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Abstract

This Thesis lies within the field of Slow and Fast Light (SFL) technologies, which are
currently receiving much attention because of their interesting applications, ranging from
optical information processing to enhanced precision sensing and interferometry. These
technologies are based on systems that exhibit steep positive dispersion to propagate a light
pulse at group velocity well below the speed of light in vacusiow light) or steep negative
dispersion to achieve pulse propagation at superluminal or even at negative group véstity (
light). SFL effects thus arise in a myriad of materials exhibiting spectral resonances. Current
efforts in this field are mainly focused on the manipulation of material gain or absorption
resonances by nonlinear optical processeatérial SFL) or on the optimization of photonic
band-gap structures, without substantial material dispersion, but where structural dispersion
comes as a result of the coupling between the light wavelength and the characteristic length of

the systemgtructural SFL).

This Thesis focuses on the theoretical and experimental analysis of electromagnetic pulse
propagation with abnormal group velocities in two kind of linear and passive devices. In the
first part of the Thesis a new system exhibiting structural SFL is demonstrated. It deals with
multiple-beam interferometers and provides a comprehensive study of the arising of SFL in
this system devoid of photonic band gaps. A theoretical model that fully describes the allowed
pulse propagation regimes and its performance in terms of both the interferometer’'s and the
pulse characteristics is developed. Considering amplitude modulated pulses, the capabilities
and limitations of SFL effects in this kind of system are retrieved by quantifying typical figures

of merit like fractional delay, pulse distortion and Delay-Bandwidth Product. The theoretical

framework is valid for any frequency region and the model predictions are probed by performing

\Y
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experiments in the radiofrequency range and through exawenaal simulations in the optical

range. The simplest interferometer, with only two branches, is first considered since it is widely
used in actual communication systems. It is analytically demonstrated that slow light cannot
possibly be sustained and that the total attenuation drives the changes in the pulse propagation
regimes. By increasing the number of branches, group delay tuning from slow to fast light

regimes occurs if the optical length of one of the branches is slightly changed.

In the second part of the Thesis, the ability of mono- and multilayer structures to speed up
or slow down electromagnetic pulses is investigated, with special emphasis on their reflection
properties. Namely, Distributed Bragg Reflectors (DBRs) and Fabry-Perot filters, common in
today’s communication systems, are examined. These structures were fabricated to operate
in the microwave and in the radiofrequency range with the aim of confirming theoretical
predictions. Experimental results of their frequency- and time-domain characterization are
compared with simulations. An advantage of operating in these frequency ranges is that the
transmission and reflection phase function can be measured with a two port vector network
analyzer. Such a simple measurement of this key function that determines the pulse propagation
regime cannot be directly performed in the optical range. Moreover, microstrip DBRs
were designed and their potential application as a negative group-delay circuit to improve
the efficiency of feedforward amplifiers, which are commonly used for cancelling inherent

distortion in microwave amplifiers, is explored.
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Chapter 1

| ntroduction

Slow and fast light technologies (SFL) are of much interest in actual photonics because of
their relevant applications in optical communications, sensing, metrology and high-resolution
interferometry. They constitute a field in rapid evolution, where recent applications include

aspects at the frontiers of science, like the development of quantum memories, temporal

cloaking or ultraprecise optical gyroscopes for detecting gravitational waves.

The group velocity4,) of a pulse is the velocity at which the peak of its envelope propagates,
and is related to the frequency variation of the medium’s refractive imdey. Thus, SFL
effects rely on steep slopes of the dispersion function. A positive dispersion can be used to slow
the pulse propagation down to group velocities well below the light’s speed in vaayuaa ¢,

slow lighf). Similarly, a negative dispersion can leadf&st light where pulses propagate at

superluminal ¢, > c) or even at negative (puléennelling group velocity.

Although the possibility for propagating a light pulse in dispersive media at unusually slow

or fast group velocity is been known for many decades, interest in this phenomenon was
triggered by the publication of outstanding experimental reports on the tunneling of optical
pulses, and of pulses slowed-down to a bicycle or even to a snail's pace. It is now well
established that any system exhibiting marked spectral features can sustain such abnormal pulse
propagation regimes. Therefore, SFL systems are classified in two main categories: material

SFL and structural SFL. The former ones have substantial material dispersion (media with gain
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or absorption resonances), while in the latter case the rakatispersion is negligible, but
structural dispersion arises from the coupling between the light wavelength and the system’s

characteristic length (photonic crystals or fiber Bragg gratings).

Hence, these abnormal pulse propagation regimes occur in a myriad of systems, ranging from
ultracold atomic gases to room temperature solid crystals, optical fibers, non-linear media and

photonic band-gap structures. They have also been reported for electromagnetic pulses at
microwave, radiofrequency or even at acoustic frequencies. Thus, research on SFL techniques
is certainly a multidisplinary field that benefits from experts of very varied disciplines, like

guantum optics, semiconductors, fiber optics, non-linear optics, and microoptics.

In this chapter an overall introduction to the state-of-the art in SFL systems is given, from
which several niches not yet studied are identified. The exploration of these niches are set as
the objectives of this thesis and the steps made to confront their study are described. Finally,

the chapter presents the organization of this Ph. D. essay.

1.1 State of the art in slow and fast light systems

Early research on abnormal electromagnetic wave propagation was conducted by Sommerfeld
and Brillouin in the 1910s, and it was summarized in Brillouin’s seminal bddkve
Propagation and Group VelocifyBri-196Q published in 1960. In this book, wave propagation
through abnormal dispersion media described by a Lorentzian dielectric model is studied, and
it is frequently referenced in pertinent publications to this day. A series of publications in
the 1970s and 1980s followed this fundamental work, mostly dealing with propagation of
more complex waveforms such as a Gaussian pulse modulated carrier waveform, through
abnormally dispersive medi&pr-1970 Chu-1982. Furthermore, a useful analogy between
wave propagation in abnormal media and particle tunnelling was studied in several publications
in the early 1990sNlar-1992 Bal-1997.

Bolda, et al. [Bol-1993 presented the mathematical proof that anomalous dispersio

phenomena not only do not violate the relativistic causality requirements, but they must exist
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within some frequency bands for all dispersive media. Tha ¢ensequence of the Kramers-
Kronig relations which are applicable to all physically realizable, linear causal media. Kramers-
Kronig relations provide a link between the attenuation and dispersion characteristics in linear
causal media, as presented in the classic book by JackaorlP98 and discussed by Waters

et al. [Wat-2003. Because of the Kramers-Kronig relations, such abnormigleppropagation

regimes are associated to sharp spectral features in the transmission spBolyt2007.

Renewed interest in these phenomena was triggered by the experimental reports of ralentization
of an optical pulse down to group velocities as low as that of a bicycle in Bose-
Einstein condensatedHfu-1999, and to superluminal group velocities in atomic vapors
[Wan-2000Q. Since then, SFL effects have been also shown at room tetopera solid
crystals [Tur-2001 Big-2003, semiconductor waveguide®pr-2005, semiconductor wells

and quantum dotsNar-2010Q Su-2006, and through nonlinear wave mixing in optical fibers
[Dah-2005 Gon-2005 Sch-2006 or liquid-crystal light valves Res-2008 They have also

been reported in systems exhibiting structural resonances (photonic band-gap systems, PBG),
like photonic crystalsGal-2007 and fiber Bragg gratingd_pn-2003 Lon-2003, where the
dispersion is due to coupling between the incident wavelength and the system’s characteristic
length. For such PBG systems, experimental evidence of SFL has been provided also
in the microwave INim-2003 Moj-2000 and radio-frequency (RF)Hac-2002 Mun-2003

range. In fact, lower frequency setups have been relevant to clarify important issues, like
the puzzling advancement of the outgoing pulse peak with respect to the incident pulse in
tunnelling experiments, which corresponds to negative group delay (NGD), and hence negative
group velocity Kit-2003]. They have been also used to explore quasiperiodic stestur
(Fibonacci or Thue-Morse)Ayn-2003, and Fano-like resonance#1pu-2013 exhibiting

strong normal/anomalous dispersion.

Many different SFL systems are currently being investigated in order to achieve optimal
performances for specific applications. For instance, external tuning of the pulse propagation
regime is very interesting for the synchronization of optical wave-packets in communication
networks or for sensing purposes. Such tuning has been reported in non-linear systems,

[Gon-2005 Jar-2012 in lossy nanowaveguide$sjov-200§, and in active FBGslon-2009.
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In all these cases, the gain mechanism played a key role stiagsihe tuning. One of the key
applications is optical data buffering. The key goal in this area is to develop a practical and
compact system capable of producing a significant and controllable delay for high bandwidth
optical data. An initial challenge in this endeavor was the perceived constraint imposed by
a limited delay-bandwidth producKhu-2009. However, various clever ideas have been
investigated theoretically and experimentally to pave the way for overcoming this constraint
[Sha-2014 Another arena of interest is the use of slow light for enlagdhe sensitivity

of interferometers Mur-2012 and the use of fast light to develop super-sensitive optical
gyroscopes for precision inertial navigatio®Ha-2007 Nas-2012 or sensitivity-enhanced
gravitational wave detector$al-2010. Other applications include the development of more
compact and efficient nonlinear componenBalp-2008 and LIDARs [Sch-2012, remote
sensing of very slowly moving objects by means of precision Doppler measurerBem2(013

and enhanced rotary photon drag for image rotatibraf201]. The intense research in
SFL technologies encompasses aspects at the frontiers of science, like quantum information

processingllyo-2009 Cla-2014, and temporal cloakingHri-2012.

Let us note that the aforementioned SFL technologies are based on systems that are either
active (they respond to the interaction with light by generating narrow, gain or absorption-
spectral bands)Big-2003 Hau-1999 Mor-2005 Su-2006 Tur-2001 Wan-2000Q, exhibit
non-linear effects Pah-2005 Gon-2005 Jar-2012 Bor-201Q or are periodically structured
[Ayn-2005 Gal-2007 Lon-2003 Lon-2005 Nim-2003 Moj-2000, Mun-2003. However, to

our knowledge, few results have been reported for SFL effects in passive, linear and non-
periodical structures. One of the objectives of this thesis is to fill this gap. Related to this issue,
an interesting work was reported by El Boudoeitial. [Bou-2004 on series loop structures
sustaining superluminal and subluminal regimes. These structures may be regarded as Mach-
Zehnder interferometers (or asymmetric loops) connected in series through segments. Like
PBG systems, they exhibit bandgaps, and defect modes appear inside the transmission gaps
if one of the segments connecting the loops is somehow changed (in length, for example).
The situation resembles that of a doped photonic crystal, with superluminal propagation for
a pulse with center frequency in the bandgap and subluminal propagation for a pulse with

center frequency at the defect mode. But unlike photonic crystals, an outstanding characteristic
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of this serial loop structure is the existence of bandgapstwialy homogeneous material,
without the need of refractive index contrast (or impedance contrast, if the system operates in
the RF range as it is the case BJu-2004). Taking into account these results, in this thesis

we investigate SFL effects in linear and passive multiple-beam interferometers, i.e. in Mach-

Zehnder interferometers with two or more branches.

On another front, whereas most of the studies on superluminality deatrastbmittedpulses,

fewer results have been reported concerning the superluminal propagateftecfedpulses.

This topic is of interest since common devices in actual communication systems, like dielectric
multilayer-based devices, host reflected waves and (not only) transmitted waves. In this context,
reported studies on superluminal propagation of reflected pulses include Bragg gratings, Fabry-

Perot like photonic barriers and dielectric slabs.

Namely, superluminal peak advancement of reflected pulses was predicted in asymmetric
photonic band gap structures where a transmission window inside the gap is dpem&9D].

These predictions were soon confirmed experimentally with the measurement of negative group
delays (NGDs) for picosecond optical pulses at fb in fiber Bragg gratings adequately
synthesized to have a double-Lorentzian spectral reflectivity functiom-003. Also,
superluminal reflection of microwave pulses in a Fabry-Pérot photonic tunnelling barrier was
reported in a time-domain experimemMim-2003. In this case, and although the reflected
microwave pulse arrived earlier than the reference pulse, no NGDs were measured. An
ulterior theoretical work Rao-2004 demonstrated that NGDs for reflected pulses in Fabry-
Pérot barriers can be indeed achieved if the cavity contains resonant atomic absorbers. In a
similar system, consisting of a dielectric slab doped with dispersive two-level or three-level
atoms, superluminal reflected pulses with NGDs were obtained for specific slab thickness
conditions Wan-2004. Let us remark that in all the works cited above reporting NGB
reflection Lon-2001 Lon-2002 Rao-2004 Wan-2004, the system is either asymmetric or
doped with active or absorbing atoms. The study of abnormal propagation regimes for pulses

reflected on linear and passive multilayer structures will thus be another objective of this thesis.

Let us emphasize that the interest in SFL technologies is not only due to its fundamental

physics, their potential applications have fostered intense research on this field. As it was
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mentioned above, in fiber sensors, the development of opidtdrs, switches and delay lines,

and the use of slow and fast light in high-resolution spectral interferometers and groscopes
have been reporte&ha-2007. In the field of fiber sensors, FBGs are widely used to sense a
number of perturbations, especially strain and temperature. When a strain change is applied to
a FBG, some FBG parameters change. These changes result in a shift in the Bragg wavelength.
This shift can be detected with an optical spectrum analyzer (OSA), or using a Mach-Zehnder
interferometer to convert the wavelength shift to an amplitude shift, where the sensitivity is
proportional to the path difference between the two arms of the interferometer. Structural SFL
can improve this resolution record. The phase shiftinduced by a perturbation applied to a device
is proportional to the reciprocal of the group velocity. When the group velocity is reduced, this
phase shift is therefore increased. Wgral. [Wen-2012 demonstrated a strain sensor with a
sensitivity of 3.14 x 10° straim! and a minimum detectable strain of 886/+/H z, the world

record for a passive FBG strain sensor at the time of writing.

Regarding delay lines, their applications also extend to the microwave range. A negative
group delay synthesizer operating at microwave frequencies was first proposed by Lucyszyn
et al. [Luc-1993 in 1993. This device operates in reflection mode and it istluth lumped
components. The achieved negative group delay is tunable and relatively high over a narrow-
band centered at 1 GHz, but accompanied with high losses. Applications such as antenna fed
networks can benefit from a simultaneous NWHBid-2003 Sid-2004 and NGD effect. The

first such design was synthesized by Siddigual. consisting of a transmission line circuit
periodically loaded with RLC resonators (responsible for NGD) and series capacitors and shunt
inductors (responsible for NRI. In order to compensate for loss associated with NGD circuits,
active components can be employed. A very low bandpass amplifier exhibiting NGD was
proposed by Mitchelét al. [Mit-1997, Mit-1998]. Kitano et al. synthesized a baseband active
NGD circuit [Nak-2002 Kit-2003], using the circuit approach to derive equations describing
the NGD phenomenon. Simultaneous negative refractive index and NGD effect in a coplanar
waveguide design was reported by Ibreahegml. [1br-200§. Raveloet al. proposed the first

active gain-compensated NGD circuit operating at microwave frequency. This design consists

Negative refractive index (NRI) is a property not found in any known natural material but which occurs in
artificially engineered structures. In a NRI structure the refractive index in the Snell’s law is negative, hence, an
incident wave experiences a negative refraction at the interface between this medium and a regular one.
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of a field-effect transistor based amplifier with a shunt RLEoreator at the amplifier output
[Rav-2007¢ A broadband version of this circuit was proposed, synitesbiby cascading
several stages of the original circuit, each tuned at different frequeR&sJ007. Raveloet

al. also proposed several applications for their active cir®atf2007bRav-2008 Rav-2010.

Inspired in these previous works, in this thesis we study the use of DBRs, which are linear
and passive devices, for introducing positive and negative group delays and its application for
improving the efficiency of feedfoward amplifiers. Traditional feedforward amplifier designs
are commonly used for cancelling inherent distortion in amplifiers by comparing the distorted
waveform at the amplifier output to the delayed original input waveform. The input waveform
needs to be delayed in time by the same amount as the delay introduced by the amplifier, for a
correct identification of the amplifier distortion. Hence, a delay line needs to be employed,
which can have a considerable physical length relative to the amplifier circuit dimensions.
Noto et al. proposed a passive NGD circuit for reducing the physical length of delay lines in
feedforward amplifiersNlot-2007, by cascading an NGD circuit with the amplifier, the overall
group delay can be reduced and thus the length of the required delay lines gets reduced as
well. Choiet al. recently reported another NGD circuit application in feedforward amplifiers
[Cho-2010).

1.2 Motivation and work objectives

Research on SFL systems can therefore be considered as one of the hot topics in actual
photonics, with fundamental and technological interest. The research presented in this thesis
focuses on some points that seem to be lacking in the current state of the art in this field. These

points have been taken as work objectives and are listed below.

|. Study of SFL effects in linear, passive, non-periodical structures: multiple-beam
interferometers.
While SFL effects have been extensively studied in either non-linear, active, or in linear
and passive periodical structures (like photonic crystals and fiber Bragg gratings) as

mentioned in sectior.l, the possibility of having such abnormal pulse propagation
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regimes in linear, passive non-periodical systems, whidhbéxno photonic bandgap,
has not been reported yet. Multiple-beam interferometers (also called generalized Mach-

Zehnder interferometers) are an example of this kind of systems.

As a first objective, the plain Mach-Zehnder interferometer (MZI) is considered and an
analytical model is developed to determine abnormal group velocity regimesThe

study is extended to generalized Mach-Zehnder interferometers. Instead of considering
the series loop structures @d¢u-2004 exhibiting bandgaps (series connection of MZI),

we increase the number of arms in the MZI, keeping constant the length difference
between adjacent arms. SFL transitions are studied by slightly modifying the length
of one of the interferometer’s branch. A major goal at this point islégelop a full
analytical description of such transitions in the pulse propagation regimedbgiving

an expression for the group delay at the minima For that purpose, a three-beam
interferometer is considered because it is the simplest interferometer (least number of
arms) where a length detuning in a branch implies a change in the otherwise constant
length difference between adjacent arms. A consequent objectivesiptyimentally

proof this model by building the interferometers with coaxial cables and RF wave

splitters.

. Study of SFL effects for pulses reflected in mono- and multi-layer structures.

Multilayer structures are linear, passive, periodical structures (1D photonic crystals)
where, as mentioned in sectidnl, SFL effects have been well reported mainly for
transmitted pulses. The second goal of this work focuses then on the analysis of these
effects for reflected pulses. The starting point we have considered is based on a previous
theoretical study that predicted large negative group delays (NGD) for reflected pulses
in symmetric, non-doped, weakly absorbing dielectric slaar{-2006. It was shown

that NGDs should occur for narrowband reflected pulses with center frequency in the
minima of the slab’s spectral reflective curve, where the reflective phase function had a

large negative slope.

Therefore, an objective of this work is farovide experimental evidence of these
theoretical predictions by building the structures to operate in the microwave range,

where the phase function can be directly measured with a vector network analyzer.
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Microstrip technology is used to fabricate the microwaved@gsto dielectric slabs and

our study is extended also to Bragg reflectors. In addition to the frequency-domain
characterization of these structures, time-domain characterization can also be performed
to explicitly show the advancement of pulses reflected on these structures. Other goals
of this work are related to interesting issues regarding these systems. For example,
obtaining scaling lawsfor key characteristics (which are useful in order to reproduce

a specific device in another frequency range of operation)stihgy of the Hartman

effect (the saturation of the group delay with increasing structure length), and the debated

guestion on whether 1D multilayer structures can sustain tunnelling on transmission.

Group delay tuning of pulses reflected in Fabry-Perot filters.

Fabry-Perot filters are particularly interesting for communications and sensing applica-
tions. As stated in sectioh.1, their performance as SFL systems for transmitted pulses
has been already reported. In this thesis we study their capabilities and limitations to
sustain abnormal propagation regimes for reflected pulses, focusing in an important ques-
tion: the possibility of achievingroup velocity control. Group velocity control (or
group delay tunability) is of utmost interest for optical delay line applications. Various
techniques to drive a change in the pulse propagation regime, from subluminal to super-
luminal or tunnelling, are considered in this work, either by changing the mirror spacings

or by modifying the attenuation in the filter.

Application of microwave DBRs to feedforward amplifiers.

Circuits capable of advancing or delaying a microwave signal must be kept in mind when
a feedforward technique is chosen to linearize power amplifiers in actual communications.
As mentioned in sectiofh.1, several architectures have been proposed, in particidar th
use of NGD circuits to reduce the delay lines, which can have a considerable physical
length relative to the amplifieMNot-2007 Cho-201(. The NGD circuits proposed in
literature thus far are all single-directional, in transmission or reflection. We stualyeh
design where microstriBragg reflectorsare used simultaneously iransmission and
reflection to induce positive and negative group delays, respectively, with the aim of

reducing or even cancelling the two delay linepresent in a feedforward amplifier.
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1.3 Thesis outline
The thesis is organized as follows:

After this first chapter introducing the state of the art, motivations and objectives of the work,

in chapter2, the fundamentals on abnormal wave propagation is briefliewned since it is

a necessary background for subsequent chapters, and an overview of the different systems
and techniqgues to generate slow and fast light is provided. Furthermore, fundamental limits
and figures of merit of SFL systems are presented, which are important issues regarding

applications.
Chapters3, 4 and5 contain the results of the investigations of this thesis.

Chapter3 is devoted to the study of SFL effects in multiple-beam irerieters. We begin

by considering the simplest case, i.e. a linear and passive Mach-Zehnder interferometer (MZI),
where we demonstrate, both theoretically and experimentally, superluminal and negative group
velocities and no subluminal propagation. Next, with the aim of generating also subluminal
regime, we increase the number of arms and consider the simplest interferometer (three-beam
interferometer) where a length detuning in a branch implies a change in the otherwise constant
length difference between adjacent arms. A model that fully describes SFL effects in such a
three-beam interferometer is developed and a proof-of-model experiment is performed in the
RF range by using coaxial cables and wave splitters. Finally, the study is extended to a 4-beam

interferometer.

In chapter4, SFL effects are studied for reflected pulses on multilayecaires. First, weakly
absorbing dielectric slabs and distributed Bragg reflectors (DBRs) are considered. Experimental
evidence of negative group delays (NGDs) on these linear and passive structures is provided
through frequency- and time-domain characterization. Although our structures operate in the
microwave range, these devices excellently scale to their analogous optical structures, and
confirm previous theoretical predictions. A scaling law for the group delay of a weakly
absorbing dielectric slab is derived and the Hartman effect on DBRs is analyzed both in

reflection and transmission. To conclude this chapter, symmetric and asymmetric Fabry-Perot
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filters with Bragg mirrors are analyzed, in which the grouppeély can change from subluminal
to superluminal by changing the mirrors spacing or the filter's attenuation. These transitions
are experimentally proved in the radiofrequency range on structures made of coaxial cables

assemblies.

In Chapter5, group delay control in DBRs is analyzed and applied to imeie efficiency of
feedforward amplifiers. Simulations of a feedforward amplifier based on DBRs are performed

and we demonstrate the feasibility of this idea.

In Chaptel6 the main conclusions of this work with highlighted originahtributions are given.

Open lines and proposed future work is outlined at the end of this chapter.

Finally, the appendices provide valuable additional information. In appeAdixhe S-
parameters (scattering parameters) are described, which are commonly used to obtain the
performance of radiofrequency and microwave devices. The design and fabrication of linear
and passive structures operative in the radiofrequency and in the microwave range is described
in appendixB. Finally, in appendixC, the vector network analyzer setup used in the frequency
measurements is explained. An experimental technique for accurately tuning the carrier
frequency of a sinusoidally modulated signal and measuring the group delay in time domain

was developed and a detailed description of the setup is also given
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Chapter 2

Fundamentals on SFL systems

In this chapter we summarize the basic concepts of slow- and fast-light (SFL) systems. Such
pulse propagation regimes occur in media with strong normal dispersion (slow light) or with
strong anomalous dispersion (fast light), this is why the first section is devoted to the main
concepts dealing with wave propagation in dispersive media. Definitions of different velocities
concerning the propagation of an electromagnetic pulse in a dispersive medium are recalled
(phase, group and energy velocity), and the physical interpretation of SFL as an interference
effect (pulse reshaping) of the pulse spectral components inside the medium is explained.
Finally, we discuss the apparent contradiction of fast light with Einstein’s causality principle
according to which, no information can be transmitted at rates exceeding that of light in vacuum.
The most important metrics to evaluate the efficiency of an SFL system is defined in the second
section of this chapter. In the last section, a brief description of the different physical processes
leading to slow- and fast-light and the main achievements reached by the scientific community

are given.

2.1 Wave propagation in dispersive media

The physics of wave propagation at a speed exceedihgs been a subject of discussion

for many decades since the begining of #&" century. The distinction between signal and

13
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group velocities was considered in the early research oft\angl Ehrenfest on elementary
dispersive waves, and by Laue who first considered dispersive wave propagation in a region
of anomalous dispersion where the absorption is large and strongly frequency dependent
[Bri-1960.. Sommerfeld considered the distinction between front agdas velocities, and
proved that no signal can travel faster than the vacuum speed ofclightl that the signal

front advanced with the velocity in a Lorentz dielectric model. Then Brillouin provided a
description of the signal evolution in a single resonance Lorentz dielectric model. Later, on the
70s Garrett and McCumbeGhpr-197(Q were the first to analytically estimate that a Gaussian
pulse can travel in an anomalous and linear dispersive medium at a group velocity (the velocity
of the Gaussian’s envelope) greater thaor even be negative, i.e., the transmitted peak exits
the medium before the incident peak enters it. Therefore, in this first section we show the
main concepts of pulse propagation in dispersive media, including the definitions of different

velocities involved in the propagation of an electromagnetic pulse.

2.1.1 Dispersive media

All media except vacuum are dispersive. The degree of dispersion depends on the specific
spectral range and may be negligible in some frequency region (transparency region).
Dispersion is due to the delay in the response of the medium to the incident electromagnetic

wave, as a consequence of the interaction between the wave and the particles of the medium.

A dispersive medium is characterized by a complex dielectric permitt&jtjpat depends on
the frequency and relates the external electric fiélﬁt() the field in the mediumlf)) according

to D = 50535, and can be written as:

E(w) =& (w) +ie" (w) (2.1)

The fact that a non-zerd' (w) is directly associated to the delay in the response of the medium
can be shown very easilpb-2002 For simplicity, let's consider an isotropic medium and let

E(t) = Eye’' be a Fourier component of the incident electromagnetic wave. The field inside
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that medium will be out of phase with it due to the delay in theponse td~, then we can write
D(t) = Dye?@t+9),

By developing the above equation, and comparing the real and imaginary parts at both sides of
D = ¢,¢E, the following relation between the imaginary part of the dielectric permittivity and
the phase is found: § = atani—l,/. This explicitly shows that # 0 only if &” #£ 0 (i.e. Dis
delayed with respect t&).

On the other hand, a delay in the response of the medium implies that the value of the internal
field D at given timet depends only on the value that the external figltakes a prior time

(¢’ < t). In other words, “times ulterior to the cause do not contribute to the effect”. This is the
situation in a linear and causal medium. This causality property is contained in the Kramers-
Kronig relations that link the reak() and imaginary {”) parts of the dielectric function. We

will come back to this point later, since this is a key issue in the arising and interpretation of
SFL effects.

Thew—dependent complex dielectric function leads io-adependent complex refractive index

n = v/ pé, (1 1s the magnetic permeability) expressed as:

n(w) =n(w) + ik(w) (2.2)

wheren is the real part of the refractive index amdis the absorption index, also called
the extinction coefficient. For active media (exhibiting gain) 0, while it is positive for
absorptive materials. These quantities depend on the material corsta@isd conductivityr
(see for instance Chap. 6 i€ab-2002).

Similarly to the real £') and imaginary {”) part of the dielectric functiom(w) andx(w) are

also related by KramersKronig relations:

™

n(w) =1+ gP/OO WRW) 4 (2.3a)
0

T w'? — w?

2w “nw)-1_,
k(w)=——P ————dw 2.3b
() / (2.30)
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Egs. 2.3 allows retrieving the values of the refractive index in a siiedrequency range
from measurements of the absorption in the medium. But most relevant here, it shows that
a resonance ir(w) will lead to abrupt slopes in the refractive index, i.e. to strong dispersion

around the resonance.

As it will be discussed in the next section, the key point to obtain SFL effects is to find some
physical processes that can provide resonances showing the necessary spectral features, namely

a narrow bandwidth and a strong amplitude.

2.1.2 Phase, group and energy velocities

Let us discuss how strong dispersion in the medium affects the wave propagation. Any real wave
can be considered as a superposition of sine waves (Fourier components), each with a certain
frequency and amplitude. The propagation of a real wave through a dispersive medium is not
straightforward, since each Fourier component travels at different phase velocity. The phase
velocity (v,) is the speed at which the planes of equal phase (phase front) of a monochromatic
wave propagate through a medium of refractive indein the time corresponding to a period

T, the phase front propagates the distance of a waveleaythleéncev, = */r = «/k Wwherew

is the angular frequency arids the wavenumber, defined As= 27/x = «n/e.

It must be pointed out that the phase velocity tells nothing about the process of propagation.
Since a sine wave is unterminated (it has infinite duration, it does not start nor finishes at any
time), one cannot strictly define a velocity of propagation. The phase velocity only represents
how the phase of the wave is delayed by the interaction of the medium (forced oscillations of
the ions or electrons) but tells nothing about the process of wave propagation in the medium,
since the light excitation at any point in the medium is present forever for an infinitely long sine

wave.

On the other hand, every Fourier component of the real {ilingited) wave will be more or

less absorbed, depending on the value of the absorption ildex The consequence of both
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processes is the distortion of the wave as it travels throbgldispersive medium. If the wave

is strongly distorted, one cannot define a wave propagation velocity.

A simpler and usual case, which in fact is of interest to us, is that of a wave-packet or narrow
band pulse. The pulse propagation velocity, or group velocity, is the velocity at which the peak

of its envelope (with center frequency) travels, and it is defined aBfi-1960

dw

_|w
dr ™0

Vg = (2.4)
wherew(kx) is the dispersion relation. Followinghb-2002 this definition can be retrieved
from the following physical consideration. The peak of the pulse envelope occurs at time and
space points where all the spectral components of the pulse are in phase: LLée the instant
when all the components are in phase at 0 (propagation along the-zaxis is assumed). After

a certain time interval\t, all the spectral components will be again in phase at pdintThe

velocity of the peak propagation is thug = 2/as.

E(z,t) = Eye'"*~@t90) is the Fourier component of frequenoywavenumber: and initial
phasep,. Hence, the phaseof this component at a later instaist and pointA z of the medium

is:

¢ = KAz — wAt + ¢ (2.5)

If all the Fourier components are to be in phase agaihatnd At, it means that the phase

given by @.5) cannot depend on the frequency that characterizes eactoo@mip Thus:

0¢ oK Az Ow
P W Ay Vil o

To obtainu,, the functions(w) is usually used instead of( k), since the system’s characteristics
are often characterized as a frequency function. For media that respond linearly to the applied

field k(w) = nw/c (linear media), the group velocity can be written as:
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Ok c c
_(9r T _ _c 2.6
w= () @) * e =9

wheren, is the group index . In analogy with the refractive index, the group index (or group
refractive index) is defined as the ratio of the group velocity in vacuum to the group velocity in

the medium.

In a non-dispersive mediundt/0w = 0), the pulse propagates without distortion, since all
components travel at the same spegé- ¢/n. According to Eq. 2.6), the group index reduces

to the refractive index, consequently the pulse propagates at the phase veloeity,.

In a dispersive medium, whefe/s.. # 0, the group velocity can vary noticeably with frequency

over the pulse bandwidth, an effect that is known as group velocity dispersion. Physically, this
means that the pulse will begin to experience distortion effects due to higher-order dispersion
that may degrade or change the pulse’s shape. Generally, the concept of group velocity is used
as long as the pulse distortion is not too great, though there is no agreed-upon quantitative
benchmark for this limitGeh-2008 However, if the distortion is not large enough, the group

velocity can still be used to describe the wave propagation in the meélom2012

According to Eq. 2.6), in a dispersive medium, the slope ofw) determines the pulse
propagation regime. A steep positive spectral variation of the refractive ifdex > 0) can

lead to a very small group velocity, < c (slow lightor also subluminal pulse propagation),
while a steep anomalous dispersi@h /s < 0), leads to superluminal group velocity (it is

larger tharr) or even negative (pulse tunnelling).

The normalized group velocityy in units ofc) as a function ofv?"/s. is shown in Fig.2.1 In
aspectral region of normal dispersion whéré., > 0, the group velocity decreases. It is less

than the phase velocity and can take on very low values. Since the pulse is slowed down, this
corresponds to slow light. If the refractive index slope is negative (anomalous dispersion), the
group velocity increases. Therefore, the pulse travels at a speed faster than the phase velocity.
For strong anomalous dispersion the group velocity can exc€Huis corresponds to fast light

regime. In sectior2.3, the physical processes leading to strong dispersion arenauzed.
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Figure 2.1: Group velocity as a function @by —5_~ for n(wo) = 1.5.

The group velocity can be related to the velocity of energy propagation of all careieesyfy
velocity, vg), which is defined as the ratio of the Poynting vector and the energy density
[Bri-1960. In a low-dispersive medium, the wave propagates witteldistortion and, = vg.

By contrast, in presence of strong dispersion these velocities may be very different.

Figure2.2 shows schematically the variatieraround a material resonaneeof the refractive

indices for the three speeds introduced in this section, i e., phase, group, and energy speeds.
Although v, andv, exceed the value of in the vicinity of the resonance, the velocity;,

which has real physical meaning in these dispersive regions does not exceed it. So, it does not

contradict the theory of relativity, as it will be discussed in more detail below.

Let us now consider the wave propagation in engineered media without substantial material
dispersion, like photonic crystaldda-2011 These systems consist of a periodic refractive
index distribution and exhibistructural dispersion due to coupling between the incident

wavelength and the characteristic length of the structure. This structural dispersion can be
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Figure 2.2: (Extracted from Qug-200%). Frequency dispersion of the relative phase velocifyc
(dot-dashed curve), relative group velocity/c (dashed curve) and relative energy veloeity/c (solid
curve) in a double resonance Lorentz dielectric model.

modelled Cen-1999 by an effective refractive index.;,(w) that is obtained from the phase

acquired upon transmissiof,(w), through the system of length n ;s (w) = 5o (w).

For propagation in such a finite photonic band-gap structure, it has been sbodgr2001]

that the group and the energy velocities are related by the module of the transmission coefficient

t(w) of the medium in the form:

ve(w) = [t(w)[*vy(w) (2.7)

Equation R.7) is a surprisingly simple result that makes clear that fortdirstructures, the
group velocity,v,, and the energy velocityyg, are equal only in the region (or regions) of

unit transmittance and can be very different in the other regions, especially in those of very low
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transmittance (the photonic band gap region). If we conglurthe energy velocity can never
take values greater thanfrom eq. @.7), it follows directly that the group velocity must satisfy
the following inequality: v, < ¢/|t(w)|?. That is, the requirement that the energy velocity
must be subluminal does not forbid the possibility of superluminal Rather, in regions
with low transmittance, this inequality imposes an upper limitgrthat it can be achieved
without violating the requirement that the energy velocity remains sublumiiaigf2001].

For example, in the region of the photonic gap, where the transmission can be asllow as
superluminal group velocities aroudd can be reached. This value is below the upper limit
(10°) imposed by the condition that, remains subluminal. Numerical simulations of space
and time evolution of onedimensional photonic crystals confirm that never exceeds in

any place and time_ju-2002.

Especially when describing superluminal pulse propagation, one often uses the more versatile
concept of group delayrf), instead of group velocity, to both spatially extenddd
wavelength) and spatially negligiblé (< wavelength) systems. Thgroup delayis the time

delay of the pulse envelope as it propagates through a meduri960. For a spatially

extended medium of lengthes, the group velocity and the group delay are related according to

L
== (2.8)

Ug

Here the length of the medium was named as an effective leigthin order to include the

case of engineered photonic band-gap structures.

Note that Eg. 2.8) is only valid for narrowband pulses, though it serves as geupound to

the delay if higher order distortion becomes important.

Following the usually adopted phaseme approach Nlim-2003 Moj-2003 Ste-1993 the
group delay of a transmitted (or reflected) narrowband pulse, with center frequgnay
obtained by frequency deriving the transmission (or reflection) phase coefficient as:

99
s =2%

I dw

(2.9)
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Negative group delays (NGDs) are puzzling, since the peakefoutgoing pulse precedes

the peak of the input pulse. Although this phenomenon challenges common intuition, several
works [Kit-2003, M0j-2003 Wan-200Q demonstrate that it does not violate the causality
principle. In particular, lumped systems have offered a clear insight on this controversial aspect

of superluminal phenomena. This issue is discussed in the next section.

2.1.3 Subluminal, superluminal, and negative group velocities: Physical

interpretation

Figure2.3illustrates the propagation of a pulse at subluminal, supg@ral and negative group
velocity, where the corresponding pulse delay is compared to that of a reference pulse travelling
the same distance in vacuum (air). A medium of lerigtirough which an ideal Gaussian pulse

propagates is considered.

A reference pulse propagates through free space (pulse C) with a group velpeity: and

takes a time, = [/c to traverse the medium. Under normal circumstances, the group delay of
a medium of lengtft is positive and greater thdnic sincev, < c. Therefore, strictly speaking

the normal situation is subluminal propagation. In this work, as it is widely used in the field of
SFL effects, the term subluminal refers to the situation where c. Slow light occurs when a
propagating pulse is slowed down by the interaction with the medium in which the propagation

takes place (pulse D).

Pulse B traverses the medium in a time span less than the time required to travel the same
distance in vacuumi(c), since it is advanced with respect to the reference pulse C. Hence
it travels superluminally withy, > c. Under strong anomalous dispersion, the pulse peak can
leave the medium before even entering it (pulse A), i.e. the peak of the output pulse precedes the
peak of the input pulse. This results in a negative group delay and correspondingly a negative

group velocity ¢, < 0). We speak of pulse tunnelling in this situation.
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Figure 2.3: (Extracted from Wit-2010]). Diagram of group velocity. An incident pulse travelling
through a medium experiences different delay and attenuation depending on the medium'’s response.
The normalized transmitted pulses labeled A, B, and D with negative, superluminal, and subluminal
group velocity, respectively, are shown relative to the referentfspace pulse, labeled C.

Although an ideal case was assumed here, in reality the medium’s dispersion not only affects the
group delay, but also the attenuation (which produces a distortion of the pulse too). For a passive
medium, subluminal, superluminal or negative group velocity is accompanied by reduction of
the output pulse amplitude relative to the input pulse, though the envelope retains its basic
shape. In other words, for such a medium, the pulses depicted in ZRjare considered

to be normalized to their respective maximum values. However, as it will be discussed in
section2.3, such attenuation is not a necessary condition in every SKliume In fact, it has

been shown that an inverted medium (a medium with gain) displays abnormal group velocities
without attenuationBol-1993 Bol-1994 Ste-2003 Wan-200Q. Furthermore, the effects of
reflection on the interfaces air/medium have been ignored. These reflections produce standing
waves in the section and, thus, cause a further reduction in the transmitted pulse amplitude;

however, they do not affect the location of the pulse peaks.
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The mechanism behind these large pulse delays or advanceoanbe explained in terms of
pulse reshaping due to coherent interference of the pulse requency compd@sigoH2006
McD-2001 Pev-2008 We can study the time evolution of a pulse by considering the
spatio—temporal amplitude distributions of the individual Fourier components, and by Fourier
analysis, this waveform can be decomposed into many single-frequency sinusoidal components.
The peak of the pulse is formed at the position where these individual frequency components
interfere constructively, and the nulls of the pulse are formed where these components interfere

destructively.

In a normal medium wheré < v, < c the shift is negative; the pulse appears to have been
delayed during its passage through the medium. But after traversing a negative group velocity
medium, the pulse appears to have been advanced. This advance is possible because in the
Fourier view, each component wave extends over all space, even if the pulse appears to be
restricted. The unusuatéshaping in a negative group velocity medium shifts the phases of

the frequency components of the wave train in the region ahead of the nominal peak such that
the phases all coincide, and a peak is observed, at times earlier than expected at points beyond

the medium.

2.1.4 Does fast light violate the causality principle?

The existence of dispersion regions (of material or of structural origin) capable of sustaining
superluminal group velocities leads immediately to an apparent paradox and has led to
misinterpretations. In the first measurements of the group velocity, carried out by Lord

Rayleigh on sound waves, the group velocity was identified with the energy and signal velocities
[Bri-1960. Obviously, this theory clashed with Einstein’s relatyyivhich states that no signal

or particle can travel at velocity faster than light in vacuem,

Sommerfeld’s work, among others, contributed fundamentally to clarify these issues by

comparing the signal propagation theory with Einstein’s relativity. Sommerfeld shawat

IA. Sommerfeld,Uber die Fortpflanzung des Lichtes in disperdierenden Medien”, Ann. Phys. 44, 177-202
(1914).
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Figure 2.4: (Extracted from Mug-2009). Pulse propagation through a fast-light medium. In
superluminal propagation experiments, the peak of the pulse moves at superluminal velocity, but the
front of the pulse moves at velocity Because the information content of the pulse is contained in the
front, no information is transmitted at a velocity exceeding

the group velocity is not the velocity at which a signal propagates, especially in regions with
strong anomalous dispersion. Sommerfeld introduced the concept of front signal velocity, and
showed that the front advances at velocity less or equald¢hamder any circumstance (see Fig.

2.4). The front velocity represents the speed at which inforomdtiavels. Recent measurements

of superluminal group velocities in photonic crystals and optical gain media or media with
intense absorption bands have revived these issues and the apparent conflict with the causality
principle [Moj-2000, Moj-2003 Sid-2004.

The group velocity can take on any value. However, the information always travels slower than
c. Itis based on the concept of causal signals (with a well-defined front) that are propagated
by causal media. A causal medium is defined as one for which the effect cannot precede the
cause. The mathematical formalization of these concepts are detaiBd-9p0 Moj-2000

where it is shown that it is not possible to detect a signal at some pa@tta time instant

less thanz/c. From a purely theoretical point of view, it states that the information carried by
an electromagnetic pulse is associated with the front of the ptlse() and the oscillations

of the field immediately following the front, i.e. the Sommerfétaderunner Every causal

signal has a starting point in time, before which the signal does not exist. This starting point
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(t = 0) is marked by a discontinuity in the pulse envelope or in higher-order derivatives of the
envelope, where the pulse is no longer analytic. These points of nonanalycity are conveyers
of genuine informatiorand can be shown to propagate at exactly the speed ofdighder all
circumstances, and thereby fulfill the requirements of the relativistic causality. In short, for a
smoothly varying pulse, presented by an analytical function, there is no more information in the

pulse peak than in its earliest parts.

It is important to note that while theoretical evidences and simulations of microwave pulse
propagation Moj-2003 demonstrate the causal propagation of information in thatpamf
nonanalycity, the amplitudes associated with these fronts are particularly small, making their
experimental detection a challenging task. This difficulty is the reason that the detected "signal”
is not the pulse front, but the maximum or hathaximum of the pulse envelope, which, in turn,

can be made to propagate superluminally or with negative veloc8idsJ004.

2.2 Figures of merit of an SFL system

The efficiency of SFL systems is evaluated through some metrics or figures of GerH]008
The group index was already mentioned as a possible metric. However, the group index by itself
is not sufficient to fully characterize a SFL system. In the following paragraphs the main figures

of merit are defined

I. Group index (n,), group velocity (v,), or group delay (,):
The group index and the group velocity are equivalent measures since they are connected
by the speed of light in vacuum, = ¢/n,. In a frequency domain experimenj can
be obtained from Eq.2(6) when the refractive index function is known in the spectral
range of interest. A simpler method consists in retrievipfrom the characterization of
the system’s phase functiefiw) (transmission phase or reflection phase), and use Egs.
(2.8) and @.9) to obtainu, = [ (?¢/a.)~", wherel is the length of the medium. Since
a frequency-domain characterization @f(w) is difficult to perform in the optical range
(complicate interferometric techniques must be used), in practice, itis usually determined

in a time-domain experiment by measuring the propagation time of the pujse.X
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through the medium, heneg = [/7,,,.. Let us point out that the pulse delay,;;. is
generally different from the group delay due to pulse widening or compression upon
propagation. Unfortunately, these simple parameters can be the least useful measures for
some applications. A delay of 1 is large for a pulse of &s duration, but insignificant

for a pulse of 1Qus. Hence, the group delay is usually accompanied by a measure of the

achievable bandwidth or bit rate in order to present a more meaningful analysis.

The group index (also sometimes referred to astoerdown factoyis a common metric
used to describe an SFL system too. For a pulse whose bandwidth is considerably smaller
than the region of linear dispersion, the group index is directly proportional to the delay

experienced during propagation singe= = (¢/1) - Tpulse-

. Fractional Delay (F'D):

It is defined as the ratio between the excess pulse delay (which is the difference between

the pulse delay and the phase delgy- 7,.;,. — 7, and the input pulse duratiof;,,, i.e.,

Td o Tpulse — Tp

o H LT

FD = (2.10)
T;, i1s most commonly defined as the pulse fuNidth at halfF-maximum (FWHM),
though authors occasionally use other measures of the pulse duration. Conceptually, the
fractional delay is more adequate when evaluating the delay because it is related to the

pulse duration to give more accurate information of delays.

Therefore, for the above example, fractional delays of 10 and 0.001, respectively, are
achieved. Note that for the same absolute pulse delay afslGhe corresponding
fractional time delay shows a significant difference in the case of a pulse duration of
1 ns or of 10 us. Unfortunately, the fractional delay cannot stand alone as the unique
metric; a fractional delay does not provide information on the pulse delay or the pulse
width, only on their ratio. Hence, this metric is usually accompanied by a bandwidth

measurement.

Delay-Bandwidth or Delay-Bit-Rate Product:
Very similar to the fractional delay, the delapandwidth product or delaybit—rate

product (DBP) combines a pulse delay measurement with the pulse bandwidth or bit rate.
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In general, “bandwidth” refers to the optical spectral widtha data channel, whereas
bit rate refers to the bits per second (bits/s) of transmitted data. The expression for DBP
product is

Appp = Tpuise - B (2.11)

wherer,,;;s. is the pulse delay and B denotes the FWHM bandwidth or bit rate. In most
SFL systems, the DBP is a valuable parameter since large absolute time delays might be
accompanied by low bit-rate channel, but this might correspond to only an insignificantly
small fractional delay. Moreover, higher bit-rate channels are presently of high interest
in terms of potentially performing digital signal processing. Therefore, small delays for

extremely small bit times might be of significancadh-2008

IV. Q-Delay Product:

One opportunity to quantify the data distortion after the pulse transmission is the Q factor
which is directly related to the signato—noise-ratio, the bit error ratio (which indicates

the ratio of the received numbers of bit errors over the total number of bits within a certain
time interval) and the eye diagram opening. It decreases with an increasing distortion.
The Q-delay product combines the amount of distortion with the delay and thus, provides
an insight into the optimal design of the SFL system. Thus, théa@or product can be
used to find a tradeoff between the delay and the distorkbn{2009.

V. Other Metrics:
There are other metrics that can be used to evaluate SFL systems. Many familiar figures of
merit can be applied seamlessly, including bit error rate, power penalty, and eye opening.

Each application imposes its own metrics that must be met.

2.3 Physical processes leading to slow- and fast- light

As it was discussed in Secti@hl, fast light is observed when a pulse propagates in a medium
with a steep anomalous dispersion at the pulse center frequency, whereas steep positive spectral
variation of the refractive index can lead to slow light. Now, the physical processes that originate

such a strong dispersion are addressed. Experimental evidence of SFL has been reported for a
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myriad of systems exhibitingnaterial resonanceggain or absorption), like BoseEinstein
condensatesHau-1999, atomic vapors \Wan-200(Q, solid crystals Big-2003 Tur-2001,
semiconductor waveguidedVor-2005, semiconductor quantum wells and dotsaf-2010Q
Su-2006, and in doped optical fibersDjah-2005 Gon-2005 Sch-2006 The reason why

gain or absorption resonances lead to strong dispersion relies on the Kraftnensg relations
between the realr) and imaginary £) part of the complex refraction index (s2€l.]). SFL
effects have also been reported in systems exhibgtngctural resonancefphotonic band-gap
systems, PBG), like photonic crystalS4l-2007, fiber Bragg gratingsLljon-2001 Lon-2003

and coupled resonatordMou-2013, where the dispersion is due to coupling between the
incident wavelength and the system’s characteristic length. Material SFL and structural SFL are
then two standard methods for controlling the group velocity, whose differences and similarities

renders one of them more apropiate depending on the applic&oy~d01]

This section presents an overview about the most common mechanisms through which SFL

propagation can be achieved in different systems.

2.3.1 Media with material resonances

A rapid frequency variation of the refractive index is associated with an absorption or gain
resonance. For absorption resonances-figgit appears on the line center and slow light in the
nearby frequency. For a gain resonance, instead the group velocity is subluminal within the gain
line and superluminal on both sides of the line. The-l&fnd column of figur@.5 shows an
absorption resonance profile, where slow light is expected in the wings of an absorption line and
fast light is expected near the line center. The rigind column shows that just the opposite

situation is expected for a gain linB¢y-2007.

It shows that a spectrally narrow absorption tends to induce a sharp transition of the refractive
index in the material, which in turn leads to a strong anomalous disperigfv{ << 0)
associated with signal advancement or fast light. On the contrary, a peak or gain band will
create a strong normal dispersiam(dw >> 0) in the material, resulting in signal delay or

slow light. The steep linear variation of the refractive index, makingow large in absolute
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Figure 2.5: Origin of slow- and fast- light for an absorption and gain resonance. The top panel shows
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panel shows the group index.
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value, induces in turn a strong change of the group index. Thereby, a large change of the relative

time delay for a pulse can be observed after the pulse propagates through the material.

Because of the large attenuation that light experiences at the center of a strong absorption
resonance, it is difficult, but not impossible, to observe fast light under these circumstances.
As a resonance occupies a narrow spectral band, abnormal group velocity can be observed only

when the spectral width of the incident pulse is sufficiently small.

The first experimental evidence of abnormally fast and abnormally slow group velocities were
obtained in systems with material resonances. In 1993, Chiao demonstrated numerically
superluminal phase, group, and energy velocities for a Gaussian wavepacket tuned to a
transparent spectral region far below the resonance of an inverteddweal atomic medium
[Chi-1993. A similar effect was achieved by sending a pulsed probe bémough a Xe gas

cell exhibiting a gain line, as proposed by Boleiaal. [Bol-1994. Wanget al. [Wan-2000

used gain-assisted linear anomalous dispersion to demonstrate superluminal light propagation in

atomic caesium gas. They applied two strong continuous-wave pump light beams that propagate
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through the atomic medium to exhibit a long steady-state daiitblet. In the middle of the two

gain lines, a lossless anomalous dispersion region occurs and causes a pulse advancement shift
of 62+1 ns, its advancement gives an effective group-velocity index,of —310+5. Agarwal

et al. [Aga-200] controlled the dispersion profile of gaseous rubidium attypspplying a

laser coupling field with tunable intensity. They were able to change the group velocity of a
probe pulse from subluminal to superluminal and even to negative values by controlling the

pump field intensity.

In the following sections several SFL techniques to render or modify material resonances are

briefly described.

a. Electromagnetically induced transparency

Electromagnetically induced transparency (EIT) is a technique that renders an atomic medium
transparent over a narrow spectral range within an absorption band. By using the coherent
guantum interference effect of EIT, the attenuation due to the absorption resonance present in
resonance media (see sect@®3.1) can be canceled while the slow- and fast- light effect is
preservedIfle-2009. The effect of EIT was first discovered by Harris et al. in a gahatoms

with three energy leveld{ar-1997. It has been observed in atomic mediau-2001], Bose-
Einstein condensateblpu-1999, solid crystals Tur-2001], and hollow-core photonic-bandgap
fibers [Gho-2006. Applications of EIT include ultraslow light, stored lighhd enhancement

of nonlinear optical effects.

Via EIT a narrow transparency window within the absorption profile can be created, as shown in
Fig. 2.6(a). A pulse within this window experiences little or no alpgmm and is associated with

a change of its group velocity. According to the Kramesonig relations the transparency
window leads to a rapid positive variation of the refractive index and therefore, to a large normal
dispersion, as can be seen in F&y6(b). Hence, the magnitude of the group velocity change
and time delay depends on the efficiency of the transparency and on the slope of the dispersion,

respectively.
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Figure 2.6: (Extracted from Hen-201(). Absorption coefficient and refractive index as a functain
the frequency detuning from the center of the absorption bapdf¢r an EIT scheme. The shadowed
area shows the narrow transparent spectral range with normal dispersion.

In practice, EIT can take place in a three-level atomic system as shown schematically in Fig.
2.7. A weak probe field,) is tuned near thél) «» |3) transition frequency that originates the
absorption resonance and is used to measure the absorption spectrum of the transition, while
a much stronger coupling fieldvf) is tuned near the3) <> |2) transition frequency. The

|1) < |2) transition is dipole forbidden. Quantum interference betweerithe— |3) and

|2) «+» |3) transition amplitudes results in a cancellation of the probability amplitude for exciting
state|3), thereby reducing the probe beam absorption. If §ateas a long lifetime, the above
mentioned quantum interference leads to a narrow transparency window completely contained
within the|1) < |3) absorption line. The rapid positive change in refractive index in the narrow
transparency window (see Fi@.6) produces an extremely low group velocity for the probe
field, which leads to slow lighZzhu-2008.

Slow light based on EIT has been demonstrated in various material systems. In 1989ailau
slowed down light pulses to a velocity of 17m/s in a Be&gnstein condensatélpu-1999. In

that experiment, they applied a strong coupling field to an ultra cold atomic cloud in the form
of a Bose-Einstein condensate to create the narrow transparency window within the absorption
resonance, a diagram of the sophisticated experimental setup is shown iR.&id.ater, in

2002, Turukhinet al. demonstrated the propagation of slow light with a velocity ofrdps,
corresponding to a group delay of 66 through a solid crystal at a cryogenic temperature

of 5 K [Tur-2001. Liu et al. [Liu-200]] demonstrated experimentally that coherent optical
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Figure 2.7: EIT in a three-level\ system. To produce EIT, a strong probe beag) (s applied between
levels|1) < |3). This effectively splits levell3) so that a control beanu() sees reduced absorption over
a very narrow spectral range.

information can be stored in an atomic medium and subsequently read out by inducing EIT
in a magnetically trapped, cold cloud of sodium atoms. They experimentally verified that the
storage and reaebut processes are controlled by stimulated photon transfers between two laser
fields.

While the above results are truly impressive, there has been increased interest in less
sophisticated systems, as holleaore photonie-bandgap fiber (HEPBF). These fibers are

of great interest because the light can be confined and guided with low loss in a hollow
core surrounded by a photonic crystal structure that localizes light in the core. By filling
the hollow core with desirable gases, resonant optical interactions, such as EIT, can be
achieved over a long interaction length. Such a-HRBF gas cell is compact and can be
integrated with existing fiberbased technologies. EHbased slow-light propagation has
recently been demonstrated experimentally by propagating-ag9ong probe pulse through

an acetylenefilled hollow—core fiber 5ho-200%. The delay measured in the presence of the
control beam is 800 ps. This was the first demonstration of EIT slow light at telecommunication
wavelengths. Besides acetylene, alkali atomic vapors such as Rubidium have also been injected
into a HC-PBF to achieve ultra-low power level optical interactio@hp-2006. Recently,
Safaeni-Naeiniet al. [Saf-201] demonstrated EIT and tunable optical delays in a hanoscale
optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light

by way of engineered photephonon interactions. At low temperature (8.7 kelvin), they
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Figure 2.8: (Extracted from Hau-1999). Experimental setup. With a flipper mirror in front of caraer

CCD 1, the probe beam is directed either to the camera or to the photomultiplier (PMT). For pulse delay
measurements, a pinhole is placed in an external image plane of the imaging optics and a small area of
the probe beam centered on the atom clouds is selected. Pulse delays are measured with the PMT. The
imaging beam propagating along the y axis is used to image atom clouds onto camera CCD 2 to the
length of the clouds along the pulse propagation directioax(s) for determination of light speeds.

report an optically tunable delay of 50 nanoseconds with near unity optical transparency, and

superluminal light with a 1.4:s signal advance.

