F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P413</td>
<td>Almacenar las cantidades a granel superiores a (El fabricante o el proveedor especificarán la masa) y a temperaturas no superiores a (El fabricante o el proveedor especificarán la temperatura)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P420</td>
<td>Almacenar alejado de otros materiales.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P422</td>
<td>Almacenar el contenido en (El fabricante o el proveedor especificarán el líquido o el gas inerte apropiados)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P402+P404</td>
<td>Almacenar en un lugar seco. Almacenar en un recipiente cerrado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P403+P233</td>
<td>Almacenar en un lugar bien ventilado. Mantener el recipiente cerrado herméticamente. (Si el producto es volátil y puede generar una atmósfera peligrosa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P403+P235</td>
<td>Almacenar en un lugar bien ventilado. Mantener en lugar fresco.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P410+P403</td>
<td>Proteger de la luz del sol. Almacenar en un lugar bien ventilado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P410+P412</td>
<td>Proteger de la luz del sol. No exponer a temperaturas superiores a 50 °C/122°F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P411+P235</td>
<td>Almacenar a temperaturas no superiores a (El fabricante o el proveedor especificarán la temperatura). Mantener en lugar fresco.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P501</td>
<td>Eliminar el contenido/el recipiente en (De conformidad con la normativa local, regional, nacional o internacional (específiquese))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 13. Consejos de prudencia de almacenamiento y eliminación

- Residuos, (Directiva 2006/12/CE) siempre y cuando no constituyen una sustancia, mezcla o artículo.
- Transporte de mercancías peligrosas, excepto cuando se trate de envases interiores o intermedios.
- Productos terminados, destinados al usuario final:
 - medicamentos (Directiva 2001/83/CE)
 - medicamentos veterinarios (Directiva 2001/82/CE)
 - productos cosméticos (Directiva 76/768/CEE)
 - productos sanitarios, (Directivas 90/385/CEE y 93/42/CEE), que sean invasivos o se apliquen en contacto directo con el cuerpo humano (Directiva 98/79/CE)
 - alimentos o piensos (Reglamento (CE) 178/2002), inclusive cuando son utilizados:
 - como aditivos alimentarios en los productos alimenticios (Directiva 89/107/CEE)
 - como aromatizantes en los productos alimenticios (Directiva 88/388/CEE y Decisión 1999/217/CE)

9. EXCEPCIONES

El Reglamento no es de aplicación a:

- Sustancias y mezclas radiactivas (Directiva 96/29/EURATOM).
- Sustancias y mezclas sometidas a supervisión aduanera.
- Sustancias intermedias no aisladas.
- Sustancias y mezclas destinadas a la investigación y el desarrollo científicos, no comercializadas, siempre que se usen en condiciones controladas de conformidad con la legislación comunitaria sobre el lugar de trabajo y el medio ambiente.
10. PLAZOS DE APLICACIÓN

Sustancias

Para las sustancias, el Reglamento es de aplicación a partir del 1-12-2010 para el etiquetado y el envasado y a partir del 1-06-2015 para la clasificación. Las sustancias que estén comercializadas el 30-11-2010, podrán continuar usando el sistema anterior hasta el 1-12-2012, lo que implica que durante este periodo coexistirán ambos sistemas de etiquetado y envasado.

Mezclas

Para las mezclas (llamadas en el REACH preparados) el Reglamento es de aplicación a partir del 1-6-2015 para la clasificación, etiquetado y envasado.

Las mezclas que estén comercializadas el 31-05-2015, podrán continuar usando el sistema anterior hasta el 1-06-2017, lo que implica que durante este periodo coexistirán ambos sistemas de clasificación, etiquetado y envasado.

Los mecanismos establecidos para la clasificación y etiquetado de mezclas no se tratan en la presente NTP.

11. RÉGIMEN SANCIONADOR

El régimen sancionador previsto en el Reglamento se establece en la Ley 8/2010, que clasifica las sanciones en muy graves, graves y leves, a las que corresponden multas de 85.001 a 1.200.000 €, de 6.001 a 85.000 € y de hasta 6.000 €, respectivamente. Las infracciones muy graves podrán ser sancionadas adicionalmente con la clausura temporal, total o parcial de las instalaciones, por un plazo máximo de cinco años, salvaguardándose en estos casos, los derechos de los trabajadores de acuerdo con lo previsto en la legislación laboral.

Por otra parte, en su Artículo 2. Competencias administrativas, dice: Corresponderán a los órganos competentes de las comunidades autónomas las funciones de vigilancia, inspección y control del correcto cumplimiento de cuanto se establece en ambos Reglamentos [REACH Y CLP] en sus respectivos territorios, así como el desarrollo normativo y el ejercicio de la potestad sancionadora. En consecuencia, esta actividad está en manos de las correspondientes Autoridades Competentes de las Comunidades Autónomas.

BIBLIOGRAFÍA

Referencias legales

(1) Reglamento (CE) 1272/2008 CLP (Classification, Labeling and Packaging) (DOUE L353 de 31 de diciembre).

(2) Reglamento (CE) 790/2009 de modificación, a efectos de su adaptación al progreso técnico y científico, el Reglamento (CE) 1272/2008 (DOUE L 235 de 5 de setiembre).

(3) Ley 8/2010 de 31 de marzo (BOE 79 de 1 de abril).

Direcciones de interés

- SGA: http://www.unece.org/trans/danger/publi/ghs/ghs_welcome_e.html
AUTORIZACIÓN DEL TUTOR
INFORME DEL DIRECTOR DEL TRABAJO FIN MASTER DEL MASTER UNIVERSITARIO EN PREVENCIÓN DE RIESGOS LABORALES

D. Temístocles Quintanilla Icardo, Tutor del Trabajo Fin de Máster, titulado “ESTUDIO DEL RIESGO HIGIENICO POR INHALACIÓN DE PRODUCTOS QUÍMICOS” y realizado por el estudiante Dº Germán Anaya Orbis,

hace constar que el TFM ha sido realizado bajo mi supervisión y reúne los requisitos para ser evaluado.

Fecha de la autorización: 30/07/2015

Fdo.: D. Temístocles Quintanilla Icardo
Tutor TFM