Although the majority of works focus in the production of slow light because of its applications,
there are also considerable efforts in the production of fast light. Akuéttah have observed a
negative group velocity of ¢/23000 using electromagnetically inducatisorption(as opposed

to El transparency[Aku-1999. More recently, Wheelegt al. [Whe-201( have developed an

all —fiber system where they generate electromagnetically induced transparencies jima 20
acetylene-filled photonic microcell. Using this system, pulses of probe light were delayed and

advanced by up to 5 and 1 ns, respectively.

Although the results of EIT are noticeable, EIT suffers from significant disadvantages. First,
the pulse wavelength has to be adjusted exactly to the wavelength of the material absorption

resonance. In most cases, these wavelengths are not used in optical communications.
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Furthermore, the resonances and hence, the transparentgws@re extremely narrowband.
Therefore, it is not possible to cover todays common bandwidths of tens of Gbit/s. Another
major problem for practical applications of Efbased systems is their not so large stayown

factor and their difficult handling because the exotic materials need extremely low temperatures
to avoid any disturbance of the quantum interference. For these reasons, alternative methods
have been quested which work in solids at room temperatures and at wavelengths or frequencies

used in optical communicationZf{u-200§.

b. Coherent population oscillations

A method which has a similar behaviour like EIT but works in solids at room temperature is
coherent population oscillations (CPO). It leads also to a narrow spectral window inside an
absorption profile and therefore, it causes a change of the group index. However, while EIT
involves a quantum mechanical interference effect between the electronic state wave functions,

the coherence for CPO is assured by the interference of two external laser Iam2006.

The great advantage of CPO is that it can be realized in a variety of materials at room
temperatures and at wavelengths used in optical communications. Ultra slow- and fast-
light and even negative group velocities have been shown in crystals, such as alexandrite
[Big-2003 and ruby Big-20034, as well as in erbium-doped fiber&gh-2006 Sch-2006
Jar-2012  Furthermore, CPO-based SFL was achieved in semicondwetmeguides
[Mor-2005 Ohm-2006, and quantum dotsJu-2006.

Coherent population oscillations (CPO) are a quantum effect that creates a narrow dip (or
spectral hole) in an absorption profile (slow light) or in a gain profile (fast light). The rapid
variation of refractive index in the neighborhood of the spectral hole leads to slow- or fast- light
propagation. The idea behind CPO is illustrated in Ri§. CPO occurs when the ground-state
population of a saturable medium oscillates at the beat frequency between a pump wave and a
probe wave. The population oscillations are appreciable onlyfor~ 1, where) is the beat
frequency and is the ground state recovery time. When this condition is met, the pump wave
can efficiently scatter off of the temporally modulated grousthte population into the probe

wave, resulting in reduced absorption of the probe wave. In the frequency domain, this leads to




36 Chapter 2. Fundamentals on SFL systems

1
(a) (b) PP )
b .. rapid
1
0)1 Fba:f
a a

Figure 2.9: (Extracted from Big-2003). Coherent population oscillations (CPO)realized in apén
two-level system. (a) A simplified version of the energy levels in ruby. Because of the rapid decay into
level ¢, we can model this system as the two-level atom shown inufbis the population inversiori;

is the ground state recovery tinig; is the lifetime of level c, and} is the dipole moment dephasing
time.

a narrow spectral hole in the absorption profile, and the hole has-aviitih on the order of

the inverse of the excited-state lifetintgédy-2009.

In CPO slow light experiments, the pump and probe need not be separate beams; a single
beam with a temporal modulation can experience slow light delay. However, the modulation
frequency or the pulse spectral width should be narrow enough to essentially fit within the
spectral hole for the slow light effect to be appreciable with minimum pulse distortion. This
means that the slow light bandwidth is limited by the width of the spectral hole created by CPO.
In addition to an absorbing medium, CPO can also occur in an amplifying (population inverted)
medium. In this case, a spectral hole is created in a gain feature, and the resulting anomalous

dispersion can lead to superluminal or negative group velocities.

Slow light using CPO was first demonstrated by Bigektval. [Big-20034, wherev, as low

asb8 m/s was observed in a 7.25-cm-long ruby crystal at room temperature. Slow light and
fast light propagation was demonstrated in a 4-cm-long alexandrite crystal at room temperature
using CPO Big-2003, and group velocities as slow as 91/s to as fast as-800m/s were
measured. In 2004, Kat al. [Ku-2004 demonstrated for the first time slow light via CPO

in semiconductor quantum-well structures. A group velocity as low as 86B0wvas inferred

from the experimentally measured dispersive characteristics, the transparency window exhibited

a bandwidth as large as 2 GHz. These sytems reach the hightest group indexwatues¢),
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but their operation is limited to the very narrow gain or alpsion lines which are given by the

electronic and optical properties of the material.

A key aspect for many practical applications is the tunability of abnormal group delays.
Tunable SFL effects were recently demonstrated at room temperature in erbium-doped fibers
where the absorption or gain could be controlled by a pump laser that creates a population
inversion [Geh-2006 Sch-2006. In one experiment$ch-200§ modulated or pulsed light

at a wavelength of 1550 nm was delayed or advanced through an erbium-doped fiber with
varying powers of a 980 nm pump. The degree of signal delay or advancement is found to
depend significantly on the pump intensity. A maximum fractional advancement of 0.124 and
a maximum fractional delay of 0.09 were achieved. A theoretical model of such a system was
recently developedJar-2012 which shows the role not only of the pump power but also of

its phase with regard to the signal phase. Fractional delays/advancemenis/near 0.5

are obtained. Superluminal light propagation with negative group velocity due to CPO was
observed in an Erbiumdoped fiber where the signal pulse appears to propagate backwards

[Geh-2006, which demonstrates that “backwards” propagation is azalale physical effect.

During the last years, other systems have attracted much interest. For examkegtN\l.
[Mor-2004 reported slow-down of light by a factor of three in a 100m long semiconductor
waveguide at room temperature and at a reedwigh bandwidth of 16.7 GHz. Group velocity
controlled all-optically as well as through an applied bias voltage were shown.etSl.
[Su-2006 proposed a room temperature optically and electricalhahle group delay using
population oscillation in a quantum-dot semiconductor optical amplifier A reduction of the

group index up to 10% with a bandwidth of 13 GHz was achieved.

Like other SFL techniques, CPO-based SFL propagation also suffers from pulse distortion.

Shinet al. observed that pulse distortion caused by these effects depends on the input pulse
width, pump power, and background-to-pulse power ratio. They reduced pulse distortion

through an erbiumdoped fiber amplifier by a proper choice of these parameg&hsJ007.

In their experiment, with a 10 ms pulse length fractional advance®iént-0.17 and minimal

distortion was obtained.
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Although CPO seems to be a very promising slow- and fast-tegtinique it still suffers from

a narrow bandwidth which is set by the inverse of the population recovery time. For crystal
and erbium structures it is restricted to a few kHz as a consequence of the long population
relaxation times of these materials, implying that the materials can be used to delay pulses not
much shorter than 1 ms. CPO slow light in semiconductors exhibits bandwidths on the order
of a few GHz, which can be used to delay pulses as short as hundr&saps2D0é. This

large bandwidth, together with mature semiconductor processing techniques, makes CPO in

semiconductor structures an important route to achieve chip-scale SFL ddice2(009.

c. Nonlinear wave mixing

Nonlinear wave mixing processes rely on the coherent coupling between two or more optical
beams, which induces a nonlinear excitation in the medium. As it was discussed in section
2.1.2 because of the Kramer&Kronig relations, the gain features of the wave mixing process
are associated to dispersion and ultimately with a nonlinear phase change. For example, in the
coupling of an intense pup beam and a much weaker probe beam at the exit of the medium
the probe not only has been amplified but it has also undergone a nonlinear phase shift. The
variations of the phase shift with the frequency detuning between the pup and probe usually
leads to strong dispersion, in the same way as absorption and refractive index are related in EIT
and CPO.

Therefore, nonlinear wave mixing has been exploited for controlling the group velocity of light
pulses Bor-201Q. These processes usually operate at room temperature abé eacountered

in different types of nonlinear media. Namely, Bragg diffraction in photorefractive crystals,
stimulated Brillouin (or Raman) scattering in optical fibers, and two-wave mixing in liquid-

crystal light values. Some of them are described below.

— Stimulated scattering

SFL effects induced by means of stimulated scattering have been reported in optical fibers.

Usually, stimulated light scattering processes are considered harmful to fiber communications,
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since they impose a limit on the power or the transmissionadcs of an optical signal
[Agr-2004. However, in a carefully designed system, stimulated &uith scattering (SBS) or

stimulated Raman scattering (SRS) processes can be harnessed to generate slow- or fast-light.

In stimulated scattering processes the photons of a light wave interact with the medium.
Sufficiently strong light waves induce a material excitation or resonance which is coupled to the
light fields if their frequency difference is equal to the frequency of the excitation. This gives
rise to nonlinear coupling between the pump and probe waves and the energy can flow from one
to another. Hence, a probe wave can be amplified or absorbed. Additionally, according to the
Kramers-Kronig relations, this leads to a change of the refractive index with the frequency and

therefore, to slow- or fast-light.

Stimulated Brillouin Scattering (SBS) process can be described classically as a nonlinear
interaction between the pump field applied (at frequengyand a vibrational (acoustic) wave

(at frequency)). This interaction causes some light from the pump field to be scattered into

a counterpropagating Stokes sideband at frequency w; — () (see Fig. 2.10a)). The

beating between the pump and the Stokes fields enhances the acoustic wave through a process
called electrostriction, or the tendency of a material to compress in the presence of an applied
electric field. The enhanced acoustic wave causes stronger scattering of the pump into the
sideband, reinforcing the effect. As a result, the Stokes wave experiences exponential gain upon
propagation through the material. It should be noted that the same effect causes exponential loss
(absorption) for the antiStokes sideband at frequency = w;, + €2 [Boy-2003. Efficient SBS

occurs when both energy and momentum are conserved, which is satisfied when the pump and

probe waves counterpropagat&gh-2008

During the last years, SBS has become a very promising-fib@sed technique to realize
slow- and fast-light $on-2005 Gon-2010 Cab-2008 The-2008 Sch-2012 This is due to

its crucial advantages over the other methods. With SBS it is possible to tune the group
velocity continuously in an extremely wide range. Slow- and fast-light via SBS was first
demonstrated by Sorgj al. [Son-200%. In Song’s experiment 100 ns pulses were continuously
delayed betweern-10 ns and+30 ns with a slope of 0.97 ns/dB gain in a single mode fiber

(SMF), and changes in the group index10f® were measured. In short SMF of 2 m group
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Figure 2.10: (Extracted from Boy-2009). (a) Schematic representation of the SBS process, where
is the pump field applied frequendy, is the vibrational wave frequency and is the Stokes sideband
frequency. (b) Origin of slow and fast light through SBS and a monochromatic pump field.

velocities of less than 71000 km/s up to superluminal and even negative group velocities were
achieved (Gon-200%. Furthermore, just small pump powers are necessary to \a&chvery
high time delays. The systems are very easy to implement and can be built using standard

telecommunications componen@Ggb-2008

On the other hand, SBS has some disadvantages which limits the performance of the slow- and
fast-light systems. The maximum delayable data rate is restricted by the narrow natural full
width at half maximum (FWHM) Brillouin bandwidth. Furthermore, the maximum achievable
time delay is limited by the saturation of the Brillouin amplifier. Another problem is that the
time delay of the pulses is accompanied by a distortion of the pulse shape which primarily

manifests itself in a temporal broadening of the pulse wi@ald-2008.

Slow light via stimulated Raman scattering (SRS) can also be achieved in optical fibers, but
over much larger bandwidths than SBS and hence it can be used with pulses of much shorter
duration Khu-2009. In SRS, scattering arises from the interaction betweeptinep wave and

exciting vibrational motions or oscillations of the individual particles, also known as phonons.
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With SRS wide bandwidth slowlight has been shown where 430 fs pulses were delayed by up
to 85% of the pulse widthr§ha-200% In [Dah-200%a Raman-assisted fiber optical parametric
amplification in a fiber with a length of 2 km was used to achieve negative delays as well as

large positive delays and delay tuning ranges, in the order of 160 ps for a 70 ps wide pulse.

— Two-wave mixing in liquid-crystal light valves (LCLV)

This technique is based on the nonlinear mixing of a pump laser beam and a much weaker
signal pulse, both impinging on a nematic liquid-crystal (LC) cell on which a photoconductive
layer is deposited. The process is shown in R2gl1[Bor-201(Q. The signal pulse and the

pump beam interfere creating a fringe pattern on the photoconductive layer, which modulates
the effective voltage across the LC cell. As a result, the LC molecules reorient and, because
of their birefringence, a refractive-index grating is induced which diffracts the signal pulse.
Associated with each output order there is a gain and a dispersion spectral function, thus leading
to slow or fast light regimes in each diffracted order. These gain curves are a consequence of
the photon transference from one beam into the other, whereas the dispersion curves originate
via the Kramers-Kronig relations. The SFL regimes achieved on each diffracted order depend
on the frequency detuning between the signal and the pump frequency, and they can be tuned
by varying the voltage amplitude applied to the cell or by changing the intensity of the probe

beam.

The response time of the LCLV is the time needed to build up the photo-induced grating, which

is dictated by the time the LC molecules spent in reorientating over the whole thickness of the
nematic layer. For typical thickness of about 15 micrometers, the response time is of the order
of 100 ms. Therefore, this technigque works for pulses with a minimum temporal width of 100
ms. Gaussian pulses of width 140 ms and 180 ms were advance®8omys and delayed by 110

ms, respectively; which correspond to fractional delays'of = —0.46 and F'D = 0.60. This
technigue has been proved successful at delaying images by 80 ms, at increasing the spectral
sensitivity of a Mach-Zehnder interferomet&dr-201Q and at measuring with great accuracy

Doppler shifts as low as 1 microhertz of very slow-moving objeBtr{2013, which have all
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Figure 2.11: (Extracted from Bor-201Q). (a) The liquid crystal light valve (LCLV) and the two-wave
mixing in the Raman-Nath regime of diffraction. (b) Gaify and phase shifp, for them = 0" output
order beam as a function of the frequency deturlagbetween the pump and signal;= 30.

interesting applications for the detection of conformational changes in material structures or in

biological samples.

2.3.2 Photonic bandgap structures

As it was mentioned earlier, SFL effects also arise in systems with structural resonances with a
different behavior. By structural resonances, one means that the propagation of light pulses
is significantly modified by the (typically periodic on distances of the order of an optical
wavelength) spatial modulation of the optical properties of a material system. Unlike the case
of material resonances, there is a true increase of the electric field strength within structural
resonances. This increase can lead to direct enhancement of nonlinear optical interactions
because the light bounces back and forth many times in its passage through the structure. Also,
because there are both forward- and backward-going waves within the structure, each of which
carries power, the total energy stored within the structure is larger than the energy stored in a
wave propagating freely though a medium of the same mean refractive index. There will thus be
an increase in electric field strength within the structure, which can lead to enhanced nonlinear

optical effects Boy-2011.
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A well-known example of such a behaviour is that of photoniadzgap (PBG) systems,
where the dispersion is not of material origin (the media are in fact fairly dispersion less)
but an “effective” dispersion arises due to coupling between the incident wavelength and
the characteristic length of the system. PBG devices are especially attractive for generating
slow— and fast-light, as they are compatible with erthip integration and room temperature
operation, and can offer widédbandwidth and dispersion-free propagati@alp-200§. As
opposed to the systems with material resonances described in the previous sections, SFL occurs
in entirely linear and passive structures where the wider bandwidth operation comes at the

expense of much lower group index valueg ¢ 10?).

A PBG structure, also known as a photonic crystal, is made of two or more materials with
different refractive indices arranged in an alternating fashion. As a consequence, the light is
scattered at the index interfaces and if the periodicity of the structure is right (around half
the operation wavelenght) the multiply-scattered waves infertere desctructively, thus yielding a
photonic gap. Hence, the structure is designed to influence the propagation of electromagnetic
waves in the same way as the periodic potential in semiconductor crystals influences the
electron motion by defining allowed and forbidden energy bands. The absence of allowed
propagating electromagnetic modes inside the structure in a range of wavelengths is called a
photonic bandgag. This stopband is connected with anomalous dispersion and thus gives rise
to superluminal group velocity, whereas at the stopband edges subluminal group velocity is

supported.

The simplest form of photonic crystal is a epdimensional periodic structure such as a
multilayer film or Bragg mirror. Electromagnetic wave propagation in these structures was first
studied by Rayleigh in 1887Eh-1988, who showed that any such one-dimensional system

has a band gap. Although Hperiodic systems continued to be studied extensively over the
following century, and appeared in applications from reflective coatings to distributed feedback
(DFB) devices, it was not until 100 years later, when Yablonovitch and John in 1987 joined the
tools of classical electromagnetism and solid-state physics, that the concepts of omnidirectional
photonic band gaps in two and three dimensions was introduced, and such structures have since

seen growing interest by a number of research groups around the world.
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Figure 2.12: (Extracted from Bab-200§4 and [Lin-1998]). Examples of one, two—, and
three-dimensional photonic crystals. (a) 1D Bragg reflector, (b) 2D silicon photonic waveguide. (c)
3D photonic crystal.

Figure 2.12 shows examples of photonic crystals with eng1D), two— (2D) and
three-dimensional (3D) periodicity. Another kind of 2D PBG structure, different to the one
illustrated in Fig. 2.12b), is the photonic crystal fibeKhi-199§. In 3D, PBG applications

in the optical regime have remained elusive until very recently due to the difficulties associated
with the controlled fabrication or growth of structures with lattice constants only a few hun-
dreds of nanometers in lengtlsfi-2013. This is why the first demonstrations of the potential

of these structures were made in the microwave regime, with the development of a PBG metal

substrate for antenna applicatiog@#-1999.

Although a few works report SFL in 2Bpgb-2008 and 3D [Gal-2007 photonic crystals, most

of the research has been devoted to 1D structures, like multilayer dielectric stacks and fiber
Bragg gratings. Onedimensional photonic crystals have a wide range of applications such as
stop-band filters, highreflection mirrors, antireflection coatings, and cavities for distributed
feedback lasers. Oralimensional photonic crystals are well known for several decades, and
experiments related to anomalous propagation have been carried out in various spectral ranges.

Some key work in the area is summarized below.

Centiniet al. [Cen-1999 discuss the linear dispersive properties of finite 1D phictdxand
gap structures. They introduce the concept of a complex effective index for structures of
finite length, derived from a generalized dispersion equation that identically satisfies the

Kramers-Kronig relations.
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Figure 2.13: (Extracted from $pi-1994). Measured and calculated difference between the tungelli
time and the corresponding vacuum time for multilayer dielectric coatings of various thicknesses.

Steinberget al. [Ste-1993 employed a twe-photon interferometer to measure the time delay

for a photon to tunnel across a barrier consisting of a multilayer dielectric mirror, composed

of six titanium oxide layers alternated with five fused silica layers, with its stopband residing

between 600 and 800 nm. The measurement showed that the peak of the photon wave packet

appeared on the far side of the barriet7 + 0.21 fs earlier than it would if it were to travel

at the vacuum speed of light ¢, corresponding to a group velocity.off 0.2)c. Spielmann

et al. [Spi-1994 used femtosecond optical wave packets for the tunnellipgement instead

of a single photon, extending the experiment 8fd-1993 to measure the tunnelling time for

multilayer dielectric mirrors of different thicknesses. It was shown that the group velocity

linearly increases with the barrier thickness and becomes superluminal for sufficiently thick

barriers (see Fig2.13.

Existence of slow and fast light regimes was predicted for pulses reflected on asymmetric

photonic band gap structures with a transmission window inside thelgapd00]. These

predictions were confirmed experimentally by reflecting picosecond optical pulses in fiber

Bragg gratings adequately synthesized to have a dedwdeentzian spectral reflectivity

function [Lon-2003. Tunable group delays can also be obtained with these ategztNamely,

transition from subluminal to negative group delay was achieved by tuning the pulse spectrum

over the band gap. Superluminal pulse reflection for a pulse tuned off resonance, with a peak
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pulse advancement at 60 ps, was observed without appreciable distortion. Conversely, for

a pulse spectrum tuned at one of the two Lorentzian peaks, the group delay was positive and
reflection was subluminal, with a peak pulse delay-0§0ps. A theoretical work presented a
similar system, consisting of a dielectric slab doped with dispersive-texel or three-level

atoms, where by adjusting the thickness or background dielectric constant of the slab, the
reflected pulse can be controlled from superluminal to subluminal or vicevafaa-2004.

Also, a gain-driven transition from superluminal to subluminal group velocities was predicted
for pulses reflected in active fiber Bragg gratings with asymmetric prdfibm-2003 with
fractional delays in the rangeD = [0.3 — 0.5].

Because of the scalability, flexibility and simplicity of 1D PBG structures, experimental evi-
dence of structural SFL has been provided for lower frequency ranges, like radiofrequency (RF)
[Hac-2002 Hac-2004 Mun-2003 Poi-2001 and microwave (MW) Moj-2000, Moj-2003
Nim-2003 Tir-1999. For instance, electrical analogs of ergimensional photonic crystals,
operative in the RF range, have been constructed using amd high-impedance coaxial ca-

bles with a specific cascading arrangement. Impurities can be introduced into these crystals by
inserting cable segments to break the crystal symmetry. This system provides a simple way to
study 1D photonic band structure effects with complete control over impurities in the lattice
[Sch-2001

For the first time to our knowledge, Poirier and HacReif200] devised a 1D PBG structure

made of coaxial segments with periodic impedance to create a stop band in transmission near
10 MHz due to impedance mismatch, and within the stopband a pulse travels with a group
velocity three times faster than light in vacuuhigc-2002. They also demonstrate that large-
scale photonic crystals can be used to simulate nonlinear optical effects occurring in real
photonic crystals. Munday and Robertsdviun-2003 observed subluminal group velocity

(ve = 0.3¢) through a narrow transmission band of a simple coaxial photonic crystal. The
narrow transmission band was formed by creating a defect in a periodic coaxial cable filter
which resulted in a narrowfrequency passband within an otherwise forbidden band stop
region. Haché and Essiambiggc-2004 achieved a tunable group velocity from subluminal to

superluminal in a completely passive system by connecting a pair of diodes to a coaxial crystal
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Figure 2.14: (Extracted from Hac-2004). Simulations (lines) and experimental (circles) resoftthe
following quantities of a coaxial photonic crystal: (a) the transmission and the effective refractive index
(dashed curve) extracted from= ¢/wd¢;(w) and (b) group velocity.

(see Fig.2.14. The diodes exhibit a nonlinear response depending on gmalsirequency

and amplitude and thus create the nonlinearity in the system. As a consequence, the resulting
amplitude-dependent phase shift enables to control the dispersion and the propagation velocity

at the stop band frequency in much the same way as the dispersion control in material SFL

systems by manipulation of gain or absorption lines through EIT or CPO techniques.

Controversial issues like the superluminal tunnelling of optical pulses through photonic band
gaps Bpi-1994 have also been addressed by using their analogs in the naesovange
[Nim-2002 Nim-2003. In general, these PBG structures operative at frequemadselow

the optical range provide an easy experimental way to probe theories and phenomena of their
optical analogs. In the microwave range, SFL effects were reported too, for the first time to our
knowledge, by Tirapet al. [Tir-1999 who provided experimental evidence of tunable group

velocity in a photonic bandgap microstrip structure.

Recent advancements on structural SFL for applications in the optical region consider nonlinear
effects in photonic-crystal waveguides, leading to enhancement of slow kgm{2009

in green-light emission through slow-light enhanced third harmonic generation2009.
Another major achievement is based on coupled resonators to expand the bandwidth and
to get tunable pulse bufferindKhu-2009 or the engineering of losses caused by technical

imperfections to enhance slow light effedeap-2010.
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2.3.3 Conversion-Dispersion

A simple method for controlling the velocity of light is to make use of transmission through

a medium with a large dispersion in the group velocBh@-200h Conversion-dispersion

(C/D) refers to a novel technique that generates tunable delay without relying on absorption
or gain resonances nor in engineered PBG systems. It consists of three stages: wavelength
conversion, dispersive delay and wavelength reconversion (seeZ-ld). By varying the

carrier frequency of the signal, the time delay can thereby be controlled directly. In practice,
the incident signal pulses are converted to another carrier frequency via a wavelength conversion
device, propagate through a length of hightispersive waveguide (with large group velocity
dispersion), and the delayed pulses are converted back to the original wavelength via a second
wavelength conversion device. Tunable group delay of the pulses are then obtained because of
the frequency dependence of the group velocity in the dispersive waveguide. Although C/D is
not really a true SFL technique, it is often included in discussions of SFL because it is related
to slow light by its reliance on highly dispersive materials and because it is useful under many

of the same conditions for which SFL is usefBldy-2009.

This technique was first demonstrated in an optical fiber by Sharping &e-200% Tunable

pulse delays that operate in the 1/ telecommunication window and that can be varied

by as much as 800 ps were demonstrated by varying the pump wavelength of the fiber-based
parametric amplifier, yielding a relative delay of 80 pulsadths. Okawachet al. recently
simplified the fiber-based wavelengthconversion-and-dispersion technique and delayed 3.1

ps pulses up to 4 ps, corresponding to a fractional deldy/of= 1200 [Oka-200T.

Compared with resonanedased and structurabased SFL techniques, the conversion-
dispersion method has several advantages: a highly controllable span of tunable delays from
ps to ns and large fractional delay (which by the other techniques hardly reB¢hes 0.5),

it can support broad bandwidths suitable for data rates exceeding 10 @G{As2D0T, and

the delayed pulses can have identical wavelength and bandwidth. Still, the reconfiguration

rate is limited by the tuning speed of the filters or of the pump laser frequencies. Also, care
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Figure 2.15: (Extracted from Qka-2007). Conversion-Dispersion scheme. It shows the original pulse
(dashed) and the delayed pulse (solid). The top and bottom set of plots show the pulse position and
spectrum, respectively, at various stages. The pulse is spectrally broadened and filtered in the first stage,
sent into a dispersive medium to generate the delay in the second stage, and again broadened and filtered
to return to the original wavelength in the third stage.

must be used in choosing the dispersive element and wavelength conversion range to minimize

dispersive pulse broadening and maximize slow light detdyuf2009.

2.3.4 Electronic circuits

Experimental evidence of superluminal and negative group delays in electronic circuits has been
reported. The reason why these effects are encountered in some electronic circuits relies on the
fact that the magnitudephase relation of an electronic circuits transfer-function is analogous

to the Kramers-Kronig relation which links the real part to the imaginary part of the dielectric
constant of a physical (i.e. causal) medium (or, equivalently, that links the refractive index
to the absorption index of a medium). In an electronic circuit the real and imaginary part of
its transfer function (i.e. the transfer function’s magnitude and phase) are also related via the

Hilbert transform on the basis of causaliw/it-2010.

Mitchell and Chiaolit-1997, Mit-1998] were the first to implement a bandpass amplifier with
avery low passband (51 Hz), shown in FRy16a), to study the superluminal effect. The circuit
basically emulates an optical gain medium which shows anomalous dispersion in off-resonant
region (see its transfer function in Fi@.16b)). Kitanoet al. [Kit-2003] presented a simple

electronic circuit which provides negative group delays for balited baseband pulses and
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Figure 2.16: (Extracted from Mit-1997, Mit-1998]). (a) A simple bandpass amplifier consists of an
operational amplifier in a neninverting feedback configuration with a resonant element (LRC circuit)

in the feedback loop. (b) Transfer function amplitude (diamonds) and phase (squares) for the amplifier
proposed by Mitchell and Chiao.

demonstrated that large time advancement comparable to the pulse width can be achieved
with appropriate cascading of negativéelay circuits. Cacet al. [Cao-2004 implemented

a dual-band electronic amplifier and extended the systenMit-1997, Mit-1998] by using

two LC resonators to study the pulse advance and pulse compression of light propagation
through a transparent, anomalous dispersive medium. At the middle of two gain peaks the
frequency dependence of the amplitude response is compensated and the pulse distortion can
be minimized. This leads to linear anomalous dispersion between these two gain lines, and thus

results in a negative group delay.

Operating in low frequency ranges, as electronic and microwave range, offers some advantages
over higher frequency ranges. For example, Gaussian pulses can be generated easily and
a resulting pulse advance of the order of milliseconds can be unmistakably displayed on a
standard oscilloscope. The transmission and reflection phase function can be measured with a
vector network analyzer. Such a simple measurement of this key function that determines the

pulse propagation regime cannot be directly performed in the optical range.

Moreover, by applying filter theory Withayachumnankul and Abbaiit{2010 have modelled
an anomalous dispersive medium and systematically describe the superluminal propagation

of a Gaussian pulse through the system. Since the condition for superluminal propagation is
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modeled in the basis of filter theory, it is applicable to afiég 0 media. Similarly, Nakanisét
al. [Nak-2002 provide an enlightening analysis for the tunnelling of ggl&ind its agreement

with relativistic causality using filter theory in a simple electronic circuit.
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Chapter 3

SFL in multiple-beam interferometers

In this chapter slow and fast light (SFL) generation in linear and passive multiple-beam
interferometers is studied. First, we show their characteristic transmission pattern. We discuss
the abnormal values (subluminal, superluminal and negative) that the group velocity can reach
in these structures over narrow frequency intervals within the interferometer’s transmission
minima. A model that fully describes SFL effects in linear and passive Mach-Zehnder
and three-beam interferometers is developed in the second and third section, respectively,
and an analytical approximate expression for the group delay at the minima is derived and
relevant figures of merit which are intrinsic to the system are determined. The propagation
of sinusoidally modulated pulses through these systems is described. As a proof of model,
simulations in the optical range and experimental results in the radiofrequency range are
performed by using coaxial cables and 1xN radiofrequency wave splitters. We demonstrate
that slow light can arise if the length difference between every pair of adjacent branches of
the interferometer is not a constant. The simplest interferometer where this condition on the
arms length holds is a three-beam interferometer. A brief extension of the results to four-beam
interferometers is presented in the fourth section. Finally, the conclusions of the chapter are

given in the fifth section.

53
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3.1 Interference pattern of multiple-beam interferometers

Previous studies of the transmission pattern of multiple-beam interferomBlavsJ00§ seem

to indicate the possibility that these systems present frequency regions with abnormal group
velocity associated to the sharp features of their transmission spectrum. In this section we focus
on multiple-beam interferometers with the same phase shift between every pair of adjacent
branches. The origin of this constant phase shift is a constant optical length difference between

adjacent arms, due to either physical length differedcegr refractive index difference),,.

The multi-beam interferometer considered is depicted in fi@ut€éa) An input beam enters

a (1 x N) splitter that divides it into N plane waves, they travel through separate paths with
different optical lengths, and finally they reach(&yx 1) coupler that combines them producing

an interference. One can modify the optical path of #hebranch,(¢; = n;L;), by altering
either its refractive indexy;, or its physical lengthL;. For an ideal interferometer of this kind,

we assume that the optical length difference between adjacent branciges, constant, i.e.,

l; = Ly—1y + 0, fori = 2to N. In order to have a clear idea of the origin of SFL effects

in such interferometers, in this work we focus on the optical path difference due to either a
physical length difference) , alone or arefractive index differencg,,, alone, always avoiding

the mixing of both for simplicity. In the former case, we will refer to themaagmmetric

interferometers.

00r 0.5m 1.0m 157 2.0m
[ (rad)

Figure 3.1: (a) Schematic of a multi-beam interferometer consisting(@f:a V) splitter and ar{/vV x 1)

coupler connected by branches of different optical length. (b) Typical transmission spectrum of a 4-beam
interferometer with (dashed line) and without (solid line) attenuatiois, the attenuation coefficient of

the medium in the branches.
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Constant optical length difference leads to a characteristerference pattern with sharp
spectral features (see figusel(b). From this pattern, and recalling the origin of SFL effects
discussed previously (see Chapg&rSection2.3), we can expect anomalous regimes around

the transmission minima. Such regimes are not expected around the maxima because they
are too wide. As it is shown in Fig3.1(b) the interference pattern reduces its contrast (the
spectral features are less sharp) if the attenuation is considerable. Therefore, SFL effects are

not expected to be sustained for large enough attenuation.

Assuming that the divider splits the input signal’s amplitude Mtequal partg|t|/N), we can
express the output complex amplitude resulting from the interferendesofusoidal beams as

follows:

N
r to E jhi
t = N — 6‘7 (31)

whereg; is the phase of the wave after propagating through brarthis phase depends on the
frequencyw, the optical and physical lengths of the branch, and the attenuation coefficient of
the mediumg, which, for simplicity, is assumed to be uniform and the same for all arms

The following expression contains this dependency:

~ w&

i

+jaL; (3.2)

C

By writing the phase in the,, branch in terms of that in the first arm and the optical length

difference () and physical length differencé\j] between adjacent branches,

b = %[51 4 (= 1)) + jalLy + (i — DA] (3.3)

and using Eq.3.3) into (3.1) the latter can be written as:

N—-1

10 e s
t:N063¢126]m(76+104A) (3.4)

m=0
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Finally, solving the summation in Eq. 3{), the complex amplitude resulting from the

interference of N sinusoidal waves is obtained:

1 — efNaA . ejNW(S/c

Lt
— Y oin X
t Ne 1 — ead . gi®dfe

(3.5)

Usually, in interference experiments, the magnitude detected is péwer, |i|>. Therefore,
calculating the complex conjugate of EQ.%) and normalizing the power expression, we obtain

the total normalized power in the coupler:

|to|? “2aly 1 4 e 2NaA _ 9p—Nai cos(Np)

P =
N2 1+ e 208 — 2e=2A cos(3)

(3.6)

whereg is defined as the phase associated to the optical length differenge~.ed/..

In order to identify the most relevant aspects of the transmission pattern, now we consider the
ideal case in which there is no attenuation= 0). In this situation, the transmitted complex

amplitude of Eq. 8.5) can be written as:

i B
i = o giterev-ng) SnVg)

e ) (3.7)

and the total power reads:

P =

26in?(N2

N2 S1n2(§ ’

which is analogous to the intensity expression\ofcoherent optical oscillatordHec-2002.
Analyzing Eq. 8.8), the numerator oscillates rapidly, while the denominasiltates more
slowly. The combination of both terms results in maxima (main peaks) and minima (zero-

transmission) of the N-beam interference pattern located at the following phase pgsition
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Binaz = 2mm (3.9a)
T T (N —1)27
Bomin —2ﬂm+ﬁ,2ﬁm+ﬁ,...,2wm+T (3.9b)

where the integer numbet is the order of the principal maximum. In the intergal= 0 — 27,
zero-transmission appears@at= 27/n,47/n, ..., (N =127 [y Therefore, between two adjacent
absolute maxima there ané — 2 smaller local peaks anl — 1 minima. Table3.1summarizes
the phase positions of the minima located between the zero and the first-order (), 1)
principal peaks in interferometers witi=2, 3, 4 branches. The frequency positions of these
maxima and minima are deduced from the relationship between the gleaskthe frequency

parametef 3 = «/.), leading to:

Omay B 27Tm5 (3.10a)
B LY 2\ 27c (N —=1)\ 27c

Let us remark that these positions are obtained for a lossless sistend) but they also hold

for lossy MZI and also for lossy multiple-beam interferometers in whichdue to refractive
index difference),, alone. Allin all, as we shall see, itis a good approach to consider Bg. (

as the phase position for the maxima and minima for lossy interferometers too. In particular, if
the optical path difference is only due to a refractive index differefgg,by usingA = 0 in

Eq. 3.6), the following expression for the output power is obtained:

p_ 6P oy 2= 2c05(NB)

- N? 2 — cos(f) (3.11)
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It follows that since the branches are of the same length ttleuation plays no role whatsoever

in the value of the power detected at the minima. The role of the attenuation coefficient is only
relevant if there is a physical length difference between arms. Namely, using Jadad
evaluating Eqg. 8.11) at the minima leads t@,,;,, = 0 no matter the value of the attenuation

coefficient. As it will be discussed later, no SFL effects arise in this situation.

Following [Shi-2007 one can define the degree of visibility (or contrast) of theeliference

pattern as:

Pmam - Pmm

I/ e
Pmax + szn

(3.12)

whereP = |t|? is the detected power and the subindex indicates maximum or minimum power.
Considering Eq. 3.6), the power at5,,.., andg,,;, is evaluated for an interferometer with

general number of branches N:

1+ €—2No¢A N 2€—NaA

1 4= 672aA — 2€7aA

P (3.13a)

1+ e 2Noh _ 2e=Nal ¢os( N Bin)
1+ e208 — 2e=22 cos(Bmin)

Prin O (3.13b)

A common factor inP,,., and P,;, was neglected in the previous equation. Since
cos(N Bpin) = 1 for all N, but cos(8,,:») changes withV, no general expression can be
obtained for the degree of visibility of an N-branch interferoméief_,...,), and different

expressions will be derived for the interferometers studied in this work.

Using the values of Tabl&.1, the power at the minima for the two main interferometersistiid

in this work can be evaluated:

1 —4daA 9 —2aA
U ) (3.147)
P 1+e222 4 2e@
mn 1+ efGaA _ 2673CMA

~ 1 + 6—204A + e—aA N = 3’ (314b)

and their degree of visibility be obtained.
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Number of branches o P2 Bs
N =2 s - -
N =3 27 /3 4 /3 -
N=4 [ T 37 /2

Table 3.1: Phase positions of the minim@,,,;,,) located between the zero and first-order principal peaks
in interferometers withV = 2, 3 and4 branches. Note the different number of minima in each case.

By using Eq. 8.1339 and Eqg. 8.143 into Eq. 3.12), the fringe visibility of the Mach-Zehnder
interferometer § = 2, MZI) is found to depend solely on the attenuation along the length

difference between branchesA):

1

Vnmzr = 7cosh(ozA) (3.15)

Thereforey),; = 1 for a lossless MZ[« = 0) whereas/,,z; < 1 for a lossy interferometer

(v # 0), thus corroborating the well-known fact that the larger the losses are, the lower the
fringe visibility is. Since SFL effects require sharp spectral features, a visibility of at least
v = 0.65 is required §hi-2007, and this implies that the amplitude ratio of the combining
waves at the end of the MZ4,%2, should be less thatye, that is,aA < 1.

el 2¢1

s 2 o =06 (3.16)

Van<1 =

Similarly, the degree of visibility of the three-bedlv = 3) interferometer is obtained:

3
Va-beam = 4 cosh(aA) —1

(3.17)

where ifaA < 1 the contrast is at least_;.,,, = 0.58.
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ozA Vmzr V3_beam

- =-=a4=0.15
0.01 0.99995 0.99993 1 ad= 0.01
0.1 0.995 0.993 = o1
0.5 0.887 0.854

0.01 T
0.75 0.772 0.718 00r 057 10rn 157% 2.0mn
B (rad)

0.99 0.653 0.585

Table 3.2: Fringe visibility for various values oftA for MZI and three-beam interferometers. Blurring
of the transmission spectrum of a three-beam interferometeascrease.

It can be checked that for the same valuea@t, the contrast of the interference pattern
decreases as the number of branches in the system increases. As an example, the fringe visibility
for various values ofrA is given in Table3.2 for the two systems, and the blurring of the

interference pattern for large enough is illustrated.

We conclude that for small enough), the degree of visibility is good enough to preserve the
characteristic sharp features of the interference pattern around the minima. Therefore/small

(A < 0.5) will be assumed in order to study analytically the arising of SFL in these systems.

Of course, interferometers where the optical path difference is only due to a refractive index
differenceA,, (i.e. A = 0in Eg. 3.15 and B.17) have a perfect fringe contragt= 1, since

the attenuation plays no role.

In the next sections multiple-beam interferometers with constant length difference between
every pair of adjacent brancheA (# 0) will be considered. Nevertheless if this is not the
case, i.e., if this length difference is not the same, there are other mechanisms, different than
attenuation, which can give rise to SFL effects. The simplest interferometer where this may

occur is the one with three branches, which is analyzed in se8i8n
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3.2 Fastlightin Mach-Zehnder interferometers

In this section, we consider the simplest multiple-beam interferometer (least number of arms,
N = 2). Superluminal and negative group delay will be demonstrated in weakly absorbing
asymmetric Mach-Zehnder interferometers (MZI), where the difference in the optical path is
due to the different length of the branches. It will be shown that anomalous dispersion in a
narrow frequency region around the interferometer’s transmission minima is strong enough to
hold fast light without the need of microstructuring, doping or using non-linear media in the
interferometer’s arms. It will be demonstrated that a difference in the refraction index of the
branches alone cannot possibly induce these effects i.e. fast light is not sustained in a MZI of

equal branch lengths.

Figure 3.2 illustrates the concept of a lossless asymmetric Mach-Zethimterferometer and
shows its typical transmission spectrum. For each wave component, the length of the branches
are defined asi.; = L — A/2 andL, = L + A/2, where the length differende\) between

the arms yield a phase shift) (see Fig.3.2(a). As a result, the interference spectrum shows

one minimum between every pair of adjacent peaks. As it was discussed in skdt{sae Eq.

(3.9) and it is depicted in figur8.2(b), for the lossless MZI the maxima lie at even multiples

of 7 and the minima lie at odd multiples of

An analytical expression of the transmission spectrum (magnitude and phase) and group delay

of the MZI as a function of frequency, attenuation and system’s size is developed.

4 1

Arm length-> phase shift
(L+8/) - (o+ /3’/2)

Orn 1n 21 3n 4r

B (rad) (b)

Figure 3.2: (a) Schematic of a lossless asymmetric Mach-Zehnder interferometer and (b) its typical
transmission spectrum.
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3.2.1 Analytical model

We consider a plane wave, with unit amplitude, impinging on a Mach-Zehnder interferometer
of different branch length. A x 2 splitter divides the wave in two equal components that travel
along each arm and are recombined ®/>a 1 coupler. The transmitted complex amplitude at

the end of the interferometer is:

{ =

DO | —

2
> e (3.18)
=1

The complex phase along tlif#é branch which was defined in E.p) is written as:

bi = 2L+ jal, (3.19)

v

wherew is the frequencyy is the phase velocity in the medium, angis the length of the
specific branch. For simplicityhe refractive index and the attenuation coefficient §) of

the medium in the branches, are assumed to be constant over the whole frequency range.

The effective length of the MZI is the average length of the branches since the field amplitude

in both arms is the same, thus:

_Li+Ly (L—2)2+L+2R)

L =
eff 9 2

~ I (3.20)

whereA is the length difference between them.

The magnitude and phase of the transmission coefficient can be expressed as:
t| = e *“V/ Re2 + Im? (3.21a)

_BL Im
O = N + arctan (E) (3.21b)
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where 3 is the phase associated to the physical length difference between bran¢hes,
g = w2/, and parameters Re and Im are related to the real and imaginary parts of the

transmission coefficient and are given by:
Re = cosh(aA/2)cos(5/2) (3.22a)

Im = —sinh(aA/2)sin(5/2) (3.22b)
Let us note that the —dependency of the above quantities is containeél in

The propagation of an electromagnetic pulse through the interferometer is described in terms
of the group delay, which is the time taken by the pulse envelope to propagate through the
system Bri-1960. Following the usually adopted phase-time approdik2003, Nim-2003,

the group delay is obtained from the frequency derivative of the transmission coefficient phase:

_ ¢y

o =
I dw

L Re%™ —Im%“
. € ow M Bw (323)
v Re?2 + Im?
After some algebraic calculations and recalling that the phase veloatyd the attenuation

coefficienta are considered to be constant, we obtain:

Re = % = —% sin(3/2) cosh(aA/2) (3.24a)
Im' = 88[—wm — —% cos(3/2) sinh(aA/2) (3.24b)
And also,
Re* + Im? = cos*(8/2) + sinh*(aA/2) (3.25a)
Im' - Re = —%% cos2(3/2) sinh(aA /2) cosh(a /2) (3.25b)
Re' - Im = 12 sin(3/2) sinh(aA/2) cosh(aA/2) (3.25¢)

2 v
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Therefore, using Egs.3(25 into Eq. (.23, the exact expression of the group delay through

the MZI with constant attenuatiam as a function of? is retrieved:

Ty _ 4 A sinh(aA/2) cosh(aA/2)
Tp 2L cos2(3/2) + sinh?(aA/2)

(3.26)

In Eq. (3.26), the group delay has been normalized to the phase delaytevgystem's effective
length,7, = L/v.

Group delay at the transmission minima

With the aim of obtaining an analytical expression for the group delay at the transmission
minima, the position of the minima must be first derived. For lossless interferometers the
intensity at the minima is exactly zero. Therefore, requiritig= 0 in Eq. (3.219 with

a = 0 leads to conditionRe? + Im? = cos*(3/2) = 0 which is accomplished for phase
values = (2m + 1)m, wherem is the order of the principal maximum below the minimum.

As it should be expected, it agrees with the general result inE§).it N = 2.

If alossy MZl is considere¢n # 0), the transmission at the minima is not exactly zgtp+ 0)
and their phase position must be obtained from the necessary condlitjgfs = 0. When
this is satisfied, the more easier to calculate condifigt/03 = 0 = 2|t[(d|t|/03) is also
accomplished. Considering Eqs3.219 and @.22, it readsd|t|?/0p = 2e>*"sin(f) and
holds for phase value$ = (2m + 1)7 or 5 = 2mm with m = 0,1,2,... The former values

correspond to the minima and the latter to the maxima of the transmission fuft¢tion

Therefore, the remarkable result is obtained where the position of the minima in a MZI does

not change with attenuation at all, as far as constastassumed.

Considerings = (2m + 1)7 in Eqg. (3.26) an exact expression of the group delay at the minima

is obtained:
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A alA
Ty =Tp [1 ~ 57 coth (7)] , (3.27)
In the following analysis small values afA will be considered. As it was discussed
in section3.1, «A < 1 corresponds to a high contrast of the interference pattern and,
consequently, to a situation where SFL effects can be expected. For small endugie
have (A/2) coth(aA/2) ~ 1/a which substituted into Eq. 3(27) leads to an approximate

expression for the group delay at the minima:

1 1
T, AT, (1 - —) =7, - —. (3.28)

Interestingly, if we now apply the relationship between the attenuation coefficient and the
imaginary part of the complex refractive index;, (« = n;w/c) into Eq. @.28, the group

delay atw,,,;,, can also be approximated as:

(3.29)

The above expression brings an interesting point into attention. It sets a scaling law for the group
delay; since it indicates that the produgt;,, x (7, —7,) does not depend on the interferometer’s
operative frequency range, but only on the ratio between the real and imaginary parts of the

complex refractive index of the medium in the branches).

Following the discussion, we now focus on a system with a given refractive index and take Eq.

(3.28 to analyze the possible propagation regimes at the minima.

a. Lossless MZI(a = 0)

In this case, Eq.3.27) leads tor, /7, = 1, in other words, the group delay at the minima is equal
to the phase delay. This is expected in a linear and lossless system, where the phase relation

between the pulse components is not changed. Thus, the pulse peak travels at the phase speed
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and no anomalous propagation regimes can be sustained. peini®ut that since for = 0,
Re = cos(f/2) (which is zero at the minima) antin = 0, Eq. 3.213 yields|t| = 0. As it
will become clear later, the absence of anomalous propagation regimes in the lossless MZI is

directly associated to the fact of having exactly null transmission at the minima.

b. Lossy MZI (a > 0)

Here we provide theoretical argumentation to show that tunnelling and superluminal regimes
can arise at the minima by properly choosing the interferometer effective length for a given

attenuation coefficient.

Eq. @.28 justifies the impossibility of getting slow light-{ cannot be larger than,) in a

lossy MZI, sincex is positive by definition. Only in the case of an active M4l < 0) could
subluminal regime be sustained. Namely, in the hypothetical case of constant,gajmyould

always be larger than 1 and, consequently, the only possible pulse propagation regime at the
minima would be subluminal. This is, however, an unphysical situation since no real medium
displays gain over the whole frequency range. Practical situations, like considering a MZI with

a medium in one of the branches that exhibits a narrow gain resonance, are discussed in the

literature Bhi-2007. Since this work focuses on passive systems, this analysigtiregarded.

The interferometer will sustain tunnelling at the minifig < 0) if the effective length is
chosen so that:
al <1 (3.30)

The above condition holds for most of the interferometers one might envisage. Therefore,
tunnelling is the expected propagation regime for a narrowband pulse with carrier frequency
tuned at a transmission minimum. Nevertheless, superluminal regime wil(@rise, < L/c)

if the interferometer’s effective length satisfies the following condition:

1< al <

(3.31)

n—1
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Condition al <1 I <al <25 ol > -t

a>0 Tunnelling Superluminal Normal

Table 3.3: Possible propagation regimes of a lossy MZI.

1

. i e il ]
= i A=L/10 -
- L s n="3.48

-------- ahr=0.015

(b))
3n/2 2n

N
|
|

S
a
d_
\9)
a

p

Figure 3.3: (a) Coefficient magnitude and (b) group delay in units of the phase delay through a Si-based
Mach-Zehnder interferometer with length difference between akms L /10, and refractive index
n = 3.48, for two values of the attenuation coefficient

wheren is the real part of the medium’s refractive index. Note that E@30 and @.31)
do not depend on\, which only determines the frequency position of the minima, namely
wmin = (2m + 1)wv/A, beingm and integer. Tabl8.3 summarizes the possible propagation

regimes at the minima as a functioncf..

The above analysis shows that the mechanism responsible for anomalous group velocity in a
lossy MZI is the total attenuation of the systemd,, which can be modified by either changing
the attenuation coefficient and/or the interferometer’s effective length This is illustrated

by performing numerical simulations on a Si-based MZI with refractive index3.48. Figure
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1 -O \ \
tunneling \superlum
0.5 (z,<0) § v,>0)
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Figure 3.4: Pulse propagation regimes at the transmission minima of a Si-Based MZbwith 0.015
as a function of the total system’s attenuatieh. Group delay plotted from Eq3(27) (solid line) and
phase delay through vacuum (dashed line). The delays are given in units of the phase delay over the

system’s effective lengthy, = L/u.

3.3 shows, for two attenuation values ad= 1 /10, the transmission coefficient magnitude

calculated using Eq3(2139 and the exact expression of the group delay as a functigrgsfen

in Eq. 3.26. In agreement with our previous discussion, no anomalooggwation regimes

occur in the lossless interferometer, while if losses with = 0.015 are considered, tunnelling

appears around each minimum with negative group delays of altost

Figure3.4 shows how the system’s total attenuation determines the putgpagation regime.

The group delay at the minima (hormalized to the phase delay) is plotted as a functibriayf

a Si-based MZI witlwA = 0.015. Together with Eq.3.27), the straight lind /n corresponding

to the propagation through vacuum is represented. In agreement witt8EB4), the system

exhibits tunnelling for small enough attenuatignl, < 1). For values ofvL ranging between

1 and 1.4, superluminal propagation is sustained, in agreement with expre&s8i)nwhereas

the system presents normal dispersion for too high attenuatidn;> 1.4). To conclude, Figs.

3.3and3.4clearly show that fast light is achieved in a MZI for small egbuotal attenuation,

while it disappears if it is either too higlaeZ > n/(n — 1)) or zero.
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3.2.2 Analysis considering the optical path difference

One can generalize the situation and consider a MZI where both the length and/or the refraction
index of the branches are different. The optical path intharm is¢; = n, L; where, as before,

the attenuation coefficient, is considered to be constant and equal in every arm and the branch
lengths are defined d5 = L. — A/2andL; = L + A/2 but where now the refractive index in

each branchis; =n — A, /2andn, =n+ A, /2.

The effective optical paths = (¢1 + ¢3)/2, can be written in terms of the effective refractive
indexn = (ny + n2)/2, the effective physical lengthes = (L1 + L2)/2 = L and the refractive

index difference),, as:

A,
e =nL + A (3.32)

An optical path difference occurs if the branches differ in length £ 0) and/or if their
refractive index is different4, # 0). For the sake of simplicity, the situation where both

causes are concomitant will not be regarded. One thus distinguishes two cases:

(8) A-induced fringe pattern,, = 0, A # 0): the interference pattern is due to the
difference in the length of the branches. It is the situation previously analyzed and

corresponds to an asymmetrical MZI (also called unbalanced Neol}-1999.

(b) A,-induced fringe patternX,, # 0, A = 0): the branches are of the same length L
and the interference pattern arises because of the different refractive index in each branch

ny # ny. This is usually called symmetrical MZPpr-1999.

It is straightforward to find that in case (a), the effective optical path is the effective physical
path Les = (L1 + Lo)/2 = L multiplied by the (common) refractive index, while in case (b),

less 1S the effective refractive index times the (common) branch length. In both dagesn L.

Let us now analyze whether SFL effects arise in case (b), in other words, whether there can

be A,-induced SFL in a symmetrical MZI. This situation is worth being studied because for
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practical purposes, one might consider the possibility diging the optical path difference
in the MZI not by means of a physical length differente but through a difference in the
refraction index of the branches,. We could then envisage a MZI with equal branch lengths
and fabricated using an electro-optic material such as Lithium Niobate, W)gretuned upon
the application of voltagedin-2013. As we shall now demonstrate, though, SFL effects cannot

occur in such a device.

The analysis goes along similar lines as that of the previous section. Sincénew., = L

the phase of the wave upon propagation throughthleranch (see Eq3(2) reads:

& = %niL +jal (3.33)

The complex transmission coefficient in E§.18 can then be written as:

t=e b (efeml 4 eiemal) = =l ek cog (wAnL o) (3.34)

The magnitude and phase of the transmission coefficient is thus given by:

It = e *FV/Re2 + Im? = e~ cos (8/2) (3.353)
w
di(w) = =nL (3.35b)

C

wheref is the phase associated to the optical length differ¢nce «AnL/c).

The group delay of a pulse centered at frequencythen:

_90_nb_la_ (3.36)

T, =
I Jw c c

Two important consequences can be extracted from the above expressions. therst,
transmission is exactly zero at the minima(occurring at5 = (2m + 1)x) whatever the

attenuation value is This is easy to understand. Because the branches have the same length
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and attenuation coefficient, the plane waves travellinggéach branch reach the end with the
same amplitude. In addition, the refractive index difference between branthesjakes the
phase shif{ 3) between each plane wave an odd multiplerdbr certain frequencies. As a

result, the interference of such plane waves is completely destructive.

Second,the group delay corresponds to normal pulse propagation, i.e. there are no
A,-induced SFL effects in a MZI with equal branch lengths The group delay obtained
is that of a pulse travelling at the average phase velogity- ¢/n along a distance L,
or, equivalently, it corresponds to the average phase delay of the propagation along the two

branchesgr + m)/2 = (Lny + Lny)/2 = nL/ec.

In other words, the reason for the absence of SFL effects in symmetric MZIs is that the
transmission is exactly zero at the minima, independently of the attenuation. No degree of
freedom is left to yield anomalous propagation regimes. This situation resembles that of the
lossless asymmetriZI discussed in section 3.2a1 which displays zero transmission at the
minima and the group delay was equal to the phase delay. In contrast, fosiyeasymmetric
system discussed in section 312,%he attenuation provides the degree of freedom necessary
to yield fast light, and (for equal attenuation coefficient in every arm) this only can occur if the

branches differ in length.

3.2.3 Transmission coefficient and group delay around the transmission
minima

In the previous section the requirement of a physical length difference between the branches
of the MZI in order to get fast light effects was assessed. Therefore, only this case will be

considered onwards.

The scope of this section is to derive approximate analytical expressions of the magnitude and
phase of the transmission coefficigff{w)| and¢,(w)) and of the group delay, (w), valid for
frequencies close to a transmission minimum. The expressions obtained will be used in the next

section to analyze the propagation of sinusoidally modulated pulses through asymmetric MZIs.
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The complex transmission coefficient in E@.41) is considered. The terrfi/2 that appears
as argument of the trigopnometric functions involved (see E§22) is now written in terms
of B.in- Recalling the phase values for the minima,,, = (2m + 1), and after applying the
trigonometric relations for complimentary angles, the following equations are obtained, where

m is the order of the minimum:

sin(3/2) = sin <5 _25””” + 5’;”) = (—1)" cos (%) (3.37a)

cos(8/2) = cos (ﬁ —2ﬁmm -+ Br;m) = (—1)""'sin (W) (3.37h)

The above expressions are used in E§2]) to get:

2 2
‘ﬂ = eaL\/Sin2 (76 _fmm) + sinh? (%) o eO‘L\/(L _fmm) al (%) (3.38a)

Im _ tanh(aA/2) ~ aA
Re . tan(ﬁ . 6mzn/2) K 6 o 5min

(3.38b)

where the approximation valid for small anglgés— £,,.;,) and smallA (good visibility of the
fringes) was considered. Recalling thiat= wA /v and defining a new parameter:= —awv,
leads to the following approximate equations for the magnitude and phase of the transmission

coefficient around the minima,,,;,,:

> A — Wmin ?
#(w)| ~ eC“La—\/l + (7“’ - ) (3.39a)
2 gl
1(w) = wt, + arctan (%) + g (3.39b)

with 7, = L/v being the phase delay over the system’s effective length. Note that the result of

null transmission at the minima is recovered for the lossless(ease0).
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The approximate expression for the group delay around eacimum is retrieved through an

w-derivation of the phase function in E.890h:

To(w) ~ 7, + ] (3.40)

Equation 8.40 shows that thexcessggroup delay(r, — 7,,) around the minima is a Lorentzian
function with half-width at half maximum (HWHM)~|, and excess group delay at the
transmission minima/,. Since~ is directly proportional to the attenuation coefficiént =

—av), one concludes that the larger the losses, the wider will be the group delay curve and
the smaller (in absolute value) will be the group delaygt,. Hence, the softening of the
anomalous group delay regimes in the case of notable losses is demonstrated, in agreement
with the discussion in sectioB.l Finally, let us note that the approximate expression of the

group delay atv,,,;,, (normalized tor,) given in Eq. 8.28) is recovered.

3.2.4 Propagation of sinusoidally modulated signals

The propagation of a sinusoidally modulated pulse through the MZI is now modeled. A
sinusoidally modulated wave-packet with carrier frequenngcygand modulation frequenay,,,

is considered,E;,(t) = E.sin(w.t)[1 + M, cos(w,,t)], where the modulation inde/;,

is the amplitude ratio of the modulating and carrier signal. As it is well known, together

with the carrier component, this kind of modulation generates two sidebands of amplitude
Eis = M;,E./2 and frequency., = w. + w,,, where the plus sign corresponds to the upper

sideband and the minus sign to the lower sideband.

By setting the carrier frequency at one of the transmission minima:=(w,,.;,) and considering
a carrier signal with unit amplitude, Fourier theory is applied to retrieve the output field from

the effect of the system’s complex transmission function on each spectral component, reading:

Eout(t) - |£mm| Sin(wmint - ¢mzn)+
v (3.41)

M

2| sin(wyst — ¢ps) + [Es] sin(w_st — ¢_)]
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The amplitude and phase of the central band and the side bendbtained from Eqs.3(39

and are given by:

. A
\tmin| = e —1]9] (3.42a)
2v
ltes] = w2, + 2 (3.42b)
7l
L
gbmin = Wpin— + E (342C)
v 2
L W
Dts = Pmin £ |:me + arctan <7)} (3.42d)

Using the above equations into E@.41), and after some algebraic calculations, the outgoing

pulse reads:

Eout(t) = |£mm| Sin(wmint B ¢mzn) X

o 2 (3.43)
w |1+ 00, Ym T

m 08 (Wt — wy /v — arctan (wm/y))
y

An inspection of the above expression suggests defining an output modulationidggxand

a pulse delayr,,,.) such that Eq.3.43 can be written as:

Eout(t) - |£mm| Sin(wmint - ¢mzn) [1 + Mout COS (wm(t - Tpulse))] (344)
with
Mout = Mz 1 + (wm/’Y)z (345)
and
1
Tpulse = Tp + w— arctan (‘*’m/v) (346)

m

where as pointed out earlief = L /v andy = —aw.
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Let us now discuss the implications of the above analysis. piliee delay in Eq. 3.46) is

the time that a sinusoidally modulated pulse of modulation frequencsnd carrier frequency
tuned at a minimunw,,,;,, takes in travelling through a MZI. In the limit of extremely narrow
pulse bandwidthv,, — 0, T,use — 7, + /5, thus recovering the value of the group delay at
wmin Which was discussed in secti8r2.1 In other words, this analysis shows that the narrower
the spectral pulse-width is, the more thelse delayneasured in a time-domain propagation
experiment approaches the value of greup delaygiven by Eq. 8.28 at the transmission

minima.

Figures of merit

A widely used figure of merit of SFL systems is the fractional (or relative) deBshf2008
FD, defined as the ratio between the excess pulse delay and the duration of the incident pulse,
Tin:

Tp

FD — Tpulse —

- (3.47)

This quantity is equal to the excess number of pulses that can be contained at any time within the
system with respect to the number that would be contained if the pulses travelled at the phase
velocity. It is hence a measure of how much the information storage capacity of the system is

enhanced due to SFL effects.

A common definition when dealing with optical pulses is to take the pulse durdtiphds
the FWHM of the detected pulse power. For sinusoidally modulated pulses of modulation
index M, the corresponding pulse duratiorifis= (2/w..) arccos ((1 — v/2+ M) /v/2M) and

consequently, FD reads:

. arctan (“7m> (3.48)

(1-v2+Min)
2 arccos <\/§7Mm

Note that in this case the fractional delay is a fractional advancerént,, because of the

negative sign ofy.
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Figure3.5(a)shows that /' D| increases with modulation frequency. Also, Eg.4Q predicts

|FFD| = 34% if modulation is performed with,,, = |y

, I.e. if the pulse spectral components lie
within the FWHM of the group delay function in Eq3.40. For higher modulation frequencies,

however, the pulse will undergo a certain degree of distortion, which is largey, &screases.

According to Eqg. 8.44) the outgoing pulse envelope evolvesmas; (t) oc 1 + M, cos|w,, (t —

Touise)] @nd its duration i€,,; = (2/wn) arccos ( (1 - \/§+Mout)/\/§Mout>. According to 8.45),

the modulation index of the transmitted pulse is larger than that of the input pulse and,
consequently, the duration of the output pul3g,{ will always be smaller, thus leading to

a pulse compressioh, whose value can be calculated by:

1*\/§+Mout >

arccos
( \/ﬁMout

(3.49)
arccos <71’\/‘/§]:;f")
Figure 3.5(a) shows (dashed line) the relation between pulse compressidnredulation
frequency (normalized tpy|). Comparing it to the fractional delay curve it is found that, for

not too high values af;,,,, the compression factérgoes roughly quadratic with the fractional
delay,b ~ K(FD)?. Considering\;,, = 1, the proportionality constart is 0.74 ifw,, — 0

and itis 0.71 ifw,, = |y|. This relation is illustrated in Fig3.5(b) it implies that, in order to

keep the pulse compression below 5%, the fractional delay cannot exceed 27%, and to keep it

below 10%, the fractional delay cannot exceed 38%.

In addition to pulse compression, distortion of the pulse amplitude also appears, similarly to
what is observed for fast light in systems with material resonari®eg-2007. In the case of

M, = 1 this amplitude distortion acts as a pulse breakup, giving rise to a main peak (lying
att = 7,us ) and a secondary peak (lying@t= 7,5 + 7/wy). The secondaryto—main
power amplitude ratio is given bl — M,,;)?/(1 + M,,.)?*, which increases with increasing
modulation frequency or, equivalently, with increasing fractional advancement, as shown in Fig.
3.5(b) Thus, in order to maintain the secondary peak amplitudeAb&@?o of the main peak

amplitude, the fractional delay may not exceed 45%.
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Figure 3.5: (a) Fractional advancement (solid line) and pulse compression (dashed line) versus
normalized modulation frequency, and (b) pulse compression (dashed line) and secondary to main peak
amplitude ratio (short-dashed line) as a function of the fractional advancement, for a 100% sinusoidally
modulated pulse train with carrier frequency tuned at one of the transmission minima.

Another relevant figure of merit of SFL systems is the delay-bandwidth product (DBP) (see
section2.2), defined as the product of the delay and bandwidth of the kigaresmitted through

the system. This quantity can be estimated in various units depending on which magnitude the
bandwidth is given. Choosing once again a modulation frequégpcy= |v|/27 so that the
spectral components of the signal here considered lie within the FWHM of the Lorentzian group

delay curve in Eq.3.40), the expected DBP i&,u.c — 7) X 2fim = 25%.

It is worth noticing that the above features and figures of merit are entirely applicable to MZIs
operating at any frequency range. In this context, we shall recall the simple scaling law for the
excess group delay that was previously obtained (seeE20), which is useful to transform a

device originally designed to operate at a specific frequency range into another operative range.

3.2.5 Experimental results and discussion in the RF range

The previous analytical model is checked experimentally in a linear and passive asymmetric
MZI operative in the radiofrequency (RF) range. Evidence of superluminal and negative group
delays is provided over a narrow frequency interval within the interferometer’s transmission

minima. Propagation of RF sinusoidally modulated pulses is characterized and pulse delay

measurements,,;s.) are compared to the model predictions given in seci@m




78 Chapter 3. SFL in multiple-beam interferometers

L(m) A(m) a(Np/m) alA n
[h!]

8 12 0.014 0.168 15

Table 3.4: Characteristics of the fabricated MZI operative in the RF range with branthes L — 2 /2
andL, = L+ A).

a. Interferometer design

The interferometer consists of two coaxial cables line$X30G-58C/U), of 2 and 14 m length,
respectively, connected bylax 2 RF power splitter and @ x 1 RF coupler (both PE2000,
Pasternack). Hence, after Eq3.Z0 the system’s effective length i5 = 8 andA = 12 m

is the difference between branches. Since the wave velocity in the cahles-i9.67¢ the
refractive index of the systemis= 1.5. The phase delay of the system is thjis= 40 ns. The
characterization of the attenuation coefficient in the cables as a function of frequéngyis

given in AppendixB.1. For the frequency range under study (20-100 MHz) an averalye v

a = 0.014 Np/m was obtained, which is considered as the constant loss coefficient in the model

equations when comparing it to the experimental results.

Therefore, the model parameters take the valués = 0.014 x 12 = 0.168 andy~! =
—1/av = —357.14 ns. Considering Tabld.3and the fact thatr. = 0.014 x 8 = 0.112 < 1,
tunnelling is the predicted group delay regime at the transmission minima. This regime is
expected to be clearly noticeable since the degree of visibility of the fringes calculated from Eq.

(3.19 isvyrzr ~ 99%. In Table3.4the characteristics of the coaxial MZI are summarized.

b. Results in the frequency domain

The coaxial cable MZI described above is characterized in the frequency domain by means of
a two-port vector network analyzer (Agilent model E8363B) (see AppeBdlx The Sy,

scattering parameter (the transmission coefficient) was recorded in the 20-100 MHz range
every 112.500 kHz with an average of 64 to suppress the random noise. The splitters were
characterized in order to properly compare the experimental response to the numeral simulations

and model predictions, which do not include the effect of the splitters.
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The phase obs; is the transmission phase functigp(w), which is derived versus frequency

to obtain the experimental group delay functigiw). The measured,, data contains a small
amount of noise that is amplified upon derivation of the phase data curve, leading to spurious
effects on the experimenta] curve. To avoid them, a 17-point smoothing algorithm is applied

to the measured phase curve prior to differentiating it.

To get a complete picture, the real part of the system’s effective refractive igex) and
the group velocity,(w) ) are also determined. The former is obtained from the overall phase
accumulated on transmission through the structure of effective leiagth= L. Within this
picture [Cen-1999 the interferometer behaves as a homogeneous medium vagerdion

given byneg(w).

Nei(w) = “Z(L“) (3.50)
while the latter is given by:
L L
vg(w) = ) = ? (3.51)

Together with the experimental results, numerical simulations are performed considering
the actual (frequency dependent) attenuation coefficient of the calles The system’s
transmission spectrum (magnitude and phase) is numerically calculated usin@B&saiid

(3.19. The numerical phase functiaf(w) is then used in Eqs.3(50 and @.51) to obtain

the effective refractive indexer(w) and the expected group velocity(w). Finally, the same
smoothing algorithm as that applied to the experimental phase data is applied to the simulated

phase function (prior differentiation) to calculate the group dejéy).

In Fig. 3.6, experimental and simulation results are shown. The agnegneéween simulation

and experiment is very good, thus assessing the accuracy of the procedure to substract the
effect of the splitters from the experimental data. The transmissj@n shows an oscillatory
behavior at the frequencies of the transmission minima. The slope of the transmission phase
function ¢,(w) becomes negative, and this causes the anomalous dispersion regions in the

effective refraction index curve.z(w). These regions of negative slope gg(w) lead to
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Figure 3.6: Simulation (lines) and experimental (symbols) results of the following quantizes of a MZI

operative in the RF range:(a) transmission coefficient, magnitude and phase, (b) effective refractive index

using Eq. 8.50, (c) group velocity using Eq.3(51) and (d) group delay. Simulation results consider

the frequency-dependent attenuation coefficient of the calalég). The interferometer arms are 2 and

14 m long.
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superluminal or negative group velocities, depending onstbpe’s magnitude. It should be
emphasized that such anomalous dispersiongins of structural origin; it is not due to material
dispersion of the medium in the branches (whose refractive index was in fact considered
constant) but to the features in the spectral transmission. This is also the situation in photonic
band-gap systems. Anomalous dispersion is stronger at lower frequencies because of the lower
attenuation in the cables. In the normal dispersion region, the group velocity equals the phase

velocity in the cable$0.67¢).

Accordingly to the steep negative slope of(w) in a narrow region around the minima,
tunnelling and superluminal regimes can arise at these frequencies. In agreement with the
model predictions forv L < 1, the results in Fig3.6 corroborate that tunnelling is the expected
pulse propagation regime at the minima, leading to negative group delay values of about -200
ns. Panels (c) and (d) in the figure show that for a pulse with center frequency very close to the
minima, very small group delays, ~ 10 ns) corresponding to superluminal group velocities

larger thandc are expected.

Once the results in the frequency domain have been described, we compare the experimental
results with our theoretical model. As Fig3.7(a) shows, the constant loss coefficient

a = 0.014Np/m considered in the model fits very well the experimentaland ¢, curves

in the displayed frequency range, which is centered at the transmission minimum where pulse
propagation experiments will be later performed. The experimental transmission minimum lies

at 58.3625 MHz i.e. 62.5 KHz above the theoreti¢al,,. The agreement was found to be

also good in a broader spectral range £ 100 MHz), with the only effect of a lowering of the
measured transmission peaks for larger frequencies because of the frequency-dependence of the

actual coefficient loss.

As shown in Fig.3.7(b) the experimental group delay function is reasonably welbaated

for by the theoretical model. The experimental and theoretical group delay at the minimum
ex _ heo _ i

takes the values;“(f,..,) = —292.81 ns andfgt (fmin) = —316.46 ns. The error in the

experimental value is estimated to B0 ns considering the data experimental dispersion

and the frequency discretization. Let us note that the frequency derivation of the phase data

amplifies the small amount of noise that is contained in the meastiegarameter; this
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Figure 3.7: Experimental and model results of a RF MZI with the indicated parameters. (a) Magnitude
and phase of the transmission coefficient, and (b) group delay around the transmission minimum at 58.3
MHz.

is why the experimentat{*?curve exhibits significant dispersion. The theoretical prediction
of —316.46 ns lies within the experimental range ﬁjmp(fmm) = —292.81 £30ns. Itis
worthwhile mentioning that the Lorentzian approximation of E3j40Q with model parameter

~v~1 = —357.14 ns almost perfectly fits the experimental functigfi ().

Comparison with a coaxial photonic crystal of the same effective length shows that the MZI
achieves three times larger superluminal velocities and presents regions of negative group delay

which are not expected in one-dimensional photonic crysiuds2009.

c. Results in the time domain

The experimental setup is similar to the one proposed by Munday and Robevtsns2D03

and it is accurately described in Appendix3.1 The 500 kHz sinusoidal output of generator-

1 is used to amplitude modulate the sinusoidal signal of generator-2. This produces a train
of sinusoidally modulated wave packets with carrier frequengigsin the megahertz range
and2..s width that traverse the MZI and is recorded at the oscilloscope (Agilent DSO-6032A).
The choice of the modulating frequency was a compromise between narrow-enough bandwidth
to avoid pulse distortion, and large-enough bandwidth to get appreciable pulse delays in

comparison to the pulse duration. This modulation frequency is onky b9 kHz larger than
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Figure 3.8: Wave-packet traces at the three different propagation regimes, with carrier frequencies (a) 50
MHz (normal), (b) 56.5 MHz (superluminal), and (c) 58.3 MHz (tunnelling). Each trace is normalized
to its maximum amplitude.

|v|/27. Consequently, the side spectral components of the pulse lie only slightly beyond the

FWHM of the Lorentzian group delay curve.

Figure3.8 shows three wave-packet traces obtained at different c&eguencies’.. The size

of the transmitted signal (10 V in amplitude) decreases sharply as the frequency approaches
the transmission minima. Accordingly, the amplitudes have been rescaled to make the analysis
easier to discuss. Since the signals were largely attenuated, a direct observation of the pulse
peak on the oscilloscope was not accurate enough to measure the pulse delay. Hence, the pulse
peak position was obtained from a numerical analysis of the data by finding the best fit to the

pulse envelope.

The arrows in Fig.3.8 indicate the time spent by the pulse center in propagatirgugir the
interferometer and it is explained in Appendix3.1 Ther,,. values agree reasonably well

with those found in the frequency-domain characterization. &i§a) shows the wave packet
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at a carrier frequency of. = 50 MHz corresponding to the normal dispersion region in Fig.

3.6. This signal is delayed by 40 ns as expected from the grougwglof 0.67¢. This is also

the time delay measured for this wave packet after propagating along a single coaxial cable
of 8 m length, thus proving that the interferometer’s effective lengik indeed the average
length of the two interferometer arms. F§8(b) shows the wave packet at a carrier frequency

of f. = 56.5 MHz corresponding to the superluminal region in F&g6. The amplitude of the

signal was reduced to 4 V. The propagation time is reducdd 66 ns denoting a superluminal
group velocity of1.9¢ + 0.8¢, close to the expected group velocitylofc. Fig. 3.8(c) shows

the wave packet at a carrier frequencyfof= 58.3 MHz and is advanced to negative values of
Touse- 1he amplitude of the signal was reduced to 1 V. Its center exits the28Z40 ns before

the center of the input pulse has entered the structure, i.e., it tunnels through the interferometer
with a negative group velocity 6£0.11¢+0.02¢, which is in good agreement with the expected
group velocity (0.09¢). This counterintuitive effect is a direct result of the interference of the
different frequency components and is not in conflict with relativistic causéioj-2000. By
considering the pulse duratidh, as the period of the modulating signal.6), the fractional
advancement achieved is 0.12, the same value as the one reported with an erbium-doped optical
fiber [Sch-2006. The fractional delay FD obtained by takifg, as the FWHM of the pulse

power is indicated in the figure.

Let us now interpret this interesting tunnelling results in the framework of the model developed
in section3.2.4 For that purpose the pulg®mwer traces are required. They are obtained

by squaring the wave-packet traces shown in the previous figure. F3glishows thus the
experimental pulse power traces (normalized to their maximum value) and their fitted envelopes
for carrier frequencies corresponding to the normal regime (panel (a)) and the tunnelling regime
(panel (b)). As pointed earlier the pulse wjth= 50 MHz propagates at the phase velocity and

itis hence delayed by 40 ns. Since its propagation is equivalent to that of a pulsé withg.3

MHz traversing a coaxial cable of 8 m (the MZI effective length), we take the pulse in panel
(a) as the reference (or input) pulse in our model. The envelopes fitting the experimental power
captures have modulation indéX;,, = 0.65 (Fig. 3.9(a) andM;.,? = 0.95 £ 0.05 (Fig.3.9(b).

Let us remark that because of the higher distortion of the tunnelled pulse (due to the sharp

decrease of the transmitted signal at the minima) a rough err&®b was estimated in its
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Figure 3.9: Experimental pulse power traces and their fitted envelopes for two different carrier
frequencies (a) 50 MHz (normal regime), and (b) 58.3 MHz (tunnelling). Each trace is normalized
to its maximum amplitude. The fitted envelopes have modulation index0.65 (a) and\/ =0.95 (b).

modulation index. Using the above values of the modulation index, the pulse duration (FWHM)

for the reference and tunnelled pulse &g = 835 ns andl,; = 739.5 + 11.5 ns.

In Table 3.5 the comparison between the model predictions and the expetanresults for
the following quantities of the tunnelled pulse is summarized: output modulation inggx
pulse delayr,...., fractional delay/’D and compression factér The theoretical predictions
were obtained using,,, = 27 x 500 kHz and the model parameter! = —357.14 ns into Eq.
(3.45, Eq. 3.46, Eqg. 3.48 and Eq. 8.49, respectively. The experimental valuelopD was
obtained from Eq. 3.47) using7.? = —250 + 40 ns since the error estimated in the pulse

pulse

capture measurements of Fig.8is of +40 ns. The experimental figures of merit bear a good
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Results M+ Tpulse(1S) |FD)| b%
Experiment 0.95+0.05 —250 4+ 40 0.35 £+ 0.05 11.4+1.3
Theory 0.98 —228 0.32 12.2

Table 3.5: Comparison between the model predictions and the experimental results for the following
quantities of the tunnelled pulse: pulse defay;,. , output modulation index\/,,, fractional delay
F'D and compression factér

agreement with the model predictions. Since the output modulation indejis< 1 (as a

consequence of haviny;,, = 0.65) no peak breakup is observed, in accordance to the theory.

3.2.6 Simulation results in the optical range

The predictions of the model developed in the previous sect®sl{3.2.4 are here illustrated

through simulations on a MZI designed to operate in the optical range.

A silicon-based MZI of attenuation coefficient 6.5 dB/cm and refractive index 3.48 is
considered. It is designed to have a fixed branch length differénce 200 pm that sets

the minima 430 GHz apart. Therefore, the model parameters take the values 0.015
andy~! = —155 ps. The conditions summarized in Tal8e3 yield the range of values
that the system'’s effective lengih must take in order to sustain tunnelling, superluminal or
normal group delay at the minima. Consequently, three such MZIs of the following lengths are

consideredZ = 2 mm (tunnelling),L = 1.5 cm (superluminal) and = 2 cm (normal).

The transmission magnitudé and group delay, of the three MZIs are calculated according

to Egs. 8.219 and Eq. 8.26 in a frequency range of 450 GHz centered at the transmission
minimum located atf,,;, ~ 193 THz; the results are plotted in Fi@®.10(a) As L increases,

the attenuation of the transmission spectra is stronger and the group delay curves are shifted
upwards because of the positive contribution of a larger phase ¢elay Ln/c). The group

delay value atf,,;,, nhamelyr, ~ —131 ps, 19 ps and,77 ps, corresponds to tunnelling,

superluminal and normal regime respectively, in agreement with the model predictions. For
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each interferometer, the excess group delay cung,) — 7, fits excellently to a Lorentzian

function of HWHM |v|/27 = 1 GHz and—155 ps excess delay at the minimum.

Now, an optical pulse train travelling through each interferometer is numerically simulated.
The optical carrier is tuned dt,;,, ~ 193 THz (A = 1.55um) and it is sinusoidally modulated
with frequencyf,,, = |y|/2= and 100% modulation index to generate a train of pulses of width
T;, = 364 ps at a repetition rate of 1 GHz. Fig.10(b)shows the pulse traces corresponding to
apropagation through the interferometers/of= 2 mm (pulse #1)L = 1.5 cm (pulse #2) and

L =2 cm (pulse #3). All traces were normalized to its peak value for an easier comparison.

3 I Ry 1 1

| /41 4

1()_ /[ L 7/
-240 -60-20 -10 O 10 20 60 240

f-f . (GHz)
> 1.0 e
(7) Y \\ "
£ 0.8 X/ N
E / ! _,.-'\ \
3 0.6 / L Y
= ] \
202 Q)
00 (T ', , ) )\",—5-,‘,
-500 -250 0 250 500

Time (ps)

Figure 3.10: Numerical simulation of a Si-based MZI with parametéxs= 200 ym , @ = 6.5
dB/cm, andn = 3.48, for three values of the effective lengtll: = 2 mm (solid line),L = 1.5 cm
(dashed line) and. = 2 cm (dotted line). (a) Magnitude of the transmission coefficient and group
delay; (b) Normalized traces of pulses with carrier frequency tungg atand transmitted through each
interferometer. The incident pulse has its peak-at0.
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The peak position of each envelope is the time that the pukesta travelling through the
system, i.e. the pulse delay. These delays are, respectiveh8 ps, 52 ps and,110 ps and

they agree very well with the values predicted by E§.46. Since the incident pulse (not
depicted) has its peak at= 0; pulse #1 clearly tunnels through the system, pulse #2 propagates
almost superluminally (superluminal delay should be less fhan= 50 ps) whereas pulse #3
corresponds to a normal propagation. For the three pulses shown in the figure, a fractional delay

|F'D| = 34% was observed, in agreement with E§.48).

The case of pulse #2 is a neat example that Tald@rovides arestimationof the propagation
regime for narrowband pulses tuned at the minima. The actual regime depends indeed on
the pulse spectral width, as it is contained in E§.46 for 7,... It was checked that by
decreasing the modulation frequency slightly below 1 GHz, the resulting pulse does propagate

superluminally through the MZI of. = 1.5 cm.

Figure 3.11 shows the normalized traces of two pulses transmitted thraolg shortest MZI

(L = 2 mm) and tuned at two different frequencies;;, ~ 193 THz (pulse #1) and the next
transmission maximumt,,., = fmin + 215 GHz. The phase delay of the systenrjs= 23

ps. Since the pulse with carrier frequencyfat,. travels at the phase velocity, pulse #1 is
advanced 22 ps with respect to it. A slight compression of pulse #1 is revealed by looking at
the widths of both pulses. Such a compression also occurs for pulse #2 and pulse #3 shown in
the previous figure. In the three cases a compression factog8% is observed, in agreement

with Eq. 3.49. In physical terms, this behaviour can be ascribed to spleeshaping of the

input pulse due to the transmission feature at the minimum. Namely, the center pulse frequency
is transmitted with less intensity that its side components, thus causing spectral broadening and
consequently, pulse shrinking in time. This situation has also been reported for fast light based

on material resonanceBgy-2007.

Figure 3.11also shows the pulse #1 breakup, with a discernible secompaely at 388 ps and
power amplitude of 2.9% of the main peak power amplitude, in excellent agreement with the

predicted values given that,,, = v/2.
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Figure 3.11: Normalized traces of pulses transmitted through the interferometer=02 mm with two
different carrier frequencies: tuned At;,, (solid line) and tuned af,,.. (dashed line). The incident
pulse has its peak at t=0.

Itis worth emphasizing that the above numerical simulations regaidkaiwaveguide silicon-

based MZI. Real waveguide integrated interferometers usually have power imbalance on the
nominal 3 dB couplers. Interestingly, power imbalance can play the role of total lagses
changing the propagation regime, as it can be deduced from the resulisa®2D08. In that

work, the author analyzes the performance of a MZI with variable power splitting ratios. The
softening of the phase jump in the phase spectral function for splitting ratios detuning from 3

dB is similar to the effect of total losses.

3.3 Slow- and fast- light in three-beam interferometers

A model that describes fast light in a linear dndsy asymmetribZl was presented in section
3.2, however, it was demonstrated that slow light cannot arisinig system. Slow light is
particularly interesting since it improves the spectral sensitivity of interferomesis2007

and can enhance light-matter interaction and hence non-linear effaei2D0§.
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Figure 3.12: (a) Schematic of a lossless asymmetric three-arm interferometer and (b) its typical
transmission spectrum.

Interestingly, the series loop structures studied by El Boudeutl. in [Bou-2004 do

present subluminal regime when defects are introduced. These structures may be regarded
as MZls (asymmetric loops) connected in series through segments. Like PBG systems, they
exhibit bandgaps, and defect modes appear inside the transmission gaps if one of the segments
connecting the loops is somehow changed (in length, for example). The situation resembles that
of a doped photonic crystal, with superluminal propagation for a pulse with center frequency in
the bandgap and subluminal propagation for a pulse with center frequency at the defect mode.
But unlike photonic crystals, an outstanding characteristic of this serial loop structure is the
existence of bandgaps in a totally homogeneous material, without the need of refractive index
contrast (or impedance contrast, if the system operates in the RF range as it is the case in

[Bou-2004).

With the aim of generating not only fast light but also slow light in an asymmetric
interferometer, we have explored another alternative. Instead of connecting in series several
MZIs, we increase the number of arms of a single interferometer. We consider the simplest
interferometer (least number of armg where a length detuning in a branch implies a change

in the otherwise constant length difference between adjacent axm$lpte that this condition

holds only forN > 3. Subluminal propagation will be demonstrated to occur if the length of
any of the interferometer’s arms is changed in a very small fractipof(the nominal length

differenceA, otherwise the pulse propagation regime is tunnelling or superluminal.
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Figure 3.12 illustrates the concept of a lossless asymmetric three-nagrferometer and
shows its typical transmission spectrum. For each wave component, the length of each branch
is defined as:.y = L — A(1 —¢), Ly = LandL; = L+ A, which leads to a nominal
length difference £) between adjacent arms. A small length detunifigg 1) in the first

arm is introduced to explore the induced transitions in the pulse propagation regimes at the
transmission minima (see Fig.12(a). The interference spectrum shows two minima between
every pair of adjacent peaks. As it was discussed in se@it(Eq. 3.9) and it is depicted in
figure3.12(b) for the lossless three-beam interferometer, the maxinet kgen multiples of

and the minima at,, = 27 (m + 1/3) andp,, = 27 (m + 2/3).

The study goes along the steps followed for the MZI in the last section. An analytical
expression of the transmission spectrum (magnitude and phase) and group delay of the three-
arm interferometer as a function of frequency, attenuation and length detuning is developed.
An approximate equation of the group delay at the minima is derived, and the allowed pulse
propagation regimes are discussed. In particular, the critical length detuning needed to get slow
light is deduced. The propagation of a sinusoidally modulated pulse through the system is
modeled, and experiments in the RF range using coaxial cable three-beam interferometers are

performed as a proof of model.

3.3.1 Analytical model

We consider a plane wave, with unit amplitude, impinging on a three-arm interferometer. A
1 x 3 splitter divides the wave in three equal components that travel along each arm and
are recombined by & x 1 coupler. The transmitted complex amplitude at the end of the
interferometer is:

{=

3
> e (3.52)
i=1

W =

The complex phase along thé branche, that was defined in Eq3(2) is written as

& = %Li + jal; (3.53)
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wherew is the frequencyy is the phase velocity in the medium of refractive indexand L;
is the length of the specific branch. Once again, for simplititg, refractive index and the
attenuation coefficientthrough the mediumy, is assumed to be constant and the same for

all arms.

The effective length of the three-arm interferometer is the average length of the branches since

the field amplitude in all arms is the same, thus:

L L L A
_ 1+ Lo+ 3—L+—£ (3.54)

L =
eff 3 3

whereA is the nominal length difference between adjacent armg @nd small length detuning
(¢ < 1) that is introduced in the first arm to explore the induced transitions in the pulse

propagation regimes at the transmission minima.

The magnitude and phase of the transmission coefficient can be expressed as:

t| = e L/ Re? + Im? (3.55a)
s I
P = % + arctan <R—T:) (3.55b)

where 3 is the phase associated to the physical length differeaAcd.,e. 5 = wA/v, and
parameters Re and Im are related to the real and imaginary parts of the transmission coefficient

and are given by:

Re = %[1 + e cos () + 2078 cos (B (1 — €))] (3.56a)

m = %[e“A sin () — e*20-9 gin (8 (1 — )] (3.56b)

Let us note that the dependency of the above quantities is containedl in
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Following the usually adopted phase-time approdk2003, Nim-2003, the group delay is

obtained from the frequency derivative of the transmission coefficient phase:

o= % — L Reaal—;” _ ]m%}ze (3.57)
9 Ow v Re? + Im? '

Therefore, the exact expression of the group delay through the interferometer as a function of

frequency (througly) and length detuning is:

—1—|—A><
T, L

e2h (1 — £)e720A078) 4 emBcos B — (1 — €)e®(1=8) cos[B(1 — €)] + Ee™ B cos[B(2 — &)
x 1+ e7208 4 e=20A0-8) 4 2e=2A cos [ + 22218 cos[B(1 — )] + 2e—A¢ cos[ﬁ((Q —)5)]
3.58

where the group delay has been normalized by L /v, thatis, the phase delay in the medium

over lengthL. Next, we analyze particular cases of attenuation and detuning.

a. Interferometer without detuning (£ = 0)

Let us first consider the case where the length difference between adjacent arms is a constant

(¢ = 0), and thus the interferometer effective lengtiLig = L.

a.l. Lossless mediao( = 0)

In this situation,Re = (1 + 2cos 3)/3 andIm = 0. This implies that transmission minima

are located whereos 5 = —1/2, i. e., the first and second transmission minima after a principal
maximum of ordenn lie at 5y, = 27 (m +1/3) andfy, = 27 (m + 2/3), respectively. From
expression3.58 it is then trivial to obtain the group delay at the minima@%rp = 1. The

group delay is identical to the phase delay and, consequently, the group velocity equals the phase
velocity. Therefore, a lossless interferometer vgith 0 cannot sustain anomalous propagation

regimes. This is not surprising, since in a linear system with nothing altering the phase relation
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between the pulse components, the pulse peak cannot belsmfidence it travels at the phase

speed.

a.2. Lossy media > 0)

If we consider a certain level of losses £ 0), the transmission minima are located where:

cosh(aA)

5 (3.59)

cosff = —

Taking this into account, the group delay at the transmission minima according t@5& (
will be:
-

g =1- %coth(ozA) (3.60)

Tp
As thecoth function is always positive for positive argument valueg,r, is always smaller
than 1 and, consequently, the system will never sustain subluminal regime. However, tunnelling
and superluminal regimes can arise at the minima by properly choosing the interferometer

effective length for a given attenuation coefficient.

Within the assumption of a good visibility of the interference pattern (see se8tipnwe
consider small values afA, for which the transmission minima can be taken to Iié%;g and

Eq. (3.60 can be approximated by:
1
RS - — .
Tp <1 ozL) (3.61)

This is exactly the same expression encountered for a lossy MZI (see se&ibkq. 3.29),
therefore it leads to the same propagation regimes at the transmission minima, which are

summarized once again in Tal3eb.

As it was the case for the lossy MZI a proper change in the attenuation range (either by
changinga and/or the interferometer’s effective lengtl) changes the propagation regime
at the transmission minima. This behaviour is illustrated by numerical simulations on an

interferometer with refractive index = 1.5. Figure3.13shows the transmission coefficient
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Condition al <1 I <al <25 ol > -t

a>0 Tunnelling Superluminal Normal

Table 3.6: Possible propagation regimes at the minima of a lossy three-beam interferometer without
detuning € = 0).

\ 7 v/
B \ v !
]
\lﬂQ“ O== ll |: =
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Figure 3.13: (a) Transmission coefficient magnitude and (b) group delay (Bdp8)) in units of the

phase delay through the medium of a three-beam interferometer with length difference between adjacent
armsA = L/2, length detuning = 0 and refractive index. = 1.5, for two values of the attenuation
coefficienta.

magnitude calculated using Eq3.$59 and the group delay obtained from Eq3.58), for

two attenuation values antl = L /2. The transmission curvi| displays the typical three-
beam interference pattern, with principal peakg at 27m (m is the order of the peak) and

two minima located in betweerDpv-2006. In agreement with our previous discussion, no
abnormal propagation regimes occur in the lossless interferometer, while in the case of losses
with oA = 0.01, tunnelling appears around the two minima and negative group delays of almost

—507, can be reached.
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The evolution of the pulse propagation regime at the minire@, function of the total system’s
attenuationn A was described in Fig.3.4 for a MZI. For the three-beam interferometer we
obtain the same evolution. Hence, the total attenuation in the system determines the pulse
propagation regime. Fast light is achieved with small enough attenuation while it disappears if

it is either too high&L > n/(n — 1)) or zero.

b. Interferometer with detuning (£ # 0)

We now consider the case where a small length deturging<( 1) is introduced in the first
branch of the interferometer. #A and|¢| are small, it can be shown that the transmission

minima move with¢ according to:

Bi2 = Bo, , (1 + g) , (3.62)

where 3, , corresponds to the first and second minima when 0 anda = 0, given in Eq.
(3.9

It should be remarked that the position of the minima changes with attenuation, as opposed to

the situation in a MZI.

b.1. Lossless mediad = 0)

In a lossless medium, following E3.68), the group delay at the first and second transmission

minima can be approximated by:

Tg1 A 2\/§
AELPON e ) 3.63a
A (3.638)
Tg2 A 2\/§
= =1+ — 3.63b
7_p * L 5602’ ( )

respectively. Consequently, by settiig# 0, one can always obtain slow light at one of

the minima. More specifically, these are the possible cases:iXf0, the system sustains
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slow light at thel** minimum. At the2"¢ minimum, the possible pulse propagation regime is

tunnelling if
28
L < — 3.64
Pt (364
and superluminal)( < 7, < Leg/c) if
2v/3 ( n ) 2v/3
A<L< —A, 3.65
ﬁOzg n—1 6025 ( )

Otherwise, only normal propagation will be possible at2tfeminimum.

i) If £ > 0, slow light occurs at the”d minimum, whereas at the’ minimum, the system will

sustain tunnelling if

2f
L < 3.66
B (866
and superluminal propagation if
2v/3 n 2f
A<L< 3.67
Bo, & (” F | 1) 5015 ( )

Otherwise, only normal propagation occurs at thieminimum. The above expressions set
restrictions on the lengtlh of the second branch, which is very close, but not equal, to the

system’s effective length (see E®.%4).

This behaviour is observed in Fig.14 for a three-arm interferometer where its first branch
has been increased or decreased according +0 +5%. Exact expression3(58 was used

to simulate the group delay as a function ®fin a system withA = L/2 and refractive
indexn = 1.5. The transmission’s minima shift withis manifest in the group delay curves.
According to the approximation in Eq3.63, for a detuning of +5%, the group delay should

be —15.57, and9.37, at the first and second minima of zero-order, respectively. Whereas if
¢ = —5%, the expected group delay at the zero-order first and second minimumbis,

and —7.37,, respectively. These approximate values of the group delay at the minima are in

excellent agreement with the exact results shown in the figure.
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Figure 3.14: (a) Transmission coefficient magnitude and (b) group delay of a lossless three-beam
interferometer with nominal length difference between adjacent @&ms L/2 and refractive index
n = 1.5, for two values of length detuning

b.2. Lossy media { > 0)

In the most general case, where both detuning and a certain attenuation level are considered, and

under the conditions of smallA and |¢

minima as:

A 23
L Bo,(E—Ea)
A 23
L

~ ﬁ02(£_£C2>7

, Eq. 3.58 can be approximated at the transmission

(3.684a)

(3.68b)
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Condition Regime @** min Regime @™ min
E<én Slow Tun/Super/Normal
1 < & <& Tun/Super/Normal Tun/Super/Normal

£> & Tun/Super/Normal Slow

Table 3.7: Possible propagation regimes at the transmission minima of a lossy three-beam interferometer.

where the critical detuning lengtlis andé¢., are approximately:

g, = 2308 (3.69a)
601

gymn sVl (3.69b)
ﬁOQ

For lossless medidg,.; = £ = 0 and Egs. 8.68 reduce to Eqgs. 3.63; thus recovering the
situation discussed before. The role of the attenuation is then to increase the magnitude of the
critical detuning needed to obtain slow light at the minima. Ta&blsummarizes the possible
propagation regimes at both minima.df< &, the system only sustains slow light at thé
minimum. If¢ > £, the system only sustains slow light at &€ minimum. For¢,; < & < &

the allowed pulse propagation regimes at the minima can be either tunnelling, superluminal or

normal, depending on the length

Table3.8 summarizes the possible propagation regimes atth@inimum. If ¢ > &, there is

a maximum value of. to obtain tunnelling at the 1st minimum:

B Bo& \ 7

For lengthd. greater tharl;; and smaller thav@%) L1, superluminal propagation is sustained

at thel®" minimum. Finally, when exceeds the vaIu@nﬁ—l) L the normal regime is attained.
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Condition L < Ly Ly <L< (n/nf 1) Ly L> (n/nf 1) Ly
E<éa Slow Slow Slow
&> & Tun Super Normal

Table 3.8: Possible propagation regimes at th& transmission minimum of a lossy three-beam
interferometer.

Condition L < Ly Lip < L < ("fn—1) Ly L > ("/n-1) Ly
E <& Tun Super Normal
&> & Slow Slow Slow

Table 3.9: Possible propagation regimes at th&¢ transmission minimum of a lossy three-beam
interferometer.

Similarly, the possible propagation regimes at i minimum are shown in Tabld.9. For

¢ < &, there is a maximum value df to get tunnelling at the™® minimum:

Ly = (a— Boo )_ (3.71)

For lengths greater thaly, and smaller thavﬁ%) Ly, superluminal propagation occurs at the
274 minimum. Once again, wheh exceeds the valuénﬁ—l) L the normal regime is attained.

In the cas& = 0, lengthsL,; = L;; = 1/a, and the conditions for a lossy interferometer with

a constant length differenc& between adjacent branches are recovered. Let us remark that,
as opposed to that casd, does now influence the conditions that determine the propagation

regime.

We have checked the validity of the approximated Eds68 and 3.69 for estimating the

group delay at the transmission minima. The approximated value has been compared with the
exact result obtained from E3.68), as a function of the detunirggand for an attenuation level

of aA = 0.01. The results in Fig3.15reveal the following features: i) the agreement between
the approximated and the exact valuerpiis excellent for§ up to £5%; ii) the group delay

increases in magnitude as the detuning approaches the critical value; and iii) the SFL transition
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Figure 3.15: Dependence with length detuning of the group delay at the minima for a three-beam
interferometer with nominal length difference between adjacent ahms= L/2 and attenuation

aA = 0.01. The approach in Eqs3(68 (line) is compared to the exact result of E§.58 (symbols)

for each minima.

when reaching the critical detuning is extremely abrupt. Namely, the absolute vatyebf

each minimum approaches infinity when the length detuning equals exactly the corresponding
&.. This behaviour is understood from Eq8.85—(3.57): for a givenaA value, the critical
detuning is the one that maké®? + I'm? = 0 at the corresponding minimum. Therefore,

this abrupt SFL transition is achieved through a passage from a zero transmission condition.
We would like to draw the attention here to the similarity of this mechanism with that reported
by Longhi in active fiber Bragg gratings with asymmetric profllen-2003. In that work, an

abrupt superluminal to subluminal transition of reflected pulses near to a local minimum of the

reflection spectrum was achieved by increasing the gain level.

3.3.2 Analysis considering the optical path difference

Similarly to the analysis performed in secti8:2.2for the MZI, one can generalize the situation
and consider a three-beam interferometer where both the length and/or the refraction index of

the branches are different. The attenuation coefficigns considered to be constant and equal
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in every arm. The optical path in th& arm is¢, = n,L; with the branch lengths defined as
in Fig. 3.12(a) namely: L, = L — A(1 — ¢), Ly = L andL3 = L + A but where now the

refractive index in each arm is:

ny=n—A,(1-¢&)
Ne =n (3.72)

ny=mn-+ A,

with A,, being the nominal refractive index difference between adjacent branchés asdall

detuning from the nominal refractive index value.

The effective optical pathies = (¢; + 2 + ¢3)/3, can be written in terms of the effective
refractive indexn = (n; + ne + n3)/3, the nominal refractive index differenck,,, and the

length and index detuning @nd¢,,) as:

lott = L + %A 1 WA (3.73)

An optical path difference occurs if the branches differ in length £ 0) and/or if their
refractive index is different4,, # 0). For the sake of simplicity, we will consider each cause

separately.

a. A-induced fringe pattern (A,, = 0, A # 0)

This is the situation analyzed in subsect®8.1 and here we will simply remark the main
conclusion. The interference pattern is due to the different length of the branches. Let us draw
attention to the fact that by adding one branch we are increasing a key degree of freedom of the
three-beam interferometer that is not present in the MZI, namely, the possibility of detuning the
nominal length difference between a pair of adjacent branches with respect to its nominal value
A. Itis the situation previously analyzed, where it is this detuningyhat makes slow light

arise in the three-beam interferometer. Such a fast to slow light transition occurs by the passage
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through zero transmissiof[ = 0) at one of the minima. The length detuning provides the
degree of freedom necessary to completely cancel the transmission at a given frequency and for
a given attenuation coefficient. Let us emphasize that this structural transition cannot be driven
solely by the attenuation, which takes the transmission at the minima away from zero. This is

why the MZI, where no length detuning is possible, does not sustain slow light.

It is straightforward to find that in this case, the effective optical path in 373 is the
effective physical pathles = (L1 + Lo + L3)/3 = L + A&/3 multiplied by the (common)

refractive index.

b. A, -induced fringe pattern (A,, # 0, A = 0)

The branches are of the same lendthand the interference pattern arises because of their
different refractive index. Unlike the previous case, here, the effective optical path is the

effective refractive index times the (common) branch length+= nL = (n + A,&,/3) L.

It is straightforward to see from Eg3.6) (settingA = 0) that the attenuation plays no role on

the phase of the transmission coefficient but only on its magnitude, and hence has no influence
on the group delay. Moreover, for a constaxy between adjacent branches, the analysis is
similar to a MZl in subsectioB.2.2 i.e., the symmetric three-beam interferometer with carista
refractive index difference exhibits zero transmission minima and does not sustain slow nor fast

light.

On the other hand, if\,, is not constant between adjacent brancligs=£ 0), no analytic
derivation is necessary. One can readily foresee (based on our previous study of the asymmetric
three-beam interferometer with length detuning) thlatv and fast light will indeed arise

in the symmetric three-beam interferometer if a detuning¢,, from the otherwise constant
refractive index differences introduced. The reason is thdt, provides the degree of freedom
necessary to make the complex transmission coefficient go through zero, thus changing the sign
of its phase. For lossless systems= 0) one expects to get analogous results in the symmetric
and in the asymmetric interferometer, i.e. equivalent expressions of the critical index detuning

and critical length detuning to yield slow or fast light at each minima. For lossy systega9)j
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the attenuation plays no role whatsoever in the symmetrefertometer: the waves travelling
along each branch reach the end equally attenuated, their interference is governed only by the
real part of the complex phase = (w/c)n;L + jaL, and hence the critical index detuning
does not depend om. In the asymmetric interferometer, however, the attenuation does affect

the critical length detuning, as it was discussed in se@i8ril(see Eqgs.3.69).

Therefore, in the symmetric three-beam interferometer (lossless or lossy), expre3ss@ns (

for the group delay at the* and2"? transmission minima can be rewritten as:

Tg1 An 2\/§
Tl oq - 2 , 3.74a
Tp n gnﬁ(h ( )
T2 o q 4 Bn 2v3 : (3.74b)
Tp n gnﬁOQ

with 3 being the phase associated to the refractive index differghee«(*~£/c) and7, = L—c”

The propagation regimes described by EGs64 and @3.66) are valid with the substitution:

L=n (3.75a)
A=A, (3.75b)
§=&n (3.75¢)

3.3.3 Transmission coefficient and group delay around the transmission

minima

In the previous sections two requirements in order to get both slow and fast light in three-beam
interferometer were assessed: (i) the interferometer must be symmetric (equal branch lengths)
with a detuning from the nominal refractive index difference between adjacent branches; (ii) it

must be asymmetric (different branch lengths) with a length detuning in one of the branches.
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Because proof-of-model experiments can be readily perfdrimesituation (ii), only this case

will be considered onwards.

The scope of this section is to derive approximate analytical expressions of the magnitude and
phase of the transmission coefficidftt(w) and¢(w)), and of the group delay, (w) valid for

frequencies close to a transmission minimum of asymmetric three-beam interferometers. The
expressions obtained will be used in the next section to analyze the propagation of sinusoidally

modulated signals through this system.

For lossless media and in the case where the length difference between adjacent arms is a
constant{ = 0), the first and second transmission minima after a principal maximum of mrder

lie atwy, = (27v/A)(m+1/3) andwo, = (2rv/A)(m-+2/3), respectively. In the general case,
under certain conditions of smallA and|¢|, the transmission minima move wighaccording

towr 2 = wo, ,(1 +¢/2) and the transmission coefficient magnitude and phase @&sp)) can

be approximated around each transmission minimuy,, as:

~ GiaL A 1 A 2
t ~ — |1 == - - Wmin — Wmin) T 27 3.76a
i~ 2 1% S — )| o m w12 @769
1 (w) = wt, + arctan (m) + g (3.76b)
fy
where the— and+ signs apply to the first and second minimum, and parametars
wo, (§ — &e1) wo, (§ — &e2)
~—s S and A 252/ 3.77
71 /3 Y2 /3 ( )

for the first and second minimum, respectively. Here, we have introduced the critical detuning

lengths£., andé., defined in Eq. 8.69 but now expressed in terms of the frequency:
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2 2

b= 230 g, = 2V (3.78)

wol n (,UQ2 n

By differentiation of Eq. 8.761, the group delay can be approximated in the vicinity of each

transmission minimum as a Lorentzian function with half-width at half-maximum that equals

7]:

@) =t G (3.79)
The group delay at the considered minimum is then given, byl /v and increases in magnitude
as the detuning approaches the critical value. The SFL transition when reaching the critical
detuning is extremely abrupt. Namely, the absolute value, @t each minimum approaches
infinity when the length detuning equals exactly the corresponglingor a giveno'A value,
the critical detuning is the one that makeés= 0 at the corresponding minimum. Therefore,

this abrupt SFL transition is achieved through a passage from a zero transmission condition.

Note that the sign of parameterat each minimum and, consequently, the positive or negative
delay at the minimum, is in agreement with the propagation regimes discussed in 8egtion

and summarized in Tabl&s8 and3.9. Let's remark too that if zero length detuning € 0)

is considered, Egs.3(77) and @.78 lead toy; = 72 = —aw which is the result obtained in

the case of the MZI, thus showing the equivalency between the three-beam interferometer with

constant length difference and the MZI, where only fast light is sustained.

3.3.4 Propagation of sinusoidally modulated signals

As it was performed for the MZI (see secti®i2.4), we consider an incident sinusoidally
modulated wave-packet with carrier frequency at a transmission minimu, and
modulation indexM;,. Such a signal has spectral components),at,, (Wpin — W), and

(Wmin + wm) , beingw,, the modulation frequency, and the amplitude of the central frequency
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is twice that of the side bands. The module of the incident festglelope isE;,(t) o

1 + M, cos(wpnt).

Applying Fourier theory and proceeding like in sect®2.4 one can obtain the module of the

field envelope of the transmitted signal through the interferometer:

Eout(t) o< 1+ Moyt cos[wi, (t — Tpuise )] (3.80)

where M,,;, = M;,\/1+ (wm/’y)2 and the pulse delays,,s., depends on the modulation

frequency through the following equation:

1 m
Tpulse = Tp + — arctan (w—) (3.81)
m 7

As one might expect, Eq3(81) reduces ta, + 1/ whenw,, — 0, wherevy is ; or v, defined

in Eq. 3.77) depending on which minimum the sinusoidal pulse is centered
Figures of merit

The analysis of the propagation of a sinusoidally modulated pulse through the three-beam
interferometer leads to formally the same results as those obtained for the MZI with the only
difference in the definition of; and~,. But this difference is crucial since now, instead

of having a single and negative parametethat always leads to fast regime, there are two
parameters;; and ~,, of opposite signs for a certain range of detuning valgiesAs a
consequence, slow light can be held at one minimum while fast light is held at the other
minimum. Therefore, the evolution of the fractional delay (FD) (its absolute value) and pulse
compression#) versus normalized modulation frequency for a sinusoidally modulated pulse
with carrier frequency tuned at one of the transmission minima are exactly the same as those

presented in sectioB.2.4for the MZI (see Fig3.5).

As described in sectioB.2.4 the absolut&D values increases with modulation frequency (see
Eq. 3.48) and values greater thah35% can be obtained for modulation frequencies greater

thany. However, pulse distortion also increases with As M, is always greater than 100%,
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the transmitted pulses suffer certain distortion. Thersferther pulse delay or advancement
is accompanied by a certain degree of pulse compression, defined ir8E§. (The above

features are entirely applicable to three-arm interferometers operating in any frequency range.

Since the pulse delay (or advancement) will only be effective for signals centered at the
transmission minima and with spectral components within the Lorentzian function i8 £§),

the productr, — 7,] x v = 1 gives an estimation of the maximum delay-bandwidth product
(DBP) achieved by this system for any frequency range the interferometer may operate. As it
was the case for the MZI, a more realistic estimation should consider the pulse delay in Eq.

(3.81) (not the group delay), which yields an expected DBRQfs. — 7, X 2f,, = 25%).

3.3.5 Experimental results and discussion in the RF range

A proof-of-model experiment based on coaxial-cable three-beam interferometers is designed.
The experimental setup and fabricated RF interferometers are presented. Frequency and time-
domain measurements were performed on these systems and are compared to the model

predictions.

a. Interferometer design

We have designed a nominal interferometer consistingloka& RF power splitter, 8 x 1 RF

coupler (both PE2002, Pasternack) and three coaxial cablés B8-58C/U). The designed
effective length of the system is 2 m and the intended length difference between adjacent cables
is 1 m. In practice, every branch of the interferometer comprises the cable itself, the connectors
between cable and splitters, and a small track inside the splitters. After measuring all these
elements, the actual branch lengths of the starting interferometer were found.fo=bé.049

m, L, = 2.066 m, andL; = 3.088 m, yielding A = 1.022 m, and¢ = +0.5%, according

to our definitions in Fig.3.12(b) In addition, four coaxial cables were prepared to substitut

the L, cable of the starting interferometer. The actual first arm lengths are 0.989, 1.008, 1.086
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and 1.103 m. Therefore, we have five interferometers to becteized in frequency and time
domain, each with\ = 1.022 m, and a set of values fgrof —5.4%, —3.5%, +0.5%, +4.1%,
and+5.8%. This set of¢ values allows checking the evolution from fast to slow light at the

minima asL, varies.

All the cables available for the branches were cut out of the same long coaxial cable whose
attenuation coefficient as a function of frequeneyw), had been previously determined as
explained in AppendiB. Note that in order to estimate the critical length detunimgpagh

Eq. 3.78, the system’s attenuation must be known so that we couldapeeihe cables with
adequate values df to display the SFL transition. From the characterizatiornQb) we
obtained an attenuation ef = 0.015Np/m (0.13 dB/m) at 65.2 MHz (first transmission
minimum of the nominal interferometer) and = 0.022 Np/m (0.19 dB/m) at 130.4 MHz
(second transmission minimum of the nominal interferometer). These attenuation values
yield a critical length detuning of.;, = —2.5% and&., = +1.9% for the first and second
minimum, respectively. The characteristics of the fabricated RF three-beam interferometers are

summarized in Tabld.10

The frequency characterization of these interferometers was performed by means of a two-port
vector network analyzer (PNA series, Agilent E8363B) (see Appe@dix. The scattering
parameterSy; (the transmission coefficient) was recorded in the 10-200 MHz range every
59.375 kHz with an average of 64 to help suppress the random noise. The splitters were also
fully characterized and this measurement was used to correct the interferometer experimental
response for a proper comparison with simulation, which does not include the effect of the
splitters. The two splitters directly interconnected introduce an overall group delay of 1.8 ns

and an attenuation of 1 dB, approximately, in the transmission response.

The experimental data contain a small amount of noise which is not very apparentip the

parameter itself. To obtain the experimental group delay, the phase data curve is differentiated
and this amplifies the noise leading to spurious effects. For this reason, the network analyzer
was configured to smooth the phase curve by averaging 17 adjacent points. The selected

averaging algorithm preserves the key features of the group delay at the transmission minima.
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Interferometer Li(m) £(%)
L1-99 0.989 —5.4
L1-101 1.008 —3.5
L1-105 1.049 +0.5
L1-109 1.086 +4.1
L1-110 1.103 +5.8

Table 3.10: Fabricated three-beam RF interferometers itk 2.066 m, A = 1.022 m.

Additionally, time-domain pulse propagation experiments were performed on each interferom-
eter (see Appendi.3.]). The sinusoidal signal of generator-2 (IntraAction VFE48Q),

whose frequency can be varied between 40-80 MHz, was 100% amplitude modulated by the
300 kHz sinusoidal output of generator-1 (Tektronix CFG-253). This produces a train of si-
nusoidally modulated wave packets with 300 kHz repetition rate and carrier frequencies in the
MHz range. The pulse train transmitted through the interferometer was recorded at the oscillo-

scope (Agilent DSO-6032A) with a resolution of 0.5 ns (10 kSamples/5000 ns).

b. Results in the frequency domain

Figures3.16and3.17show the transmission (magnitudeand phase);) and group delayr),

of our five three-beam RF interferometers whose parameters are summarized ir3. Iéble
Experimental and simulation results are shown. Namely, we include two experimental curves.
One corresponds to the whole system measured with the vector network analyzer (labeled
uncorrected experimental dgta-including the splitters, while the other (labeledorrected
experimental datpis the result of subtracting the effect of the splitters. For each interferometer,
the simulatedt| and ¢, curves were obtained from Eqs3.%52 and @.53, by numerically
calculating the interference of three sinusoidal RF waves propagating through coaxial cables
of the lengths given in Tabl8.10 including the frequency-dependent attenuation in theesabl

shown in AppendixB.1. The 7, curves were obtained by differentiating the corresponding
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numerical phase curve with respect to the frequency. The 4&8rp®int smoothing algorithm

as that applied to the measurgcturve was used for the simulated group delay. The agreement
between simulations and the corrected experimental results is very good, thus assessing the
accuracy of the procedure employed to subtract the effect of the splitters. From the figures, it
is obvious that the splitters introduce losses (the peaks in transmission are less pronounced for
the raw data) and also they add an additional phase (the raw data phase function is above the
numerical one). Their effect on the group delay is hardly noticeable, for this reason only the

corrected experimentaj, curve is shown in the figures.

L1-105
E=40.5%

l
o
N

12 L Simulation _
----- Uncorr. expt. data ]
8 I o Corr. expt. data -3
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L

20 40 60 80 100 120 140 160 180 200

Frequency (MHz)

Figure 3.16: Numerical simulation (solid curve) and experimental frequency-domain characterization
of the starting interferometer L1-105. The dashed curve corresponds to the whole system measured with
the vector network analyzer -including the splitters-, and the symbols refer to the result of subtracting
the effect of the splitters. (a) Magnitude of the transmission coefficient, (b) phase of the transmission
coefficient, and (c) 17-point averaged group delay.
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We analyze in the first place the starting interferometer Q&-&hich is displayed in Fig3.16

The |t| curves exhibit absolute maxima every 200 MHz and two minima between the zero
and the first-order principal peak that lie close to the expected posifipns 65.4 MHz and

foo = 130.8 MHz (see Eg. 3.62). Negative group delay around400 ns are reached at both
minima, accordingly to the steep negative slope of the phase function at these frequencies.
These results agree with our model predictions, since the interferometer’s length detuning
(+0.5%) satisfies the conditiot,; < & < & (With & = —2.5%, andé., = 1.9%), and

the length of the second branch & 2.066 m) is well below the limiting valuesl(;; = 55.7 m

andL;; = 62.2 m) above which tunnelling regime disappears.

Figure 3.17 shows how the situation changes when the interferometengtheis slightly
changed. According to theory, a reduction of at leaS% A in branch lengthl; fulfills the
condition to generate slow light at tH&¢' minimum. On the contrary, an increase of at least
1.9%A would generate slow light at th2"? minimum. Figures3.17@a)-(d) correspond to
samples L1-99, L1-101, L1-109 and L1-110, respectively. In the two samples with shorter
Ly, the system exhibits positivg at the1** minimum while negative, is retained at the"?

minimum. The opposite situation occurs for samples L1-109 and L1-110.

These results are justified within our model, considering the length detgrohgach sample
(Table 3.10, the critical detuning lengthg , ¢.2), and the model conditions summarized in
Tables3.8and3.9. Namely,¢ < &, = —2.5% for the system in Figs3.17a) and3.17b) and

& > & = +1.9% for the system in Figs3.17c) and3.17d), which explains the occurring of
slow light at the1** minimum in one case, and at tB&’ minimum in the other. Also, a quick
estimation using Eq.3(71) shows that only tunnelling can be sustained atttfeminimum for
interferometers L1-99 and L1-101, since L (2.066 m) is for both systems smallef.théiil.6

m and 15.8 m, respectively). A similar result occurs by using Bg/(j to obtain the value of
Ly for systems L1-109 and L1-110; we fidd< L;; (25.5 m, and 20.3 m, respectively) and

this is why these samples exhibit tunnelling at tHeminimum.

From Fig. 3.17 it is obvious the link between the strength of the group delegks and
the steepness in the slope of the phase function. Such steepness is ultimately linked to the

attenuation in the system (for higher attenuations the slopes are less pronounced) and to how
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Figure 3.17: Numerical simulations (solid curve), uncorrected (dashed curve) and corrected (symbols)
experimental results for the frequency-domain characterization of three-beam RF interferometers. Top
panel shows magnitude of the transmission coefficient, middle panel shows phase of the transmission
coefficient, and bottom panel shows the 17-point averaged group delay for samples (a) L1-99, (b) L1-
101, (c) L1-109, and (d) L1-110.
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much¢ approaches the critical detunirgg, or £.,. Samples L1-101 and L1-105 are the ones
with ¢ closer to one of the critical values, thus leading to the highest and narroyvesaks.
Finally, the frequency shift of the minima as the length detuning varies is evident i3 Hig.
The minima move towards higher frequency @ecreases, just like the theoretical model

predicts.

c. Resultsin the time domain

Pulse propagation experiments were carried out using the experimental setup described in
AppendixC.3.1(Fig. C.5. The modulating signal was a 300 kHz sinusoidal wave, which
results in a3.3 us-wide pulse. This choice of the modulating frequency was a compromise
between narrow-enough bandwidth to avoid pulse distortion, and large-enough bandwidth to
get appreciable pulse peak advancements (or delays) in comparison to the pulse length. For
each interferometer, the carrier frequency was selected to coincide with the first transmission’s
minimum. Since the signals were largely attenuated, a direct observation of the pulse peak on
the oscilloscope was not accurate enough to measure the group delay. Hence, the pulse peak
position was obtained from a numerical analysis of the data by finding the best fit to the pulse

envelope.

Figure3.18shows the pulse captures for the five RF interferometers. froevandicates the

time spent by the pulse peak in propagating through the interferometers and it is obtained as
explained in AppendixC.3.1 The SFL transition in the pulse propagation regime is euiden

these captures. Thg values agree reasonably well with those found in the frequency-domain
characterization. The pulse propagates with negative group delay0af, —147, and—115 ns

in samples L1-105, L1-109, and L1-110, respectively. Whereas positive group delaggdof
and+308 ns occur in samples L1-99, and L1-101, respectively. As itis clearly demonstrated in
[Guo-2006 Pev-2008Wan-2004, such peak advancements and delays arise from the coherent
interference of the pulse frequency components. Each component travels at phase2/&locity

in the cables, but their relative phases are modified after the pulse’s transmission through the
system; as a result, the peak of the output pulse (where the frequency components are all in

phase) is shifted backwards (or forwards) and the pulse appears to travel at superluminal (or
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Figure 3.18: Wave-packet traces of the RF interferometers (from top to bottom) L1-99, L1-101, L1-105,
L1-109 and L1-110. In each case, the pulse carrier frequency is that of the first transmission minimum.
The arrow indicates the pulse propagation time through the interferometer and it is obtained as mentioned
in AppendixC.3.1 The fractional delay is calculated from E®.47) taking T;,, as the FWHM of the

pulse power.

subluminal) speed. As it is argued in several wor&u$-2006 Pev-2008 these abnormal
propagation regimes occur only if the spatial length of the pulsg, () greatly exceeds that
of the system. This condition is nicely satisfied here, sibgg,. = 3.3us x 2/3¢c = 400 m is

much longer than the interferometer’s lengith{~ 2 m).

In our time-domain experiments, we have measured a maximum relative pulse delay300)

ns (7, ~ 10 nsis almost negligible in comparison). Various definitions of the pulse duration are
considered by the authors. For our sinusoidally modulated wavepackets and by condigering
as the period of the modulating signalq ;:s), we obtain a fractional delay ef 9+ %. Instead,

if we take T}, as the FWHM of the pulse amplitude signal, this parameter becem&$8%.
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Furthermore, by regardirifj,, as the FWHM of the pulse power signal, the measured fractional

delay becomes. £25%.

3.3.6 Simulation results in the optical range

Leaving the free-space configurations aside, there are several technologies to realize a wave-
guided three-arm interferometer operating in the optical range, namely, all-fiber and channel
waveguide structures. For practical purposes, it would be desirable to induce the SFL transitions
by changing the optical path without affecting the physical length of the arms, i. e., by changing
the refractive index. With this idea, Lithium Niobate (LN) is an excellent candidate material,
being an established choice for electro-optic applications such as the realization of Mach-
Zehnder optical modulators\Joo-200Q. Optical waveguides can be fabricated, among other
techniques, by in-diffusion of Titanium into an X- or Z-cut LN crystal. A precise control of

the phase shift in one arm can be achieved by applying an electric field through the metallic
electrode above the corresponding waveguide which induces a refractive index change due to

the electro-optic properties of this material.

Fig. 3.19shows a schematic of a Z-cut LN asymmetric three-arm intenieter with added
phase-shift control in one arm. Although it seems more adequate to place the drive electrode
above one of the outer arms, the drive electrode has been placed above the middle arm in order
to directly extrapolate our previous analysis with length deturgingrherefore, an external
voltage applied to the drive electrode will produce a phase shift,in the shortest arm, which

is equivalent to introducing a length detuningof cd¢; /(neswA ), whereneg is the waveguide

effective refractive index.

As an example, let us consider the case of a LN interferometerwith5 cm, nominalA of

935um, and a phase shiftp; ~ 0.087 rad (equivalent to a length detuningof= 3 x 1075).

This value ofA is chosen so that the separation between transmission minima of the same order
is 50 GHz. Fig3.2(0a) shows the transmission coefficient and the group delayfrieqauency

range of 150 GHz centered at the middle frequency between a pair of minima of the same order
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Figure 3.19: Schematic of a Lithium Niobate three-arm interferometer.

at~ 193 THz. Consideringie = 2.14 the phase delay in this systenvjs~ 356 ps. Fast light

regime is sustained at the first transmission minimum whereas slow light appears at the second
minimum. As indicated in the figure, pulses of bandwidth smaller than 3.4 GHz and 3.2 GHz,
will experience such peak advancement or delay, respectively, without too much distortion.
We have simulated the propagation of an optical pulse train through this interferometer. An
optical carrier of~ 193 THz (A = 1.55 pm) is sinusoidally modulated in order to produce a
train of pulses with pulse duratidfi,, = 214 ps at a repetition rate of 1.7 GHz. F&j2Q(b)

shows the pulse traces corresponding to propagation at both transmission minima together with
a pulse trace propagating at the central frequency, for which the group dejayTise relative

group delays at the first and second minima-are-73 ps and+76 ps, respectively, yielding
fractional delays of-34% and +36%, with pulse compression of 8 and 9 %, respectively.
These values are larger than those reported in passive fiber Bragg gratng2(d01, where
fractional delays/advancements of 17% where measured when tuning a picosecond optical pulse
spectrum through the grating band gap. Our results are also similar to the ones reported in
[Lon-2009 for active fiber Bragg gratings when keeping the pulse cosgioa in our system

below 13%.

3.4 Exploring four-beam interferometers

In the preceding sections the feasibility of getting fast light in a MZI and both slow and fast

light in a three-beam interferometer was assessed. Following intuition, the same phenomena
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Sim. param.: f;, ~ 193 THz (A ~ 1.55 pm), L =5 cm, A = 935 pm, ¢, = 0.08n rad (§ ~ 3x10'5), a=0.2 dB/cm, = 2.14
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Figure 3.20: Numerical simulation of a LN interferometer with the indicated parameters. (a) Magnitude
of the transmission coefficient and group delay, and (b) pulse traces of transmitted pulses with the
indicated carrier frequencies corresponding to different propagation regimes.

might be encountered if one further increases the number of branches and allows for length
detuning. For practical purposes, though, the simplest system would be used. Nevertheless, just
for checking and sincé x 4 splitters are available, SFL effects in four-beam RF interferometers

are explored in this section.

a. Interferometer design

Figure3.21(a)illustrates the designed interferometer. It consists biad RF power splitter, a

4 x 1 coupler (PE2001, Pasternack) and four coaxial cabl&3,(RG-58C/U). Two small length
detunings in the first{{) and fourth {,) branches are considered. The nomigal-€ £, = 0)
effective length of the system is¢ = 40 m and the nominal length difference between adjacent
arms isA = 4 m. The actual branch lengths are; = 33.93 m (§; = 0.0175), L, = 38 m,

L3 = 42mandlL, = 459 m ({4, = —0.0125). The cables in the branches were cut out of
the same long coaxial cable whose attenuation coefficient as a function of frequéngyhad

been previously determined following the procedure described in App&hlix

Figure 3.21(b)shows the typical transmission spectrum of a lossless fearbinterferometer
with no length detuning. The interference pattern exhibits three minima between every pair

of principal peaks. As it was discussed in sect®hthe maxima lie at even multiples af
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Figure 3.21: (a) Schematic of a lossless asymmetric four-arm interferometer and (b) its typical
transmission spectrum.

and the minima aB? = 2x(m + 1/4), 8Y = 2r(m + 2/4) and 8y = 27(m + 3/4) where
g = wA/v is the phase associated to the nominal length difference between adjacent branches.

This fabricated coaxial-cable interferometer is characterized in the frequency and time-domain.

b. Results in the frequency domain

The frequency characterization of this interferometer was performed by means of a two-port
vector network analyzer (PNA series, Agilent E8363B). The scattering pararsigtéthe
transmission coefficient) was recorded in the 10-200 MHz range every 59.375 kHz with an

average of 64 to help suppress the random noise.

Figure 3.22 shows the transmission (magnitu@t¢ and phasep;) and group delay(), of

such four-beam RF interferometer. Experimental and simulation results are shown. The
simulated|t| and ¢, curves were obtained by numerically calculating the interference of four
sinusoidal RF waves, including the frequency-dependent attenuation in the cables;, The
curves were obtained by differentiating the corresponding numerical phase curve with respect
to the frequency. The same 11-point smoothing algorithm as that applied to the measured phase

curve was used for the simulated phase function prior calculating the group delay.

The agreement between simulations and experimental results is very good because the effect of
the splitters was substracted from the raw data as it is explained in AppErtlik is obvious

that the splitters introduce losses (the peaks in transmission are less pronounced for the raw
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Figure 3.22: Theoretical (solid lines) and experimental (symbols) results of: (a) magnitude of the
transmission coefficient, (b) phase of the transmission coefficient, and (c) group delay of a four-beam
interferometer with,; = 33.93 m, Lo = 38 m, L3 = 42 mandL, = 45.9 m.

data) and also they add an additional phase (the raw data phase function is above the numerical

one). Their effect on the group delay is hardly noticeable.

Figure 3.22 shows the typical interference pattern of A&n= 4 interferometer, withV — 1

minima andN — 2 local maxima located between two absolute maxima. A subluminal region
occurs around the first transmission minima where the phase has a strong positive slope whereas
fast light regime occurs around the second and third minima due to the negative slope of the
phase function around these frequencies. Anomalous dispersion is less pronounced at higher

frequencies because of the larger attenuation in the transmission line, this is why the third
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minimum only exhibits superluminal regime while negativeups delay is achieved in the
second minimum. Consequently, the group delay function in terms of the frequency (Fig.
3.22«)) presents four different propagation regions: normag@gpropagation, corresponding

to the normal dispersion region where the group delay is that of a pulse travelling at the
phase velocity along a distandeg, and three abnormal propagation regimes: subluminal,
superluminal and tunnelling. These results predict negative group delay as negativelas

ns and large group delay as positive{a0 ns that lead to slow group velocities @Rc.

The superluminal and tunnelling regions are considerably narrower than in the MZI and three-
beam (compare Figs3.6(d) and3.16c) with Fig. 3.22c)). This is only a consequence of the

longer effective length of the four-beam interferometer, which is five times longer than the MZI.

We have observed that the subluminal region only appears if the length diffedfebetveen
adjacent arms of the interferometer slightly varies from its expected constant value. This
behaviour was explained in secti8B.1for a three-beam interferometer and can be extended
to this case. It is reflected in Fi®.23 where theoretical results are shown for the fabricated
four-beam interferometed{ = 33.93 m, L, = 38 m, Ly = 42 m, L, = 45.9 m) and for an

ideal one withL,; = 34 m, Ly, = 38 m, L3 = 42 m andL, = 46 m. Note that for the latter
structure (with; = & = 0) the slope of the effective refractive index,s(w), —obtained

as in Eq. 8.50— at 62.5 MHz is negative, as opposed to the positive slope displayed by the
fabricated structure with detuning. Numerical simulations show that by changing slightly the
length of any of the interferometer’s arms, the transition from tunnelling to subluminal regime

occurs at different transmission minima.

c. Results in the time domain

Pulse propagation experiments were carried out using the experimental setup described in
AppendixC.3.1(Fig. C.5. The modulating signal was a 200 kHz sinusoidal wave, which
results in a5 — s wide pulse. This choice of the modulating frequency was a compromise
between narrow-enough bandwidth to avoid pulse distortion, and large-enough bandwidth to get
appreciable pulse peak advancements (or delays) in comparison to the pulse length. The carrier

frequency was selected to coincide with the transmission’s minimum. Since the signals were
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Figure 3.23: Theoretical results for: (a) magnitude and phase of the transmission coefficient, (b)
refractive index of an interferometer without detunigg= 0) (solid line) andL; = 34 m, L, = 38 m,

L3 = 42 mandLs = 46 m, and an interferometer with detuning # 0) (dashes) and,; = 33.93 m,

Ly =38m, L3 =42mandL4 = 45.9 m.

largely attenuated, a direct observation of the pulse peak on the oscilloscope was not accurate
enough to measure the group delay. Hence, the pulse peak position was obtained evaluating

numerically the best fit to the pulse envelope.

Fig. 3.24shows the pulse captures for the four-beam interferometae. afrow indicates the

time spent by the pulse peak in propagating through the interferometer and it is obtained as
explained in AppendixC.3.1 The SFL transition in the pulse propagation regime is euiden

in these captures. In panel (a) the pulse carrier frequengy 4s 50 MHz, corresponding to

the normal dispersion region of Fi§.22 The measured group delay is around 200 ns, which
corresponds to a group velocity 0f67¢ that coincides with the phase velocity. Far= 62.5

MHz, the measured group delay is 419 ns, that is, the pulse takes about twice the time to travel
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Figure 3.24: Pulse captures after traversing the four-beam interferometer ith = 40 m and
Ly =33.93m, Ly =38m, Ly =42 m, Ly = 45.9 m (right panel). From top to bottom, the different
propagation regions sustained by this interferometer are shown. The arrow indicates the pulse centre.

through the interferometer than to travel along a coaxial cable of the same effective length
(Lest = 40 m). The group velocity obtained in this regime is oAl$2¢, similar to that achieved

by doping a coaxial photonic crystallun-2003. In panel (c) superluminal propagation is
observed, with positive delay less than half the delay in the normal regime. Finall\3.24jd)

shows the pulse af. = 75.3 MHz (tunnelling region in Fi3.22), where the steep negative

slope of the refractive index leads to a negative group velocity and, therefore, the pulse centre
moves to negative times. The pulse centre leaves the interferometer 126.5 ns before the centre
of the incident pulse has even entered the structure. Such effect is due to the interference of
the different frequency components of the pulse and does not contradict the causality principle
[Moj-2000.
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In summary, four-beam interferometers present both fasskwdregimes around their minima
if small length detunings are considered in some of the branches. For practical purposes, one

would of course use the simplest three-arm interferometer.

3.5 Conclusions

In this chapter slow and fast light generation in linear and passive multiple-beam interferometers

was studied. The conclusions are the following:

I. We have demonstrated the arising of fast light in linear and passive Mach-Zehnder, three-
beam and four-beam interferometers for frequencies close to the transmission minima.
In the case of interferometers with more than two branches, slow light regime is also
achieved if the length difference between adjacent arms slightly varies from its expected
constant value. These abnormal pulse propagation regimes are possible because of the
abrupt slopes of the transmission phase function occurring in a narrow frequency region
around the transmission minima. As opposed to other systems, anomalous dispersion
in a narrow frequency region around the interferometer’s transmission minima is strong
enough to hold such propagation regimes without the need of microstructuring, doping, or
using nonlinear media in the interferometer’s arms. As in photoinc band-gap systems, this
anomalous dispersion is of structural origin ie. it is not due to dispersion of the medium in
the branches of the interferometer, but to the features in the spectral transmission. Such
structrual anomalous dispersion is stronger than in one-dimensional photonic crystals,

where negative group delays are not predicted.

Il. An approximate analysis is performed within the condition of good fringe visibility (small
aA) and in a narrow spectral region around the transmission minima, where anomalous
regimes are observed. The intensity of SFL regimes depends on how much the group
delay differs from the phase delay, i.e.the excess group delay. For MZI structures, it
is highlighted that the magnitude of the excess group delay at the transmission minima
scales with frequency by a proportionality constant which is the ratio between the real

and the imaginary parts of the complex refractive index of the branch media.




3.5. Conclusions 125

[ll. Transitions in the pulse propagation regime at thesguescies in terms of the system’s
characteristics (attenuation and length detuning) were theoretically analyzed. We proved
that slow light is not possible when the length difference between adjacent anis (

a constant. This is always the case for an asymmetric MZI. In this situation, fast light
Is achieved only if the system has attenuatiof), (while for a lossless interferometer

the group delay equals the phase delay. The total attenuation drives the group delay
transitions at the transmission minima, where tunnelling is the expected regime for low
total attenuation, whereas superluminal and eventually normal propagation are attained
as total attenuation further increases. The same conditions limiting each regime were
obtained for the lossy MZI and the lossy three-beam interferometer with comstalit

was demonstrated that no abnormal regimes can be sustained in symmetric MZI (equal

branch lengths).

IV. By introducing a small length detuning)(in a branch of the three-beam interferometer,
we have demonstrated that slow light can arise. Analytical expressions for the group delay
7, at the transmission minima in the approximation of good visibility of the fringes (small
a/A) and small length detuning were obtained, and a critical length detufinigegyond
which slow light appears was determined. We found that in the case of lossless¢media
is zero, being the role of the attenuation to increase the magnitugle Bbr every pair
of minima located between absolute peaks of the transmission spectra of the three-beam
interferometer, only one minimum may support slow light at a time, whereas the other
minimum will sustain either tunnelling, superluminal o normal dispersion depending on
the system’s length. Let us remark that such length-detuning driven SFL transition stems
from a structural change in the system’s dispersive properties at the transmission minima.
This change is triggered by the passage through a local zero transmission when the critical
detuning value is reached. This is in formal analogy to previously reported group delay
tuning mechanism for pulses reflected on active Bragg gratings by changing the gain. But

unlike it, here the SFL transition is attained in an entirely passive system.

V. Approximations of the transmission coefficient around the transmission minima were
developed to analyze the propagation of sinusoidally modulated wavepackets through

MZI and three-beam interferometers. The field’s envelope module of the transmitted
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signal with carrier frequency tuned at one transmission mmimn was obtained and

an approximate expression for the pulse delay,,., was derived in terms of the
modulation frequency and the HWHM) of the group delay function,(w) around

the minima. We explicitly show that in both systems, pulse delay reduces to group
delay as the modulation frequency tends to zero. Figures of merit like fractional delay,
pulse distortion, and delay-bandwidth product were discussed by performing numerical
simulations on pulse propagation. Taking the pulse duration as the FWHM of the
detected power pulse, we found that fractional delay increases with modulation frequency
and values greater thah35% can be obtained for modulation frequencies greater than
|v|. However, we demonstrated that pulse delay (or advancement) is accompanied by
a certain degree of pulse compression and also peak-breakup. A roughly quadratic
relation between fractional delay and pulse compression was deduced for sinusoidally
modulated wavepackets and we showed that in order to maintain the pulse compression
below 8%, and a secondary-to-main peak amplitude ratio of about 3%, the fractional
delay cannot excee2lr %, and to keep it below0%, the fractional delay cannot exceed
38%. These figures of merit are the same in both, the MZI and three-beam interferometer,
and universal for any frequency range. Maximum delay-bandwidth product is estimated
to be32%.

VI. An experimental demonstration of the model predictions on the pulse propagation

regimes was performed in the RF range by usifig? coaxial cables and x 2 and

1 x 3 power splitters to build MZI and three-beam interferometers, respectively. The
structures were characterized in the frequency-domain, and the group delay curve around
the transmission minima agreed with that predicted by the analytical expressions. Time-
domain experiments were also performed on these structures. For the coaxial-cable
three-beam interferometer, group delay from less tha&00 ns to more than+300

ns was measured for a train 8f3us wide sinusoidally modulated wavepacket with
carrier frequency at a minimum as the length of the first branch was slightly varied.
The experimental results were in good agreement with the theoretical predictions. The

experimental study was extended to a four-beam interferometer, where pulse delays
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VII.

greater than 400 ns and pulse advancements larger than 1Gresngasured for a train

of 5us-wide pulses.

Finally, considering the characteristics intrinsic to the system, i.e. independent of
the operational frequency range, that were outlined in point IV, one observes that the
achievable pulse delays (keeping small pulse compression) are shorter than the pulse
duration. This would be a drawback for developing practical delay lines or optical
buffers based on these systems for signal processing. However, the very abrupt SFL
transition when approaching the critical length detuning in the case of the three-beam
interferometers opens the door for sensing applications. Similar phenomena would be
expected by varying whatever changesdp#cal pathin one of the arms. With this idea,

a Lithium Niobate interferometer operative Bt5um was proposed and simulated in

the frequency and time domain, where a fine control of the phase shift in a branch could
be achieved by applying an electric field through a metallic electrode which induces a
refractive index change on the waveguide. Fractional delays and advancements similar to
those reported in active fiber Bragg gratings were obtained. We propose the use of these
linear and passive three-beam interferometers as an alternative to PBG and active systems

for sensing purposes and group delay tuning.
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Chapter 4

SFL in mono- and multi-layer systems

In this chapter, experimental and theoretical evidence of negative group delays (NGDs)
for reflected pulses in mono- and multi-layer structures is provided. First, we show the
characteristic reflection pattern for multilayer systems based on Bragg mirrors. We discuss
the abnormal values (subluminal, superluminal and negative) that the group velocity can reach
in a narrow spectral region around specific frequencies for pulses reflected on these structures.
In the third and fourth section, respectively, symmetric, linear, and passive microstrip slabs
and distributed Bragg reflectors (DBRS) are analyzed together with experimental results in the
MW range. These microwave operating devices excellently scale to their analogous structures
in the optical range. In this context, we demonstrate a simple scaling law for the group delay
at the slab’s design frequency. In the case of DBRs, we show that, as opposed to transmitted
pulses, NGDs do occur for pulses reflected in these linear and periodical one-dimensional (1D)
structures. Additionally, new interpretation of the Hartman effect is given in terms of the Bragg
reflector’s effective length. Group delay tuning of pulses reflected in asymmetric Fabry-Perot
filters is explored in the fifth section. In this case, our results are obtained in the radiofrequency
(RF) range through frequency- and time-domain characterization of Fabry-Perot filters based

on high and low impedance coaxial cables. Finally, the conclusions of the chapter are given.

129
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4.1 Introduction

Multilayer systems have become an important field in the last years, both from the fundamental
research point of view and because of their technological applicatioasd011 A multilayer

system consists of a periodic arrangement of dielectric media having different refractive indices.
Its main characteristic is the existence of a photonic bandgap, i.e., a frequency region where
light propagation is forbidden, for certain directions and/or polarizations, being completely
reflected. In their 1D version, they are well known as optical multilayers of alternating
dielectric/semiconductor materials. In these structures the photonic band gap arises from the
constructive interference of the multiple waves reflected at the layer interfaces. Bragg mirrors

are a particular case of 1D-photonic crystals.

A DBR is a periodic structure formed by several pairs of layers of two different refractive
indices. Typically, the thickness of those layers is one quarter of the wavelength for which the
mirror is designed X/4 layers). The latter condition holds for normal incidence. Increasing
the number of pairs in a DBR enhances the mirror’s reflectivity and increasing the refractive
index contrast in the Bragg pairs increases both the reflection and the bandvattth983.

DBRs are widely used in narrow linewidth lasers such as vertical-cavity surface-emitting lasers

(VCSELSs) due to their high attainable reflectivity.

A Fabry-Perot (FP) filter is a special case of an interference filter. A simple Fabry-Perot
filter includes a pair of reflectors, typically multilayer structures, spaced a fixed distance.
The structure behaves as an optical resonator that confines and stores light energy at selected
frequencies. FP filters are widely used in sensor and measurement applictesiOB2.

They have also found applications in the design of multiplexer systems for local area network

communications systemS#l-1989.

Multilayer systems are usually analyzed by means of a compact method known as the transfer
matrix method. We start by describing this technique and then we apply it to single slabs,
Bragg mirrors, and Fabry-Perot cavities with Bragg mirrors. In subsequent sections, theoretical
and experimental results are shown on structures fabricated to operate in the radiofrequency

(RF) and microwave (MW) range. This allows to demonstrate the analogy between optical
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Figure 4.1: Multilayer system and nomenclature used to denote the incident and reflected waves.

multilayers and transmission lines and microstrip line-based structures. Additionally, Appendix
B.2.1 describes the Hammerstad-Jensen equations that we use &srence to design

microstrip lines with frequency-dependent characteristics.

4.2 Transfer matrix method

The transfer matrix method (TMM) is useful when analyzing the reflection and transmission
properties of multilayer opticd{ec-2002 Mac-2001 Yeh-1988. The simplest DBR consisting
of two media of refractive indices,; andn, is a paradigmatic case. In this section we apply the

TMM to this structure.

The transmission and reflection properties of a multilayer structure can be describ@dkiy a
matrix of complex elements. This array connects the complex amplitudes of the wave functions

which represent the electric field on both sides of the multilayer, as shown id Rig.

In Eq. @4.1), lettera refers to the complex amplitude of the waves travelling from left to right,
and letterb refers to the complex amplitude of the waves travelling from right to left. The
subscript0 indicates the incident medium of refractive index and subscript refers to the

final medium, of refractive index,, which is generally the substrate where the multilayer is

deposited on.




132 Chapter 4. SFL in mono- and multi-layer systems

-2
bo c D) \bs

The matrix in Eq. 4.1) describes the multilayer set, and may be obtained as theigrod

successiv x 2 matrices that represent the path followed by the wave through the structure,
where the wave propagates through various homogeneous media separated by plane interfaces
of refractive index change in which the wave undergoes a partial reflection. Each of these

situations is described by a propagation matrix and a matrix index change, respectively.

Assuming that the multilayer is constituted by an absorbent media, the propagation matrix is

given by:

pP= A (4.2)

whereg@ is the complex phase which acquires the wave in propagating a disfaihceugh
a medium of complex refractive index = n, + jn,. Assuming normal incidence, it can be
written as:
el : .
¢ = T(nr +jni) = ¢+ jad. (4.3)
In Eq. @.3), a = (27/\)n; is the attenuation coefficient of the wave in the medium through

which it propagates, andis the real phase acquired upon propagation.
The index change matrix, assuming ideal lossless interfaces, can be wrated 983 as:

1 1 7
Dy = P (4.4)

12 7192 1

wherery, andt;, are the reflection and transmission coefficients at an interface between a
medium with real refractive index; and a medium with real refractive index. The Fresnel

coefficients at normal incidence are defined as:
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ny —n2

r19 = 4.5a

= (4.53)
2711

t1o = 4.5b

2= (4.5b)

The transfer matrix of the multilayef)/,zcp, IS then obtained as a result of multiplying
the successive propagation and index change matrices. It can be sdoiB(04 that the
reflection ¢) and transmissiont) coefficients of the entire multilayer for light incident from

the medium in the left is obtained through the transfer matrix elements A, B, C and D. These

coefficients are generally complex and are given by:

bo C
F= N = — 4
T ” bs=0 = (4.6a)
=0 1
t=221, _o=— 4.6b
ao P:=0 = 4 ( )

We can thus relate the reflection and transmission complex coefficients as:

~

F=C-f (4.7)

wherer = |r|e’?" andt = |t|e’?. In the same way, the phases of both coefficients are related

as¢, = ¢, + ¢.; whereg. is the phase coefficient of elemefit

As will be shown in the following sections, the phase functign(w) determines the group
velocity of a reflected or transmitted pulse in a mono- and multi-layer structure. The group
delay is obtained using the phase-time approach explained in s@cti@irom the frequency

derivative of the coefficient phase as:

Ty = O (4.8)
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Using Eqg. 4.7), the group delays in reflection and transmission are rekded

. =T + TC (4.9)

wherer: = 0¢¢ /Ow.

We adapt the TMM to microstrip structures so we can compare the obtained simulations with
experimental results in the radiofrequency (RF) and microwave (MW) range. In this case, the

Fresnel coefficients shown in Egt.p) are defined asJch-2001:

Lo — 1y
== = 4.10a
T12 7+ 7y ( )
275
t19 = 4.10b
p= (4.10)

where the refractive index has been replaced by the inverse of the characteristic imp&dance,

of the transmission linés

4.2.1 TMM applied to a single layer

A single layer, also known as slab, is a planar dielectric sheet or thin film of some thickness say
d, as shown in Fig4.2 For simplicity, we assume that the media to the left and rigltie slab
are the same. Applying the TMM described above to the case of the single high refraction index
layer (H) of Fig. 4.2, its transfer matrix can be written as the following produgbmpagation

and index change matrices:

1 1 7 e i% 0 1 1 r
M = DunPy D = H = e (4.11)

tH \ry 1 0 &%)t \pry 1

1The refractive index is defined as= ,/Ji,€,, beinge, the relative permittivity of the material, and. its
relative electromagnetic permeability. For non-magnetic mateyials, very close to 1, i.en ~ /€. For a plane

electromagnetic wave the wave impedancg is /+okr fege, 22 377/ /e Q
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L H L
n; ny n;
d=1/2

Figure 4.2: General scheme of a slab.

wherer y andt 4 are the reflection and transmission coefficients of the interfacee H
defined either in Egs. 45) or (4.10 for optical and transmission line slabs, respectively.
Considering the Stokes equationgeh-1988 that relate thed — L interface coefficients-(,
andty ) to the L — H interface coefficients, the transfer matiiX,z-p of the monolayer

reads:

M = A § i .
tunthe \ (e—m _ ej¢> B L

(4.12)

Using the above matrix and Ed4.6), the reflectance and transmittance of/2 dielectric slab

operating in the MW range is simulated.

Fig. 4.3shows the expected behaviour with zero-reflection occusairtige resonant frequencies
(wmin and its multiples) and maximum transmission at those frequencies. Therefore, between

two adjacent absolute maxima in reflection there is a minimum.

For simplicity we rewriter y asr and use Eq. 4.3) with ¢ = dngyw/c into Eq. @.12.
Identifying the matrix elemend and considering Eq4(6b), the expression defining the phase

of the transmission coefficient in a slab is retrieved.

¢ = —¢p 4 = arctan

ad 2 ,—ad\ o 1 2 ,—2ad
(™ + e )quq = arctan F e )tangb (4.13)

(evd — r2e=ad) cos ¢ (1 — r2e—20d)
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Figure 4.3: Magnitude of the transmission (red curve) and reflection (blue curve) coefficients/af a
microstrip slab with attenuation. TMM numerical simulation.

The transmission group delay evaluated at the frequencies of minimum reflection (s
obtained from the frequency derivative of the above phase coefficient, where let us point out
that thew—dependence lays on and the reflection minima occur at = n. Given these
considerations, the group delay on transmission at the frequencies of the slab’s reflection

minima is:
oo (1+ 7“26*20“[)

= (1 — r2e—2ad) “Tp

(4.14)

Tt | Wmin T
ow
¢:

s
wherer, = nyd/c.

Likewise, by identifying element’ in Eq. @.12), the phase of thé' coefficient is obtained:

sin (e + ed)
cos p(exd 4 e—ad)

¢c = — arctan { } = — arctan(tan ¢ coth ad) (4.15)

At the reflection minimum the group delay associated to this phase is:

_ 9%c

TC|wmin = R = —7, - cothad (4.16)

p=m

The slab’s group delay on reflection evaluated,gt, can now be calculated by using E4.14)

and Eq. .16 into Eqg. @.9), yielding:
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Figure 4.4: TMM numerical simulation of a\/2 microwave slab with attenuation (black curve) and
without attenuation (red curve). (a) Magnitude of the reflection coefficient -logarithmic scale-, (b) phase
of the reflection coefficient, and (c) group delay on reflection.

(1 + r2e—2ad)
Trlwmin = Tp (1 = r2e-20d)

— coth ad (4.17)
The above concepts are now illustrated by performing simulations on a microwave slab. In
order to keep the first reflection minimaat,;,,, we have considered the slab’s thicknessp

be \/2 for a design frequency af,,;,. The results|(

, ¢ andr,) are shown in Fig4.4, for
two values of the attenuation coefficientand the frequency axis was normalized to the design

frequency.

The magnitude of the reflection coefficient in Fig.4(a) shows the expected behaviour of a
dielectric slab, with minima at the resonant frequencies;( and its multiples). These minima
are less pronounced for the lossy slab because of its stronger attenuation. The sudden phase

change atv,,;, in the lossless slab makes the phase undefined at this frequeney laas no
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physical meaning since the slope is infinite. However, forldlssy slabg, exhibits a large but
finite negative slope at,,;,, with a nonzero, albeit small, reflection. Therefore, negative group
delay (NGD) occurs at the reflection’s minimum. This behaviour was first predicted by Wang

and Zhu Wan-2006 for pulses reflected on a weakly absorbing dielectric slab.

Evaluating Eq. 4.17) at theminima, two cases are distinguished:

I. Lossless slabda = 0), parameteC' is real and consequently: = 0. Therefore, the
reflection group delay is equal to the transmission group delay: = = 7, - [(1 +
r?)/(1 — r?)]. In this case, NGDs cannot be sustained, in accordance to what is observed

in Fig. 4.4 (red curve).

Il. Lossy slab(a # 0), 7. = 7 + 7¢. For small attenuation values, NGDs in reflection do
arise, in agreement with Figd.4 (black curve). For small enough total attenuatiof)

we havecoth(ad) ~ 1/ad which tends taxo, thus makingr, in Eq. @.17 a large

|W7nin

negative number.

4.2.2 TMM applied to a DBR filter

We now consider a periodic multilayer structure of alternating high &nd low () index of
refraction, repeatedv times to form the( HL)" structure. Typically, the thickness of these
layers is equal to one quarter of the design wavelength layer). Often, an additional H-layer
is added at the end of the structure to increase its reflectétere 2002, yielding a(H L)Y H

structure. In this chapter we have focused on this type of DBR.

In general, the phase of a wave reflected on a Bragg filter depends on the refractive indices
of the layers forming the structure, the total number of lay€rsand the refractive indices of
the initial and final media. For simplicity, we have considered that these media havepoth

refractive index. At each interface part of the wave is reflected and part is transmitted.
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Figure 4.5: General scheme of a distributed Bragg reflector (DBR).

Applying the TMM to the case of a simple DBR formed by one and a half peridgds=(1),
as shown in Fig.4.5, the DBR transfer matrix can be expressed as the followingumroof

propagation and index change matrices:

M = Dy Py Du PL Dy Py Dy (4.18)

where once agaim; y andt y are the reflection and transmissian— H interface Fresnel
coefficients defined in Eq4(5) (or in Eq. @.10 for transmission line DBRs), and the Fresnel

H — L interface coefficients-f, ty. ) are related to them by the Stokes relatiovist{-198§.

Once theM 4gcp transfer matrix is obtained, numerical simulations are carried out in order to
compare the reflection of pulses on this simple DBR structure with and without attenuation. For
that purpose, a periodit/4 structure of the typéf LH is selected. The resultg(, ¢, andr,.)

are shown in Fig4.6, where the frequency axis is normalized to the Bragg frequenc

The magnitude of the reflection coefficient in Fi§6(a) shows the typical Bragg oscillations,
with one broad reflection peak centered,gtand two minima in the displayed frequency range
(note the logarithmic scale). As it occurs for the simple slab structure previously analyzed,
these minima are less pronounced for the lossy DBR, whose reflection phase fundfsee

Fig. 4.6(b)) displays a steep but finite negative slope at the freqasiot the reflection minima,
which lead to large and negative values of the group delay idFg). Therefore, tunnelling

of narrow band pulses centered at these frequencies and reflected on lossy DBRs is expected.
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Figure 4.6: TMM numerical simulation of a simple microwave DBR formed by one and a half periods
(N = 1, \/4 layer forwp) with attenuation (black curve) and without attenuation (red curve). (a)
Magnitude of the reflection coefficient -logarithmic scale-, (b) phase of the reflection coefficient, and (c)
group delay on reflection.

4.2.3 TMM applied to a Fabry-Perot with DBR mirrors

To conclude this section, TMM is now applied to a Fabry-Perot (FP) filter with Bragg mirrors.
We have focused of¥/ L) H — L' — (H L)N2 H structures (see Figl.7), whereL' is a spacing

layer of thicknesg.

Considering the simple FP with DBR mirrors formed by one and a half perivds € 1), of
Fig. 4.7, we can obtain the FP transfer matrix as the product of thevatlg propagation and

index-change matrices:

M = D\wPy Dy PLD\wPy Dy P Dy g Py Du P Doy P Dy (4.19)
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Figure 4.7: General scheme of a FP with DBR mirrors.

The M,gcp transfer matrix of the FP structure is then obtained and we have compared the
reflection of pulses on symmetricaV{ = N,) and asymmetrical{; # N-) lossy FPs with
A/2 mirror spacing. The simulation results fot, ¢, andr, are shown in Fig4.8, where the

frequency axis was normalized to the design frequeng{the mirror's Bragg frequency).
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Figure 4.8: TMM numerical simulation of a simple microwave FP with DBR mirrors formed by a one
and a half periodsN = 1, \/4 layer forw) with attenuation (black curve) and without attenuation
(red curve). (a) Magnitude of the reflection coefficieribgarithmic scale, (b) phase of the reflection
coefficient, and (c) group delay on reflection.
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In both cases (symmetric and asymmetric FP), the magnitudeeofeflection coefficient in

Fig. 4.8(a) shows an inverted peak at the Bragg frequengywhich (for the considered mirror
spacing) coincides with a transmission resonance at the gap center. However, the phase function
features at the minima are not the same. The reflection phase funciiofig. 4.8(b) displays

asteep negative slope in all the minima for the symmetric FP (black curve), thus leading to large
and negative group delay values (see Big(c)), but this is not the case for the asymmetric FP

(red curve), where a steep positive slope occurs at some minima.

4.3 NGDs of reflected pulses in microstrip slabs

Theoretical demonstration of the occurrence of NGDs in lossy slabs was presented in section
4.2, in agreement with previous predictions of Wang and AMaf-2006. Here, experimental
evidence of such predictions is provided. For that purpose, the optical dielectric slab considered
by Wang and Zhu is scaled to the MW range and a simple scaling law for the group delay
at the slab’s design frequencyj is derived. We describe the fabrication procedure of
such a microstrip high-impedance dielectric slab, and measure NGDs by frequency-domain

characterization of the microstrip slab.

4.3.1 Slab design

We have designed microstrip single lines following the Hammerstad-Jensen riHadel980,

which provides simple equations for the characteristic frequency-dependent impedance and
the effective dielectric constant as functions of the microstrip width, substrate thickness and
dielectric constant (Figd.9, see AppendiB.2.1for details). In the case of microstrip structures

the attenuation coefficient is retrieved from the contribution of both dielectric and ohmic

losses.

Samples were fabricated on a high-quality substrate using a LPKF Protomat 93s circuit board
milling machine with 100um resolution. This substrate is a higfrequency double-sided

35 um copperplated laminate Taconic TLC, which is a commercial microwave circuit board
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Figure 4.9: Microstrip line design.

material with a dielectric constant of 3.18 and thickness ofrii6 [Taconid. The nominal

loss tangent of this substrate is 0.003. However, we found that experimental structures exhibit
a larger overall attenuation. A fitting procedure using a longer structure (the longest Bragg
reflector where attenuation effects are larger) led to 0.0045 as a more suitable value for the loss

tangent and was used for the theoretical simulations presented in the next section.

We have measured the actual values of every element width and length with an optical
microscope of 10Qum resolution and checked that they lay within the experimental resolution

of the milling machine.

Measurements of the scattering) (parameters were performed by a twaort vector network
analyzer (Agilent, model E8363B). The parametéis and Sy;, which correspond to the
reflection and transmission coefficient, respectively, were recorded in the range of 1 to 9 GHz

every 2.5 MHz.

Experimental data contain a small amount of noise which is not very apparent i the
parameters themselves. To obtain the experimental group delay, the phase data curve must
be differentiated and this amplifies the noise leading to spurious effécs400qd. For this

reason, in the calculations of the group delay following the phase-time approach id.Byg. (

the experimental phase data were smoothed prior differentiation. Although it is well known
that smoothing is an arbitrary process that may give results which vary critically with the

smoothing parameters, we finally used a 17 point SavitZkglay algorithm based on a second-
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Figure 4.10: Top view of fabricated microstrip structure: 8@Xdielectric slab.

degree polynomial fit$av-1964, which does not essentially affect the slope of the phadweeat t
reflection maxima and is satisfactory enough to preserve the key features of the group delay

trends at the reflection minima.

We have fabricated a microstrip slab of 1.377 mm nominal track widtinich yields a 86.62
characteristic impedaneeand 39 mm nominal length. This length corresponds/t» (where

A is the wavelength in the medium) for a frequengy= 2.5 GHz. The nominal impedance
contrast between the 50 ports and the microstrip line corresponds to a contrast {/3),

which is that of the optical dielectric slab refractive index contrast considered by Wang and Zhu
[Wan-2006. Fig. 4.10shows the fabricated sample. Actual values of line width andth are

1.35 mm and 39.1 mm, respectively.

The effective dielectric constante is related with the thickness of the dielectric layer

and width w of the microstrip lineHam-1980 Get-1973. Since the propagation through
the microstrip is not purely TEM the dielectric constant varies with frequency, for the design
frequency (, = 2.5 GHz), e.r = 2.36. The model predicts that the effective dielectric constant

gradually climbs with increasing frequency in agreement with our observations.

The attenuation coefficient of a microstrip line consists of conductor (ohmic) losses and

substrate (dielectric) losses. For a frequeficy 2.5 GHz, o = 2.52 dB/m.
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4.3.2 Results and discussion in the MW range

By means of the frequency-domain characterization performed with the vector network
analyzer, we wish to compare the reflection of pulses on this microstrip slab with the behaviour

predicted by Wang and Zhu for a weakly absorbing optical dielectric $i&m{2006.

For that purpose, we have selected one of their structures, namely a dielectric slab with
refractive indexed : v/3 : 1 and dielectric constant imaginary past = 0.01. In order to

keep the frequency range shown in that reference, with the first reflection minima at 129.9 THz,
we have considered the thicknedsof this optical slab to be /2 for a design frequency of

fo = 129.9 THz, thus yieldingd ~ 0.66 um. Consequently, our microstrip line is a scaled
version, in the microwave range, of this optical dielectric slab. Following the theory explained
in section4.2.1, the standard TMMYeh-1988§ is applied to calculate the reflection coefficient
(magnituder| and phase,) of the optical slab as a function of frequency. For the microstrip
line, these functions are measured using the network analyzer and they are also calculated
numerically by TMM using the actual values of the microstrip line width and length. The
corresponding group delay in reflection, is then obtained from the frequency derivative of

¢,. In this calculation, the same numerical treatment (phase smoothing prior differentiation)
was applied to the experimental and simulated data. The regult®,(andr,) are shown in

Fig. 4.11, where the frequency axis was normalized to the design freyu@.5 GHz and 129.9

THz for the microstrip and optical slab, respectively) for better comparison.

The magnitude of the reflection coefficient in Fig.11(a) shows the expected behaviour of a
dielectric slab, with minima at the resonant frequencjgs(d its multiples). These minima are

more pronounced for the optical slab because of its weaker attenuation. The second resonance
of the microstrip slab is slightly shifted fromf, because of the dispersion in the effective
dielectric constant, which is indeed taken into account in the simulatiter®{198(. The good
agreement between the microstrip experimental and simulated curves probes the success of the
microstrip design and fabrication. The reflection phase funetjoof the optical dielectric slab

has been shifted down radians in order to directly compare it with the microstrip slab curve.

The reflection phase functios in Fig. 4.11(b) display a steep negative slope at the resonant
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Figure 4.11: Scaling of optical (in black) and microstrip (red) slabs. TMM numerical simulation)ofa
optical dielectric slab forfy, = 129.9 THz and thicknesgd = 0.66 um with 7, = 3 ande; = 0.01 (black

curve). TMM numerical simulation (dashed curve) and experimental frequency-domain characterization
(circles) of aX\/2 microstrip slab forf, = 2.5 GHz and lengthi = 39.1 mm with loss tangent 0.0045.

(a) Magnitude of the reflection coefficient -logarithmic scale-, (b) phase of the reflection coefficient, and
(c) 17-point averaged group delay. The horizontal marks indicate the theoretical valuatgf, when

the group delay data are not averaged numerically. The inset figure shows the situgijan atore

detail. The reflection phase functign of the optical dielectric slab is shifted dowtradians in order to
compare both curves.
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frequencies, which lead to large and negative values of thepgdelay in Fig.4.11(c). The

results for the optical slab agree with those\Wgn-2006. The inset shows in detail the group
delays at the design frequency. We ascribe the difference in the experimental and simulated
results for the microstrip to a higher attenuation of the actual slab. Group delay more negative
thant, ~ —9 ns is expected for a microwave narrowband pulse of 2.5 GHz center frequency
reflected on the fabricated microstrip slab. The corresponding situation for the optical slab and
an optical pulse centered at 129.9 THz,isx —0.26 ps. Therefore, microwave pulses reflected

on a microstrip slab show essentially the same physics predicted/an-R006 for optical

pulses reflected on the equivalent dielectric slab.

Now, let us make a closer comparison. Since i3 microstrip slab is a scaled version, in the
microwave range, of the/2 optical slab, a natural question arises: is there a scaling law for
the NGD at the design frequency? Using the analytical expressions of the group delay in Eq.
(4.17), it can easily be obtained that for small attenuation valties reflective group delay at

fo can be approximated as:

1 n, 1 n,
big v ag's (4.20)
27 fo Wo T

Tr%Tt—

wheren, (heren, = ng) andn; are the real and imaginary part of the refractive index,
respectively. Let us point out that in the above equation , the tenvas finally disregarded
because of its very small value. Namety,~ 0.2 ns is obtained from Eq. 4(14 for the

microstrip slab and; ~ 40 fs is expected fromWWan-2006 for the optical slab.

The ration,./n; is 600 for the optical slabVWWan-2006, and 276 for the microstrip slab i,
wheren, = /¢, andn; = ca/wy. Therefore, the expected group delayafor the optical slab

is 7, = —0.73 ps, whereas for the microstrip slab itis = —17 ns. These values are larger
(absolute values) than the ones shown by the curves in&id(c) because of the smoothing

of the group delays. The horizontal marks in Fgl1(c) indicate the values reached hyat f,

when the data are not smoothed numerically. As we can see, these latter values do agree with

the scaling law in Eq.4.20.
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The expression in Eq.4(20 brings an interesting point into attention: an equival@ttion

was obtained for the group delay at the transmission minima of a MZI (se8E9),(section

3.2.1). Therefore, it shows the resemblance between pulse reftecti a dielectric slab and
pulse transmission through a MZI. This should not be unexpected since the reflection spectrum

of a dielectric slab is in fact very similar to the MZI transmission spectrum.

Finally, let us mention that in order to compare the group delays at the resonant frequencies, the
limiting numbers of the time axes in Fig.11(c) were selected such that, once multiplied by its
correspondingf,, they take the same value for both slabs. In this way, the apparent difference

in 7,. for the microstrip and optical slab is due to the ratjgn,.

4.4 NGDs of reflected pulses in Bragg reflectors

Considering the typical reflectance spectrum of multilayer mirrdeh{1988 and as it was
shown in section4.2.2 NGDs in reflection do occur in these structures. In this secti
experimental results for fabricated microstrip Bragg reflectors and various aspects of their

behaviour for reflected pulses, such as the arising of NGDs and the Hartman effect, are analyzed.

4.4.1 Bragg reflector design

Microstrip single lines were designed and fabricated on a high-quality substrate (see Appendix
B.2. The actual values of every element width and length were amedswith an optical

microscope, as it was done for the high-impedance dielectric slab of the previous section.

We have fabricated periodic/4 structures of the typ€H L) H containingN + 1/ unit cells,
where H represents a high impedance line (hominall2y#ith length . ; and widthwy;, and
L represents a low impedance line (nominally$®0with length L ; and widthw;. These Bragg

reflectors were designed to have the first transmittance gap at 2.5 GHz and were fabricated with
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Figure 4.12: Top view of one of the fabricated microstrip structures: Bragg reflector Sl\/i{-h% unit
cells. SMA connectors have %0 characteristic impedance.

N = 2, 4, 6, and 8 unit cells. As an example, Fi§12shows the N = 2 structure. The actual
values of element width and length atg = 19.25 mmuwy = 1.75mm,L; = 18.75 mm, and

wy, =3.75 mm in the case of the Bragg reflector with N = 6 layers. These values were similarly
enough for the other structures and were the ones considered in the theoretical simulations

presented in the next subsection.

4.4.2 Results and discussion in the frequency domain

Measurements of the scattering (S) parameters and group delays were performed by means
of a two-port vector network analyzer (Agilent, model E8363B). The paramsierand .Sy,

which correspond to the reflection and transmission coefficient, respectively, were recorded
in the range of 1 to 9 GHz every 4.4 MHz. As it was mentioned in the previous section,
as a result of the noise present in the experimental data, in the group delay calculations
following the phase-time approach in E4§), the experimental phase data were smoothed
prior differentiation using a 17 point SavitzkyGolay algorithm based on a secordkgree
polynomial fit [Sav-1964 The method used to smooth the phase curve is broadly dedarib
AppendixC.2

We now discuss the frequency-domain characterization of our fabricated microstrip Bragg
reflectors(H L)Y H with N = 2, 4, 6 and 8 in transmission and reflection. Fig13shows

the reflection coefficient’'s magnitude| and phase), (top and middle panels, respectively)
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and the group delay on reflection (bottom panel) obtained from Eg4.8). The experimental

curves correspond to the scattering parameter 8atawhereas the theoretical curves (solid

line) were obtained by applying the TMN¢h-1988, including the wave attenuation along the
microstrip structure. The excellent agreement between theory and experiment is a consequence

of considering the following issues.

First, for the numerical simulation of the structures, the actual values of the lengths and widths
of the H andL layers are considered. The consideration of the actual valués/fary, L, and

wy, rather than their design values, is important to avoid shifts in the positions of the resonant
peaks between theory and experiment. Second, in the calculation of the group delay, the same
numerical treatment (explained in Sect#:3.1and described in detail in Appends) is given

to the experimental and to the theoretical group delay data. Third, as explained before, instead
of the nominal value of 0.003, a loss tangent of 0.0045 was considered in the TMM theoretical

calculations for all the Bragg reflectors.

Let us now analyze the results. Figurd 3(a)corresponds to the microstrip structiréL)*H.

The function|r| shows the typical oscillations in Bragg reflectors, with two main reflection
peaks in the displayed frequency range (note the logarithmic scale). The first peak position
agrees with its design value of 2.5 GHz, while the second peak is slightly shifted off 7.5 GHz in
both the experimental and simulated curve because of the frequency dispersion of the microstrip
effective dielectric constant. Between these peaks there are five reflection minima, and, as it
occurs for the simpler microstrip slab previously analyzed, these minima are associated to large
negative slopes in the reflection phase functipnand the consequent negative values of the
group delay in a narrow frequency region around the reflection minima. For instance, around
1.6 GHz, group delays of8 ns and NGD bandwidth- 140 MHz could be reached. This
value of group delay is similar to the ones obtained in coplanar waveguide left-handed media
[Ibr-2009.

As the number of layers\) increases, the number of minima between the main reflection peaks
increases by the rul2N + 1 (see Figs.4.13(b)-4.13(d) so that a larger number of minima
must fit inside the same frequency interval. This sharpens the minima and makes narrower the

frequency region of NGDs. Also, and due to the higher attenuation as N increases, lower NGDs
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Figure 4.13: Experimental and theoretical results for the frequendgmain characterization of reflected

pulses on microstrip Bragg reflectqi L) H. Top panel shows magnitude of the reflection coefficient,

middle panel shows phase of the reflection coefficient, and bottom panel shows (17-point averaged) group
delay for ()N =2, (b) N =4, (¢) N = 6, and (d)N = 8 unit cells.
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are reached. For instance, also at 1.6 GHz andvfer 8, the NGD is~ —7.5 ns and the pulse

bandwidth is now limited to 90 MHz.

Experiments of superluminal reflection of optical pulses have reported NGB8®ps in fiber
Bragg gratings specially apodized to provide a double-Lorentzian spectral reflectivity with a
pronounced diplon-2003. The results of Fig.4.13show that NGDs should also occur for

fiber Bragg gratings with an index profile like that of a quarter-wave dielectric structure.

Figure 4.14 shows the experimental, and TMM calculated, magnitittleand phasep, of

the transmission coefficient (top and middle panels, respectively) and the group delay on
transmissionr; (bottom panel) obtained from Eq4.8). The three considerations regarding

the excellent agreement between theory and experiment which were explained above were also

applied in these numerical calculations.

Fig. 4.14(a)shows the results for thg L)* H structure. The transmission gaps at 2.5 GHz and

7.5 GHz are now the only minima in the displayed transmission spectrum where superluminal
pulse propagation should be expected. Nevertheless, these minima are too wide and well above
zero, and the phase on transmissignis basically a monotonically increasing function of
frequency, very much like that of a uniform waveguide. Therefore, the corresponding group
delay is positive. As the number of layers N increases (see Fg&4(b)-4.14(d), the
transmission gaps approach zero while keeping their width, and the slopeimfthe gap
regions is smaller than outside the gaps. Thereforeecomes appreciably smaller in the gap
regions asV increases, but it always remains positive. Interestingly, we found that our measured
transmission coefficient data for the Bragg reflectors show that, as opposed to reflected pulses,
NGDs do not occur for pulses transmitted in these linear and periodical structures. This issue
is still controversial Mun-2002 Mun-2007 Poi-200%, and in this context, ouf,, data agree

with a previous theoretical workPjoi-2003 which questioned experimental results reporting
such NGDs for transmitted pulses in radiofrequency band gap structMi@s-2003, which

are a scaled version of 1D photonic crystals. Let us note, however, that NGDs do have been

reported for 3D photonic crystal&Spl-2007.
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Figure 4.14: Experimental and theoretical results for the frequency-domain characterization of
transmitted pulses on microstrip Bragg reflectof$ L)V H. Top panel shows magnitude of the
transmission coefficient, middle panel shows phase of the transmission coefficient, and bottom panel
shows group delay (obtained using E4.8] after filtering the phase function) for (&) = 2, (b) N = 4,

(c) N =6, and (d)NV = 8 unit cells.
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4.4.3 Results and discussion in the time domain

In order to support the previous results obtained from the frequency-domain characterization of
Bragg filters, we carried out timedomain experiments for pulses reflected on these mirrors.
The experimental setup is similar to the one proposed by Munday and Robevtsns2D03

and it is described in detail in Append®&.3. A 20 MHz sinusoidal output of a signal generator

is used to amplitude modulate the sinusoidal signal of a second generator, whose frequency
can be varied up to 6 GHz. This produces a train of sinusoidally modulated wave packets with
carrier frequenciesf() in the GHz range and 50 ns width that is reflected by the Bragg filter
through a low-cost microwave power splitter. Although, a circulator should have been a more
efficient way to extract the reflected wave, we decided to use a 3-dB splitter because of its
simpler design and fabrication by microstrip technology. The reflected pulse train was recorded
at a oscilloscope with a resolution of 12.5 ps (4 kSamples/50 ns), and the pulsergiglayis

measured.

As it is mentioned, we used a microwave splitter to extract the reflected wave packets. Just
us we expected (see Appendix3), this notably distorts the total reflection coefficient. As a
example, Fig.4.15(lines) shows the frequency-domain characterization oktfsem formed

by the(H L)*H Bragg filter and the splitter. In spite of this, it still exhibits the essential features

of the original Bragg filter: a band pass centered at 2.5 GHz and the same number of sharp
minima (but frequency shifted). Around these minima, group delays are still negative, although
they are not as deep as for the Bragg filter alone. Measuring such small group delays {e2ound

to 2 ns) for carrier frequencies up to 3 GHz was challenging and a very precise and systematic

experimental procedure was needed.

Figure4.15shows (symbols) the experimental results for the reflectmefficient and pulse

delay in time-domain detection. The reasonably good agreement between the results from
frequency- and time-domain characterizations is a consequence of some considerations. First,
the choice of 20 MHz for the modulating signal (and hence the pulse width) was made
on the basis of reaching a compromise between low-distortion of the pulse and good time

resolution ensuring at the same time that,. ~ 7,. And, second, since superluminal and
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Figure 4.15: Experimental results for the frequency- and the time-domain characterization of reflected
pulses on thé H L)* H Bragg reflector through a 3-dB microwave splitter. Top panel shows magnitude
of the reflection coefficient, and bottom panel shows group delay (17-point-smoothed in the case of
frequency-domain detection).

mostly tunnelling signals are largely attenuated, a direct observation of the pulse peak on the
oscilloscope is not accurate enough in these regimes. A systematic technique to determine the
pulse center, which is less vulnerable to local fluctuations than the pulse peak, is more adequate.
Here, the pulse center is obtained from a numerical analysis of the data by finding the best fit to

the pulse envelope.

As an example, Figuré.16shows the capture of pulses with very different group del#dys:

upper one corresponds to a carrier frequency.of 1.95 GHz and exhibits an advancement
time of around 2.2 ns, whereas the lower one corresponds te 2.9 GHz and exhibits a

delay time of around 1.8 ns. On the other hand, negative group delay around 3.07 GHz was not

measurable in time detection due to the signal low level and pulse distortion.
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Figure 4.16: Wave-packet traces and envelopes showing two different propagation regimes, with carrier
frequencies: 1.95 GHz (upper), and 2.9 GHz (lower). Each trace is normalized to its maximum value
and shifted vertically for better comparison.

4.4.4 Hartman effect

The remarkable differences between the phase functipréd ¢, in Figs. 4.13and4.14are

the origin of the differences observed Nifn-2003 and [Doi-2007 on the Hartman effect for
reflected and transmitted pulses along Bragg reflectors, as we show below. The Hartman effect
is the saturation of the group delay of a pulse that propagates along a photonic barrier as the
length of the barrier increaselddr-1962. Photonic band gap structures, like Bragg reflectors,
behave as such barriers for pulses with their frequency components inside the band gap. The
frequency-domain characterization of our microstrip Bragg reflectors with increasing number

of layersN makes possible to study the Hartman effect for reflected and transmitted pulses.

For that purpose, we consider the center frequencies of the transmission gaps (Bragg frequencies
2.5 GHz and 7.5 GHz) and we plot, as a function of length, the corresponding values for the
group delay on reflectionr() and on transmissior) obtained from Figs4.13and4.14 The

results are shown in Figd.17. The filled points in the figure correspond to the experimental

values and the crossed points are the TMM calculated values for the structuréé with— 8.




4.4. NGDs of reflected pulses in Bragg reflectors 157

0.6 — —
- v /' Rx(Exp/Sim)
/i @/ & Tx(Exp/Sim) |
e 04 e
w A ; ‘ ‘ |
g ./ N
- /
WS 0.2 bR -
/ : :
/ 2.5GHz (a) ]
0.0 I I I [ R B
0.6 I VAR B A N
i S R
A ew
04 Lo @B g
w2
&
-
R 0 R R L T S S
7.5GHz (b) |
0.0 [ R T A

0 5 10 15 20 25 30 35
Barrier length (cm)

Figure 4.17: Study of the Hartman effect in microstrip Bragg reflectors. Transmission and reflection
group delays as functions of the length of thiéL)" H structures at (a) 2.5 GHz, and (b) 7.5 GHz.
Filled points are experimental data fof = 2, 4, 6, and 8, and crossed points are TMM theoretical
results forN = 1 — 8. The solid line is obtained using a theoretical approachfaxplained in the text,

and the dashed line corresponds to a uniform microstrip waveguide.

The agreement between theory and experiment is very good. Also included is the calculated

group delay for a uniform microstrip waveguidg, (dashed line).

Figure4.17a) shows the group delays at 2.5 GHz. Reflection and trangmigsoup delays
coincide for short barriers, but as the barrier length increasesturates for the structure with

N = 6 layers (barrier length- 25 cm) whereas; does not quite saturate yet. This different
behaviour is more evident at 7.5 GHz (see Fd.4(b), wherer; clearly increases with barrier

length (although at a slower rate thay) while 7, takes similar values as those in Fg§l17a).

This behaviour was also observed in the tunnelling of radiofrequency pulses through coaxial-
cable band-gap structureB@i-2007. It can be understood by closely examining the phase
functions¢, and¢; as NV increases: We found that the curvgsconverge to the same linear
function near the gap center frequency (thus yielding the same group delay), whereas the slopes

of the ¢; curves increase slightly. This is due to the attenuation, which is higher for larger
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structures and smoothes the Bragg interference in the bgntegeon. As a consequence, the

slope of¢, tends to approach the value outside the gap region.

Therefore, the results of Figt.17 clearly show that the role of attenuation is much weaker for

7., which rapidly saturates. This result was interpreteddoif2007 by regarding this kind of
structures as a combination of a shortened lossless Bragg reflector and a uniform but absorptive
waveguide. From this point of view, attenuation mainly affects the transmission wave and has
negligible contribution to the reflected wave. Following this picture, one can attempt to estimate
T; at f, for a given structure as a linear combinationmfand the group delay of a uniform
microstrip line of the same length,, with absorptior-depending coefficients such thatand

7; coincide in the absence of attenuation. For our specific Bragg reflectors we found that a good

approximation is:

A A
Ty R (1 — ﬁ) Tr + ETO (4.21)

whereA = 1 — |r|> — |t|* accounts for the total absorption through our Bragg structurés at
which can be obtained by taking into account that roe—2*%ef andt = toe 2Lt [Col-199§,

which substituted into the definition of yields:

Ar ] — e talet (4.22)

The values obtained from Eg4.@1) exactly match the TMM calculated resultsgfshown in

Fig. 4.17.

The above results point out that in the case of weak absorpti@amdr, approximately have the
same value afy, and a simple expression to estimate them can be very attractive. A reasonable
approach considers the Bragg reflector as a discrete mirror with equal magnitude of the grating’s

reflection, |r

, but placed a distancke; away, such as it gives the proper mirror phasge,In

this picture,7,., can be estimated as the propagation delay of the incident wave traversing a
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distance equal to this effective mirror length; and back:

o 2Leﬁ, (4.23)

Up

where the effective length of a lossless Bragg reflector can be calculated at the Bragg frequency
as [Col-1995:

1 1 1
Let = ~meA _ 4.24
eff 2meff <1+T’E”_ 2meﬁ)’ ( )

wherery, is the H — L interface reflectivityA is the length of the mirror period, andes is
the effective number of mirror periods seen by the incident field at the Bragg frequency. This

number can be calculated as:

tanh [mln (Mﬂ

1—rhL

tanh [ln <%>] ’
THL

(4.25)

Meff =

wherem is the number of mirror periods, which i€ + 1 in our structures.

We consider a propagation velocity,, as the average between the propagation velocities
through 50— and 75 — Q2 elements, which gives a value of approximatept.57 at 2.5
GHz. Neglecting mirror lossed,. saturates with number of mirror periods to a value of
approximately 38 mm. FaV = 6, Lk is 99% of the saturation value. The calculated values of
7, for lossless Bragg reflectors using this simple approach (see solid curve id.Efyare in

excellent agreement with the theoretical values using TMM simulations.

4.4.5 Slow light in mismatched DBRs

NGDs in reflection from slabs and Bragg reflectors were reported in the previous sections,
however, no slow light regime was observed. With the aim of generating not only fast light but

also slow light in a DBR, we have explored a mismatched DBR. The DBR is mismatched by
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Figure 4.18: (a) Reflection coefficient magnitude (b) phase and (c) group delay of a lossy microwave
DBR with 2 + 1/2 unit cells, for two values of fractional detunigg(+5% (red line) and—5% (black
line)).

slightly changing the length of one of its layers. We consider a DBR vith /2 unit cells like
that of Fig. 4.12 where a length detuning in a layer implies a change in theratbe perfect
guarter wavelength layer. Subluminal propagation is demonstrated to occur if the length of any

of the DBR’s layer is changed in a very small fractign ¢f the nominal layer length.

This behaviour is observed in Figufel8 for a simulated Bragg reflect¢i? L)>H where its
last layer has been increased or decreased according t©5%. The reflection’s minima shift

with £ is clear in the group delay curves.

Let us now compare the curves in Figue$8(mismatched DBR) and.13(a) (DBR without
mismatch). Mismatch induces a change in the total length of the structure and the minima
position change. For a detuning 6%, the group delay keeps its negative value at the first

and second minima, whereas large positiyare achieved at the third and fourth minima. On
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the other hand, i€ = +5%, the opposite effect is observed, the group delay at the first and

second minima is large and positive while it is negative at the third and fourth minima.

These results resembles what was presented in Chapigtere asymmetric interferometers
were explored and subluminal propagation was demonstrated to occur if the length of one
the arms was changed in a very small fractigh ¢f the nominal length differencé&. As

we shall see in the next chapter, mismatched DBRs can find interesting applications in digital

communications systems.

4.5 SFL of reflected pulses in asymmetric Fabry-Perot filters

In this section we provide experimental evidence of group delay tuning for pulses reflected

in asymmetric Fabry-Perot (FP) filters with Bragg mirrors, each one having different number

of layers. We show that the group velocity can be tuned from subluminal to superluminal,
and even negative values, by changing the spacing between the mirrors or the attenuation. As
in the photonic band-gap systems analyzed in the previous sections, these phenomena occurs
for narrowband pulses with center frequency close to the mirrors Bragg frequency, and it is
associated to steep slopes of the reflection phase function at this frequency. Experiments are
done in the radiofrequency range by using high and low impedance coaxial cables to build the
FP filters. Also, group delays are measured in time domain by reflecting on these asymmetric
FP filters a train of sinusoidally modulated wave-packets with carrier frequency in the MHz

range.

4.5.1 Asymmetric Fabry—Perot filter design

Structures of the typé HL)MH — [/ — (HL)N?H were assembled using coaxial cables,
where H is a high impedance (78, RG-59/U) cable and. and L' are low impedance (50

), RG-58C/U) cables. The number of bilayers in {{#&L)~ H Bragg mirrors areV, = 1

and N, = 1,2 (symmetrical and asymmetrical FP filters are considered). Each layer is a

quarter-wavelength cable for a design wavelength- 4.24 m, where\ is the wavelength
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Figure 4.19: (a) Schematic of an asymmetric coaxial FP filter and (b) its ideal lossless reflection
spectrum.

in the medium. Since the phase velocity in the cabl@g 8, the Fabry Perot filters have their
first transmittance gap at a frequency of 47 MHz (Bragg frequency of the multilayer mirrors,
fB). Several such structures were fabricated with spadibgtween mirrors (length of cable

L") equal to)/2, \/4 and3\/2. Figure4.19illustrates one of these RF structures, and its ideal

reflection spectrum (without attenuation).

The frequency characterization of such Fabry-Perot filters was performed by means of a two-
port vector network analyzer (PNA series, Agilent EB363B). The scattering parafe{éne
reflection coefficient) was recorded in the range 10-100 MHz every 59.375 kHz with an average
of 64 to help suppress the random noise contained in the experimental data. This noise is not
very apparent in theé parameters themselves, but in order to obtain the experimental group
delay7,.(w), the phase data curve.(w) is differentiated and this leads to spurious effects in
7.(w). For this reason, the network analyzer was configured to smooth the phase data prior
to differentiation by averaging 17 adjacent points. Although smoothing is an arbitrary process
that may give results which vary critically with the smoothing parameters, we finally used a
17—point averaging algorithm that is satisfactory enough to preserve the key features of the

group delay trends.

A 1 x 2 RF wave splitter (PE2000, Pasternack) was characterized too, since this splitter
is used in the real-time pulse propagation experimental setup. The attenuation of the high
and low impedance cables was determined as a function of frequency by measurfg the

scattering parameter (the transmission coefficient) for each kind of cBlate-7006; the
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attenuation coefficients areiy[dB/m] = 0.0032 + 0.1y/f + 0.00126f and o [dB/m| =
0.136 + 0.15y/f + 0.00224 f, where the frequency is given in MHz.

Time-domain pulse propagation experiments were done on these filters. The experimental setup
is shown in AppendixXC.3. The 300 kHz sinusoidal output of generatdr(Tektronix CFG-253)

is used to amplitude modulate the sinusoidal signal of generat@ntraAction VFE-604A4),

whose frequency can be varied betwdén- 80 MHz. This produces a train o3 — us wide
sinusoidally modulated wave packets with carrier frequencies in the MHz range. Although, a
circulator would have been a more efficient way to extract the reflected wave, only a 3-8B

RF wave splitter (PE2000, Pasternack) was available. The reflected pulse train was recorded at

the oscilloscope (Agilent DSO-6032A) with a resolution of 0.5 ns (10 kSamples/5000 ns).

4.5.2 Results and discussion in the frequency domain

We discuss here the experimental results obtained for the frequency characterization of the
assembled FP structures described above. Using the phase-time approackiB)Eue group

delay as a function of frequency is obtained and compared to numerical simulations within the
transfer matrix method (TMM)Yeh-1988. Numerical results varying the number of bilayers

in the mirrors and the attenuation are also discussed.

a. Symmetric and asymmetric FP filters

Firstly, the differences between asymmettié,L) H — ' — (H L)? H, and symmetric structures,
(HL)H — L' — (HL)H, for pulse propagation are investigated. Figute0and4.21show

their reflection coefficient’'s magnitude

, phase¢,, and group delay on reflectiorn, (w)
obtained from the frequency derivative of the phase funcliordw. The experimental curves
correspond to the scattering parameter data whereas the theoretical curves (solid line)
were obtained by applying the TMM, including the wave attenuation along the structure. The
experimental results are excellently accounted for by the theoretical calculations because of the
following issues. First, for the numerical simulation of the structures, the actual valuesif the

andLZ layers length (including the BNC connectors between the cables) are considered, which is
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Figure 4.20: Experimental and theoretical results for the frequency-domain characterization of reflected
pulses on the filte(H L) H — L' — (H L)?H with d = \/4. Top panel shows magnitude of the reflection
coefficient, middle panel shows phase of the reflection coefficient and bottom panel shevp®ifit7
averaged) group delay.

important to avoid shifts in the positions of the resonant peaks between theory and experiment.
Second, the same £point smoothing algorithm as that applied to the measuréd) curve

prior to differentiation was used to calculate the group delay.

Figure4.20corresponds to the structurd L) H — L' — (H L)* H with mirror spacingl = \/4 =

1.06 m. Since all the layers are quarter-wavelength, this structure is in fact a Bragg mirror
(HL)*H. Its reflection coefficient’'s magnitude|, (top panel) shows the typical oscillations or
sidelobes in Bragg reflectors discussed .2 with one main reflection peak in the displayed
frequency range laying at the Bragg frequerfgy= 47 MHz. Steep negative slopes in the

reflection phase functiof,. (middle panel) occur at the sidelobes minima, thus yielding negative
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group delay values (bottom panel) in a narrow frequency reground the reflection minima.
Therefore, tunnelling of reflected pulses centred at the frequency minima is expected. As it was
shown in sectior.4.2 if the number ofH L bilayers (V) increases more minima will appear
between the main reflection peaks by the ¥ + 1, which sharpens the reflection’s minima

and narrows the frequency region for negative group delay. Here, we focus on the possible
propagation regime for pulses centred at the Bragg frequency. In this case, superluminal
reflection with7,, ~ 20 ns is expected from Fig.4.2Q Superluminal reflection occurs if

7. < 2L7r/c, whereLr is the filter's total length (in this casd.r /¢ = 63.6 ns). AsN increases,
simulations (not included here) indicate thafinally saturates as a signal of the Hartman effect

(see sectiod.4.9.

A different situation is obtained when the mirror spacihig not a quarter-wavelength layer.

The structure is no longer a Bragg reflector, but a Falftgrot. The cases = \/2 and3\/2
forthe(HL)H — [ — (HL)*H and(HL)H — L' — (HL)H assembled filters are shown in

Fig. 4.21 The left column displays the reflection coefficient's magdé|r| and phase,. (top

panel) and the group delay on reflection,(bottom panel) of the asymmetrical FP filters, while

the right column corresponds to the symmetrical ones. The coloured area highlights the spectral

region in consideration. Several issues must be remarked.

In all cases (Fig4.21(a)}-4.21(d), the magnitude of the reflection coefficient shows an ingerte

peak at the Bragg frequendlys, which (for the considered mirror spacings) coincides with

a transmission resonance at the gap center. However, there are key differences in the phase
function features around this frequency. In F§21(a) the steep positive phase slope at the
resonance leads to a marked peak.iand signals subluminal reflection. Remarkably, the phase
slope of the asymmetric FP filter flips its sign /2 mirror spacing (Fig4.21(c), signalling
tunnelling reflection. On the contrary, the symmetric structure in4@l(b,d) does not sustain
slow-fast light transition aff 3 by adjustingd, since negative group delays are always obtained.
Finally, these results show that the steeper the slopg ithe deeper and sharper the group
delay peak is. Hence, as in other SFL systems, large pulse delays (or advancements) occur at
the expense of narrowband requirement. For instance, pulse peak advancements as large as 600

ns would be expected for narrowband pulses reflected on the asymmetric FR\Wdthirror
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spacing (Fig4.21(c), where narrowband means that all the spectral component®arprised

within the FWHM region centered &f;. However, in the corresponding symmetric filter (Fig.

4.21(d) the pulse bandwidth could be wider at the cost of reducingtlige advancements to

a maximum of—200 ns.
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Figure 4.21: Experimental and theoretical results for the frequency-domain characterization of reflected

pulses on asymmetric FP (left column) and symmetric FP (right column).

Top panel shows the

reflection’s coefficient magnitude and phase, and bottom panel showg¢int averaged) group delay
for mirror spacing (a, by = A/2, (c, d)d = 3\/2.

To conclude, the results shown in Figd4.20 and 4.21 indicate that transition in the pulse

reflection regime from superluminal to subluminal and furthermore to tunnelling, occurs in

asymmetric FP filters by adjusting the mirror spacing fiom \/4tod = /2 and furthermore
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to d = 3)\/2. This holds for narrowband pulses centered at the Bragg frequency of the
multilayer mirrors in the FP. Similar results have been reported in asymmetric fiber Bragg
gratings specially tailored to provide a doubleorentzian spectral reflectivity.pn-2003. In

that work, though, group delay tuning was probed versus frequency detuning from the Bragg

resonance, i.e. by shifting the pulse carrier frequency along the band gap.

b. Attenuation—driven SFL transition in asymmetric FP filters

We analyze the role of the attenuation as the mechanism to drive the SFL transition in
asymmetric FP when the mirror spacing is fixed\{&® or 3\/2. As an example, Fig4.22
displays|r|, ¢., andr, in the caseV, = 1, N, = 2 and \/2 mirror spacing. The values of
indicated in the figure correspond to the total attenuation calculated at the Bragg frequency. For
the typical attenuation in RG58 and RG-59 cables the group delay at the Bragg frequency
remains negative but a reduction anby 0.5 leads from tunnelling to subluminal reflection.
Similar results were obtained with= 3\ /2 where in that case the attenuation must be reduced
by 0.1. These results along with those of the previous sections, prove the feasibility of tuning

the group delay in asymmetric FP filters by changing the mirror spacing and/or the attenuation.

Group delay tuning for reflected pulses have been reported in FP filters containing atomic
absorbersRao-2004Wan-2004. Rao and Gupta considered a FP cavity with metallic mirrors
filled with resonant absorbers and studied the propagation regimes for both transmitted and
reflected pulses. Transition from subluminal to negative delay was achieved for pulses tuned
at the cavity resonance by increasing the density of absorption aRaasg004. Wang et al.

report similar results for pulses reflected on a slab doped with absorptive two-level or three-level
atoms, only the tuning mechanism consists in adjusting the slab’s optical thickness to specific
values which are even or odd multiples &f/4, where )\, is the slab resonant wavelength
[Wan-2004. Interestingly, if the slab was doped with gain atoms noditon occurred, being

the group delay on reflection subluminal (two-level atoms) or negative (three-level atoms).
Active fiber Bragg gratings with an asymmetric profile have also been proposed for group delay
tuning of reflected pulse£.pn-2003. In that case the transition from tunnelling to subluminal

regime is driven by gain and occurs through the passage of a local zero reflectivity condition.
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Figure 4.22: TMM simulations on the asymmetric FP filteH/ L)L — L' — (H L)?H for mirror spacing

d = )\/2 and three values of the total attenuatiomt the Bragg frequency (47 MHz). Top panel shows
magnitude of the reflection coefficient, middle panel shows phase of the reflection coefficient and bottom
panel shows (17point averaged) group delay.

As opposed to the systems cited above, we have shown the feasibility of group delay tuning in

entirely passive asymmetric Fabry-Perot structures with multilayer mirrors.

4.5.3 Results and discussion in the time domain

Phase-time approach retrieval of the group delay values do not exactly correspond to the pulse
delay measured in a time-domain experiment. Only for very narrowband pulses these delays
coincide. Therefore, we probe in a time-domain experiment the feasibility of the proposed
system for achieving group delay tuning of reflected pulses. As it was previously mentioned,
a 3-dB 1 x 2 RF wave splitter is used to extract the reflected pulse in the time-domain

experimental setup (see Appendhd). A certain distortion in the total reflection coefficient is
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Figure 4.23: Frequency-domain characterization of reflected pulses on the system splifiel #{ —

L' — (HL)*H (d = )\/2). Dashed red curves are the raw data. Green points are the experimental data
after subtracting the effect of the splitter. Solid black line is the TMM simulation (without splitter). (a)
Magnitude and phase of the reflection coefficient, (b) group delay.

thus expected. For this reason, prior to the time-domain characterization of our FP structures, it
is necessary to determine the splitter’s effect on the reflection coefficient and consequently on
the group delay. This is done by measuring the S parameters of each splitter + FP system with

the vector network analyzer.

As an example, Fig4.23shows the frequency-domain characterization of the systemed

by the splitter and the Fabry-Perot filteH L)H — L' — (HL)*H with d = \/2. In panel

(a) we plot the magnitude and phase of the system’s reflection coefficient, and in panel (b)
the corresponding group delay obtained from the phase time approaepdiif smoothed).

Three curves are shown. The dashed curve is the raw data of the splitter+FP system (labeled
uncorrected experimental dgtahe green curve (labeletbrrected experimental datas the

result of subtracting the effect of the splitters, and the solid curve corresponds to the TMM
simulations (which do not consider the splitter). Simulations and corrected experimental data
are in excellent agreement, thus assessing the accuracy of the procedure employed to subtract
the effect of the splitters. The splitter’s effect is deduced by comparing the uncorrected and
corrected experimental data. Obviously, the splitter introduces losses and the amplitude of the

pulse reflected on the system will be reduced. The splitter adds an additional phase (the raw
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data phase function is above the numerical one) but sincee#iteres of the phase function are
preserved, it has basically no effect on the group delay (note the perfect matching of the two
experimental curves for,). Therefore, the system exhibits the same features of the original

Fabry—Perot filter, with a higher attenuation.

Let us now show in time domain the transitions in the propagation regime of reflected
pulses that were predicted in the frequency-domain. Three structures are characterized: the
(HL)H — [’ — (HL)*H asymmetric Fabry-Perot with mirror spacidg= \/4, \/2 and

3A/2. The experimental setup is described in apper@i (Fig. C.6). The modulating

signal is a 300 kHz sinusoidal wave, which results i8.2 — ps wide pulse. This choice of

the modulating frequency is a tradeff between narrowenough bandwidth to avoid pulse
distortion and largeenough bandwidth to get appreciable pulse peak advancements (or delays)
in comparison to the pulse length. For each Falftgrot filter, the carrier frequency is tuned

to the Bragg frequencyfg = 47 MHz). Once again, because of the strong signal attenuation,

a direct observation of the pulse peak on the oscilloscope was not accurate enough to measure
the group delay. Hence, the pulse peak position was obtained by finding the best fit to the pulse

envelope.

Figure 4.24 shows the pulse captures for the three asymmetric FP filteesemdach trace

was normalized to its maximum value. The arrow indicates the envelope peak, whose delay
is obtained as explained in appendix3. The transition in the pulse propagation regime is
evident. The delay for the pulse reflected on the FP filter with spacing between mirrors

is 37 ns, which corresponds to superluminal reflection. By increasing the mirror spacing to
A/2, slow-light reflection with positive pulse delay ef679 ns is detected, this delay is about

12 times larger than that expected at the normal group speed. Eventually, a negative pulse
delay of —485 ns is measured fa3\/2 mirror spacing. Negative delay means that the peak

of the reflected pulse appears before the peak of the incident pulse has entered the structure
(tunnelling regime). As it is clearly demonstrated Rel-2008 abnormal peak advancements

and delays arise from the coherent interference of the pulse frequency components. Each
component travels at the phase veloeity$c in the cables, but their relative phases are modified

after the pulse’s reflection on the system; as a result, the peak of the reflected pulse (where the
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Figure 4.24: Wave-packet traces ¢fHH L)H — L' — (HL)*>H with mirror spacingd = \/4, d = \/2

andd = 3)\/2. The pulse carrier frequency is the Bragg frequency (47 MHz). The arrow indicates the
envelope peak whose delay is obtained as mentioned in Appé€n8ixEach trace is normalized to its
maximum value.

frequency components are all in phase) is shifted backwards (or forwards) and the pulse appears
to travel at superluminal (or subluminal) speed. Because of the low modulating frequency, the

pulses are hardly distorted.

A figure of merit of SFL systems is the fractional delay, defined as the ratio between the pulse
delay and the duration of the incident pul@g,. Different definitions of the pulse duration are
considered that lead to different estimations of the fractional delay. In our experiments, if we
takeT;, as the period of the modulating signalius), the fractional delays obtained aret %

(d = X\/4), +21% (d = A\/2) and—15% (d = 3)\/2). A common definition is to také;, as the
FWHM of the detected pulse; in our experiment that is the patselitudesignal. However,

for a comparison with SFL systems in the optical range (where the oposaér instead of

the field envelope is detected) we must defiijeas the FWHM of the pulse power signal. In

this case, the fractional delays becom#&, +51% and—37%. These values are comparable
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to those encountered in active fiber Bragg gratingsf2003, where gain-driven group delay
tuning from slow to fast-light reflection was predicted with+50% and~ —40% fractional

delays.

4.6 Conclusions

In this chapter the arising of slow and fast light for reflected pulses in linear and passive slabs
and multilayer systems was studied. So far, SFL in reflection had only been reported for doped
multilayer systems, and in left-handed media. The conclusions to be reached in this chapter are

the following:

I. We have provided experimental evidence of NGDs for reflected pulses on microstrip
slabs, thus confirming previous reported theoretical predictions on optical dielectric slabs.
Group delays as low as9 ns were obtained by frequency-domain characterization of a
weakly absorbing microstrip line at 2.5 GHz. This microwave operating device scales
excellently to its corresponding structure in the optical range. The reflective group delay
at the slab’s design frequency verifies a simple scaling law, in the same way as that

obtained for pulses transmitted on weakly attenuating MZIs.

Il. We have also provided experimental evidence of NGDs for reflected pulses on microstrip
Bragg reflectors, with group delays as low a8 ns. As in the case of slabs, this
phenomenon occurs in a very narrow frequency interval around the reflection minima
and is a consequence of the steep negative slope of the reflection phase function at these

frequencies.

lll. We have also measured pulse delays directly in the time-domain. The results obtained
for microstrip Bragg filters using a power splitter are in very good agreement with their
frequency-domain characterization. An advancement of 2.2 ns was detected for a wave-

packet of 1.95 GHz carrier frequency and 50 ns width.

IV. Also, relevant differences in the Hartman effect for reflected and transmitted pulses on

Bragg reflectors have been shown in this work. Namely, the much faster saturation rate
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VI.

VII.

of the group delay in reflection, which is hardly affected bg #itenuation. We have

provided a new interpretation of this effect in terms of the mirror’s effective length. Slow
light on reflection is shown to occur at some of the reflection minima in mismatched
DBRs, where the length of one of its layers is changed in a very small fraction of the

nominal length.

We have shown that group delay tuning can be achieved in passive asymmetric Fabry-
Perot filters with Bragg mirrors by adjusting the mirror spacing or the attenuation. This
occurs for reflected narrowband pulses tuned at the Bragg frequency when the mirror
spacing changes from = \/4 (superluminal) tal = /2 (subluminal) and finally to

d = 3\ /2 (tunnelling). Fixing the mirror spacing b= \/2 or d = 3)\/2, a reduction in

the attenuation coefficient yields a fast to slow light transition at the Bragg frequency.

Experimental evidence of group delay tuning in passive asymmetric Fabry-Perot filters
was obtained in the RF range by using 3:3-wide sinusoidal wave-packets that
were reflected on Fabry-Perot filters based on high and low-impedance coaxial cables.
Fractional delays from+-51% (subluminal) to—37% (tunnelling) were measured upon
increasing the mirror spacing. These values are similar to the fractional delays expected

in active asymmetric fiber Bragg gratings upon changing the gain.

Finally, the possibility of advancing or delaying pulses reflected on these linear
and passive multilayered devices might be interesting for sensing purposes and for
applications that require group delay control (like that discussed in the next chapter).
Other applications include more efficient non-linear optical devices, enhancing the
sensitivity of interferometers, switches and delay lines among others. These systems can
be scaled to the optical range due to the universality of the wave interference phenomena,

and are proposed as an alternative to SFL techniques based on active-bneanmedia.
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Chapter 5

Efficiency enhancement of feedforward

amplifiers based on DBRs

In this chapter, an alternative topology for the feedforward amplifier based on a distributed
Bragg reflector (DBR) is proposed and analyzed. Around its reflection minima, a DBR exhibits

a negative group delay (NGD) in reflection, whereas it behaves normally in transmission, i.e.,
with positive group delay (PGD). We demonstrate that the length of the delay lines that are used
to balance the loops in the conventional feedforward scheme can be reduced, or even eliminated,
by employing a DBR as a NGD circuit in reflection and a PGD circuit in transmission.
Firstly, feedforward linearization technique and general scheme of a feedforward amplifier are
described. Secondly, we describe the concepts that must be considered when designing the
DBR to be applied in the feedforward amplifier that is proposed in third section. The simulated
performance of such feedforward amplifier is shown in the fourth section for a two-tone probe
signal and a 2-channel wideband code-division multiple-access band (WCDMA). In both cases,
a linearization improvement of at least 40 dB is obtained within a 10 MHz bandwidth. This
DBR-based feedforward scheme provides a theoretical efficiency enhancement comparable
to that achieved in feedforward architectures with a NGD circuit, and leads to a larger size
reduction. A comparison of our results with those of previously reported feedforward topologies

is given. Finally, the conclusions of this chapter are summarized.

175
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5.1 Feedforward amplifier description

Feedforward is one of the preferred linearization techniques in actual digital communications
and multicarrier systems, specially in base-station applications within the frame of modern
wireless communications. This technique is well known for its ability of working with

wideband signals and for its good performance in terms of linearization and stable operation

[Cri-2002.

The general scheme of a feedforward amplifier based on delay lines consists of two loops, as
shown in Fig. 5.1 The first one is the signal cancellation loop, where the megtulation
distortion (IMD) generated by the main power amplifier (MPA) is isolated by subtracting the
input signal to the MPA output signal. The resulting error signal is an estimation of the distortion
introduced by the amplifier. Since the power level of the error signal is small, it is necessary
to use an error power amplifier (EPA) by means of a second loop (distortion cancellation loop)
which hardly brings in distortion. By combining the signal at the output of the main amplifier
with that of the error amplifier, the distortion generated by the former can be reduced. In order
to compensate the time delay introduced by both the main and error amplifiers, delay elements

in each loop are employed.

DELAY #2
o ol -
IN > w o + ouT
W/\ ;xx/\ -1 SUBTR. #2
T T T T T T T ~ T T .
! signal 1 ' distortion 1
1 1
1 cancellation : W 1 cancellation :
| loop ! : loop !
N e - ’ II | ’
+y
(1) EE N NG |
DELAY #1 —/ I/
SUBTR. #1

Figure 5.1: General scheme of a conventional feedforward amplifier with delay lines to compensate the
delays introduced by the amplifiers.
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The success of the feedforward linearization techniqueiregja high degree of amplitude and
phase matching between the signals in the branches that are combined. Various techniques
to compensate the amplitude and phase imbalances (that inevitably occur due to component
tolerances, temperature drifts and operating changes) have been re@ant&dD6 Kur-2007.

Most of them are based on an adaptive control of complex coupling factors that are introduced in

the conventional feedforward topology by means of adjustable devices, like vector modulators.

Another key aspect is the power efficiency. The main sources of efficiency degradation are
the power consumption of the EPA and the delay elements connected at the output of the
MPA. To optimize the efficiency, the EPA power consumption can be minimizad2003.

But still the use of delay elements markedly degrades the efficiency because of their insertion
losses Par-1994 Therefore, minimization of the delay elements is critimal high efficiency
applications. Furthermore, a reduction in the size and cost of the feedforward amplifier would
be achieved, because the delay elements are typically bulky and expensive high-power coaxial

cables or delay-line filters.

In this context, the concept of negative group delay (NGD) has taken a prominent role and
various applications with passivéNgt-2007 and active Cho-2010 Rav-2007 electronic
circuits were proposed. As we have seen and analyzed in the previous chapters, in a NGD
circuit, the time that takes the peak of the signal’'s envelope to be transmitted (or reflected) by
the circuit is negative, i.e. the envelope’s peak exits the circuit before the peak of the input
pulse has entered it. This occurs for rather narrowband signals with carrier frequency where the

circuit's transmission (or reflection) phase functigfw) has a rapid decrease with frequency.

The NGD-circuit solution to the feedforward amplifier implies compensating the positive delay
introduced by the amplifier's components, thus avoiding (or at least reducing) the use of delay
lines. This modification of the conventional feedforward topology was, to our knowledge, first
proposed inlNot-2007. The NGD circuit consisted in three series RLC resonataenged in

7w shape and connected at the driver stage of the EPA. A 40% reduction of the delay line in the
distortion cancellation loop was reported. However, this system is not convenient to amplify
wideband modulated waveforms such as wideband code-division multiple access (WCDMA)

signals, where the bandwidth is about 5 MHz. A more adequate proposal was reported in
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Figure 5.2: Scheme of a feedforward amplifier based on an NGD circuit.

[Cho-201Qand is illustrated in Fig5.2, where an active NGD circuit with distributed elements
(transmission line resonators) in the common branch of the two loops is employed. As a
consequence, the delay line in the second loop, which greatly contributes to the efficiency
degradation, is almost completely reduced and that of the first loop is substantially shortened.
Nevertheless, small signal high gain amplifiers had to be connected to compensate for the NGD-
circuit loss [Cho-201Q. Although the dc power consumption of these small signal ldiefs

is less than that consumed by the delay lines in the conventional feedforward scheme, an

alternative solution might be interesting.

We have provided experimental evidence of negative group delays in distributed Bragg
reflectors (DBR) fabricated with microstrip technology, for pulses centred at the frequencies
of the reflection minima in chaptet. Around these frequencies, it is possible to delay the

transmitted pulse while advancing the pulse reflected on the DBR.

In this chapter, we set as our goal to demonstrate the viability of a new feedforward amplifier
topology, where the delay elements in both loops are almost completely eliminated by using a
microstrip DBR as delay compensation element. Such DBR is a simple, passive, compact and

low-cost structure.
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5.2 Bragg reflectors design

A Bragg reflector operative at microwave frequencies can be made by periodically connecting
conventional microstrip transmission lines of different widths, all of them quarter-wavelength
for a given design frequency, as it has been studied extensively in the previous chapter. We
design(LH)" L structures, wheré is a low impedance line (4Q), H is a high impedance

line (50(2), and N is the number of unit cells/(H). Fig. 5.3gives an example of such a DBR
structure with N = 31/2 periods. The impedance and effective dielectric constant of each line
is calculated using the Hammerstad-Jensen approximatiam{198( for a high-frequency
double-sided copper plated laminate of 60 mil thickness, a relative dielectric constant of 3.6 and
0.0013 loss tangent. These are the properties of the commercial RT/duroid 6035HTC laminate,

which is a suitable choice for high power applications due to its high thermal conductivity.

The resulting impedance profile is the origin of the device’s typical behaviour, which is depicted
in Fig. 5.4for a DBR structure 08! /2> periods, 40/50 impedance contrast and design frequency
fo = 3.23 GHz. The transmission and reflection coefficients (panels (a) and (b)) were simulated
using the transfer matrix method¢h-1988 adapted to microstrip structures (see chagder

The group delay curves in panel (c) were obtained by deriving the corresponding phase function
with respect to frequency. The DBR exhibits a rejection band (or band gap) in transmission and
a passband in reflection centred on the design frequéndyesides this principal band (which
repeats at odd multiples qof, ), the reflection coefficient shows a number of local minima
around which the group delay in reflection)is negative: the smaller the value of the reflection
minimum, the narrower and more pronounced is the corresponding peakBecause of the

attenuation, the magnitude of at the reflection minima gets smaller for higher frequencies.

Bragg Reflector
N = 3% cells

Figure 5.3: Microstrip Bragg reflector structurd. /)~ L of 31/2 periods.
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Interestingly for our purposes, at the reflection’s local imia the group delay in transmission
() is positive. This situation is more remarkable at the frequencies on the band gap edge, which
exhibit strong NGD in reflection and PGD in transmission. As it will be clear in the following

sections, this feature is essential for applying the DBR to the feedforward ampilifier.
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Figure 5.4: Simulated results of the (a) magnitude of the transmission coeffidigndashed line) and

of the reflection coefficient;; (continuous line), (b) transmission and reflection phase functions (c)
group delay of the DBR structurd. H )3 L with impedance contrast 40/50.

Therefore, the starting condition in the design of the DBR is to set one of the reflection’s local

minimum (usually, but not necessary, the lower band edge) at the desired frequency value.
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Figure 5.5: Simulation of (a) reflection (solid lines) and transmission (dashed lines) coefficients, and
(b) group delay in reflection (solid lines) and in transmission (dashed liné%)§"" L Bragg reflectors
with impedance contrast 40/50, fof = 2 (black), 6 (red) and 10 (blue).

Such target frequency corresponds to the main spectral component of the signal entering the
feedforward amplifier. We need to know what determines the location of the minima. Numerical
simulations show that the number of minima between principal bands increases as the number
of periods N increases. The position of a minimum of the reflection coefficient is mainly linked

to the design frequency (i.e., to the length of the elements in the unit cell) and to the number

of periods. Although in a less drastic way, the position of the minima is also affected by the
impedance contrast.

Let us analyze the degree of control of the NGD and PGD values at the reflection’s minima,
since the ability to design the DBR with the desired group delay values is necessary for
the application proposed in this work. Figh.5 shows the evolution of the reflection and

transmission coefficients and group delays with the number of peNddshe frequency region
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Figure 5.6: Simulation of (a) reflection (solid lines) and transmission (dashed lines) coefficients, and
(b) group delay in reflection (solid lines) and in transmission (dashed liné€)j? L Bragg reflectors
with different impedance contrast: 40/50 (black), 30/50 (blue) and 20/50 (red).

centred on the lower band edge. Three struct(ite$)” L with impedance contrast 40/50 and
periodsN = 2, 6, 10 are considered. AS increases from 2 to 10, the reflection coefficient
increases more than 27 dB. At the same time, the absolute valyedetreases in more than

11 ns. In turn, the transmission coefficient decreases in less than 0.4 dB,iaci@ases in less

than 3.2 ns. The effect of the impedance contrast on the group delay at the lower band edge is
illustrated in Fig.5.6. It shows simulations on th@.H)?L Bragg reflector for the following

L/H values: 40/50, 30/50, 20/50. The position of the minimum is affected only slightly by the
impedance contrast. As the impedance contrast increases from 40/50 to 20/50, the reflection
coefficient increases more than 14 dB. At the same time, the absolute vatualetreases

in more than 8 ns. In turn, the transmission coefficient decreases in less that 0.04 dB, and
increases in less than 0.3 ns.
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Figure 5.7: Evolution of the reflection and transmission coefficients (top panel) and group delays
(bottom panel) when readjusting the length of the last element in a DBR2Wittperiods. Each period

consists of a 4@ and a 500 microstrip line with length designed to obtain th&! minimum at 2.14
GHz.

Considering the range of group delay values displayed in these figures, we conclude that the
group delay’s absolute value at a given frequency close to a reflection minimum varies only
very little with the impedance contrast or with the number of periods. Hence, the change of
these two parameters within the fabrication practical limits makes it possible to modify the
group delay in a few nanoseconds. Nevertheless, if a broader range of group delay values are

required, action should be taken on another aspect of the structure.

With this idea, we have analyzed various DBRs where the length of one of its elements
is slightly changed from its expected value. Fi§.7 shows the effect of diminishing or
augmenting the length of the last element of a DBR2gt periods which was designed to

obtain the2™? minimum (lower bandedge) at 2.14 GHz with elements of 13.5 mm approximate
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length. Considering as starting point a reference struetittegroup delay at the minimum of
about—84 ns, it is possible to reach200 ns by only increasing in 5@ the length of the last
element, whereas30 ns NGD would be achieved by only reducing the length in 420

The typical delay magnitude required for these structures in order to linearize power amplifiers

operative at microwave frequencies lies below 20 ns. Hence, the length reduction in the last
element must be hundreds of microns. Besides, the rest of elements will have to be readjusted
to avoid changing the frequency of the minimum. If the number of periods is increased, the

effect of readjusting the last element is less severe, thus enabling a finer control over the group
delay. Consequently, when designing the DBR, attention should be paid to the accuracy of
the fabrication system in order to decide what number of periods leads to a good compromise

between device size and degree of control on the delay.

Regarding the transmission coefficient, this passive device exhibits a relative flat response
around the frequencies of the reflection minima. It can be easily designed to yield transmission
values above 98% with group delays below 0.5 ns, as far as high frequency substrates are

employed.

The design of the DBR that actually is used in our feedforward amplifier takes into account the
above considerations. The number of periods is left low to reduce size. The impedance contrast
is chosen so that the magnitude %f; is appropriate for signal cancellation in the first loop.
Finally, the length mismatch of the last element is adjusted to achieve the proper group delay

on reflection.

5.3 Feedforward topology with DBR

We replace the NGD circuit proposed in in previous scheies-P007 and [Cho-2010 by a
microstrip DBR, with the aim of reducing the length, not just of the delay line in the distortion
cancellation loop, but also of that in the main loop. This solution is based on the ability of DBRs

to provide NGDs and PGDs for reflected and transmitted pulses, respectively, as well as on the
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Figure 5.8: Topology of the feedforward amplifier proposed in this work, where a DBR that drives NGD
on reflection and PGD on transmission is employed. The cancelled delay lines are shadowed.

control of such delays by modifying the DBR characteristics (number of periods, impedance

contrast and length readjustment in one of the lines).

The amplifier’'s topology is illustrated in Fig5.8. A feedforward amplifier with a two-tone

probe signal is considered. The output signal of the MPA (containing IMD and delayed) is sent
to the DBR through a circulator which, in turn, sends the signal reflected on the DBR to the
common branch of both loops. Let us point out that although the large signal attenuation in
passive NGD circuits is usually a drawback of this kind of linearization technique, in our case,
where the NGD comes in reflection, it is rather an advantage since only a little fraction of the
signal amplified by the MPA is required to be brought to subtragiomwhile the rest of the

signal is transmitted through the DBR with almost 100% transmission.

An appropriate design of the DBR reflection spectrum will compensate the delay brought in by
the MPA, thus making delay lind unnecessary (note the shadowed delay symbol in the figure).
Consequently, the reference signal that enters subtrdcieill cancel the two principal tones,
while only letting pass the error signal. This signal is then amplified by the EPA which, in turn,
yields a time delay that is in general smaller than that introduced by the MPA. Therefore, at the
entrance to subtract@®?, the error signal is expected to be advanced with respect to the signal
that arrives through the DBR. For that reason, an extra delay line at the EPA output may be

necessary, as the circuit in the figure shows. In addition, two vector modulators were included
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for a correct fine balance of gain and phase in both lo@b®{201(. Note, too, that since the
DBR drives a PGD on transmission, it is possible to reduce or even to completely eliminate

delay lineg2.

5.4 Results

Simulation results of the proposed DBR-based feedforward scheme were obtained by using
Keysight's Advanced Design System (ADS) and they are given below. As MPA we selected
a power amplifier of 45dB gain at 2.14 GHz that brings in 11.6 ns time delay ‘with dBc
linearity (see Fig.5.9), whereas an amplifier of 8.9 ns delay and gain of 42 dB was chose
for the EPA. This choice was made for an ulterior comparison of our results with those of
[Cho-2010. The DBR structure was designed to optimize the suppregsidine third order

IMD of a two-tone signal at 2.14 GHz and 10 MHz bandwidth. A structur@!@f periods

with lines of 402 and 5002 and a length readjustment of the last line of —3.5% was used. The
DBR size is about 6850 mm?. It is smaller than the NGD circuit (1830 mm?) employed

in [Cho-2010.
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Figure 5.9: Power of the harmonics at the output of the main power amplifier without feedforward
correction (grey bars) and with the feedforward correction (black bars) for a two-tone input signal.
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Figure 5.10: Balance of subtractarl: cancellation of the principal signal for a two-tone input.

This structure exhibits a negative group delay on reflection b1.6 ns for a signal with two
tones at 2.135 and 2.145 GHz. Fi.10shows the suppression of the principal signal in
subtractorfl: the comparison between the signal reflected from the DBR (which can be seen
as a small fraction of the main amplifier output signal) and the subtractor’s output signal yields
a subtractor’s efficiency of 100 dB. At the same time, the DBR presents a negative group delay
on reflection of about-8.8 ns and about-0.4 ns on transmission for the IMD signal, thus,
being necessary to introduce a delay line of 0.3 ns at the EPA output. The output signal of
the feedforward amplifier is shown in Fih.9, where a—87 dBc linearity is observed, thus

improving in 42 dB the performance with respect to the non-linearized amplifier.

Table 5.1 gives a comparison of the delay lines considered in threeréift feedforward

topologies that use amplifiers of the same delay level.

Delay linefl (ns) Delay linet2 (ns)
Conventional 11.6 8.9
Ref [Cho-2010 4.1 1.2
This work 0 0.3

Table 5.1: Comparison of the value of the delay lines used in different feedforward amplifier topologies.
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Type of results BW (MHz) Linearity (dBc)
Ref [Cho-2010 Experimental 10 -53
Ref [Oga-2004 Experimental 10 -55
This work Simulated 10 -65

Table 5.2: Comparison of the linearity obtained in feedforward amplifiers with a WCDMA signal at

2.14 GHz.
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Figure 5.11: Power spectra at the output of the main amplifier without (black line) and with (blue line)
the feedforward correction for a 2-channel WCDMA signal.

In addition, simulations of the proposed feedforward amplifier were run for a 2-channel

WCDMA input signal at 2.14 GHz.

and without feedforward linearization.

Fig.5.11 shows the output amplifier spectra, with

Although this structure does not exhibit a flat

response in reflection, our results represent an improvement of 40 dB in the linearity within

a 10 MHz bandwidth. Tablé.2 compares the linearity achieved in this work with that

obtained experimentally by other authors. These results indicate that a practical realization
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of such amplifier may provide improvements comparable todluddained inCho-201Q and
[Oga-2004.

5.5 Conclusions

In this chapter an alternative topology for the feedforward amplifier based on a DBR is

proposed. The conclusions to be reached in this chapter are the following:

l. We have provided numerical evidence of the efficiency enhancement of feedforward
amplifiers based on distributed Bragg reflectors. We have proposed a new amplifier
topology that takes advantage of the simultaneous negative group delay on reflection,
as well as positive group delay on transmission, of passive DBR structures implemented
with microstrip technology. In this new feedforward amplifier scheme, the conventional
delay elements are replaced, totally or partially, by a single DBR included in the distortion
cancellation loop. Through a slight length readjustment of one of the microstrip lines
in the DBR, this structure provides a substantial range of NGD values, running from a
few nanoseconds to several tens of nanoseconds. Finer group delay adjustments can be

achieved by changing the impedance contrast and the number of periods.

II. As an example, we have designed a DBR structure that compensates an MPA delay of
11.6 ns for a two-tone signal at 2.14 GHz and 10 MHz bandwidth. The linearity obtained
at the output of the feedforward amplifier wa87 dBc, which involves an improvement
of 42 dB with respect to the non-linearized amplifier. Thanks to this solution, only an
extra delay line of 0.3 nsin the distortion cancellation loop was required. Additionally, we
have also obtained a 40 dB linearization improvement for a 2-channelWCDMA signal of
10 MHz bandwidth. For larger bandwidths, more complex structures should be required,
involving multistage DBRs, in order to obtain a flatter response in reflection. In that case,
a reduction in the device size would be welcome and the use of meander shaped DBRs is

an option to be considered.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis has presented a theoretical and experimental investigation ef aluvfast-light

effects in two kind of linear and passive structures: multifdeam interferometers and mono

and multi-layer structures. The summary and detailed conclusions for each system, as well
as for the proposed application in the microwave range, have been given at the end of their

corresponding chapter. Here we provide an overall discussion of the main results.

In both the systems addressed in this work, the steep dispersion responsible for the abnormal
group velocities has a structural origin, since it comes from the coupling between the pulse
carrier frequency and the characteristic length of the system. Therefore, these SFL effects do
not rely on electronic nor optical properties of the material in the branches of the interferometers

or in the multilayers, as opposed to the case of media with gain or absorption resonances.
As a consequence, the systems that have been studied here are scalable, and this provides
easier experimental platforms where our theoretical models have been checked using the

radiofrequency (RF) and microwave (MW) spectral range.

As a first main contribution of this thesis, a novel scheme to generate slow and fast light

using multiple-beam interferometers has been proposed and investigated. Exact analytical

191
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expressions for the transmission coefficient and group dedag been obtained as a function

of frequency considering constant (dispersionless) attenuation and refractive index for the
medium in the branches. An approximate analysis (valid for good fringe visibility and for
frequencies around the transmission minima) has predicted the allowed propagation regimes
in Mach—Zehnder and threebeam interferometers in terms of the system’s parameters
(attenuation, refractive indexz, nominal length difference between branckesnd length
detuningf). For the first time, to our knowledge, it has been demonstrated that slow light cannot
possibly be sustained if the length difference between adjacent branches of the interferometer is
kept constant, like it is always the case of the MZI. If a small length detuning is allowed in one
of the branches of the thredeam interferometer, slow light can arise at one of the two minima

as long ag exceeds a critical value. This critical value that sets the slow to fast light transition
has been obtained as a functionagfn and A. Simultaneously, tunneling, superluminal, or

normal regime is sustained at the other minimum, depending on the system'’s total attenuation.

The propagation of sinusoidally modulated wave packets through MZI and-tbezen
interferometers has been analytically obtained. The limitations of fast and slow light effects
have been set as a function of the system’s and the pulse characteristics by quantifying typical
figures of merit. Namely, fractional delay, pulse compression, expected -DB&ydwidth
Product and pulse break-up. These values, which are similar to those achieved in photonic band
gap systems, are intrinsic to these interferometers and do not depend on the spectral range of

operation whatsoever.

As a proof of model, RF experiments in the frequency and in the time domain have been
performed on MZI and threebeam interferometers based on coaxial cables, yielding excellent
agreement with the model predictions. Nonetheless, since most of the applications of slow
and fast light are geared toward photonics, the model predictions have also been checked
through numerical simulations in the optical range of al&ised MZI and a Lithium Niobate

three-beam interferometer, both operative at 1,5b.

Regarding the potential application of these interferometers, typical values of their figures of
merit are summarized in the Tab&l and compared with those of other SFL techniques.

As it occurs in other techniques, the achievable pulse delays/advancements (provided pulse
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compression is kept small) are always shorter than the puwlsgtidn. This is a drawback

for developing practical delay lines or optical buffers for signal processing. However, the
very abrupt SFL transition when approaching the critical length detuning in three-beam
interferometers opens the door for sensing applications. This suggests inducing the necessary
phase shift not by a length detuning, but through a voltage which changes the refractive index

on a branch of a Lithium Niobate interferometer, for example.

To conclude, the first part of this thesis provides a comprehensive study of the arising,
capabilities and limitations of structural slow and fast light in a system other than a photonic
band-gap structure. This is relevant since structural SFL effects had been only reported in
systems exhibiting photonic band gaps, such as photonic crystals, Bragg gratings or coupled

resonators.

The second main contribution of this thesis focuses on slow and fast light effects for pulses
reflected on multilayer structures that are commonly used in actual photonic systems. While
these effects have been widely studied for transmitted pulses, fewer results have been reported
for pulsesreflectedon these structures. Our investigation here has run at a purely numerical
and experimental level, where microstrip technology was applied to fabricate slabs and DBRs
operative on the microwave range, FabBerot filters were designed in the RF range and

assembled using coaxial cables, and the transfer matrix method was used for the simulations.

With the above procedure, this thesis has provided experimental confirmation of a theoretical
result reported by other authors on negative group delays for pulses reflected on weakly
absorbing dielectric slabs. In addition, we have derived and demonstrated the scaling law that
the group delay satisfies at the frequency of the reflection minima, where this behaviour occurs.
We have found that the ratio of the real and imaginary part of the refractive imgléx,j sets

the magnitude of the pulse advancement times the pulse center frequency. Our study has also
made evident the analogy between such fast light effects and those described for narrowband
pulses transmitted on low-loss MZI, which also verifies this simple scaling law and whose
transmission spectrum is very similar to the reflection spectrum of a low-loss dielectric slab.
Therefore, we can conclude that slow light on reflection cannot be supported on linear, passive

low-loss dielectric slabs.
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Results |FD)| DBP ng
3-beam int. 0.25 0.18 +45
DBR 0.13 0.1 7
Asymm. FP 0.5 0.37 19
CPO [Geh-2006 0.16 — —4000
SBS [Son-200% 0.3 1.05 7.6 x 107*
PBG [Bab-2008 40 57 5.5
C-D [Oka-2007 1200 42 1.8x 1074

Table 6.1: Comparison between different systems: fractional del&y), delay-bandwidth product
(DBP) and group indexr(y).

Remarkably, the characterization of SFL effects in DBRs with mismatched layer length and in
asymmetric FabryPerot (FP) structures (with different number of layers in each mirror) has
shown tunable slow to fast light regimes by changing either the mirror spacing or the attenuation
(in the case of asymmetric FP) and by slightly modifying the length of one of the layers in
the DBR. For example, by reflecting 3.3n-wide sinusoidal wave-packets on asymmetric FP
based on high and low-impedance coaxial cables, fractional delays from +51%v8b were
measured. These values are similar to the fractional delays reported by other authors in active

asymmetric fiber Bragg gratings.

The primary figures of merit of these multilayer structures are shown in the Bablend

take values of the same order as those of multipleam interferometers. This should not be
surprising because the physical origin of SFL effects in the two kinds of systems addressed
in this work is the same. Namely, they are prompted by the interference of the pulse spectral
components and are associated to Bralgge conditions for total destructive interference of
transmitted waves or total destructive interference of reflected waves, respectively. Therefore, a
common disadvantage is the fact that these pulse delays/advancements occur around spectral
minima and therefore, they are accompanied by a strong attenuation of the exiting pulse.
Nevertheless, we believe it is worthwhile studying the application of these systems as sensors of
strain, temperature or any magnitude that slightly changes the phase shift involved in this abrupt

SFL transition. We can also envisage their application as group delay lines in cases where




6.2. Future work 195

delays/advancements are not required to be too large; anpdxathe application discussed

in the third part of the Thesis.

As the third and last contribution, this Thesis has proposed the application of a DBR designed
to operative in the MW range to enhance the efficiency of feedforward amplifiers, which use a
standard linearization technique to eliminate the intermodulation products that arise in power
amplifiers. This work proposes an alternative topology that enhances the efficiency and reduces
the size of the conventional feedforward amplifier scheme by employing a microstrip DBR as
a negative group delay (NGD) circuit on reflection and as a positive group delay (PGD) circuit
on transmission. As an example, a DBR structure that compensates a delay of 11.6 ns in the
power amplifier for a two-tone signal at 2.14 GHz and 10 MHz bandwidth was designed. A
linearization improvement of 44 dB with respect to the non-linearized amplifier is obtained
with the only requirement of an extra delay line of 0.4 ns in the distortion cancellation loop.
Additionally, we have alo obtained a 40 dB linearization improvement for a WCDMA signal of

10 MHz bandwidth. This DBR-based feedforward scheme provides an efficiency enhancement
comparable to that achieved in feedforward architectures with a NGD circuit, and leads to a

larger size reduction.

Finally, the possibility of advancing or delaying pulses on these linear and passive devices
might be interesting for photonic applications such as sensing and group delay control, since
these systems, which are proposed as an alternative to active or non-linear media, can be scaled

to the optical range due to the universality of the wave interference phenomena.

6.2 Future work

Two main directions could be followed for future work based on this Thesis. Efforts toward
the practical application of SFL based on these interferometers and multilayer structures might
be a path worth exploring. In particular, their suitability for sensing applications and as group
delay devices would improve if we are able to increase the operational bandwidth. Being a
narrowband effect is a common problem to material-based and structural-based SFL that is

addressed through different methods. For example, for material SFL systems, channelized
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techniques have been proposed. It consists on creatingasepzarrowband SFL spectral
channels for the different frequency components of a broadband signal and subsequently

combine these outputs to achieve large fractional delays of broader signals.

Regarding applications based on group delay transitions, an important task would be to develop
a full analytical description of SFL effects on asymmetric FPs as a function of the system
parameters (mirror spacing d, number of layers in the mirrors, and attenuation coefficient),
much in the same way as it has been done for multibeam interferometers. This complete

description would allow to optimize designs for sensing applications.

A second path which we believe is interesting to follow focuses on achieving controlled group
delay tunability. To achieve this, the use of liquid crystal-based interferometers and multilayer
filters provides a way to perform this control by means of a voltage. For example, tunable
SFL effects on liquid-crystal infiltrated Fabry-Perot filters and common-path polarization
interferometers could be investigated by using the Jones matrix formalism for polarized light,
since liquid crystals are highly anisotropic. The common-path polarization interferometer that
consists in a waveplate placed between two polarizers is in many aspects similar to a MZI, where
now instead of physically separating the two interfering beams, the two orthogonal polarization
components travel through the same physical path but each of them “sees” a different refractive
index. SFL effects are expected at the transmission minima and allowed group delay regimes

could be analyzed in terms of the polarizers orientation and liquid-crystal birefringence.

Last, but not least, this Thesis has involved a lot of experimental work during the frequency
and time domain characterization of multiple-beam and multilayer structures operative at the
RF and MW range. Setting up these experiments in the optical range is an important scope in
order to check new designs, like the use of liquid crystal-based structures, and further advance

on this field.
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Appendix A

Scattering parameters

At “low” frequencies, we can completely characterize a linear device or network using an
impedance matrix, which relates the currents and voltages at each device terminal to the currents
and voltages at all other terminals. But, at microwave frequencies, it is difficult to measure total
currents and voltages. At high frequencies, S-parameters (scattering parameters) are commonly
used to describe the performance of RF and microwave devices. These parameters can be used
to completely describe the electrical behavior of the device (or network). In other words, we
can determine the relationship between the incident and reflected wave at each device terminal

to the incident and reflected waves at all other terminals.

The scattering matrix (S) describes the behavior of a multi-port network or device operating
usually in the RF and microwave range. Its elements relate the incident and reflected waves at

each port of the networkRiz-198§.

Fig. A.1 shows a linear network of N-ports with transmission linesnsmted to each port. Its
characteristic impedances are denoted’fy, 2., ..., Zon and they are supposed real. Voltages

and currents at the terminal plan&s,and/; , wherek is the port number, are also displayed. In
classical circuit theory, networks are typically characterized by an impedance (or admittance)
matrix which relates these voltages and currents. This approach can be found in most of the
literature on network theory. An alternative method, which is very useful in microwave analysis,
is to describe the behavior of the network in terms of incident and scattered waves. These are

shown in Figure A.1 and they are designatedaandb,, respectively. Note that the outgoing
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Linear

network

Figure A.1: Linear network ofN-ports and their associated incident and scattered waves.

waves {,) are not labeledréflected as they are also associated to the transmission from other

ports. These complex quantities are defined by the following equations:

V+
ay = \/g_k = L'/ Zoy, (A.1)
0
and
V-
b = \/% = 1./ Zok (A.2)
0

whereV,", V.-, I,' andI, are the voltage and current waves, incident and scatt&ggds the
characteristic impedance of the line connected to thejoBinceZ, is real, the phase angle

of a; is the same as the wavés™ and/,". Similarly, the phase df is the same as the wave
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V. and I, . The square of its rms value is equal to the power flow associated with the incident

and scattered wave, i.e.,

Bl =aj
A.3
i (A3)

Althougha, andb, are sometimes called wave power, they are actually standard voltage (or

current). The net/total power input at pérts given by:

Moreover, the power delivered to the load pbis:

Py, = b — ag = bp[1 — [T/’ (A.5)

where|T';| is the magnitude of the reflection coefficient at portYou can see that'y| = as/bx.

The voltage and current at any point along the transmission line can be expressed in terms of
travelling waves in both directions. Denoting the input plane terminals of the lines irAFLg.

asz = 0, we have

Vi = V]:r -+ Vki =/ Z()k(ak + bk) (A.6)
and
I, = I} = I, =/ Zox(ay, — by) (A.7)

whereV,, and[; represent the voltage and current phasors atthmput port.
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The travelling wave variables, and b, at portk are defined in terms df, and/, and a real-

value positive reference impedangg, as follows:

ap = % (\/‘;k—% + I/ ZOk) (A.8)

and

1 Vi
by, = 3 (\/?Ok — I/ ZOk) (A.9)

These equations describe the relationship between the power wave and the voltages and
currents. The scattering matrix of a N-port network (Fi§.1) relates the outgoing waves

by to the incoming waves, that are incident to the N-port:

bl = Snal + Slgag a NP ar SlNCLN

bg = 521a1 + SQQCLQ 4+ ...+ SQNCLN
(A.10)

by = Sy1a1 + Sneaz + ... + Synvan

The matrix elementS;, Si»,... arereferred to as the scattering parameters or the S-parameters
and define the characteristics of the network. Written in matrix form, equafdlO) is

expressed as

b= [Sla (A.11)

wherea andb are column matrices representing the incident and scattered waves . The S-matrix

for N-ports is given by
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Sy Si ... Six
Sy Sy ... S

[5)= | 7 “ (A.12)
_SNl Sno ... SNN_

S-matrix elements are generally complex and they are easily measurable. For ex&mple ,
So9, ... @andSyy correspond to the reflection coefficients at the input ports 1, 2, ... and N,
respectively, when all output ports end in their characteristic impedances. Fhusan be
determined by connecting a generator on port 1 and loads with tuning impedance in the other
ports . Sinceu,, as, ...,ay are zero, the ratio between the incident and the reflected voltage at

port 1 is exactlysS;;:

bl [/17
= = = — A.13

Sll
The off-diagonal coefficients of the S-matrix represent transmission coefficients. For example,
the waveS,;a; emerging from port 2 when a generator is connected to port 1, and impedances
of equal value to the characteristic line of the port are connected to the other ports (ie.,

.. ,ay = 0) . Under these conditionsy; is the transmission coefficient from port 1to 2 :

b2 Z01 V_ ZO2 [_
521 - a_1|ak:0Vk7ﬁl = \/ Z—OQV—?_LUCZOWWQ - Z—Olﬁ|ak:OVk7&1 (A14)

For reciprocal networks, the S-matrix is symmetrical. Thabis,= So, = ... = Syn. If the
network is lossless, the transmitting power and the reflected power must be equal to the total
incident power. The sum of the incident powers at all ports is equal to the sum of the reflected

power at all ports. This implies that the S-parameter matrix is unitary, that is:
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|511|2 + |S12|2 + ...+ |S1N|2 =1

|521|2 + |522|2 + ...+ |52N|2 =1
(A.15)

‘SNl‘Q + ‘SNQ‘Q + ...+ ‘SNN‘Q =1

2-port networks are very common in microwave devices. In this casefEtQ)(reduces to:

by = S11a1 + Si2as
(A.16)
by = Sa1a1 + Saeas

In the case of a lossless transmissian= 0), of length/, characteristic impedancg,,, and

group velocityv, the S-parameters are::

§(Z3, — 1) sinvl
275, cosvl + j(Zg, + 1) sin vl (A.17)
220k

272 cosvl + j(Z2, + 1) sinvl

Sll = 522 T

521 3 512 =

whereZy, = Zo./Zy is the line impedance normalized of the normalize line to the characteristic

impedance of the lines connecting to the pafs,

In the case of a lossy transmission line # 0) of length!/, characteristic impedancg,, and

propagation constant= a + vj, the S-parameters are:

B §(Z3, — 1) sinh~l
272, coshyl + j(Z3, + 1)sinh~l
_ 270

272 coshyl + (23 + 1)sinh~l

(A.18)

It can be easily checked that the above equation converge to E4¥) {f non attenuation in

the line (@ = 0) is considered.




Appendix B

Design of RF and MW structures

Waveguides are used to transfer electromagnetic power efficiently from one point in space to
another. Some common guiding structures are shown in figureThese include the typical
coaxial transmission line, the two-wire and mictrostrip transmission lines, hollow conducting
waveguides, and optical fibers. In practice, the choice of structure is dictated by: (a) the desired
operating frequency band, (b) the amount of power to be transferred, and (c) the amount of

transmission losses that can be tolerated.

In this appendix we describe the considerations required for the design and fabrication
procedure of the two types of structures considered in this work: coaxial lines used to build
multiple-beam interferometers operative in the RF range discussed in CBatémicrostrip

lines for the mono- and multi-layer structures discussed in Chdpterd operative in MW

range.
b
el /
%
/
< S - )’4
2 .
L o &= felet
bo-wihpe _ _ lelectric
=" line MICIOStrip rectangular waveguide
coaxial line line waveguide

Figure B.1: (Extracted from Qrf-2002). Typical waveguiding structures.
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B.1 Coaxial transmission lines

A coaxial transmission line consists of two concentric conductors, the inner conductor being

supported within the outer conductor through the use of a dielectric material.

B.1.1 Design

A basic principle in the design of most transmission lines is to find the optimum configuration
of inner conductor to outer conductor dimensions where the power handling is maximized and
the attenuation minimized. Each configuration will then determine a characteristic impedance

for the line.

In this section, we described the considerations required for the characterization of coaxial lines.
The electrical parameters of coaxial lines which are required for circuit design are impedance,

attenuation and phase velocity.

Characteristic Impedance

We have used cables 50 and 75 Ohm (RG-58C/U and RG-59 respectively). The RG designation
stands for Radio Guide; the U designation stands for Universal. Although the RG-series
designations are common, there is no standard to guarantee their electrical and physical

characteristics, so we should consult the fabrication handb&agtn].

Assuming the dielectric properties of the material inside the cable do not vary appreciably over
the operating range of the cable, this impedance is frequency independent above about five
times the shield cutoff frequency. For our coaxial cables, the shield cutoff frequency is 2000 Hz
(RG-58C) and 1600 Hz (RG-59@)ft-2011.

Phase velocity

The vector network analyzer provides both the module and phase of the scattering parameters
(see Appendi). From the phase curve of paramesgr (which is the transmission coefficient

from port 1 to port 2) with respect to the frequency we get the phase velocity as,
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RG-58C/U RG-59U
Manufacturer’s (2/3) (2/3)
v(m/s) [Ariston]
Experimental (1.94/3) (12.97/3)

v(m/s)

Table B.1: Theoretical and experimental phase velocity for cable RG-58C/U and RG-59U, wisere
the light’s speed in vacuum.

%TLL: 2n fL b wlL
A v ¢521

Py = (B.1)

The value thus obtained far is shown in TableB.2 together with that provided by the
manufacturer, which is obtained from the inductant¢ &nd capacitance()) feature, using
the following expressiorHoz-2012 v = 1/v/LC.

Attenuation

Let us first recall the definition of this coefficient. The amplitude of a plane wave that
propagates through a coaxial cable decreases exponentially due to the ohmic and dielectric
losses Poz-2012, we can write this a¥),(z) = Ve~ *#, wherez is a section of the cable and

Vp is the incident amplitudéz = 0). Therefore, the attenuation coefficient is obtained from the

ratio between the amplitudes at the beginning and at the end of the cable, regarding:

1 Vi 1 1
a—zln <7VM(Z:L)) —Eln<|521|) (B.2)

where L is the cable’s length, and is expressed in nepers per unit of length (nep/m). The

above equation shows that the attenuation coefficient can be obtained directly by measuring the

scattering parameter’'s magnituldg, |.

The attenuation of the line, which is normally expressed in terms of losses per unit length, in
decibels per meterd3/m), is due to dielectric losses and conductor losses. The dielectric

material loss is directly proportional to frequency, whereas conductor losses are related to
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Type of cable a (4B) ap (48) aq (md—ﬁHZ) s (S58)
5002 (RG-58C/U) 0.162 0.00635 0.01228 0.00033
750 (RG-59U) 0.105 0.00037 0.01157 0.00014

Table B.2: Experimental attenuation for cable RG-58C/U and RG-59U at frequéneyl 00 MHz.

the dimensions, permeability and conductivity of the material. Consequently, the losses are
becoming higher as the frequency increases. We want consider not only the loss in the cable but
also the loss in the connectors, so the frequency-dependent attenuation coefficient was measured
over a frequency range from 0 to 200 MHz, in order to interpret the experimental transmission

curves in this work.

For our work, the attenuation of the high and low impedance cables, RG-58C/U nd RG-
59U, respectively, was determined as a function of frequency by measuritt, tkeattering
parameter for each kind of cablBgv-2008; the attenuation coefficients is described depends

on the frequency through the following equation:

aldB/m] = ag + an/f + aaf (B.3)

where the frequency is given in MHz. TalBe2 contains the values af,, a; and a, for each

ind of cable.

The experimental value is considerably higher than the theoretical value (almost tenfold). This
is because the cable used to meastute) is shorter than that used by the manufacturer (which
implies a greater error), the effect of the connectors is considered and frequency characterization
is lower than that used by the manufacturer. However, as we show in Cl3apteragreement
between numerical simulations and the experimentally characterized transmission spectrum and

group delay of the interferometer is excellent.
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B.2 Microstrip lines

Microstrip is by far the most popular planar transmission line, especially for microwave
integrated circuits and MMICs (Monolithic Microwave Integrated Circuits). Microstrip
transmission lines consist of a conductive strip of widthand thicknesg and a wider ground

plane, separated by a dielectric layer (the “substrate”) of thickhessshown in FigB.2.

The major advantage of microstrip over stripline is that all active components can be mounted
on top of the board. The disadvantages are that when high isolation is required such as in a filter
or switch, some external shielding may have to be considered. A minor issue with microstrip
is that it is dispersive, meaning that signals of different frequencies travel at slightly different

speeds.

B.2.1 Design

Samples were fabricated on a high-quality substrate using a LPKF Protomat 93s circuit board
milling machine with100 — um resolution. The electrical parameters of microstrip lines
which are required for circuit design are impedance, attenuation, wavelength and propagation
constant. These parameters are interrelated assuming that the propagation mode is a transverse
electromagnetic mode, or it can be approximated by a transverse electromagnetic mode. We
have designed microstrip single lines following the Hammerstad and Jensen iHadell[98(),

which provides simple equations for characteristic impedance and effective dielectric constant

as functions of the microstrip width, substrate thickness and dielectric constant.

Figure B.2: Single microstrip line.
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Appendix C

Experimental techniques for the frequency

and time domain characterization.

The pulse propagation properties of the interferometers and multilayer structures discussed in
this work are characterized in the frequency and in the time domain. A detailed description of
these experimental techniques is here provided. Regarding the frequency-domain, the group
delay regimes are closely linked to the spectral transmission (or reflection) features of the
structure. Therefore, a vector network analyzer (VNA) is used to measure the scattering
parameters and retrieve the experimental group delay function versus frequency. Since actual
pulse delay values depend not only on the spectral characteristics of the system but also on
the pulse shape, pulse propagation experiments are also included. The experimental setup and
technique applied to measure the delay of pulses transmitted and reflected on our structures
is here described. We show that in both the frequency- and time- domain characterization, an

accurate procedure must be followed to get reliable high quality measurements.

C.1 Setup in the frequency domain

A two-port vector network analyzer (PNA series, Agilent model E8363B) has been used for
characterizing our radio frequency and microwave structures. Through calibration, VNAs

provide the highest level of accuracy for measuring RF components. Calibrating is so important
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USB Cable ==

Figure C.1: lllustration of the use of ECal to calibrate our two-port vector network analyzer (Agilent,
model E8363B)

to network analysis because it is impossible to make perfect test hardware, and too difficult and
too expensive to make the network analyzer hardware so good that the need for error correction
is entirely eliminated. An electronic calibration (ECal, see €id) was used as a precision
two-port calibration technique for our VNA. ECal replaces the traditional calibration technique,
which uses mechanical standards. With mechanical standards it is required to make numerous
connections to the test ports for a single calibration. With ECal, a full two-port calibration can

be accomplished with a single connection to the ECal module and minimal operator interaction.
This results in faster and more repeatable calibrations. Furthermore, it is necessary to indicate
the presence of the adapters used to connect the structures, otherwise, it consider the adapters

as part of the structure to be analyzed.

Measurements of the scattering (S) parameters and group delay were performed on a two-
port vector network analyzer (Agilent, model E8363B). The parameétgrand S,;, which
correspond to the reflection and transmission coefficient, respectively, were recorded in the
range of 1 to 9 GHz every 2.5 MHz. Experimental data contain a small amount of noise which
is not very apparent in the S parameters themselves. To obtain the experimental group delay,
the phase data curve is differentiated and this amplifies the noise leading to spurious effects
[Moj-2000. For this reason, network analyzer was configured to smduglgtoup delay by

averaging 17 adjacent points. Although it is well known that smoothing is an arbitrary process
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that may give results which vary critically with the smootipiparameters, we finally used a
17-point averaging algorithm, which does not essentially affect the group delay at the reflection
(or transmission) maxima and is satisfactory enough to preserve the key features of the group

delay trends at the reflection (or transmission) minima.

C.2 Smoothing of the phase function

In many experiments, as in our case, we are measuring a signal that changes rather slowly,
whereas noise occurs as rapid, random changes in amplitude from point to point within the
signal. It may be useful in some cases to attempt to reduce the noise by a process called
smoothing. In smoothing, the data points of a signal are modified so that individual points that
lay higher than the immediately adjacent points (presumably because of noise) are reduced, and
points that lay lower than the adjacent points are increased. This naturally leads to a smoother
signal. As long as the real underlying signal is actually smooth, the real signal will not be much

distorted by smoothing, but the noise will be reduced.

In our case, we are interested in the phase function. At first sight the data dispersion of this
function is not too apparent, but when it is differentiated versus frequency in order to obtain the
group delay, a large spurious noise appears. FiQu2g€top panel) shows the experimentally
phase function measured with the vector network analyzer from 1 to 4 GHz for the structure
(HL)*H . FigureC.2 (bottom panel) shows the group delay obtained deriving theptzase

data function. As we see , the noise is such that masks the results.

C.2.1 Savitzky-Golay smoothing and differentiation filter

Most smoothing algorithms are based on the “shift and multiply” technique, in which a group

of adjacent points in the original data are multiplied point-by-point by a set of numbers
(coefficients) that defines the smooth shape, the products are added up to become one point
of smoothed data, then the set of coefficients is shifted one point down the original data and the
process is repeated. The simplest smoothing algorithm is the rectangular or unweighted sliding-

average smooth; it simply replaces each point in the signal with the averageadjacent
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¢, (rad/m)

7 (ns)

Frequency (GHz)

Figure C.2: Experimental results for the frequency characterization of reflected pulses 6H fhé H
Bragg reflector. Top panel shows the phase of the reflection coefficient, and bottom panel shows group
delay without smoothing (i.e. obtained from deriving the raw phase data).

points, wherem is a positive integer called the smooth width. For example, for a 3-point
smooth (n =3):

Y +Y;+Yn

S; = ;

(C.1)

for j = 2ton — 1, whereS; is the j point in the smoothed signal;; the ;™ point in the

original signal, andh is the total number of points in the signal.

However, the SavitzkyGolay smoothing and differentiation filter optimally fits a set of data
points to a polynomial in the least-squares sense, and it may be used with considerable
improvement in the information obtained. The least squares calculations may be carried out
in the computer by convolution of the data points with properly chosen sets of integers. If
retaining the shape of the peak is more important than optimizing the signal-to-noise ratio, the

Savitzky—Golay has the advantage over sliding-average smooths. It is capable of differentiation
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— Without smoothing
——— 17-points average smoothing
—— 17-points Savitzky-Golay smoothing

1 2 3 4
Frequency (GHz)

Figure C.3: Experimental group delay results retrieved from the phase function of a microstrip
(HL)*H Bragg reflector. Without smoothing (black line), and with smoothing: 17-points average
smooth(green line) and 17-points Savitzky-Golay smooth (red line) (smoothing of the raw phase data
prior to differentiation).

as well as smoothing. Each data valiés replaced by a linear combinatignof the same data

and some neighbouring points.

nR

n=—nrp,
wheren,, is the number of points to the left of dateandn ; is the number of points to the right.
For each poinff;, a polynomial least-squares fitsitg + nz + 1 points, thery; is obtained as

the value of the polynomial at positian

First, we thought about using an average algorithm to smooth the phase function that does
not substantially affect the yielded group delay at the reflection/transmission maxima while
preserving the key features of the group delay at the reflection/transmission minima. Finally ,
we decided to use the Savitzky-Golay algorithm with 17 points, because it is more effective at
retaining the shape of the original signal. The same numerical treatment (phase smoothing prior

differentiation) has been applied to the experimental and simulated data throughout this work.
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Figure C.4: TMM simulations for the frequency characterization of reflected pulses on a microstrip
(HL)*H Bragg reflector. Top panel shows the phase of the reflection coefficient, and bottom panel
shows the group delay without smoothing (black line), and smoothed: 17-points average smoothing
(green line) and 17-points Savitzky-Golay smoothing (red line).

Figure C.3 shows the experimental group delays results of a microsttig)*H Bragg
reflector: without smoothing (black line), and with smoothing (17-points average smoothing
(greenline) and 17-points Savitzky-Golay smoothing (red line)). As we can see, both algorithms

remove the spurious noise.

FigureC.4 presents the same results as the previous figure but for ncahennulations, and
centered around the frequency of one of the reflection minima. For the simulations , it is not
necessary to perform any filtering nor smoothing , since there is no noise in the calculated data,
but in order to compare theory with experiment, these data must be treated equally and hance,
the same type of smoothing is performed. As we see, smoothing the phase data in order to get
the group delay curves has two negative effects: delay value (absolute value) is reduced and the

group delay peaks become wider.
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C.3 Setup in the time domain

There are several methods for generating pulses depending on the shape of the desired pulse.
Generating a Gaussian envelope of a sinusoidal signal, the high pass filtering of a square wave

or the amplitude modulation (AM) of a sine wave are some methods that could be employed.

We would need a programmable generator to create a Gaussian envelope, which was not
available case. Concerning the high-pass filter method, it is based on generating a square signal
and pass it through an RC filter, where the center frequency of the pulse is defined by the values
of the resistor and the capacitor. Since we are interested in studying the propagation of pulses
in a given frequency range, this method seems not the most efficient. However one can easily
generate a train of pulses (or wave packets) by amplitude modulation of a sinusoidal wave.
To do this, we only need one or two generators that allow amplitude modulation and we can

directly tune the center frequency of the pulse in a certain range of frequencies.

We thus chose for the method of amplitude modulation to generate a pulse train due to the
considerations mentioned above. Two sinusoidal waves are necessary: the carrier and the
modulating signal. The former is modulated by the latter, which is the signal carrying the

information [Pro-1998.

First, we focus on multiple-beam interferometers in the RF range to describe the experimental
setup in transmission. Second, the experimental setup in reflection is described for mono- and

multi-layer systems in the RF- and MW- range, noting the differences between both setups.

C.3.1 Transmission

The experimental configuration used for real-time pulse propagation is similar to the one
proposed by Munday et alMun-2003 and is shown schematically in FigC.5. Generator-1
(Tektronix CFG-253) is used to produce a sinusoidal signal at hundreds of kHz to amplitude
modulate the much higher frequency sinusoidal signal of generator-2 (IntraAction VFE-
604A4), whose frequency can be varied between 40-80 MHz. A tra2a-08.3— and5 — us

wide sinusoidally modulated wave packets with carrier frequencies in the MHz range is thus

produced for the MZ, the three- and the four-beam interferometers respectively. The choice of
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Generator -1
Tektronix CFG-235

Digital Oscilloscope
Agilent DSO-6032A

i i //‘
Modulating signal S TRIG
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Figure C.5: Experimental setup for the time-domain pulse propagation measurements through the RF
interferometers. The output sinusoidal signal from generator-2 is 100% amplitude modulated by the
output signal from generator-1. C1 and C2 ab€) coaxial cables constituting the reference path (see
text).

the modulating frequency must be a tradeoff between narrow-enough bandwidth to avoid pulse
distortion, and large-enough bandwidth to get appreciable pulse delays in comparison to the

pulse duration.

The pulse train transmitted through the interferometer is recorded at the oscilloscope (Agilent
DSO0-6032A) with a resolution of 0.5 ns (10 kSamples/5000 ns). The TTL signal from

generator-1 is used to trigger the oscilloscope.

The pulse delay for each Cl-interferometer-C2 system (see €i§) was obtained by the
following procedure: first, a capture of the transmitted pulses was taken for a carrier frequency
coinciding with the interferometer’s first transmission minimum. Next, the interferometer was
removed and cable C1 was connected to cable C2, and captures of transmitted pulses through

this reference assembly were performed at the same carrier frequency than before. For each
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interferometer, the pulse delay is then estimated as thedinificbetween the peak of the pulse
transmitted by the system and the peak of the pulse travelling through the reference path. Let us
recall that the pulse delay retrieved in this way will approach the group delay oBEx &s the
modulation frequency decreases. Since the signals were largely attenuated, a direct observation
of the pulse peak on the oscilloscope was not accurate enough to measure the pulse delay. A
systematic technique to determine the pulse center, which is less vulnerable to local fluctuations
than the pulse peak, is more adequate. Hence, the pulse center is obtained from a numerical

analysis of the data by finding the best fit to the pulse envelope.

A picture of the actual signal generators and digital oscilloscope used in the experimental device
is displayed in Fig.C.5. The modulation f,,,) and carrier (.) frequency, and the amplitude of
the modulating signal are set directly from the control panel of both generators. The modulation

indexm is selected by changing the power levEl)in generator-2.

C.3.2 Reflection

The experimental setup for the time-domain measurements of wave-packets reflected on a
microwave DBR filter is shown in FigC.6. The 20-MHz sinusoidal output of generator-1
(Agilent 8648B) is used to amplitude modulate the sinusoidal signal of generator-2 (Agilent
E4438C), whose frequency can be varied up to 6 GHz. This produces a train of sinusoidally
modulated wave packets with carrier frequencies in the GHz range and 50 ns width that is
reflected by the Bragg filter through a lowcost microwave power splitter. Although, a circulator
should have been a more efficient way to extract the reflected wave, we decided to use a 3-dB
splitter because of its simpler design and fabrication by microstrip technology. The reflected
pulse train is recorded at the oscilloscope (Tektronix CSA8000 with only one available channel)
with a resolution of 12.5 ps (4 kSamples/50 ns). Signal from generator 1 is used to trigger the

oscilloscope.

In order to estimate the reflective pulse delay on reflection for the splitter-DBR system, the
following procedure was observed: first, captures of the reflected pulses were performed for
several carrier frequencies between 1 and 3.5 GHz using the experimental setup sha@vé Fig.

Next, the splitter-DBR system was removed and cable C1 was directly connected to cable C2,
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Figure C.6: Experimental setup for the time-domain wave-packet reflection measurements on a DBR
filter. The output sinusoidal signal from generator-2 is 100% amplitude modulated by the output signal
from generator1. A microwave splitter to extract the reflected wave packets is used.

and captures of transmitted pulses through this reference assembly were performed at the same
carrier frequencies than before. For each frequency, the pulse delay of the splitter-DBR system
is then estimated as the time shift between the pulse reflected by this system and the pulse
travelling through the reference path. The magnitude of the reflection coefficient is determined

as the ratio between the amplitudes of these two pulses.

C.4 Design and fabrication of a 3-dB splitter

The design and fabrication by microstrip technology of a 3-dB splitter is described in this
section. It is used to extract the reflected wave of the DBR in the time domain experiments

(see sectiod.4.3. The frequency characterization of the divider-DBR sysieneported too.
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Design and fabrication

In most circumstances, power dividers provide equal amplitude and equal phase splitting. In a
resistive power divider, both output signals are 6 dB lower than the input signal, and they are in
phase. In Wilkinson power dividers, the output signals are 3-dB below the input signal, and they
are also in phase. The main differences between resistive power dividers and Wilkinson power
dividers are that Wilkinson power dividers have 3-dB lower loss and possess the advantage of
isolation between output. The purpose of the Wilkinson divider is to split the power of the input
equally between two output ports, ideally without loss. Other properties of the Wilkinson power
divider is that all ports are matched, the two output terminals are isolated from one another, and

that it is reciprocal.

Three-port networks can not be reciprocal and matched without being lossy. The solution to
this, in the Wilkinson power divider, is to add a resis?af, between the two outputs, wherg

is the line impedance. This resistor absorbs energy if there is a mismatch between the outputs. It
also helps isolating the two outputs when the circuit functions as a power combiner. A quarter-
wave transformers is used to match the input and output ports. We can see a scheme of our

Wilkinson divider in Fig.C.7.

Fig. C.8 shows the fabricated sample on a low cost commercial subsgahown. This
substrate is a commercial microwave circuit board material with a dielectric constant of 4.6
and thickness of 1.5 mm [Taconic]. The nominal loss tangent of this substrate is 0.02. It was
fabricated using a LPKF Protomat 93s circuit board milling machine with;if0-esolution.

The microstrip quarter wave line and characteristic impedance(TQ\727,) has a length of

Zy
V2Zy,1/4
Z, /J
27,
\ Z,

Figure C.7: Wilkinson power divider circuit scheme.
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Figure C.8: Top view of fabricated microstrip Wilkinson divider.

16.92 mm and a width of 1.4 mm. This length correspondg4dwhere)\ is the wavelength in
the medium) for a frequencfy, = 2.5 GHz. The lines of characteristic impedance(bfave a

width of 2.8 mm.

Frequency characterization
The following paragraphs detail some of the metrics that are often cited when designing.

The insertion loss and isolation are important parameters used to evaluate the quality of
microwave dividers. The insertion los srefers to the additional loss above the nominal loss

due to splitting. For example, in a 3 dB power divider the insertion loss might be specified as

Insertion Loss (dB)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (GHz)

Figure C.9: Insertion loss of our Wilkinson divider.
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Isolation (dB)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (GHz)

Figure C.10: Isolation between ports 2 and [§3| and|Ss2|) of our Wilkinson divider.

0.5 dB. The additional losses are caused primarily by reflections, dielectric absorption, radiation
effects, and conductor losses. F@.9 shows the insertion loss, i.e., the scattering parameters’
magnitude|S,; | and|Ss;| measured with the vector network analyzer (Agilent E8363B). The
experimental value (around 3.5 dB) is higher than the theoretical value (3 dB) as a result of not

using a high frequency substrate.

In an ideal power divider the output ports are mutually isolated. In other words, a signal entering
output 2 does not leak out of output 3. Isolation is defined as the ratio of a signal entering output-
2 that is measured at output-3, assuming all ports are impedance matched.llBighows the

isolation between ports 2 and [®{;| and|.Ss,|).
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Resumen global

Esta tesis se ubica dentro del campo de las tecnologias de luz lenta y luz rapida (SFL), cuya
investigacion se ha intensificado en los ultimos afios debido a sus interesantes aplicaciones,
que van desde el procesado Optico de la informacion hasta la mejora de la precision del
senasado Y la interferometria. Estas tecnologias se basan en sistemas que exhiben regiones de
fuerte dispersion normal que permiten propagar pulsos a velocidades de grupo muy por
debajo de la velocidad de la luz en el vacio (luz lenta) o fuerte dispersidn negativa para lograr
la propagacion de pulsos a a velocidades de grupo superluminicas o incluso negativas (luz
répida). Estos regimenes anémalos de propagacion tienen su origen en la interferencia de las
componentes espectrales del pulso, asi los efectos SFL se presentan en innumerables
materiales que presentan resonancias espectrales. Los esfuerzos actuales en este campo se
centran principalmente en la manipulacién de medios activos (los cuales responden a la
interaccion con la luz generando estrechas bandas espectrales de ganancia o de absorcion) o
medios no lineales (SFL material) o en la optimizacién de medios microestructurados, sin
fuerte dispersion del material, como cristales fotonicos, en los cuales la dispersion tiene un
origen estructural y es debida al acoplamiento entre la longitud de onda incidente y la longitud
caracteristica del medio (SFL estructural).

Esta tesis se centra en el estudio, tedrico y experimental, de la propagacion del pulso
electromagnéticos a velocidades de grupo anémalas en dos tipos de dispositivos lineales y

pasivos. En la primera parte de la tesis se presenta un nuevo sistema que exhibe SFL



estructural, los interferometros de multihaz. Se presenta un estudio exhaustivo de la aparicion
de SFL en este sistema carente de bandas de gap fotonico. Se desarrolla un modelo teérico
que describe los regimenes de propagacion de pulsos y sus limitaciones en términos tanto de
las caracteristicas del interferometro como de las del propio pulso. Teniendo en cuenta los
pulsos de amplitud modulada, las capacidades y limitaciones de los efectos SFL en este tipo
de sistema se evalian mediante la cuantificacion de las figuras tipicas de mérito como son: el
retardo fraccional, la distorsion del pulso y producto retardo-ancho de banda. EI marco teérico
es valido para cualquier rango de frecuencia y las predicciones del modelo tedrico se
justifican mediante la realizacion de experimentos en el rango de radiofrecuencia y por medio
de simulaciones numéricas exactas en el rango oOptico. En primer lugar se considera el
interferémetro mas simple, con s6lo dos ramas, ya que su uso es habitual en la tecnologia
actual de comunicaciones. Asimismo, se demuestra analiticamente que no es posible obtener
luz lenta y que la atenuacion total del sistema impulsa los cambios en los regimenes de
propagacion del pulso. Al aumentar el nimero de ramas, la transicion de luz lenta a luz rapida

se produce si la longitud 6ptica de una de las ramas se modifica ligeramente.

En la segunda parte de la tesis, la capacidad de las estructuras mono y multicapa para acelerar
o frenar los pulsos electromagnéticos se investiga, con especial énfasis en sus propiedades de
reflexion. Se estudian reflectores de Bragg Yy filtros Fabry-Pérot, usuales en los sistemas de
comunicacion de hoy en dia. Estas estructuras han sido fabricadas para operar en el rango de
microondas y en el rango de radiofrecuencia con el fin de confirmar las predicciones tedricas.
Los resultados experimentales de su caracterizacion en frecuencia y en el dominio del tiempo
se comparan con las simulaciones. La experimentacion en estos rangos de frecuencia supone
una importante ventaja sobre el rango Optico, ya que permite medir directamente la funcion de
fase en transmision (o en reflexién) de las estructuras empleando un analizador vectorial de
redes de dos puertos vector. Esta caracterizacion es clave para identificar las distintas
regiones de propagacion (en transmision o en reflexion) y evaluar posibles desviaciones sobre
las predicciones tedricas. Ademas, se explora una posible aplicacion de los reflectores de
Bragg, haciendo uso del control de los retardos de grupo en transmisién y reflexion, para
mejorar la eficiencia de los amplificadores feedforward, que se utilizan cominmente para la

cancelacion de la distorsion inherente en amplificadores de microondas.



Conclusiones

Esta tesis presenta una investigacion tedrica y experimental de los efectos de luz lenta y luz
rapida (SFL) en dos tipos de estructuras lineales y pasivas: interferometros de multihaz, por
un lado, y estructuras mono- y multi-capa, por otro. Las conclusiones resumidas y detalladas
para cada sistema, asi como para la aplicacién propuesta en el rango de las microondas, se ha
dado al final de su capitulo correspondiente. Aqui proporcionamos una discusion general de

los principales resultados.

En los dos tipos de sistema abordados en este trabajo, la fuerte dispersion responsable de las
velocidades de grupo anormales tiene un origen estructural, ya que se origina en el
acoplamiento entre la frecuencia portadora del pulso y la longitud caracteristica del sistema.
Por lo tanto, estos efectos SFL no se basan en las propiedades electronicas ni Opticas del
material en las ramas de los interferometros o en las multicapas, al contrario que ocurre en el
caso de medios con resonancias de ganancia o absorcién. Como consecuencia, los sistemas
estudiados son escalables y esto proporciona plataformas experimentales mas faciles de
implementar en donde nuestros modelos tedricos han podido ser comprobados, concretamente

en el rango espectral de radiofrecuencia (RF) y de microondas (MW).

Como primera aportacion principal de esta tesis, se ha propuesto e investigado un esquema
novedoso para generar luz lenta y rapida utilizando interferometros de maltiples haces. Se han

obtenido expresiones analiticas exactas para el coeficiente de transmisién y para el retardo de



grupo en funcion de la frecuencia bajo condiciones de atenuacion e indice de refraccion
constantes en el medio que forma las ramas. Con un analisis aproximado (valido a frecuencias
en torno a los minimos de la transmision) se ha predicho los regimenes de propagacion
permitidos en interferometros Mach-Zehnder (MZI) y en interferometros de tres haces en
términos de los pardmetros del sistema (atenuacion, indice de refraccion, diferencia de
longitud nominal entre las ramas y desajuste de longitud en una rama). Por primera vez, segun
creemos, se ha demostrado que no se puede obtener luz lenta si la diferencia de longitud entre
las ramas adyacentes del interferometro es constante, como siempre es el caso del MZI. Si se
permite un pequefio desajuste de longitud en una de las ramas del interferometro de tres
haces, entonces puede aparecer luz lenta en uno de los dos minimos, siempre y cuando ese
desajuste supere un valor critico. Este valor fundamental que establece la transiciéon de luz
lenta a luz rapida se ha obtenido como una funcién de la atenuacion, del indice de refracciéon y
de la diferencia de longitud nominal entre ramas adyacentes. Al mismo tiempo, se obtiene
régimen de tunelado, superluminal, o régimen normal, en el otro minimo, dependiendo de la

atenuacion total del sistema.

Se ha analizado la propagacién de paquetes de onda sinusoidalmente modulados a través
interferometros MZI y tres de haces. Se han establecido las limitaciones de los efectos de luz
lenta y rapida en funcion de las caracteristicas del sistema y del pulso mediante el calculo de
las figuras de mérito tipicas, es decir, retardo fraccional, compresion de pulso, producto
retardo-ancho de banda y ruptura del pulso. Estos valores, que son similares a los obtenidos
en sistemas de gap fotdnico, son intrinsecos a estos interferometros y no dependen del rango

espectral de operacion.

Como una prueba experimental del modelo, se han llevado a cabo experimentos de RF, en el
dominio de la frecuencia y del tiempo, sobre interferometros MZI y de tres haces construidos
con cables coaxiales, obteniéndose un excelente acuerdo con las predicciones tedricas. Sin
embargo, ya que la mayoria de las aplicaciones de luz lenta y rdpida estan orientadas hacia la
fotonica, las predicciones de los modelos también se han comprobado a traves de
simulaciones numéricas en el rango éptico de un MZI basado en silicio y de un interferémetro

de tres haces basado en niobatio de litio, ambos operativos a 1,55 micras.

En cuanto a la posible aplicacién de estos interferometros, los valores tipicos de sus figuras de
mérito se resumen en la Tabla, en comparacion con los de otras técnicas de SFL. Como ocurre

en otras técnicas, los retardos/adelantos de pulso alcanzables (manteniendo la compresion de



pulso baja) son siempre mas pequefios que la duracion del pulso. Esto supone un
inconveniente para el desarrollo de lineas de retardo practicas para procesado de sefiales. Sin
embargo, la abrupta transicion SFL que aparece al acercarse al desajuste critico en la longitud
de una de las ramas del interferdbmetro de tres haces abre la puerta para aplicaciones de

sensado.

Para concluir, destacar que la primera parte de esta tesis ofrece un estudio exhaustivo sobre el
origen, capacidad y limitacion de la luz lenta y rapida estructural en un sistema distinto a una
estructura de gap fotonico. Esto es relevante ya que los efectos SFL estructurales habian sido
solo reportados en sistemas que exhiben gaps fotonicos, como cristales foténicos, redes de

Bragg (DBRs) o resonadores acoplados.

La segunda aportacion principal de esta tesis se centra en los efectos de luz lenta y rapida de
pulsos reflejos en estructuras multicapa, los cuales se utilizan cominmente en los sistemas
fotonicos reales. Mientras que estos efectos han sido ampliamente estudiados para pulsos
transmitidos, en lo que se refiere a pulsos reflejados se han publicado menos resultados en
estas estructuras. Nuestra investigacion aqui se ha quedado en un nivel puramente numérico y
experimental, aplicando tecnologia microstrip para fabricar lineas y DBRs operativos en el
rango de las microondas, y fabricando filtros Fabry-Perot para el rango de RF utilizando

cables coaxiales. Para las simulaciones se usé el método de matriz de transferencia.

Resultados | FD | DBP n,
Int. 3-haces 0.25 0.18 +45
DBR 0.13 0.1 7
FP Asimétrico 0.5 0.37 19
CPO [Geh-2006] 0.16 - -4000
SBS [Son-2005] 0.3 1.05 7.6x10*
PBG [Bab-2008] 40 57 5.5
C-D [Oka-2007] 1200 42 1.8x 10"

Tabla: Comparacion entre diferentes sistemas en términos de retardo fraccional (FD), producto
retardo-ancho de banda (DBP) e indice de grupo (ng).



Esta tesis ha proporcionado la confirmacion experimental de un resultado tedrico publicado
por otros autores sobre retardos de grupo negativos para pulsos reflejados en capas
dieléctricas de baja absorcion. Ademas, hemos deducido y demostrado la ley de escalado que
el retardo de grupo satisface a la frecuencia de los minimos de reflexion, donde se produce
este comportamiento. Hemos encontrado que la relacion de la parte real e imaginaria del
indice de refraccion n,/n; determina la magnitud del producto del tiempo de adelanto por la
frecuencia central del pulso. Nuestro estudio también ha puesto de manifiesto la analogia
entre tales efectos de luz rapida y aquellos descritos para pulsos de banda estrecha
transmitidos en interferometros MZI de baja atenuacion, que también verifican esta ley de
escalado simple y cuyo espectro de transmision es muy similar a la del espectro de reflexion
de una capa dieléctrica de bajas pérdidas. Podemos concluir asimismo que no puede

sostenerse luz lenta en reflexion en capas dieléctricas pasivas.

Sorprendentemente, la caracterizacion de los efectos SFL en DBRs con el espesor de una de
las capas desajustada y en estructuras Fabry-Perot (FP) con espejos asimétricos (con diferente
namero de capas en cada espejo) ha mostrado que se puede sintonizar de un régimen de luz
lenta a luz répida variando el espaciado entre espejos o la atenuacion (en el caso de los FPs
asimétricos) o modificando el espesor de una de las capas en el caso de un DBR. Por ejemplo,
se han medido retardos fraccionales que van desde el +51% hasta el -37% en pulsos reflejados
en estructuras FP construidas con cables coaxiales. Estos valores son similares a los retardos

fraccionales publicados por otros autores en redes de Bragg activas y asimétricas.

Las principales figuras de mérito de estas estructuras multicapa se muestran en la Tabla y
toman valores del mismo orden que las de los interferémetros de mdaltiples haces. Esto no
deberia ser sorprendente porque el origen fisico de los efectos SFL en los dos tipos de
sistemas es el mismo. Es decir, en los sistemas de multicapa, éstos estan originados por la
interferencia de las componentes espectrales del pulso y estan asociados a condiciones del
tipo Bragg para interferencia destructiva de ondas reflejadas. Por tanto, una desventaja comun
con los interferometros es el hecho de que estos retardos/adelantos de pulso ocurren alrededor
de los minimos espectrales y por lo tanto, estdn acompafiados por una fuerte atenuacion del
pulso de salida. Sin embargo, creemos que vale la pena estudiar la aplicacién de estos
sistemas como sensores de deformacion, temperatura o cualquier magnitud que produzca un

pequefio cambio en la fase, suficiente para producir la transicion abrupta de SFL observada.



Como tercera y Ultima contribucion, esta Tesis ha propuesto la aplicacion de un DBR
disefiado y operativo en el rango de MW para mejorar la eficiencia de los amplificadores de
feedforward, que utilizan una técnica de linealizacion estandar para eliminar los productos de
intermodulacion que surgen en los amplificadores de potencia. Este trabajo propone una
topologia alternativa que mejora la eficiencia y reduce el tamafio del amplificador
convencional empleando un DBR como circuito de retardo de grupo negativo (NGD) en
reflexion y como circuito con retardo de grupo positivo (PGD) en transmision. Como
ejemplo, se disefid una estructura de DBR que compensa un retardo de 11,6 ns en el
amplificador de potencia para una sefial de dos tonos a 2,14 GHz y ancho de banda de 10
MHz. La mejora obtenida en la linealizacion es de 44 dB con respecto al amplificador no
linealizado, con el Unico requisito de una linea de retardo extra de 0,3 ns en el bucle de
cancelacion de la distorsion. Ademas, hemos obtenido una mejora en la linealizacion de 40
dB para una sefial WCDMA de 10 MHz de ancho de banda. Este esquema de amplificador
feedforward basado en DBR proporciona una mejora de la linealizacion comparable al
conseguido en otras arquitecturas feedforward publicadas en la literatura, pero con un menor

tamano y, presumiblemente, con un menor coste.

La posibilidad de adelantar o retrasar pulsos reflejados en estos dispositivos lineales y pasivos
puede ser interesante para aplicaciones fotdnicas, tales como la mejora de la precision del
senasado, ya que estos sistemas se proponen como una alternativa a los medios activos o no
lineales. Las conclusiones y resultados de este trabajo son extensibles al rango dptico debido a

la universalidad de los fendmenos de interferencia de ondas.
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Observation of superluminal and negative group velocities
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We demonstrate superluminal and negative group velocity regimes in a linear passive Mach—
Zehnder interferometer. This phenomenon occurs in a narrow frequency region around the
interferometer’s transmission minima. Experiments are performed in the radio frequency range by
using coaxial cables and 1 X 2 wave splitters. Group velocities of 2¢ and tunneling with a maximum
fractional advancement of 0.12 were measured for electromagnetic sinusoidal wave packets of 2 us
width. These results agree with theoretical predictions using the interferometer’s transmission phase
function. This system is proposed as a simpler alternative to photonic crystals and active or
microstructured multiple-beam interferometers for sustaining anomalous group velocities. © 2008
American Institute of Physics. [DOI: 10.1063/1.2969407]

Materials that exhibit large anomalous dispersion allow
the wave group velocity to exceed c, the speed of light in
vacuum, or even to become negative.l Anomalous dispersion
occurs in media with sharp features in the transmission spec-
trum. Experimental evidence of this phenomenon has been
so far provided in active systems with gain or absorption
resonances (such as atomic vapors” and gain-assisted optical
ﬁbers,B’4 in nonlinear refractive index media,5 and in linear
and passive periodic structures, such as photonic crystals6
and fiber Bragg gratings.7 Although most of this work was
performed in the optical range, similar experimental results
have been reported for microwave pulses8 and even at lower
frequency ranges using electronic circuits.’

In this work, we demonstrate superluminal and negative
group velocities in a linear and passive Mach—Zehnder inter-
ferometer (MZI). We show that the characteristic transmis-
sion pattern for this interferometer sustains these anomalous
group velocity regimes over narrow frequency intervals
within the interferometer’s transmission minima, without the
need of microstructuring or doping the arms of the interfer-
ometer. Tuning of the group velocity can be simply achieved
by changing the length of one of the interferometer’s arms.
Our experiments are performed in the radio frequency (rf)
range with a MZI using coaxial cables and 1 X2 wave split-
ters. Because of their macroscopic dimensions, coaxial cable
structures have been used in a variety of investigations, in-
cluding the effects of impurity dopin%,IO the tunneling” and
superluminal propagation of pulsesl in photonic crystals,
and the resonances of ultrathin Fabry—Pérot cavities."”
Implementation of the proposed MZI with optical fiber might
be extended to all-optical signal processing applications
where MZIs are widely used.

The expected group velocity of our MZI is calculated
using the effective index approach,14 which ascribes the scat-
tering loss of the electric field to an effective complex refrac-
tive index n.y=n+ik. The group velocity is related to the
real part of n.y by the well known expressionl
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Vs n+ wdn/dw M
The real part of the refraction index is obtained from the
overall phase shift on transmission (¢) through the structure
of length L., where L. is the average length of the cables
that build the interferometer since the field amplitude in both

arms is the same,

co
W

WLt

()

Substituting Eq. (2) into Eq. (1), the group velocity as a
function of the total length and phase accumulated through
the structure can be obtained as

Lesr

Y= dpldo ®)

We use this expression to predict the group velocity of
our MZI, which consists of two coaxial cables (50 ), RG-
58C/U), of 2 and 14 m length, respectively, connected to two
1 X2 rf wave splitters (PE2000, Pasternack). The average
length of the interferometer is thus L.4=8 m. The system’s
transmission spectrum (magnitude and phase) is calculated
using a previously developed theory for the interference of N
sinusoidal rf signals.15 It is also obtained experimentally by
measuring the S,; scattering parameter with a two-port net-
work analyzer (Agilent model E8363B). The transmission
phase function ¢(w) (theoretical and experimental) is then
used in Egs. (2) and (3) to obtain the interferometer’s effec-
tive refractive index n(w) and the expected group velocity
vo(w).

These functions are shown in Fig. 1 in the frequency
range where we will perform the experiments of pulse propa-
gation. The transmission shows an oscillatory behavior at the
frequencies of the transmission minima. The slope of the
transmission phase function changes sign, and this causes the
anomalous dispersion regions in the refraction index curve
n(w). These regions of negative slope of n(w) lead to super-

© 2008 American Institute of Physics
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FIG. 1. Theoretical (lines) and experimental (symbols) results of (a) trans-
mission coefficient magnitude and phase, (b) refractive index using Eq. (2),
and (c) prediction of the group velocity using Eq. (3). Theoretical results use
the calculated phase function ¢(w), and experimental results use the mea-
sured ¢(w). The interferometer arms have lengths of 2 and 14 m.

luminal or negative group velocities, depending on the mag-
nitude of the slope. The anomalous dispersion is stronger at
lower frequencies because of the lower attenuation in the
cables. In the normal dispersion region, the group velocity
equals the phase velocity in the cables (0.67¢). Superluminal
group velocities higher than 4¢ and negative group velocities
as low as —0.1c are expected for a signal with center fre-
quency lying on a very narrow interval within the transmis-
sion minima. Comparison with a coaxial photonic crystal of
the same effective length shows that our system achieves
three times larger superluminal group velocities and presents
regions of negative group velocity which are not expected in
one-dimensional photonic crystals. 1o

We perform pulse propagation experiments in the fre-
quency regions previously identified. The experimental setulp
is similar to the one proposed by Munday and Robertson :
and shown in Fig. 2. The 500 kHz sinusoidal output of
generator-1 (Tektronix CFG-253) is used to amplitude modu-
late the sinusoidal signal of generator-2 (IntraAction VFE-
604A4), whose frequency can be varied between 40 and 80
MHz with a resolution of 10 kHz. This produces a train of
sinusoidally modulated wave packets with carrier frequen-
cies (f,) in the megahertz range and 2 us width that traverse
the MZI and is recorded at the oscilloscope (Agilent DSO-

Appl. Phys. Lett. 93, 074102 (2008)
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FIG. 2. (Color online) Experimental setup for the wave-packet propagation
measurements through a MZI. The output signal from generator-2 is 100%
amplitude modulated by the output signal from generator-1.

6032A). By means of a “T” connector at the output of
generator-2, this wave packet is compared with that propa-
gating along a single coaxial cable. The cable lengths indi-
cated in Fig. 2 ensures that the time difference between these
transmitted signals is equal to the propagation time through
the interferometer (z,).

Next, we perform accurate measurements of the group
velocity by determining the pulse propagation time (,)
through the interferometer, where v,=Lc/t,. Since superlu-
minal and mostly tunneling signals are largely attenuated, a
direct observation of the pulse peak on the oscilloscope is
not accurate enough. A systematic technique to determine the
pulse center, which is less vulnerable to local fluctuations
than the pulse peak, is more adequate. Different numerical
methods have been suggested.12 Here, the pulse center is
obtained from a numerical analysis of the data by finding the
best fit to the pulse envelope. The data is recorded with a
resolution of 0.5 ns; however, the experimental error in the
position of the pulse center is larger than 0.5 ns because the
slightest pulse distortion makes the center of the top and
bottom envelopes not coincident.

Figure 3 shows three wave-packet traces obtained at
different carrier frequencies f.. The size of the transmitted
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z T T 7 1 Ji4zeng | | (b)
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3 T g T
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FIG. 3. Wave-packet traces at the three different propagation regimes, with
carrier frequencies (a) 50 MHz (normal), (b) 56.5 MHz (superluminal),
and (c) 58.3 MHz (tunneling). Each trace is normalized to its maximum
amplitude.
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signal (10 V in amplitude) decreases sharply as the frequency
approaches the transmission minima. Accordingly, the ampli-
tudes have been rescaled to make the analysis easier to dis-
cuss. The arrows indicate the time spent by the pulse center
in propagating through the interferometer (z,) . Figure 3(a)
shows the wave packet at a carrier frequency of f,
=50 MHz corresponding to the normal dispersion region
from Fig. 1. This signal is delayed by 40 ns as expected from
the group velocity of 0.67c.

This is also the time delay measured for this wave packet
after propagating along a single coaxial cable of 8 m length
(where the wave velocity is known to be 0.67¢), thus proving
that the interferometer’s effective length L.y is indeed the
average length of the two interferometer arms. Figure 3(b)
shows the wave packet at a carrier frequency of f.
=56.5 MHz corresponding to the superluminal region of
Fig. 1. The amplitude of the signal was reduced to 4 V. The
propagation time is reduced to 14+ 6 ns denoting a super-
luminal group velocity of 1.9¢ =0.8¢, close to the expected
group velocity of 1.4c¢. Figure 3(c) shows the wave packet at
a carrier frequency of f.,=58.3 MHz and is advanced to
negative values of 7,. The amplitude of the signal was re-
duced to 1 V. Its center exits the MZI 250 =40 ns before the
center of the input pulse has entered the structure, i.e., it
tunnels through the interferometer with a negative group ve-
locity of —0.11¢ *=0.02¢, which is in good agreement with
the expected group velocity (—=0.09¢). This counterintuitive
effect is a direct result of the interference of the different
frequency components and is not in conflict with relativistic
causality.8 The fractional advancement achieved (advance-
ment time/pulse width ratio) is of 0.12, the same value as the
one reported with an erbium-doped optical fiber.”

To summarize, we have shown that plain MZIs can sus-
tain superluminal and negative group velocities. Anomalous
dispersion in a narrow frequency region around the interfer-
ometer’s transmission minima is strong enough to hold these
propagation regimes without the need of microstructuring,
doping, or using nonlinear media in the interferometer’s

Appl. Phys. Lett. 93, 074102 (2008)

arms. This anomalous dispersion is stronger than in one-
dimensional photonic crystals, where negative group delays
are not predicted. Experimental results have been obtained
for sinusoidal wave packets propagating in a coaxial-cable
MZI and are in good agreement with theoretical predictions
using the effective refractive index approach. This system
might be extended to the optical or microwave regimes for
telecommunication applications.
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Negative Group Delay of Reflected Pulses on
Microstrip Slabs and Bragg Reflectors

Aida Sanchez-Merofio, Julia Arias, and Mariadel Mar Sanchez-L épez

Abstract—Experimental evidence of negative group delays
(NGDs) for pulses reflected on microstrip dielectric slabs and
Bragg reflectorsis provided through frequency-domain char acter-
ization. This phenomenon occursin a narrow frequency interval
around the reflection minima, where the reflection phase function
has a steep negative slope. Our results confirm recent theoretical
predictions on weakly absorbing dielectric optical dabs, and a
scaling law for the reflective group delay at the dlab’s design fre-
quency isderived and probed. New interpretation of the Hartman
effect (the saturation of the group delay with increasing structure
length) isgiven in terms of the Bragg reflector’s effective length.

Index Terms—Superluminal propagation, negative group delay,
fast light, anomalous group velocity, Bragg reflectors, Hartman ef-
fect.

I. INTRODUCTION

YSTEMS capable of sustaining superluminal and nega-

tive group velocities have attracted much interest in recent
years because of their potential applications in communication
networks [1], [2]. It is long known [3] that such propagation
regimes occur in anomal ous dispersive media, for narrow pulses
with frequency components in the region where the frequency
derivative of the refractive index is negative. Such anomalous
pulse propagation regimes have been demonstrated experimen-
tally in awiderange of optical systemsincluding atomic vapors
[4], doped optical fibers [5] and photonic band gap structures
[6], [7]. Experimental evidence of this phenomenon has also
been provided for lower frequency ranges, like microwave [2],
[8], [9], radio-frequency [10], and even acoustic wave-packets
[11].

When describing superluminal pulse propagation one often
uses the more versatile concept of group delay, instead of group
vel ocity, because it can be applied al so to lumped systems, such
aselectronic circuits, where the device sizeismuch smaller than
the operating wavelength. In fact, such lumped systems have
offered a clear insight on some controversia aspects of the su-
perluminal phenomena, like the causality issue that arises for
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negative group delays (NGDs) [12]. The group delay isthetime
delay of the pulse envelope as it propagates through a medium
[3]. Following the usually adopted phase-time approach [2], [6],
[9] the group delay of a transmitted, 7, (or reflected, 7,.) nar-
rowband pulse, with center frequency wy, is obtained from the
frequency derivative of the transmission (or reflection) coeffi-
cient phase (¢) as

Ttr = (8¢t,r/8w)w0 . (1)

NGDs are puzzling, since the peak of the output pulse pre-
cedes the peak of the input pulse. Although this phenomenon
challenges common intuition, several works [4], [9], [12]
demonstrate that it does not violate the causality principle.

Whereas most of the studies on superluminality deal with
transmitted pulses, much fewer results have been reported con-
cerning the superluminal propagation of reflected pulses. This
topicisof interest since common devicesin actual communica
tion systems, like dielectric multilayer-based devices, host re-
flected waves and (not only) transmitted waves. In this context,
reported studies on superluminal propagation of reflected pulses
include Bragg gratings, Fabry—Pérot like photonic barriers and
dielectric dabs.

Namely, superluminal peak advancement of reflected pulses
was predicted in asymmetric photonic band gap structures
where a transmission window inside the gap is opened [13].
These predictions were soon confirmed experimentally with
the measurement of NGDs for picosecond optical pulses at
1.5 um in fiber Bragg gratings adequately synthesized to have
a double-Lorentzian spectral reflectivity function [14]. Also,
superluminal reflection of microwave pulses in a Fabry—Pérot
photonic tunneling barrier was reported in atime-domain exper-
iment [15]. In this case, and athough the reflected microwave
pulse arrived earlier than the reference pulse, no NGDs were
measured. An ulterior theoretical work [16] demonstrated that
NGDsfor reflected pulsesin Fabry—Pérot barriers can beindeed
achieved if the cavity contains resonant atomic absorbers. In a
similar system, consisting of a dielectric slab doped with dis-
persive two-level or three-level atoms, superluminal reflected
pulses with NGDs were obtained for specific dlab thickness
conditions[17]. Let us remark that in all the works cited above
reporting NGDs in reflection [13], [14], [16], [17], the system
is either asymmetric or doped with active or absorbing atoms.

Interestingly, a recent theoretical study has predicted large
NGDs for reflected pulses in symmetric, non-doped, weakly
absorbing dielectric dlabs [18]. It shows that NGDs should
occur for narrowband reflected pulses with center frequency in
the minima of the dab’s spectral reflective curve. The authors
explicitly show that in these minimaregions the reflective phase

0018-9197/$26.00 © 2010 |IEEE



function, ¢, (w), has alarge negative slope, thus providing the
NGD for reflected pulses according to (1). We have recently
reported an analogous spectral curve in transmission, with
steep negative slopes in the transmission phase function at the
transmission minima, in an also linear and passive, but different
system, consisting in a Mach—Zehnder interferometer, where
NGDs of —250 ns were measured for transmitted electromag-
netic sinusoidal wavepackets of 2 pswidth [19].

In this paper we provide, for the first time to the best of our
knowledge, experimental evidence of large NGDs in reflection
for dielectric dabs, thus confirming the theoretical predictions
in [18]. In addition, we show that such NGDs in reflection also
occur for Bragg refl ectors. Our experimental resultsare obtained
in the microwave range by frequency-domain characterization
of symmetric and passive microstrip dielectric slabs and Bragg
reflectors. An advantage of operating in the microwave range
is that we can measure the reflection phase function, ¢, (w),
with a two-port vector network analyzer. Such a simple mea-
surement of this key function that determines the pulse propa-
gation regime cannot be directly performed in the optical range.
We derive and probe a simple scaling law for the group delay
at the design frequency, fy, of the dielectric slab. Scaling laws
are useful in order to reproduce a specific device in another fre-
guency range of operation.

Also, given that Bragg reflectors can be regarded as photonic
barriers for pulses with their frequencies lying within the trans-
mission gap, weinvestigate the differencesin the Hartman effect
for reflected and transmitted pul ses on these periodic structures.
The Hartman effect in such photonic barriers, i.e., the saturation
of the group delay with barrier length, was reported long ago for
transmitted pulses[20]. More recently, studies on photonic tun-
neling [15], [21] have shown that the saturation rate of the group
delay isfaster for reflected pul sesthan for transmitted pulses. As
aremarkable result, we explain the saturation of group delay on
reflection in terms of the Bragg reflector’ s effective length.

This paper is organized as follows. After this introduction,
the fabrication of the microstrip devices and the experimental
setup for their frequency-domain characterization is described
in Section I1. Section |11 presents the experimental results and
their discussion. In Section IV, the main remarks and conclu-
sions of this work are provided.

Il. EXPERIMENT

In this section we describe the fabrication procedure of the
two types of microstrip structures considered in thiswork. First,
a high-impedance dielectric slab is fabricated to show experi-
mentally the NGDs predicted by Wang and Zhu for optical di-
electric slabs [18]. And second, Bragg reflectors are fabricated
to analyze various aspects of their behavior for reflected pul ses,
such as the arising of NGDs and the Hartman effect.

We have designed microstrip single lines following the Ham-
merstad and Jensen model [22], which provides simple equa-
tions for characteristic impedance and effective dielectric con-
stant as functions of microstrip width, substrate thickness and
dielectric constant.

Samples were fabricated on a high-quality substrate using a
L PKF Protomat 93s circuit board milling machinewith 100-um
resolution. This substrate is a high-frequency double-sided
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35-um copper plated laminate Taconic TLC, which is a com-
mercial microwave circuit board material with a dielectric
constant of 3.18 and thickness of 1.6 mm [23]. The nominal
loss tangent of this substrate is 0.003. However, we found that
experimental structures exhibit a larger overall attenuation
than simulated structures with 0.003 loss tangent. A fitting
procedure using the longest Bragg reflector (where attenuation
effects are larger) led to 0.0045 as a more suitable value for
the loss tangent and was used for the theoretical ssimulations
presented in next section.

We have measured the actual values of every element width
and length with an optical microscope of 100-,:m resolution and
checked that they lay within the experimental resolution of the
milling machine.

Measurements of the scattering (S) parameters were per-
formed on a two-port vector network analyzer (Agilent, model
E8363B). The parameters Sy; and Ss;, which correspond to
the reflection and transmission coefficient, respectively, were
recorded in the range of 1 to 9 GHz either every 4.4 MHz
(Bragg structures) or every 2.5 MHz (dab structure).

Experimental data contain a small amount of noise which is
not very apparent in the S parameters themselves. To obtain the
experimental group delay, the phase data curve must be differ-
entiated and this amplifies the noise leading to spurious effects
[24]. For this reason, in the calculations of the group delay fol-
lowing the phase-time approach in (1), the experimenta phase
data were smoothed prior differentiation. Although it is well
known that smoothing is an arbitrary process that may give re-
sults which vary critically with the smoothing parameters, we
finaly used a 17-point Savitzky—Golay algorithm based on a
second-degree polynomial fit [25], which does not essentially
affect the slope of the phase at the reflection maximaand is sat-
isfactory enough to preserve the key features of the group delay
trends at the reflection minima.

A. High-Impedance Dielectric Sab

We have fabricated a microstrip slab of 1.377 mm nominal
track width, which corresponds to a 86.6 Q characteristic
impedance, and 39 mm nomina length. This length corre-
sponds to A/2 (where A is the wavelength in the medium)
for a frequency of fy, = 2.5 GHz. The nominal impedance
contrast between the 50-Q2 ports and the slab corresponds to
the refractive index contrast (1:1/3) of the optical dielectric
slab considered by Wang and Zhu [18]. Fig. 1(a) shows the
fabricated sample. Actual values of line width and length are
1.35 mm and 39.1 mm, respectively.

B. Bragg Reflectors

We have fabricated periodic /4 structures of the type
(HL)MH containing N + 1/2 unit cells, where H represents
a high impedance (nominally 75 €2) line with length Ly and
width wy, and L represents alow impedance (nominally 50 )
linewith length Ly, and width wy,. These Bragg reflectors were
designed to have the first transmittance gap at a frequency of
2.5 GHz and were fabricated with N = 2,4,6, and 8 unit
cells. Asan example, Fig. 1(b) showsthe N = 2 structure. The
actua values of element width and length are Ly = 19.25 mm,
wyg = 1.75 mm, L;, = 18.75 mm, and wi, = 3.75 mm in the
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Fig. 1. Top view of fabricated microstrip structures: (a) 86.6 €2 dielectric slab,
and (b) Bragg reflector with 2 + 1/2 unit cells. SMA connectors have 50-2
characteristic impedance.

case of the Bragg reflector with N = 6 layers. These values
were similarly enough for the other structures and were the
ones considered in the theoretical simulations presented in the
next section.

Let usfirst analyze the high-impedance microstrip dielectric
slab. By means of the frequency-domain characterization per-
formed with the vector network analyzer, we wish to compare
the reflection of pulses on this microstrip slab with the behavior
predicted by Wang and Zhu for a weakly absorbing optical di-
electric dab [18].

For that purpose, we have selected one of the structures in
[18], namely adielectric slab with refractiveindexes 1:1/3:1 and
dielectric constantimaginary parte; = 0.01. Inorder to keep the
frequency range shown in [18], with the first reflection minima
at 129.9 THz, we have considered the thickness, d, of this op-
tical slab to be A/2 for adesign frequency of f, = 129.9 THz,
thus yielding d ~ 0.66 pm. Consequently, our microstrip line
is a scaled version, in the microwave range, of this optical di-
electric dab. A standard transfer-matrix method [26] (TMM) is
then applied to calculate the reflection coefficient (magnitude
|r| and phase ¢,.) of the optical slab as afunction of frequency.
For the microstrip line, these functions are measured using the
network analyzer and they are also calculated numerically by
TMM using the actual values of the microstrip line width and
length. The corresponding group delay in reflection, 7., isthen
obtained from the frequency derivative of ¢,.. In this calcula-
tion, the same numerical treatment (smoothing and differentia-
tion) has been applied to the experimental and simulated phase
functions. Theresults (||, ¢, and 7,.) areshown in Fig. 2, where
the frequency axis has been normalized to the design frequency
(2.5 GHz and 129.9 THz for the microstrip and optical slab, re-
spectively) for better comparison.

The magnitude of the reflection coefficient in Fig. 2(a) shows
the expected behavior of a dielectric slab, with minima at the
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Fig. 2. Scaling of optical (in black) and microstrip (gray) slabs. TMM numer-
ical simulation of aA/2 optical dielectric dab for fo = 129.9 THz and thick-
nessd = 0.66pgmwithe, = 3 ands; = 0.01 (black curve). TMM numerical
simulation (dashed curve) and experimental frequency-domain characterization
(circles) of aX/2 microstrip slab for fo = 2.5 GHz and length d = 39.1 mm
with loss tangent 0.0045. (a) Magnitude of the reflection coefficient in loga-
rithmic scale, (b) phase of thereflection coefficient, and (c) group delay obtained
using (1) after smoothing the phase function. The horizontal marksindicate the
theoretical value of 7,. at f, when the phase data are not smoothed numerically.
The inset figure shows the situation at f, in more detail.

resonant frequencies (f, and its multiples). These minima are
more pronounced for the optical slab because of its weaker
attenuation. The second resonance of the microstrip dlab is
dlightly shifted from 2f, because of the dispersion in the
effective dielectric constant, which isindeed taken into account
in the simulations [22]. The good agreement between the mi-
crostrip experimental and simulated curves probes the success
of the microstrip design and fabrication. The reflection phase
functions ¢,. in Fig. 2(b) display a steep negative slope at the
resonant frequencies, which lead to large and negative values
of the group delay in Fig. 2(c). The results for the optical slab
agree with those in [18]. The inset shows in detail the group
delaysat the design frequency. We attribute the differencein the
experimental and simulated resultsfor the microstrip to ahigher
attenuation of the actual slab. Group delay of 7, ~ —9 nsis
expected for a microwave narrowband pulse of 2.5 GHz center
frequency reflected on the fabricated microstrip slab. The
corresponding situation for the optical slab and an optical pulse
centered at 129.9 THz is 7. & —0.25 ps. Therefore, microwave
pulses reflected on a microstrip slab show essentially the same



physics predicted in [18] for optical pulses reflected on the
equivalent dielectric dlab.

Now, let us make a closer comparison. Since this A/2
microstrip slab is a scaled version, in the microwave range, of
the \/2 optical slab, anatural question arises: isthere ascaling
law for the NGD at the design frequency?

Using the analytical expressions of the group delays given
by Wang and Zhu [18], it can be easily obtained that for small
attenuation values, the reflective group delay at f, can be ap-
proximated as

.= 1 n, _ Ty @

B 27 fo n_z B foCOéo.

wheren,. and n; arethereal and imaginary part of therefractive
index, respectively, c isthe speed of light in vacuum, and « is
the attenuation per unit length and per design frequency fo. The
ration,. /n; is600for theoptical slab, and 276 for the microstrip
dab at f,. Therefore, according to (2) the expected group delay
a fo for the optical dlab is 7, = —0.73 ps, whereas for the
microstrip slab it is . = —17.57 ns. These values are larger
(absolute values) than the ones shown by the curvesin Fig. 2(c)
because of the smoothing of the phase functions. The horizontal
marksin Fig. 2(c) indicate the values reached by 7,. at f, when
the phase data are not smoothed numerically. As we can see,
these latter values do agree with the scaling law in (2).

Finally, let us mention that in order to compare the group
delays at the resonant frequencies, the limiting numbers of the
time axes in Fig. 2(c) were selected such that, once multiplied
by itscorresponding f, they take the same value for both slabs.
In this way, the apparent differencein .. for the microstrip and
optical slab isdueto theratio n,./n;.

We now discussthe frequency-domain characterization of our
fabricated microstrip Bragg reflectors (HL)™ H. Considering the
aboveresults, and the typical reflectance spectrum of multilayer
mirrors[26], NGDsin reflection should al so be obtained in these
structures.

Fig. 3 shows the reflection coefficient’s magnitude, |r|, and
phase, ¢, (top and middle panels, respectively) and the group
delay on reflection, .., (bottom panel) obtained from (1). The
experimental curves correspond to the scattering parameter data
S11, whereas the theoretical curves (solid line) have been ob-
tained by applying the TMM [26], including the wave attenu-
ation aong the microstrip structure. The excellent agreement
between theory and experiment is a conseguence of considering
the following issues.

Firgt, for thenumerical simulation of the structures, the actual
values of the lengths and widths of the H and L layers are con-
sidered. The consideration of the actual values for Ly, wy, Ly,
and wr, rather than their design values, is important to avoid
shiftsin the positions of the resonant peaks between theory and
experiment.

Second, in the calculation of the group delay, the same nu-
merical treatment (explained in Section I1) is given to the ex-
perimental and to the theoretical phase data.

Third, as explained before, instead of the nominal value of
0.003, a loss tangent of 0.0045 was considered in the TMM
theoretical calculations for al the Bragg reflectors.
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Let us now anayze the results. Fig. 3(a) corresponds to
the microstrip structure (HL)?H. The function |r| shows the
typical oscillationsin Bragg reflectors, with two main reflection
peaks in the displayed frequency range. The first peak position
agrees with its design value of 2.5 GHz, while the second peak
is dightly shifted off 7.5 GHz in both the experimental and
simulated curve because of the frequency dispersion of the
microstrip effective dielectric constant. Between these peaks
there are five reflection minima, and, asit occursfor the smpler
microstrip slabs previously analyzed, these minima are asso-
ciated to large negative slopes in the reflection phase function
¢, and the consequent negative values of the group delay
in a narrow frequency region around the reflection minima.
For instance, at 1.6 GHz, group delays of —3 ns are reached
and pulse peak advancements larger than 1 ns are expected
for reflected pulses of 140 MHz bandwidth. These values of
group delay and bandwidth are similar to the ones obtained in
coplanar waveguide left-handed media[27].

Asthe number of layers (V') increases, the number of minima
between the main reflection peaksincreases by therule 2N + 1
[see Fig. 3(b), (c), and (d)] so that a larger number of minima
must fit inside the same frequency interval. This sharpens the
minima and makes narrower the frequency region of NGDs.
Also, and due two the higher attenuation as N increases, less
NGDsarereached. For instance, alsoat 1.6 GHzandfor N = 8,
the NGD is of only —1.5 ns and the pulse bandwidth is now
limited to 90 MHz.

Experiments of superluminal reflection of optical pulseshave
reported [14] NGDs of —60 psin fiber Bragg gratings specially
apodized to provide a double-Lorentzian spectral reflectivity
with a pronounced dip. The results of Fig. 3 show that NGDs
should also occur for fiber Bragg gratings with an index pro-
filelikethat of a quarter-wave dielectric structure. Interestingly,
we found that our measured transmission coefficient data for
the Bragg reflectors show that, as opposed to reflected pulses,
NGDs do not occur for pulses transmitted in these linear and
periodical structures. Thisissueis still controversial [28]-{30],
and in this context, our S,; data agree with a previous theoret-
ical work [29] which questioned experimental results reporting
NGDs for transmitted pulsesin coaxial cable photonic crystals
[28].

The behavior of reflected pul seswith their frequency compo-
nents at the reflection’s maxima (rather than at the minima) is
now addressed. These frequency regions, where 7,. is positive,
correspond to the transmission gaps. Therefore, Bragg reflec-
tors behave as photonic barriersfor pulseswhose frequencieslie
within theforbidden transmission regions. Inthiscontext, wein-
vestigate the origin of the differences observed in [15] and [21]
on the Hartman effect for reflected and transmitted pulses. The
Hartman effect isthe saturation of the group delay of apul sethat
propagates along a photonic barrier as the length of the barrier
increases [31]. The frequency-domain characterization of our
microstrip Bragg reflectors with increasing number of layers N
makes possible to compare the Hartman effect for reflected and
transmitted pulses.

For that purpose, we consider the frequencies of the trans-
mission gaps (2.5 GHz and 7.5 GHz) and we plot, as a func-
tion of length, the corresponding values for the group delay on



SANCHEZ-MERONO et al.: NEGATIVE GROUP DELAY OF REFLECTED PULSES ON MICROSTRIP SLABS AND BRAGG REFLECTORS 5

1.0

0.8 E/‘\ | (a)

(b)
N=4

SN E A

Ir

Nl AA~anl Ao

A AN

~ 1 A A Py
5 /
— H :\ H
;; 0 V Ml‘ ;\V/ AVAV : : | 4
1
4 T T
— Theory - Theory
2 | Experiment RO e Experiment
z — NMANAAAN
=TI
A I I A

Ir

¢, (rad/m)

i i i i i i i

4 : :
- Theory
2 ° | Experiment |

. (ns)

4

2 L T

Theorly

2 3 4 5 6 7 3
Frequency (GHz)

9o 1 2 3 4 5 6 1 8 09

Frequency (GHz)

Fig. 3. Experimenta and theoretical results for the frequency-domain characterization of reflected pulses on microstrip Bragg reflectors (HL)™ H. Top panel
shows magnitude of the reflection coefficient, middle panel shows phase of the reflection coefficient, and bottom panel shows group delay (obtained using (1) after
smoothing the phase function) for (8) N = 2, (b) N =4, (c) N = 6,and (d) N = 8 unit cells.

reflection (7.) and on transmission (7;) obtained from Fig. 3
and from its analogous in transmission. The results are shown
in Fig. 4. The filled points in the figure correspond to the ex-
perimental values and the crossed points join the TMM calcu-

lated values for the structures with N = 1-8. The agreement
between theory and experiment is very good. Also included is
the calculated group delay for a uniform microstrip waveguide,
7o, (dashed line).



0.6 : Co .
3 v ¥ Rx (exp)
/i
P @ Tx (exp)
| ’ | .
04+ ) ‘ : IR
2 L
= o
* pi 3 ? i
02F 1 .
1/ : : :
Wa | | :
/
/ : ; | 2.5GHz (a)
00 | | | | 1 1
0.6 T T T T T T
! i/ ! :
: ! : :
| .
i ’/3 § e * P
0.4+ B Lot ; LI -
™ // : : i
2 .
~ 4 | | :
~ /: ' : |
B e o .
1/ : : !
o : ! :
Ly ; ! :
/ 7.5GHz (b)
0.0 P R R T R S SR
0 5 10 15 20 25 30 35

Barrier length (cm)

Fig. 4. Study of the Hartman effect in microstrip Bragg reflectors. Transmis-
sion and reflection group delays as functions of the length of the (HL)™ H struc-
tures at (a) 2.5 GHz, and (b) 7.5 GHz. Filled points are experimental data for
N = 2,4,6, and 8, and crossed points are TMM theoretical resultsfor N =
1 — 8. The solid line is obtained from (4), and the dashed line corresponds to a
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Fig. 4(a) shows the group delays at 2.5 GHz. Reflection and
transmission group delays coincide for short barriers, but as
the barrier length increases, 7,. saturates for the structure with
N = 6 layers (barrier length ~25 cm) whereas 7 does not
quite saturate yet. This different behavior is more evident at
7.5 GHz [see Fig. 4(b)], where 1; clearly increases with barrier
length (although at a slower rate than 7) while 7,. takes similar
values asthosein Fig. 4(a). This behavior was also observed in
the tunnelling of radio frequency pulses through coaxial-cable
band-gap structures [21]. It can be understood by closely exam-
ining the phase functions ¢,. and ¢; as N increases. We found
that the curves ¢, converge to the same linear function near
the gap center frequency (thus yielding the same group delay),
whereas the slopes of the ¢; curves increase dightly. This is
due to the attenuation, which is higher for larger structures and
smoothes the Bragg interference in the band gap region. As a
conseguence, the slope of ¢; tends to approach the value out-
side the gap region.

Therefore, the results of Fig. 4 clearly show that the role of
attenuation is much weaker for 7., which rapidly saturates. This
result wasinterpreted in [21] by regarding thiskind of structures
as a combination of a shortened lossless Bragg reflector and a
uniform but absorptive waveguide. From this point of view, at-
tenuation mainly affects the transmission wave and has negli-
gible contribution to the reflected wave. Following this picture,
one can attempt to estimate 7, at f, for a given structure as a
linear combination of 7,. and the group delay of a uniform mi-
crostrip line of the same length, 7, with absorption-depending
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coefficients such that 7.. and 7 coincidein the absence of atten-
uation. For our specific Bragg reflectors we found that a good
approximation is

A A
T <l_ﬁ> Tr+ﬁ7—0 (3)

where A = 1 — |r|? — |t|? accounts for the total absorption
through our Bragg structures at f,, which can be obtained
by TMM numerical simulation. The values obtained from (3)
exactly match the TMM calculated results of 7, showninFig. 4.
A generalization of this expression to any attenuation level is
gtill under further investigation.

The above results point out that in the case of weak absorp-
tion, 7. and 7, approximately have the same value at f,, and
a simple expression to estimate them can be very attractive. A
reasonable approach considers the Bragg reflector as a discrete
mirror with equal magnitude of the grating’ s reflection, |r|, but
placed a distance L. away, such as it gives the proper mirror
phase, ¢... In this picture, 7., can be estimated as the propaga-
tion delay of theincident wavetraversing adistance equal to this
effective mirror length L. and back:

2Ly

Up

T 4
The Appendix summarizes the main expressions used to calcu-
late Leg in terms of the mirror’s characteristics. We consider a
propagation velocity, v, as the average between the propaga-
tion velocities through 50- and 75-Q2 elements, which gives a
value of approximately ¢/1.57 at 2.5 GHz. Neglecting mirror
losses, L.g Ssaturates with number of mirror periods to a value
of approximately 38 mm. For N = 6, L.g is99% of the satura-
tion value. The calculated values of 7,. for lossless Bragg reflec-
tors using this simple approach (see solid curve in Fig. 4) are
in excellent agreement with the theoretical values using TMM
simulations.

IV. CONCLUSION

In this work, we have provided experimental evidence of
NGDs for reflected pulses on microstrip slabs, thus confirming
recent theoretical predictions on optical dielectric slabs. Group
delays as low as —9 ns have been obtained by frequency-do-
main characterization of a weakly absorbing A/2 microstrip
line at 2.5 GHz. This microwave operating device scales excel-
lently to its corresponding structure in the optical range. The
reflective group delay at the dab’s design frequency verifies a
simple scaling law.

We have also provided experimental evidence of NGDs for
reflected pulses on microstrip Bragg reflectors, with group de-
lays of —3 ns for 140 MHz pulse bandwidth. As in the case
of dlabs, this phenomenon occurs in a very narrow frequency
interval around the reflection minima and is a consequence of
the steep negative slope of the reflection phase function at these
frequencies. So far, NGDs in reflection had only been reported
for asymmetric or doped multilayer systems, and in left-handed
media.

Also, relevant differences in the Hartman effect for reflected
and transmitted pulses on Bragg reflectors have been shown in
this work. Namely, the much faster saturation rate of the group



SANCHEZ-MERONO et al.: NEGATIVE GROUP DELAY OF REFLECTED PULSES ON MICROSTRIP SLABS AND BRAGG REFLECTORS 7

delay in reflection, which is hardly affected by the attenuation.
We have provided a new interpretation of this effect in terms of
the mirror’s effective length.

The possibility of advancing pulses reflected on these linear
and passive multilayered microstrip devices might beinteresting
for applications in communication networks. This study is ex-
tensible to the optical range due to the universality of the wave
interference phenomena.

APPENDIX

The mirror effective length of alossless Bragg reflector can
be calculated at the Bragg frequency as [32]

Leg = (A1)

1 1 1
“teg | ——5— — ——

2 (1 + 3L 2meg>
whereryy, isthe H-L interface reflectivity, A isthelength of the
mirror period, and m..¢ isthe effective number of mirror periods

seen by the incident field at the Bragg frequency. This number
can be calculated as

1—7raL
tanh [ln (}i’%) ]

wherem isthe number of mirror periods, whichis N + 1 inour
structures.

tanh [m In (mﬂ

(A2)

Meff =
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Slow and fast light in three-beam interferometers: Theory and experiment
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We demonstrate the generation of slow and fast light (SFL) in a linear and passive three-beam interferometer.
Such propagation regimes occur for narrowband pulses with center frequency close to the transmission minima.
A model that fully describes SFL effects in this system is developed and an analytical approximate expression for
the group delay at the minima is derived. We demonstrate that slow light is not possible if the length difference
between adjacent branches of the interferometer is a constant. If a small length detuning (§) in one of the
branches is introduced, slow light at one of the two minima can be obtained as long as & exceeds a critical value.
Simultaneously, tunneling, superluminal, or normal regime is sustained at the other minimum, depending on the
system’s length. A proof-of-model experiment is performed in the radiofrequency range using coaxial cables
and 1 x 3 power splitters. The possible realization and performance of such a system in the optical range is also
discussed. This system is proposed as a simple alternative to active systems and photonic band-gap structures for

sustaining both slow and fast light.

DOI: 10.1103/PhysRevA.85.033815

I. INTRODUCTION

Research on slow and fast light (SFL) systems has increased
in recent years in the photonics community. Although the
possibility of propagating a light pulse in dispersive media at
unusually slow or fast group velocity is been known for many
decades [1], interest in this phenomena has been triggered
by their promising applications in optical communications
systems. In particular, the use of optical instead of electronic
delay lines and the development of optical buffers, switches
and synchronizers based on SFL systems have been suggested
[2-4].

The group velocity of a pulse is the velocity at which the
peak of its envelope propagates and is related to the frequency
(w) variation of the medium’s refractive index n by

c

)

Vg = ———.
) + wZ—Z)

Thus, a steep positive spectral variation of the refractive
index (dn/dw > 0) can lead to a very small group veloc-
ity (vg < ¢) (slow light or subluminal pulse propagation),
whereas in the case of steep anomalous dispersion (dn/dw <
0) the group velocity can be larger than the speed of light in
vacuum c (superluminal pulse propagation) or even negative
(pulse tunneling). These latter cases are known as fast light.
Because of the Kramers-Kronig relations, such abnormal pulse
propagation regimes are associated to sharp spectral features
in the transmission spectrum [5].

Experimental evidence of SFL has been reported for a
myriad of systems exhibiting material resonances (gain or
absorption), like Bose-Einstein condensates [6], atomic vapors
[7], solid crystals [8,9], semiconductor waveguides [10],
semiconductor quantum wells and dots [11], and in optical
fibers [12—14]. It has also been reported in systems exhibiting
structural resonances (photonic band-gap systems, PBG), like
photonic crystals [15] and fiber Bragg gratings [16,17], where
the dispersion is due to coupling between the incident wave-
length and the system’s characteristic length. For such PBG
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systems, experimental evidence of SFL has also been provided
in the microwave [18-20] and radio-frequency (RF) [21,22]
range. In fact, lower frequency setups have been relevant to
clarify important issues, like the puzzling advancement of
the outgoing pulse peak with respect to the incident pulse in
tunneling experiments (negative v,) [23], and have provided
experimental evidence of a theoretically proposed structure
exhibiting negative group delays in reflection [20]. They
have been also used to explore quasiperiodic structures, such
as Fibonacci or Thue-Morse, exhibiting strong normal and
anomalous dispersion [24].

Regardless of the frequency range, let us note that all the
aforementioned systems are either active (they respond to the
interaction with light by generating narrow, gain, or absorption
spectral bands) [6—11], exhibit nonlinear effects [12—14], or
are periodically structured [15-22,24]. Unlike them, we have
investigated the occurring of SFL effects in passive, linear, and
nonperiodical structures. In a previous work [25], we demon-
strated superluminal and negative group velocity in a linear and
passive Mach-Zehnder interferometer (MZI) operative in the
RF range. This behavior had also been outlined in Ref. [26] for
an equivalent system consisting of a single asymmetric loop
structure. We noted that anomalous dispersion in a narrow
frequency region around the interferometer’s transmission
minima is strong enough to hold fast light without the need
of microstructuring, doping, or using nonlinear media in the
interferometer’s arms. Slow light was, however, not observed
in a MZI [25]. Slow light is particularly interesting since
it improves the spectral sensitivity of interferometers [27]
and enhances light-matter interaction and hence nonlinear
effects [3].

Interestingly, the series loop structures studied by El
Boudouti et al. [26] do present subluminal regime when defects
are introduced. These structures may be regarded as MZIs
(asymmetric loops) connected in series through segments. Like
PBG systems, they exhibit bandgaps, and defect modes appear
inside the transmission gaps if one of the segments connecting
the loops is somehow changed (in length, for example). The

©2012 American Physical Society
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situation resembles that of a doped photonic crystal, with
superluminal propagation for a pulse with center frequency in
the bandgap and subluminal propagation for a pulse with center
frequency at the defect mode. But unlike photonic crystals,
an outstanding characteristic of this serial loop structure is
the existence of bandgaps in a totally homogeneous material,
without the need of refractive index contrast (or impedance
contrast, if the system operates in the RF range as is the case
in Ref. [26]).

With the aim of generating SFL regimes in a linear and
passive interferometer, we have explored another alternative.
Instead of connecting in series several MZIs, we increase the
number of arms of a single interferometer. As a first attempt, we
considered a four-beam interferometer with a nominal length
difference (A) between adjacent arms [28,29]. The system
was built with coaxial cables and measurements were per-
formed for narrowband RF pulses centered at the transmission
minima (the system exhibits three minima between two main
transmission peaks). Simulations in the optical range for a
Si-micromachined interferometer were also analyzed [29]. It
was found that subluminal propagation only occurred if the
length of any of the interferometer’s arms was changed in
a very small fraction (£) of the nominal length difference
A; otherwise, the pulse propagation regime was tunneling or
superluminal.

These results look appealing but there remain open ques-
tions: Why is slow light not obtained for a constant length
difference between the interferometer’s arms? Why is a small
length detuning & in one of the arms necessary to get a fast-slow
light transition? Is there a critical value for such detuning? Can
we predict, in terms of £, at which transmission minimum slow
light will arise?

The present paper addresses these questions. Figure 1 shows
a schematic that illustrates the concept of a lossless three-arm
interferometer showing the typical transmission spectrum. We
consider the simplest interferometer (least number of arms N)
where a length detuning in a branch implies a change in the
otherwise constant length difference between adjacent arms
(A). Note that this condition holds only for N > 3 (this
is why a MZI does not sustain slow light). We develop a
model that fully describes SFL effects in such a three-beam
interferometer. An exact expression of the group delay as
a function of frequency, attenuation, and length detuning is
derived. An approximate (but simpler) equation of the group

Arm length — phase shift

(L+A)—>(s+5)

output

(L-A)>(4-5)

0
0  27/3 4z/3 27  87/3 10z/3 4r

B(rad)

FIG. 1. Schematic of a lossless three-arm interferometer and its
typical transmission spectrum.
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delay at the transmission minima is given, and the critical
length detuning needed to obtain slow light at each minimum
is obtained. For the sake of generality, the theoretical results
are presented using normalized frequencies and normalized
group delays. A proof-of-model experiment is performed in
the RF range by using coaxial cables and 1 x 3 wave splitters.

This work is outlined as follows. In Sec. II the analytical
model is developed and its range of validity discussed.
Section III describes the experimental techniques used in the
proof-of-model experiments performed in the RF range. The
results and discussion of such experiments are given in Sec. IV,
where the frequency and time-domain characterization of sev-
eral three-beam RF interferometers is reported and their agree-
ment with theory is discussed. Basic figures of merit of the
proposed SFL system and a design in the optical range are dis-
cussed. Finally, Sec. V contains the conclusions of this work.

II. ANALYTICAL MODEL

We consider a plane wave, with complex amplitude of 3,
impinging on a three-arm interferometer. A 1 x 3 splitter di-
vides the wave in three equal components that travel along each
arm and then recombine by a 3 x 1 coupler. The transmitted
complex amplitude at the end of the interferometer is:

3
pu_i8 Z el )
i=1

where ¢; is the phase factor of the wave propagating along
the ith branch, which, in turn, can be expressed as

1)
¢ = ;Li + jaL;. 3)

In Eq. (3) w is the angular frequency, v is the phase
velocity in the medium, L; is the ith arm length, and « is
the attenuation coefficient through the medium, which for
simplicity is assumed to be constant over the whole frequency
range. We define the length of each arm as:

Li=L—A(1-¢), Ly=L, and Ly=L+A, (4

where A is the nominal length difference between adjacent
arms. A small length detuning (£ < 1) in the first arm is
introduced to explore the induced transitions in the pulse
propagation regimes at the transmission minima. The effective
length of the interferometer is, thus [25],

L L L A
(1+3z+ 3)=L+%.

By defining B as the phase associated to the nominal length
difference, A, i.e., 8 = wA /v, the real and imaginary parts of
the transmission coefficient can be written as

Re = 14 e %2 cos B + e cos[B(1 — £)],  (6a)
Im = ¢ *%sin B — e*21 =9 sin[B(1 — £)]. (6b)

&)

Ly =

And the magnitude and phase of the transmission coefficient
can be expressed as

1| = e *Fv/Re? + Im?, (7a)
P (7b)
= — arctan{ — | .
TOA Re

Let us note that the above quantities depend on w through .
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We describe the propagation of an electromagnetic pulse
through the interferometer in terms of the group delay,
which is the time delay of the pulse envelope as it propa-
gates through the system [1]. Following the usually adopted
phase-time approach [18,23], the group delay is obtained
from the frequency derivative of the transmission coefficient

7 A e — (1= £)e22079 =48 cos f — (1 — £)e* 09 cos[B(1 — £)] + Ee™*2 cos[ B2 — £)]

A
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phase:
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Al IR
Rea—g' - Ima—we
Re? + Im?
Therefore, the exact expression of the group delay through

the interferometer with constant attenuation « as a function of
frequency (through g) and length detuning £ is then

®)

Tg

T, L

In Eq. (9), the group delay has been normalized by 7, =
L /v, that is, the phase delay in the medium over length L.
Next, we analyze particular cases of attenuation and detuning.

A. Interferometer without detuning (¢ = 0)

Let us first consider the case where the length difference
between adjacent arms is a constant (¢ = 0), and thus the
interferometer effective length is Leg = L.

1. Lossless media (e = 0)

Inthis case,Re = 1 4+ 2 cos  and Im = 0. This implies that
transmission minima are located where cos 8 = —14; i.e., the
first and second transmission minima after a principal maxi-
mum of order m lie at B) = 27 (m + }) and B9 = 27 (m + 3),
respectively. From Eq. (8) it is then trivial to obtain the group
delay at the minima as 7, /7, = 1. The group delay is identical
to the phase delay and, consequently, the group velocity equals
the phase velocity. Therefore, a lossless interferometer with
& = 0 cannot sustain anomalous propagation regimes. This is
not surprising, since in a linear system with nothing altering the
phase relation between the pulse components, the pulse peak
cannot be shifted and, hence, it travels at the phase speed.

2. Lossy media (o« > 0)

If we consider a certain level of losses (« > 0), the
transmission minima are located where

cosh(xA)

> (10)

cosf = —

Taking this into account, the group delay at the transmission
minima according to Eq. (9) will be

A
51— 2 coth(aA). (11)
T, L

As the coth function is always positive for positive argument
values, 74/, is always smaller than 1 and, consequently,
the system will never sustain subluminal regime. However,
tunneling and superluminal regimes can arise at the minima
by properly choosing the interferometer effective length for a
given attenuation coefficient.

In order to go into more detail, we consider small values of
a A, for which the transmission minima can be taken to lie at

1 4 7204 4 20A0=6) 4 De=aA cos B + 2e%2U=5) cos[B(1 — &)] + 2e7*2¢ cos[B(2 — §)]

©))

,3?,2 (defined in Sec. IT A 1) and Eq. (11) can be approximated

by:
1
N (1 _ —> . (12)
T alL

The interferometer will therefore sustain tunneling at the
minima (7, < 0) if the effective length is chosen so that

al <1, (13)

whereas superluminal regime is possible at the minima
(0 < 7, < L/c) if the effective length satisfies the condition

5, P L (14)
n—1
where n is the real part of the medium’s refractive index. Two
interesting points should be remarked. First, Eqgs. (13) and (14)
are restrictions on the values of the system’s total attenuation.
Hence, a proper change in the attenuation range (either by
changing o and/or the interferometer’s effective length L)
could change the propagation regime at the transmission
minima. Second, the former conditions do not depend on A;
the only role of A being that of determining the location of the
minima.

The behavior discussed above is illustrated by numerical
simulations on an interferometer with refractive indexn = 1.5.
Figure 2 shows the transmission coefficient magnitude calcu-
lated using Eq. (7a) and the group delay obtained from Eq. (9),
for two attenuation values and A = L/2. The transmission
curve [¢| displays the typical three-beam interference pattern,
with principal peaks at 8 = 2wm (m is the order of the peak)
and two minima located in between [30]. In agreement with our
previous discussion, no abnormal propagation regimes occur
in the lossless interferometer, while in the case of losses with
oA = 0.01, tunneling appears around the two minima and
negative group delays of almost —507,, can be reached.

The evolution of the pulse propagation regime at the
minima, as a function of the total system’s attenuation oL
is described in Fig. 3. We consider « A = 0.01and the 7, curve
obtained from Eq. (11) is plotted together with the straight line
corresponding to the propagation phase delay through vacuum
(L/c). Since the medium’s refractive index is 1.5, L/c =
7,/1.5. As we can see, for small enough attenuation (¢ L < 1)
the system exhibits tunneling, in agreement with Eq. (13).
For values of oL ranging between 1 and 3, superluminal
propagation is sustained, in agreement with Eq. (14), and the
system presents normal dispersion if « L > 3. Hence, the total
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FIG. 2. (a) Transmission coefficient magnitude and (b) group
delay Eq. (9) in units of the phase delay through the medium of
a three-beam interferometer with length difference between adjacent
arms A = L /2, length detuning £ = 0, and refractive index n = 1.5,
for two values of the attenuation coefficient «.

attenuation in the system determines the pulse propagation
regime. Fast light is achieved with small enough attenuation
while it disappears if it is either too high (¢ L > ~%7) or zero.

B. Interferometer with detuning (§ # 0)

We now consider the case where a small length detuning
(¢ « 1) isintroduced in the first branch of the interferometer.
If A and |&]| are small, it can be shown that the transmission
minima move with £ according to

~ g §
/31,2 ~ ﬁhz (1 + 5) s (15)
1.00 T T T T T T T
075 [ (Lic)t Lossy medium with n = 1.5
050 - tunneling
025k (7.<0) dispersion |

RO S (z > Lic)

T 0.00 ——t— ———
-0.25 r X | e
-0.50 | superluminal propagation 4

I v,>0)
-0.75 “ e
_100 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
alL

FIG. 3. Pulse propagation regimes at the transmission minima
of a lossy three-beam interferometer without detuning (£ = 0) as a
function of the total system’s attenuation o L. Group delay plotted
from Eq. (11) (solid line) and phase delay through vacuum (dashed
line). The delays are given in units of the phase delay through the
medium.
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where ,BR2 corresponds to the first and second minima when
E=0anda =0.

1. Lossless media (a0 = 0)

In a lossless medium, following Eq. (9), the group delay at
the first and second transmission minima can be approximated
by

A 23

By 222 (16a)
Tp L gy

A2
Ty A2Y3 (16b)
Tp L &y

respectively. Consequently, by setting & # 0, one can always
obtain slow light at one of the minima. More specifically, these
are the possible cases:

(1) If &€ <0, the system sustains slow light at the 1st
minimum. At the 2nd minimum, the possible pulse propagation
regime is tunneling if

23
L ———A, 17
S TRk (a7

and superluminal (0 < 7, < L /c) if

23 ( - >@A. (18)

~ 9L A<L < — 0
%3 By
Otherwise, only normal propagation will be possible at the
2nd minimum.
(i1) If ¢ > 0, slow light occurs at the 2nd minimum, whereas
at the 1st minimum, the system will sustain tunneling if

L < %A, (19)

Y&
and superluminal propagation if

¥A<L<< . )@A. 20)
Bi§ Bi'é

Otherwise, only normal propagation occurs at the Ist
minimum. The above expressions set restrictions on the length
L of the second branch, which is very close, but not equal, to
the system’s effective length [see Eq. (5)].

This behavior is observed in Fig. 4, for a three-arm
interferometer, where its first branch has been increased or
decreased according to & = +5%. Exact Eq. (9) was used to
simulate the group delay as a function of § in a system with
A = L/2 and refractive index n = 1.5. The transmission’s
minima shift with £ is manifest in the group delay curves.
According to the approximation in Eq. (16), for a detuning of
+5%, the group delay should be —15.57, and 9.3, at the first
and second minima of zero-order, respectively. Whereas, if
& = —5%, the expected group delay at the zero-order first and
second minimum is 17.5t, and —7.37,, respectively. These
approximate values of the group delay at the minima are in
excellent agreement with the exact results shown in the figure.

n—1

n—1
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FIG. 4. (a) Transmission coefficient magnitude and (b) group
delay of a lossless three-beam interferometer with nominal length
difference between adjacent arms A = L/2 and refractive index
n = 1.5, for two values of length detuning &.

2. Lossy media (o« > 0)

In the most general case, where both detuning and a certain
attenuation level are considered, and under the conditions
of small «A and |£|, Eq. (9) can be approximated at the
transmission minima as

Tl A _02*/3 , 21a)
Tp L Bi(§ — &)
W 823 (21b)

Nl
Tp L (€ — &)
where the critical detuning lengths &, and &, are approxi-
mately

ZﬁaA

%‘L‘l = - ,8? 9 (22a)
ba = 42322 (22b)
B,

For lossless media, &, =&, =0 and Egs. (21) reduce
to Egs. (16); thus, recovering the situation discussed in
Sec. II B 1. The role of the attenuation is then to increase the
magnitude of the critical detuning needed to obtain slow light
at the minima. Table I summarizes the possible propagation
regimes at both minima. If £ < &, the system only sustains
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TABLE II. Possible propagation regimes at the 1st transmission
minimum.

Condition L <L, Ly <L <(GH)La L> (-l
£ <&, Slow Slow Slow
&> &, Tunnel. Superlum. Normal

slow light at the 1st minimum. If & > &, the system only
sustains slow light at the 2nd minimum. For & < § < &,
the allowed pulse propagation regimes at the minima can be
tunneling, superluminal, or normal, depending on the length
L. Table II summarizes the possible propagation regimes at
the Ist minimum. If & > &, there is a maximum value of L
to obtain tunneling at the 1st minimum:

_ Bs )1 ’s
Ly = <Ol + 2\/§A . (23)

For lengths L greater than L;; and smaller than (ﬁ)L,, R
superluminal propagation is sustained at the Ist minimum.
Finally, when L exceeds the value (n"TI)L,l, the normal regime
is attained.

Similarly, the possible propagation regimes at the 2nd
minimum are shown in Table IIl. For & < &.,, there is a
maximum value of L to get tunneling at the 2nd minimum:

Y& )1
L, = - . 24
: (“ 238 e

For lengths greater than L,, and smaller than (ﬁ)L,z,
superluminal propagation occurs at the 2nd minimum. Once
again, when L exceeds the value (=)L, the normal regime
is attained. In the case & =0, lengths L;; = Ly = 1/o,
and Eqgs. (13) and (14), for a lossy interferometer with a
constant length difference A between adjacent branches, are
recovered. Let us remark that, as opposed to that case, A does
now influence the conditions that determine the propagation
regime.

We have checked the validity of the approximated Eqs. (21)
and (22) for estimating the group delay at the transmission
minima. The approximated value has been compared with
the exact result obtained from Eq. (9), as a function of
the detuning & and for an attenuation level of oA = 0.01.
The results in Fig. 5 reveal the following features: (i) the
agreement between the approximated and the exact value of
7, is excellent for & up to £5%; (ii) the group delay increases
in magnitude as the detuning approaches the critical value;
and (iii) the SFL transition when reaching the critical detuning
is extremely abrupt. Namely, the absolute value of 7, at each
minimum approaches infinity when the length detuning equals
exactly the corresponding &.. This behavior is understood from

TABLE I. Possible propagation regimes at the transmission minima.

Condition Regime at 1st min Regime at 2nd min

& <&, Slow Tunnel., Superlum., and Normal
Ea<&E<éy Tunnel., Superlum., and Normal Tunnel., Superlum., and Normal
E>¢&n Tunnel., Superlum., and Normal Slow
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TABLE III. Possible propagation regimes at the 2nd transmission
minimum.

PHYSICAL REVIEW A 85, 033815 (2012)

TABLE IV. Fabricated three-beam RF interferometers with L =
2.066 m, A = 1.022 m.

Condition L <Ly, Lo <L <G5l L>(G"5)Ln Interferometer L; (m) &(%)
&£ <&n Tunnel. Superlum. Normal L1-99 0.989 —5.4
&> &, Slow Slow Slow L1-101 1.008 =35
L1-105 1.049 +0.5
L1-109 1.086 +4.1
L1-110 1.103 +5.8

Egs. (6)—(8): for a given A value, the critical detuning is the
one that makes Re? 4 Im? = 0 at the corresponding minimum.
Therefore, this abrupt SFL transition is achieved through a
passage from a zero transmission condition. We would like to
draw attention here to the similarity of this mechanism with
that reported by Longhi in active fiber Bragg gratings with
asymmetric profile [17]. In that work, an abrupt superluminal
to subluminal transition of reflected pulses near to a local
minimum of the reflection spectrum is achieved by increasing
the gain level.

III. EXPERIMENTAL TECHNIQUES

In this section, the experimental setup we have used
for our proof-of-model experiment is described. We have
designed a nominal interferometer consisting of a 1 x 3 RF
power splitter, a 3 x 1 RF coupler (both PE2002, Pasternack),
and three coaxial cables (50 €2, RG-58C/U). The designed
effective length of the system is 2 m and the intended length
difference between adjacent cables is 1 m. In practice, every
branch of the interferometer comprises the cable itself, the
connectors between cable and splitters, and a small track inside
the splitters. After measuring all these elements, the actual
branch lengths of the starting interferometer were found to
be L; = 1.049 m, L, = 2.066 m, and L3 = 3.088 m, yielding
A =1.022 m, and & = 40.5%, according to our definitions
in Eq. (4). In addition, four coaxial cables were prepared
to substitute the L; cable of the starting interferometer. The
actual first arm lengths are 0.989, 1.008, 1.086, and 1.103 m.
Therefore, we have five interferometers to be characterized in
frequency and time domain, each with A = 1.022 m, and a set
of values for & of —5.4%, —3.5%, +0.5%, +4.1%, and +5.8%.

- --- Approx (2" min)
A Exact (2" min)

—— Approx (1" min)
= Exact (1" min)

500 T T T —— T T T
1
1
1
. 1 1
tunneling |
M
}—
slow light \ slow light
250F (1" min) \‘ (2™ min)
&, =-L7% V&, =10.8%
-500 s s s s s L s s
S5 4 3 2 -1 0 1 2 3 4 5
£(%)

FIG. 5. Dependence with length detuning of the group delay at
the minima for a three-beam interferometer with nominal length
difference between adjacent arms A = L /2 and attenuation ¢ A =
0.01. The approach in Egs. (21) (line) is compared to the exact result
of Eq. (9) (symbols) for each minima.

This set of & values allows checking the evolution from fast to
slow light at the minima as L; varies. All the cables available
for the branches were cut out of the same long coaxial cable
whose attenuation coefficient as a function of frequency, «(w),
had been previously determined following the procedure in
Ref. [30]. Knowing the system’s attenuation was necessary in
order to estimate the critical length detuning through Eq. (22)
so that we could prepare the cables with adequate values of
& to display the SFL transition. From the characterization
of a(w) we obtained an attenuation of o = 0.015 Np/m
(0.13 dB/m) at 65.2 MHz (first transmission minimum of the
nominal interferometer) and « = 0.022 Np/m (0.19 dB/m)
at 130.4 MHz (second transmission minimum of the nominal
interferometer). These attenuation values yield a critical length
detuning of & = —2.5% and &, = +1.9% for the first and
second minimum, respectively. The characteristics of the
fabricated RF three-beam interferometers are summarized in
Table IV.

The frequency characterization of these interferometers
has been performed by means of a two-port vector network
analyzer (PNA series, Agilent E8363B). The scattering pa-
rameter S,; (the transmission coefficient) was recorded in
the 10-200 MHz range every 59.375 kHz with an average
of 64 to help suppress the random noise. In addition, a
full characterization of the splitters was carried out. We use
this measurement to correct the interferometer experimental
response for a proper comparison with simulation, which does
not include the effect of the splitters. It was shown that both
splitters directly interconnected introduce an overall group
delay of 1.8 ns and an attenuation of 1 dB, approximately, in
the transmission response.

The experimental data contain a small amount of noise,
which is not very apparent in the Sp; parameter itself. To
obtain the experimental group delay, the phase data curve is
differentiated and this amplifies the noise leading to spurious
effects. For this reason, the network analyzer was configured
to smooth the group delay by averaging 17 adjacent points.
Although it is well known that smoothing may give results
which vary critically with the smoothing parameters, the
selected averaging algorithm preserves the key features of the
group delay at the transmission minima.

Additionally, time-domain pulse propagation experiments
have been performed on each interferometer. The experimental
set-up is shown in Fig. 6. The 300 kHz sinusoidal output
of generator-1 (Tektronix CFG-253) is used to amplitude
modulate the sinusoidal signal of generator-2 (IntraAction
VFE-604A4), whose frequency can be varied between 40 and
80 MHz. Therefore, only the first minimum can be observed.
This produces a train of 3.3-ps-wide sinusoidally modulated
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FIG. 6. Experimental set-up for the time-domain pulse propa-
gation measurements through the RF interferometers. The output
sinusoidal signal from generator-2 is 100% amplitude modulated by
the output signal from generator-1. C1 and C2 are 50 €2 coaxial cables
constituting the reference path (see text).

wave packets with carrier frequencies in the MHz range. The
pulse train transmitted through the interferometer is recorded
at the oscilloscope (Agilent DSO-6032A) with a resolution
of 0.5 ns (10 kSamples/5000 ns). The TTL signal from
generator-1 is used to trigger the oscilloscope.

The group delay for each Cl-interferometer-C2 system (see
Fig. 6) was estimated by the following procedure: first, a
capture of the transmitted pulses was taken for a carrier fre-
quency coinciding with the interferometer’s 1st transmission
minimum. Next, the interferometer was removed and cable
C1 was connected to cable C2, and captures of transmitted
pulses through this reference assembly were performed at the
same carrier frequency than before. For each interferometer,
the group delay is then estimated as the time shift between the
peak of the pulse transmitted by the system and the peak of the
pulse traveling through the reference path. Let us recall that
the group delay estimated in this way will approach to the one
retrieved from Eq. (8) as the modulation frequency decreases.

IV. RESULTS AND DISCUSSION

This section discusses the experimental results obtained
for the fabricated RF interferometers described in Sec. III
Frequency and time-domain measurements were performed on
these systems. The results are compared with the theoretical
model developed in Sec. II. A design of such a device in the
optical range is also proposed and discussed.

A. Results in the frequency domain

Figures 7 and 8 show the transmission (magnitude |z|
and phase ¢,) and group delay (t,) of our five three-beam
RF interferometers whose parameters are summarized in
Table IV. Experimental and simulation results are shown.
Namely, we include two experimental curves. One corresponds
to the whole system measured with the vector network
analyzer (labeled uncorrected experimental data)—including
the splitters—while the other (labeled corrected experimental
data) is the result of subtracting the effect of the splitters
in the way indicated in Sec. III. For each interferometer, the
simulated || and ¢, curves were obtained as in Ref. [30], by
numerically calculating the interference of three sinusoidal RF
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FIG. 7. Numerical simulation (solid curve) and experimental
frequency-domain characterization of the starting interferometer
L1-105. The dashed curve corresponds to the whole system measured
with the vector network analyzer—including the splitters—and the
symbols refer to the result of subtracting the effect of the splitters
in the way indicated in Sec. III. (a) Magnitude of the transmission
coefficient, (b) phase of the transmission coefficient, and (c) 17-point
averaged group delay.

waves propagating through coaxial cables of the lengths given
in Table IV, including the frequency-dependent attenuation
in the cables. The 7, curves were obtained by differentiating
the corresponding numerical phase curve with respect to the
frequency. The same 17-point smoothing algorithm as that
applied to the measured , curve was used for the simulated
group delay. The agreement between simulations and the
corrected experimental results is very good, thus assessing
the accuracy of the procedure employed to subtract the effect
of the splitters. From the figures, it is obvious that the splitters
introduce losses (the peaks in transmission are less pronounced
for the raw data) and also they add an additional phase (the raw
data phase function is above the numerical one). Their effect
on the group delay is hardly noticeable; for this reason only
the corrected experimental 7, curve is shown in the figures.
Let us first analyze the situation for the starting interferome-
ter L1-105, which is displayed in Fig. 7. The |¢| curves exhibit
absolute maxima every 200 MHz and two minima between
the zero and the first-order principal peak that lie close to the
expected positions fy; = 65.4 MHz and fo, = 130.8 MHz [see
Eq. (15)]. Negative group delay around —400 ns are reached
at both minima, accordingly to the steep negative slope of
the phase function at these frequencies. These results agree
with our model predictions, since the interferometer’s length
detuning (4-0.5%) satisfies the condition &, < & < &, (with
&1 = —2.5%, and &, = 4+1.9%), and the length of the second
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FIG. 8. Numerical simulations (solid curve), uncorrected (dashed curve), and corrected (symbols) experimental results for the frequency-
domain characterization of three-beam RF interferometers. Top panel shows magnitude of the transmission coefficient, middle panel shows
phase of the transmission coefficient, and bottom panel shows the 17-point averaged group delay for samples (a) L1-99, (b) L1-101, (c) L1-109,

and (d) L1-110.

branch (L = 2.066 m) is well below the limiting values (L;; =
55.7 m and L,, = 62.2 m) above which tunneling regime
disappears.

Figure 8 shows how the situation changes when the
interferometer’s length is slightly changed. According to
theory, a reduction of at least 2.5%A in branch length L,
fulfills the condition to generate slow light at the 1st minimum.
On the contrary, an increase of at least 1.9% A would generate

slow light at the 2nd minimum. Figures 8(a)-8(d) correspond
to samples L1-99, L1-101, L1-109, and L1-110, respectively.
In the two samples with shorter L the system exhibits positive
7, at the 1st minimum, while negative 7, is retained at the 2nd
minimum. The opposite situation occurs for samples L1-109
and L1-110. These results are justified within our model,
considering the length detuning & of each sample (Table IV),
the critical detuning lengths (&1, &.2), and the model conditions
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summarized in Tables II and III. Namely, & < &, = —2.5%
for the system in Figs. 8(a) and 8(b) and § > £, = +1.9%
for the system in Figs. 7(c) and 7(d), which explains the
occurring of slow light at the 1st minimum in one case and at
the 2nd minimum in the other. Also, a quick estimation using
Eq. (24) shows that only tunneling can be sustained at the
2nd minimum for interferometers L1-99 and L1-101, since L
(2.066 m) is for both systems smaller than L,, (11.6 m and
15.8 m, respectively). A similar result occurs by using Eq. (23)
to obtain the value of L, for systems L.1-109 and L1-110; we
find L < L;; (25.5 m, and 20.3 m, respectively), and this is
why these samples exhibit tunneling at the st minimum.

From Fig. 8, the link between the strength of the group
delay peaks and the steepness in the slope of the phase
function is obvious. Such steepness is ultimately linked to the
attenuation in the system (for higher attenuations the slopes are
less pronounced) and to how much & approaches the critical
detuning & or &,. Samples L1-101 and L1-105 are the ones
with & closer to one of the critical values, thus leading to the
highest and narrowest 7, peaks. Finally, the frequency shift of
the minima as the length detuning varies is evident in Fig. 8.
The minima move toward higher frequency as £ increases, just
like the theoretical model predicts.

B. Results in the time domain

Pulse propagation experiments were carried out using the
experimental setup described in Sec. III (Fig. 6). The modu-
lating signal was a 300 kHz sinusoidal wave, which results in
a 3.3-us-wide pulse. This choice of the modulating frequency
was a compromise between narrow-enough bandwidth to avoid
pulse distortion and large-enough bandwidth to get appreciable
pulse peak advancements (or delays) in comparison to the
pulse length. For each interferometer, the carrier frequency
was selected to coincide with the first transmission’s minimum.
Since the signals were largely attenuated, a direct observation
of the pulse peak on the oscilloscope was not accurate enough
to measure the group delay. Hence, the pulse peak position
was obtained from a numerical analysis of the data by finding
the best fit to the pulse envelope.

Figure 9 shows the pulse captures for the five RF in-
terferometers. The arrow indicates the time spent by the
pulse peak in propagating through the interferometers and
it is obtained as explained in Sec. III. The SFL transition
in the pulse propagation regime is evident in these captures.
The 7, values agree reasonably well with those found in
the frequency-domain characterization. The pulse propagates
with negative group delay of —302, —147, and —115 ns in
samples L1-105, L1-109, and L1-110, respectively. Whereas
positive group delays of +248 and +308 ns occur in samples
L1-99, and L1-101, respectively. As it is clearly demonstrated
in Refs. [31-33], such peak advancements and delays arise
from the coherent interference of the pulse frequency com-
ponents. Each component travels at phase velocity 2/3¢ in
the cables, but their relative phases are modified after the
pulse’s transmission through the system; as a result, the peak
of the output pulse (where the frequency components are all in
phase) is shifted backward (or forward) and the pulse appears
to travel at superluminal (or subluminal) speed. As it is argued
in several works [32,33], these abnormal propagation regimes
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FIG. 9. Wave-packet traces of the RF interferometers (from top
to bottom) L1-99, L1-101, L1-105, L1-109, and L1-110. In each
case, the pulse carrier frequency is that of the 1st transmission
minimum. The arrow indicates the pulse propagation time through
the interferometer and it is obtained as mentioned in Sec. III.

occur only if the spatial length of the pulse (Lpuse) greatly
exceeds that of the system. This condition is nicely satisfied
here, since Lpyse = 3.3 us x 2/3¢ = 400 m is much longer
than the interferometer’s length (Leg &~ 2 m).

C. Further discussion and operation in the optical range

Let us now discuss some figures of merit of the three-beam
interferometer as an SFL system and its possible realization
for delaying or advancing optical pulses. Considering an
interferometer with a small length detuning, &, simulations
show that the relative group delay |tq4el| = 7, — T), Which is
the difference between the group delay and the phase delay in
the medium over length L, matches a sequence of Lorentzian
functions centered at each transmission minimum:

r

i 7 o (25)
27 (f - fmin)2 + (%)

where fnin is the frequency of the considered transmission
minimum and T is the full width at half maximum (FWHM)
of the Lorentzian function at that minimum. The maximum
relative group delay is then |Tgei|peak = 1/7 . Since the pulse
delay (or advancement) will only be effective for signals cen-
tered at the transmission minima and with spectral components
within these Lorentzian peaks, the product |Tgef|peax X I' =
1/m ~ 32% gives a rough estimation of the maximum delay-
bandwidth product that can be achieved with this system. Let
us note that this estimation is valid for any frequency range
the interferometer may operate.

Another figure of merit in SFL systems is the fractional
delay, defined as the ratio between the relative pulse delay, 7,
and the pulse duration, 7p. In our time-domain experiments,
we have measured a maximum relative pulse delay of ~300 ns

|Tgel| =
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(t, ~ 10 ns is almost negligible in comparison). Various mea-
sures of the pulse duration are considered by the authors. For
our sinusoidally modulated wavepackets and by considering
Ty as the period of the modulating signal (3.3 us), we obtain a
fractional delay of ~9%. Instead, if we take 7 as the FWHM
of the pulse amplitude signal, this parameter becomes ~18%.
Furthermore, by regarding 7y as the FWHM of the pulse power
signal, then the measured fractional delay becomes ~25%. For
the rest of the discussion we will consider this last definition
of Ty since it is the optical power, and not the optical field
envelope, which is detected in experiments performed in the
optical range.

We have also performed numerical simulations on the
propagation of sinusoidally modulated pulses through the
interferometer. This study shows that the transmitted pulse
width, Ty, is smaller than Ty, yielding a pulse compression b,
given by b = 1 — Ty, /Ty. Either pulse delay or advancement
is accompanied by a certain degree of pulse compression.
The relation between pulse compression and fractional delay
is roughly quadratic and for sinusoidally modulated pulses

reads
b~o07(H ’ (26)
~ . TO .

This means that, in order to maintain the pulse compression
below 5%, the fractional delay cannot exceed 27%, and
to keep it below 10%, the fractional delay cannot exceed
38%. This explains the low pulse compression observed in
our measurements with a 300 kHz modulating signal. Time-
domain measurements with 500 kHz modulation frequency
(not shown here) were carried out to confirm not only a high
pulse compression but also a strong distortion.

The above discussion is entirely applicable to three-arm
interferometers fabricated to operate at optical frequencies.
Leaving the free-space configurations aside, there are several
technologies torealize a wave-guided three-arm interferometer
operating in the optical range, namely, all-fiber and channel
waveguide structures. For practical purposes, it would be
desirable to induce the SFL transitions by changing the optical
path without affecting the physical length of the arms, i.e., by
changing the refractive index. With this idea, lithium niobate
(LN) is an excellent candidate material, being an established
choice for electro-optic applications such as the realization of
Mach-Zehnder optical modulators [34]. Optical waveguides
can be fabricated, among other techniques, by in-diffusion of
Titanium into an X- or Zz-cut LN crystal. A precise control of the
phase shift in one arm can be achieved by applying an electric
field through the metallic electrode above the corresponding

ground electrodes
[] drive electrode .
combiner

[N /

B waveguides

W
splitter LiNbO
3

FIG. 10. Schematic of a lithium niobate three-arm interferometer.
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FIG. 11. Numerical simulation of a LN interferometer with the
indicated parameters. (a) Magnitude of the transmission coefficient
and group delay and (b) pulse traces of transmitted pulses with the
indicated carrier frequencies corresponding to different propagation
regimes.

waveguide, which induces a refractive index change due to
the electro-optic properties of this material. Figure 10 shows a
schematic of a z-cut LN unbalanced three-arm interferometer.
Although it seems more adequate to place the drive electrode
above one of the outer arms, the drive electrode has been
placed above the middle arm in order to directly extrapolate
our previous analysis with length detuning &. Therefore, an
external voltage applied to the drive electrode will produce a
phase shift, 8¢, in the shortest arm, which is equivalent to
introducing a length detuning of & = m %, where negr 1S
the waveguide effective refractive index.

As an example, let us consider the case of a LN inter-
ferometer with L = 5 cm, nominal A of 935 um, and a
phase shift §¢; ~ 0.08rrad (equivalent to a length detuning of
£ =3 -1079). This value of A is chosen so that the separation
between transmission minima of the same order is 50 GHz.
Figure 11(a) shows the transmission coefficient and the group
delay in a frequency range of 150 GHz centered at the middle
frequency between a pair of minima of the same order at
~193 THz. Considering n.; = 2.14, the phase delay in this
system is T, ~ 356 ps. Fast light regime is sustained at the
first transmission minimum, whereas slow light appears at
the second minimum. As indicated in the figure, pulses of
bandwidth smaller than 3.4 and 3.2 GHz would be required to
observe such peak advancement or delay, respectively. We have
simulated the propagation of an optical pulse train through this
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interferometer. An optical carrier of ~193 THz (A = 1.55 um)
is sinusoidally modulated in order to produce a train of pulses
with To = 214 ps at a repetition rate of 1.7 GHz. Figure 11(b)
shows the pulse traces corresponding to propagation at both
transmission minima together with a pulse trace propagating
at the central frequency, for which the group delay is 7,.
The relative pulse delays at the first and second minima are
~—T72 ps and +76 ps, respectively, yielding fractional delays
of —34% and +36%, with pulse compression of 8% and 9%,
respectively. These values are larger than those reported in
passive fiber Bragg gratings [16], where fractional delays
and advancements of 17% where measured when tuning a
picosecond optical pulse spectrum through the grating band
gap. Our results are also similar to the ones reported in
Ref. [17] for active fiber Bragg gratings when keeping the
pulse compression in our system below 13%.

V. CONCLUSIONS

To summarize, we have demonstrated the arising of slow
and fast light in linear and passive three-beam interferometers
for frequencies close to the transmission minima. Transitions
in the pulse propagation regime at these frequencies in terms of
the system’s characteristics (attenuation and length difference
between adjacent arms) were theoretically analyzed. We
have proved that slow light is not possible when the length
difference between adjacent arms is a constant. In this case,
fast light is achieved only if the system has attenuation.
The total attenuation drives the group delay transitions at
the transmission minima, where tunneling is the expected
regime for low total attenuation, whereas superluminality and
eventually normal propagation are attained as total attenuation
further increases.

By introducing a small length detuning (§) in a branch,
we have demonstrated that slow light can arise. Analytical
expressions for the group delay 7, at the transmission minima
in the approximation of low attenuation and small length
detuning were derived, and a critical length detuning (&)
beyond which slow light appears was obtained. We found that
in the case of lossless media &, is zero, being the role of the
attenuation to increase the magnitude of &.. For every pair of
minima located between absolute peaks of the transmission
spectra, only one minimum may support slow light at a time,
whereas the other minimum will sustain either tunneling,
superluminal, or normal dispersion, depending on the system’s
length.
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Let us remark that such length-detuning-driven SFL transi-
tion stems from a structural change in the system’s dispersive
properties at the transmission minima. This change is triggered
by the passage through a local zero transmission when the
critical detuning value is reached. This is in formal analogy to
previously reported group delay tuning mechanism for pulses
reflected on active Bragg gratings by changing the gain. But
unlike it, here the SFL transition is attained in an entirely
passive system.

An experimental demonstration of the model predictions on
the pulse propagation regimes has been performed in the RF
range by using 50-2 coaxial cables and 1 x 3 power splitters to
build five interferometers with & values ranging from —5.4 to
+5.8%. The structures were characterized in the frequency
domain, and the group delay at the transmission minima
showed the trends predicted by the analytical expressions. The
same structures were used in a time-domain setup, where a
group delay from less than —300 ns to more than +300 ns was
measured for a train of 3.3-us-wide sinusoidally modulated
wavepacket with carrier frequency at the first minimum of
each interferometer.

The maximum delay-bandwidth product of the system
is estimated to be 32%. Numerical simulations on pulse
propagation show that the achievable fractional group delays
can reach 38% keeping pulse compression below 10%. These
characteristics are intrinsic to the system; i.e., they are
independent of its operational frequency range. Therefore,
the achievable pulse advancements or delays for small pulse
compression are shorter than the pulse duration. This would
be a drawback for developing practical delay lines or optical
buffers based on this system for signal processing. However,
the very abrupt SFL transition when approaching the critical
length detuning opens the door for sensing applications. With
this sensing scope, let us note that similar phenomena would be
expected by varying whatever changes the optical path in one
of the arms. As an example, a lithium niobate interferometer
operative at 1.55 um was proposed where a fine control of
the phase shift in a branch could be achieved by applying an
electric field through a metallic electrode, which induces a
refractive index change on the waveguide.
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An analytical approach is reported that describes previously observed fast-light regimes in linear and passive
Mach-Zehnder interferometers (MZI) where the optical path difference is due to a different length of the branches.
Approximate expressions are developed for the transmission coefficient and group delay spectral functions valid
for frequencies close to the transmission minima wy;,, where these regimes occur. It is found that the group
delay at wy;, verifies a simple scaling law. We demonstrate that slow light cannot arise in this system, and that
tunneling and superluminal regimes appear only for low-loss devices, where the attenuation drives the change in
the propagation regimes. The propagation of a sinusoidally modulated pulse train through the MZI is described,
and relevant figures of merit, which are intrinsic to the system and universal for any operative spectral range,
are determined. The theoretical approach is illustrated by simulations of a silicon-based interferometer designed
for advancing pulses at 1.55 pum. Also, previously reported experimental results in the radiofrequency range are

interpreted in the framework of the model.
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I. INTRODUCTION

Slow and fast light (SFL) technologies are currently
receiving much attention because of their interesting appli-
cations, ranging from optical information processing, with the
realization of optical buffers, quantum memories, switches and
synchronizers [1-3], to enhanced precision sensing [4,5] and
interferometry [6].

These technologies are based on systems that exhibit steep
positive dispersion to propagate a light pulse at unusually
low group velocity (slow light, v, < ¢) or steep negative
dispersion to achieve pulse propagation at unusually fast
group velocity (fast light, v, > ¢ or negative) [7]. This is
the case of materials with gain or absorption resonances
[8,9] and of materials where a dip in the gain or in the
absorption feature is induced by nonlinear optical processes,
like electromagnetic [10] or photo-isomerization-induced [11]
transparency, coherent population oscillations [12] or stimu-
lated scattering [13—15]. SFL effects thus arise in a myriad
of materials (atomic vapors, solid crystals, dye-doped liquid
crystals, semiconductors, and optical fibers) because an abrupt
variation of the real part of the complex refractive index
(hereafter, simply the refractive index) n occurs in the narrow
band around the resonance or dip due to the Kramers-Kronig
relations that link the real and imaginary parts of the dielectric
function.

Exotic pulse propagation regimes also occur in engineered
media without substantial material dispersion, like photonic
crystals [16,17] and Bragg gratings [18]. These systems consist
of a periodic refractive index distribution and exhibit structural
dispersion due to coupling between the incident wavelength
and the characteristic length of the structure. The transmission
spectrum has a forbidden region for certain directions and
polarizations (photonic band gap), which sustains fast light,
while slow light is generated at the photonic band edge and at
the inside-gap resonance of doped photonic crystals or Bragg
gratings. Contrary to the aforementioned systems with material
resonances, SFL occurs here in entirely linear and passive
structures. Because of the scaling properties of photonic
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band-gap (PBG) systems, structural SFL has been detected not
only in the optical range but also for lower frequencies, like
microwave [19-21], radiofrequency (RF) [22,23], and even
acoustic wave packets [24].

As an alternative to PBG systems, we recently demonstrated
that structural SFL can be generated in multiple-beam inter-
ferometers of three or more branches [25,26], which are linear
and passive systems not exhibiting photonic band gaps. The
simplest interferometer of this kind, with only two branches, is
the Mach-Zehnder interferometer. It is a common and versatile
device in actual communication systems, widely used to build
optical switches [27], modulators for optical signal multiplex-
ing [28], sensors [29], and fractional optical differentiators for
pulse-shaping applications and information processing [30].
Its typical interference pattern presents transmission peaks
and valleys as a consequence of the phase shift between the
two interfering beams, caused by either a difference in the
length of the branches (unbalanced or asymmetric MZI), or
by a refractive index difference between the branches of equal
length (symmetric MZI).

This two-path interferometer has been shown to sustain
fast-light propagation for frequencies close to the transmission
minima [31-33]. In [31], frequency-domain characterization
of an asymmetric loop structure (asymmetric MZI) built with
coaxial cables showed negative phase jumps around the trans-
mission minima. This led the authors to point out this structure
as a good candidate for obtaining negative group velocity.
Time domain experiments performed with Gaussian acoustic
pulses [32] and sinusoidally modulated RF wave packets
[33] corroborated these findings. By tuning the pulse carrier
frequency slightly off the transmission minima, superluminal
propagation was also detected [33]. No slow-light regimes
were observed. Slow light in an MZI has only been obtained
when the medium in one of the branches is microstructured
[34] or exhibits a material-resonant feature [35].

The experimental results in [33] were interpreted in the
framework of the effective index approach [36]. Within this
picture, the scattering loss of the pulse spectral components is
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ascribed to an effective complex refractive index whose real
part is obtained from the overall phase shift on transmission
¢,(w) through the structure. The abrupt negative slope of
¢,(w) at the transmission minima [31-33] causes an anomalous
effective dispersion whose origin is structural, i.e., it is not due
to dispersion of the medium in the branches (which was, in
fact, neglected), but to the features in the spectral transmission.
This is also the situation in PBG systems.

In this work we bring these ideas further and develop a
theoretical model that fully describes the arising of structural
fast light in MZIs and its performance in terms of both the
device parameters and the pulse characteristics. The medium
in the branches is assumed to be linear and dispersionless in the
frequency range of interest, which is a reasonable assumption
for a medium exhibiting no gain or absorption peaks. To
simplify the analysis, a constant attenuation coefficient is con-
sidered, and exact expressions for the complex transmission
coefficient and group delay as a function of frequency are
obtained. The conditions necessary to obtain appreciable fast
light effects are discussed in terms of the fringe visibility,
and the allowed propagation regimes are determined as a
function of the device characteristics (size, refractive index,
and attenuation coefficient of the medium in the branches). We
show that the total attenuation is the mechanism that drives the
change in the propagation regime for a given refractive index.
A substantial difference regarding fast light effects is found
between asymmetric and symmetric MZI.

The behavior of a pulse travelling through an SFL system
depends not only on the characteristics of the system itself,
but also on the pulse shape and duration. As a consequence,
the group delay spectral function of the MZI will only
be an estimation of the actual pulse delay measured in
a time-domain experiment. This issue is addressed in this
work by obtaining an approximate expression of the complex
transmission coefficient, valid for frequencies close to the
transmission minima, that is used to model the propagation
of a sinusoidally modulated pulse train through the MZI.
An analytic expression of the pulse delay, along with rel-
evant figures of merit that quantify fast-light propagation,
is determined. A comparison is made to recently reported
SFL effects in three-beam interferometers [25]. The model
predictions are illustrated with numerical simulations of a
silicon-based MZI designed to operate at optical frequencies.
Finally, the previously mentioned experimental results in the
RF range [33] are revisited and interpreted in the framework
of this model.

II. ANALYTICAL MODEL

We consider a plane wave of a unit complex ampli-
tude impinging on a Mach-Zehnder interferometer. A 1 x 2
splitter divides the wave into two equal components that
travel along each arm and then recombine by a 2x 1
coupler. The transmitted complex amplitude at the end of the
interferometer is

f=

N =

2
Zeji’,’ (1)
i=1
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where ¢; is the phase of the wave propagating along the ith
branch, which, in turn, can be expressed as

®
¢ = ;Li + jalL;. (2)

In Eq. (2) w is the angular frequency, v is the phase velocity
in the medium, L; is the ith arm length, and « is the
attenuation coefficient of the medium. We define the length of
each arm as

A
and Ly =L+ —, 3

where A is the length difference between arms. The effective
length of the MZI is the average length of the branches since
the input field amplitude is equally split between the two arms

I — (LI;LZ). @)

Let us define B as the phase shift associated to the length
difference A, i.e., § = wA /v, and introduce the following
quantities:

A
Li=L-=
2

R = cosh(a A /2)cos(B8/2), (5a)
7 = —sinh(a A /2)sin(8/2), (5b)

which are related to the transmission coefficient according to
f = el@/VHOL(R 4 7).

Therefore, the magnitude and phase of the transmission
coefficient can be expressed as

7| = e *EV/R2 + 12, (6a)

) AL + arct z (6b)
= — +arctan | — | .
‘T A R

The propagation of an electromagnetic pulse through
the interferometer is often described in terms of the group
delay, which is the time taken by the pulse envelope to
propagate through the system [7]. Following the standard
stationary phase approach for the plane waves constituting the
pulse [19,20], the group delay is obtained from the frequency
derivative of the transmission coefficient phase
_3¢,_L+R%—I% o
S dw v R2+1%
Assuming that both the refractive index and attenuation
coefficient of the medium in the branches are constant over
the whole frequency range of interest, the following expression
of the group delay as a function of frequency (through B) is
retrieved

Tg

B ( 3 A sinh(a A /2)cosh(a A /2) ) ®)
="t 2L cos2(8/2) + sinh>(@ A /2) )

where 7,(= L/v) is the phase delay over the system’s
effective length. The previous expressions are exact within
the assumptions for the medium in the branches. In the
following sections, easier to handle approximate equations
will be derived with the aim of demonstrating anomalous
propagation regimes as well as modeling the propagation of
pulses through the MZI. The conditions considered for such a
derivation are now discussed.

First, the analysis will be centered in a narrow frequency
region around the transmission minima since it is where
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FIG. 1. (Color online) (a) Schematic of an unbalanced MZI and
(b) its typical transmission spectrum with (dashed line) and without
(solid line) attenuation.

fast light was experimentally observed [31-33]. An MZI
has one minimum between two adjacent principal peaks on
transmission. The extrema of the transmission function |f(8)|
of Eq. (6a) lie at phase values fBnin = (2m + 1)z (for minima)
and Bax = 2wm (for maxima), where m is an integer number.
The position of the minima does not change with attenuation, in
contrast to the situation in a three-beam interferometer [25]. A
schematic of the two-beam interferometer and its transmission
spectrum with and without attenuation are displayed in Fig. 1.

Second, our analytical approach will be performed within
the condition of high fringe contrast of the interference pattern
(i.e., weak attenuation), which is necessary for the arising
of anomalous pulse propagation regimes. In the absence of
attenuation (o = 0), Eq. (8) yields 7, = 1, as itis expected in
a linear and lossless system, where the phase relation between
the pulse components remains unchanged and consequently
the pulse peak travels at the phase velocity. On the opposite
case, for very high attenuation, no anomalous pulse propaga-
tion regimes are observed. Since a high attenuation reduces the
contrast of the interference pattern (as it can be appreciated
in Fig. 1), the present analytical study will be performed
within the condition of good visibility of the fringes. Such
a condition corresponds to considering small o A values, as it
is demonstrated below.

The visibility of the interference pattern (or fringe contrast)
is defined as [35]

Tmax — Tmin (9)
Tmax + min

<
I

where T = |]? is the transmittance and the subscript indicates
its maximum or minimum value. Considering the phase values
of the transmittance extrema (Bmax and Bmin) into Egs. (5)
and (6), the fringe contrast of the MZI is found to depend
solely on the attenuation along the length difference between
branches (xA)

2e~4A

1+ e—2aA’

<
ll

(10)
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For a lossless interferometer (¢ = 0) one gets v = 1, whereas
the losses decrease the fringe visibility; the higher ¢ A, the
smaller is the fringe contrast. Since fast-light effects requires
sharp spectral features, a visibility of at least v = 0.65 is
required [35], and this requires that the amplitude ratio of the
combining waves at the end of the MZI, e 2 should be less
than 1/e, thatis, A < 1. The analytical approximation in the
next section will consider « A < 0.5 values, which assures
a very good fringe visibility (v > 0.9) along with excellent
agreement with the exact model developed above.

A. Transmission coefficient and group delay
around the transmission minima

Let us derive approximate equations of the magnitude |#(w)|
and phase ¢,(w) of the transmission coefficient, and the group
delay t,(w), valid for frequencies close to a transmission
minimum wy,,. These expressions will be used in Sec. II C to
study the propagation of narrowband sinusoidally modulated
pulses through the MZI.

The transmission coefficient in Eq. (6) can be written in
the terms of (8 — Bmin). After some algebraic operations, the
following expressions are obtained:

|| = e~k \/ sin? <—ﬂ _2’9 mi") + sinh? (%)
~ —aL B — Bmin 1 aA\’
SRCERC)

7  tanh(axA/2)  aA (11b)
R tan (IB B ,Bmin/z) .3 - lgmin '
where the approximation valid for small angles (8 — Bmin)
and small @ A was considered. Recalling that 8 = wA /v and
defining a new parameter y = —awv, this leads to the following

approximate equations for the magnitude and phase of the
transmission coefficient around the minima wy;,

N oL @A ® — Win 2
|t(a))| e Y — 14| — |,
2 Y

m) + T (12b)
y 2

Note that the result of null transmission at the minima is
recovered for the lossless case (¢ = 0). Finally, the approxi-
mate expression for the group delay around each transmission
minimum is retrieved through a @ derivation of the phase
function in Eq. (12b)

(11a)

(12a)

¢ (w) ~ wT, + arctan (

. r
(0 — Cl)min)2 + )/2

Equation (13) shows that the excess group delay (t, — 7,)
around the minima is a Lorentzian function, with |y| the
half-width at half maximum (HWHM) and 1/y the excess
group delay at the transmission minima. Since y is directly
proportional to the attenuation coefficient for a given refractive
index, one concludes that the larger the losses, the wider will
be the group delay Lorentzian curve and the smaller will be
the group delay absolute value at wy,,. Hence, the softening

T, (@)~ T, + (13)
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of the anomalous propagation regimes when the losses in the
system are notable is proved.

B. Pulse propagation regimes af the transmission minima

In this section we provide theoretical proof that tunneling
and superluminal regimes can arise at the transmission minima
by properly choosing the interferometer’s effective length for a
given attenuation coefficient and refractive index. From Eq. (8)
the exact group delay at the transmission minima S, reads

A oA
T, =17, |1~ icoth > )| (14a)
which can be approximated for small values of ¢ A as
N 1 1
‘L'gw‘[p l_a_L :Tp—’—;. (14b)

Alternatively, the above expression could also be obtained by
evaluating Eq. (13) at wpin.

Interestingly, if we now apply the relationship between the
attenuation coefficient and the imaginary part of the complex
refractive index n; (@ = n;w/c) into Eq. (14b), the group delay
at wmin can also be approximated as

n 1
T, "T,), — — 5
8 p
nj Wmin

(14c)

The above expression brings two interesting points into
attention. First, it sets a scaling law for the group delay
since it indicates that the product wy;, X (ty — 7,) does not
depend on the interferometer’s operative frequency range, but
only on the ratio between the real and imaginary parts of the
complex refractive index of the medium in the branches (n/n;).
Second, equivalent expressions were obtained for the group
delay at the reflection minima of a weakly absorbing dielectric
slab [21,37], which is indeed a multibeam interferometer.
Therefore, it shows the resemblance between pulse transmis-
sion through an MZI and pulse reflection on a dielectric slab.
This should not be unexpected since the MZI transmission
spectrum is, in fact, very similar to the dielectric slab reflection
spectrum.

Following the discussion, we now focus on a system with
a given refractive index and take Eq. (14b) to analyze the
possible propagation regimes at the minima. Equation (14b)
shows that a lossy MZI cannot sustain slow light (7, cannot
be larger than 7)) because « is positive by definition. Only in
the hypothetical case of an interferometer with gain (o < 0)
would the subluminal regime arise. Practical situations, like
considering an MZI with a medium in one of the branches
that exhibits a narrow gain resonance, are discussed in the
literature [35].

The interferometer will sustain tunneling at the minima
(ty < 0) if the attenuation coefficient and the effective length
are chosen so that

ol < 1. (15)

For larger aL, the superluminal regime will arise (0 < 7, <
L /c) if the following condition is satisfied:

1l <al < (16)

n—1
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TABLE 1. Possible propagation regimes at the transmission
minima for a lossy MZI.

l <alL < al >
n—1 n—1

Condition al <1

a>0 Tunneling Superluminal Normal

Therefore, the change in the pulse propagation regime is
driven by the total attenuation of the interferometer oL,
which can be modified by either changing the medium in the
branches (i.e., «) and/or the interferometer’s effective length
L. The length difference between branches A plays no role
in this issue, it only determines the frequency position of the
minima, namely @y, = (2m + 1)rv/A. Table I summarizes
the possible propagation regimes at the minima as a function
of L.

The above analysis is illustrated by performing numerical
simulations on a silicon-based MZI with refractive index n =
3.48. Figure 2 shows, for two attenuation valuesand A = L /10
the magnitude of the transmission coefficient calculated using
Eq. (6a) and the group delay as a function of 8 according
to Eq. (8). As it was discussed, no anomalous propagation
regimes occur in the lossless interferometer, while if losses
with ¢ A = 0.015 are considered, tunneling arises at each
minimum with negative group delays close to —67,.

Figure 3 shows how the system’s total attenuation drives the
change in the pulse propagation regime. The group delay at the
minima (normalized to the phase delay) is plotted as a function
of aL for an interferometer with « A = 0.015. Together with
the 7, values obtained from Eq. (14a), the straight line 1/n
corresponding to propagation over length L in a vacuum
is represented. The system exhibits negative group delays
for small-enough attenuation («L < 1). For values of oL
ranging between | and 1.4, the propagation is superluminal,

1.0

08fF"

(S L E‘EI m=0
A=L/10 |
n=348

W
0 /2 T 3n/2 2n

FIG. 2. (Color online) (a) Transmission coefficient magnitude
and (b) group delay in units of phase delay through an Si-based
MZI with length difference between arms A = L /10 and refractive
index n = 3.48 for two values of the attenuation coefficient o.
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FIG. 3. (Color online) Pulse propagation regimes at the transmis-
sion minima of an Si-Based MZI with « A = 0.015 as a function of
the total attenuation «L. Group delay plotted from Eq. (14a) (solid
line) and phase delay through a vacuum (dashed line). The delays are
given in units of the phase delay over the system’s effective length.

in agreement with Eq. (16), while for too high attenuation
aL > 1.4 normal propagation is obtained. Therefore, fast light
is achieved for weak-enough attenuation, while it disappears
if it is either zero or too high (> ~*7).

The fast-light conditions summarized in Table I and the
impossibility of getting slow light coincide with those obtained
for a three-beam interferometer with constant length difference
A between adjacent arms [25]. In fact, the exact expression
of the group delay at the transmission minima of this latter
system is the same as the one derived here if A in Eq. (14a)
is substituted by 2A, i.e., the length difference between the
shortest and the longest arms of the three-beam interferometer.
Therefore, a three-beam interferometer with constant A

behaves, as far as SFL effects are concerned, as an MZI.

C. Propagation of sinusoidally modulated pulses

The propagation of a pulse train through the MZI is now
modeled. A sinusoidally modulated wave packet with carrier
frequency ., and modulation frequency w,, is considered,
Ein(t) = E sin(w.t)[1 + M;i,cos(w,,t)], where the modulation
index Mj, is the amplitude ratio of the modulating and
carrier signals. Together with the carrier component, this kind
of modulation generates two side components of amplitude
E.; = M, E./2 and frequencies wi; = w, & w,. By setting
the carrier frequency at one of the minima (@, = ®min) and
using Eq. (12), the amplitude and phase of each spectral
component after propagating through the system are obtained.
Using Fourier theory, the envelope of the pulse transmitted
through the interferometer reads

Eout(t) x 1+ Moutcos[wm(t - Tpulse)]» (17)

with modulation index (Mqy) and delay (Tpuse) of the output
pulse given by

om\’
Mow = Min, |1+ — ) (18)
14
1 W
Toulse = Tp + — arctan 7 , (19)
keeping in mind that 7, = L/v and y = —av.
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The pulse delay in Eq. (19) is the time that a sinusoidally
modulated pulse train of modulation frequency w,, and a
carrier frequency tuned at wp, takes in travelling through
the MZI. In the limit of extremely narrow pulse bandwidth
wm —> 0, Tpuse = T, + 1/y, thus recovering the group delay
value at wp;, which was discussed in Sec. II B. In other
words, this analysis shows that the narrower the spectral pulse
width, the more the pulse delay measured in a time-domain
propagation experiment approaches the value of the group
delay given by Eq. (14a).

An important figure of merit in SFL systems is the fractional
delay [38], D,, defined as the ratio between the excess pulse
delay and the duration of the incident pulse Tij,:

Tpulse — Tp

D, = T (20)
This quantity is equal to the excess number of pulses that can
be contained at any time within the system with respect to the
number that would be contained if the pulses travelled at the
phase velocity. It is hence a measure of how much the infor-
mation storage capacity of the system is enhanced due to SFL
effects. A common definition when dealing with optical pulses
is to take the pulse duration as the FWHM of the pulse power.
For sinusoidally modulated pulses of modulation index M,
the pulse duration is 7 = 2/w,, arccos((1 — 24+ M )/ V2M)
and consequently, D, reads

t DOm
Py arcan(y) . on

a 2 arccos (—lfxg\;M‘")

Figure 4(a) shows that the fractional advancement |D | (solid
line) increases with modulation frequency. Also, Eq. (21)
predicts | D, | = 34% if modulation is performed with M;, =
1 and w,, = |y/|, i.e., the pulse spectral components lie within
the FWHM of the group delay function in Eq. (13). For higher
modulation frequencies, however, the pulse will undergo a
certain degree of distortion, which is larger as w,, increases.
According to Eq. (18), the modulation index of the transmitted
pulse is always larger than that of the input pulse, and
consequently, the duration of the output pulse (75y;) will always
be smaller, leading to a pulse compression b, whose value can
be calculated by

Tout arccos (#)
b -2 ) g
Tin arccos (ﬁ)

Figure 4(a) shows (dashed line) the relation between pulse
compression and modulation frequency (normalized to |y |). It
is found that for not too high values of w,, the compression
factor goes roughly quadratic with the fractional delay b =~
K D;. Considering Mi, = 1, the proportionality constant K
is 0.74 if w, — 0 and it is 0.71 if w, = |y|. This relation
is illustrated in Fig. 4(b); it implies that, to keep the pulse
compression below 5%, the fractional delay may not exceed
27%, and to keep it below 10% the fractional delay may not
exceed 38%.

In addition to pulse compression, distortion of the pulse am-
plitude also appears, similarly to what is observed for fast light
in systems with material resonances [39]. In the case of M, =
1, this amplitude distortion acts as a pulse breakup, giving
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FIG. 4. (Color online) (a) Fractional advancement (solid line)
and pulse compression (dashed line) versus normalized modulation
frequency, and (b) pulse compression (dashed line) and secondary to
main peak amplitude ratio (short-dashed line) as a function of the
fractional advancement, for a 100% sinusoidally modulated pulse
train with carrier frequency tuned at one of the transmission minima.

rise to a main peak (lying at 7 = t,u5.) and a secondary peak
(lying at t = Tpyee + 7/wy). The secondary-to-main power
amplitude ratio is given by (1 — Myy)?/(1 + Myy)?, which in-
creases with increasing modulation frequency, or equivalently,
with increasing fractional advancement, as shown in Fig. 4(b).
Thus, to maintain the secondary peak amplitude below 10% of
the main peak amplitude, the fractional delay may not exceed
45%.

Another relevant figure of merit of SFL systems is the
delay-bandwidth product (DBP) [38], defined as the product
of the delay and bandwidth of the signal transmitted through
the system. This quantity can be estimated in various units
depending on which magnitude the bandwidth is given.
Choosing a modulation frequency f,, = |y|/27 so that the
spectral components of the signal here considered lie within
the FWHM of the Lorentzian group delay curve in Eq. (13),
the expected DBP is (tpui5e — 7)) X 2 fin = 25%.

It is worth noticing that the above features and figures of
merit are entirely applicable to MZIs operating at any fre-
quency range. In this context, we shall recall the simple scaling
law for the excess group delay at wp,;, that was previously
obtained [see Eq. (14¢)], which is useful to transform a device
originally designed to operate at a specific frequency range into
another operative range. Finally, let us point out that the pulse
propagation characteristics described above are equivalent to
those derived for a three-beam interferometer [25].
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III. RESULTS AND DISCUSSION

In this section, the model predictions are applied to Mach-
Zehnder interferometers operative at two different spectral
regions. First, a numerical simulation of the propagation of
optical pulses centered at 1.55 um is performed and second,
our previous experimental results obtained in the RF range are
revisited and interpreted in the framework of the model.

A. Simulation results in the optical range

A silicon-based MZI with an attenuation coefficient of
6.5 dB/cm and a refractive index of n = 3.48 is considered.
It is designed to have a fixed branch length difference of
A = 200um that sets the minima 430 GHz apart. Therefore,
the model parameters take the values « A = 0.015and y~! =
—155ps. The conditions summarized in Table I yield the
range of values that the system’s effective length L must take
to sustain tunneling, superluminal, or normal group delay at
the minima. Consequently, three such MZIs of the following
lengths are considered: L =2 mm (tunneling), L = 1.5cm
(superluminal), and L = 2 cm (normal).

The transmission magnitude || and group delay 7, of the
three MZIs are calculated according to Eqgs. (6a) and (8) in
a frequency range of 450 GHz centered at the transmission
minimum located at fi,;, & 193 THz; the results are plotted in
Fig. 5(a). As L increases, the attenuation of the transmission

Ly/ 1 1 1 1 L /41

10° Y / ]
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-500 -250 0 250 500
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FIG. 5. (Color online) Numerical simulation of an Si-based MZI
with parameters A = 200 um, o = 6.5 dB/cm, and n = 3.48 for
three values of the effective length: L = 2 mm (solid line), L =
1.5 cm (dashed line), and L = 2 cm (dotted line). (a) Magnitude of
the transmission coefficient and group delay. (b) Normalized traces
of pulses with carrier frequency tuned at f,,;, and transmitted through
each interferometer. The incident pulse has its peak at t = 0.
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spectrum becomes stronger and the group delay curve shifts
upwards because of the positive contribution of a larger phase
delay. The group delay value at fi,, namely 7, ~ —131,19,
and 77 ps, corresponds to the tunneling, superluminal, and
normal regimes, respectively, in agreement with the model
predictions. For each interferometer, the excess group delay
curve 7,(f) — 7, fits excellently to a Lorentzian function of
HWHM |y|/2m &~ 1 GHz and —155ps excess delay at the
minimum.

Now, an optical pulse train travelling through each in-
terferometer is numerically simulated. The optical carrier
is tuned at fuin & 193THz (A = 1.55 um) and it is 100%
sinusoidally modulated at frequency f,, = |y |/27 to generate
a train of pulses of width 7j, = 364 ps at a repetition rate
of 1 GHz. Figure 5(b) shows the pulse traces corresponding
to a propagation through the interferometers of L = 2mm
(pulse 1), L =1.5cm (pulse 2), and L =2cm (pulse 3).
All traces were normalized to its peak value for an easier
comparison. The peak position of each envelope is the time
that the pulse takes in travelling through the system, i.e., the
pulse delay. These delays are, respectively, ~ —98,52, and
110 ps and they agree very well with the values predicted by
Eq. (19). Since the incident pulse (not depicted) has its peak
at t = 0, pulse 1 clearly tunnels through the system, pulse
2 propagates almost superluminally (the superluminal delay
should be less than L /c = 50 ps), whereas pulse 3 corresponds
to a normal propagation. For the three pulses shown in the
figure, a fractional advancement of | D s| = 34% was observed,
in agreement with Eq. (21).

The case of pulse 2 is a neat example that Table I provides
an estimation of the propagation regime for narrowband pulses
tuned at the minima. The pulse spectral width has indeed
influence on the actual propagation regime, as it is reflected
in Eq. (19) for tpugee. It was checked that by decreasing the
modulation frequency slightly below 1 GHz, the resulting
pulse does propagate superluminally through the MZI of
L=15cm.

Figure 6 shows the normalized traces of two pulses trans-
mitted through the shortest MZI (L = 2 mm, and phase delay
7, =23 ps) and tuned at two frequencies: fumin ~ 193 THz

122 ps
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FIG. 6. (Color online) Normalized traces of pulses transmitted
through the interferometer of L = 2 mm for two carrier frequencies:
tuned at f,;, (solid line) and tuned at f;,.x (dashed line). The incident
pulse has its peak at t = 0.
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(pulse 1) and the next transmission maximum fimax = fmin +
215 GHz. Since the pulse with carrier frequency at fi,.x travels
at the phase velocity, pulse 1 (main peak) is advanced 121 ps
with respect to it. A slight compression of pulse 1 is revealed
by measuring the widths of both pulses. Such a compression
also occurs for pulse 2 and pulse 3 shown in the previous
figure. In the three cases a compression factor of b = 8%
is observed, in agreement with Eq. (22). In physical terms,
this behavior can be ascribed to spectral reshaping of the input
pulse due to the transmission feature at the minimum. Namely,
the center pulse frequency is transmitted with less intensity that
its side components, thus causing spectral broadening, and
consequently, pulse shrinking in time. This situation has also
been reported for fast light based on material resonances [39].

Figure 6 also shows the pulse 1 breakup, with a discernible
secondary peak at 388 ps and power amplitude of 2.9% of the
main peak power amplitude, in excellent agreement with the
predicted values given that My, = V2.

It is worth emphasizing that the above numerical simu-
lations regard an ideal waveguide silicon-based MZI. Real
waveguide-integrated interferometers usually have power im-
balance on the nominal 3 dB couplers [27]. Interestingly, power
imbalance can play the role of total losses « L in changing the
propagation regime, as it can be deduced from the results found
in [30]. In that work, the author analyzed the performance of an
MZI with variable power splitting ratios. The softening of the
phase jump in the phase spectral function for splitting ratios
detuning from 3 dB is similar to the effect of total losses.

For practical purposes, one might consider the possibility of
inducing the optical path difference in the MZI not by means
of a physical length difference A, but through a difference
in the refractive index of the branches A,. We could then
envisage an MZI with equal branch lengths and fabricated
using an electro-optic material such as LiNbO3, where A, is
tuned upon the application of voltage [27]. It must be pointed
out though that SFL effects cannot occur in such a device.
More specifically, in an MZI with branches of equal length
(and equal attenuation coefficient), the transmission is exactly
zero at the minima for whatever attenuation coefficient. The
plane-wave amplitude at the end of each branch is the same,
and A, makes the phase shift between each plane wave an
odd multiple of 7w for certain frequencies, thus completely
cancelling the transmission at those frequencies. No degree of
freedom is left to yield an anomalous propagation regime. This
situation is equivalent to that of the asymmetric and lossless
MZI shown in Sec. II, which displays zero transmission at the
minima and 7, = 7,. This physical discussion can be readily
corroborated by a simple calculation for this hypothetical
symmetric interferometer; it leads to a group delay that
corresponds to a propagation at the average phase velocity,
namely 7, = 1L /c, with 71 being the average refractive index
of the branches.

B. Revisiting experimental results in the RF range

The experimental results reported in our previous work [33]
are now analyzed within the framework of the present model.
The interferometer consists of two coaxial cables (50 €2,
RG-58C/U) of 2 and 14 m length, connected by a 1 x 2 RF
power splitter and a 2 x 1 RF coupler (PE2000 Pasternack).
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FIG. 7. (Color online) Experimental and model results of an RF
MZI with the indicated parameters around a transmission minimum.
(a) Magnitude and phase of the transmission coefficient and (b) group
delay.

Hence, the system’s effective lengthis L = 8mand A = 12m
is the length difference between branches. The phase velocity
in the cables (v = 2¢/3) corresponds to a refractive index of
n = 1.5. The phase delay of the system is thus 7, = 40ns. The
cable attenuation coefficient was characterized as a function
of frequency in the 20-100 MHz range yielding an average
value of @ = 0.014 Np/m, which is considered as the constant
coefficient loss in the model equations. Therefore, the model
parameters take the values ¢ A = 0.168 and y ! = —1/av =
—357.14ns. Considering Table I and the fact that «L =
0.112 < 1, tunneling is the predicted group delay regime at the
transmission minima. This regime should be clearly noticeable
since the fringe visibility is v = 99%.

The transmission magnitude, |7|, the phase on transmission,
¢, and the group delay 7, of this MZI were calculated using
Egs. (6a), (6b), and (8). They are plotted in Fig. 7 together
with previous experimental results [33] for comparison. The
experimental |7| and ¢, curves correspond to the magnitude
and phase of the §,; scattering parameter, which was recorded
with a two-port vector network analyzer (Agilent E§363B)
in the 20-100 MHz range every 112.5 kHz. The experi-
mental 7, curve was retrieved by numerical derivative of
the experimental phase data with respect to the frequency.
It should be remarked that in the experimental data shown
here, the effects of the splitters (an overall attenuation of 1dB
and a delay of 2 ns) were subtracted since the splitters are
not included in the model. As Fig. 7(a) shows, the constant
loss coefficient « = 0.014 Np/m considered in the model fits
very well the experimental |f| and ¢, curves in the displayed
frequency range. The experimental transmission minimum lies

PHYSICAL REVIEW A 89, 043828 (2014)

at 58.3625 MHz, i.e., 62.5 kHz above the theoretical fi,i,. The
agreement was found to be also good in a broader spectral
range (20—-100 MHz), with the only effect of a lowering of the
measured transmission peaks for larger frequencies because
of the frequency dependence of the actual coefficient loss.

As shown in Fig. 7(b), the experimental group delay
function is reasonably well accounted for by the theoret-
ical model. The experimental and theoretical group delay
at the minimum takes the values 7g ™' (fiin) = —292.81ns
and rg}heor( Sfmin) = —316.46 ns, respectively. The error in the
experimental value is estimated to be 30 ns, considering the
data experimental dispersion and the frequency discretization.
Let us note that the frequency derivative of the phase data
amplifies the small amount of noise that is contained in
the measured S,; parameter; this is why the experimental
g™ curve exhibits significant data dispersion. The theoretical
prediction of —316.46 ns lies within the experimental range
TP (finin) = —292.81 + 30 ns. It is worth mentioning that the
Lorentzian approximation of Eq. (13) with model parameter
y ! = —357.14ns almost perfectly fits the experimental
function g™ (f).

The above results are now used to interpret the time-
domain experiments reported in [33], where a train of
sinusoidally modulated wave packets with carrier frequency in
the megahertz range and 500 kHz modulation frequency was
transmitted through the system. This modulation frequency
is only by ~50 kHz larger than |y|/27. Consequently, the
side spectral components of the pulse lie only slightly beyond
the FWHM of the Lorentzian group delay curve. Figure 8
shows the experimental pulse power traces (normalized to their
maximum value) and their fitted envelopes for two different
carrier frequencies f.. A pulse delay of —250 =+ 40 ns was
reported for the wave packet with carrier frequency tuned
at 58.3 MHz; i.e., it tunnels through the system since ¢t =
0 is the peak position of the incident pulse. The pulse with
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FIG. 8. Experimental pulse power traces and their fitted en-
velopes for two different carrier frequencies: (a) 58.3 MHz (tunneling)
and (b) 50 MHz (normal regime). Each trace is normalized to its
maximum amplitude. The fitted envelopes have modulation index
(a) M =0.95 and (b) M = 0.65.
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TABLE II. Comparison between experimental and theoretical
predictions for a tunnelled pulse in the RF MZI under analysis. The
experimental data of Ref. [33] were used.

Results Moy fpulse(ns) [Dyl b%
Experiment 0.95+0.05 —-2504+40 0.35+0.05 114+1.3
Theory 0.98 —228 0.32 12.2

fe =50MHz is delayed by 40 ns and undergoes neither
distortion nor compression. This allows us to take the features
of this pulse as those of the input pulse in our model. It also
serves as the reference pulse for estimating the phase delay 7,
(40 ns) since its propagation is equivalent to that of a pulse
traversing a single coaxial cable of 8 m (the MZI effective
length). The envelopes that fit the experimental captures have
modulation index My, = 0.95 & 0.05 [Fig. 8(a)] and M;, =
0.65 [Fig. 8(b)]. Let us remark that because of the higher
distortion of the tunnelled pulse (due to the sharp decrease
of the transmitted signal at the minima) a rough error of
40.05 was estimated in its modulation index. Using the above
values of the modulation index, the pulse duration (FWHM)
for the tunnelled and input pulses is 7oy = 739.5 & 11.5ns
and T;, = 835ns.

Table II summarizes the comparison between the model
predictions and the experimental results for the following
quantities of the tunnelled pulse: output modulation index
Moy, pulse delay Tyuise, fractional delay D ;, and compression
factor b. The theoretical predictions were obtained using w,, =
27 x 500kHz and the model parameter y ' = —357.14ns
into Egs. (18), (19), (21), and (22). The experimental value of
D was obtained from Eq. (20) using t;;(l'zte = —250 +£ 40 ns.
The experimental figures of merit bear a good agreement with
the model predictions. Since the output modulation index is
Moy < 1 (as a consequence of having Mj, = 0.65) no peak
breakup is observed, in accordance to the theory.

IV. CONCLUSION

We have theoretically proved the arising of structural fast
light in a linear, passive, weakly attenuating, unbalanced
MZI. The interferometer is characterized by its branch length
difference (A), its effective length (L), and the refractive
index (n) and attenuation coefficient («) of the medium in
the branches, which are both considered constant.
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An approximate analysis is performed within the condition
of good fringe visibility (small «A) and in a narrow spectral
region around the transmission minima, where anomalous
regimes are observed. The intensity of fast-light regimes
depends on how much the group delay differs from the phase
delay, i.e., the excess group delay. It is highlighted that the
magnitude of the excess group delay at the transmission
minima scales with frequency by a proportionality constant,
which is the ratio between the real and the imaginary parts
of the complex refractive index of the branch media, in
the same way as it has been reported for other interfer-
ometric systems; namely for pulses reflected on weakly
absorbing slabs.

Keeping constant the refractive index, it is demonstrated
that the total attenuation of the system oL drives the change
in the group delay regimes at the minima, which range from
tunneling, to superluminal, and finally, into normal regime
as oL increases. Similar to other structural SFL systems,
the obtained group delay spectral function is very well
approximated by a Lorentzian curve in the frequency region
around the transmission minima.

The propagation of amplitude-modulated sinusoidal pulses
through an MZI is modeled and typical figures of merit
intrinsic to the system have been obtained. Pulse advancement
comes at the expense of pulse compression, and under
certain modulation conditions, also peak-breakup. For a 100%
modulated pulse with its entire spectrum within the Lorentzian
group delay function the delay-bandwidth product is 25% and
the fractional advancement 34%, with a pulse compression
of 8% and a secondary-to-main peak amplitude ratio of
about 3%.

The theoretical model here presented is valid for MZI
operative at any frequency range. As an example, it has been
applied to both the optical and RF ranges. In the first case, exact
numerical simulations were performed in an MZI designed to
advance a pulse centered at 1.55 pum. In the second case,
previously reported experimental results on a coaxial cable
MZI have been successfully interpreted.
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